Dokument: Evaluation der ASL-Bildgebung und höherer mathematischer Modelle der DWI-Bildgebung in der MRT-Mammographie

Titel:Evaluation der ASL-Bildgebung und höherer mathematischer Modelle der DWI-Bildgebung in der MRT-Mammographie
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=48075
URN (NBN):urn:nbn:de:hbz:061-20190212-105957-0
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Miekley, Marcel [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]845,4 KB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 17.12.2018 / geändert 17.12.2018
Beitragende:Prof. Dr. Silvia Obenauer [Gutachter]
Univ.- Prof. Dr. med. Ruckhäberle, Eugen [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:In dieser Studie wurden mit der diffusionsgewichteten Bildgebung (DWI) und der arterial spin labeling Technik (ASL) funktionelle Verfahren der Mamma-Magnetresonanztomographie (MRT) untersucht. Die Untersuchungen wurden bei Karzinompatientinnen und gesunden Probandinnen durchgeführt, bei der diffsuionsgewichteten Bildgebung wurden zudem Patientinnen mit Fibroadenomen untersucht. Die Bilder wurden an einer externen Workstation weiter analysiert.
Die untersuchten höheren mathematischen Modelle (biexponentielle ADC und Kurtosis) zur Auswertung der DWI wiesen eine teils bessere mathematische Genauigkeit (96,2%-98,4%) im Vergleich zu der bisher genutzten monoexponentiellen ADC Auswertung (97,9%) auf [1-5]. Die Sensitivität zur Unterscheidung von Karzinomen und Fibroadenomen der Brust lag bei den höheren mathematischen Modellen zwischen 88% und 91%, die Spezifität zwischen 66% und 83%. Bei der monoexponentiellen Untersuchung lagen die Sensitivität bei 97% und die Spezifität bei 75%. Die höheren mathematischen Modelle verbesserten somit nicht die diagnostische Genauigkeit bei der Unterscheidung zwischen Karzinomen und Fibroadenomen im Vergleich zur bisher angewandten monoexponentiellen DWI Auswertung. In der ASL Teilstudie konnte gezeigt werden, dass die kontrastmittelfreie Perfusionsmessung zwischen invasiv duktalen Karzinomen der Brust (88,2 ±39,5 ml/100g/min) und gesundem Drüsengewebe der Brust (24,9 ± 12,7 ml/100g/min) unterscheiden kann. Eine Unterscheidung zwischen invasiv lobulären Karzinomen der Brust (30,5 ± 4,3 ml/100g/min) und gesundem Drüsenparenchym gelang nicht. Funktionelle Verfahren in der Mammadiagnostik mittels MRT haben das Potential Untersuchungsergebnisse zu verbessern. Höhere mathematische Modelle der diffusionsgewichteten Bildgebung haben in dieser Studie keinen diagnostischen Benefit im Vergleich zu der bisher angewandten Auswertung mittels ADC-Wert. Die ASL Messungen in dieser Studie zeigen eine Unterscheidbarkeit von invasiv duktalen Karzinomen und gesundem Gewebe, nicht jedoch von invasiv lobulären Karzinomen und gesundem Gewebe. Die Ergebnisse müssten in einer größeren Studie verifiziert und auf klinische Anwendbarkeit geprüft werden.

