Dokument: Der Einfluss von dosimetrischen und klinischen Faktoren auf die Notwendigkeit künstlicher Ernährung während Radiotherapie von Patienten mit Kopf- und Halstumoren
Titel: | Der Einfluss von dosimetrischen und klinischen Faktoren auf die Notwendigkeit künstlicher Ernährung während Radiotherapie von Patienten mit Kopf- und Halstumoren | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=47653 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20181030-111516-4 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Dr. Geigis, Caroline [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Graf, Dirk [Gutachter] Priv. Doz. Dr. Wagenmann, Martin [Gutachter] | |||||||
Stichwörter: | PEG, Halstumor, Kopftumor, Strahlentherapie, PEG Score, künstliche Ernährung | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibung: | Die Therapie von Tumoren im Kopf- und Halsbereich gestaltet sich schwierig und verursacht häufig Nebenwirkungen wie Muskel- und Schleimhautschäden. Dies kann zur Entwicklung von Schluckstörungen führen. In einigen Fällen sind die Schluckstörungen so stark ausgeprägt, dass der Patient künstlich ernährt werden muss. Das Ziel dieser Studie war es, Faktoren zu detektieren, welche die Wahrscheinlichkeit für eine künstliche Ernährung, bei Dysphagie als Nebenwirkung einer Radiotherapie im Kopf- und Halsbereich, erhöhen. Wir untersuchten einerseits den Einfluss von klinischen Faktoren (Geschlecht, Alter, ECOG Score, BMI, Begleiterkrankungen, Nikotinabusus, Alkoholabusus, TNM Klassifikation, AJCC Tumorstadium, Tumorlokalisation, histologische Art des Tumors, histologische Differenzierung des Tumors, operative Tumorentfernung ja vs. nein, Tracheostoma ja vs. nein, Chemotherapie ja vs. nein, Fraktionierung der Radiotherapie) und andererseits den Einfluss dosimetrischer Faktoren. Wir prüften welchen Einfluss die Bestrahlungsdosis des Musculus constrictor pharyngis superior, der Pharynxhinterwand, der Glandula parotis, der Glandula submandibularis, der Gingivaschleimhaut, der Mundhöhle und des Larynx auf die Entwicklung von Dysphagie hatten. Wir entwickelten vier künstliche Risikovolumina, bestehend aus einem Teil des Pharynx mit einem ein Zentimeter breiten Randsaum, die den M. constrictor pharyngis superior und die Pharynxschleimhaut enthalten. Auch für diese vier Volumina untersuchten wir ob eine höhere Bestrahlungsdosis mit einem erhöhten Risiko für die Entwicklung einer Dysphagie einherging. Als Endpunkt der Studie wurde eine künstliche Ernährung über mehr als vier Tage festgelegt. Die künstliche Ernährung erfolgte in unserem Patientenkollektiv entweder über eine PEG oder parenteral. In der univariaten Analyse der dosimetrischen Faktoren war die Durchschnittsbestrahlungsdosis aller Faktoren, bis auf die Gingivaschleimhaut, signifikant. In der univariaten Analyse der klinischen Faktoren zeigte eine begleitende Chemotherapie, ein ECOG- Score über eins, eine operative Tumorentfernung, die Tumorlokalisation im Oropharynx und ein chronischer Nikotinabusus einen signifikanten Einfluss auf die Entwicklung von Dysphagie. In die multivariate Analyse gingen die Durchschnittsbestrahlungsdosen aller dosimetrischen Faktoren, mit Ausnahme der Gingivaschleimhaut, und die signifikanten klinischen Faktoren ein. Als signifikante Faktoren blieben nach der multivariaten Analyse ein ECOG- Score über eins, eine begleitende Chemotherapie und die Durchschnittsdosis eines der von uns entwickelten künstlichen Risikovolumina, der „Oropharyngeale Hohlraum“, übrig. Auf dem Boden dieser Erkenntnisse entwickelten wir einen Score, mit dem, anhand dieser drei Faktoren, die Wahrscheinlichkeit für eine künstliche Ernährung während der Radiochemotherapie vorhergesagt werden kann. Der Score soll dabei helfen Hochrisikopatienten zu erkennen, die von einer prophylaktischen PEG Anlage profitieren würden. Es sollte berücksichtigt werden, dass die Aussagekraft des PEG Scores eingeschränkt ist, da das untersuchte Patientenkollektiv mit 101 Patienten relativ klein war. Auch war unser Patientenkollektiv sehr heterogen, und die Studie wurde retrospektiv durchgeführt. Es sollte eine weitere Studie durchgeführt werden, um den Score unabhängig zu validieren. | |||||||
Quelle: | 1. Sankaranarayanan, R., et al., Head and neck cancer: a global perspective on epidemiology and prognosis. Anticancer Res, 1998. 18(6B): p. 4779-86.
