Dokument: Development of an in-line measuring tool for ribbon solid fraction during roll compaction

Titel:Development of an in-line measuring tool for ribbon solid fraction during roll compaction
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=48124
URN (NBN):urn:nbn:de:hbz:061-20190116-112606-8
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Wiedey, Raphael [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,08 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 11.01.2019 / geändert 11.01.2019
Beitragende:Prof. Dr. Kleinebudde, Peter [Gutachter]
Prof. Dr. Breitkreutz, Jörg [Gutachter]
Stichwörter:roll compaction, Walzenkompaktieren, process analytical technologies, Prozessanalytische Technologie
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibung:Beim Walzenkompaktieren/Trockengranulieren werden Pulver zwischen gegenläufig rotierenden Walzen verpresst und die entstandenen Schülpen anschließend zu Granulaten gemahlen. Die Porosität dieser Schülpen ist dabei ein wichtiges Qualitätsmerkmal, weil sie die Partikelgrößenverteilung und die Wiederverpressbarkeit der Granulate bestimmt. Da trotz der Bedeutung dieser Eigenschaft bisher kein System zur in-line Überwachung dieser Größe allgemein akzeptiert ist, war das Ziel dieser Arbeit ein zuverlässiges und einfach zu bedienendes Messystem für diese Anwendung zu entwickeln. Um zu entscheiden ob die neue Technik so entwickelt werden soll, dass neben den Porosität der gesamten Schülpe auch die Porositätsverteilung detektiert werden kann, wurden in einem Teil der Arbeit zudem die Verteilungsmuster sowie deren Relevanz für Folgeprozesse untersucht.
In dieser Arbeit wurde die Porosität aus den thermischen Eigenschaften der Schülpe bestimmt. Die Schülpentemperatur wurden mit einer Infrarot-Kamera aufgezeichnet und anschließend analysiert. Dabei korrelierte die Schülpentemperatur negativ mit der Porosität. Dies war der Fall für eine Reihe von verschiedenen Füllstoffen. Die Reaktionszeiten war kurz, die Ergebnisse waren Robust gegen Variation der Prozessparameter und des Raumklimas, erlaubten präzise und akkurate Vorhersagen und enthielten Information über die Produkteigenschaften, die über das was aus der Überwachung der Prozessparameter geschlossen werden kann, hinausgeht. Die Temperaturverteilung konnte zudem zur Überwachung der Porositätsverteilung herangezogen werden, wie durch Abgleich mit Mikro-Computertomographischen Messungen gezeigt werden konnte. Da in einer weiteren Untersuchung allerdings keine Relevanz der Schülpenhomogenität nachgewiesen werden konnte, wurde dies nicht weiter untersucht.
Das Messsignal war nicht robust gegenüber einer Erwärmung des Walzenkompaktors über die Prozesszeit. Um die Robustheit zu erhöhen, wurde versucht die Porosität aufgrund der Wärmeleitfähigkeit der Schülpen zu bestimmen (hohe Porosität bedingt niedrige Leitfähigkeit). Dazu wurde die Schülpe durch eine 450 nm Laserdiode punktuell erhitzt und die Ausbreitung der Wärme von diesem Punkt aus mittels IR-Kamera verfolgt. Dieser Ansatz zeigte ebenfalls Richtigkeit, Präzision und Robustheit gegen fluktuierende Prozessparameter in den Vorhersagen und war Robust gegen das Aufheizen des Walzenkompaktors über die Prozesszeit. Negative Einflüsse auf die Stabilität des Arzneistoffs, konnten in einer Modellstudie mit dem Wirkstoff Nifedipin nicht gefunden werden.
Quelle:[1] E.L. Parrott, Densification of powders by concavo‐convex roller compactor, J. Pharm. Sci., 70 (1981) 288-291.
[2] R.W. Miller, Advances in pharmaceutical roller compactor feed system designs, Pharm. Technol. Eur., 6 (1994) 58-68.
[3] P. Kleinebudde, Roll compaction/dry granulation: pharmaceutical applications, Eur. J. Pharm. Biopharm., 58 (2004) 317-326.
