Dokument: ACGH detektiert genomische Alterationen des intrahepatischen Cholangiokarzinoms sowie der korrespondierenden Lymphknotenmetastasen und identifiziert eine Subklasse mit signifikanter Korrelation zum Überleben
Titel: | ACGH detektiert genomische Alterationen des intrahepatischen Cholangiokarzinoms sowie der korrespondierenden Lymphknotenmetastasen und identifiziert eine Subklasse mit signifikanter Korrelation zum Überleben | |||||||
Weiterer Titel: | ACGH detects distinct genomic alterations of primary intrahepatic cholangiocarcinomas and matched lymph node metastases and identifies a poor prognosis subclass | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=47472 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20181010-131343-4 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Dr. med. Jansen, Ruben [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | PD Dr. med. Lachenmayer, Anja [Gutachter] Prof. Dr. Dirk Graf [Gutachter] | |||||||
Stichwörter: | Intrahepatisches cholangiozelluläres Karzinom | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Das intrahepatische cholangiozelluläre Karzinom (ICC) ist der zweithäufigste maligne primäre Lebertumor mit einer weltweit zunehmenden Inzidenz [2, 3]. Obwohl das Vorkommen von Lymphknotenmetastasen (LKM) bereits als negativer Prädikator für das Gesamtüberleben identifiziert werden konnte, sind die den Primärtumoren und LKM zugrundeliegenden genetischen Alterationen noch weitestgehend unverstanden [4]. In dieser Arbeit wurden mittels der komparativen genomischen Hybridisierung auf DNA-Microarrays (aCGH) 37 primäre intrahepatische ICCs und 14 korrespondierende LKM analysiert. Insgesamt wurden 60 Patienten mit ICC in diese Studie eingeschlossen, um relevante histo-pathologische und klinische Daten zu analysieren und mit den Ergebnissen zu korrelieren. Die aCGH Analyse aller Proben bestätigte die bereits bekannten Kopienzahlalterationen (Copy Number Alterations, CNAs) für das ICC und identifizierte zudem bisher nicht beschriebene Zugewinne auf Chromosom 19q. N1 Primärtumore zeigten insgesamt mehr CNAs und exklusive Zugewinne auf den Chromosomen 3p, 4q, 5p und 13q sowie Verlusten auf 17p und 20p im Vergleich zu den N0 Primärtumoren. In der gepaarten Analyse hatte ein Großteil der LKM (86%) die gleichen CNAs wie der korrespondierende Primärtumor, jedoch zeigten 79% der LKM auch isolierte Zugewinne auf (12q14 (36%); 1p13, 2p23, 7p22, 7q11, 11q12, 13q13 und 14q12 (>20%)). Die Clusteranalyse der Primärtumore konnte 2 unterschiedliche Gruppen identifizieren. Cluster B zeichnete sich durch eine hohe Anzahl an CNAs aus und zeigte eine signifikante Korrelation zu einer schlechten Tumordifferenzierung (G3/4) sowie ein signifikant schlechteres Überleben. Die Mehrzahl der Primärtumore clusterte bei der Analyse aller Tumore aufgrund der großen Ähnlichkeit der CNAs mit ihren korrespondierenden LKM ohne signifikante Unterschiede zwischen den untersuchten Paaren. TP53 und KRAS Mutationen konnten in 19% bzw. 6% der N1 Primärtumore und LKM detektiert werden. Gene, die in den neuen Zugewinnen und Verlusten der N1 Primärtumore und der LKM lagen, waren in wichtige Karzinom-assoziierte Signalwege involviert. Rauchen, Carbohydrat-Antigen 19-9 (CA 19-9) Serumlevel, Tumorstadium, mikrovaskuläre- und Perineuralscheideninvasion und R1-Resektion waren signifikant mit dem Lymphknotenstatus korreliert, während der Lymphknotenstatus, die R1-Resektion, eine schlechte Tumordifferenzierung (G3/4) signifikant mit einem schlechten Überleben korrelierten. Die aCGH Analyse der ICC Primärtumore und LKM identifizierte eindeutige genetische Unterschiede zwischen N0 und N1 Primärtumoren, wohingegen die N1 Primärtumore und ihre korrespondierenden LKM eine große Ähnlichkeit mit jedoch einigen exklusiven Zugewinnen in den Metastasen aufwiesen. Eine neue Subklasse an Tumoren zeigte eine signifikante Korrelation zu schlechter Tumordifferenzierung und schlechterem Überleben. Die in den alterierten Regionen lokalisierten Gene könnten möglicherweise für den Prozess der Metastasierung und der Tumorprogression ursächlich sein und stellen somit potentielle Zielstrukturen für eine zielgerichtete Krebstherapie dar.Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver malignancy with increasing incidence worldwide [2, 3]. While the occurrence of lymph node metastases (LNM) has been identified as a prognostic factor [4], genetic alterations in metastases and matched primary tumors have not been analyzed yet. Whole genome array comparative genomic hybridization (aCGH) was performed in 37 primary ICCs and 14 matched LNM. Sixty patients were studied for correlation of clinical and histopathological data. ACGH of all primary tumors confirmed known copy number alterations (CNAs) in ICC and identified to date undescribed gains in 19q. N1 tumors had more CNAs and harbored exclusive gains (3p, 4q, 5p, 13q) and losses (17p and 20p) compared to N0 tumors. LNM shared most of the CNAs with their matched primary tumor (86%), but 79% acquired new isolated gains (12q14 (36%); 1p13, 2p23, 7p22, 7q11, 11q12, 13q13 and 14q12 (>20%)). Unsupervised clustering revealed 2 significantly different groups. Cluster B was characterized by a high amount of the CNAs and was significantly associated to poor differentiation and worse survival. The majority of the primary tumors clustered with their matched LNM when analyzed together due to the high similarity of the CNAs. TP53 and KRAS occurred in 19% of tumors and in 6% of metastases. Pathway analyses revealed that genes located in the altered regions of N1 tumors and LNM were involved in cancer-associated pathways. Several clinical factors like advanced tumor stage, microvascular/perineural invasion, R1-resection, smoking and high carbohydrat-antigen 19-9 (CA-19-9) level were significantly correlated to the occurrence of LNM, while N1-status, R1-resection, and poor tumor differentiation were significantly correlated to survival. ACGH identified clear differences between N0 and N1 tumors, while N1 tumors and their LNM displayed great similarity with exclusive gains in the metastases. A novel cluster with a high amount of CNAs and poor tumor differentiation was significantly correlated to poor survival. Genes located in the altered regions are most likely involved in important cancer associated signaling pathways and might represent potential therapeutic targets for anti-tumoral therapy. | |||||||
Quelle: | 1. Jansen R, Moehlendick B, Bartenhagen C, Toth C, Lehwald N, Stoecklein NH, et al. ACGH detects distinct genomic alterations of primary intrahepatic cholangiocarcinomas and matched lymph node metastases and identifies a poor prognosis subclass. Sci Rep. 2018;8(1):10637. doi: 10.1038/s41598-018-28941-6. PubMed PMID: 30006612; PubMed Central PMCID: PMCPMC6045619.
2. Blechacz BR, Gores GJ. Cholangiocarcinoma. Clinics in liver disease. 2008;12(1):131-50, ix. doi: 10.1016/j.cld.2007.11.003. PubMed PMID: 18242501.
3. DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Annals of surgery. 2007;245(5):755-62. doi: 10.1097/01.sla.0000251366.62632.d3. PubMed PMID: 17457168; PubMed Central PMCID: PMC1877058.
4. de Jong MC, Nathan H, Sotiropoulos GC, Paul A, Alexandrescu S, Marques H, et al. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011;29(23):3140-5. doi: 10.1200/JCO.2011.35.6519. PubMed PMID: 21730269.
5. Vauthey JN, Blumgart LH. Recent advances in the management of cholangiocarcinomas. Seminars in liver disease. 1994;14(2):109-14. doi: 10.1055/s-2007-1007302. PubMed PMID: 8047893.
6. Blechacz B, Komuta M, Roskams T, Gores GJ. Clinical diagnosis and staging of cholangiocarcinoma. Nature reviews Gastroenterology & hepatology. 2011;8(9):512-22. doi: 10.1038/nrgastro.2011.131. PubMed PMID: 21808282; PubMed Central PMCID: PMC3331791.
7. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145(6):1215-29. doi: 10.1053/j.gastro.2013.10.013. PubMed PMID: 24140396.
8. Razumilava N, Gores GJ. Classification, diagnosis, and management of cholangiocarcinoma. Clin Gastroenterol Hepatol. 2013;11(1):13-21 e1; quiz e3-4. doi: 10.1016/j.cgh.2012.09.009. PubMed PMID: 22982100; PubMed Central PMCID: PMC3596004.
9. Yang JD, Kim B, Sanderson SO, Sauver JS, Yawn BP, Larson JJ, et al. Biliary tract cancers in Olmsted County, Minnesota, 1976-2008. Am J Gastroenterol. 2012;107(8):1256-62. doi: 10.1038/ajg.2012.173. PubMed PMID: 22751468; PubMed Central PMCID: PMCPMC3654834.
10. Khan SA, Emadossadaty S, Ladep NG, Thomas HC, Elliott P, Taylor-Robinson SD, et al. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? Journal of hepatology. 2012;56(4):848-54. doi: 10.1016/j.jhep.2011.11.015. PubMed PMID: 22173164.
11. Institut RK. Papillary Carcinoma Associated with Graves Disease. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2016;38(5):554-8. doi: 10.3881/j.issn.1000-503X.2016.05.011. PubMed PMID: 27825413. 99. Ashturkar AV, Pathak GS, Deshmukh SD, Pandave HT. Factors predicting the axillary lymph node metastasis in breast cancer: is axillary node clearance indicated in every breast cancer patient?: factors predicting the axillary lymphnode metastases in breast cancer. Indian J Surg. 2011;73(5):331-5. doi: 10.1007/s12262-011-0315-5. PubMed PMID: 23024536; PubMed Central PMCID: PMCPMC3208716. 100. Amini N, Ejaz A, Spolverato G, Maithel SK, Kim Y, Pawlik TM. Management of lymph nodes during resection of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: a systematic review. J Gastrointest Surg. 2014;18(12):2136-48. doi: 10.1007/s11605-014-2667-1. PubMed PMID: 25300798. 101. Nathan H, Aloia TA, Vauthey JN, Abdalla EK, Zhu AX, Schulick RD, et al. A proposed staging system for intrahepatic cholangiocarcinoma. Annals of surgical oncology. 2009;16(1):14-22. doi: 10.1245/s10434-008-0180-z. PubMed PMID: 18987916. 102. Nathan H, Mentha G, Marques HP, Capussotti L, Majno P, Aldrighetti L, et al. Comparative performances of staging systems for early hepatocellular carcinoma. HPB (Oxford). 2009;11(5):382-90. doi: 10.1111/j.1477-2574.2009.00070.x. PubMed PMID: 19768142; PubMed Central PMCID: PMCPMC2742607. 103. Lu WQ, Qiu JL, Huang ZL, Liu HY. Enhanced circulating transforming growth factor beta 1 is causally associated with an increased risk of hepatocellular carcinoma: a mendelian randomization meta-analysis. Oncotarget. 2016. doi: 10.18632/oncotarget.13218. PubMed PMID: 27835897. 104. Lestou VS, Lomax BL, Barrett IJ, Kalousek DK. Screening of human placentas for chromosomal mosaicism using comparative genomic hybridization. Teratology. 1999;59(5):325-30. doi: 10.1002/(SICI)1096-9926(199905)59:5<325::AID-TERA3>3.0.CO;2-N. PubMed PMID: 10332958. 105. Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, et al. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes, chromosomes & cancer. 1994;10(4):231-43. PubMed PMID: 7522536. 106. Chen J, Fu L, Zhang LY, Kwong DL, Yan L, Guan XY. Tumor suppressor genes on frequently deleted chromosome 3p in nasopharyngeal carcinoma. Chin J Cancer. 2012;31(5):215-22. doi: 10.5732/cjc.011.10364. PubMed PMID: 22360856; PubMed Central PMCID: PMC3777521. 107. Whang-Peng J. 3p deletion and small cell lung carcinoma. Mayo Clin Proc. 1989;64(2):256-60. PubMed PMID: 2537919. 