Dokument: Charakterisierung der Adhäsion αIIbβ3-transfektierter HEK293-Zellen an immobilisierte Adhäsivproteine (Fibrinogen und Fibronektin)
Titel: | Charakterisierung der Adhäsion αIIbβ3-transfektierter HEK293-Zellen an immobilisierte Adhäsivproteine (Fibrinogen und Fibronektin) | |||||||
Weiterer Titel: | Characterization of the adhesion of αIIbβ3-expressing HEK293 cells to immobilized adhesive proteins (fibrinogen and fibronectin) | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=43370 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20170907-111351-1 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Chahem, Benjamin [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. med. Scharf, Rüdiger E. [Betreuer/Doktorvater] Prof. Dr. Gödecke, Axel [Gutachter] Prof. Dr. med. Hohlfeld, Thomas [Gutachter] | |||||||
Stichwörter: | fibrinogen, fibronectin displacement, shear stress, GpIIbIIIa, HPA-1-polymorphism, flow chamber, integrins, platelets | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Der HPA-1-Polymorphismus des thrombozytären Integrins αIIbβ3 bedingt einen Aminosäurenaustausch von Leucin (Leu33, HPA-1a) zu Prolin (Pro33, HPA-1b) in Position 33 der β-Untereinheit. In vorangegangenen Studien konnte gezeigt werden, dass Patienten mit koronarer Herzkrankheit, die zugleich Träger eines HPA-1b-Allels sind, im Median 5,2 Jahre früher einen Myokardinfarkt erleiden als homozygote HPA-1a-Patienten. Außerdem wiesen αIIbβ3-transfektierte Zellen der HPA-1b-Isoform in Flusskammerversuchen höhere Adhäsionsraten an immobilisiertes Fibrinogen auf.
Ziel dieser Arbeit war, das Adhäsionsverhalten der beiden HPA-1-Varianten gegenüber verschiedenen Liganden in unterschiedlicher Konzentration unter flussdynamischen Bedingungen zu analysieren und zu charakterisieren. Hierzu wurden αIIbβ3-transfektierte HEK293-Zellen und ein Flusskammermodell eingesetzt, das die Applikation variabler Scherraten erlaubt. Die Visualisierung der Zellen erfolgte mit digitalem Imaging. Fluoreszenzmarkierte HEK293-Zellen, die αIIbβ3 entweder in der HPA-1a- oder HPA-1b-Isoform exprimierten, wurden auf mit Fibrinogen oder Fibronektin beschichteten Deckgläsern über eine Minute bei 37 °C und 5 % CO2-Sättigung zur Adhäsion gebracht. Anschließend wurden die Zellen in der Flusskammer schrittweise steigenden Scherraten, die venöse (30 - 500 s-1) und arterielle (1000 - 2000 s-1) Bedingungen simulierten, für je eine Minute exponiert und die Rate noch adhärierter Zellen bestimmt. αIIbβ3 exprimierende Zellen der HPA-1b (Pro33)-Isoform zeigten bei 50 μg/ml Fibrinogen einen signifikant höheren Prozentsatz residueller Zellen unter arteriellen Strömungsbedingungen als die Zellen der HPA-1a (Leu33)-Isoform (p < 0,0001). Dieser Unterschied war mit 100 μg/ml Fibrinogen geringer ausgeprägt, aber immer noch signifikant (p < 0,05). HPA-1b-Isoform exprimierende Zellen wiesen mit 50 μg/ml Fibronektin einen ähnlich hohen Anteil residueller Zellen über alle Scherraten wie bei Verwendung der gleichen Fibrinogenkonzentration auf. Hingegen waren bereits bei venösen Scherraten von 60 s-1 signifikant weniger HPA-1a-Isoform exprimierende Zellen adhärent (p < 0,05). Die gesteigerte Adhäsionsstabilität, die bei Verdopplung der Fibrinogenkonzentration auf 100 μg/ml bei der HPA-1a-Isoform zu verzeichnen war, konnte bei Verwendung von 100 μg/ml Fibronektin nur in einer wesentlich geringeren Ausprägung registriert werden (p < 0,05). Die Versuche zeigen, dass die HPA-1b-Isoform αIIbβ3-transfektierter HEK293-Zellen einen Einfluss auf die Adhäsionsstabilität unter flussdynamischen Bedingungen hat. Die Resistenz gegenüber steigenden Scherraten wird durch den Liganden und seine Konzentration moduliert. Das Adhäsionsverhalten der HPA-1b-Isoform des thrombozytären αIIbβ3-Integrins ist ein Beleg für ihren prothrombotischen Phänotyp.Introduction The HPA-1 polymorphism arises from a leucine-to-proline amino acid substitution at residue 33 of the β3 subunit of αIIbβ3 integrin and results in HPA-1a (Leu33) and HPA-1b (Pro33) isoforms. Studies have shown that compared with HPA-1a homozygotes, carriers of the HPA-1b allele experience coronary artery disease 5.2 years (median) earlier and demonstrate increased adhesion of Pro33-positive cells to fibrinogen under arterial flow conditions. The aim of this study was to compare the adhesion of the 2 HPA-1 isoforms to different ligands in a flow system under increasing shear rates. Material and Methods Fluorescently tagged human embryonic kidney 293 cells (HEK293) stably expressing either the HPA-1a or HPA-1b isoform adhered to fibrinogen- or fibronectin-coated coverslips (50 and 100 µg/ml each) and were subjected to increasing shear rates. Results On 50 µg/ml fibrinogen, Leu33 isoform-expressing cells showed significantly higher displacement at arterial shear rates (1000 and 2000 s-1). The difference in adhesion at high shear rates was smaller but still significant for cells seeded on 100 µg/ml fibrinogen. HPA-1b cells adhered to 50 µg/ml fibronectin with similar kinetics as to fibrinogen, whereas HPA-1a cells revealed significantly increased displacement at shear rates as little as 60 s-1. The positive effect on HPA-1a cell adhesion of doubling the fibronectin concentration was less distinct than for fibrinogen. Conclusion Our data show that the Leu33Pro polymorphism has an important impact on cell adhesion under flow conditions. The adhesion strength and resistance to increasing shear rates is modulated largely by the type and concentration of the ligand. | |||||||
Quelle: | Andrieux, A.; Hudry-Clergeon, G.; Ryckewaert, J. J.; Chapel, A.; Ginsberg, M. H.; Plow, E. F.; Marguerie, G. (1989): Amino acid sequences in fibrinogen mediating its interaction with its platelet receptor, GPIIbIIIa. In: J. Biol. Chem. 264 (16), S. 9258–9265.
