Dokument: Charakterisierung der Interaktion von β-Amyloid mit Membranen mittels Nanodisks als Modellmembransystem
Titel: | Charakterisierung der Interaktion von β-Amyloid mit Membranen mittels Nanodisks als Modellmembransystem | |||||||
Weiterer Titel: | Characterisation of Amyloid β Membrane Interaction using Nanodiscs as a Model Membrane System | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=39577 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20170905-094334-8 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Englisch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Thomaier, Maren [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Willbold, Dieter [Gutachter] Prof. Dr. Jaeger, Karl-Erich [Gutachter] | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie | |||||||
Beschreibungen: | Alzheimer-Demenz ist eine neurodegenerative Krankheit und die häufigste Form der Demenz. Im Verlauf der Krankheit werden Nervenzellen im Gehirn irreversibel geschädigt, was zu Gedächtnisverlust und Wahrnehmungsstörungen führt. Die Aggregation des Amyloid-β (Aβ) Peptides von seiner monomeren nicht toxischen Form über toxische Oligomere hin zu amyloiden Fibrillen und Aggregaten spielt eine entscheidende Rolle in der Krankheit. Es ist jedoch noch nicht geklärt, welcher Mechanismus zum Polymerisationsprozess führt. Ebenfalls sind trotz intensiver Forschung, die zugrunde liegenden molekularen Mechanismen, welche zur Toxizität der Oligomere führen, noch ungeklärt. Für beide Mechanismen ist die Interaktion von Aβ mit neuronalen Zellen entscheidend, die jedoch noch nicht aufgeklärt ist.
In dieser Arbeit wurden erstmalig Nanodisks verwendet, um die Interaktion von Aβ mit Membranen zu untersuchen. Nanodisks bestehen aus zwei Kopien des Proteins MSP (membrane scaffold protein), die eine Lipiddoppelschicht umgeben. Sie sind exzellente Modelmembransysteme um Protein Membran Interaktionen zu analysieren. Hier konnte gezeigt werden, dass sie sich für die Untersuchung von Aβ mit Membranen eignen. Protokolle für die Assemblierung mit neuen Lipidmischungen aus Lipiden, die sich in Lipid-Rafts von neuronalen Zellmembranen befinden, wurden etabliert und die Stabilität der Nanodiscs wurde mittels analytischer Größenausschlusschromatographie untersucht. Um Information über die Bindung von Aβ an Membranen und die damit verbundenen strukturellen Änderungen zu gewinnen, welche wahrscheinlich zur Membraninsertion führen, sind hochaufgelöste Strukturen erforderlich. Dies war bisher nicht möglich, da die geeigneten Modelmembransysteme fehlten. In der vorliegenden Arbeit zeigten erste NMR spektroskopische Untersuchungen, dass Aβ an Gangliosid GM1 haltige Nanodisks bindet und mit weiteren Optimierungen könnten Nanodisks als hervorragende Model Membran Systeme für die Untersuchung von Aβ in Membranumgebung dienen. Um die molekularen Voraussetzungen der Aβ-Membran-Bindung zu untersuchen wurden verschiedene Nanodisks mit variierenden Lipiden, bezüglich der Ladung der Kopfgruppe wie auch der GM1 Konzentration, eingesetzt. Fluoreszenz Titrations Experimente wurden etabliert und eine hoch affine Bindung von DAC-Aβ(1-40) an GM1 Nanodiscs in GM1 Konzentrationsabhängigkeit wurde entdeckt und charakterisiert. BioLayer Interferometrie (BLI) Experimente bestätigten die Bindung von Aβ(1-40) an GM1 Nanodisks. Mittels BLI wurde zusätzlich die Bindung von Aβ(1-42) an Nanodisks untersucht. Es bindet ebenfalls mit hoher Affinität an GM1 enthaltende Nanodisks und auch im gleichen nanomolaren Bereich wie Aβ(1-40). Interessanterweise banden weder Aβ(1-40) Oligomere noch Aβ(1-42) Oligomere an GM1 enthaltende Nanodisks, was darauf hinweist, dass die GM1-Membran-bindenden Regionen in Aβ Monomeren in Aβ-Oligomeren verdeckt sind. Nanodisks sind somit geeignete Modelmembransysteme um die Bindung und Interaktion von Aβ an und mit Membranen zu analysieren und charakterisieren.Alzheimer’s disease is a progressive neurodegenerative disease and the most common form of dementia. During the progression of the disease, neuronal nerve tissue is irreversibly damaged causing loss of memory and cognitive decline. The aggregation of amyloid β (Aβ) peptide from its monomeric non-toxic form over toxic oligomeric species to amyloid fibrils and aggregates is thought to play an important role in the disease. However, it is still unclear which mechanism causes the polymerisation