Dokument: Effects of circulating lipids on mitochondrial structure and function
Titel: | Effects of circulating lipids on mitochondrial structure and function | |||||||
Weiterer Titel: | Effekte von zirkulierenden Lipiden auf mitochondriale Struktur und Funktion | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=42287 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20170515-111808-4 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Englisch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Schomburg, Ulrike [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Roden, Michael [Gutachter] PD Dr. Meissner, Thomas [Gutachter] | |||||||
Stichwörter: | mitochondria lipid infusion free fatty acids insulin resistance | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Insulinresistenz ist die vordergründige Pathologie des Diabetes mellitus Typ 2, einer lebensbedrohlichen Krankheit, die Millionen Menschen weltweit betrifft. Eine Erhöhung der freien Fettsäuren im Blut, inflammatorische Stoffwechselprozesse sowie eine Veränderung der mitochondrialen Funktion tragen zu Insulinresistenz bei oder können diese sogar verursachen.
Ziel der vorliegenden Studie war, den Effekt einer kurzzeitigen Erhöhung der freien Fettsäuren auf die mitochondriale Funktion und Morphologie zu überprüfen. Vor, während und im Anschluss an eine Lipidinfusion wurde gesunden Studienteilnehmer/innen eine Muskelbiopsie entnommen, um die Mitochondrienfunktion mittels hochauflösender Respirometrie und die zelluläre Mitochondrienmorphologie mittels Elektronenmikroskopie zu untersuchen. Eine kurzzeitige Lipiderhöhung resultierte in einer Erhöhung der muskulären Lipidansammlungen nach 2,5 und 4 h in Form von Fetttröpfchen. Dieser Effekt findet besondere Ausprägung in der regulatorischen Region, direkt unterhalb des Sarkolemms. Zudem wurde nach 4 h eine Abnahme der mitochondrialen Effektivität, repräsentiert durch die Respirations-Kontroll-Rate, beobachtet. Auch lag eine negative Korrelation zwischen der Größe der Mitochondrien und der respiratorischen Kapazität in Form der Respirations-Kontroll-Rate vor, was vermuten lässt, dass kleinere Mitochondrien effizienter in der Substratoxidation waren. Zwischen Mitochondrienfunktion und Fetttröpfchengehalt des Muskels zeigten sich keine signifikanten Korrelationen. Zusammenfassend wiesen die Ergebnisse auf einen direkten Zusammenhang zwischen erhöhten freien Fettsäuren und mitochondrialer Respiration hin. Kurzzeitige Erhöhung der Lipide steigerte direkt den muskulären Fetttröpfchengehalt, was auf dynamische und schnell reagierende Charakteristika dieses Kompartiments hindeutete. Der erhöhte Fetttröpfchengehalt des Muskels per se schien keinen direkten Einfluss auf die Mitochondrienfunktion zu haben, was darauf hinweist, dass der Beeinträchtigung der Funktion und Morphologie der Mitochondrien zusätzliche Signaltransduktionswege zugrunde liegen.Insulin resistance is the hallmark of type 2 diabetes mellitus, a condition with life threatening complications affecting millions of people worldwide. Increases in circulating free fatty acids, inflammatory pathways and abnormal features of mitochondrial function may contribute to or even cause insulin resistance. This study aimed at elucidating the effect of a short-term increase in circulating free fatty acids on mitochondrial function and morphology. Healthy volunteers received lipid infusions and underwent muscle biopsies for analyzing mitochondrial function by high resolution respirometry and sub-cellular morphology by electron microscopy. Short-term lipid elevation resulted in an increase in muscular lipid accumulation after 2.5 h and 4 h in the form of lipid droplets, in particular in the regulatory subsarcolemmal area. The respiratory control ratio was lowered after 4 h of lipid infusion, indicating impaired mitochondrial respiration. In addition, mitochondrial size correlated negatively with respiratory capacity as represented by the respiratory control ratio, suggesting that smaller mitochondria were more efficient in substrate oxidation. No correlations were found between mitochondrial functional parameters and lipid content. Taken together, these findings showed a direct interplay between circulating free fatty acids and mitochondrial respiration. Short-term lipid infusion directly increased muscular lipid content, which emphasized the dynamic and fast reacting nature of this compartment. Lipid droplet content per se did not affect mitochondrial function, which indicated that further metabolic pathways might underlie the functional impairment. | |||||||
Quelle: | 1. Atkinson, M.A. and G.S. Eisenbarth, Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet, 2001. 358(9277): p. 221-9.