[4] J. Mosig, Untersuchung des Tablettierverhaltens von Trockengranulaten verschiedener Hilfsstoffe, PhD Thesis, Heinrich Heine University, Düsseldorf, 2014.
[5] P. Guigon, O. Simon, Roll press design - Influence of force feed systems on compaction, Powder Technol., 130 (2003) 41-48.
[6] A. Mazor, L. Perez-Gandarillas, A. de Ryck, A. Michrafy, Effect of roll compactor sealing system designs: A finite element analysis, Powder Technol., 289 (2016) 21-30.
[7] A. Fahr, X. Liu, Drug delivery strategies for poorly water-soluble drugs, Expert Opinion on Drug Delivery, 4 (2007) 403-416.
[8] S. Malkowska, K.A. Khan, Effect of re-compression on the properties of tablets prepared by dry granulation, Drug Dev. Ind. Pharm., 9 (1983) 331-347.
[9] C. Sun, M.W. Himmelspach, Reduced tabletability of roller compacted granules as a result of granule size enlargement, J. Pharm. Sci., 95 (2006) 200-206.
[10] M.G. Herting, P. Kleinebudde, Letter to the editor, Int. J. Pharm., 347 (2008) 173-174.
[11] M.G. Herting, P. Kleinebudde, Roll compaction/dry granulation: Effect of raw material particle size on granule and tablet properties, Int. J. Pharm., 338 (2007) 110-118.
[12] J. Mosig, P. Kleinebudde, Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation, J. Pharm. Sci., 104 (2015) 1108-1118.
[13] C.C. Sun, P. Kleinebudde, Mini review: Mechanisms to the loss of tabletability by dry granulation, Eur. J. Pharm. Biopharm. 106 (2016) 9-14.
[14] M. Leane, K. Pitt, G. Reynolds, J. Anwar, S. Charlton, A. Crean, R. Creekmore, C. Davies, T. DeBeer, M. De-Matas, A. Djemai, D. Douroumis, S. Gaisford, J. Gamble, E.H. Stone, A. Kavanagh, Y. Khimyak, P. Kleinebudde, C. Moreton, A. Paudel, R. Storey, G. Toschkoff, K. Vyas, A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms, Pharm. Dev. Technol., 20 (2015) 12-21.
[15] Continuous Manufacturing of Pharmaceuticals, P. Kleinebudde, J. Khinast, J. Rantanen, Wiley, 2017.
[16] H. Leuenberger, New trends in the production of pharmaceutical granules: Batch versus continuous processing, Eur. J. Pharm. Biopharm., 52 (2001) 289-296.
[17] J. Rantanen, J. Khinast, The future of pharmaceutical manufacturing sciences, J. Pharm. Sci., 104 (2015) 3612-3638.
[18] C. Vervaet, J.P. Remon, Continuous granulation in the pharmaceutical industry, Chem. Eng. Sci., 60 (2005) 3949-3957.
[19] J.R. Johanson, A rolling theory for granular solids, J Appl Mech Trans ASME, 32 (1964) 842-848.
[20] S. Peter, R.F. Lammens, K.-J. Steffens, Roller compaction/Dry granulation: Use of the thin layer model for predicting densities and forces during roller compaction, Powder Technol., 199 (2010) 165-175.
[21] J.C. Cunningham, D. Winstead, A. Zavaliangos, Understanding variation in roller compaction through finite element-based process modeling, Comput. Chem. Eng., 34 (2010) 1058-1071.
[22] R.F. Mansa, R.H. Bridson, R.W. Greenwood, H. Barker, J.P.K. Seville, Using intelligent software to predict the effects of formulation and processing parameters on roller compaction, Powder Technol., 181 (2008) 217-225.
[23] S. Inghelbrecht, J.P. Remon, P. Fernandes De Aguiar, B. Walczak, D.L. Massart, F. Van De Velde, P. De Baets, H. Vermeersch, P. De Backer, Instrumentation of a roll compactor and the evaluation of the parameter settings by neural networks, Int. J. Pharm., 148 (1997) 103-115.
[24] R. Fassihi, I. Kanfer, Effect of Compressibility and Powder Flow Properties on Tablet Weight Variation, Drug Dev. Ind. Pharm., 12 (1986) 1947-1966.
