Dokument: Beurteilung von altersbedingten Knorpelveränderungen an Hüftgelenken durch molekulare MRT-Bildgebung (dGEMRIC) und histologische Validierung der Methode am Schafsmodell in zwei Altersgruppen

Titel:Beurteilung von altersbedingten Knorpelveränderungen an Hüftgelenken durch molekulare MRT-Bildgebung (dGEMRIC) und histologische Validierung der Methode am Schafsmodell in zwei Altersgruppen
Weiterer Titel:Magnetic resonance imaging (dGEMRIC) and histology of ovine hip joint cartilage in two age populations: a sheep model with assumed healthy cartilage
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=48426
URN (NBN):urn:nbn:de:hbz:061-20190211-095409-7
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Crumbiegel, Clemens [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]2,94 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 29.01.2019 / geändert 29.01.2019
Beitragende:PD Dr. Zilkens, Christoph [Gutachter]
PD Dr. Schleich, Christoph [Gutachter]
Stichwörter:dGEMRIC, Arthrose, biochemische MRT-Verfahren, GAG
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Fragestellung: Das MRT-Verfahren dGEMRIC (delayed Gadolinium Enhanced MRI of Cartilage) ermöglicht eine Beurteilung von Veränderungen der Knorpel-zusammensetzung, zum Beispiel einer Verminderung und Degradation von Glykosaminoglykanen (GAG) im Rahmen degenerativer Knorpelerkrankungen. In Vorstudien konnten auch bei knorpelgesunden Probanden Varianzen in den gemessenen T1Gd-Zeiten erfasst werden. Somit war die zu Grunde liegende Arbeitshypothese der vorliegenden Studie, dass bei den Versuchsgruppen selbst in morphologisch intaktem Gelenkknorpel biochemische Unterschiede zu detektieren sind und dass das dGEMRIC-Verfahren in der Lage ist, diese Varianzen darzustellen. Es wurde aufgrund der Verfügbarkeit größerer altersgleicher Versuchsgruppen das Schaf als bereits etabliertes Arthrosemodell für die histologische Beurteilung des Gelenkknorpels herangezogen.

Methoden: Es wurden jeweils 10 Knorpelproben von Hüftköpfen gesunder Schafe aus zwei Altersgruppen (< 6 Monate; 2,5 bis 3 Jahre) entnommen; diese wurden markiert und mittels des dGEMRIC-Verfahrens sowie orientierender DESS-Sequenzen im MRT untersucht. Im Anschluss erfolgte eine Schnittbildanfertigung mittels der Trenn-Dünnschliff-Technik sowie die histologische Untersuchung durch Kollagen-ELISA und Toluidinblaufärbung. Durch zwei unabhängige Beobachter wurden die Regions of Interest (ROIs) in den MRT-Sequenzen durch eine 3D-Reformatierung den histologischen Schnittbildern zugeordnet und die entsprechenden T1Gd-Zeiten mit den Resultaten der Färbung, quantifiziert nach dem Mankin-Score, abgeglichen.

Ergebnisse: Es konnten 303 ROIs untersucht werden, von denen 26 wegen zu hochgradiger Knorpelschädigung oder schlechter Bildqualität im MRT-Bild aus-geschlossen werden mussten. Insgesamt konnten somit 277 ROIs ausgewertet werden. Die Population der Lämmer zeigte weitestgehend intakte GAG, wobei 34 % der untersuchten ROIs einen Score von 0 und 66 % eine Score von 1 aufwiesen. Nur bei 2 % der Untersuchungen fanden sich Defizite in der Anfärbbarkeit. In 16 % der untersuchten ROIs bei den älteren Schafen hingegen zeigten sich Scores von 2 oder mehr. In 23 % der Untersuchungen der Versuchsgruppe Schaf fand sich eine Verminderung der Anfärbbarkeit durch Toluidinblau. Es zeigte sich, dass die T1Gd-Zeiten in der Gruppe der Lämmer im Vergleich zu denen in der Gruppe der Schafe signifikant höher waren (623,6 ms ± 72,8 ms gegenüber 540,4 ms ± 92,9 ms). Der p-Wert lag bei < 0,001. Die Kollagenfärbungen wurden aufgrund von Färbefehlern nicht ausgewertet.