2. Dimery, I.W. and W.K. Hong, Overview of combined modality therapies for head and neck cancer. J Natl Cancer Inst, 1993. 85(2): p. 95-111. 3. Adelstein, D.J., E.H. Tan, and P. Lavertu, Treatment of head and neck cancer: the role of chemotherapy. Crit Rev Oncol Hematol, 1996. 24(2): p. 97-116. 4. Russo, G., et al., Radiation treatment breaks and ulcerative mucositis in head and neck cancer. Oncologist, 2008. 13(8): p. 886-98. 5. Newman, L.A., et al., Eating and weight changes following chemoradiation therapy for advanced head and neck cancer. Arch Otolaryngol Head Neck Surg, 1998. 124(5): p. 589-92. 6. Ang, K.K., et al., Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol, 2014. 32(27): p. 2940-50. 7. Poulsen, M.G., et al., Predictors of acute grade 4 swallowing toxicity in patients with stages III and IV squamous carcinoma of the head and neck treated with radiotherapy alone. Radiother Oncol, 2008. 87(2): p. 253-9. 8. Chufal, K.S., et al., Analysis of prognostic variables among patients with locally advanced head and neck cancer treated with late chemo-intensification protocol: impact of nodal density and total tumor volume. Jpn J Clin Oncol, 2006. 36(9): p. 537-46. 9. Levendag, P.C., et al., Dysphagia disorders in patients with cancer of the oropharynx are significantly affected by the radiation therapy dose to the superior and middle constrictor muscle: a dose-effect relationship. Radiother Oncol, 2007. 85(1): p. 64-73. 10. Lavertu, P., et al., Aggressive concurrent chemoradiotherapy for squamous cell head and neck cancer: an 8-year single-institution experience. Arch Otolaryngol Head Neck Surg, 1999. 125(2): p. 142-8. 11. Calais, G., et al., Randomized trial of radiation therapy versus concomitant chemotherapy and radiation therapy for advanced-stage oropharynx carcinoma. J Natl Cancer Inst, 1999. 91(24): p. 2081-6. 12. Brizel, D.M., et al., Hyperfractionated irradiation with or without concurrent chemotherapy for locally advanced head and neck cancer. N Engl J Med, 1998. 338(25): p. 1798-804. 13. Brookes, G.B., Nutritional status--a prognostic indicator in head and neck cancer. Otolaryngol Head Neck Surg, 1985. 93(1): p. 69-74. 14. Goodwin, W.J., Jr. and J. Torres, The value of the prognostic nutritional index in the management of patients with advanced carcinoma of the head and neck. Head Neck Surg, 1984. 6(5): p. 932-7. 15. Duncan, W., et al., Adverse effect of treatment gaps in the outcome of radiotherapy for laryngeal cancer. Radiother Oncol, 1996. 41(3): p. 203-7. 16. Robertson, A.G., et al., Effect of gap length and position on results of treatment of cancer of the larynx in Scotland by radiotherapy: a linear quadratic analysis. Radiother Oncol, 1998. 48(2): p. 165-73. 17. Bettany, G.E. and J. Powell-Tuck, Malnutrition: incidence, diagnosis, causes, effects and indications for nutritional support. Eur J Gastroenterol Hepatol, 1995. 7(6): p. 494-500. 18. Pirlich, M., et al., Prevalence of malnutrition in hospitalized medical patients: impact of underlying disease. Dig Dis, 2003. 21(3): p. 245-51. 19. Bese, N.S., J. Hendry, and B. Jeremic, Effects of prolongation of overall treatment time due to unplanned interruptions during radiotherapy of different tumor sites and practical methods for compensation. Int J Radiat Oncol Biol Phys, 2007. 68(3): p. 654-61. 20. Pajak, T.F., et al., Elapsed treatment days--a critical item for radiotherapy quality control review in head and neck trials: RTOG report. Int J Radiat Oncol Biol Phys, 1991. 20(1): p. 13-20. 21. Wang, C.C. and J.T. Efird, Does prolonged treatment course adversely affect local control of carcinoma of the larynx? Int J Radiat Oncol Biol Phys, 1994. 29(4): p. 657-60. 