Arnaout, M. A.; Mahalingam, B.; Xiong, J-P (2005): Integrin structure, allostery, and bidirectional signaling. In: Annu. Rev. Cell Dev. Biol. 21, S. 381–410. Online verfügbar unter doi:10.1146/annurev.cellbio.21.090704.151217. Asakura, S.; Niwa, K.; Tomozawa, T.; Jin, Y. M.; Madoiwa, S.; Sakata, Y. et al. (1997): Fibroblasts spread on immobilized fibrin monomer by mobilizing a beta1-class integrin, together with a vitronectin receptor alphavbeta3 on their surface. In: J. Biol. Chem. 272 (13), S. 8824–8829. Bacabac, R. G.; Smit, T. H.; Cowin, S. C.; van Loon, J. J. W. A.; Nieuwstadt, F. T. M.; Heethaar, R.; Klein-Nulend, J. (2005): Dynamic shear stress in parallel-plate flow chambers. In: J Biomech 38 (1), S. 159–167. Online verfügbar unter doi:10.1016/j.jbiomech.2004.03.020. Bennett, J. S. (2001): Platelet-fibrinogen interactions. In: Ann. N. Y. Acad. Sci. 936, S. 340–354. Bennett, J. S.; Vilaire, G. (1979): Exposure of platelet fibrinogen receptors by ADP and epinephrine. In: J. Clin. Invest. 64 (5), S. 1393–1401. Bennett, J. S. (1985): The Platelet—Fibrinogen Interaction. In: Platelet Membrane Glycoproteins, S. 193–214. Bergmeier, W.; Piffath, C. L.; Goerge, T.; Cifuni, S. M.; Ruggeri, Z. M.; Ware, J.; Wagner, D. D. (2006): The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. In: Proc. Natl. Acad. Sci. U.S.A. 103 (45), S. 16900–16905. Blombäck, B.; Blombäck, M. (1972): The molecular structure of fibrinogen. In: Ann. N. Y. Acad. Sci. 202, S. 77–97. Bombeli, T. (1998): Adhesion of Activated Platelets to Endothelial Cells: Evidence for a GPIIbIIIa-dependent Bridging Mechanism and Novel Roles for Endothelial Intercellular Adhesion Molecule 1 (ICAM-1), alpha vbeta 3 Integrin, and GPIbalpha. In: Journal of Experimental Medicine 187 (3), S. 329–339. Boon, G. D. (1993): An overview of hemostasis. In: Toxicol Pathol 21 (2), S. 170–179. Born, G. V. (1962): Aggregation of blood platelets by adenosine diphosphate and its reversal. In: Nature 194, S. 927–929. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) (2013): Nationale VersorgungsLeitlinie Chronische KHK – Langfassung, 2. Auflage, Version 1, S. 48. Cadroy, Y.; Sakariassen, K.; Grandjean, H.; Thalamas, C.; Boneu, B.; Sié, P. (2001): The effect of platelet PlA polymorphism on experimental thrombus formation in man depends on blood flow and thrombogenic substrate. In: Thromb. Haemost. 85 (6), S. 1097–1103. Caen, J. P.; Castaldi, P. A.; Leclerc, J. C.; Inceman, S.; Larrieu, M. J.; Probst, M.; Bernard, Jean (1966): Congenital bleeding disorders with long bleeding time and normal platelet count: I. Glanzmann's thrombasthenia (report of fifteen patients). In: The American Journal of Medicine 41 (1), S. 4–26. Online verfügbar unter http://www.sciencedirect.com/science/article/pii/0002934366900039. Calvete, J. J. (1994): Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/IIIa complex. In: Thromb. Haemost. 72 (1), S. 1–15. Calvete, J. J. (1995): On the structure and function of platelet integrin alpha IIb beta 3, the fibrinogen receptor. In: Proc. Soc. Exp. Biol. Med. 208 (4), S. 346–360. Cambria-Kiely, J. A.; Gandhi, P. J. (2002): Aspirin Resistance and Genetic Polymorphisms. In: Journal of Thrombosis and Thrombolysis 14 (1), S. 51–58. Campbell, I. D.; Humphries, M. J. (2011): Integrin structure, activation, and interactions. In: Cold Spring Harb Perspect Biol 3 (3). Online verfügbar unter doi:10.1101/cshperspect.a004994. Cheresh, D. A. (1987): Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. In: Proc. Natl. Acad. Sci. U.S.A. 84 (18), S. 6471–6475. Clark, R. A. F. (2001): Fibrin and Wound Healing. In: Annals of the New York Academy of Sciences 936 (1), S. 355–367. Clemetson, K. J. (2012): Platelets and Primary Haemostasis. In: XI etro advanced teching course “Thrombosis: a multidisciplinary approach” September 18-23, 2011, Campobasso, Italy 129 (3), S. 220–224. Online verfügbar unter http://www.sciencedirect.com/science/article/pii/S0049384811006323. Cluzel, C.; Saltel, F.; Lussi, J.; Paulhe, F.; Imhof, B. A.; Wehrle-Haller, B. (2005): The mechanisms and dynamics of (alpha)v(beta)3 integrin clustering in living cells. In: J. Cell Biol. 171 (2), S. 383–392. Online