Dokument: Vitalität und Resistenz der Flechte Xanthoria elegans nach Exposition unter Mars-analogen und Weltraumbedingungen auf der ISS und nach Bestrahlung mit ionisierender Strahlung

Titel:Vitalität und Resistenz der Flechte Xanthoria elegans nach Exposition unter Mars-analogen und Weltraumbedingungen auf der ISS und nach Bestrahlung mit ionisierender Strahlung
Weiterer Titel:Viability and resistance of the lichen Xanthoria elegans after exposure to Mars-analogue and space conditions on the ISS and after ionizing radiation
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=38569
URN (NBN):urn:nbn:de:hbz:061-20160610-130029-2
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor:Dipl. biol. Brandt, Annette [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]65,76 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 10.06.2016 / geändert 10.06.2016
Beitragende:Prof. Dr. Ott, Sieglinde [Gutachter]
Prof. Dr. Martin, William [Gutachter]
Stichwörter:Flechte, Astrobiologie, ISS, Resistenz, ionisierende Strahlung, UV
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 580 Pflanzen (Botanik)
Beschreibungen:Der Fokus dieser Studie lag auf der Vitalität der Flechte Xanthoria elegans nach der Exposition außerhalb der Internationalen Raumstation (ISS). Die untersuchten Proben von X. elegans waren zuvor im LIFE/EXPOSE-E-Experiment über 18 Monate den extremen abiotischen Einflüssen des erdnahen Weltraumes sowie dort simulierten Mars-analogen Umweltbedingungen ausgesetzt. LIFE war in Art und Dauer ein für symbiotische Organismen erstmalig durchgeführtes Experiment. In die Auswertung einbezogen wurden vorangegangene Simulationsexperimente und die Mission Ground Reference (einer parallel zur ISS-Exposition im DLR Köln durchgeführten Simulation). Weitere laborbasierte Experimente und die Analyse der ultrastrukturellen Schäden komplettierten die Charakterisierung des Resistenzpotentials von X. elegans gegenüber Weltraumbedingungen. Eingebunden in diese Studie waren die ebenfalls erstmalig durchgeführten Experimente zur Resistenz von Flechten gegenüber hohen Dosen ionisierender Strahlung, welche die außerhalb des Erdmagnetfeldes vorkommende kosmische Strahlung simulierten.
Die Analyse der im LIFE-Experiment exponierten Proben mit LIVE/DEAD-staining und Chlo-rophyll a Fluoreszenz-Messungen zeigte eine hohe metabolische Aktivität aller exponierten Proben von X. elegans, während die photosynthetische Aktivität nach Vakuumexposition beeinträchtigt war. Wachstum und Fortpflanzungsfähigkeit als wesentlicher Aspekt der Überlebensfähigkeit konnten nach der Weltraumexposition über Kulturen der PB qualitativ nachgewiesen werden. Die Kultivierbarkeit nach 18 Monaten unter Weltraumbedingungen bestätigte X. elegans als relevanten astrobiologischen Modellorganismus. Die auf der ISS simulierten Mars-analogen Bedingungen beeinträchtigten die Vitalität deutlich geringer als die Exposition unter Vakuum. Eine Analyse der Ultrastruktur mittels Transmission-Elektronen-Mikroskopie zeigte, dass die PB unter Weltraumvakuum vermehrt Schäden erlitten hatten, wie sie für eine viele Jahre andauernde Austrocknung charakteristisch sind. In 61-97% der unter Vakuum exponierten PB war der Protoplast irreversibel kollabiert. Der limitierende Faktor für das Überleben unter Weltraumbedingungen war für X. elegans der lange Zeitraum unter Vakuum bis 10-9 mbar.
X. elegans wurde nicht beeinträchtigt durch die intensive Licht- und UV200-400nm-Strahlung im LIFE-Experiment. Hinweise auf einen synergistischen Effekt kombinierter extraterrestrischer Stressoren konnten ausschließlich nach Exposition unter Vakuum mit intensiver UV100-400nm-Strahlung von ca. 300 MJm-2 beobachtet werden. Die hohe UV-Resistenz beruht hauptsächlich auf den UV-absorbierenden Eigenschaften des vom Mycobionten (MB) synthetisierten Cortex-Pigments Parietin. Der Schutz der Licht/UV-sensitiveren PB bestand auch unter Weltraumbedingungen und bestätigte zudem die Relevanz der Symbiose als Überlebensstrategie.
Hohe Trockenresistenz und die Fähigkeit zur Anhydrobiose sind für die poikilohydren Flechten von besonderer Relevanz für die Besiedlung von ariden, alpinen oder polaren Habitaten. Die Analysen zeigten, dass diese Eigenschaften bei X. elegans auch unter Weltraumbedingungen und z.T. gegenüber ionisierender Strahlung protektiv wirkten.
Die Bestrahlungsexperimente mit beschleunigten Eisen- und Helium- Ionen sowie Röntgen- und γ- Strahlung wurden mit Proben in Anhydrobiose durchgeführt. Es zeigte sich, dass die photosynthetische Aktivität durch die Bestrahlungen bis 2 kGy nicht beeinträchtigt wurde. Die metabolische Aktivität wurde durch Strahlendosen ab 100 Gy reduziert, dies deutlicher bei den PB, als bei den resistenteren MB. Für die eingesetzten Strahlenarten bestehen starke Unterschiede in ihrer Wirkung auf hydrierte Zellen, die sich hier nicht wiederfanden. Ebenso zeigte sich keine Korrelation zwischen Dosis und reduzierter Aktivität. Auch bei Flechten, die im feuchten, aktiven Zustand Röntgenstrahlen bis 100 Gy ausgesetzt wurden, zeigte sich keine anhaltende Beeinträchtigung der photosynthetischen Aktivität. Die γ-Bestrahlung trockener X. elegans-Thalli und isolierter Circinaria gyrosa-PB zeigte eine einheitliche Grenze für die Regeneration der photosynthetischen Aktivität bei ≤ 17 kGy. Ein Kulturexperiment zeigte aber, dass die PB ihre Reproduktionsfähigkeit bereits 6 kGy bei eingebüßt hatten.
Insgesamt zeigten die Experimente eine bemerkenswerte Strahlenresistenz bezogen auf Pho-tosynthese- und metabolische Aktivität. Dies kann durch Trockenheit der Proben erklärt werden, die indirekte Strahlenschäden durch Radiolyse von Wasser deutlich verringert. Zusätzlich aber ist die Anhydrobiose charakterisiert durch Mechanismen zur Reduktion von Radikalen und oxidativem Stress. Dies könnte bedeuten, dass Trockenresistenz und Strahlenresistenz gemeinsame Mechanismen besitzen.
Die Studie lieferte Ergebnisse zur Überlebensfähigkeit der untersuchten Flechten unter Weltraum- bzw. Mars-analogen Bedingungen sowie erste Erkenntnisse über ihre Resistenz gegenüber simulierter kosmischer Strahlung. Die eingesetzten Methoden wurden im Rahmen dieser Studie zum Teil modifiziert und weiter etabliert.