Diskussion: Grundlegend konnte mittels der verringerten T1Gd-Zeiten sowie der Mankin-Scores eine Verringerung des GAG-Gehaltes in der älteren Versuchsgruppe gegenüber der Versuchsgruppe der Lämmer erkannt werden. Da makroskopisch geschädigte Knorpelpräparate keinen Eingang in die Auswertung fanden, ist von einer alters- oder belastungsabhängigen Degradation des Knorpelgewebes auszugehen. Das dGEMRIC-Verfahren zeigte sich als valides Diagnostikum zur Detektion dieser Veränderungen. Die T1Gd-Zeiten glichen denen aus früheren Studien mit menschlichen Probanden. Das Schafsmodell konnte somit als sinnvolles Modell für Forschungen zur GAG-Quantifizierung herausgestellt werden. Weitere Studien zur Beurteilung von Frühveränderungen der GAG und Kollagene sind notwendig.

Objective: The delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) technique allows evaluation of early changes of joint cartilage like degradation of glycosaminoglycans (GAG) in case of degenerative diseases of cartilage. In previous publications significant variations in T1Gd-values within control groups with morphologically normal appearing cartilage could be noticed. Thus, the purpose of this study was to compare the cartilage status in two age groups without underlying prearthritic hip joint deformities by performing high resulotion MRI (dGEMRIC) and to reveal differences in content of GAG. Therefore, a sheep study was conducted, as sheep are an established Osteoarthritis (OA) model and different age groups of the same race are readily available for cartilage assessment, including histological validation.

Materials and methods: Twenty femoral head specimen collected from ten lambs (aged < 6 months) and ten young adult sheep (aged between 2,5 and 3 years) were marked with a surgical suture and underwent dGEMRIC and morphological cartilage assessment by a Double-Echo Steady-State sequence (DESS). Slices were formed by the sawing and grinding technique. Histological analysis was performed by Collagen-ELISA and staining with conventional toluidine blue according to the Mankin scoring system. Two independent viewers matched all regions of interest (ROIs) examined by MRI with histological sections and compared T1Gd-values with corresponding Mankin-scores.

Results: A total of 303 regions of interest were assessed (101 slices with 3 ROIs each). Twenty-six ROIs were excluded due to cartilage damage or insufficient MR image quality. Therefore a total of 277 ROIs were analyzed. Histological analyses revealed nearly intact GAG in samples of Group I (lambs) with 34% of ROIs scored 0 and 66% scored 1. Loss of staining intensity was found in 2% of examinations only. Distinct degenerative changes in cartilage samples of group II (young adult sheep) were found, reflected by total Mankin scores of 2 in 16% and loss of toluidine staining intensity in 23% of examinations. T1Gd-values in group I (mean T1-Gd: 623,6 ms ± 72,8 ms) were significantly (p < 0,001) higher compared with group II (mean T1-Gd: 540,4 ms ± 92,9 ms). All results of Collagen-ELISA were not accounted due to a loss of reliable staining results.

Discussion: Although morphologically normal, distinct cartilage degeneration present in young adult sheep could be identified via decreased T1Gd- values. The dGEMRIC technique revealed these changes and may be a tool for the assessment of early cartilage degeneration. T1Gd- values were similar to results of human cartilage examined in previous studies. The Sheep model seemed to be useful as a model for cartilage assessment in OA. Further controlled studies including healthy human cartilage samples are required to confirm our preliminary results.
Quelle:[1] Anderson JJ, Felson DT. Factors associated with osteoarthritis of the knee in the First National Health and Nutrition Examination Survey (NHANES I): Evidence for an association with overweight, race and physical demands of work. American Journal of Epidemiology. 1988;128:179-189.