[25] S.B. Tan, J.M. Newton, Powder flowability as an indication of capsule filling performance, Int. J. Pharm., 61 (1990) 145-155.
[26] M. Wikberg, G. Alderborn, Compression characteristics of granulated materials. IV. The effect of granule porosity on the fragmentation propensity and the compatibility of some granulations, Int. J. Pharm., 69 (1991) 239-253.
[27] M.A. Ansari, F. Stepanek, The effect of granule microstructure on dissolution rate, Powder Technol., 181 (2008) 104-114.
[28] J. Nordström, G. Alderborn, The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate, J. Pharm. Sci., 104 (2015) 2029-2039.
[29] F. Jaminet, H. Hess, Studies on compacting and dry granulation, Pharm. Acta Helv., 41 (1966) 39-58.
[30] H. Mangal, P. Kleinebudde, Is the adjustment of the impeller speed a reliable attempt to influence granule size in continuous dry granulation?, Adv. Powder Technol., 29 (2018) 1339-1347.
[31] R. Ramachandran, J.M.H. Poon, C.F.W. Sanders, T. Glaser, C.D. Immanuel, F.J. Doyle, J.D. Litster, F. Stepanek, F.-Y. Wang, I.T. Cameron, Experimental studies on distributions of granule size, binder content and porosity in batch drum granulation: Inferences on process modelling requirements and process sensitivities, Powder Technol., 188 (2008) 89-101.
[32] D. Acevedo, A. Muliadi, A. Giridhar, J.D. Litster, R.J. Romañach, Evaluation of three approaches for real-time monitoring of roller compaction with near-infrared spectroscopy, AAPS PharmSciTech, 13 (2012) 1005-1012.
[33] A.K. Samanta, A.D. Karande, K.Y. Ng, P.W.S. Heng, Application of near-infrared spectroscopy in real-time monitoring of product attributes of ribbed roller compacted flakes, AAPS PharmSciTech, 14 (2013) 86-100.
[34] A. Michrafy, H. Diarra, J.A. Dodds, M. Michrafy, Experimental and numerical analyses of homogeneity over strip width in roll compaction, Powder Technol., 206 (2011) 154-160.
[35] G. Alderborn, E. Borjesson, M. Glazer, C. Nystrom, Studies on direct compression of tablets. XIX. The effect of particle size and shape on the mechanical strength of sodium bicarbonate tablets, Acta Pharm. Suecica, 25 (1988) 31-40.
[36] M. Khorasani, J.M. Amigo, C.C. Sun, P. Bertelsen, J. Rantanen, Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting, Eur. J. Pharm. Biopharm., 93 (2015) 293-302.
[37] M. Khorasani, J.M. Amigo, P. Bertelsen, C.C. Sun, J. Rantanen, Process optimization of dry granulation based tableting line: Extracting physical material characteristics from granules, ribbons and tablets using near-IR (NIR) spectroscopic measurement, Powder Technol., 300 (2016) 120-125.
[38] M. Allesø, R. Holm, P. Holm, Roller compaction scale-up using roll width as scale factor and laser-based determined ribbon porosity as critical material attribute, Eur. J. Pharm. Sci., 87 (2016) 69-78.
[39] R.M. Iyer, S. Hegde, D. Singhal, W. Malick, A novel approach to determine solid fraction using a laser-based direct volume measurement device, Pharm. Dev. Technol., 19 (2014) 577-582.
[40] C. Solid Fraction Measurement Systems, CT, USA, Laser-Based Solid Fraction Measurement System- System Overview, in, Solid Fraction Measurement Systems, Centerbrook, CT, USA, http://solidfraction.com/solid_fraction_measurements.html.
[41] M. Yu, C. Omar, A. Schmidt, J.D. Litster, A.D. Salman, Improving feeding powder distribution to the compaction zone in the roller compaction, Eur. J. Pharm. Biopharm., 128 (2018) 57-68.
[42] C.S. Omar, R.M. Dhenge, J.D. Osborne, T.O. Althaus, S. Palzer, M.J. Hounslow, A.D. Salman, Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality, International Journal of Pharmaceutics, 496 (2015) 63-74.