In this study functional techniques in the magnet resonanz imaging (MRI) of the breasts were examined. Diffusion weighted imaging (DWI) and arterial spin labeling (ASL) were used.
The examinations were executed in patients with carcinomas and in healthy probands. Diffusion weighted imaging was also done in patients with fibroadenomas. The further analysis was done on an external workstation.
The investigated higher mathematic models of DWI (biexponetial ADC and kurtosis) showed in part a higher mathematical precision (96,2%-98,4%) compared to the monoexponetial ADC which is used so far [1-5]. The sensitivity of the higher mathematical models for the differentiation of carcinomas and fibroadenomas lies from 88% to 91%, the specificity from 66% and 83%. The sensitivity and specificity of the monoexponetial ADC are 97% and 75%. Therefore the higher mathematical methods have no diagnostic benefit compared to the so far used monoexponential ADC.
The ASL study showed that contrast agent free perfusion rating can differentiate between invasive ductal carcinomas (88,2 ±39,5 ml/100g/min) of the breast and healthy parenchyma of the breast (24,9 ± 12,7 ml/100g/min). The ASL was not able to make a differentiation between invasive lobular carcinomas of the breast (30,5 ± 4,3 ml/100g/min) and healthy parenchyma of the breast. Functional methods in breast MRI diagnostic have the potential to improve the results of examinations. Higher mathematic models in diffusion weighted imaging have not shown a diagnostic benefit compared to the so far used ADC analysis in diffusion weighted imaging. The ASL Analysis was able to differentiate between invasive ductal carcinomas and normal tissue but not between invasive lobular carcinomas and normal tissue. The results have to be verified in larger studies and have to show their diagnostic benefit.
Quelle:1 Glady G, Victor Ai, John KF, et al. Diffusion-Weighted Magnetic Resonance Imaging of Breast Lesions: First Experiences at 3 T. J Comput Assist Tomogr January/February 2009; Volume 33 Number 1: 63-69

2 Baltzer PAT, Benndorf M, Dietzle M, et al. Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesion. Eur Radiol 2010; 20: 1101-1110

3 Yong Guo, You-Quan Cai, et al. Differentiation of Clinically Benign and Malignant Breast Lesions Using Diffusion-Weighted Imaging. Journal Of Magnetic Resonance Imaging 2002; 16: 172-178

4 Orguc S, Basara I, Coskun T. Diffusion-weighted MR imaging of the breast: comparison of apparent diffusion coefficient values of normal breast tissue with benign and malignant breast lesions. Singapore Med J 2012; 53(11): 737-742

5 Woodhams R, Matsunaga K, Iwabuchi K, et al. Diffusion-Weighted Imaging of Malignant Breast Tumors; The Usefulness of Apparent Diffusion Coefficient (ADC) Value and ADC Map for the Detection of Malignant Breast Tumors and Evaluation of Cancer Extension. J Comput Assist Tomogr September/October 2005; Volume 29 Number 5: 644-649

6 Ahmedin Jemal, et al. Global Cancer Statistics: CA CANCER J CLIN 2011;61:69-90

7 Böcker W, Denk H, Heitz PU, Moch H. Pathologie Elsevier GmbH, Urban & Fischer Verlag 2008, 4. Auflage: 1011-1023

8 King MC, Rowell S, Love SM. Inherited breast and ovarian cancer. What are the risks? What are the choices? JAMA 1993; 269:1975.

9 Struewing JP, Hartge P, Wacholder S, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997; 336:1401

10 Pięta B, et al. Life style and risk of development of breast and ovarian cancer. Annals of Agricultural and Environmental Medicine 2012; Vol. 19; No 3: 379-384

11 McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15:1159

12 Untuch M, Sittek H. Diagnostik und Therapie des Mammakarzinoms; Zuckerschwerdt 2008; 5: 69-76.

13 Lin NU, et al. Management of brain metastases in breast cancer. http://www.uptodate.com/contents/management-of-brain-metastases-in-breast-
cancer?source=search_result&search=breast+cancer+metastasis&selectedTitle=5~150; 2013, March.

14 Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer 1987; 55:61

15 Dawood S, Broglio K, Gonzalez-Angulo AM, et al. Trends in survival over the past two decades among white and black patients with newly diagnosed stage IV breast cancer. J Clin Oncol 2008; 26:4891

16 Interdisziplinäre S3-Leitlinie für Diagnostik, Therapie und Nachsorge des Mammakarzinoms; Leitlinienprogramm Onkologie der AWMF, Deutschen Krebsgesellschaft e.V. und Deutschen Krebshilfe e.V.; 2012; 3.0: 54-62.