2. Stumvoll, M., B.J. Goldstein, and T.W. van Haeften, Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 2005. 365(9467): p. 1333-46. 3. Jeong, I.K. and G.L. King, New perspectives on diabetic vascular complications: the loss of endogenous protective factors induced by hyperglycemia. Diabetes Metab J, 2011. 35(1): p. 8-11. 4. Colagiuri, R., Diabetes: a pandemic, a development issue or both? Expert Rev Cardiovasc Ther, 2010. 8(3): p. 305-9. 5. Federation, I.D., World Diabetes Media Kit. 2007, International Diabetes Federation, Brussels, Belgium 6. Prevention., C.f.D.C.a., National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2011. 7. Matthews, D.R., et al., Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985. 28(7): p. 412-9. 8. Reaven, G.M. and Y.D. Chen, Role of insulin in regulation of lipoprotein metabolism in diabetes. Diabetes Metab Rev, 1988. 4(7): p. 639-52. 9. Szendroedi, J., E. Phielix, and M. Roden, The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol, 2012. 8(2): p. 92-103. 10. Lewis, G.F., et al., Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev, 2002. 23(2): p. 201-29. 11. Roden, M., Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes (Lond), 2005. 29 Suppl 2: p. S111-5. 12. Knowler, W.C., et al., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med, 2002. 346(6): p. 393-403. 13. Scott, L.J., et al., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 2007. 316(5829): p. 1341-5. 14. Sladek, R., et al., A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 2007. 445(7130): p. 881-5. 15. Khaodhiar, L., S. Cummings, and C.M. Apovian, Treating diabetes and prediabetes by focusing on obesity management. Curr Diab Rep, 2009. 9(5): p. 348-54. 16. Roglic, G., et al., The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care, 2005. 28(9): p. 2130-5. 17. Yach, D., D. Stuckler, and K.D. Brownell, Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med, 2006. 12(1): p. 62-6. 18. Szendrodi, J. and M. Roden, [The adipose tissue as an endocrine organ]. Acta Med Austriaca, 2004. 31(4): p. 98-111. 19. Lumeng, C.N. and A.R. Saltiel, Inflammatory links between obesity and metabolic disease. J Clin Invest, 2011. 121(6): p. 2111-7. 20. Saltiel, A.R. and C.R. Kahn, Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001. 414(6865): p. 799-806. 21. Kahn, S.E., R.L. Hull, and K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006. 444(7121): p. 840-6. 22. Rains, J.L. and S.K. Jain, Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med, 2011. 50(5): p. 567-75. 23. Fery, F., Role of hepatic glucose production and glucose uptake in the pathogenesis of fasting hyperglycemia in type 2 diabetes: normalization of glucose kinetics by short-term fasting. J Clin Endocrinol Metab, 1994. 78(3): p. 536-42. 24. Lam, T.K., G. van de Werve, and A. Giacca, Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites. Am J Physiol Endocrinol Metab, 2003. 284(2): p. E281-90. 25. Roden, M., The liver in focus. Diabetologia, 2016. 59(6): p. 1095-7. 26. Baldeweg, S.E., et al., Insulin resistance, lipid and fatty acid concentrations in 867 healthy Europeans. European Group for the Study of Insulin Resistance (EGIR). Eur J Clin Invest, 2000. 30(1): p. 45-52. 27. Roden, M., et al., Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans. Diabetes, 1999. 48(2): p. 358-64. 28. Krebs, M., et al., Free fatty acids inhibit the glucose-stimulated increase of intramuscular glucose-6-phosphate concentration in humans. J Clin Endocrinol Metab, 2001. 86(5): p. 2153-60. 29. Turner, N., et al., Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes, 2007. 56(8): p. 2085-92. 30. Bonnard, C., et al., Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest, 2008. 118(2): p. 789-800. 31. Simoneau, J.A. and D.E. Kelley, Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol, 1997. 83(1): p. 166-71. 32. Petersen, K.F., et al., Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med, 2004. 350(7): p. 664-71. 