Dokument: Einfluss von Hypoxie auf die antimikrobiellen und immunregulatorischen Wirkungen der Indolamin 2,3-Dioxygenase
Titel: | Einfluss von Hypoxie auf die antimikrobiellen und immunregulatorischen Wirkungen der Indolamin 2,3-Dioxygenase | |||||||
Weiterer Titel: | Regulation of IDO activity by oxygen supply: inhibitory effects on antimicrobial and immunoregulatory functions | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=42863 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20170717-081208-2 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Ebel, Sebastian [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Däubener, Walter [Gutachter] Prof. Dr. Drexler, Ingo [Gutachter] | |||||||
Stichwörter: | Hypoxie IDO Indolamin 2,3-Dioxygenase Trypophan | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Tryptophan ist sowohl für den Menschen, als auch für viele Mikroorganismen eine essenzielle Aminosäure. Daher hat die Tryptophankonzentration im Gewebe auch Auswirkungen auf das Wachstum von Mikroorganismen. Die vorgelegte Arbeit beschäftigt sich mit in vitro- Modellen für bakterielle, parasitäre und virale Infektionen. Hierbei liegt ein besonderer Schwerpunkt auf den durch das Enzym Indolamin 2,3-Dioxygenase (IDO) vermittelten antimikrobiellen und immunregulatorischen Effekten. Bei der IDO handelt es sich um eine Dioxygenase, das bedeutet, dass sie die Spaltung von Tryptophan nur unter Verwendung von Sauerstoff katalysiert.
In vivo finden sich in unterschiedlichen Gewebetypen unterschiedliche Sauerstoff- konzentrationen die einen Einfluss auf die IDO Aktivität besitzen könnten. In der vorliegenden Arbeit wurde daher untersucht, ob physiologisch oder pathophysiologisch normale Sauerstoffkonzentrationen von 1 - 10% O2 die IDO Aktivität beeinflussen. Es konnte gezeigt werden, dass die Enzymaktivität der IDO bei pathophysiologisch relevanten, niedrigen Sauerstoffkonzentrationen deutlich reduziert ist. Folgerichtig war eine IDO-vermittelte, auf Tryptophanmangel beruhende Hemmung des bakteriellen Wachstums unter hypoxischen Bedingungen nicht mehr nachzuweisen. Ähnliche Effekte konnten auch in Infektionssystemen mit Viren und Parasiten beobachtet werden. Auch die immunregulatorischen Funktionen der IDO bei der Aktivierung von T-Zellen konnten durch Hypoxie vergleichbar blockiert werden. Damit konnte im Rahmen dieser Arbeit gezeigt werden, dass die Effektivität der IDO vermittelten Tryptophandegradation in humanen Vorhautfibroblasten und in humanen Glioblastomzellen essenziell von einer ausreichenden Versorgung mit Sauerstoff abhängt und dass die O2 Konzentration somit die Ausprägung antimikrobieller und immunregulatorischer Effektorleistung beeinflusst.Tryptophan is an essential amino acid for human beings as well as for some microorganisms. In human cells the interferon-γ (IFN-γ) inducible enzyme indoleamine 2,3-dioxygenase (IDO) reduces local tryptophan levels and is therefore able to mediate broad-spectrum effector functions: IDO activity restricts the growth of various clinically relevant pathogens such as bacteria, parasites and viruses. On the other hand, it has been observed that IDO has immunoregulatory functions as it efficiently controls the activation and survival of T-cells. Although these important effects have been analysed in much detail, they have been observed in vitro using cells cultured in the presence of 20% O2 (normoxia). Such high oxygen concentrations are not present in vivo especially within infected and inflamed tissues. We therefore analysed IDO-mediated effects under lower oxygen concentrations in vitro and observed that the function of IDO is substantially impaired in tumour cells as well as in native cells. Hypoxia led to reduced IDO expression and as a result to reduced production of kynurenine, the downstream product of tryptophan degradation. Consequently, effector functions of IDO were abrogated under hypoxic conditions: in different human cell lines such as tumour cells (glioblastoma, HeLa) but also in native cells (human foreskin fibroblasts; HFF) IDO lost the capacity to inhibit the growth of bacteria (Staphylococcus aureus), parasites (Toxoplasma gondii) or viruses (herpes simplex virus type 1). Additionally, IDO could no longer efficiently control the proliferation of T-cells that have been co-cultured with IDO expressing HFF cells in vitro. In conclusion, the potent antimicrobial as well as immunoregulatory functions of IDO were substantially impaired under hypoxic conditions that pathophysiologically occurs in vivo. | |||||||
Quelle: | 1. Däubener W, S.S., Heseler K, Spekker KH, MacKenzie CR, Antimicrobial and immunoregulatory effector mechanisms in human endothelial cells. Thromb Haemost, 2009. 102: p. 1110–1116.