22. Scolapio, J.S., et al., Prophylactic placement of gastrostomy feeding tubes before radiotherapy in patients with head and neck cancer: is it worthwhile? J Clin Gastroenterol, 2001. 33(3): p. 215-7. 23. Lee, J.H., et al., Prophylactic gastrostomy tubes in patients undergoing intensive irradiation for cancer of the head and neck. Arch Otolaryngol Head Neck Surg, 1998. 124(8): p. 871-5. 24. Tyldesley, S., et al., The use of radiologically placed gastrostomy tubes in head and neck cancer patients receiving radiotherapy. Int J Radiat Oncol Biol Phys, 1996. 36(5): p. 1205-9. 25. Beaver, M.E., et al., Predictors of weight loss during radiation therapy. Otolaryngol Head Neck Surg, 2001. 125(6): p. 645-8. 26. Dimulescu, I.I., et al., Characterization of RNA in Cytologic Samples Preserved in a Methanol-Based Collection Solution. Mol Diagn, 1998. 3(2): p. 67-71. 27. Takwoingi, Y.M. and J.H. Demspter, A simple technique for nasogastric feeding tube insertion. Eur Arch Otorhinolaryngol, 2005. 262(5): p. 423-5. 28. Mangar, S., et al., Evaluating predictive factors for determining enteral nutrition in patients receiving radical radiotherapy for head and neck cancer: a retrospective review. Radiother Oncol, 2006. 78(2): p. 152-8. 29. Baredes, S., D. Behin, and E. Deitch, Percutaneous endoscopic gastrostomy tube feeding in patients with head and neck cancer. Ear Nose Throat J, 2004. 83(6): p. 417-9. 30. Gauderer, M.W., J.L. Ponsky, and R.J. Izant, Jr., Gastrostomy without laparotomy: a percutaneous endoscopic technique. J Pediatr Surg, 1980. 15(6): p. 872-5. 31. Nguyen, N.P., et al., Safety and effectiveness of prophylactic gastrostomy tubes for head and neck cancer patients undergoing chemoradiation. Surg Oncol, 2006. 15(4): p. 199-203. 32. Zuercher, B.F., P. Grosjean, and P. Monnier, Percutaneous endoscopic gastrostomy in head and neck cancer patients: indications, techniques, complications and results. Eur Arch Otorhinolaryngol, 2010. 33. Stayner, J.L., et al., Feeding tube placement: errors and complications. Nutr Clin Pract, 2012. 27(6): p. 738-48. 34. Vijayakrishnan, R., D. Adhikari, and C.P. Anand, Recurrent tense pneumoperitoneum due to air influx via abdominal wall stoma of a PEG tube. World J Radiol, 2010. 2(7): p. 280-2. 35. Teichgraber, U.K., et al., Outcome analysis in 3,160 implantations of radiologically guided placements of totally implantable central venous port systems. Eur Radiol, 2011. 36. Sakamoto, N., et al., Ultrasound-Guided Radiological Placement of Central Venous Port via the Subclavian Vein: A Retrospective Analysis of 500 Cases at a Single Institute. Cardiovasc Intervent Radiol, 2010. 37. Cavanna, L., et al., Ultrasound-guided central venous catheterization in cancer patients improves the success rate of cannulation and reduces mechanical complications: a prospective observational study of 1,978 consecutive catheterizations. World J Surg Oncol, 2010. 8: p. 91. 38. Groos, S., G. Hunefeld, and L. Luciano, Parenteral versus enteral nutrition: morphological changes in human adult intestinal mucosa. J Submicrosc Cytol Pathol, 1996. 28(1): p. 61-74. 39. Pironi, L., et al., Morphologic and cytoproliferative patterns of duodenal mucosa in two patients after long-term total parenteral nutrition: changes with oral refeeding and relation to intestinal resection. JPEN J Parenter Enteral Nutr, 1994. 18(4): p. 351-4. 40. Jeejeebhoy, K.N., Total parenteral nutrition: potion or poison? Am J Clin Nutr, 2001. 74(2): p. 160-3. 41. Christianen, M.E., et al., Predictive modelling for swallowing dysfunction after primary (chemo)radiation: results of a prospective observational study. Radiother Oncol, 2012. 105(1): p. 107-14. 