Dokument: Griseofulvin inhibiert das Wachstum der Nebennierenrindenkarzinom-Zelllinie NCI-H295R in vitro

Titel:Griseofulvin inhibiert das Wachstum der Nebennierenrindenkarzinom-Zelllinie NCI-H295R in vitro
Weiterer Titel:Griseofulvin inhibits the growth of adrenocortical cancer cells in vitro
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=48219
URN (NBN):urn:nbn:de:hbz:061-20190109-084053-9
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Bramann, Eva Louise [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,18 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 09.01.2019 / geändert 09.01.2019
Beitragende:Prof. Dr. Klöcker, Nikolaj [Gutachter]
Prof. Dr. Willenberg, Holger S. [Gutachter]
Stichwörter:Griseofulvin, Nebenierenkarzinom, NCI H295-R
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Das Adrenokortikale Karzinom (ACC) ist ein seltener, maligner endokriner Tumor mit einer schlechten Prognose. Histopathologisch finden sich im Adrenokortikalen Karzinom häufig atypische Mitosen mit erhöhter Spindelanzahl.
Diese atypischen Mitosen stellen ein Risiko für Krebszellen dar, da sie zu einer Teilung in mehr als zwei Zellen führen und Chromosomen ungleichmäßig verteilt werden. Dies kann in nicht lebensfähigen Tochterzellen resultieren. Atypische Mitosen können durch eine zentrosomale Amplifikation verursacht sein. Das Zentrosomale Clustering ist ein Mechanismus, den eine betroffene Tumorzelle entwickeln kann, um überzählige Zentrosomen zu zwei Spindelpolen zusammen zufassen und so ihre genetische Integrität zu schützen.
Griseofulvin – ein bereits bekanntes Antimykotikum – blockiert diesen Mechanismus. Ob Griseofulvin wachstumshemmend auf adrenokortikalen Zellen wirkt, ist bislang nicht bekannt.
Vor diesem Hintergrund untersuchten wir die Effekte von Griseofulvin in der ACC-Zelllinie NCI-H295R hinsichtlich von Wachstums- und Stoffwechseleigenschaften mittels Water-soluble-tetrazoliumsalt-1-Assay (Wst-1-Assay), Bromdesoxyuridin-Assay (BrdUrd-Assay) und [³H]-Thymidin Assay. Die Apoptoserate wurde durch einen Caspase 3/7-Assay und Lichtmikroskopie bestimmt. Nach 24 h Inkubation mit Griseofulvin konnte eine dosisabhängige Hemmung der Proliferation auf bis zu 57 %, sowie eine Reduktion der Stoffwechselaktivität auf bis zu 69 % im Vergleich mit der unbehandelten Kontrolle gemessen werden. Lichtmikroskopisch ergab sich das typische Bild apoptotischer Zellen. Im Caspase-Assay konnte eine dosisabhängige Steigerung der Caspase-Aktivität um 425 % im Vergleich zur unbehandelten Kontrolle nachgewiesen werden.
In der Zusammenschau stellen Griseofulvin oder seine Derivate einen interessanten Ansatz für die Therapieforschung beim ACC dar.

Adrenocortical cancer is a rare, malignant tumor with a poor prognosis. It is often associated with atypical mitoses and supernumerary spindles.
Atypical mitoses represent a risk to cancer cells as they can lead up to a division into more than two cells and unevenly distributed chromosomes. This may result in non-viable daughter cells. Atypical mitoses can be caused by centrosomal clustering. Centrosomal clustering is a mechanism used by cancer cells with supernumerary centrosomes to solve the threatening problem of multipolar spindles.
Griseofulvin is an antifungal substance that interferes with the microtubule apparatus and inhibits centrosomal clustering. It has also been demonstrated that griseofulvin inhibits the growth of tumor cells in vitro and in vivo. However, it is not yet known whether treatment with griseofulvin inhibits growth of adrenocortical tumor cells.
We studied the viability and antiproliferative effects of griseofulvin on cultured NCI-H295R adrenocortical carcinoma cells using Wst-1-, BrdUrd- and [3H]-thymidine assays. For the detection of apoptosis we used a caspase 3/7 cleavage assay and light microscopy techniques. We observed that incubation with griseofulvin for 24 – 48 h leads to a decrease in the viability and proliferation of NCI-H295R cells in a dose-dependent manner. Significant effects could be observed after incubation with griseofulvin as measured by Wst-1-, BrdUrd-, and [3H] dT- uptake assays. Apoptosis of NCI-H295R cells was increased in a dose-dependent manner up to 4.5- fold after incubation with griseofulvin 40 M for 24 h as shown by caspase 3/7 cleavage assay and light microscopy.
With regard to new treatment strategies for adrenocortical cancer, griseofulvin, and possibly other agents, which interfere with the microtubule apparatus and inhibit centrosomal clustering, may turn out to be interesting targets for further research.
Quelle:Abiven, G., Coste, J., Groussin, L., Anract, P., Tissier, F., Legmann, P., Dousset, B., Bertagna, X., Bertherat, J. (2013). Clinical and Biological Features in the Prognosis of Adrenocortical Cancer: Poor Outcome of Cortisol-Secreting Tumors in a Series of 202 Consecutive Patients. The Journal of Clinical Endocrinology & Metabolism, 91 (7), 2650–2655.