verfügbar unter doi:10.1083/jcb.200503017. Doolittle, R. F., 2003. Structural basis of the fibrinogen-fibrin transformation: contributions from X-ray crystallography. Blood reviews, 17(1), 33–41 Duperray, A.; Berthier, R.; Chagnon, E.; Ryckewaert, J. J.; Ginsberg, M.; Plow, E.; Marguerie, G. (1987): Biosynthesis and processing of platelet GPIIb-IIIa in human megakaryocytes. In: J. Cell Biol. 104 (6), S. 1665–1673. Du, X. P.; Plow, E. F.; Frelinger, A. L.; O'Toole, T. E.; Loftus, J. C.; Ginsberg, M. H. (1991): Ligands "activate" integrin alpha IIb beta 3 (platelet GPIIb-IIIa). In: Cell 65 (3), S. 409–416. El-Khattouti, A. (2010): Allosterie der HPA-1a Varianten des thrombozytären Integrins αIIbβ3. Dissertation am Institut für Hämostaseologie, Hämotherapie und Transfusionsmedizin an der Heinrich-Heine-Universität Düsseldorf. Felding-Habermann, B.; Ruggeri, Z. M.; Cheresh, D. A. (1992): Distinct biological consequences of integrin alpha v beta 3-mediated melanoma cell adhesion to fibrinogen and its plasmic fragments. In: J. Biol. Chem. 267 (8), S. 5070–5077. Feng, D.; Lindpaintner, K.; Larson, M. G.; Rao, V. S.; O'Donnell, C. J.; Lipinska, I. et al. (1999): Increased Platelet Aggregability Associated With Platelet GPIIIa PlA2 Polymorphism. The Framingham Offspring Study. In: Arteriosclerosis, Thrombosis, and Vascular Biology 19 (4), S. 1142–1147. ffrench-Constant, C. (1995): Alternative splicing of fibronectin--many different proteins but few different functions. In: Exp. Cell Res. 221 (2), S. 261–271. Fitzgerald, L. A.; Poncz, M.; Steiner, B.; Rall, S. C.; Bennett, J. S.; Phillips, D. R. (1987): Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor alpha-subunits and platelet glycoprotein IIb. In: Biochemistry 26 (25), S. 8158–8165. Friedlander, M.; Theesfeld, C. L.; Sugita, M.; Fruttiger, M.; Thomas, M. A.; Chang, S.; Cheresh, D. A. (1996): Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. In: Proc. Natl. Acad. Sci. U.S.A. 93 (18), S. 9764–9769. Furihata, K.; Nugent, D. J.; Bissonette, A.; Aster, R. H.; Kunicki, T. J. (1987): On the association of the platelet-specific alloantigen, Pena, with glycoprotein IIIa. Evidence for heterogeneity of glycoprotein IIIa. In: J. Clin. Invest. 80 (6), S. 1624–1630. Gailit, J.; Clarke, C.; Newman, D.; Tonnesen, M. G.; Mosesson, M. W.; Clark, R. A. (1997): Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3. In: Exp. Cell Res. 232 (1), S. 118–126. Gardner, J. M.; Hynes, R. O. (1985): Interaction of fibronectin with its receptor on platelets. In: Cell 42 (2), S. 439–448. Glanzmann, W.E. (1918): Hereditäre hämorrhägische Thrombasthenie. Ein Beitrag zur Pathologie der Blutplättchen. In: Jahrbuch für Kinderheilkunde 88: 113-141. Grinnell, F.; Billingham, R. E.; Burgess, L. (1981): Distribution of fibronectin during wound healing in vivo. In: J. Invest. Dermatol. 76 (3), S. 181–189. Hagen, I.; Nurden, A.; Bjerrum, O. J.; Solum, N. O.; Caen, J. (1980): Immunochemical evidence for protein abnormalities in platelets from patients with Glanzmann's thrombasthenia and Bernard-Soulier syndrome. In: J. Clin. Invest. 65 (3), S. 722–731. Hantgan, R. R.; Hindriks, G.; Taylor, R. G.; Sixma, J. J.; Groot, P. G. de (1990): Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb:IIIa are all involved in platelet adhesion to fibrin in flowing whole blood. In: Blood 76 (2), S. 345–353. Hato, T.; Pampori, N.; Shattil, S. J. (1998): Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin alphaIIb beta3. In: J. Cell Biol. 141 (7), S. 1685–1695. Herrmann, S. M.; Poirier, O.; Marques-Vidal, P.; Evans, A.; Arveiler, D.; Luc, G. et al. (1997): The Leu33/Pro polymorphism (PlA1/PlA2) of the glycoprotein IIIa (GPIIIa) receptor is not related to myocardial infarction in the ECTIM Study. Etude Cas-Temoins de l'Infarctus du Myocarde. In: Thromb. Haemost. 77 (6), S. 1179–1181. Hooper, W. C.; Lally, C.; Austin, H.; Benson, J.; Dilley, A.; Wenger, N. K. et al. (1999): The relationship between polymorphisms in the endothelial cell nitric oxide synthase gene and the platelet GPIIIa gene with myocardial infarction and venous thromboembolism in African Americans. In: Chest 116 (4), S. 880–886. Huber, W.; Hurst, J.; Schlatter, D.; Barner, R.; Hübscher, J.; Kouns, W. C.; Steiner, B. (1995): Determination of kinetic constants for the interaction between the platelet glycoprotein IIb-IIIa and fibrinogen by means of surface plasmon resonance. In: Eur. J. Biochem. 