17 Heywang-Köbrunner, Schreer I, et al. Bildgebende Mammadiagnostik Untersuchungstechnik, Befundmuster, Differnzialdiagnose und Interventionen. Georg Thieme Verlag 2003, 2.Auflage;19-181

18 Fischer U, Baum F. Pareto-Reihe Radiologie Mamma. Georg Thieme Verlag 2007; 1-24

19 Venkataraman S, et al. Breast-imaging Mammography and ultrasonography: http://www.uptodate.com/contents/breast-imaging-mammography-and-ultrasonography?source=search_result&search=Breast+imaging%3A+Mammography+and+ultrasonography&selectedTitle=1~150

20 DeMartini WB, Ichikawa L, Yankaskas BC, et al. Breast MRI in community practice: equipment and imaging techniques at facilities in the Breast Cancer Surveillance Consortium. J Am Coll Radiol 2010; 7:878

21 Lehman CD, Gatsonis C, Kuhl CK, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 2007; 356:1295

22 Harms SE, Flamig DP, Hesley KL, et al. MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology 1993; 187:493

23 Obenauer S. Sohns C, et al. Impact of Breast Density on Computer-Aided Detection in Full-Field Digital Mammography. Journal of Digital Imaging, Vol 19, No 3, 2006: 258-263

24 Kuhl C, Weigel S, Schrading S, et al. Prospective Multicenter Cohort Study to Refine Management Recommendations for Women et Elevated Familial Risk of Breast Cancer: The EVA Trial. Journal of Clinical Oncology March 2010; Volume 28; Number 9: 1450-1457

25 Mandelson MT, Oestreicher N, Porter PL, White D Finder CA, Taplin SH, White E: Breast density as a predictor of mammographic detection: comparison of interval- and screendetected cancers. J Natl Cancer Inst 92:1081Y1087, 2000

26 American College of Radiology. ACR BI-RADS® Atlas – Mammography. American College of Radiology; 5. Auflage: 3-140.

27 Eberl MM, Fox CH, et al. BI-RADS Classification for Management of Abnormal Mammograms; J Am Board Fam Med 2006; 19:161-164.

28 Breast Imaging Reporting and Data System (BI-RADS) Atlas. 4th Edition. American College of Radiology, Reston, VA, 2003

29 Albert U.-S. et al. Stufe 3 Leitlinie Brustkrebs Früherkennung in Deutschland; Zuckerschwerdt 2008; 1: 68-73.

30 Weishaupt D, Köchli VD, Marincek B. Wie funktioniert MRI? Eine Einführung in Physik und Funktionsweise der Magnetresonanzbildgebung. Springer-Verlag 2009; 6. Auflage:1-201

31 Kauffmann GW, Moser E, Sauer R. Radiologie. Urban & Fischer Verlag Elsevier 2006, 3. Auflage;242-245.

32 Kuhl C, Jost P, Morakkabati N, et al. Enhanced MR imaging of the breast at 3.0T and 1.5T in the same patients; initial experience. Radiology 2006;239:666-676.

33 Petcharunpaisan S, Ramalho J, Castillo M. Arterial spin labeling in neuroimaging. World J Radiol 2010;2:384-398

34 Chou CP, Wu MT, Chang HT, et al. Monitoring breast cancer response to neoadjuvant systemic chemotherapy using parametric contrast-enhanced MRI: a pilot study. Acad Radiol. 2007; 14(5):561-573.