process. Moreover, despite extensive research, the underlying molecular mechanism by which oligomeric Aβ species exhibit toxicity is still enigmatic. For both mechanisms, Aβ interaction with neuronal cell membranes is crucial. However, Aβ interaction with membranes has not been completely elucidated yet. In this work, nanodiscs were firstly used to study the interactions of Aβ with membranes. Nanodiscs are composed of two copies of the membrane scaffold protein surrounding a lipid bilayer. They are excellent model membrane systems for studying protein-membrane interactions, e.g. they have been shown to allow straight forward use of biophysical methods e.g. surface plasmon resonance, BioLlayer Interferometry (BLI) or nuclear magnetic resonance (NMR) spectroscopy to membrane inserted proteins. In this work their suitability to investigate the membrane interaction of Aβ is shown. Protocols for the assembly of nanodiscs with new lipid mixtures found in lipid rafts of neuronal cell membranes were established and the stability of nanodiscs was assessed by analytical size exclusion chromatography. In order to gain further knowledge about the binding of Aβ to the membrane and connected structural secondary changes presumably leading to membrane insertion, high resolution structures are required. Yet, this has been hampered by the lack of an appropriate model membrane system. In this work, first NMR spectroscopy results revealed a binding of Aβ to GM1 containing nanodiscs. By further optimisation nanodiscs could serve as an excellent model membrane system to study Aβ in a membrane environment. To analyse the molecular requirements of Aβ membrane binding, different nanodiscs varying in their lipid composition, regarding the charge of the head group as well as ganglioside GM1 concentration, were tested for membrane interaction with Aβ. Therefore fluorescence titration experiments were established and a high affinity binding of DAC-Aβ(1-40) to GM1 containing nanodiscs in a GM1 concentration dependent manner was found. BLI experiments confirmed completely binding of Aβ(1-40) to ganglioside GM1 containing nanodiscs. BLI allowed to extend binding studies to Aβ(1-42), which also bound with high affinity to GM1 nanodiscs in the same nanomolar range than Aβ(1-40). Interestingly, neither oligomeric Aβ(1-40) nor oligomeric Aβ(1-42) did bind to GM1 containing nanodiscs, indicating GM1-membrane binding regions of the Aβ monomers are masked in the Aβ oligomers. Thus nanodiscs are suitable model membrane systems to analyse and characterise Aβ membrane binding and interaction revealing new insights. | |||||||
Quelle: | Allen, J. A., R. A. Halverson-Tamboli, et al. (2007). "Lipid raft microdomains and neurotransmitter signalling." Nature Reviews Neuroscience 8(2): 128-140.
Alzheimer, A. (1911). "Concerning unsual medical cases in old age." Zeitschrift Fur Die Gesamte Neurologie Und Psychiatrie 4: 356-385. Arispe, N., E. Rojas, et al. (1993). "Alzheimer-Disease Amyloid Beta-Protein Forms Calcium Channels in Bilayer-Membranes - Blockade by Tromethamine and Aluminum." Proceedings of the National Academy of Sciences of the United States of America 90(2): 567-571. Assoc, A. (2015). "Alzheimer's Association Report 2015 Alzheimer's disease facts and figures." Alzheimers & Dementia 11(3): 332-384. Aue, W. P., E. Bartholdi, et al. (1976). "2-Dimensional Spectroscopy - Application to Nuclear Magnetic-Resonance." Journal of Chemical Physics 64(5): 2229-2246. Bailey, J. A., B. Maloney, et al. (2011). "Functional activity of the novel Alzheimer's amyloid beta-peptide interacting domain (AbetaID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis." Gene 488(1-2): 13-22. Barrow, C. J. and M. G. Zagorski (1991). "Solution Structures of Beta Peptide and Its Constituent Fragments - Relation to Amyloid Deposition." Science 253(5016): 179-182. Bartels, T., N. C. Kim, et al. (2014). "N-Alpha-Acetylation of alpha-Synuclein Increases Its Helical Folding Propensity, GM1 Binding Specificity and Resistance to Aggregation." Plos One 9(7). Barucker, C., A. Harmeier, et al. (2014). "Nuclear Translocation Uncovers the Amyloid Peptide A beta 42 as a Regulator of Gene Transcription." Journal of Biological Chemistry 289(29): 20182-20191. Bayburt, T. H., J. W. Carlson, et al. (1998). "Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer." J Struct Biol 123(1): 