42. P Doornaert, B.J.S., D.H.F. Rietveld, C.R. Leemans, J.A. Langendijk, The mean radiation dose in pharyngheal structures is a strong predictor of acute and persistent swallowing dysfunction and quality of life in head and neck radiotherapy. 49 gh Annual ASTRO Meeting, 2007. 43. Oken, M.M., et al., Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol, 1982. 5(6): p. 649-55. 44. Schweinfurth, J.M., G.N. Boger, and P.J. Feustel, Preoperative risk assessment for gastrostomy tube placement in head and neck cancer patients. Head Neck, 2001. 23(5): p. 376-82. 45. Mekhail, T.M., et al., Enteral nutrition during the treatment of head and neck carcinoma: is a percutaneous endoscopic gastrostomy tube preferable to a nasogastric tube? Cancer, 2001. 91(9): p. 1785-90. 46. Clavel, S., et al., Enteral Feeding During Chemoradiotherapy for Advanced Head-and-Neck Cancer: A Single-Institution Experience Using a Reactive Approach. Int J Radiat Oncol Biol Phys, 2010. 47. Gardine, R.L., et al., Predicting the need for prolonged enteral supplementation in the patient with head and neck cancer. Am J Surg, 1988. 156(1): p. 63-5. 48. Konski, A.A., et al., Disadvantage of men living alone participating in Radiation Therapy Oncology Group head and neck trials. J Clin Oncol, 2006. 24(25): p. 4177-83. 49. Cheng, S.S., et al., Variables associated with feeding tube placement in head and neck cancer. Arch Otolaryngol Head Neck Surg, 2006. 132(6): p. 655-61. 50. Sonis, S.T., Regimen-related gastrointestinal toxicities in cancer patients. Curr Opin Support Palliat Care, 2010. 4(1): p. 26-30. 51. Piquet, M.A., et al., Early nutritional intervention in oropharyngeal cancer patients undergoing radiotherapy. Support Care Cancer, 2002. 10(6): p. 502-4. 52. Clavel, S., et al., The role of computed tomography in the management of the neck after chemoradiotherapy in patients with head-and-neck cancer. Int J Radiat Oncol Biol Phys, 2012. 82(2): p. 567-73. 53. Munshi, A., et al., Weight loss during radiotherapy for head and neck malignancies: what factors impact it? Nutr Cancer, 2003. 47(2): p. 136-40. 54. Mills, E., et al., Smoking cessation reduces postoperative complications: a systematic review and meta-analysis. Am J Med, 2011. 124(2): p. 144-154 e8. 55. Campos, A.C., M. Butters, and M.M. Meguid, Home enteral nutrition via gastrostomy in advanced head and neck cancer patients. Head Neck, 1990. 12(2): p. 137-42. 56. Murray, K.A. and L.A. Brzozowski, Swallowing in patients with tracheotomies. AACN Clin Issues, 1998. 9(3): p. 416-26; quiz 456-8. 57. Adelstein, D.J., et al., Maximizing local control and organ preservation in stage IV squamous cell head and neck cancer With hyperfractionated radiation and concurrent chemotherapy. J Clin Oncol, 2002. 20(5): p. 1405-10. 58. Calais, G., et al., [Stage III and IV cancers of the oropharynx: results of a randomized study of Gortec comparing radiotherapy alone with concomitant chemotherapy]. Bull Cancer, 2000. 87 Spec No: p. 48-53. 59. Jensen, K., K. Lambertsen, and C. Grau, Late swallowing dysfunction and dysphagia after radiotherapy for pharynx cancer: frequency, intensity and correlation with dose and volume parameters. Radiother Oncol, 2007. 85(1): p. 74-82. 60. Dragovic, J., et al., Accelerated fractionation radiotherapy and concomitant chemotherapy in patients with stage IV inoperable head and neck cancer. Cancer, 1995. 76(9): p. 1655-61. 61. Bhide, S.A., et al., Characteristics of response of oral and pharyngeal mucosa in patients receiving chemo-IMRT for head and neck cancer using hypofractionated accelerated radiotherapy. Radiother Oncol, 2010. 97(1): p. 86-91. 