227 (3), S. 647–656. Humphries, J. D.; Byron, A.; Humphries, M. J. (2006): Integrin ligands at a glance. In: J. Cell. Sci. 119 (Pt 19), S. 3901–3903. Online verfügbar unter doi:10.1242/jcs.03098. Hynes, R. O. (2002): Integrins: bidirectional, allosteric signaling machines. In: Cell 110 (6), S. 673–687. Iwamoto, S.; Nishiumi, E.; Kajii, E.; Ikemoto, S. (1994): An exon 28 mutation resulting in alternative splicing of the glycoprotein IIb transcript and Glanzmann's thrombasthenia. In: Blood 83 (4), S. 1017–1023. Jenkins, A. L.; Nannizzi-Alaimo, L.; Silver, D.; Sellers, J. R.; Ginsberg, M. H.; Law, D. A.; Phillips, D. R. (1998): Tyrosine phosphorylation of the beta3 cytoplasmic domain mediates integrin-cytoskeletal interactions. In: J. Biol. Chem. 273 (22), S. 13878–13885. Jennings, L. K.; Phillips, D. R. (1982): Purification of glycoproteins IIb and III from human platelet plasma membranes and characterization of a calcium-dependent glycoprotein IIb-III complex. In: J. Biol. Chem. 257 (17), S. 10458–10466. Kannel, W. B. et al., 1979. An investigation of coronary heart disease in families. The Framingham offspring study. American journal of epidemiology, 110(3), 281–290 Kant, J. A.; Fornace, A. J.; Saxe, D.; Simon, M. I.; McBride, O. W.; Crabtree, G. R. (1985): Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion. In: Proc. Natl. Acad. Sci. U.S.A. 82 (8), S. 2344–2348. Kim, M.; Carman, C. V.; Springer, T. A. (2003): Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. In: Science 301 (5640), S. 1720–1725. Online verfügbar unter doi:10.1126/science.1084174. Kim, J.; Somorjai, G. A. (2003): Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared-visible sum frequency generation and fluorescence microscopy. In: J. Am. Chem. Soc. 125 (10), S. 3150–3158. Online verfügbar unter doi:10.1021/ja028987n. Kirchhofer, D.; Gailit, J.; Ruoslahti, E.; Grzesiak, J.; Pierschbacher, M. D. (1990): Cation-dependent changes in the binding specificity of the platelet receptor GPIIb/IIIa. In: J. Biol. Chem. 265 (30), S. 18525–18530. Kloczewiak, M.; Timmons, S.; Lukas, T. J.; Hawiger, J. (1984): Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the gamma chain. In: Biochemistry 23 (8), S. 1767–1774. Kornblihtt, A. R.; Gutman, A. (1988): Molecular biology of the extracellular matrix proteins. In: Biol Rev Camb Philos Soc 63 (4), S. 465–507. Kornblihtt, A. R.; Pesce, C. G.; Alonso, C. R.; Cramer, P.; Srebrow, A.; Werbajh, S.; Muro, A. F. (1996): The fibronectin gene as a model for splicing and transcription studies. In: FASEB J. 10 (2), S. 248–257. Kucharska-Newton, A. M.; Monda, K. L.; Campbell, S.; Bradshaw, P. T.; Wagenknecht, L. E.; Boerwinkle, E. et al. (2011): Association of the platelet GPIIb/IIIa polymorphism with atherosclerotic plaque morphology: the Atherosclerosis Risk in Communities (ARIC) Study. In: Atherosclerosis 216 (1), S. 151–156. Kunicki, T. J. (1989): Platelet membrane glycoproteins and their function: an overview. In Blood 59 (1), S. 30–34. Kunicki, T. J.; Newman, P. J. (1992): The molecular immunology of human platelet proteins. In: Blood 80 (6), S. 1386–1404. Kunicki, T. J. et al., 2011. Mean Platelet Volume and Integrin Alleles Correlate With Levels of Integrins IIb 3 and 2 1 in Acute Coronary Syndrome Patients and Normal Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(1), 147–152 Kunstreich, M. (2014): Charakterisierung der Adhäsionsstabilität αIIbβ3-exprimierender HEK293-Zellen an immobilisierte Adhäsivproteine (Fibrinogen und von-Willebrand-Faktor). Dissertation am Institut für Hämostaseologie, Hämotherapie und Transfusionsmedizin an der Heinrich-Heine-Universität Düsseldorf. Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685 Lam, S. C.; Plow, E. F.; Smith, M. A.; Andrieux, A.; Ryckwaert, J. J.; Marguerie, G.; Ginsberg, M. H. (1987): Evidence that arginyl-glycyl-aspartate peptides and fibrinogen gamma chain peptides share a common binding site on platelets. In: J. Biol. Chem. 262 (3), S. 947–950. Lamb, H., 1993. Hydrodynamics. 