108. Zhang HK, Wang HY, Xia JC. [Cytogenetic and molecular genetic alterations on chromosome 4q in human hepatocellular carcinoma]. Ai Zheng. 2008;27(9):998-1005. PubMed PMID: 18799044. 109. Shiraishi K, Kusano N, Okita S, Oga A, Okita K, Sasaki K. Genetic aberrations detected by comparative genomic hybridization in biliary tract cancers. Oncology. 1999;57(1):42-9. doi: 11999. PubMed PMID: 10394124. 110. Savelieva E, Belair CD, Newton MA, DeVries S, Gray JW, Waldman F, et al. 20q gain associates with immortalization: 20q13.2 amplification correlates with genome instability in human papillomavirus 16 E7 transformed human uroepithelial cells. Oncogene. 1997;14(5):551-60. doi: 10.1038/sj.onc.1200868. PubMed PMID: 9053853. 111. Fukushige S, Waldman FM, Kimura M, Abe T, Furukawa T, Sunamura M, et al. Frequent gain of copy number on the long arm of chromosome 20 in human pancreatic adenocarcinoma. Genes, chromosomes & cancer. 1997;19(3):161-9. PubMed PMID: 9218997. 112. Koo SH, Kwon KC, Ihm CH, Jeon YM, Park JW, Sul CK. Detection of genetic alterations in bladder tumors by comparative genomic hybridization and cytogenetic analysis. Cancer genetics and cytogenetics. 1999;110(2):87-93. PubMed PMID: 10214355. 113. Voorter C, Joos S, Bringuier PP, Vallinga M, Poddighe P, Schalken J, et al. Detection of chromosomal imbalances in transitional cell carcinoma of the bladder by comparative genomic hybridization. The American journal of pathology. 1995;146(6):1341-54. PubMed PMID: 7778674; PubMed Central PMCID: PMC1870895. 114. Liu B, Lu Y, Li J, Liu Y, Liu J, Wang W. Leukemia inhibitory factor promotes tumor growth and metastasis in human osteosarcoma via activating STAT3. APMIS. 2015;123(10):837-46. doi: 10.1111/apm.12427. PubMed PMID: 26271643. 115. Morton SD, Cadamuro M, Brivio S, Vismara M, Stecca T, Massani M, et al. Leukemia inhibitory factor protects cholangiocarcinoma cells from drug-induced apoptosis via a PI3K/AKT-dependent Mcl-1 activation. Oncotarget. 2015;6(28):26052-64. doi: 10.18632/oncotarget.4482. PubMed PMID: 26296968; PubMed Central PMCID: PMCPMC4694885. 116. Stajduhar E, Sedic M, Lenicek T, Radulovic P, Kerenji A, Kruslin B, et al. Expression of growth hormone receptor, plakoglobin and NEDD9 protein in association with tumour progression and metastasis in human breast cancer. Tumour Biol. 2014;35(7):6425-34. doi: 10.1007/s13277-014-1827-y. PubMed PMID: 24676793. 117. Kallioniemi A, Kallioniemi OP, Citro G, Sauter G, DeVries S, Kerschmann R, et al. Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization. Genes, chromosomes & cancer. 1995;12(3):213-9. PubMed PMID: 7536461. 118. Shinomiya T, Mori T, Ariyama Y, Sakabe T, Fukuda Y, Murakami Y, et al. Comparative genomic hybridization of squamous cell carcinoma of the esophagus: the possible involvement of the DPI gene in the 13q34 amplicon. Genes, chromosomes & cancer. 1999;24(4):337-44. PubMed PMID: 10092132. 119. Weber RG, Sabel M, Reifenberger J, Sommer C, Oberstrass J, Reifenberger G, et al. Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene. 1996;13(5):983-94. PubMed PMID: 8806688. 120. Rijken AM, Hu J, Perlman EJ, Morsberger LA, Long P, Kern SE, et al. Genomic alterations in distal bile duct carcinoma by comparative genomic hybridization and karyotype analysis. Genes, chromosomes & cancer. 