35 Fischer U. Atlas der MR-Mammografie. Hochauflösende Mamma-MRT. Georg Thieme Verlag 2010, 2. Auflage: 42; Abb. 5.15

36 Fischer U. Atlas der MR-Mammografie. Hochauflösende Mamma-MRT. Georg Thieme Verlag 2010, 2. Auflage: 42; Abb. 5.16

37 Slanetz PJ, Chagpar AB, et al. MRI of the breast and emerging technologies. http://www.uptodate.com/contents/mri-of-the-breast-and-emerging-technologies?source=search_result&search=breast+cancer+mri&selectedTitle=1~150; April 2013.
38 Morris EA, Liberman L, Ballon DJ, et al. MRI of occult breast carcinoma in a high-risk population. AJR Am J Roentgenol 2003; 181:619.
39 Tilanus-Linthorst MM, Obdeijn IM, Bartels KC, et al. First experiences in screening women at high risk for breast cancer with MR imaging. Breast Cancer Res Treat 2000; 63:53.
40 Warner E, Plewes DB, Hill KA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 2004; 292:1317.
41 Stoutjesdijk MJ, Boetes C, Jager GJ, et al. Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancer. J Natl Cancer Inst 2001; 93:1095.
42 Seely JM, Nguyen ET, Jaffey J. Breast MRI in the evaluation of locally recurrent or new breast cancer in the postoperative patient: correlation of morphology and enhancement features with the BI-RADS category. Acta Radiol 2007; 48:838
43 DeMartini W, Lehman C. A review of current evidence-based clinical applications for breast magnetic resonance imaging. Top Magn Reson Imaging 2008; 19:143

44 Gareth ED, Nisha K, Yit L, et al. MRI breast screening in high-risk women: cancer detection and survival analysis; Breast Cancer Research and Treatment April 2014

45 Taif SA. Breast Magnetic Resonance Imaging Indications in Current Practice; Asian Pac J Cancer Prev, 15(2), 569-575

46 Kuhl C. The Current Status of Breast MR Imaging; Part I. Choice of Technique, Image Interpretation, Diagnostic Accuracy and Transfer to Clinical Practice. Radiology August 2007; Volume 244; Number 2: 356-378

47 Fischer U, et al. Lehratlas der MR-Mammographie. Georg Thieme Verlag Stuttgart 2000;1 Auflage:9-156.

48 Mann RM, et al. MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: a review of existing literature; Breast Cancer Res Treat. 2008 Jan;107(1)1-14

49 Mann RM, et al. The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res Treat. 2010 Jan; 119(2):415-22

50 Mann RM, Loo CE, Wobbes T, et al. The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast; Breast Cancer Res Treat. 2010 Jan; 119(2):415-422.

51 Fischer U, Zachariae O, Baum F et al.The influence of preoperative MRI of the breasts on recurrence rate in patients with breast cancer. Eur Radiol 2004; 14: 1725-31.

52 Drukteinis JS, et al. MR imaging assessment of the breast after conservation therapy: distinguishing benign from malignant lesions. Radiographics: 2012 Jan-Feb;32(1):219-34.

53 Bauer S, Möller U, et al. G-3 Gutachten: Indikationen zur MRT-Diagnostik und MRT - gestützte Mamma-Biopsie. SEG7 “Methoden- und Produktbewertung“ der MDK-Gemeinschaft beim MDS. 2007 August. http://www.mds-ev.de/media/pdf/B___Reiner-Theisen_-Umsetzung_im_MDK_07-10-09_abgestimmt.pdf

54 Fischer U. Atlas der MR-Mammografie. Hochauflösende Mamma-MRT. Georg Thieme Verlag 2010, 2. Auflage: 42; 217-220

55 Barth V, Herrmann J, Köllner B, et al. Atlas der Mammadiagnostik Mammographie und Sonographie intensiv trainieren. Georg Thieme Verlag 2006, 2.Auflage; 246-257.

56 BfArM. Bundesamt für Arzneimittel und Medizinprodukte, www.bfarm.de . Gadoliniumhaltige Kontrastmittel: Umsetzung des Beschlusses der europäischen Kommission zum Risiko der nephrogenen systemischer Fibrose. Stand Januar 2012.