6th ed. Cambridge, New York: Cambridge University Press. (Cambridge mathematical library) Larsson, J.; Hillarp, A. (1999): The prothrombin gene G20210A mutation and the platelet glycoprotein IIIa polymorphism PlA2 in patients with central retinal vein occlusion. In: Thromb. Res. 96 (4), S. 323–327. Laurens, N.; Koolwijk, P.; Maat, M. P. M. de (2006): Fibrin structure and wound healing. In: J. Thromb. Haemost. 4 (5), S. 932–939. Lau, T. L.; Kim, C.; Ginsberg, M. H.; Ulmer, T. S. (2009): The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. In: EMBO J. 28 (9), S. 1351–1361. Online verfügbar unter doi:10.1038/emboj.2009.63. Leahy, D. J.; Aukhil, I.; Erickson, H. P. (1996): 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. In: Cell 84 (1), S. 155–164. Li, R.; Babu, C. R.; Lear, J. D.; Wand, A. J.; Bennett, J. S.; DeGrado, W. F. (2001): Oligomerization of the integrin alphaIIbbeta3: roles of the transmembrane and cytoplasmic domains. In: Proc. Natl. Acad. Sci. U.S.A. 98 (22), S. 12462–12467. Liu, Y. K.; Nemoto, A.; Feng, Y.; Uemura, T. (1997): The binding ability to matrix proteins and the inhibitory effects on cell adhesion of synthetic peptides derived from a conserved sequence of integrins. In: J. Biochem. 121 (5), S. 961–968. Loftus, J. C.; Plow, E. F.; Frelinger, A. L.; D'Souza, S. E.; Dixon, D.; Lacy, J. et al. (1987): Molecular cloning and chemical synthesis of a region of platelet glycoprotein IIb involved in adhesive function. In: Proc. Natl. Acad. Sci. U.S.A. 84 (20), S. 7114–7118. Loncar, R.; Stoldt, V.; Hellmig, S.; Zotz, R. B.; Mihalj, M.; Scharf, R. E. (2007): HPA-1 polymorphism of alphaIIbbeta3 modulates platelet adhesion onto immobilized fibrinogen in an in-vitro flow system. In: Thromb J 5, S. 2. Online verfügbar unter doi:10.1186/1477-9560-5-2. Lord, S. T. (2007): Fibrinogen and fibrin: scaffold proteins in hemostasis. In: Curr. Opin. Hematol. 14 (3), S. 236–241. Marguerie, G. A.; Plow, E. F.; Edgington, T. S. (1979): Human platelets possess an inducible and saturable receptor specific for fibrinogen. In: J. Biol. Chem. 254 (12), S. 5357–5363. Maurer, L. M.; Tomasini-Johansson, B. R.; Mosher, D. F. (2010): Emerging roles of fibronectin in thrombosis. In: Thrombosis Research 125 (4), S. 287–291. Ma, Y. Q.; Qin, J.; Plow, E. F. (2007): Platelet integrin alpha(IIb)beta(3): activation mechanisms. In: J. Thromb. Haemost. 5 (7), S. 1345–1352. Monaco, J. L.; Lawrence, W. T. (2003): Acute wound healing an overview. In: Clin Plast Surg 30 (1), S. 1–12. Mosesson, M. W. (2005): Fibrinogen and fibrin structure and functions. In: J. Thromb. Haemost. 3 (8), S. 1894–1904. Mosesson, M. W.; Chen, A. B.; Huseby, R. M. (1975): The cold-insoluble globulin of human plasma: studies of its essential structural features. In: Biochim. Biophys. Acta 386 (2), S. 509–524. Mosesson, M. W.; Siebenlist, K. R.; Meh, D. A. (2001): The structure and biological features of fibrinogen and fibrin. In: Ann. N. Y. Acad. Sci. 936, S. 11–30. Mosher, D. F. (1975): Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor. In: J. Biol. Chem. 250 (16), S. 6614–6621. Moskowitz, K. A.; Kudryk, B.; Coller, B. S. (1998): Fibrinogen coating density affects the conformation of immobilized fibrinogen: implications for platelet adhesion and spreading. In: Thromb. Haemost. 79 (4), S. 824–831. Muro, A. F.; Chauhan, A. K.; Gajovic, S.; Iaconcig, A.; Porro, F.; Stanta, G.; Baralle, F. E. (2003): Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. In: J. Cell Biol. 162 (1), S. 149–160. Mustard, J. F.; Packham, M. A.; Kinlough-Rathbone, R. L.; Perry, D. W.; Regoeczi, E. (1978): Fibrinogen and ADP-induced platelet aggregation. In: Blood 52 (2), S. 453–466. Newman, P. J.; Derbes, R. S.; Aster, R. H. (1989): The human platelet alloantigens, PlA1 and PlA2, are associated with a leucine33/proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing. In: J. Clin. Invest. 83 (5), S. 1778–1781. Online verfügbar unter doi:10.1172/JCI114082. Nieswandt, B.; Watson, S. P. (2003): Platelet-collagen interaction: is GPVI the central receptor? In: Blood 102 (2), S. 449–461. Ni, H.; Denis, C. V.; Subbarao, S.; Degen, J. L.; Sato, T. N.; Hynes, R. O.; Wagner, D. D. (2000): Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. In: J. Clin. Invest. 