[2] Felson DT, Naimark A, Anderson J, Kazis L, Catelli W, Meenan RF. The prevalence of knee osteoarthritis in elderly. The Framingham Osteoarthritis Study. Arthritis and Rheumatism. 1987;30:914-918.

[3] Imhof H, Nöbauer-Huhmann I, Trattnig S. Koxarthrose, ein Update. Radiologe. 2009;49:400–409. Published online: DOI 10.1007/s00117-009-1832-0.

[4] Gerber E, Prim J, Michel BA. Sonographie des Bewegungsapparates. Stuttgart:Thieme; 2000.

[5] Imhof H, Nöbauer-Huhmann IM, Krestan C, Gahleitner, Sulzbacher I, Marlovits S, Trattnig S.
MRI of the cartilage. European Radiology. 2002;12:2781-2793.

[6] Millis MB, Kim YJ. Rationale of osteotomy and related procedures for hip preservation: a review. Clinical Orthopaedics and Related Research. 2002;405:108-121.

[7] Kim YJ, Ganz R, Murphy SB, Buly RL, Millis MB. Hip joint-preserving surgery: beyond the classic osteotomy. Instructional Course Lectures. 2006;55:145-158.

[8] Neogi T, Booth SL, Zhang YQ, Jacques PF, Terkeltaub R, Aliabadi P, Felson DT. Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis and Rheumatism. 2006;54:1255-1261.

[9] Arzneimittelkommission der deutschen Ärzteschaft. Handlungsleitlinie Degenerative Gelenk-erkrankungen, aus: Empfehlungen zur Therapie von degenerativen Gelenkerkrankungen. Arzneiverordnung in der Praxis/Sonderheft; 2008.

[10] Engelhardt M. Epidemiologie der Arthrose in Westeuropa. Deutsche Zeitschrift für Sportmedizin. 2003;54:171-175.

[11] Theiler R. Arthrose: Epidemiologie, Diagnose und Differentialdiagnose, Abklärung und Dokumentation. Schweizer Medizin Forum. 2002;53:555-561.

[12] Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. World population 1950 – 2050 (the 1998 revision). POP/DB/WPP/Rev. UN.1999. Data set in digital form.

[13] Hamerman D. The biology of osteoarthritis. New England Journal of Medicine. 1989;320:1322-1330.

[14] Karachios TR, Karantanas AH, Malizios K. Hip osteoarthritis: what the radiologist wants to know. European Journal of Radiology. 2007;63:36-48.

[15] Outerbridge RE. The etiology of chondromalacia patellae. Journal of Bone and Joint Surgery. 1961;43-B (4):752-754.

[16] Imhof H. Arthrose (Degenerative Gelenkserkrankungen), In: Freyschmidtt J, ed. Handbuch diagnostische Radiologie, muskuloskelettales System. Berlin Heidelberg New York: Springer; 2005.

[17] Evidence Development and Standards Branch, Health Quality Ontario. Arthroscopic lavage and debridement for osteoarthritis of the knee. Ontario Health Technology Assessment Series. 2005;5(12):1-37.

[18] Trattnig S, Mlynarik V, Huber M, Ba-Ssalamah A, Puig S, Imhof H. Magnet resonance imaging of articular cartilage and evaluation of cartilage disease. Investigative Radiology. 2000;35:595-601.

[19] Eckstein F, Burstein D, Link T. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR in Biomedicine 2006;19:822–854. Published online in Wiley InterScience (www.inter-science.wiley.com): DOI:10.1002/nbm.1063.

[20] Zilkens C, Miese F, Jäger M, Bittersohl B, Krauspe R. Magnetic resonance imaging of hip joint cartilage and labrum. Orthopedic Reviews. 2011;3:9.

[21] Zilkens C, Jäger M, Bittersohl B, Dudda M, Millis MB, Kim YJ, Muhr G, Krauspe R, Mamisch TC. Delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC). Orthopäde. 2009. Published online: DOI 10.1007/s00132-009-1441-7.