Allolio, B., Fassnacht, M. (2006). Clinical review: Adrenocortical carcinoma: clinical update. The Journal of Clinical Endocrinology & Metabolism, 91 (6), 2027 – 2037.
Anderhub, S. J., Krämer, A., Maier, B. (2012). Centrosome amplification in tumorigenesis. Cancer Letters, 322 (1), 8 – 17.
Arida, A. I., Al-Tabakha, M. M., Hamoury, H. A. J. (2007). Improving the High Variable Bioavailability of Griseofulvin by SEDDS. Chemical and Pharmaceutical Bulletin, 55 (12), 1713 – 1719.
Arlt, W., Biehl, M., Taylor, A. E., Hahner, S., Libè, R., Hughes, B. A., et al. (2011). Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. The Journal of Clinical Endocrinology & Metabolism, 96 (12), 3775 – 3784.
Assié, G., Letouzé, E., Fassnacht, M., Jouinot, A., Luscap, W., Barreau, O., Omeiri, H., Rodriguez, S., Perlemoine, K., René-Corail, F., Elarouci, N., Sbiera, S., Kroiss, M., Allolio, B., Waldmann, J., Quinkler, M., Mannelli, M., Mantero, F., Papathomas, T., de Krijger, R., Tabarin, A., Kerlan, V., Baudin, E., Tissier, F., Dousset, B., Groussin, L., Amar, L., Clauser, E., Bertagna, X., Ragazzon, B., Beuschlein, F., Libè, R., de Reyniès, A., Bertherat, J. (2014). Integrated genomic characterization of adrenocortical carcinoma. Nature Genetics, 46 (6), 607 – 612.
Avidor-Reiss, T., Gopalakrishnan, J. (2013). Building a centriole. Current Opinion in Cell Biology, 25 (1), 72 – 77.
Ayala-Ramirez, M., Jasim, S., Feng, L., Ejaz, S., Deniz, F., Busaidy, N., et al. (2013). Adrenocortical carcinoma: clinical outcomes and prognosis of 330 patients at a tertiary care center. European Journal of Endocrinology / European Federation of Endocrine Societies, 169 (6), 891 – 899.
Babinska, A., Sworczak, K., Wisniewski, P., Nałecz, A., Jaskiewicz, K.
(2008).Experimental and Clinical Endocrinology & Diabetes,
116 (4), 246 – 51
Bahe, S., Stierhof, Y.D., Wilkinson, C.J., Leiss, F. Nigg, E.A. (2005). Rootletin forms centriole-associated filaments and functions in centrosome cohesion. Journal of Cell Biology, 171 (1), 27 – 33.
Barlaskar, F. M., Spalding, A. C., Heaton, J. H., Kuick, R., Kim, A. C., Thomas, D. G., Giordano, T. J., Ben-Josef, E., Hammer, G.D. (2009). Preclinical Targeting of the Type I Insulin-Like Growth Factor Receptor in Adrenocortical Carcinoma. The Journal of Clinical Endocrinology & Metabolism, 94 (1), 204 – 212.
Barr, F.A., Sillje, H.H. Nigg, E.A. (2004). Polo-like kinases and the orchestration of cell division. Nature Reviews Molecular Cell Biology, 5, 429 – 440.
Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov,
A., Raff, J.W. (2008). Centrosome Amplification can initiate
tumorigenesis in flies. Cell. 133 (6), 1032 – 42.
Berruti, A., Fassnacht, M., Haak, H., Else, T., Baudin, E., Sperone, P. (2014). Prognostic role of overt hypercortisolism in completely operated patients with adrenocortical cancer. European Urology, 65(4), 832–838.
Berruti, A., Ferrero, A., Sperone, P., Daffara, F., & Reimondo, G. (2008). Emerging drugs for adrenocortical carcinoma. Expert Opinion on Emerging Drugs, 13 (3), 497 – 509.
Berruti, A., Sperone, P., Ferrero, A., Germano, A., Ardito, A., Priola, A. M.,De Francia, S., Volante, M., Daffara, F., Generali, D., Leboulleux, S., Perotti, P., Baudin, E., Papotti, M., Terzolo, M. (2012). Phase II study of weekly paclitaxel and sorafenib as second/third-line therapy in patients with adrenocortical carcinoma. European Journal of Endocrinology / European Federation of Endocrine Societies, 166 (3), 451 – 458.
Bettencourt-Dias, M. (2013). Q&A: Who needs a centrosome? BMC Biology, 11 (1), 28.
Bettencourt-Dias, M., Glover, D. M. (2007). Centrosome biogenesis and function: centrosomics brings new understanding. Nature Reviews Molecular Cell Biology, 8 (6), 451 – 463.
Bielinska, M., Parviainen, H., Kiiveri, S., Heikinheimo, M., Wilson, D. B. (2009). Review paper: origin and molecular pathology of adrenocortical neoplasms. Veterinary Pathology, 46 (2), 194 – 210.
Bilimoria, K. Y., Shen, W. T., Elaraj, D., & Bentrem, D. J. (2008). Adrenocortical carcinoma in the United States. Cancer, 113 (11), 3130-6.
Brennan, M. F. (1987). Adrenocortical carcinoma. CA: a Cancer Journal for Clinicians, 37 (6), 348 – 365.
Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B., Bettencourt-Dias, M. (2011). Evolution: Tracing the origins of centrioles, cilia, and flagella. The Journal of Cell Biology, 194 (2), 165 – 175.