2. Taylor, M.W. and G. Feng, Relationship between interferon-gamma, indoleamine 2, 3- dioxygenase, and tryptophan catabolism. The FASEB Journal, 1991. 5(11): p. 2516- 2522. 3. Fallarino F, G.U., Puccetti P, Indoleamine 2,3-dioxygenase: from catalyst to signaling function. Eur J Immunol, 2012. 42: p. 1932–1937. 4. MacKenzie CR, H.K., Müller A, Däubener W, Role of indoleamine 2,3-dioxygenase in antimicrobial defence and immuno-regulation: tryptophan depletion versus production of toxic kynurenines. Curr Drug Metab, 2007. 8: p. 237–244. 5. Munn DH, Z.M., Attwood JT, Bondarev I, Conway SJ, et al., Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 1998. 281: p. 1191-1193. 6. Opitz CA, L.U., Sahm F, Ott M, Tritschler I, et al., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 2011. 478: p. 197-203. 7. Wiese M, G.R., Popp I, Matuszak J, Mahapatro M, et al. , Hypoxia-mediated impairment of the mitochondrial respiratory chain inhibits the bactericidal activity of macrophages. Infect Immun, 2012. 80: p. 1455-1566. 8. Zinkernagel AS, J.R., Nizet V, Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med, 2007. 85: p. 1339-1346. 9. Atkuri KR, H.L., Niemi AK, Cowan T, Herzenberg LA, Importance of culturing primary lymphocytes at physiological oxygen levels. Proc Natl Acad Sci USA, 2007. 104: p. 4547-1552. 10. Kempf VA, L.M., Alitalo K, Wälzlein JH, Ehehalt U, et al., Activation of hypoxia- inducible factor-1 in bacillary angiomatosis: evidence for a role of hypoxia-inducible factor-1 in bacterial infections. Circulation, 2005. 111: p. 1054-1062. 11. Roth A, K.P., van Zandbergen G, Klinger M, Hellwig-Bürgel T, et al., Hypoxia abrogates antichlamydial properties of IFN-c in human fallopian tube cells in vitro and ex vivo. Proc Natl Acad Sci USA, 2010. 107(19502-19507). 12. Santillán, M. and M.C. Mackey, Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. Proceedings of the National Academy of Sciences, 2001. 98(4): p. 1364-1369. 77 13. Lazaris-Brunner, G., et al., Tryptophan requirement in young adult women as determined by indicator amino acid oxidation with L-[13C] phenylalanine. The American journal of clinical nutrition, 1998. 68(2): p. 303-310. 14. Young, V. and A. El-Khoury, Human amino-acid requirements: a re-evaluation. Food and Nutrition Bulletin (UNU), 1996. 15. Janeway Jr C A, T.P., Walport M, Shlomchik MJ, Immunobiology, the immune system in health and disease. Garland Science Publishing, 2005. 6th edition. 16. Descarries, L., et al., Morphology of central serotonin neurons. Annals of the New York Academy of Sciences, 1990. 600(1): p. 81-92. 17. Rassow J, H.K., Netzker R, Deutmann R, Biochemie, 2008. 2nd Edition. 18. Millan, M.J., et al., Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends in pharmacological sciences, 2008. 29(9): p. 454-464. 19. Konturek, S., et al., Role of melatonin in upper gastrointestinal tract. Journal of physiology and pharmacology, 2007. 58(6): p. 23-52. 20. O'Neil, S. and R. DeMoss, Tryptophan transaminase from Clostridium sporogenes. Archives of biochemistry and biophysics, 1968. 127: p. 361-369. 21. Rafice, S., et al., Oxidation of L-tryptophan in biology: a comparison between tryptophan 2, 3-dioxygenase and indoleamine 2, 3-dioxygenase. Biochemical Society Transactions, 2009. 37(2): p. 408. 22. Schwarcz, R., W.O. Whetsell, and R.M. Mangano, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science, 1983. 219(4582): p. 316-318. 23. Stone, T., Neuropharmacology of quinolinic and kynurenic acids. Pharmacological Reviews, 1993. 45(3): p. 309-379. 