[43] R.B. Al-Asady, R.M. Dhenge, M.J. Hounslow, A.D. Salman, Roller compactor: Determining the nip angle and powder compaction progress by indentation of the pre-compacted body, Powder Technol., 300 (2016) 107-119.
[44] S.R. Stock, X-ray microtomography of materials, Int. Mater. Rev., 44 (1999) 141-164.
[45] L. Farber, G. Tardos, J.N. Michaels, Use of X-ray tomography to study the porosity and morphology of granules, Powder Technol., 132 (2003) 57-63.
[46] A.M. Miguélez-Morán, C.Y. Wu, H. Dong, J.P.K. Seville, Characterisation of density distributions in roller-compacted ribbons using micro-indentation and X-ray micro-computed tomography, Eur. J. Pharm. Biopharm., 72 (2009) 173-182.
[47] N. Souihi, D. Nilsson, M. Josefson, J. Trygg, Near-infrared chemical imaging (NIR-CI) on roll compacted ribbons and tablets - Multivariate mapping of physical and chemical properties, Int. J. Pharm., 483 (2015) 200-211.
[48] F. Wöll, P. Kleinebudde, Characterization of the porosity of compacted powders: stamping method and NIRS method, Chem. Ing. Tech., 75 (2003) 1756-1759+1581.
[49] J.D. Kirsch, J.K. Drennen, Nondestructive tablet hardness testing by near-infrared spectroscopy: A new and robust spectral best-fit algorithm, J. Pharm. Biomed. Anal., 19 (1999) 351-362.
[50] D. Markl, P. Wang, C. Ridgway, A.P. Karttunen, M. Chakraborty, P. Bawuah, P. Pääkkönen, P. Gane, J. Ketolainen, K.E. Peiponen, J.A. Zeitler, Characterization of the pore structure of functionalized calcium carbonate tablets by terahertz time-domain spectroscopy and X-ray computed microtomography, J. Pharm. Sci., 106 (2017) 1586-1595.
[51] Y. Funakoshi, T. Asogawa, E. Satake, The use of a novel roller compactor with a concavo-convex roller pair to obtain uniform compacting pressure, Drug Dev. Ind. Pharm., 3 (1977) 555-573.
[52] I. Akseli, S. Iyer, H.P. Lee, A.M. Cuitiño, A quantitative correlation of the effect of density distributions in roller-compacted ribbons on the mechanical properties of tablets using ultrasonics and X-ray tomography, AAPS PharmSciTech, 12 (2011) 834-853.
[53] O. Simon, P. Guigon, Interaction between feeding and compaction during lactose compaction in a laboratory roll press, KONA Powder Part. J., 18 (2000) 131-138.
[54] F. Wöll, Entwicklung von Methoden zur Charakterisierung von Schülpen, PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle a.d. Saale, 2003.
[55] H. Busies, Dichteverteilung in Schülpen, PhD thesis, Universität Bonn, 2006.
[56] S. Peter, R.F. Lammens, K.-J. Steffens, Roller Compaction: Improving homogeneity of ribbon density by modifying powder supply, Tablet Tech Seminar, FMC Biopolymer, Brussels, Belgium, 2007.
[57] A.M. Miguélez-Morán, C.Y. Wu, J.P.K. Seville, The effect of lubrication on density distributions of roller compacted ribbons, Int. J. Pharm., 362 (2008) 52-59.
[58] W.A. Strickland Jr, E. Nelson, L.W. Busse, T. Higuchi, The physics of tablet compression. IX. Fundamental aspects of tablet lubrication, J. Am. Pharm. Assoc. Sci., 45 (1956) 51-55.
[59] G.K. Bolhuis, A.J. Smallenbroek, C.F. Lerk, Interaction of tablet disintegrants and magnesium stearate during mixing I: Effect on tablet disintegration, J. Pharm. Sci., 70 (1981) 1328-1330.
[60] Prozessanalytik: Strategien und Fallbeispiele aus der industriellen Praxis, Rudolf W. Kessler, Wiley, 2006.
[61] Guidance for Industry PAT — A framework for innovative pharmaceutical development, manufacturing, and quality assurance, U.S. Food and Drug Administration, Silver Spring, MD, USA, 2004.