Castiel, A., Visochek, L., Mittelman, L., Zilberstein, Y. (2013). Cell Death Associated with Abnormal Mitosis Observed by Confocal Imaging in Live Cancer Cells. Journal of Visualized Experiments, (78), e50568.
Cerquetti, L., Sampaoli, C., Amendola, D., Bucci, B., Misiti, S., Raza, G., et al. (2010). Mitotane sensitizes adrenocortical cancer cells to ionizing radiations by involvement of the cyclin B1/CDK complex in G2 arrest and mismatch repair enzymes modulation. International Journal of Oncology, 37 (2), 493 – 501.
Chan, J. Y. (2011). A clinical overview of centrosome amplification in human cancers. International Journal of Biological Sciences. 7(8), 1122 – 1144.
Chen, J. V., & Megraw, T. L. (2014). Mother centrioles do a cartwheel to produce just one daughter. Developmental Cell, 30 (2), 111 – 112.
De Carli, L., Larizza, L. (1988). Griseofulvin. Mutation Research.
195 (2), 91 – 126.
Debec, A., Sullivan, W., Bettencourt-Dias, M. (2010). Centrioles: active players or passengers during mitosis? Cellular and Molecular Life Sciences, 67 (13), 2173 – 2194.
Doghman, M., Cazareth, J., Lalli, E. (2008). The T cell factor/beta-catenin antagonist PKF115-584 inhibits proliferation of adrenocortical carcinoma cells. The Journal of Clinical Endocrinology & Metabolism, 93 (8), 3222 – 3225.
Dohna, M., Reincke, M., Mincheva, A., Allolio, B., Solinas-Toldo, S., Lichter, P. (2000). Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes, Chromosomes & Cancer, 28 (2), 145 – 152.
Doxsey, S. (2001). Re-evaluating centrosome function. Nature Reviews Molecular Cell Biology, 2 (9), 688 – 698.
Doxsey, S. J., Stein, P., Evans, L., Calarco, P. D., Kirschner, M. (1994). Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell, 76 (4), 639 – 650.
Dworakowska, D., Drabarek, A., Wenzel, I., Babińska, A., Świątkowska-Stodulska, R., Sworczak, K. (2014). Adrenocortical cancer (ACC) - literature overview and own experience. Endokrynologia Polska, 65 (6), 492 – 502.
Else, T., Kim, A. C., Sabolch, A., Raymond, V. M., Kandathil, A., Caoili, E.
M., Jolly, S., Miller, B. S., Giordano, T. J., Hammer, G. D. (2014). Adrenocortical Carcinoma. Endocrine Reviews, 35 (2), 282 – 326.
Erickson, L. A., Rivera, M., Zhang, J. (2014). Adrenocortical Carcinoma: Review and Update. Advances in Anatomic Pathology, 21 (3), 151 – 159.
Fassnacht, M., Berruti, A., Baudin, E., Demeure, M. J., Gilbert, J., Haak, H., Kroiss, M., Quinn, D. I., Hesseltine, E., Ronchi, C. L., Terzolo, M., Choueiri, T. K., Poondru, S., Fleege, T., Rorig, R., Chen, J., Stephens, A. W., Worden, F., Hammer, G. D. (2015). Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a double-blind, randomised, phase 3 study. The Lancet. Oncology, 16 (4), 426 – 435.
Fassnacht, M., Hahner, S., Polat, B., Koschker, A.-C., Kenn, W., Flentje, M.,Allolio, B. (2006). Efficacy of adjuvant radiotherapy of the tumor bed on local recurrence of adrenocortical carcinoma. The Journal of Clinical Endocrinology & Metabolism, 91 (11), 4501 – 4504.
Fassnacht, M., Kroiss, M., Allolio, B. (2013). Update in Adrenocortical Carcinoma. The Journal of Clinical Endocrinology & Metabolism, 98 (12), 4551 – 4564.
Fassnacht, M., Terzolo, M., Allolio, B., Baudin, E., Haak, H., Berruti, A., Welin, S., Schade-Brittinger, C., Lacroix, A., Jarzab, B., Sorbye, H., Torpy, D. J., Stepan, V., Schteingart, D. E., Arlt, W., Kroiss, M., Leboulleux, S., Sperone, P., Sundin, A., Hermsen, I., Hahner, S., Willenberg, H. S., Tabarin, A., Quinkler, M., la Fouchardière, de, C., Schlumberger, M., Mantero, F., Weismann, D., Beuschlein, F., Gelderblom, H., Wilmink, H., Sender, M., Edgerly, M., Kenn, W., Fojo, T., Müller, H.-H., Skogseid, B. (2012). Combination Chemotherapy in Advanced Adrenocortical Carcinoma. New England Journal of Medicine, 366 (23), 2189 – 2197.
Fassnacht, P., Wittekind, C., Allolio, B. (2010). Aktuelle TNM-Klassifikationssysteme für das Nebennierenkarzinom. Der Pathologe. 31 (5), 374 – 378.
Fay, A. P., Elfiky, A., Teló, G. H., McKay, R. R., Kaymakcalan, M., Nguyen, P. L., Vaidya, A., Ruan, D. T., Bellmunt, J., Choueiri, T. K. (2014). Adrenocortical carcinoma: The management of metastatic disease. Critical Reviews in Oncology/Hematology, 92 (2), 123 – 132.