[22] Nishii T, Nakanishi K, Sugano N, Masuhara K, Ohzono K, Ochi T. Articular cartilage evaluation in osteoarthritis of the hip with MR imaging under continuous leg traction. Magnetic Resonance Imaging. 1998;16:871-875.

[23] Uhl M, Ihling C, Allmann KH, Laubenberger J, Tauer U, Adler CP, Langer M. Human articular carti-lage: in vitro correlation of MRI and histologic findings. Eur. Radiol. 1998;8:1123-1129.

[24] Schmid MR, Noetzli HP, Zanetti M, Wyss TF, Hodler J. Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology. 2003;226(2):382-386.

[25] Calvo E, Palacios I, Delgado E, Ruiz-Cabello J, Hernandez P, Sanchez-Pernaute O, Egido J, Herrero-Beaumont G. High-resolution MRI detects cartilage swelling at the early stages of experimental osteoarthritis. Osteoarthritis and Cartilage. 2001;9:463-472.

[26] Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assess-ment with delayed Gd(DTPA2-)-enhanced MR imaging. Radiology. 1997;205(2):551-558. Published online: DOI 10.1148/radiology.205.2.9356644.

[27] Tiderius CJ, Svensson J, Leander P, Ola T, Dahlberg L. dGEMRIC (Delayed Gadolinium-Enhanced MRI of Cartilage) indicates adaptive capacity of human knee cartilage. Magnetic Resonance in Medicine. 2004;54:286-290.

[28] Kladny B, Beyer WF. Nichtmedikamentöse konservative Therapie der Arthrose. Der Orthopäde. 2001;30:848-855.

[29] Clegg DO, Reda DJ, Harris CL, Klein MA, O'Dell JR, Hooper MM, Bradley JD, Bingham CO, Weisman MH, Jackson CG, Lane NE, Cush JJ, Moreland LW, Schumacher HR, Oddis, CV, Wolfe F, Molitor JA, Yocum DE, Schnitzer TJ, Furst DE, Sawitzke AD, Shi H, Brandt KD, Moskowitz RW, Williams HJ. Glucosamine, chondroitinsulfate and the two in combination for painful knee osteoarthritis. New England Journal of Medicine. 2006,354:795-808.

[30] Salter RB. The present status of surgical treatment for Legg-Perthes disease. J Bone Joint Surg Am. 1994;66(6):961-966.

[31] McLaren AC, Blokker CP, Fowler PJ, Roth JN, Block MG. Arthroscopic débridement of the knee for osteoarthrosis. Canadian Journal of Surgery. 1991;34(6):595-598.

[32] Baumgärtner MR, Cannon WD, Vittori JM, Schmidt JM, Maurer RC. Arthroscopic debridement of the arthritic knee. Clinical Othopedics and related Research. 1990;253:198-202.

[33] Pridie KH. A method of resurfacing osteoarthrotic knee joints. J Bone Joint Surg. 1959;41-B:618-619.

[34] Shapiro M, Koide S, Glimcher M. Cell origin and diffenrentiation in the repair of full thickness defects of articular cartilage. J Bone Joint Surgery. 1993;75-A:532-553.

[35] Steinwachs MR, Kreuz PC. Clinical results of Autologous Chondrocyte Transplantation (ACT) using a collagen membrane. Henrich N, ed. Cartilage Surgery and Future Perspectives. 2003;5:37-47.

[36] Tönnis D. Eine neue Form der Hüftpfannenschwenkung durch Dreifachosteotomie zur Ermöglichung späterer Hüftprothesenversorgung. Orthopädische Praxis. 1979;12:1003-1005.

[37] Bitzer EM, Grobe TG. Schwerpunktthema: Trends in der Endoprothetik des Hüft- und Kniegelenks. Barmer GEK Report Krankenhaus 2010. St. Augustin:Asgard; 2011.

[38] Stockwell RA. The cell density of human articular and costal cartilage. Journal of Anatomy. 1967;101:753-763.

[39] Rudert M, Wirth CJ. Knorpelregeneration und Knorpelersatz. Der Orthopäde. 1998;27:309-321.