[62] R. Luigetti, QbD: A global implementation perspective - The EU perspective, The Siena Conference on Product and Process Optimization, EMA, Siena, 2008.
[63] A. Hakanen, E. Laine, Acoustic emission during powder compaction and its frequency spectral analysis, Drug Development and Industrial Pharmacy, 19 (1993) 2539-2560.
[64] A. Hakanen, E. Laine, Acoustic characterization of a microcrystalline cellulose powder during and after its compression, Drug Development and Industrial Pharmacy, 21 (1995) 1573-1582.
[65] M. Fonteyne, J. Vercruysse, F. De Leersnyder, B. Van Snick, C. Vervaet, J.P. Remon, T. De Beer, Process Analytical Technology for continuous manufacturing of solid-dosage forms, TrAC Trends Anal. Chem., 67 (2015) 159-166.
[66] J. Austin, A. Gupta, R. McDonnell, G.V. Reklaitis, M.T. Harris, The use of near-infrared and microwave resonance sensing to monitor a continuous roller compaction process, J. Pharm. Sci., 102 (2013) 1895-1904.
[67] A. Gupta, G.E. Peck, R.W. Miller, K.R. Morris, Nondestructive measurements of the compact strength and the particle-size distribution after milling of roller compacted powders by near-infrared spectroscopy, J. Pharm. Sci., 93 (2004) 1047-1053.
[68] A. Gupta, G.E. Peck, R.W. Miller, K.R. Morris, Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: A comparative study using near-infrared spectroscopy, J. Pharm. Sci., 94 (2005) 2301-2313.
[69] A. Gupta, G.E. Peck, R.W. Miller, K.R. Morris, Real-time near-infrared monitoring of content uniformity, moisture content, compact density/tensile strength, and young's modulus of roller compacted powder blends, J. Pharm. Sci., 94 (2005) 1589-1597.
[70] M.E. Crowley, A. Hegarty, M.A.P. McAuliffe, G.E. O'Mahony, L. Kiernan, K. Hayes, A.M. Crean, Near-infrared monitoring of roller compacted ribbon density: Investigating sources of variation contributing to noisy spectral data, Eur. J. Pharm. Sci., 102 (2017) 103-114.
[71] H. Mangal, Implementierung der Trockengranulierung in eine kontinuierliche Produktionsanlage für feste Arzneiformen, PhD thesis, Heinrich Heine University, Düsseldorf, 2018.
[72] J.C. Elliott, S.D. Dover, X‐ray microtomography, J. Microsc., 126 (1982) 211-213.
[73] R. Wiedey, P. Kleinebudde, Density distribution in ribbons from roll compaction, Chem Ing Tech, 89 (2016) 1017-1024.
[74] W. Gómez, E. Sales, R.T. Lopes, W.C.A. Pereira, A comparative study of automatic thresholding approaches for 3D X-ray microtomography of trabecular bone, Med. Phys., 40 (2013) Article number 091903.
[75] E.C. McCullough, Photon attenuation in computed tomography, Med. Phys., 2 (1975) 307-320.
[76] G. Kowalski, Suppression of ring artefacts in ct fan-beam scanners, IEEE Trans Nucl Sci, 25 (1978) 1111-1116.
[77] R.A. Brooks, G. Di Chiro, Beam hardening in X-ray reconstructive tomography, Phys. Med. Biol., 21 (1976) 390-398.
[78] P. Sridhar Rao, R.J. Alfidi, The environmental density artifact: A beam-hardening effect in computed tomography, Radiology, 141 (1981) 223-227.
[79] P.K. Kijewski, B.E. Bjärngard, Correction for beam hardening in computed tomography, Med. Phys., 5 (1978) 209-214.
[80] J.A. Zeitler, L.F. Gladden, In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms, Eur. J. Pharm. Biopharm., 71 (2009) 2-22.
[81] C.I. Gioumouxouzis, A. Baklavaridis, O.L. Katsamenis, C.K. Markopoulou, N. Bouropoulos, D. Tzetzis, D.G. Fatouros, A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery, Euro.J. Pharm. Sci., 120 (2018) 40-52.