106 (3), S. 385–392. Online verfügbar unter doi:10.1172/JCI9896. Ni, H.; Yuen, P. S. T.; Papalia, J. M.; Trevithick, J. E.; Sakai, T.; Fässler, R. et al. (2003): Plasma fibronectin promotes thrombus growth and stability in injured arterioles. In: Proc. Natl. Acad. Sci. U.S.A. 100 (5), S. 2415–2419. Online verfügbar unter doi:10.1073/pnas.2628067100. Nurden, A. T.; Caen, J. P. (1974): An abnormal platelet glycoprotein pattern in three cases of Glanzmann's thrombasthenia. In: Br. J. Haematol. 28 (2), S. 253–260. Nurden, A. T.; Caen, J. P. (1979): The different glycoprotein abnormalities in thrombasthenic and Bernard-Soulier platelets. In: Semin. Hematol. 16 (3), S. 234–250. O'Toole, T. E.; Loftus, J. C.; Plow, E. F.; Glass, A. A.; Harper, J. R.; Ginsberg, M. H. (1989): Efficient surface expression of platelet GPIIb-IIIa requires both subunits. In: Blood 74 (1), S. 14–18. Pankov, R.; Yamada, K. M. (2002): Fibronectin at a glance. In: J. Cell. Sci. 115 (Pt 20), S. 3861–3863. Papp, E.; Havasi, V.; Bene, J.; Komlosi, K.; Talian, G.; Feher, G. et al. (2007): Does Glycoprotein IIIa Gene (PlA) Polymorphism Influence Clopidogrel Resistance? In: Drugs & Aging 24 (4), S. 345–350. Phillips, D. R.; Agin, P. P. (1977): Platelet membrane defects in Glanzmann's thrombasthenia. Evidence for decreased amounts of two major glycoproteins. In: J. Clin. Invest. 60 (3), S. 535–545. Phillips, D. R.; Nannizzi-Alaimo, L.; Prasad, K. S. (2001): Beta3 tyrosine phosphorylation in alphaIIbbeta3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling. In: Thromb. Haemost. 86 (1), S. 246–258. Pierschbacher, M. D.; Ruoslahti, E. (1984): Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. In: Nature 309 (5963), S. 30–33. Plow, E. F.; Haas, T. A.; Zhang, L.; Loftus, J.; Smith, J. W. (2000): Ligand binding to integrins. In: J. Biol. Chem. 275 (29), S. 21785–21788. Online verfügbar unter doi:10.1074/jbc.R000003200. Plow, E. F.; Srouji, A. H.; Meyer, D.; Marguerie, G.; Ginsberg, M. H. (1984): Evidence that three adhesive proteins interact with a common recognition site on activated platelets. In: J. Biol. Chem. 259 (9), S. 5388–5391. Poncz, M.; Eisman, R.; Heidenreich, R.; Silver, S. M.; Vilaire, G.; Surrey, S. et al. (1987): Structure of the platelet membrane glycoprotein IIb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. In: J. Biol. Chem. 262 (18), S. 8476–8482. Puklin-Faucher, E.; Gao, M.; Schulten, K.; Vogel, V. (2006): How the headpiece hinge angle is opened: New insights into the dynamics of integrin activation. In: J. Cell Biol. 175 (2), S. 349–360. Renner, W.; Winkler, M.; Hoffmann, C.; Köppel, H.; Seinost, G.; Brodmann, M.; Pilger, E. (2001): The PlA1/A2 polymorphism of platelet glycoprotein IIIa is not associated with deep venous thrombosis. In: Int Angiol 20 (2), S. 148–151. Ridker, P. M.; Hennekens, C. H.; Schmitz, C.; Stampfer, M. J.; Lindpaintner, K. (1997): PIA1/A2 polymorphism of platelet glycoprotein IIIa and risks of myocardial infarction, stroke, and venous thrombosis. In: Lancet 349 (9049), S. 385–388. Online verfügbar unter doi:10.1016/S0140-6736(97)80010-4. Ridley, A. J.; Schwartz, M. A.; Burridge, K.; Firtel, R. A.; Ginsberg, M. H.; Borisy, G. et al. (2003): Cell migration: integrating signals from front to back. In: Science 302 (5651), S. 1704–1709. Ross, R. S.; Borg, T. K. (2001): Integrins and the Myocardium. In: Circulation Research 88 (11), S. 1112–1119. Ruoslahti, E. (1996): RGD and other recognition sequences for integrins. In: Annu. Rev. Cell Dev. Biol. 12, S. 697–715. Ruoslahti, E.; Pierschbacher, M. D. (1987): New perspectives in cell adhesion: RGD and integrins. In: Science 238 (4826), S. 491–497. Ruoslahti, E.; Vaheri, A. (1974): Novel human serum protein from fibroblast plasma membrane. In: Nature 248 (5451), S. 789–791. Sajid, M. (2002): PlA Polymorphism of Integrin beta3 Differentially Modulates Cellular Migration on Extracellular Matrix Proteins. In: Arteriosclerosis, Thrombosis, and Vascular Biology 22 (12), S. 