33. Knebel, B., et al., Specific Metabolic Profiles and Their Relationship to Insulin Resistance in Recent-Onset Type 1 and Type 2 Diabetes. J Clin Endocrinol Metab, 2016. 101(5): p. 2130-40. 34. Lowell, B.B. and G.I. Shulman, Mitochondrial dysfunction and type 2 diabetes. Science, 2005. 307(5708): p. 384-7. 35. Jucker, B.M., et al., 13C and 31P NMR studies on the effects of increased plasma free fatty acids on intramuscular glucose metabolism in the awake rat. J Biol Chem, 1997. 272(16): p. 10464-73. 36. Shulman, G.I., et al., Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med, 1990. 322(4): p. 223-8. 37. Unger, R.H., Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes, 1995. 44(8): p. 863-70. 38. Unger, R.H., Lipotoxic diseases. Annu Rev Med, 2002. 53: p. 319-36. 39. Dagenais, G.R., R.G. Tancredi, and K.L. Zierler, Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm. J Clin Invest, 1976. 58(2): p. 421-31. 40. Randle, P.J., et al., The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 1963. 1(7285): p. 785-9. 41. Cline, G.W., et al., Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med, 1999. 341(4): p. 240-6. 42. Dresner, A., et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest, 1999. 103(2): p. 253-9. 43. Griffin, M.E., et al., Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 1999. 48(6): p. 1270-4. 44. Yu, C., et al., Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem, 2002. 277(52): p. 50230-6. 45. Goodpaster, B.H., et al., Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab, 2001. 86(12): p. 5755-61. 46. Pruchnic, R., et al., Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Physiol Endocrinol Metab, 2004. 287(5): p. E857-62. 47. Dube, J.J., et al., Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am J Physiol Endocrinol Metab, 2008. 294(5): p. E882-8. 48. Schmitz-Peiffer, C., Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal, 2000. 12(9-10): p. 583-94. 49. Itani, S.I., et al., Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes, 2002. 51(7): p. 2005-11. 50. Cooney, G.J., et al., Muscle long-chain acyl CoA esters and insulin resistance. Ann N Y Acad Sci, 2002. 967: p. 196-207. 51. Summers, S.A., Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res, 2006. 45(1): p. 42-72. 52. Obanda, D.N. and W.T. Cefalu, Modulation of cellular insulin signaling and PTP1B effects by lipid metabolites in skeletal muscle cells. J Nutr Biochem, 2013. 24(8): p. 1529-37. 53. van de Weijer, T., V.B. Schrauwen-Hinderling, and P. Schrauwen, Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res, 2011. 92(1): p. 10-8. 54. Kohlgruber, A. and L. Lynch, Adipose Tissue Inflammation in the Pathogenesis of Type 2 Diabetes. Curr Diab Rep, 2015. 15(11): p. 92. 55. Shoelson, S.E., J. Lee, and A.B. Goldfine, Inflammation and insulin resistance. J Clin Invest, 2006. 116(7): p. 1793-801. 56. Lee, J.Y., et al., Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem, 2001. 276(20): p. 16683-9. 57. Kohchi, C., et al., ROS and innate immunity. Anticancer Res, 2009. 29(3): p. 817-21. 58. Morino, K., et al., Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest, 2005. 115(12): p. 3587-93. 59. Phielix, E., et al., Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia, 2010. 53(8): p. 1714-21. 60. Brands, M., A.J. Verhoeven, and M.J. Serlie, Role of mitochondrial function in insulin resistance. Adv Exp Med Biol, 2012. 942: p. 215-34. 61. Phielix, E., et al., Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes, 2008. 57(11): p. 2943-9. 62. Koliaki, C. and M. Roden, Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus. Annu Rev Nutr, 2016. 63. Ballard, J.W. and M.C. Whitlock, The incomplete natural history of mitochondria. Mol Ecol, 2004. 13(4): p. 729-44. 64. Benard, G. and R. Rossignol, Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal, 2008. 10(8): p. 1313-42. 65. Kelley, D.E., et al., Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes, 2002. 