1999;26(3):185-91. PubMed PMID: 10502315. 121. Jooss K, Lam EW, Bybee A, Girling R, Muller R, La Thangue NB. Proto-oncogenic properties of the DP family of proteins. Oncogene. 1995;10(8):1529-36. PubMed PMID: 7731707. 122. Qian BZ, Zhang H, Li J, He T, Yeo EJ, Soong DY, et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med. 2015;212(9):1433-48. doi: 10.1084/jem.20141555. PubMed PMID: 26261265; PubMed Central PMCID: PMC4548055. 123. Hoffmann AC, Goekkurt E, Danenberg PV, Lehmann S, Ehninger G, Aust DE, et al. EGFR, FLT1 and heparanase as markers identifying patients at risk of short survival in cholangiocarcinoma. PloS one. 2013;8(5):e64186. doi: 10.1371/journal.pone.0064186. PubMed PMID: 23704979; PubMed Central PMCID: PMCPMC3660514. 124. Powell E, Piwnica-Worms D, Piwnica-Worms H. Contribution of p53 to metastasis. Cancer Discov. 2014;4(4):405-14. doi: 10.1158/2159-8290.CD-13-0136. PubMed PMID: 24658082; PubMed Central PMCID: PMCPMC4063123. 125. Rabjerg M, Bjerregaard H, Halekoh U, Jensen BL, Walter S, Marcussen N. Molecular characterization of clear cell renal cell carcinoma identifies CSNK2A1, SPP1 and DEFB1 as promising novel prognostic markers. APMIS. 2016;124(5):372-83. doi: 10.1111/apm.12519. PubMed PMID: 26876164. 126. Orchel J, Witek L, Kimsa M, Strzalka-Mrozik B, Kimsa M, Olejek A, et al. Expression patterns of kinin-dependent genes in endometrial cancer. Int J Gynecol Cancer. 2012;22(6):937-44. doi: 10.1097/IGC.0b013e318259d8da. PubMed PMID: 22706224. 127. Guerrero-Preston R, Michailidi C, Marchionni L, Pickering CR, Frederick MJ, Myers JN, et al. Key tumor suppressor genes inactivated by "greater promoter" methylation and somatic mutations in head and neck cancer. Epigenetics. 2014;9(7):1031-46. doi: 10.4161/epi.29025. PubMed PMID: 24786473; PubMed Central PMCID: PMCPMC4143405. 128. Korzeniewski N, Hohenfellner M, Duensing S. CAND1 promotes PLK4-mediated centriole overduplication and is frequently disrupted in prostate cancer. Neoplasia. 2012;14(9):799-806. PubMed PMID: 23019411; PubMed Central PMCID: PMC3459275. 129. Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K, et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis. 2010;13(4):356-61. doi: 10.1038/pcan.2010.32. PubMed PMID: 20820187. 130. Liu S, Feng P. MiR-203 Determines Poor Outcome and Suppresses Tumor Growth by Targeting TBK1 in Osteosarcoma. Cell Physiol Biochem. 2015;37(5):1956-66. doi: 10.1159/000438556. PubMed PMID: 26584294. 131. Bai LY, Chiu CF, Kapuriya NP, Shieh TM, Tsai YC, Wu CY, et al. BX795, a TBK1 inhibitor, exhibits antitumor activity in human oral squamous cell carcinoma through apoptosis induction and mitotic phase arrest. Eur J Pharmacol. 2015. doi: 10.1016/j.ejphar.2015.11.032. PubMed PMID: 26607461. 132. Coindre JM, Pedeutour F, Aurias A. Well-differentiated and dedifferentiated liposarcomas. Virchows Arch. 2010;456(2):167-79. doi: 10.1007/s00428-009-0815-x. PubMed PMID: 19688222. 133. Hameed M. Pathology and genetics of adipocytic tumors. Cytogenet Genome Res. 2007;118(2-4):138-47. doi: 10.1159/000108294. PubMed PMID: 18000364. 134. Toledo F, Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007;39(7-8):1476-82. doi: 10.1016/j.biocel.2007.03.022. PubMed PMID: 17499002; PubMed Central PMCID: PMC2043116. 