Forth, W., Aktories., K. (Herausgeber), Förstermann, U. (Herausgeber),
Hofmann, F.B. (Herausgeber), Starke, K. (Herausgeber) (2013). Allgemeine und spezielle Pharmakologie und Toxikologie, Elsevier Verlag, 11. Auflage, Seite 826.
Fraenkel, M., Gueorguiev, M., Barak, D., Salmon, A., Grossman, A. B., & Gross, D. J. (2013). Everolimus therapy for progressive adrenocortical cancer. Endocrine, 44 (1), 187 – 192.
Fukasawa, K. (2005). Centrosome amplification, chromosome instability and cancer development. Cancer Letters, 230 (1), 6 – 19.
Ganem, N. J., Godinho, S. A.,Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460 (7252), 278 – 282.
Gazdar, A. F., Oie, H. K., Shackleton, C. H., Chen, T. R., Triche, T. J., Myers, C. E., Chrousos, G. P., Brennan, M. F., Stein C. A., La Rocca R. V. (1990). Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Research, 50 (17), 5488 – 5496.
Gergely, F., Basto, R. (2008). Multiple centrosomes: together they stand, divided they fall. Genes & Development, 22 (17), 2291 – 2296.
Giordano, T. J., Thomas, D. G., Kuick, R., Lizyness, M., Misek, D. E., Smith, A. L., Sanders, D., Aljundi, R. T., Gauger, P. G., Thompson, N. W., Taylor, J. M., Hanash, S. M. (2003). Distinct Transcriptional Profiles of Adrenocortical Tumors Uncovered by DNA Microarray Analysis. The American Journal of Pathology, 162 (2), 521 – 531.
Godinho, S. A., Kwon, M., Pellman, D. (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer and Metastasis Reviews, 28 (1), 85 – 98.
Götz, H. (1961). Die Griseofulvinbehandlung der Dermatomykosen. (H. Götz, Ed.). Berlin, Heidelberg: Springer-Verlag., 1. Auflage, S 33.
Graser, S., Stierhof, Y.D. Nigg, E.A. (2007). Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. Journal of Cell Sciences 120 (24), 4321-4331
Grisham, L.M., Wilson L., Bensch, K.G. (1973) Antimitotic action of Griseofulvin does not involve disruption of microtubules, 244 (5415), 294 – 6
Gross, D. J., Munter, G., Bitan, M., Siegal, T., Gabizon, A., Weitzen, R., Merimsky, O., Ackerstein, A., Salmon, A., Sella, A., Slavin, S.; (2006). The role of imatinib mesylate (Glivec) for treatment of patients with malignant endocrine tumors positive for c-kit or PDGF-R. Endocrine-Related Cancer, 13 (2), 535 – 540.
Grumbach, M. M., Biller, B. M., Braunstein, G. D., Campbell, K. K., Carney, J. A., Godley, P. A., Harris, E. L., Lee, J. K., Oertel, Y. C., Posner, M. C., Schlechte, J. A., Wieand, H. S. (2002). Management of Clinically Inapparent Adrenal Mass: Summary. Annals of Internal Medicine, 138 (5), 424 – 429
Gruschwitz, T., Breza, J., Wunderlich, H., Junker, K. (2010). Improvement of histopathological classification of adrenal gland tumors by genetic differentiation, World Journal of Urology 28 (3), 329 – 34
Guidotti, J.E., Brégerie O., Robert A., Debey P. Brechot C., Desdouets C. (2003). Journal of Biological Chemistry, 278(21), 19095 –101
Guillaud-Bataille, M., Ragazzon, B., de Reyniès, A., Chevalier, C., Francillard, I., Barreau, O., et al. (2014). IGF2 promotes growth of adrenocortical carcinoma cells, but its overexpression does not modify phenotypic and molecular features of adrenocortical carcinoma. PLoS One, 9 (8), e103744.
Gull K., Trinci AP. (1973). Griseofulvin inhibts fungal mitosis, Nature, 244 (5414), 292 – 4
Gupta, D., Shidham, V., Holden, J., & Layfield, L. (2001). Value of Topoisomerase II α, MIB-1, p53, E-Cadherin, Retinoblastoma Gene Protein Product, and HER-2/neu Immunohistochemical Expression for the Prediction of Biologic Behavior in Adrenocortical Neoplasms. Applied Immunohistochemistry & Molecular Morphology, 9 (3), 215.
Haider, M. A., Ghai, S., Jhaveri, K., & Lockwood, G. (2004). Chemical Shift MR Imaging of Hyperattenuating (>10 HU) Adrenal Masses: Does It Still Have a Role? Radiology, 231 (3), 711 – 716.
Halperin, D. M., Phan, A. T., Hoff, A. O., Aaron, M., Yao, J. C., & Hoff, P. M. (2014). A phase I study of imatinib, dacarbazine, and capecitabine in advanced endocrine cancers. BMC Cancer, 14 (1), 561.
Hara, F., Mukai, H., Watanabe, T., Uemura, Y., & Ohashi, Y. (2015). Abstract P6-08-16: NSAS BC02 substudy of chemo-induced amenorrhea (CIA) in premenopausal women who received either taxane alone or AC followed by taxane as a postoperative chemotherapy. Cancer Research, 75 (9, Supplement), 6 – 16.
Hinchcliffe, E. H., Sluder, G. (2001). “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes & Development, 15(10), 1167 – 1181.
Ho, Y. S., Duh, J. S., Jeng, J. H., Wang, Y. J. (2001). Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. International Journal of Cancer, 91(3), 393 – 401.