57 Willicombe M, Cunningham J. Nephrogenic systemic fibrosis: a sufficient reason to avoid gadolinium-based contrast in all patients with renal impairment? Semin Dial 2008;21:140-141

58 Daram SR, Cortese CM, Bastani B. Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: report of a new case with literature review. Am J Kidney Dis 2005;46:754-759

59 Galan A, Cowper SE, Bucala R. Nephrogenic systemic fibrosis (nephrogenic fibrosing dermopathy). Curr Opin Rheumatol 2006;18:614-617

60 Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 2007;242:647-649

61 Kanal M, Tweedle MF. Residual or Retained Gadolinium: Practical Implications for Radiologists and Our Patients; Radiology 2015; 275:630-634.

62 Welk B, McArthur, et al. Association Between Gadolinium Contrast Exposure and the Risk of Parkinsonism. JAMA 2016; 316(1): 96-98.

63 Bleicher AG, Kanal E. Assessment of adverse reaction ratest o a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine. AJR American Journal of Roentgenology 2008; 191 (6):W307-311.

64 LI A, Wong CS, et al. Acute adverse reactions to magnetic resonance contrast media – gadolinium chelates. British Journal of Radiology 2006, 79 (941):368-371.

65 R. B. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen and plants; and on the general existence of active molecules in organic and inorganic bodies. In. Phil Mag; 1928:161-173

66 JL. D. The Brownian movement and stochastic equations. In. Ann Math; 1942:351-369
67 T M. Diffusion-Weighted MR Imaging of the brain. In: Ekholm S WP ed: Springer Verlag Berlin Heidelberg New York; 2005

68 Stejeskal EO. Spin diffusion measurements: spin echos in the presence of time dependent field gradient. In: Tanner JE ed. J Chem Phys; 1965:288-292

69 Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505

70 Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401-407

71 Dorrius MD, Dikstra H, et al. Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis. Eur Radiol. 2014 Nov;24(11):2835-47. doi: 10.1007/s00330-014-3338-z. Epub 2014 Aug 9.

72 Tamura T, Murakami S, Naito K, Yamada T, Fujimoto T, Kikkawa T. Investigation of the optimal b-value to detect breast tumors with diffusion weighted imaging by 1.5-T MRI. Cancer Imaging. 2014;14(1):11. doi:10.1186/1470-7330-14-11.

73 Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 2008;249:891-899
74 Callot V, Bennett E, Decking UK, Balaban RS, Wen H. In vivo study of microcirculation in canine myocardium using the IVIM method. Magn Reson Med 2003;50:531-540

75 Patel J, Sigmund EE, Rusinek H, et al. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010;31:589-600

76 Wirestam R, Borg M, Brockstedt S, et al. Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol 2001;42:123-128

77 Yao L, Sinha U. Imaging the microcirculatory proton fraction of muscle with diffusion-weighted echo-planar imaging. Acad Radiol 2000;7:27-32

78 Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 2011;46:285-291
79 Jensen JH, Helpern JA et al. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010;23:698-710.

80 Jensen JH, Helpern JA,Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53:1432-1440.

81 Masaaki et al. Visualizing Non-Gaussian Diffusion: Clinical Application of q-Space Imaging and Diffusional Kurtosis Imaging oft he Brain and Spine. Magn Reson Med Sci 2012;Vol.11:Nr.4:221-233

82 Martirosian P, Boss A, Schraml C, et al. Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 2010;37 Suppl 1:S52-64

83 Deibler AR, Pollock JM, Kraft RA, et al. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 2008;29:1228-1234

84 Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics 2007;4:346-359

85 Petersen ET, Zimine I, Ho YC, Golay X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 2006;79:688-701

86 Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992;89:212-216

87 Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219-232

88 Pollock JM, Tan H, Kraft RA, et al. Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin N Am 2009;17:315-338

89 Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992;23:37-45

90 Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997;10:237-249

91 Detre JA, Zhang W, Roberts DA, et al. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 1994;7:75-82

92 Pollock JM, Tan H, Kraft RA, Whitlow CT, Burdette JH, Maldjian JA. Arterial Spin Labeled MRI Perfusion Imaging: Clinical Applications. Magnetic resonance imaging clinics of North America. 2009;17(2):315-338. doi:10.1016/j.mric.2009.01.008.