37-44. Bayburt, T. H., Y. V. Grinkova, et al. (2002). "Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins." Nano Letters 2(8): 853-856. Bayburt, T. H. and S. G. Sligar (2002). "Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks." Proc Natl Acad Sci U S A 99(10): 6725-6730. Bayburt, T. H. and S. G. Sligar (2010). "Membrane protein assembly into Nanodiscs." FEBS Lett 584(9): 1721-1727. Blennow, K., M. J. de Leon, et al. (2006). "Alzheimer's disease." Lancet 368(9533): 387-403. Blennow, K., H. Hampel, et al. (2010). "Cerebrospinal fluid and plasma biomarkers in Alzheimer disease." Nature Reviews Neurology 6(3): 131-144. Bloch, F., W. W. Hansen, et al. (1946). "Nuclear Induction." Physical Review 69(3-4): 127-127. Bobby, R., K. Medini, et al. (2013). "Structure and dynamics of human Nedd4-1 WW3 in complex with the alphaENaC PY motif." Biochim Biophys Acta 1834(8): 1632-1641. Borch, J. and T. Hamann (2009). "The nanodisc: a novel tool for membrane protein studies." Biol Chem 390(8): 805-814. Braak, H., K. Del Tredici, et al. (2000). "Vulnerability of select neuronal types to Alzheimer's disease." Alzeheimer's Disease: A Compendium of Current Theories 924: 53-61. Brener, O., T. Dunkelmann, et al. (2015). "QIAD assay for quantitating a compound's efficacy in elimination of toxic Abeta oligomers." Sci Rep 5: 13222. Brown, D. A. and E. London (2000). "Structure and function of sphingolipid- and cholesterol-rich membrane rafts." Journal of Biological Chemistry 275(23): 17221-17224. Bruggink, K. A., M. Muller, et al. (2012). "Methods for analysis of amyloid-beta aggregates." Journal of Alzheimers Disease 28(4): 735-758. Butterfield, S. M. and H. A. Lashuel (2010). "Amyloidogenic Protein Membrane Interactions: Mechanistic Insight from Model Systems." Angewandte Chemie-International Edition 49(33): 5628-5654. Capone, R., H. Jang, et al. (2012). "All-D-Enantiomer of beta-Amyloid Peptide Forms Ion Channels in Lipid Bilayers." Journal of Chemical Theory and Computation 8(3): 1143-1152. Chan, Y. H. M. and S. G. Boxer (2007). "Model membrane systems and their applications." Current Opinion in Chemical Biology 11(6): 581-587. Chi, E. Y., C. Ege, et al. (2008). "Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloid-beta peptide." Proteins-Structure Function and Bioinformatics 72(1): 1-24. Cleary, J. P., D. M. Walsh, et al. (2005). "Natural oligomers of the amyloid-protein specifically disrupt cognitive function." Nature Neuroscience 8(1): 79-84. Connelly, L., H. Jang, et al. (2012). "Atomic Force Microscopy and MD Simulations Reveal Pore-Like Structures of All-D-Enantiomer of Alzheimer's beta-Amyloid Peptide: Relevance to the Ion Channel Mechanism of AD Pathology." Journal of Physical Chemistry B 116(5): 1728-1735. Crescenzi, O., S. Tomaselli, et al. (2002). "Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment - Similarity with a virus fusion domain." European Journal of Biochemistry 269(22): 5642-5648. Dammers, C., L. Gremer, et al. (2015). "Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-beta Variants and Structural Analysis by Solution NMR Spectroscopy." Plos One 10(10): e0139710. Dammers, C., L. Gremer, et al. (2015). "Structural Analysis and Aggregation Propensity of Pyroglutamate Abeta(3-40) in Aqueous Trifluoroethanol." Plos One 10(11): e0143647. Delaglio, F., S. Grzesiek, et al. (1995). "Nmrpipe - a Multidimensional Spectral Processing System Based on Unix Pipes." J Biomol NMR 6(3): 277-293. Demchenko, A. P., Y. Mely, et al. (2009). "Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes." Biophysical Journal 96(9): 3461-3470. Denisov, I. G., Y. V. Grinkova, et al. (2004). "Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size." J Am Chem Soc 126(11): 3477-3487. Denisov, I. G., M. A. McLean, et al. (2005). "Thermotropic phase transition in soluble nanoscale lipid bilayers." Journal of Physical Chemistry B 109(32): 15580-15588. Ding, Y., L. M. Fujimoto, et al. (2015). "Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation." J Biomol NMR 61(3-4): 275-286. Dislich, B. and S. F. Lichtenthaler (2012). "The membrane-bound aspartyl protease BACE1: molecular and functional properties in Alzheimer's disease and beyond." Front Physiol 3. Drochioiu, G., M. Manea, et al. (2009). "Interaction of beta-amyloid (1-40) peptide with pairs of metal ions: An electrospray ion trap mass spectrometric model study." Biophys Chem 