[40] Cohen NP; Foster RJ, Mow VC. Composition and dynamics of articular cartilage: structure, function and maintaining healthy state. Journal of Orthopedics and Sports, Physical Therapy. 1998;28:203-215.

[41] Bashir A, Gray M, Burstein D. Gd-DTPA2- as a Measure of Cartilage Degradation. Magnetic Resonance in Medicine. 1996;36:665-673.

[42] Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. Annals of the Rheumatic Diseases. 1977;36:399-406.

[43] Bashir A, Gray M, Hartke J, Burstein D. Nondestructive Imaging of Human Cartilage
Glycosaminoglycan Concentration by MRI. Magnetic Resonance in Medicine. 1999;41:857-865.

[44] Vaga S, Brayda-Bruno M, Perona F, Fornari M, Raimondi MT, Petruzzi M, Grava G, Costa F, Caiani EG, Lamartina C. Molecular MR imaging for the evaluation of the effect of dynamic stabilization on lumbar intervertebral discs. European Spine Journal. 2009;18(suppl1):40-48: Published online: DOI 10.1007/s00586-009-0996-7.

[45] Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, Imhof H. MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging. 1999;17(4):577-583.

[46] Juras V, Bittsanskya M, Majdisova Z, Szomolanyi P, Sulzbacher I, Gäbler S, Stampfl J, Schüller G, Trattnig S. In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multi-parametric MRI. Journal of Magnetic Resonance. 2009;197:40-47.

[47] Eckstein F, Buck RJ, Wyman BT, Kotyk JJ, Hellio Le Graverand MP, Remmers AE, Evelhoch JE, Hudelmaier M, Charles HC. Quantitative imaging of cartilage morphology at 3.0 Tesla in the presence of Gadopentate Dimeglumine (Gd-DTPA). Magn Reson Med. 2007;58:402-406.

[48] Tiderius CJ, Jessel R, Kim YJ, Burstein D. Hip dGEMRIC in asymptomatic volunteers and patients with early osteoarthritis: the influence of Timing after contrast injection. Magn Reson Med. 2007;57:803-805.

[49] Nieminen MT, Rieppo J, Silvennoinen J, Toyras J, Hakumaki JM, Hyttinen MM, Helminen HJ, Jur-velin JS. Spatial. assessment of articular cartilage proteo-glycans with Gd-DTPA-enhanced T1 imaging. Magn Reson Med. 2002;48(4):640-648.

[50] Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML. Protocol issues for delayed Gd(DTPA)2 -Enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45:36-41.

[51] Tiderius CJ, Tjörnstrand J. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC): intra- and interobserver variability in standardized drawing of regions of interest. Acta Radiologica. 2004;6. Published online: DOI 10.1080/02841850410008379.

[52] Bittersohl B, Hosalkar HS Haamberg T, Kim YJ, Werlen S, Siebenrock KA, Mamisch TC. Reprodu-cibility of dGEMRIC in Assessment of Hip Joint Cartilage: A Prospective Study. Journal of MRI. 2009;30:224-228.

[53] Gillis A, Gray M, Burstein D. Relaxivity and diffusion of gadolinium agents in cartilage. Magn Reson Med. 2006;48(6):1068-1071.

[54] Trattnig S, Burstein D, Szomolanyi P, Pinker K, Welsch GW, Mamisch T. T1(Gd) Gives Comparable Information as Delta T1 Relaxation Rate in dGEMRIC Evaluation of Cartilage Repair Tissue. Invest Radiol. 2009;44:598-602.

[55] Kimelman T, Vu A, Storey P, McKenzie C, Burstein D, Prasad P. Three-Dimensional T1 Mapping for dGEMRIC at 3.0 T Using the Look Locker Method. Invest Radiol. 2006;41:198-203.

[56] Li W, Scheidegger R, Wu Y. Accuracy of T1 Measurement With 3-D Look-Locker technique for dGEMRIC. Journal of MRI. 2008;27:678-682.