51(10): p. 2944-50. 66. Vonck, J. and E. Schafer, Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta, 2009. 1793(1): p. 117-24. 67. Starkov, A.A., The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci, 2008. 1147: p. 37-52. 68. Chance, B. and G.R. Williams, The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem, 1956. 17: p. 65-134. 69. Saraste, M., Oxidative phosphorylation at the fin de siecle. Science, 1999. 283(5407): p. 1488-93. 70. Patti, M.E. and S. Corvera, The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev, 2010. 31(3): p. 364-95. 71. Harper, J.A., K. Dickinson, and M.D. Brand, Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes Rev, 2001. 2(4): p. 255-65. 72. Schrauwen, P., J. Hoeks, and M.K. Hesselink, Putative function and physiological relevance of the mitochondrial uncoupling protein-3: involvement in fatty acid metabolism? Prog Lipid Res, 2006. 45(1): p. 17-41. 73. McBride, H.M., M. Neuspiel, and S. Wasiak, Mitochondria: more than just a powerhouse. Curr Biol, 2006. 16(14): p. R551-60. 74. Cortassa, S., et al., Control and regulation of integrated mitochondrial function in metabolic and transport networks. Int J Mol Sci, 2009. 10(4): p. 1500-13. 75. Gouspillou, G., et al., Alteration of mitochondrial oxidative phosphorylation in aged skeletal muscle involves modification of adenine nucleotide translocator. Biochim Biophys Acta, 2010. 1797(2): p. 143-51. 76. Cogswell, A.M., R.J. Stevens, and D.A. Hood, Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Physiol, 1993. 264(2 Pt 1): p. C383-9. 77. Hood, D.A., Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol, 2001. 90(3): p. 1137-57. 78. Ritov, V.B., et al., Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes, 2005. 54(1): p. 8-14. 79. Brehm, A., et al., Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes, 2006. 55(1): p. 136-40. 80. Brehm, A., et al., Acute elevation of plasma lipids does not affect ATP synthesis in human skeletal muscle. Am J Physiol Endocrinol Metab, 2010. 299(1): p. E33-8. 81. Szendroedi, J., et al., Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A, 2014. 111(26): p. 9597-602. 82. Phielix, E., et al., Effects of pioglitazone versus glimepiride exposure on hepatocellular fat content in type 2 diabetes. Diabetes Obes Metab, 2013. 15(10): p. 915-22. 83. Nowotny, B., et al., Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes, 2013. 62(7): p. 2240-8. 84. DeFronzo, R.A., J.D. Tobin, and R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol, 1979. 237(3): p. E214-23. 85. Ferrannini, E. and A. Mari, How to measure insulin sensitivity. J Hypertens, 1998. 16(7): p. 895-906. 86. Roden, M.D., Clinical diabetes research : methods and techniques. 2007, Chichester: John Wiley. 87. Bergstrom, J., et al., Diet, muscle glycogen and physical performance. Acta Physiol Scand, 1967. 71(2): p. 140-50. 88. Gnaiger, E., et al., Mitochondrial respiration in the low oxygen environment of the cell. Effect of ADP on oxygen kinetics. Biochim Biophys Acta, 1998. 1365(1-2): p. 249-54. 89. Saks, V.A., et al., Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem, 1998. 184(1-2): p. 81-100. 90. Veksler, V.I., et al., Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta, 1987. 892(2): p. 191-6. 91. Brands, M., et al., Short-term increase of plasma free fatty acids does not interfere with intrinsic mitochondrial function in healthy young men. Metabolism, 2011. 60(10): p. 1398-405. 92. Walther, T.C. and R.V. Farese, Jr., Lipid droplets and cellular lipid metabolism. Annu Rev Biochem, 2012. 81: p. 687-714. 93. Sinha, R., et al., Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes, 2002. 51(4): p. 1022-7. 94. Boden, G., et al., Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes, 2001. 50(7): p. 1612-7. 95. Roden, M., et al., Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest, 1996. 97(12): p. 2859-65. 96. Aon, M.A., N. Bhatt, and S.C. Cortassa, Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol, 2014. 