144(1-2): 9-20. Drolle, E., R. M. Gaikwad, et al. (2012). "Nanoscale Electrostatic Domains in Cholesterol-Laden Lipid Membranes Create a Target for Amyloid Binding." Biophysical Journal 103(4): L27-L29. Edbauer, D., E. Winkler, et al. (2003). "Reconstitution of gamma-secretase activity." Nature Cell Biology 5(5): 486-488. Ege, C. and K. Y. C. Lee (2004). "Insertion of Alzheimer's A beta 40 peptide into lipid monolayers." Biophysical Journal 87(3): 1732-1740. El-Agnaf, O. M., D. S. Mahil, et al. (2000). "Oligomerization and toxicity of beta-amyloid-42 implicated in Alzheimer's disease." Biochem Biophys Res Commun 273(3): 1003-1007. Esch, F. S., P. S. Keim, et al. (1990). "Cleavage of Amyloid-Beta Peptide during Constitutive Processing of Its Precursor." Science 248(4959): 1122-1124. Fantini, J., N. Yahi, et al. (2013). "Cholesterol accelerates the binding of Alzheimer's beta-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation." Front Physiol 4: 120. Finder, V. H. and R. Glockshuber (2007). "Amyloid-beta aggregation." Neurodegenerative Diseases 4(1): 13-27. Folch, J. (1942). "Brain cephalin, a mixture of phosphatides. Separation from it of phosphatidyl serine, phosphatidyl ethanolamine, and a fraction containing an inositol phosphatide." Journal of Biological Chemistry 146(1): 35-44. Folch, J., M. Lees, et al. (1957). "A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues." Journal of Biological Chemistry 226(1): 497-509. Forster, T. (1969). "Excimers." Angewandte Chemie-International Edition 8(5): 333-&. Fotuhi, M., V. Hachinski, et al. (2009). "Changing perspectives regarding late-life dementia." Nature Reviews Neurology 5(12): 649-658. Fox, N. C., S. Cousens, et al. (2000). "Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease - Power calculations and estimates of sample size to detect treatment effects." Arch Neurol 57(3): 339-344. Frenzel, D., J. M. Gluck, et al. (2014). "Immobilization of homogeneous monomeric, oligomeric and fibrillar Abeta species for reliable SPR measurements." Plos One 9(3): e89490. Georgieva, E. R., T. F. Ramlall, et al. (2008). "Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles." J Am Chem Soc 130(39): 12856-12857. Gerlach, W. and O. Stern (1922). "The experimental evidence of direction quantistion in the magnetic field." Zeitschrift Fur Physik 9: 349-352. Gerlach, W. and O. Stern (1922). "The magnetic moment of silver atoms." Zeitschrift Fur Physik 9: 353-355. Glenner, G. G. and C. W. Wong (1984). "Alzheimers-Disease - Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein." Biochem Biophys Res Commun 120(3): 885-890. Gluck, J. M., B. W. Koenig, et al. (2011). "Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies." Anal Biochem 408(1): 46-52. Gluck, J. M., M. Wittlich, et al. (2009). "Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy." J Am Chem Soc 131(34): 12060-12061. Grinkova, Y. V., I. G. Denisov, et al. (2010). "Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers." Protein Engineering Design & Selection 23(11): 843-848. Haass, C., M. G. Schlossmacher, et al. (1992). "Amyloid Beta-Peptide Is Produced by Cultured-Cells during Normal Metabolism." Nature 359(6393): 322-325. Hagn, F., M. Etzkorn, et al. (2013). "Optimized Phospholipid Bilayer Nanodiscs Facilitate High-Resolution Structure Determination of Membrane Proteins." J Am Chem Soc 135(5): 1919-1925. Hane, F., E. Drolle, et al. (2011). "Amyloid-beta Aggregation on Model Lipid Membranes: An Atomic Force Microscopy Study." Journal of Alzheimers Disease 26(3): 485-494. Hardy, J. and D. J. Selkoe (2002). "Medicine - The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics." Science 297(5580): 353-356. Hardy, J. A. and G. A. Higgins (1992). "Alzheimers-Disease - the Amyloid Cascade Hypothesis." Science 256(5054): 184-185. Harper, J. D. and P. T. Lansbury (1997). "Models of amyloid seeding in Alzheimier's disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins." Annual Review of Biochemistry 66: 385-407. Harper, J. D., S. S. Wong, et al. (1997). "Observation of metastable A beta amyloid protofibrils by atomic force microscopy." Chemistry & Biology 4(2): 119-125. Hayashi, H., N. Kimura, et al. (2004). "A seed for Alzheimer amyloid in the brain." Journal of Neuroscience 24(20): 4894-4902. Helzner, E. P. (2009). "Survival in Alzheimer disease: A multiethnic, population-based study of incident cases (vol 71, pg 1489, 2008)." Neurology 72(9): 861-861. Hernandez-Rocamora, V. M., B. Reija, et al. (2012). "Dynamic Interaction of the Escherichia coli Cell Division ZipA and FtsZ Proteins Evidenced in Nanodiscs." Journal of Biological Chemistry 287(36): 30097-30104. Hilbich, C., B. Kisterswoike, et al. (1992). "Substitutions of Hydrophobic Amino-Acids Reduce the Amyloidogenicity of Alzheimers-Disease Beta-A4 Peptides." J Mol Biol 228(2): 460-473. Igbavboa, U., G. Y. Sun, et al. (2009). "Amyloid beta-protein stimulates trafficking of cholesterol and caveolin-1 from the plasma membrane to the Golgi complex in mouse primary astrocytes." Neuroscience 162(2): 328-338. Ikeda, K. and K. Matsuzaki (2008). "Driving force of binding of amyloid beta-protein to lipid bilayers." Biochem Biophys Res Commun 370(3): 525-529. Ikeda, K., T. Yamaguchi, et al. (2011). "Mechanism of amyloid beta-protein aggregation mediated by GM1 ganglioside clusters." Biochemistry 50(29): 6433-6440. Jahn, H. (2013). "Memory loss in Alzheimer's disease." Dialogues Clin Neurosci 15(4): 445-454. Jan, A., O. Adolfsson, et al. (2011). "Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species." Journal of Biological Chemistry 286(10): 8585-8596. Jang, H., J. Zheng, et al. (2008). "New structures help the modeling of toxic amyloidbeta ion channels." Trends Biochem Sci 33(2): 91-100. Jao, C. C., B. G. Hegde, et al. (2008). "Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement." Proceedings of the National Academy of Sciences of the United States of America 105(50): 19666-19671. Jozsa, E., K. Osz, et al. (2010). "Nickel(II) and mixed metal complexes of amyloid-beta N-terminus." Dalton Transactions 39(30): 7046-7053. Kakio, A., S. Nishimoto, et al. (2002). "Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: Importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid." Biochemistry 41(23): 7385-7390. Kakio, A., S. I. Nishimoto, et al. (2001). "Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid." Journal of Biological Chemistry 276(27): 24985-24990. Kakio, A., Y. Yano, et al. (2004). "Interaction between amyloid beta-protein aggregates and membranes." J Pept Sci 10(10): 612-621. Kang, J., H. G. Lemaire, et al. (1987). "The Precursor of Alzheimers-Disease Amyloid-A4 Protein Resembles a Cell-Surface Receptor." Nature 325(6106): 733-736. Kapust, R. B., J. Tozser, et al. (2001). "Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency." Protein Engineering 14(12): 993-1000. Katz, M. J., R. B. Lipton, et al. (2012). "Age-specific and Sex-specific Prevalence and Incidence of Mild Cognitive Impairment, Dementia, and Alzheimer Dementia in Blacks and Whites A Report From the Einstein Aging Study." Alzheimer Disease & Associated Disorders 26(4): 335-343. King, M. E., H. M. Kan, et al. (2006). "Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid." J Cell Biol 175(4): 541-546. Kirschner, D. A., H. Inouye, et al. (1987). "Synthetic Peptide Homologous to Beta-Protein from Alzheimer-Disease Forms Amyloid-Like Fibrils Invitro." Proceedings of the National Academy of Sciences of the United States of America 84(19): 6953-6957. Klein, W. L. (2002). "Abeta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets." Neurochemistry International 41(5): 345-352. Klein, W. L. (2002). "A beta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets." Neurochemistry International 41(5): 345-352. Knowles, R. B., C. Wyart, et al. (1999). "Plaque-induced neurite abnormalities: implications for disruption of neural networks in Alzheimer's disease." Proc Natl Acad Sci U S A 96(9): 5274-5279. Kotler, S. A., P. Walsh, et al. (2014). "Differences between amyloid-beta aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer's disease." Chem Soc Rev 43(19): 6692-6700. Kremer, J. J., D. J. Sklansky, et al. (2001). "Profile of changes in lipid bilayer structure caused by beta-amyloid peptide." Biochemistry 40(29): 8563-8571. Kril, J. J., J. Hodges, et al. (2004). "Relationship between hippocampal volume and CA1 neuron loss in brains of humans with and without Alzheimer's disease." Neuroscience Letters 361(1-3): 9-12. Kumar, S. and J. Walter (2011). "Phosphorylation of amyloid beta (A beta) peptides - A trigger for formation of toxic aggregates in Alzheimer's disease." Aging-Us 3(8): 803-812. Kummer, M. P. and M. T. Heneka (2014). "Truncated and modified amyloid-beta species." Alzheimers