Jordan, M. A., Wilson, L. (2004). Microtubules as a target for anticancer
drugs. Nature Reviews Cancer, 4(4), 253 – 265.
Juhlin, C. C., Goh, G., Healy, J. M., Fonseca, A. L., Scholl, U. I., Stenman,
A., John W. Kunstman, J. W., Taylor C. Brown, T.C., John D. Overton; Mane, S. M.; Nelsin-Williams, C., Bäckdahl, M., Suttorp, A.-C., Haase, M., Choi, M., Schlessinger, J., Rimm, D. L., Höög, A., Prasad, M. L., Korah, R., Larsson, C., Lifton, R. P., Carling, T., (2014). Whole-Exome Sequencing Characterizes the Landscape of Somatic Mutations and Copy Number Alterations in Adrenocortical Carcinoma. The Journal of Clinical Endocrinology & Metabolism, 100 (3), E493 – E502.
Kamech, N., Seif, R. (1988). Effect of microtubule disorganizing or overstabilizing drugs on the proliferation of rat 3T3 cells and their virally induced transformed derivatives. Cancer Research, 48 (17), 4892 – 4896.
Kawamura, E., Fielding, A. B., Kannan, N., Balgi, A., Eaves, C. J., Roberge, M., Dedhar, S. (2013). Identification of novel small molecule inhibitors of centrosome clustering in cancer cells. Oncotarget, 4 (10), 1763 – 1776.
Kebapci, M., Kaya, T., Gurbuz, E., Adapinar, B., Kebapci, N., Demirustu, C. (2003). Differentiation of adrenal adenomas (lipid rich and lipid poor) from nonadenomas by use of washout characteristics on delayed enhanced CT. Abdominal Imaging, 28 (5), 709 – 715.
Kerkhofs, T. M. A., Ettaieb, M. H. T., Hermsen, I. G. C., Haak, H. R. (2015). Developing treatment for adrenocortical carcinoma. Endocrine-Related Cancer, 22 (6), R325 – R338.
Kerkhofs, T.M., Derijks, L.J., Ettaieb, H., den Hartigh, J., Neef, K., Gelderblom, H., Guchelaar, H.J., Haak, H.R. (2015). Development of a pharmacokinetic model of mitotane: toward personalized dosing in adrenocortical carcinoma. Therapeutic Drug Monitoring, 37 (1), 58 – 65.
Khan, T. S., Imam, H., Juhlin, C., Skogseid, B., Gröndal, S., Tibblin, S., et al. (2000). Streptozocin and o,p'DDD in the treatment of adrenocortical cancer patients: long-term survival in its adjuvant use. Annals of Oncology : Official Journal of the European Society for Medical Oncology /ESMO, 11 (10), 1281 – 1287.
Kim, Y., Alpmann, P., Blaum-Feder, S., Krämer, S., Endo, T., Lu, D., Carson, D., Schmidt-Wolf, I.G. (2011), In vivo efficacy of griseofulvin against multiple myeloma. Leukemia research, 35 (8), 1070 – 3.
Kirschner, L. S. (2006). Emerging treatment strategies for adrenocortical carcinoma: a new hope. The Journal of Clinical Endocrinology & Metabolism, 91(1), 14 – 21.
Krämer, A., Maier, B., Bartek, J. (2011). Centrosome clustering and chromosomal (in)stability: A matter of life and death. Molecular Oncology, 5 (4), 324 – 335.
Krämer, A., Neben, K., Ho, A. D. (2002). Centrosome replication, genomic instability and cancer. Leukemia, 16 (5), 767 – 775.
Kroiss, M., Quinkler, M., Johanssen, S., van Erp, N. P., Lankheet, N., Pöllinger, A., Laubner, K., Strasburger, C. J., Hahner, S., Müller, H. H., Allolio, B., Fassnacht, M. (2012). Sunitinib in refractory adrenocortical carcinoma: a phase II, single-arm, open-label trial. The Journal of Clinical Endocrinology & Metabolism, 97 (10), 3495 – 3503.
Kroiss, M., Quinkler, M., Lutz, W. K., Allolio, B., Fassnacht, M. (2011). Drug interactions with mitotane by induction of CYP3A4 metabolism in the clinical management of adrenocortical carcinoma. Clinical Endocrinology, 75 (5), 585 – 591.
Kwon, M., Godinho, S. A., Chandhok, N. S. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Developement, 22 (16), 2189 – 203.
Larsen, T. O., Smedsgaard, J., Nielsen, K. F., Hansen, M. E., Frisvad, J. C. (2005). Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Natural Product Reports, 22 (6), 672 – 695.
Lau, S. K., Weiss, L. M. (2009). The Weiss system for evaluating adrenocortical neoplasms: 25 years later. Human Pathology, 40 (6), 757 – 768.
Leboulleux, S., Dromain, C., Bonniaud, G., Aupérin, A., Caillou, B., Lumbroso, J., Sigal R, Baudin E, Schlumberger M., (2006). Diagnostic and Prognostic Value of 18-Fluorodeoxyglucose Positron Emission Tomography in Adrenocortical Carcinoma: A Prospective Comparison with Computed Tomography. The Journal of Clinical Endocrinology & Metabolism, 91(3), 920 – 925.
Libè, R. (2015). Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment. Frontiers in Cell and Developmental Biology, 3, 45.