24. Bauer, T.M., et al., Studying the immunosuppressive role of indoleamine 2, 3‐ dioxygenase: tryptophan metabolites suppress rat allogeneic T‐cell responses in vitro and in vivo. Transplant international, 2005. 18(1): p. 95-100. 25. Hegyi, J., R.A. Schwartz, and V. Hegyi, Pellagra: dermatitis, dementia, and diarrhea. International journal of dermatology, 2004. 43(1): p. 1-5. 26. Goldsmith, G.A., et al., Studies of niacin requirement in man. I. Experimental pellagra in subjects on corn diets low in niacin and tryptophan. Journal of Clinical Investigation, 1952. 31(6): p. 533. 78 27. Kotake, Y. and I. Masayama, The intermediary metabolism of tryptophan. XVIII. The mechanism of formation of kynurenine from tryptophan. Z. physiol. Chem, 1936. 243: p. 237-244. 28. Yamamoto, S. and O. Hayaishi, Tryptophan pyrrolase of rabbit intestine d-and l- tryptophan-cleaving enzyme or enzymes. Journal of Biological Chemistry, 1967. 242(22): p. 5260-5266. 29. Shimizu, T., et al., Indoleamine 2, 3-dioxygenase. Purification and some properties. Journal of Biological Chemistry, 1978. 253(13): p. 4700-4706. 30. Sono, M., et al., Heme-containing oxygenases. Chemical Reviews, 1996. 96(7): p. 2841-2888. 31. Takikawa O., N.S., Hirata F., Hayaishi O., Mechanism of interferon-gamma action. J Biol Chem, 1988. 263: p. 2041-2048. 32. Burkin, D.J., et al., Localization of the human indoleamine 2, 3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8. Genomics;(United States), 1993. 17(1). 33. Sugimoto, H., et al., Crystal structure of human indoleamine 2, 3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(8): p. 2611-2616. 34. Schroder, K., et al., Interferon-γ: an overview of signals, mechanisms and functions. Journal of leukocyte biology, 2004. 75(2): p. 163-189. 35. Heseler, K., et al., Antimicrobial and immunoregulatory effects mediated by human lung cells: role of IFN‐γ‐induced tryptophan degradation. FEMS Immunology & Medical Microbiology, 2008. 52(2): p. 273-281. 36. Babcock, T.A. and J.M. Carlin, Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor α in interferon-treated epithelial cells. Cytokine, 2000. 12(6): p. 588-594. 37. King, N.J. and S.R. Thomas, Molecules in focus: indoleamine 2, 3-dioxygenase. The international journal of biochemistry & cell biology, 2007. 39(12): p. 2167-2172. 38. Cady, S.G. and M. Sono, 1-Methyl-dl-tryptophan, β-(3-benzofuranyl)-dl-alanine (the oxygen analog of tryptophan), and β-[3-benzo (b) thienyl]-dl-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2, 3-dioxygenase. Archives of Biochemistry and Biophysics, 1991. 291(2): p. 326-333. 39. Yoshida, R. and O. Hayaishi, Induction of pulmonary indoleamine 2, 3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proceedings of the National Academy of Sciences, 1978. 75(8): p. 3998-4000. 79 40. Pfefferkorn, E., Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proceedings of the National Academy of Sciences, 1984. 81(3): p. 908-912. 41. MacKenzie, C.R., U. Hadding, and W. Däubener, Interferon-γ-induced activation of indoleamine 2, 3-dioxygenase in cord blood monocyte-derived macrophages inhibits the growth of group B streptococci. Journal of Infectious Diseases, 1998. 178(3): p. 875-878. 42. Mackenzie, C.R., et al., Growth inhibition of multiresistant enterococci by interferon- γ-activated human uro-epithelial cells. Journal of medical microbiology, 1999. 48(10): p. 935-941. 43. Pantoja, L.G., et al., Inhibition of Chlamydia pneumoniaeReplication in Human Aortic Smooth Muscle Cells by Gamma Interferon-Induced Indoleamine 2, 3-Dioxygenase Activity. Infection and immunity, 2000. 