[57] Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, Heyse SP, Hirsch R, Hochberg MC, Hunder GG, Liang MH, Pillemer SR, Steen VD, Wolfe F. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis and Rheumatism. 1998;41(5):778-799.

[58] March LM, Bachmeier CMJ. Economics of osteoarthritis: a global perspective. Baillieres Clinical Rheumatology. 1997;11:817-834.

[59] Burstein D, Gray M, Mosher T, Dardzinski B. Measures of molecular composition and structure in osteoarthritis. Radiologic Clinics of North America. 2009;47:675-686. Published online: DOI: 10.1016/j.rcl.2009.04.003

[60] Tiderius CJ, Olsson JE, Nyquist F, Dalberg F. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) in Early Knee Osteoarthritis. Magn Reson Med. 2003;49:488-492.

[61] Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D. Delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage in Knee Osteoarthritis. Arthritis and Rheumatism. 2005;52(11):3528-3535. Published online: DOI 10.1002/art.21388.

[62] Nojiri T, Watanabe N, Namura T, Narita W, Ikoma K, Suginoshita T, Takamiya H, Komiyama H, Ito H, Nishimura T, Kubo T. Utility of delayed gadolinium-enhanced MRI (dGEMRIC) for qualitative evaluati-on of articular cartilage of patellofemoral joint. Knee Surgery Sports Traumatologic Arthroscopy. 2006;14:718-723.

[63] An Yuehuei H, Friedman RJ. Animal selections in orthopaedic research; In: An Yuehuei H; Friedman RJ, Ed. Animal models in orthopaedic research. Boca Raton(Fla.):CRC Press; 1998:39-57.

[64] Martini L, Fini M, Giavaresi G, Giardino R. Sheep model in orthopedic research: a literature review; Comp Med. 2001;51(4):292-299.

[65] Peters C, Hines JL, Bachus KN, Craig MA, Bloebaum RD. Biological effects of calcium sulfate as a bone graft substitute in ovine metaphysical defects. Published online in Wiley InterScience (www.interscience.wiley.com): DOI: 10.1002/jbm.a.30569; 11/2005.

[66] Turner A. The Sheep as a model for osteoporosis in humans. Veterinary Journal. 2002; 163(3):232-239.

[67] Ghosh P, Armstrong S, Read R, Numata Y, Smith S, McNair P, Marshall R. Animal models of early osteoarthritis: their use for the evaluation of potential chondroprotective agents. Agents and Actions Supplements.1993;39:195-206.

[68] Appleyard C, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, Murrell GAC. Topograhical analysis of the structural, biochemical and dynamic biomechanics properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis and Cartilage. 2003;11:65-77.

[69] Burger C, Mueller M, Wlodarczyk P, Goost H, Tolba RH, Rangger C, Kabir K, Weber O. The sheep as a knee osteoarthritis model: early cartilage changes after meniscus injury and repair. Laboratory Animals. 2007;41:420-431.

[70] Philips TW, Johnston G, Wood P. Selection of an Animal Model for Resurfacing Hip Arthroplasty; The Journal of Arthroplasty. 1987;2(2):111-117.

[71] Den Boer FC, Patka, P, Bakker FC, Wippermann, BW, Van Lingen A, Vink GQ, Boshuizen K, Haarman HJ. New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry. J Orthop Res. 1999;17(5):654-660.

[72] Schulze-Tanzil G. Tiermodelle zur Etablierung und Optimierung von Knorpelersatztherapien bei Knorpelschaden, Vortrag, 42. Seminar über Versuchstiere und Tierversuche. Berlin; 09/2013.

[73] Giannoni P, Crovache A, Malpeli M, Maggi E, Abrico R, Cancella R, Dozin B. Species variability in the differentiation of in vitro-expanded articular chondrocytes restricts predictive studies on cartilage repair using animal models. Tissue Engineering. 2005;11(1/2):237-248.