1984–1989. Sakai, T.; Johnson, K. J.; Murozono, M.; Sakai, K.; Magnuson, M. A.; Wieloch, T. et al. (2001): Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. In: Nat Med 7 (3), S. 324–330. Online verfügbar unter http://dx.doi.org/10.1038/85471. Salim, M.; O'Sullivan, B.; McArthur, S. L.; Wright, P. C. (2007): Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA. In: Lab Chip 7 (1), S. 64–70. Online verfügbar unter doi:10.1039/b612521m. Santoro, S. A.; Lawing, W. J. (1987): Competition for related but nonidentical binding sites on the glycoprotein IIb-IIIa complex by peptides derived from platelet adhesive proteins. In: Cell 48 (5), S. 867–873. Scharf, R. E.; Stoldt, V. (2008): Modulation der Plättchenthrombogenität durch genetisch determinierte Varianten thrombozytärer Integrine. In: Antragsband SFB 612 Teilprojekt B2, S. 231. Schlesinger, S.C.; (2013): Auswirkungen des HPA-1-Polymorphismus des Integrins αIIbβ3 auf die Thrombozytenadhäsion unter flussdynamischen Bedingungen. Dissertation am Institut für Hämostaseologie, Hämotherapie und Transfusionsmedizin an der Heinrich-Heine-Universität Düsseldorf. Sechler, J. L.; Corbett, S. A.; Schwarzbauer, J. E. (1997): Modulatory roles for integrin activation and the synergy site of fibronectin during matrix assembly. In: Mol. Biol. Cell 8 (12), S. 2563–2573. Shattil, S. J.; Kashiwagi, H.; Pampori, N. (1998): Integrin signaling: the platelet paradigm. In: Blood 91 (8), S. 2645–2657. Shattil, S. J. (2005): Integrins and Src: dynamic duo of adhesion signaling. In: Trends Cell Biol 15 (8), S. 399–403. Shattil, S. J.; Kim, C.; Ginsberg, M. H. (2010): The final steps of integrin activation: the end game. In: Nat Rev Mol Cell Biol 11 (4), S. 288–300. Shattil, S. J.; Newman, P. J. (2004): Integrins: dynamic scaffolds for adhesion and signaling in platelets. In: Blood 104 (6), S. 1606–1615. Online verfügbar unter doi:10.1182/blood-2004-04-1257. Snopok, B. A.; Kostyukevych, K.V.; Rengevych, O.V.; Shirshov, Y.M.; Venger, E. F.; (1998): A biosensor approach to probe the structure and function of the adsorbed proteins: fibrinogen at the gold surface. Semiconductor Physics, Quantum Electronics & Optoelectronics 1, S. 121–134. Sosnoski, D. M.; Emanuel, B. S.; Hawkins, A. L.; van Tuinen, P.; Ledbetter, D. H.; Nussbaum, R. L. et al. (1988): Chromosomal localization of the genes for the vitronectin and fibronectin receptors alpha subunits and for platelet glycoproteins IIb and IIIa. In: J. Clin. Invest. 81 (6), S. 1993–1998. Sperr, W. R.; Huber, K.; Roden, M.; Janisiw, M.; Lang, T.; Graf, S. et al. (1998): Inherited platelet glycoprotein polymorphisms and a risk for coronary heart disease in young central Europeans. In: Thromb. Res. 90 (3), S. 117–123. Suehiro, K.; Gailit, J.; Plow, E. F. (1997): Fibrinogen is a ligand for integrin alpha5beta1 on endothelial cells. In: J. Biol. Chem. 272 (8), S. 5360–5366. Szczeklik, A.; Undas, A.; Sanak, M.; Frolow, M.; Wegrzyn, W. (2000): Relationship between bleeding time, aspirin and the PlA1/A2 polymorphism of platelet glycoprotein IIIa. In: Br J Haematol 110 (4), S. 965–967. Takada, Y.; Ye, X.; Simon, S. (2007): The integrins. In: Genome Biol 8 (5), S. 215. Takagi, J.; Petre, B. M.; Walz, T.; Springer, T. A. (2002): Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. In: Cell 110 (5), S. 599-11. Tennent, G. A. et al., 2007. Human plasma fibrinogen is synthesized in the liver. Blood, 109(5), 1971–1974 Topol, E. J.; Byzova, T. V.; Plow, E. F. (1999): Platelet GPIIb-IIIa blockers. In: Lancet 353 (9148), S. 227–231. Tzima, E.; del Pozo, M. A.; Shattil, S. J.; Chien, S.; Schwartz, M. A. (2001): Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. In: EMBO J. 20 (17), S. 4639–4647. Online verfügbar unter doi:10.1093/emboj/20.17.4639. Undas, A.; Zabczyk, M.; Iwaniec, T. (2011); Dysfibrinogenemia: from bleeding tendency to thromboembolic disorders. Boletim da SPHM 26: S. 5‑17 Vaheri, A. (1980): Fibronectin (cold-insoluble globulin): role in defence. In: Schweiz Med Wochenschr 110 (40), S. 1437–1440. Varga-Szabo, D.; Pleines, I.; Nieswandt, B. (2008): Cell adhesion mechanisms in platelets. In: Arterioscler. Thromb. Vasc. Biol. 28 (3), S. 403–412. Vijayan, K. V.; Goldschmidt-Clermont, P. J.; Roos, C.; Bray, P. F. (2000): The Pl(A2) polymorphism of integrin beta(3) enhances outside-in signaling and adhesive functions. In: J. Clin. Invest. 