68(11): p. 6478-6481. 44. Schroten, H., et al., Potential role of human brain microvascular endothelial cells in the pathogenesis of brain abscess: inhibition of Staphylococcus aureus by activation of indoleamine 2, 3-dioxygenase. Neuropediatrics, 2001. 32(4): p. 206-210. 45. Bodaghi, B., et al., Role of IFN-γ-induced indoleamine 2, 3 dioxygenase and inducible nitric oxide synthase in the replication of human cytomegalovirus in retinal pigment epithelial cells. The Journal of Immunology, 1999. 162(2): p. 957-964. 46. Adams, O., et al., Inhibition of human herpes simplex virus type 2 by interferon γ and tumor necrosis factor α is mediated by indoleamine 2, 3-dioxygenase. Microbes and Infection, 2004. 6(9): p. 806-812. 47. Adams, O., et al., Role of indoleamine-2, 3-dioxygenase in alpha/beta and gamma interferon-mediated antiviral effects against herpes simplex virus infections. Journal of virology, 2004. 78(5): p. 2632-2636. 48. Obojes, K., et al., Indoleamine 2, 3-dioxygenase mediates cell type-specific anti- measles virus activity of gamma interferon. Journal of virology, 2005. 79(12): p. 7768- 7776. 49. Spekker, K., et al., Indoleamine 2, 3-dioxygenase is involved in defense against Neospora caninum in human and bovine cells. Infection and immunity, 2009. 77(10): p. 4496-4501. 50. Mellor, A.L. and D.H. Munn, IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Reviews Immunology, 2004. 4(10): p. 762-774. 51. Grohmann, U., F. Fallarino, and P. Puccetti, Tolerance, DCs and tryptophan: much ado about IDO. Trends in immunology, 2003. 24(5): p. 242-248. 80 52. Mellor, A.L. and D.H. Munn, Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunology today, 1999. 20(10): p. 469-473. 53. Cook, C.H., et al., Spontaneous renal allograft acceptance associated with “regulatory” dendritic cells and IDO. The Journal of Immunology, 2008. 180(5): p. 3103-3112. 54. Laurence, J.M., et al., Blocking indoleamine dioxygenase activity early after rat liver transplantation prevents long-term survival but does not cause acute rejection. Transplantation, 2008. 85(9): p. 1357-1361. 55. Lin, Y., et al. Induction of indoleamine 2, 3-dioxygenase in livers following hepatectomy prolongs survival of allogeneic hepatocytes after transplantation. in Transplantation proceedings. 2008. Elsevier. 56. Liu, X., et al., Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood, 2010. 115(17): p. 3520-3530. 57. Fallarino, F., et al., The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells. The Journal of Immunology, 2006. 176(11): p. 6752-6761. 58. Ball, H.J., et al., Characterization of an indoleamine 2, 3-dioxygenase-like protein found in humans and mice. Gene, 2007. 396(1): p. 203-213. 59. Löb, S., et al., IDO1 and IDO2 are expressed in human tumors: levo-but not dextro-1- methyl tryptophan inhibits tryptophan catabolism. Cancer Immunology, Immunotherapy, 2009. 58(1): p. 153-157. 60. Ball, H.J., et al., Indoleamine 2, 3-dioxygenase-2; a new enzyme in the kynurenine pathway. The international journal of biochemistry & cell biology, 2009. 41(3): p. 467- 471. 61. Knox, W.E. and V. Auerbach, The hormonal control of tryptophan peroxidase in the rat. Journal of Biological Chemistry, 1955. 214(1): p. 307-313. 62. Iwamoto, Y., et al., Tryptophan 2, 3-dioxygenase in Saccharomyces cerevisiae. Canadian journal of microbiology, 1995. 41(1): p. 19-26. 63. Searles, L.L., et al., Structure and transcription of the Drosophila melanogaster vermilion gene and several mutant alleles. Molecular and cellular biology, 1990. 