Libè, R., Fratticci, A., Bertherat, J. (2007). Adrenocortical cancer: pathophysiology and clinical management. Endocrine-Related Cancer, 14 (1), 13 – 28.
Liéby-Muller, F., Heudré Le Baliner, Q., Grisoni, S., Fournier, E., Guilbaud, N., Marion, F. (2015) Synthesis and activities towards resistant cancer cells of sulfone and sulfoxide griseofulvin derivatives. Bioorganic & Medicinal Chemistry Letters, 25 (10), 2078 – 81.
Lim, S, Ganem, N.J. (2014). Tetrapolidy and tumor development, Oncotarget, 5 (22), 10959 – 60.
Liu, K., Yan, J., Sachar, M., Zhang, X., Guan, M., Xie, W., Ma, X. (2015). A metabolomic perspective of griseofulvin-induced liver injury in mice. Biochemical Pharmacology, 98 (3), 493 – 501.
Logie, A., Boulle, N., Gaston, V., Perin, L., Boudou, P., Le Bouc, Y., Gicquel, C. (1999). Autocrine role of IGF-II in proliferation of human adrenocortical carcinoma NCI H295R cell line. Journal of Molecular Endocrinology, 23 (1), 23 – 32.
Malawista, SE. Sato, H., Bensch, KG. (1968). Vinblastine and griseofulvin reversibly disrupt the living mitotic spindle. Science, 160 (3829), 770 – 2.
Mauro, V., Carette, D., Pontier-Bres, R., Dompierre, J., Czerucka, D., Segretain, D., Gilleron, J., Pointis, G. (2013). The anti-mitotic drug griseofulvin induces apoptosis of human germ cell tumor cells through a connexin 43-dependent molecular mechanism. Apoptosis, 18 (4), 480 – 491.
Newman, D. J., Cragg, G. M., Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981-2002. Journal of Natural Products, 66 (7), 1022 – 1037.
Ng, L., Libertino, J. M. (2003). Adrenocortical carcinoma: diagnosis, evaluation and treatment. The Journal of Urology, 169 (1), 5 – 11.
Nigg, E. A. (2002). Centrosome aberrations: cause or consequence of cancer progression? Nature Reviews Cancer, 2, 815 – 825.
Nigg, E. A. (2007) Centrosome duplication: of rules and licenses. Trends in
Cell Biology, 17 (5), 215 – 21.
Nigg, E. A. (2006). Origins and consequences of centrosome aberrations in
human cancers. International Journal of Cancer. Journal International
Du Cancer, 119 (12), 2717 – 2723.
Nigg, E. A., Stearns, T. (2011). The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nature Cell Biology, 13 (10), 1154 – 1160.
Ogden, A., Rida, P. C. G., Aneja, R. (2012). Let's huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy. Cell Death & Differentiation, 19 (8), 1255 – 1267.
Ogden, A., Cheng A., Rida, P. C. G., Pannu, V., Osan, R., Clewley, R.,
Aneja, R. (2014), Quantitative multi-parametric evaluation of
centrosome declustering drugs: Centrosome amplification, mitotic
phenotype, cell cycle and death. Cell Death & Disease. 5 (5), e1204
Ohira, M., Iwasaki, Y., Tanaka, C., Kuroki, M., Matsuo, N., Kitamura, T., et al. (2015). A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochimica Et Biophysica Acta, 1850 (9), 1676 – 1684.
Ozcan Kara, P., Kara, T., Kara Gedik, G., Kara, F., Sahin, O., Ceylan Gunay, E., Sari, O. (2011). The role of fluorodeoxyglucose-positron emission tomography/computed tomography in differentiating between benign and malignant adrenal lesions. Nuclear Medicine Communications, 32 (2), 106 – 112.
Pannu, V., Rida, P.C.G., Celik, B., Turaga, R.C., Ogden, A., Cantuaria, G.,
Gopalakrishnan, J., Aneja, R. (2014). Centrosome-declustering drugs
mediate a two-pronged attack on interphase and mitosis in
supercentrosomal cancer cells. Cell Death Discovery, 5 (11), e1538.
Panda, D., Rathinasamy, K., Santra, MK., Wilson, L. (2005). Kinetic suppression of microtubule dynamic instability by griseofulvin: implications for its possible use in the treatment of cancer. Proceedings of the National Academy of Sciences; 102 (28), 9878 – 83.
Papotti, M., Libè, R., Duregon, E., Volante, M., Bertherat, J., Tissier, F. (2011). The Weiss Score and Beyond — Histopathology for Adrenocortical Carcinoma. Hormones & Cancer, 2 (6), 333 – 340.
Park, B. K., Kim, C. K., Kim, B., Lee, J. H. (2007). Comparison of Delayed Enhanced CT and Chemical Shift MR for Evaluating Hyperattenuating Incidental Adrenal Masses Radiology, 243 (3), 760 – 765.
Pawar, S., Donthamsetty, S., Pannu, V., Rida, P. (2014). KIFCI, a novel putative prognostic biomarker for ovarian adenocarcinomas: delineating protein interaction networks and signaling circuitries. Journal of Ovarian Research, 7, 53.
Pennanen, M., Heiskanen, I., Sane, T., Remes, S., Mustonen, H., Haglund, C., Arola, J. (2015). Helsinki score-a novel model for prediction of metastases in adrenocortical carcinomas. Human Pathology, 46 (3), 404 – 410.