62. Caudell, J.J., et al., Dosimetric factors associated with long-term dysphagia after definitive radiotherapy for squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys, 2010. 76(2): p. 403-9. 63. Teguh, D.N., et al., Treatment techniques and site considerations regarding dysphagia-related quality of life in cancer of the oropharynx and nasopharynx. Int J Radiat Oncol Biol Phys, 2008. 72(4): p. 1119-27. 64. Donaldson, S.S., Nutritional consequences of radiotherapy. Cancer Res, 1977. 37(7 Pt 2): p. 2407-13. 65. Litton, W.B. and J.R. Leonard, Aspiration after partial laryngectomy: cineradiographic studies. Laryngoscope, 1969. 79(5): p. 887-908. 66. Lazarus, C.L., et al., Swallow recovery in an oral cancer patient following surgery, radiotherapy, and hyperthermia. Head Neck, 1994. 16(3): p. 259-65. 67. Eisbruch, A., et al., Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int J Radiat Oncol Biol Phys, 2004. 60(5): p. 1425-39. 68. Horiot, J.C., et al., Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC cooperative group of radiotherapy. Radiother Oncol, 1992. 25(4): p. 231-41. 69. Fietkau, R., et al., [Simultaneous radiotherapy and chemotherapy with cisplatin and 5-fluorouracil in advanced head and neck tumors]. Strahlenther Onkol, 1991. 167(12): p. 693-700. 70. V. G. Budach, M.S., W. Budach, M. Baumann, D. Geismar, G. Grabenbauer, I. Lammert, K. Jahnke, P. Wust and K.-D. Wernecke, Accelerated hyperfractionated chemoradiation (C-HART) plus 5-FU/MMC is superior to HART for inoperable locally advanced head and neck cancer. Final results of the German ARO 95–06 Multicentre Trial, in ournal of Clinical Oncology. 2004. 71. Matuschek, C., et al., Feasibility of 6-month maintenance cetuximab after adjuvant concurrent chemoradiation plus cetuximab in squamous cell carcinoma of the head and neck. Strahlenther Onkol, 2013. 189(8): p. 625-31. 72. Forastiere, A.A., et al., Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med, 2003. 349(22): p. 2091-8. 73. Feng, F.Y., et al., Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys, 2007. 68(5): p. 1289-98. 74. Caglar, H.B., et al., Dose to larynx predicts for swallowing complications after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys, 2008. 72(4): p. 1110-8. 75. Langendijk, J.A., et al., A predictive model for swallowing dysfunction after curative radiotherapy in head and neck cancer. Radiother Oncol, 2009. 90(2): p. 189-95. 76. McLaughlin, B.T., et al., Management of patients treated with chemoradiotherapy for head and neck cancer without prophylactic feeding tubes: the University of Pittsburgh experience. Laryngoscope, 2010. 120(1): p. 71-5. 77. Bhide, S.A., et al., Correlation between dose to the pharyngeal constrictors and patient quality of life and late dysphagia following chemo-IMRT for head and neck cancer. Radiother Oncol, 2009. 93(3): p. 539-44. 78. Dirix, P., et al., Dysphagia after chemoradiotherapy for head-and-neck squamous cell carcinoma: dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys, 2009. 75(2): p. 385-92. 79. Brouwer, C.L., et al., The effects of computed tomography image characteristics and knot spacing on the spatial accuracy of B-spline deformable image registration in the head and neck geometry. Radiat Oncol, 2014. 9: p. 169. 80. Michael Schünke, E.S., Udo Schulte, Markus Voll, Karl Wsker, ed. Prometeus Lernatlas der Anatomie Hals und Innere Organe. 2005 ed. Prometeus Lernatlas der Anatomie Hals und Innere Organe. Vol. 1. 2005, Georg Tieme Verlag KG: Stuttgart. 371. 81. Donaldson, S.S. and R.A. Lenon, Alterations of nutritional status: impact of chemotherapy and radiation therapy. Cancer, 1979. 43(5 Suppl): p. 2036-52. 