5: p. 282. 97. Greenberg, A.S., et al., The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest, 2011. 121(6): p. 2102-10. 98. Kimmel, A.R. and C. Sztalryd, Perilipin 5, a lipid droplet protein adapted to mitochondrial energy utilization. Curr Opin Lipidol, 2014. 25(2): p. 110-7. 99. Szendroedi, J. and M. Roden, Perilipin 5: From fatty liver to hepatic lipodystrophy? Hepatology, 2014. 100. Gandotra, S., et al., Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med, 2011. 364(8): p. 740-8. 101. Listenberger, L.L., et al., Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A, 2003. 100(6): p. 3077-82. 102. Phielix, E., et al., High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes, 2012. 61(10): p. 2472-8. 103. Sparks, L.M., et al., ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity. Diabetologia, 2016. 59(5): p. 1030-9. 104. Ikeda, S., et al., Up-regulation of SREBP-1c and lipogenic genes in skeletal muscles after exercise training. Biochem Biophys Res Commun, 2002. 296(2): p. 395-400. 105. Richardson, D.K., et al., Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem, 2005. 280(11): p. 10290-7. 106. Chavez, A.O., et al., Effect of short-term free Fatty acids elevation on mitochondrial function in skeletal muscle of healthy individuals. J Clin Endocrinol Metab, 2010. 95(1): p. 422-9. 107. Sparks, L.M., et al., A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes, 2005. 54(7): p. 1926-33. 108. Boushel, R., et al., Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia, 2007. 50(4): p. 790-6. 109. Asmann, Y.W., et al., Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes, 2006. 55(12): p. 3309-19. 110. Hey-Mogensen, M., et al., Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia, 2010. 53(9): p. 1976-85. 111. Mogensen, M., et al., Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes, 2007. 56(6): p. 1592-9. 112. Meex, R.C., et al., Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes, 2010. 59(3): p. 572-9. 113. Dube, J.J., et al., Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance. Am J Physiol Endocrinol Metab, 2014. 307(12): p. E1117-24. 114. Karakelides, H., et al., Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes, 2010. 59(1): p. 89-97. 115. Stump, C.S., et al., Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci U S A, 2003. 100(13): p. 7996-8001. 116. Phielix, E., et al., Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: a randomised clinical trial. Diabetologia, 2014. 57(3): p. 572-81. 117. Petersen, K.F., et al., Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes. Proc Natl Acad Sci U S A, 2012. 109(21): p. 8236-40. 118. Towler, D.A., Mitochondrial ROS deficiency and diabetic complications: AMP[K]-lifying the adaptation to hyperglycemia. J Clin Invest, 2013. 123(11): p. 4573-6. 119. Chow, L., A. From, and E. Seaquist, Skeletal muscle insulin resistance: the interplay of local lipid excess and mitochondrial dysfunction. Metabolism, 2010. 59(1): p. 70-85. 120. Samuel, V.T. and G.I. Shulman, Mechanisms for insulin resistance: common threads and missing links. Cell, 2012. 148(5): p. 852-71. 121. Krssak, M., et al., Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia, 1999. 42(1): p. 113-6. 122. Sun, G., et al., Skeletal muscle characteristics predict body fat gain in response to overfeeding in never-obese young men. Metabolism, 2002. 51(4): p. 451-6. 123. Halestrap, A.P., The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta, 1989. 973(3): p. 355-82. 124. Lim, K.H., et al., The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J Physiol, 2002. 545(Pt 3): p. 961-74. 125. Martin, S.D. and S.L. McGee, The role of mitochondria in the aetiology of insulin resistance and type 2 diabetes. Biochim Biophys Acta, 2013. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 15.05.2017 | |||||||
Dateien geändert am: | 15.05.2017 | |||||||
Promotionsantrag am: | 12.07.2016 | |||||||
Datum der Promotion: | 02.05.2017 |