Research & Therapy 6(3): 28. Laemmli, U. K. (1970). "Cleavage of Structural Proteins during Assembly of Head of Bacteriophage-T4." Nature 227(5259): 680-&. Lau, T. L., E. E. Ambroggio, et al. (2006). "Amyloid-beta peptide disruption of lipid membranes and the effect of metal ions." J Mol Biol 356(3): 759-770. Leissring, M. A., A. Lu, et al. (2003). "Kinetics of amyloid beta-protein degradation determined by novel fluorescence- and fluorescence polarization-based assays." Journal of Biological Chemistry 278(39): 37314-37320. Leney, A. C., X. X. Fan, et al. (2014). "Nanodiscs and Electrospray Ionization Mass Spectrometry: A Tool for Screening Glycolipids Against Proteins." Anal Chem 86(11): 5271-5277. Lin, H., R. Bhatia, et al. (2001). "Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology." Faseb Journal 15(13): 2433-2444. Lin, H. and Y. W. J. Zhu (1999). "Amyloid beta protein (1-40) (A beta P) reconstituted in lipid vesicles forms calcium-permeable channels." Biophysical Journal 76(1): A146-A146. Lin, H., Y. W. J. Zhu, et al. (1999). "Amyloid beta protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles." Biochemistry 38(34): 11189-11196. Lozano, M. M., Z. Liu, et al. (2013). "Colocalization of the Ganglioside G(M1) and Cholesterol Detected by Secondary Ion Mass Spectrometry." J Am Chem Soc 135(15): 5620-5630. Ma, P. X., J. Mohrluder, et al. (2010). "Preparation of a Functional GABARAP-Lipid Conjugate in Nanodiscs and its Investigation by Solution NMR Spectroscopy." Chembiochem 11(14): 1967-1970. Masters, C. L., G. Simms, et al. (1985). "Amyloid Plaque Core Protein in Alzheimer-Disease and down Syndrome." Proceedings of the National Academy of Sciences of the United States of America 82(12): 4245-4249. Matsubara, T., K. Iijima, et al. (2013). "Density of GM1 in nanoclusters is a critical factor in the formation of a spherical assembly of amyloid beta-protein on synaptic plasma membranes." Langmuir 29(7): 2258-2264. McLaurin, J. and A. Chakrabartty (1997). "Characterization of the interactions of Alzheimer beta-amyloid peptides with phospholipid membranes." European Journal of Biochemistry 245(2): 355-363. McLaurin, J., T. Franklin, et al. (1997). "Characterization of the interactions of Alzheimer beta-amyloid peptides with gangliosides." Society for Neuroscience Abstracts 23(1-2): 535-535. McLaurin, J., T. Franklin, et al. (1998). "Structural transitions associated with the interaction of Alzheimer beta-amyloid peptides with gangliosides." Journal of Biological Chemistry 273(8): 4506-4515. McLean, C. A., R. A. Cherny, et al. (1999). "Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease." Ann Neurol 46(6): 860-866. Michel, V. and M. Bakovic (2007). "Lipid rafts in health and disease." Biology of the Cell 99(3): 129-140. Mori, K., M. I. Mahmood, et al. (2012). "Formation of GM1 Ganglioside Clusters on the Lipid Membrane Containing Sphingomyeline and Cholesterol." Journal of Physical Chemistry B 116(17): 5111-5121. Nath, A., W. M. Atkins, et al. (2007). "Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins." Biochemistry 46(8): 2059-2069. Nussbaum, J. M., S. Schilling, et al. (2012). "Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-beta." Nature 485(7400): 651-655. Ogawa, M., M. Tsukuda, et al. (2011). "Ganglioside-mediated aggregation of amyloid beta-proteins (Abeta): comparison between Abeta-(1-42) and Abeta-(1-40)." J Neurochem 116(5): 851-857. Ohashi, R., H. Mu, et al. (2005). "Reverse cholesterol transport and cholesterol efflux in atherosclerosis." Qjm-an International Journal of Medicine 98(12): 845-856. Ono, K., M. M. Condron, et al. (2009). "Structure-neurotoxicity relationships of amyloid beta-protein oligomers." Proceedings of the National Academy of Sciences of the United States of America 106(35): 14745-14750. Pavlidou, M., K. Hanel, et al. (2013). "Nanodiscs Allow Phage Display Selection for Ligands to Non-Linear Epitopes on Membrane Proteins." Plos One 8(9). Perl, D. P. (2010). "Neuropathology of Alzheimer's disease." Mt Sinai J Med 77(1): 32-42. Pervushin, K., R. Riek, et al. (1997). "Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution." Proc Natl Acad Sci U S A 94(23): 12366-12371. Petkova, A. T., R. D. Leapman, et al. (2005). "Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils." Science 307(5707): 262-265. Porath, J., J. Carlsson, et al. (1975). "Metal