135. Liu Y, Liang H, Jiang X. miR-1297 promotes apoptosis and inhibits the proliferation and invasion of hepatocellular carcinoma cells by targeting HMGA2. Int J Mol Med. 2015;36(5):1345-52. doi: 10.3892/ijmm.2015.2341. PubMed PMID: 26398017. 136. Jun KH, Jung JH, Choi HJ, Shin EY, Chin HM. HMGA1/HMGA2 protein expression and prognostic implications in gastric cancer. Int J Surg. 2015;24(Pt A):39-44. doi: 10.1016/j.ijsu.2015.10.031. PubMed PMID: 26537313. 137. Sun M, Gomes S, Chen P, Frankenberger CA, Sankarasharma D, Chung CH, et al. RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2. Oncogene. 2014;33(27):3528-37. doi: 10.1038/onc.2013.328. PubMed PMID: 23975428; PubMed Central PMCID: PMC4096871. 138. Zhao XP, Zhang H, Jiao JY, Tang DX, Wu YL, Pan CB. Overexpression of HMGA2 promotes tongue cancer metastasis through EMT pathway. J Transl Med. 2016;14(1):26. doi: 10.1186/s12967-016-0777-0. PubMed PMID: 26818837; PubMed Central PMCID: PMC4730598. 139. Cai J, Shen G, Liu S, Meng Q. Downregulation of HMGA2 inhibits cellular proliferation and invasion, improves cellular apoptosis in prostate cancer. Tumour Biol. 2015. doi: 10.1007/s13277-015-3853-9. PubMed PMID: 26242267. 140. Shi Z, Li X, Wu D, Tang R, Chen R, Xue S, et al. Silencing of HMGA2 suppresses cellular proliferation, migration, invasion, and epithelial-mesenchymal transition in bladder cancer. Tumour Biol. 2015. doi: 10.1007/s13277-015-4625-2. PubMed PMID: 26684800. 141. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer research. 2010;70(14):5649-69. doi: 10.1158/0008-5472.CAN-10-1040. PubMed PMID: 20610625; PubMed Central PMCID: PMCPMC4037932. 142. Tan XY, Chang S, Liu W, Tang HH. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma. Gut Liver. 2014;8(2):196-204. doi: 10.5009/gnl.2014.8.2.196. PubMed PMID: 24672662; PubMed Central PMCID: PMCPMC3964271. 143. Liu B, Yan S, Jia Y, Ma J, Wu S, Xu Y, et al. TLR2 promotes human intrahepatic cholangiocarcinoma cell migration and invasion by modulating NF-kappaB pathway-mediated inflammatory responses. The FEBS journal. 2016;283(20):3839-50. doi: 10.1111/febs.13894. PubMed PMID: 27616304. 144. Sun Q, Li F, Sun F, Niu J. Interleukin-8 is a prognostic indicator in human hilar cholangiocarcinoma. Int J Clin Exp Pathol. 2015;8(7):8376-84. PubMed PMID: 26339407; PubMed Central PMCID: PMCPMC4555735. 145. Zhou SL, Dai Z, Zhou ZJ, Chen Q, Wang Z, Xiao YS, et al. CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils. Carcinogenesis. 2014;35(3):597-605. doi: 10.1093/carcin/bgt397. PubMed PMID: 24293410. 146. Yang L, Feng S, Yang Y. Identification of transcription factors (TFs) and targets involved in the cholangiocarcinoma (CCA) by integrated analysis. Cancer Gene Ther. 2016;23(12):439-45. doi: 10.1038/cgt.2016.64. PubMed PMID: 27857060. 147. Sirica AE. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma. World J Gastroenterol. 2008;14(46):7033-58. PubMed PMID: 19084911; PubMed Central PMCID: PMCPMC2776834. 148. Zhang Z, Oyesanya RA, Campbell DJ, Almenara JA, Dewitt JL, Sirica AE. Preclinical assessment of simultaneous targeting of epidermal growth factor receptor (ErbB1) and ErbB2 as a strategy for cholangiocarcinoma therapy. Hepatology. 2010;52(3):975-86. doi: 10.1002/hep.23773. PubMed PMID: 20607690. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 10.10.2018 | |||||||
Dateien geändert am: | 10.10.2018 | |||||||
Promotionsantrag am: | 28.03.2018 | |||||||
Datum der Promotion: | 09.10.2018 |