10(4): p. 1423-1431. 64. Zhang, Y., et al., Crystal structure and mechanism of tryptophan 2, 3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis. Biochemistry, 2007. 46(1): p. 145-155. 81 65. Comings, D.E., et al., Human tryptophan oxygenase localized to 4q31: Possible implications for alcoholism and other behavioral disorders. Genomics, 1991. 9(2): p. 301-308. 66. Yuasa, H.J., et al., Evolution of vertebrate indoleamine 2, 3-dioxygenases. Journal of molecular evolution, 2007. 65(6): p. 705-714. 67. Nabi, R., et al., Association of tryptophan 2, 3 dioxygenase gene polymorphism with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2004. 125(1): p. 63-68. 68. Schmidt, S.K., et al., Antimicrobial and immunoregulatory properties of human tryptophan 2, 3‐dioxygenase. European journal of immunology, 2009. 39(10): p. 2755-2764. 69. Deckert-Schlüter, M., et al., Interferon-gamma receptor-deficiency renders mice highly susceptible to toxoplasmosis by decreased macrophage activation. Laboratory investigation; a journal of technical methods and pathology, 1996. 75(6): p. 827-841. 70. Jouanguy, E., et al., IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Current opinion in immunology, 1999. 11(3): p. 346-351. 71. Newport, M.J., et al., A mutation in the interferon-γ–receptor gene and susceptibility to mycobacterial infection. New England Journal of Medicine, 1996. 335(26): p. 1941- 1949. 72. Wheelock, E.F., Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science, 1965. 149(3681): p. 310-311. 73. Munder, M., et al., Murine macrophages secrete interferon γ upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. The Journal of experimental medicine, 1998. 187(12): p. 2103- 2108. 74. Otani, T., et al., Identification of IFN-γ-producing cells in IL-12/IL-18-treated mice. Cellular immunology, 1999. 198(2): p. 111-119. 75. Darnell, J., I.M. Kerr, and G.R. Stark, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994. 264(5164): p. 1415-1421. 76. Boehm, U., et al., Cellular responses to interferon-γ. Annual review of immunology, 1997. 15(1): p. 749-795. 77. Nguyen, H., J. Hiscott, and P.M. Pitha, The growing family of interferon regulatory factors. Cytokine & growth factor reviews, 1997. 8(4): p. 293-312. 82 78. Collins, T., et al., Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proceedings of the National Academy of Sciences, 1984. 81(15): p. 4917-4921. 79. Kårehed, K., et al., IFN-γ-induced upregulation of Fcγ-receptor-I during activation of monocytic cells requires the PKR and NFκB pathways. Molecular immunology, 2007. 44(4): p. 615-624. 80. Gattoni, A., et al., Interferon-gamma: biologic functions and HCV therapy (type I/II)(1 of 2 parts). La Clinica terapeutica, 2005. 157(4): p. 377-386. 81. Plate J. M., L.T.L., Bustamante G., Hayes R. L., Cytokines involved in the generation of cytolytic effector T lymphocytes. Ann N Y Acad Sci, 1988. 532: p. 149-157. 82. Herrmann, D.J., et al., Linezolid for the treatment of drug-resistant infections. 2008. 83. Bokarewa, M.I., T. Jin, and A. Tarkowski, Staphylococcus aureus: staphylokinase. The international journal of biochemistry & cell biology, 2006. 38(4): p. 504-509. 84. Groß, Medizinische Mikrobiologie und Infiktiologie. Thieme, 2006. First Edition. 85. Hellenbrand, W., et al., Seroprevalence of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in former East and West Germany, 1997–1998. European Journal of Clinical Microbiology and Infectious Diseases, 2005. 24(2): p. 131-135. 86. Whitley, R.J., Herpes simplex encephalitis: adolescents and adults. Antiviral research, 2006. 