Chelate Affinity Chromatography, a New Approach to Protein Fractionation." Nature 258(5536): 598-599. Portelius, E., N. Bogdanovic, et al. (2010). "Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer's disease." Acta Neuropathologica 120(2): 185-193. Price, J. L. and J. C. Morris (1999). "Tangles and plaques in nondemented aging and "preclinical" Alzheimer's disease." Annals of Neurology 45(3): 358-368. Prince, M., R. Bryce, et al. (2013). "The global prevalence of dementia: A systematic review and metaanalysis." Alzheimers & Dementia 9(1): 63-75. Prosser, R. S., F. Evanics, et al. (2006). "Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins." Biochemistry 45(28): 8453-8465. Purcell, E. M., H. C. Torrey, et al. (1946). "Resonance Absorption by Nuclear Magnetic Moments in a Solid." Physical Review 69(1-2): 37-38. Quist, A., L. Doudevski, et al. (2005). "Amyloid ion channels: A common structural link for protein-misfolding disease." Proceedings of the National Academy of Sciences of the United States of America 102(30): 10427-10432. Raschle, T., S. Hiller, et al. (2010). "Nonmicellar systems for solution NMR spectroscopy of membrane proteins." Current Opinion in Structural Biology 20(4): 471-479. Rhee, S. K., A. P. Quist, et al. (1998). "Amyloid beta protein-(1-42) forms calcium-permeable, Zn2+-sensitive channel." Journal of Biological Chemistry 273(22): 13379-13382. Ritchie, T. K., Y. V. Grinkova, et al. (2009). "Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs." Methods Enzymol 464: 211-231. Ross, C. A. and M. A. Poirier (2005). "What is the role of protein aggregation in neurodegeneration?" Nature Reviews Molecular Cell Biology 6(11): 891-898. Rountree, S. D., W. Chan, et al. (2012). "Factors that influence survival in a probable Alzheimer disease cohort." Alzheimers Research & Therapy 4(3). Rubenstein, J. R., B. A. Smith, et al. (1979). "Lateral Diffusion in Binary-Mixtures of Cholesterol and Phosphatidylcholines." Proceedings of the National Academy of Sciences of the United States of America 76(1): 15-18. Sarti, P., G. Antonini, et al. (1990). "Effect of gangliosides on membrane permeability studied by enzymic and fluorescence-spectroscopy techniques." Biochemical Journal 267(2): 413-416. Schagger, H. (2006). "Tricine-SDS-PAGE." Nat Protoc 1(1): 16-22. Schlenzig, D., S. Manhart, et al. (2009). "Pyroglutamate Formation Influences Solubility and Amyloidogenicity of Amyloid Peptides." Biochemistry 48(29): 7072-7078. Sciacca, M. F., S. A. Kotler, et al. (2012). "Two-step mechanism of membrane disruption by Abeta through membrane fragmentation and pore formation." Biophysical Journal 103(4): 702-710. Selkoe, D. J. (1998). "The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease." Trends in Cell Biology 8(11): 447-453. Serrano-Pozo, A., M. P. Frosch, et al. (2011). "Neuropathological alterations in Alzheimer disease." Cold Spring Harb Perspect Med 1(1): a006189. Shankar, G. M., S. M. Li, et al. (2008). "Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory." Nat Med 14(8): 837-842. Shao, H. Y., S. C. Jao, et al. (1999). "Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease." J Mol Biol 285(2): 755-773. Shaw, A. W., M. A. McLean, et al. (2004). "Phospholipid phase transitions in homogeneous nanometer scale bilayer discs." FEBS Lett 556(1-3): 260-264. Shoji, M., E. Matsubara, et al. (1998). "Combination assay of CSF Tau, A beta 1-40 and A beta 1-42(43) as a biochemical marker of Alzheimer's disease." J Neurol Sci 158(2): 134-140. Simons, K. and E. Ikonen (1997). "Functional rafts in cell membranes." Nature 387(6633): 569-572. Singer, S. J. and G. L. Nicolson (1972). "The fluid mosaic model of the structure of cell membranes." Science 175(4023): 720-731. Sonnino, S., L. Mauri, et al. (2007). "Gangliosides as components of lipid membrane domains." Glycobiology 17(1): 1R-13R. Soscia, S. J., J. E. Kirby, et al. (2010). "The Alzheimer's Disease-Associated Amyloid beta-Protein Is an Antimicrobial Peptide." Plos One 5(3). Stine, W. B., K. N. Dahlgren, et al. (2003). "In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis." Journal of Biological Chemistry 278(13): 11612-11622. Stoothoff, W. H. and G. V. Johnson (2005). "Tau phosphorylation: physiological and pathological consequences." Biochim Biophys Acta 1739(2-3): 280-297. Strodel, B., J. W. L. Lee, et al. (2010). "Transmembrane Structures for