[74] Kimura T. Bipedal and quadrupedal walking of primates. In: Kondo S, ed. Comparative dynamics In Primate Morphophysiology, Locomotor Analyses and Human Bipedalism. Tokio: University of Tokyo Press; 1985:81-104.

[75] Bergmann G, Graichen F, Rohlmann A. Hip joint forces in sheep. Journal of Biomechanics. 1999;32(8):769-777.

[76] Phillips TW, Gurr K. A preconditioned arthritic hip model. Journal of Arthroplasty. 1989;3:193-200.

[77] Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips, correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971;53:523-537.

[78] Zilkens C, Miese F, Herten M, Kurzidem S, Jäger M, Konig D, Antoch G, Krauspe R, Bittersohl B. Reliability of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study. European Journal of Radiology. Published online: DOI 10.1016/j.ejrad.2012.09.024; 2012.
[79] Uhl M, Allmann KH, Tauer U, Laubenberger J, Adler CP, Ihling C, Langer M. Comparison of MR sequences in quantifying in vitro cartilage degeneration in osteoarthritis of the knee. British Journal of Radiology. 1998;71(843):291-296.

[80] Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues, the Säge-Schliff (sawing and grinding) techniques. Oral Pathology. 1982;11(4):318-326.

[81] Bittersohl B, Steppacher S, Haamberg T, Kim YJ, Werlen S, Becky M, Siebenrock KA, Mamisch TC. Cartilage damage in femoroacetabular impingement (FAI): preliminary results on comparison of standard diagnostic vs delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC). Osteoarthritis and Cartilage. 2009;17:1297-1306.

[82] Jessel R, Zilkens C, Tiderius C, Dudda M, Mamisch TC, Kim YJ. Assessment of osteoarthritis in hips with femoroacetabular impingement using delayed gadolinium enhanced MRI of cartilage. Journal of Magnetic Resonance Imaging. 2009;30:1110-1115.

[83] Zilkens C, Holstein A, Bittersohl B, Jäger M, Haamberg T, Miese F, Kim YJ, Mamisch TC, Krauspe R. Delayed Gadolinium-enhanced Magnetic Resonance Imaging of Cartilage in the Long-term Follow-up After Perthes Disease. Journal of Pediatric Orthopedics. 2010;30:147-153.

[84] Kim YJ, Jaramillo D, Millis MB; Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003;85(10):1987–1992.

[85] Trattnig S, Millington SA, Szomolanyi P, Marlovits S. MR imaging of osteochondral grafts and autologous chondrocyte implantation. European Journal of Radiology. 2007;17:103-118. Published online: DOI 10.1007/s00330-006-0333-z.

[86] Trattnig S, Mamisch TC, Pinker K, Domayer S, Szomolanyi P, Marlovits S, Kutscha-Lissberg F, Welsch GH. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. European Journal of Radiology. 2008;18:1251–1259. Published online: DOI 10.1007/s00330-008-0859-3.

[87] Watanabe A, Wada Y, Obata T, Ueda T, Tamura M, Ikehira H, Moriya H. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology. 2006;239(1):201-208.

[88] Domayer SE, Welsch GH, Nehrer S, Chiari C, Dorotka R, Szomolanyi P, Mamisch TC, Yayon A, Trattnig S. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: Preliminary results. European Journal of Radiology. 2009. Published online: DOI 10.1016/j.ejrad.2008.12.006.

[89] Gillis A, Bashir A, McKeon B, Scheller A, Gray M, Burstein D. Magnetic Resonance Imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Investigative Radiology. 2001;36(12):743-748.

[90] Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim YJ. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am. 2006;88:1540-1548.

[91] Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE. Association Between Findings on Delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage and Future Knee Osteoarthritis. Arthritis and Rheumatism. 2008;58(6):1727-1730. Published online: DOI 10.1002/art.23459.

[92] Roos EM, Dahlberg L. Positive Effects of Moderate Exercise on Glycosaminoglycan Content in Knee Cartilage. Arthritis and Rheumatism. 2005;52(11):3507-3514. Published online: DOI 10.1002/art.21415.