[82] D.M. Smith, Y. Kapoor, G.R. Klinzing, A.T. Procopio, Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule, Int. J. Pharm., 544 (2018) 21-30.
[83] F. Fina, C.M. Madla, A. Goyanes, J. Zhang, S. Gaisford, A.W. Basit, Fabricating 3D printed orally disintegrating printlets using selective laser sintering, Int. J. Pharm., 541 (2018) 101-107.
[84] A. Krupa, Z. Tabor, J. Tarasiuk, B. Strach, K. Pociecha, E. Wyska, S. Wroński, E. Łyszczarz, R. Jachowicz, The impact of polymers on 3D microstructure and controlled release of sildenafil citrate from hydrophilic matrices, Eur. J. Pharm. Sci., 119 (2018) 234-243.
[85] A. Goyanes, F. Fina, A. Martorana, D. Sedough, S. Gaisford, A.W. Basit, Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing, Int. J. Pharm., 527 (2017) 21-30.
[86] D. Markl, J.A. Zeitler, C. Rasch, M.H. Michaelsen, A. Müllertz, J. Rantanen, T. Rades, J. Bøtker, Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging, Pharm. Res., 34 (2017) 1037-1052.
[87] C. Korte, J. Quodbach, 3D-Printed Network Structures as Controlled-Release Drug Delivery Systems: Dose Adjustment, API Release Analysis and Prediction, AAPS PharmSciTech, (2018) (in press) DOI: 10.1208/s12249-018-1017-0.
[88] Y. Wang, D.F. Wertheim, A.S. Jones, A.G.A. Coombes, Micro-CT in drug delivery, Eur. J. Pharm. Biopharm., 74 (2010) 41-49.
[89] Y. Wang, D.F. Wertheim, A.S. Jones, H.I. Chang, A.G.A. Coombes, Micro-CT analysis of matrix-type drug delivery devices and correlation with protein release behaviour, J. Pharm. Sci., 99 (2010) 2854-2862.
[90] A. Krupa, A. Wróbel, O. Cantin, J. Siepmann, B. Strach, E. Wyska, Z. Tabor, R. Jachowicz, In vitro and in vivo behavior of ground tadalafil hot-melt extrudates: How the carrier material can effectively assure rapid or controlled drug release, Int. J. Pharm., 528 (2017) 498-510.
[91] I.S. Russe, D. Brock, K. Knop, P. Kleinebudde, J.A. Zeitler, Validation of terahertz coating thickness measurements using X-ray microtomography, Mol. Pharm., 9 (2012) 3551-3559.
[92] A. Ariyasu, Y. Hattori, M. Otsuka, Non-destructive prediction of enteric coating layer thickness and drug dissolution rate by near-infrared spectroscopy and X-ray computed tomography, Int. J. Pharm., 525 (2017) 282-290.
[93] C. Li, J.A. Zeitler, Y. Dong, Y.C. Shen, Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography, J. Pharm. Sci., 103 (2014) 161-166.
[94] U. Bonse, F. Busch, X-ray computed microtomography (μCT) using synchrotron radiation (SR), Prog. Biophys. Mol. Biol., 65 (1996) 133-169.
[95] M. Atsushi, Recent Advances in X-ray Phase Imaging, Jap. J. App. Phys., 44 (2005) 6355.
[96] L. Wu, M. Wang, V. Singh, H. Li, Z. Guo, S. Gui, P. York, T. Xiao, X. Yin, J. Zhang, Three dimensional distribution of surfactant in microspheres revealed by synchrotron radiation X-ray microcomputed tomography, Asian J. Pharm. Sci., 12 (2017) 326-334.
[97] L. Fang, X. Yin, L. Wu, Y. He, Y. He, W. Qin, F. Meng, P. York, X. Xu, J. Zhang, Classification of microcrystalline celluloses via structures of individual particles measured by synchrotron radiation X-ray micro-computed tomography, Int. J. Pharm., 531 (2017) 658-667.
[98] I.C. Sinka, S.F. Burch, J.H. Tweed, J.C. Cunningham, Measurement of density variations in tablets using X-ray computed tomography, International Journal of Pharmaceutics, 271 (2004) 215-224.
[99] V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, P. Tchoreloff, Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography, Eur. J. Pharm. Biopharm., 64 (2006) 38-50.