71(2): p. 141-148. 87. Bilzer T, S.D., Dahme E, Keiditsch E, Bürrig KF, Anzil AP, Wechsler W, Morphological, immunocytochemical and growth characteristics of three human glioblastomas established in vitro. Virchows Archiv A, 1991. 418(4): p. 281-293. 88. Theodore T. Puck, P.I.M., and Steven J. Cieciura, Clonal growth of mammalian cells in vitro; growth characteristics of colonies fron single HeLa cells with and without a feeder layer. J Exp Med, 1956. 103(2): p. 273-283. 89. Stichternoth C, F.A., Setiadi E, Giasson L, Vecchiarelli A, et al., Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. . Eukar Cell, 2011. 10: p. 502-511. 90. Pfefferkorn E. R., P.L.C., Specific labeling of intracellular toxoplasma gondii with uracil. J Protozool, 1977. 24: p. 449-453. 91. Däubener W., W.N., Pilz K., Seghrouchni S., Fischer H. G., Hadding U., A new, simple, bioassay for human IFN-gamma. J Immunol Methods, 1994. 168: p. 39-47. 83 92. Tsubuki S, S.Y., Tomioka M, Ito H, Kawashima S, Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di- leucine and tri-leucine. J Biochem, 1996. 119: p. 572-576. 93. Fukuda I, I.A., Hirai G, Nishimura S, Kawasaki H, et al., Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem Biol, 2009. 16(133-140). 94. Baffert F, R.C., De Pover A, Pissot-Soldermann C, Tavares GA, Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol Cancer Ther, 2010. 9: p. 1945-1955. 95. O'Shea JJ, P.R., JAK and STAT signalling molecules in immunoregulation and immune-mediated disease. Immunity, 2012. 36: p. 542-550. 96. Herbert A, N.H., Jessup W, Kockx M, Cartland S, et al, Hypoxia regulates the production and activity of glucose transporter-1 and indoleamine 2,3- dioxygenase in monocyte-derived endothelial-like cells: possible relevance to infantile haemangioma pathogenesis. British J of Dermatology, 2011. 164: p. 308-315. 97. Däubener, W., et al., Restriction of Toxoplasma gondiigrowth in human brain microvascular endothelial cells by activation of indoleamine 2, 3-dioxygenase. Infection and immunity, 2001. 69(10): p. 6527-6531. 98. Salceda, S. and J. Caro, Hypoxia-inducible Factor 1α (HIF-1α) Protein Is Rapidly Degraded by the Ubiquitin-Proteasome System under Normoxic Conditions ITS STABILIZATION BY HYPOXIA DEPENDS ON REDOX-INDUCED CHANGES. Journal of Biological Chemistry, 1997. 272(36): p. 22642-22647. 99. Hu, Y.-L., et al., Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer research, 2012. 72(7): p. 1773-1783. 100. Semenza, G.L. and G.L. Wang, A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and cellular biology, 1992. 12(12): p. 5447- 5454. 101. Nizet V, J.R., Interdependence of hypoxic and innate immune responses. Nature Reviews Immunology, 2009. 9: p. 609-617. 102. Weidemann A, J.R., Biology of HIF-1a. Cell Death Differ, 2008. 15: p. 621-627. 103. Monteleone I, A.R., Massimiliano Sarra, Giuseppe Sica, Pierpaolo Sileri, Livia Biancone, Thomas T. MacDonald, Francesco Pallone, Giovanni Monteleone, Aryl Hydrocarbon Receptor-Induced Signals Up-regulate IL-22 Production and Inhibit Inflammation in the Gastrointestinal Tract. Gastroenterology, 2011. 141(1): p. 237- 248. 84 104. Li Y, I.S., Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M., Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. . Cell, 2011 147: p. 629-640. 105. Iyer, N.V., et al., Cellular and developmental control of O2 homeostasis by hypoxia- inducible factor 1α. Genes & development, 1998. 12(2): p. 149-162. 106. Cramer, T., et al., HIF-1α is essential for myeloid cell-mediated inflammation. Cell, 2003. 