105 (6), S. 793–802. Online verfügbar unter doi:10.1172/JCI6982. Vijayan, K. Vinod; Bray, Paul F. (2006): Molecular mechanisms of prothrombotic risk due to genetic variations in platelet genes: Enhanced outside-in signaling through the Pro33 variant of integrin beta3. In: Exp. Biol. Med. (Maywood) 231 (5), S. 505–513. Vijayan, K. Vinod; Huang, Trevor C.; Liu, Yan; Bernardo, Aubrey; Dong, Jing Fei; Goldschmidt-Clermont, Pascal J. et al. (2003): Shear stress augments the enhanced adhesive phenotype of cells expressing the Pro33 isoform of integrin beta3. In: FEBS Lett. 540 (1-3), S. 41–46. Wagner, C. L.; Mascelli, M. A.; Neblock, D. S.; Weisman, H. F.; Coller, B. S.; Jordan, R. E. (1996): Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. In: Blood 88 (3), S. 907–914. Watson, S. P.; Auger, J. M.; McCarty, O. J. T.; Pearce, A. C. (2005): GPVI and integrin alphaIIb beta3 signaling in platelets. In: J. Thromb. Haemost. 3 (8), S. 1752–1762. Wegener, K. L.; Campbell, I. D. (2008): Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (review). In: Mol. Membr. Biol. 25 (5), S. 376–387. Weisel, J. W. (2005): Fibrinogen and fibrin. In: Adv. Protein Chem. 70, S. 247–299. Weiss, E. J.; Bray, P. F.; Tayback, M.; Schulman, S. P.; Kickler, T. S.; Becker, L. C. et al. (1996): A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. In: N. Engl. J. Med. 334 (17), S. 1090–1094. Online verfügbar unter doi:10.1056/NEJM199604253341703. Weiss, E. J.; Goldschmidt-Clermont, P. J.; Grigoryev, D.; Jin, Y.; Kickler, T. S.; Bray, P. F. (1995): A monoclonal antibody (SZ21) specific for platelet GPIIIa distinguishes P1A1 from P1A2. In: Tissue Antigens 46 (5), S. 374–381. Wencel-Drake, J. D.; Plow, E. F.; Kunicki, T. J.; Woods, V. L.; Keller, D. M.; Ginsberg, M. H. (1986): Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses. In: Am. J. Pathol. 124 (2), S. 324–334. Wilder, R. L. (2002): Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. In: Ann. Rheum. Dis. 61 Suppl 2, S. ii96-9. Woods, V. L.; Wolff, L. E.; Keller, D. M. (1986): Resting platelets contain a substantial centrally located pool of glycoprotein IIb-IIIa complex which may be accessible to some but not other extracellular proteins. In: J. Biol. Chem. 261 (32), S. 15242–15251. Wu, B. L.; Milunsky, A.; Wyandt, H.; Hoth, C.; Baldwin, C.; Skare, J. (1993): In situ hybridization applied to Waardenburg syndrome. In: Cytogenet. Cell Genet. 63 (1), S. 29–32. Xiao, T.; Takagi, J.; Coller, B. S.; Wang, J. H.; Springer, T. A. (2004): Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. In: Nature 432 (7013), S. 59–67. Online verfügbar unter doi:10.1038/nature02976. Yee, D. L.; Bray, P. F. (2004): Clinical and functional consequences of platelet membrane glycoprotein polymorphisms. In: Semin. Thromb. Hemost. 30 (5), S. 591–600. Online verfügbar unter doi:10.1055/s-2004-835679. Zhang, J. Z.; Redman, C. M. (1996): Assembly and secretion of fibrinogen. Involvement of amino-terminal domains in dimer formation. In: J. Biol. Chem. 271 (21), S. 12674–12680. Zhu, J.; Luo, B. H.; Xiao, T.; Zhang, C.; Nishida, N.; Springer, T. A. (2008): Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. In: Mol. Cell 32 (6), S. 849–861. Online verfügbar unter doi:10.1016/j.molcel.2008.11.018. Zotz, R. B.; Winkelmann, B. R.; Müller, C.; Boehm, B. O.; März, W.; Scharf, R. E. (2005): Association of polymorphisms of platelet membrane integrins alpha IIb(beta)3 (HPA-1b/Pl) and alpha2(beta)1 (alpha807TT) with premature myocardial infarction. In: J. Thromb. Haemost. 3 (7), S. 1522–1529. Online verfügbar unter doi:10.1111/j.1538-7836.2005.01432. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Bezug: | Beginn der Disseration: 03/2009
Abschluss der Dissertation: 09/2017 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät » Institute » Institut für Hämostaseologie und Transfusionsmedizin | |||||||
Dokument erstellt am: | 07.09.2017 | |||||||
Dateien geändert am: | 07.09.2017 | |||||||
Promotionsantrag am: | 21.10.2014 | |||||||
Datum der Promotion: | 05.09.2017 |