[100] Deutsches Institut für Normung (DIN) 5031: Strahlungsphysik im optischen Bereich und Lichttechnik, Koblenz, 2013.
[101] R. Wiedey, P. Kleinebudde, Infrared thermography - A new approach for in-line density measurement of ribbons produced from roll compaction, Powder Technol., 337 (2018) 17-24.
[102] M.F. Modest, Radiative Heat Transfer, Elsevier, 2013.
[103] L. Boltzmann, Ableitung des Stefan'schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie, Ann. Phys., 258 (1884) 291-294.
[104] W. Wien, Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie, Ber. Akad. Wiss. Berlin, Erster Halbband 1893 (1893) 55.
[105] R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, F.G. Bulnes, Infrared thermography for temperature measurement and non-destructive testing, Sensors, 14 (2014) 12305-12348.
[106] Y.L.Y. R. M. Goody, Atmospheric Radiation: Theoretical Basis, Oxford University Press, USA, 1995.
[107] M. Stricker, Black Body Radiation, Sun Encyclopedia, http://www.sun.org/encyclopedia/black-body-radiation (accessed June 22nd, 2018).
[108] G. Gaussorgues, Chomet, S., Infrared Thermography, Springer Netherlands, 1994.
[109] K.M. Muckensturm, D. Weiler, F. Hochschulz, C. Busch, T. Geruschke, S. Wall, J. Heß, D. Würfel, R. Lerch, H. Vogt, Measurement results of a 12 μm pixel size microbolometer array based on a novel thermally isolating structure using a 17 μm ROIC, Proc. SPIE, 9819 (2016) Article number: 98191N.
[110] F. Niklaus, A. Decharat, C. Jansson, G. Stemme, Performance model for uncooled infrared bolometer arrays and performance predictions of bolometers operating at atmospheric pressure, Infrared Phys. Techn., 51 (2008) 168-177.
[111] S.R. Bechard, G.R.B. Down, Infrared imaging of pharmaceutical materials undergoing compaction, Pharm. Res., 9 (1992) 521-528.
[112] A. Krok, A. Mirtic, G.K. Reynolds, S. Schiano, R. Roberts, C.Y. Wu, An experimental investigation of temperature rise during compaction of pharmaceutical powders, Int. J. Pharm., 513 (2016) 97-108.
[113] A. Zavaliangos, A. Marx, J. Cunningham, D.A. Winstead, Temperature evolution during compaction of powders, in: 2007 International Conference on Powder Metallurgy and Particulate Materials, PowderMet 2007, Denver, CO, 2007, pp. 136-149.
[114] A. Zavaliangos, S. Galen, J. Cunningham, D. Winstead, Temperature evolution during compaction of pharmaceutical powders, J. Pharm. Sci., 97 (2008) 3291-3304.
[115] G.R. Klinzing, A. Zavaliangos, J. Cunningham, T. Mascaro, D. Winstead, Temperature and density evolution during compaction of a capsule shaped tablet, Comput. Chem. Eng., 34 (2010) 1082-1091.
[116] H. Emteborg, R. Zeleny, J. Charoud-Got, G. Martos, J. Lüddeke, H. Schellin, K. Teipel, Infrared thermography for monitoring of freeze-drying processes: Instrumental developments and preliminary results, J. Pharm. Sci., 103 (2014) 2088-2097.
[117] A. Krok, N. Vitorino, J. Zhang, J.R. Frade, C.Y. Wu, Thermal properties of compacted pharmaceutical excipients, Int. J. Pharm., 534 (2017) 119-127.
[118] J.C. Maxwell, A Treatise on Electricity and Magnetism, Dover Publications, New York, 1954.
[119] J.K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, Thermal conductivity bounds for isotropic, porous materials, Int. J. Heat Mass Transf., 48 (2005) 2150-2158.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:01/2015-09/2018
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Pharmazie » Pharmazeutische Technologie und Biopharmazie
Dokument erstellt am:16.01.2019
Dateien geändert am:16.01.2019
Promotionsantrag am:06.07.2018
Datum der Promotion:04.09.2018
english
Benutzer
Status: Gast
Aktionen