93 Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 2004;51:353-361

94 Robson PM, Madhuranthakam AJ, Dai W, et al. Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling. Magn Reson Med 2009;61:1374-1387
95 de Bazelaire C, Alsop DC, George D, et al. Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res. 208;14(17):5548-5554.

96 Welch, B. L.. The generalization of "Student's" problem when several different population variances are involved. Biometrika 1947 34 (1–2): 28–35.

97 Ruxton GD. The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test. Behavioral Ecology 2006 17: 688–690.

98 Abel U. Bewertung diagnostischer Tests. Hippokrates Verlag, Stuttgart 1993, 216.

99 Youden, W. Index rating for Diagnostic Test: Cancer. 3. 1950, 32–35.

100 Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29-36.

101 Delille JP, Slanetz PJ, Yeh ED, et al. Physiologic changes in breast
magnetic resonance imaging during the menstrual cycle: perfusion
imaging, signal enhancement, and influence of the T1 relaxation time of
breast tissue. Breast J 2005;11:236e41.

102 Wittsack HJ, Lanzman RS, Quentin M, et al. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle. Invest Radiol. 2012 April; 47(4):226-30

103 Heusch P, Wittsack HJ, Kröpil P, et al. Impact of blood flow on diffusioncoefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T. J Magn Reson Imaging. 2013 Jan; 37(1):233-6

104 Makkat S, Luypaert R, Sourbron S, Stadtnik T, De Mey J. Quantification of perfusion and permeability in breast tumors with a deconvolution-based analysis of second-bolus T1-DCE data. J Magn Reson Imaging. 2007;25(6):1159-1167.

105 Brix G, Kiessling F, Lucht R, et al. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med. 2004;52(2):420-429.

106 Vaupel P, Hockel M. Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int J Oncol. 2000;17(5):869-879.

107 Gore JC, Manning HC, Quarles CC, Waddell KW, Yankeelov TE. Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging. 2011;29(5):587-600.

108 Iacconi C, Giannelli M, Marini C, et al. The role of mean diffusività (MD) as a predictive index of the response to chemotherapy in locally advanced breast cancer: a preliminary study. Eur Radiol. 2010;20(2):303-308.

109 DeMartini W, Lehman C, Partridge S. Breast MRI for cancer detection and characterization: a review of evidence-based clinical applications. Acad Radiol. 2008;15(4):408-416.

110 Sedlaczek O, Wiedemann C, et al. Alteration of MR-DWI/ADC before and 24h after induction of chemotherapy in patients with lung cancer. Cancer Imaging. 2014; 14(Suppl 1): P34

111 Demir S, Altinkaya N, et al. Variations in apparant diffusion coefficient values following chemotherapy in pediatric neuroblastoma. Diagn Interv Radiol. 2015 Mar-Apr; 21(2): 184–188.

112 Park SH, Moon WK, Cho N, et al. Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol. 2012 Jan;22(1):18-25. doi: 10.1007/s00330-011-2236-x. Epub 2011 Aug 16.

113 Li SP, Padhani AR, Makris A. Dynamic contrast-enhanced magnetic resonance imaging and blood oxygenation level-dependent magnetic resonance imaging for the assessment of changes in tumor biology with treatment. J Natl Cancer Inst Monogr. 2011;2011(43):103-107.

114 Ah-See ML, Makris A, Taylor NJ, et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2008;14(20):6580-6589.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » Institut für Diagnostische Radiologie
Dokument erstellt am:12.02.2019
Dateien geändert am:12.02.2019
Promotionsantrag am:11.04.2018
Datum der Promotion:11.12.2018
english
Benutzer
Status: Gast
Aktionen