112(5): p. 645-657. 107. Green, G.M. and E.H. Kass, Factors influencing the clearance of bacteria by the lung. Journal of Clinical Investigation, 1964. 43(4): p. 769. 108. Takikawa, O., et al., Tryptophan degradation in mice initiated by indoleamine 2, 3- dioxygenase. Journal of Biological Chemistry, 1986. 261(8): p. 3648-3653. 109. Yoshida, R., et al., Induction of pulmonary indoleamine 2, 3-dioxygenase by interferon. Proceedings of the National Academy of Sciences, 1981. 78(1): p. 129-132. 110. Meisel, R., et al., Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2, 3- dioxygenase. Leukemia, 2011. 25(4): p. 648-654. 111. Jönsson, K., T.K. Hunt, and S.J. Mathes, Oxygen as an isolated variable influences resistance to infection. Annals of surgery, 1988. 208(6): p. 783. 112. Darcy CJ, D.J., Woodberry T, McNeil YR, Stephens DP, et al., An observational cohort study of the kynurenine to tryptophan ratio in sepsis: Association with impaired immune and microvascular function. PLoS ONE, 2011. 6: p. e21185. 113. Huttunen R, S.J., Aittoniemi J, Oja SS, Raitala A, et al., High activity of indoleamine 2,3-dioxygenase enzyme predicts disease severity and case fatality in bacteremic patients. Shock, 2010. 33: p. 149-154. 114. Eza DE, L.S., Fulminant toxoplasmosis causing fatal pneumonitis and myocarditis. HIV Med, 2006. 7: p. 415-420. 115. Jeffrey L. Jones, D.K.-M., Marianna Wilson, Geraldine McQuillan, Thomas Navin, and and J.B. McAuley, Toxoplasma gondii Infection in the United States: Seroprevalence and Risk Factors. American Journal of Epidemiology, 2001. 154: p. 357-365. 116. Blader IJ, M.I., Boothroyd JC, Microarray analysis reveals previously unknown changes in Toxoplasma gondii–infected human cells. J Biol Chem, 2001. 276: p. 24223–24231. 85 117. Spear W, C.D., Coppens I, Johnson RS, Giaccia A, et al., The host cell transcription factor hypoxia-inducible factor 1 is required for Toxoplasma gondii growth and survival at physiological oxygen levels. Cellular Microbiology, 2006. 8: p. 339–352. 118. Muccio CF, E.G., Bartolini A, Cerase A Cerebral abscesses and necrotic cerebral tumours: differential diagnosis by perfusion-weighted magnetic resonance imaging. Radiol Med, 2008. 113: p. 747–757. 119. Flückiger U, T.A., Pneumonia in the immune compromised host. Ther Umsch, 2001. 58: p. 614-619. 120. RJ, W., Herpes simplex encephalitis: adolescents and adults. . Antiviral Res, 2006. 71: p. 141-148. 121. Aghi MK, L.T., Rabkin S, Martuza RL, Hypoxia enhances the replication of oncolytic herpes simplex virus. Mol Ther, 2009. 17: p. 51-56. 122. Davis DA, R.A., Zoeteweij JP, Aoki Y, Read-Connole EL, et al., Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood, 2001. 97: p. 3244-3250. 123. Munn, D.H. and A.L. Mellor, IDO and tolerance to tumors. Trends in molecular medicine, 2004. 10(1): p. 15-18. 124. Biju, M.P., et al., Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes. Molecular and cellular biology, 2004. 24(20): p. 9038-9047. 125. Thiel M, C.C., Kreth S, Kuboki S, Chen P, et al. , Targeted deletion of HIF-1a gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS ONE 2007. 2: p. e853. 126. Clambey ET, M.E., Westrich JA, Glover LE, Campbell EL, et al., Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. PNAS, 2012. 109: p. E2784–93. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät » Institute » Institut für Medizinische Mikrobiologie | |||||||
Dokument erstellt am: | 17.07.2017 | |||||||
Dateien geändert am: | 17.07.2017 | |||||||
Promotionsantrag am: | 15.11.2016 | |||||||
Datum der Promotion: | 13.07.2017 |