82. Mittal, B.B., et al., Swallowing dysfunction--preventative and rehabilitation strategies in patients with head-and-neck cancers treated with surgery, radiotherapy, and chemotherapy: a critical review. Int J Radiat Oncol Biol Phys, 2003. 57(5): p. 1219-30. 83. Tarnawski, R., et al., How fast is repopulation of tumor cells during the treatment gap? Int J Radiat Oncol Biol Phys, 2002. 54(1): p. 229-36. 84. Bliss, D.Z., et al., Acquisition of Clostridium difficile and Clostridium difficile-associated diarrhea in hospitalized patients receiving tube feeding. Ann Intern Med, 1998. 129(12): p. 1012-9. 85. Riera, L., et al., Percutaneous endoscopic gastrostomy in head and neck cancer patients. ORL J Otorhinolaryngol Relat Spec, 2002. 64(1): p. 32-4. 86. Kulbersh, B.D., et al., Pretreatment, preoperative swallowing exercises may improve dysphagia quality of life. Laryngoscope, 2006. 116(6): p. 883-6. 87. Brookes, G.B., Nutritional status in head and neck cancer: observations and implications. Clin Otolaryngol Allied Sci, 1983. 8(3): p. 211-20. 88. Wopken, K., et al., Development of a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck cancer. Radiother Oncol, 2014. 113(1): p. 95-101. 89. Brouwer, C.L., et al., Differences in delineation guidelines for head and neck cancer result in inconsistent reported dose and corresponding NTCP. Radiother Oncol, 2014. 111(1): p. 148-52. 90. Eisbruch, A., et al., Can IMRT or brachytherapy reduce dysphagia associated with chemoradiotherapy of head and neck cancer? The Michigan and Rotterdam experiences. Int J Radiat Oncol Biol Phys, 2007. 69(2 Suppl): p. S40-2. 91. Christianen, M.E., et al., Swallowing sparing intensity modulated radiotherapy (SW-IMRT) in head and neck cancer: Clinical validation according to the model-based approach. Radiother Oncol, 2016. 118(2): p. 298-303. 92. Mullen, J.L., et al., Implications of malnutrition in the surgical patient. Arch Surg, 1979. 114(2): p. 121-5. 93. Pauloski, B.R., et al., Relationship between swallow motility disorders on videofluorography and oral intake in patients treated for head and neck cancer with radiotherapy with or without chemotherapy. Head Neck, 2006. 28(12): p. 1069-76. 94. Eisbruch, A., et al., Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys, 2001. 50(3): p. 695-704. 95. Maes, A., et al., Preservation of parotid function with uncomplicated conformal radiotherapy. Radiother Oncol, 2002. 63(2): p. 203-11. 96. van den Broek, G.B., et al., Pretreatment probability model for predicting outcome after intraarterial chemoradiation for advanced head and neck carcinoma. Cancer, 2004. 101(8): p. 1809-17. 97. Rugg, T., M.I. Saunders, and S. Dische, Smoking and mucosal reactions to radiotherapy. Br J Radiol, 1990. 63(751): p. 554-6. 98. Aguilar, N.V., M.L. Olson, and D.P. Shedd, Rehabilitation of deglutition problems in patients with head and neck cancer. Am J Surg, 1979. 138(4): p. 501-7. 99. Adelstein, D.J., et al., A phase III randomized trial comparing concurrent chemotherapy and radiotherapy with radiotherapy alone in resectable stage III and IV squamous cell head and neck cancer: preliminary results. Head Neck, 1997. 19(7): p. 567-75. 100. Al-Sarraf, M., et al., Concurrent radiotherapy and chemotherapy with cisplatin in inoperable squamous cell carcinoma of the head and neck. An RTOG Study. Cancer, 1987. 59(2): p. 259-65. 101. van der Laan, H.P., et al., Acute symptoms during the course of head and neck radiotherapy or chemoradiation are strong predictors of late dysphagia. Radiother Oncol, 2015. 115(1): p. 56-62. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 30.10.2018 | |||||||
Dateien geändert am: | 30.10.2018 | |||||||
Promotionsantrag am: | 11.11.2016 | |||||||
Datum der Promotion: | 16.10.2018 |