Alzheimer's A beta(1-42) Oligomers." J Am Chem Soc 132(38): 13300-13312. Takami, M., Y. Nagashima, et al. (2009). "gamma-Secretase: Successive Tripeptide and Tetrapeptide Release from the Transmembrane Domain of beta-Carboxyl Terminal Fragment." Journal of Neuroscience 29(41): 13042-13052. Tamai, Y., Matsukaw.S, et al. (1971). "Lipid Composition of Nerve Cell Perikarya." Brain Res 26(1): 149-&. Terry, R. D., N. K. Gonatas, et al. (1964). "Ultrastructural Studies in Alzheimer's Presenile Dementia." Am J Pathol 44: 269-297. Terzi, E., G. Holzemann, et al. (1995). "Self-Association of Beta-Amyloid Peptide(1-40) in Solution and Binding to Lipid-Membranes." J Mol Biol 252(5): 633-642. Terzi, E., G. Holzemann, et al. (1997). "Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes." Biochemistry 36(48): 14845-14852. Timothy H. Bayburt, S. G. S. (2009). "Membrane protein assembly into Nanodiscs." FEBSLetters 584(2010): 6. Trexler, A. J. and E. Rhoades (2009). "alpha-Synuclein Binds Large Unilamellar Vesicles as an Extended Helix." Biochemistry 48(11): 2304-2306. Tsukamoto, H., A. Sinha, et al. (2010). "Monomeric Rhodopsin Is the Minimal Functional Unit Required for Arrestin Binding." J Mol Biol 399(3): 501-511. Ulmer, T. S., A. Bax, et al. (2005). "Structure and dynamics of micelle-bound human alpha-synuclein." Journal of Biological Chemistry 280(10): 9595-9603. Utsumi, M., Y. Yamaguchi, et al. (2009). "Up-and-down topological mode of amyloid beta-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters." Glycoconj J 26(8): 999-1006. Valdes-Gonzalez, T., J. Inagawa, et al. (2001). "Neuropeptides interact with glycolipid receptors - A surface plasmon resonance study." Peptides 22(7): 1099-1106. Vranken, W. F., W. Boucher, et al. (2005). "The CCPN data model for NMR spectroscopy: Development of a software pipeline." Proteins-Structure Function and Bioinformatics 59(4): 687-696. Vyas, K. A., H. V. Patel, et al. (2001). "Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers." Biol Chem 382(2): 241-250. Walsh, D. M., D. M. Hartley, et al. (1999). "Amyloid beta-protein fibrillogenesis - Structure and biological activity of protofibrillar intermediates." Journal of Biological Chemistry 274(36): 25945-25952. Walsh, D. M., I. Klyubin, et al. (2002). "Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo." Nature 416(6880): 535-539. Walsh, D. M., B. P. Tseng, et al. (2000). "The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain." Biochemistry 39(35): 10831-10839. Weingarten, M. D., A. H. Lockwood, et al. (1975). "A protein factor essential for microtubule assembly." Proc Natl Acad Sci U S A 72(5): 1858-1862. Williams, T. L., I. J. Day, et al. (2010). "The Effect of Alzheimer's A beta Aggregation State on the Permeation of Biomimetic Lipid Vesicles." Langmuir 26(22): 17260-17268. Williamson, M. P., Y. Suzuki, et al. (2006). "Binding of amyloid beta-peptide to ganglioside micelles is dependent on histidine-13." Biochemical Journal 397(3): 483-490. Wong, P. T., J. A. Schauerte, et al. (2009). "Amyloid-beta Membrane Binding and Permeabilization are Distinct Processes Influenced Separately by Membrane Charge and Fluidity." J Mol Biol 386(1): 81-96. Yagi-Utsumi, M., K. Matsuo, et al. (2010). "Spectroscopic Characterization of Intermolecular Interaction of Amyloid beta Promoted on GM1 Micelles." Int J Alzheimers Dis 2011: 925073. Yamaguchi, T., T. Uno, et al. (2013). "Ganglioside-embedding small bicelles for probing membrane-landing processes of intrinsically disordered proteins." Chem Commun (Camb) 49(12): 1235-1237. Yanagisawa, K. (2015). "GM1 ganglioside and Alzheimer's disease." Glycoconj J 32(3-4): 87-91. Yanagisawa, K., A. Odaka, et al. (1995). "GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer's disease." Nat Med 1(10): 1062-1066. Zhu, Y. J., H. Lin, et al. (2000). "Fresh and nonfibrillar amyloid beta protein(1-40) induces rapid cellular degeneration in aged human fibroblasts: evidence for A beta P-channel-mediated cellular toxicity." Faseb Journal 14(9): 1244-1254. | |||||||
Rechtliche Vermerke: | Sperrvermerk | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Bezug: | 06.2012-02.2016 | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät | |||||||
Dokument erstellt am: | 05.09.2017 | |||||||
Dateien geändert am: | 05.09.2017 | |||||||
Promotionsantrag am: | 13.01.2016 | |||||||
Datum der Promotion: | 09.02.2016 |