[93] Gray M, Burstein D, Kim YJ, Maroudas A. Magnetic Resonance Imaging of Cartilage Glycosaminoglycan: Basic Principles, Imaging Technique, and Clinical Applications. Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/jor.20482; 09/2007.

[94] Gray M. Toward Imaging Biomarkers for Glycosaminoglycans. J Bone Joint Surg Am. 2009;91:44-49. Published online: doi:10.2106/JBJS.H.01498.

[95] Goebel JC, Watrin-Pinzano A, Bettembourg-Brault I, Odille F, Felblinger J, Chary-Valckenaere I, Netter P, Blum A, Gillet P, Loeuille D. Age-related quantitative MRI changes in healthy cartilage: Preliminary results. Biorheology. 2006;43:547-551.

[96] Kurkijärvi JE, Nissi MJ, Kiviranta I, Jurvelin JS, Nieminen MT. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) and T2 Characteristics of Human Knee Articular Cartilage: Topographical Variation and Relationships to Mechanical Properties. Magn Reson Med. 2004;52:41-46.

[97] Anandacoomarasamy A, Giuffre B, Leibman S, Caterson IA, Smith G, Fransen M, Sambrook P and March LM. Delayed Gadolinium-enhanced magnetic resonance imaging of cartilage: clinical associations in obese adults. The Journal of Rheumatology. 2009(36). Published online: DOI:10.3899/jrheum.080997.
[98] Trattnig S, Domayer S, Welsch GW, Mosher T and Eckstein F. MR imaging of cartilage and its repair in the knee - a review. Eur Radiol. 2009;19:1582–1594.

[99] Peretti GM, Xu JW, Bonassar LJ, Kirchhoff CH, Yaremchuk MJ, Randolph MA. Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Engineering. 2006;12:1151-1168 Published online: DOI 10.1089/ten.2006.12.1151.

[100] Stoop R, Buma P, van der Kraan PM, Hollander AP, Clark Billinghurst R, Meijers THM, Poole AR, van der Berg WB. Type II collagen degradation in articular cartilage fibrillation after anterior cruciate ligament transection in rats. Osteoarthritis and Cartilage. 2001;9:308-315.

[101] Watrin-Pinzano A, Ruaud JP, Cheli Y, Gonord P, Grossin L, Bettembourg-Brault I, Gillet P, Payan E, Guillot G, Netter P, Loeuille D. Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 mapping. Magnetic Resonance Materials in Physics, Biology and Medicine (MAGMA). 2004;17:219-228. Published online: DOI 10.1007/s10334-004-0071-7.

[102] Elliott DM, Yerramalli CS, Beckstein JC, Boxberger JI, Johannessen W, Vresilovic J. The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine. 2008;33(6):588-596.

[103] Tiderius C, Hori M, Williams A, Sharma L, Prasad P, Finnell M, McKenzie C, Burstein D. dGEMRIC as a function of BMI. Osteoarthritis and Cartilage. 2006;14:1091-1097.

[104] Dye S. An evolutionary perspective of the knee. J Bone and Joint Surgery. 1987;69-A(7):977-983.

[105] Schulze-Tanzil G, Muller RD, Kohl B, Schneider N, Ertel W, Ipaktchi K, Hunigen H, Gemeinhardt O, Stark R, John T. Differing in vitro biology of equine, ovine, porcine and human articular chondrocytes derived from the knee joint: an immunomorphological study. Histochemistry and Cell Biology. 2009;131:219-229. Published online: DOI 10.1007/s00418-008-0516-6.

[106] Dugar D, Farley M, Wang AL, Goldring MB, Goldring S, Swaim BH, Bierbaum BE, Burstein D, Gray M. The Effect of Paraformaldehyde Fixation on the Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) Measurement. Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/jor.20767; 09/2008.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:2010-2019
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:11.02.2019
Dateien geändert am:11.02.2019
Promotionsantrag am:16.04.2018
Datum der Promotion:24.01.2019
english
Benutzer
Status: Gast
Aktionen