Pera, B., Calvo-Vidal, M. N., Ambati, S., Jordi, M., Kahn, A., Díaz, J. F., Fang, W., Altmann, K. H., Cerchietti, L., Moore, M. A. (2015). High affinity and covalent-binding microtubule stabilizing agents show activity in chemotherapy-resistant acute myeloid leukemia cells. Cancer Letters, 368 (1), 97 – 104.
Pihan, G. A., Purohit, A., Wallace, J., Knecht, H., Woda, B., Quesenberry, P., Doxsey, S. J. (1998). Centrosome defects and genetic instability in malignant tumors. Cancer Research, 58 (17), 3974 – 3985.
Quinkler, M., Hahner, S., Wortmann, S., Johanssen, S., Adam, P., Ritter, C., Strasburger, C., Allolio, B., Fassnacht, M. (2008). Treatment of advanced adrenocortical carcinoma with erlotinib plus gemcitabine. The Journal of Clinical Endocrinology & Metabolism, 93 (6), 2057 – 2062.
Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M., Saunders, W. S. (2005). Spindle multipolarity is prevented by centrosomal clustering. Science, 307 (5706), 127 – 129.
Raab, M. S., Breitkreutz, I., Anderhub, S., Rønnest, M. H., Leber, B., Larsen, T. O., Weiz, L., Konotop, G., Hayden, P. J., Podar, K., Fruehauf, J., Nissen, F., Mier, W., Haberkorn, U., Ho, A. D., Goldschmidt, H., Anderson, K. C., Clausen, M. H., Krämer, A. (2012). GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Research, 72 (20), 5374 – 5385.
Rainey, W. E., Bird, I. M.,Mason, J. I. (1994). The NCI-H295 cell line: a pluripotent model for human adrenocortical studies. Molecular and Cellular Endocrinology, 100 (1 – 2), 45 – 50.
Rathinasamy, K., Jindal, B., Asthana, J., Singh, P. (2010). Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine. BMC Cancer, 10, 23.
Rebacz, B., Larsen, T. O., Clausen, M. H., Rønnest, M. H., Löffler, H., Ho, A. D., Krämer, A. (2007). Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Research, 67 (13), 6342 – 6350.
Riss, TL., Moravec, RA., Niles AL., Duellman, S., Benink, HA., Worzella TJ., Minor, L. (2013, Updated 2016) Cell Viability Assays. In: Sittampalam GS, Coussens NP, Nelson H, et al., editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.
Rodriguez, H., Hum, D. W., Staels, B., & Miller, W. L. (1997). Transcription of the human genes for cytochrome P450scc and P450c17 is regulated differently in human adrenal NCI-H295 cells than in mouse adrenal Y1 cells. The Journal of Clinical Endocrinology & Metabolism, 82 (2), 365 – 371.
Roshani, L., Fujioka, K., Auer, G., Kjellman, M., Lagercrantz, S., Larsson, C. (2002). Aberrations of centrosomes in adrenocortical tumors. International Journal of Oncology, 20 (6), 1161 – 1165.
Rønnest, M. H., Rebacz, B., Markworth, L., Terp, A. H., Larsen, T. O., Krämer, A., & Clausen, M. H. (2009). Synthesis and Structure−Activity Relationship of Griseofulvin Analogues as Inhibitors of Centrosomal Clustering in Cancer Cells. Journal of Medicinal Chemistry, 52 (10), 3342 – 3347.
Salisbury, J. L. (2004). Centrosomes: Sfi1p and Centrin Unravel a Structural Riddle. Current Biology, 14 (1), R27 – R29.
Samandari, E., Kempná, P., Nuoffer, J.-M., Hofer, G., Mullis, P. E., Flück, C. E. (2007). Human adrenal corticocarcinoma NCI-H295R cells produce more androgens than NCI-H295A cells and differ in 3beta-hydroxysteroid dehydrogenase type 2 and 17,20 lyase activities. The Journal of Endocrinology, 195 (3), 459 – 472.
Sbiera, S., Leich, E., Liebisch, G., Sbiera, I., Schirbel, A., Wiemer, L., Matysik, S., Eckhardt, C., Gardill, F., Gehl, A., Kendl, S., Weigand, I., Bala, M., Ronchi, C. L., Deutschbein, T., Schmitz, G., Rosenwald, A., Allolio, B., Fassnacht, M., Kroiss, M.. (2015). Mitotane inhibits Sterol-O-Acyl Transferase 1 triggering lipid-mediated endoplasmic reticulum stress and apoptosis in adrenocortical carcinoma cells. Endocrinology, 156 (11), 3895 – 3908.
Schteingart, D. E., Doherty, G. M., Gauger, P. G., Giordano, T. J., Hammer, G. D., Korobkin, M., Worden, F. P. (2005). Management of patients with adrenal cancer: recommendations of an international consensus conference. (Vol. 12, pp. 667–680). Presented at the Endocrine-related cancer, BioScientifica.
Schteingart, D. E., Sinsheimer, J. E., Counsell, R. E., Abrams, G. D., McClellan, N., Djanegara, T., Hines, J., Ruangwises, N., Benitez, R., Wotring, L. L. (1993). Comparison of the adrenalytic activity of mitotane and a methylated homolog on normal adrenal cortex and adrenal cortical carcinoma. Cancer Chemotherapy and Pharmacology, 31 (6), 459 – 466.
Singh, P., Rathinasamy, K., Mohan, R., & Panda, D. (2008). Microtubule assembly dynamics: An attractive target for anticancer drugs. International Union of Biochemistry and Molecular Biology Life, 60 (6), 368 – 375.
Stanton, R.A., Gernet, K.M., Nettles, J.H., Aneja, R. (2011). Drugs That
Target Dynamic Microtubules: A New Molecular Perspective. Medical
Research Reviews, 31 (3), 443 – 481.
Stigliano, A., Chiodini, I., Giordano, R., Faggiano, A., Canu, L., Della Casa, S., Loli, P., Luconi, M., Mantero, F., Terzolo, M.. (2015). Management of adrenocortical carcinoma: a consensus statement of the Italian Society of Endocrinology (SIE). Journal of Endocrinological Investigation, 39 (1), 103 – 121.
Szolar, D. H., Korobkin, M., Reittner, P., Berghold, A., Bauernhofer, T., Trummer, H., Schoellnast, H., Preidler, K. W., Samonigg, H. (2005). Adrenocortical Carcinomas and Adrenal Pheochromocytomas: Mass and Enhancement Loss Evaluation at Delayed Contrast-enhanced CT1. Radiology, 234 (2), 479 – 485.
Takizawa, C. G., Morgan, D. O. (2000). Control of mitosis by changes in the subcellular location of cyclin-B1–Cdk1 and Cdc25C. Current Opinion in Cell Biology, 12 (6), 658 – 665.
Terzolo, M., Zaggia, B., Allasino, B., De Francia, S. (2014). Practical treatment using mitotane for adrenocortical carcinoma. Current Opinion in Endocrinology, Diabetes and Obesity, 21 (3), 159 – 165.
Terzolo, M., Angeli A, Fassnacht M, Daffara F, Tauchmanova L, Conton PA, Rossetto R, Buci L, Sperone P, Grossrubatscher E, Reimondo G, Bollito E, Papotti M, Saeger W, Hahner S, Koschker AC, Arvat E, Ambrosi B, Loli P, Lombardi G, Mannelli M, Bruzzi P, Mantero F, Allolio B, Dogliotti L, Berruti A. (2007). Adjuvant Mitotane in Adrenocortical Carcinoma. New England Journal of Medicine, 357 (12), 2372 – 2380.
Uen Y.H., Liu D.Z., Weng M.S., Ho Y.S., Lin S.Y. (2007). NF-kappaB pathway is involved in griseofulvin-induced G2/M arrest and apoptosis in HL-60 cells. Cell Biochemistry, 101 (5), 1165 – 75.
Vargas, F. R., Brentani, R. R., Prolla, P. A. (2010). Detailed haplotype analysis at the TP53 locus in p. R337H mutation carriers in the population of Southern Brazil: evidence for a founder effect. Human Mutation, 31 (2), 143 – 150.
Vesselinovitch, S. D., Mihailovich, N. (1968). The inhibitory effect of griseofulvin on the “promotion” of skin carcinogenesis. Cancer Research, 28 (12), 2463 – 2465.
Vindya, N. G., Sharma, N., Yadav, M., Ethiraj, K. R. (2015). Tubulins - the target for anticancer therapy. Current Topics in Medicinal Chemistry, 15 (1), 73 – 82.
Wang, T., Rainey, W. E. (2012). Human adrenocortical carcinoma cell lines. Molecular and Cellular Endocrinology, 35 1(1), 58 – 65.
Weber, K., Wehland, J., Herzog, W. (1976). Griseofulvin interacts with microtubules both in vivo and in vitro. Journal of Molecular Biology. 102 (4), 817 – 29.
Wilson, E. B. (1925). Cell In Development And Heredity, 3., revidierte Edition erschienen bei Macmillan, Seite 1145 – 1203.
Wortmann, S., Quinkler, M., Ritter, C., Kroiss, M., Johanssen, S., Hahner, S., Allolio, B., Fassnacht, M. (2010). Bevacizumab plus capecitabine as a salvage therapy in advanced adrenocortical carcinoma. European Journal of Endocrinology / European Federation of Endocrine Societies, 162 (2), 349 – 356.
Yoo, J. Y., McCoy, K. L., Carty, S. E., Stang, M. T., Armstrong, M. J., Howell, G. M., Bartlett, D. L., Tublin, M. E., Yip L. (2015). Adrenal Imaging Features Predict Malignancy Better than Tumor Size. Annals of Surgical Oncology, 22 Supplement 3 (S3), 721 – 727.
Zhou, J., Gupta, K., Aggarwal, S., Aneja, R., Chandra, R., Panda, D., Joshi, H.C. (2003). Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation. Molecular Pharmacology. 63 (4), 799 – 807.
Zini, L., Porpiglia, F., Fassnacht, M. (2011). Contemporary Management of Adrenocortical Carcinoma. European Urology. 60 (5), 1055 – 65.
Zyss, D., Gergely, F. (2009). Centrosome function in cancer: guilty or
innocent? Trends in Cell Biology, 19 (7), 334 – 346.
Rechtliche Vermerke:Ich versichere an Eides statt, dass diese Dissertation selbständig und ohne unzulässige fremde Hilfe erstellt worden ist und die hier vorgelegte Dissertation nicht von einer anderen medizinischen Fakultät abgelehnt worden ist.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:9/2009 - 5/2018
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:09.01.2019
Dateien geändert am:09.01.2019
Promotionsantrag am:05.07.2017
Datum der Promotion:15.05.2018
english
Benutzer
Status: Gast
Aktionen