The current study focuses on the viability of the lichen Xanthoria elegans after being exposed outside the International Space Station (ISS). During the 18 months of the LIFE/EXPOSE-E-experiment X. elegans samples were exposed to the hazardous conditions of space in low-Earth-orbit or to on-site simulated Mars-analogue conditions. LIFE was the first long-term exposure experiment on the ISS testing symbiotic organisms. The analysis of the returned samples was complemented by previous simulations and the Mission Ground Reference (a close simulation of the ISS-exposure performed in parallel at DLR, Cologne). Further lab-based experiments and an analysis of ultrastructural damages completed the characterization of X. elegans’ resistance towards space conditions. Included in the current study are experiments on the resistance of lichens towards high doses of ionizing radiation. The applied ionizing radiation resembled components of the cosmic radiation occurring outside Earths’ magnetic shielding. These, too, were the first experiments.
X. elegans samples exposed in LIFE were analysed by LIVE/DEAD-staining and chlorophyll a fluorescence-measurements. Analyses showed a high amount of metabolically active cells in all exposed samples, but the photosynthetic activity was impaired after the vacuum exposure. Growth and reproduction ‒ as the most relevant proofs of vitality ‒ were shown qualitatively by photobiont culture assays. Being cultivable after 18 months in low-Earth-orbit conditions confirmed X. elegans is a relevant astrobiological model organism. However, the Mars-analogue exposure had much less of an effect on viability, compared to the space vacuum. Ultrastructural analyses by transmission-electron-microscopy revealed that photobionts exposed to vacuum suffered damages, resembling the damages shown typically after several years of dry storage. These damages appeared in significantly higher amount after vacuum exposure, including irreversibly collapsed protoplasts in 61-97% of the vacuum-exposed photobionts. Concerning X. elegans, the limiting factor for survival under space conditions was the long-term vacuum exposure at 10-9 mbar.
X. elegans was not affected by the intense light- and UV200-400nm-irradiation throughout the LIFE-experiment. Only the exposure to vacuum and UV100-400nm-irradiation of c. 300 MJm-2 gave a hint on a possible synergistic effect of these extra-terrestrial stressors. The observable high UV-resistance is conferred mainly by the UV-absorbing properties of the cortex-bound pigment parietin which is synthesized by the mycobiont, protecting the light- and UV-sensitive photobiont from insolation. The protection stayed fully functional in space conditions and by that also proved the importance of symbiosis as a valid survival strategy.
A high desiccation tolerance and the ability for anhydrobiosis are crucial for the colonization of arid, alpine or polar habitats by the poikilohydric lichens. Analyses indicated that these traits also protected X. elegans under space conditions. In addition, these traits conferred a certain resistance towards ionizing radiation.

Ionization radiation experiments employed accelerated helium- and iron ions as well as X-rays and γ-radiation. All samples were in anhydrobiosis for the whole duration of the experi-ment. After radiation up to 2 kGy the photosynthetic activity remained unimpaired. All radiation > 100 Gy was capable of reducing the metabolic activity. The reduction was more pronounced in the photobiont while the mycobiont showed its notable resistance. If applied to hydrated cells the applied types of radiation are known to induce effects of very different severity. However, no differences were observed in the current study. As well, there was no correlation of applied doses to the reduction of metabolic activity. An additional experiment exposed wetted, active lichen thalli to X-rays from 1-100 Gy. Still, the photosynthetic activity showed no sustained effect. The γ-radiation of dry X. elegans thalli and isolated photobionts of Circinaria gyrosa showed a consistent limit for the recovery of photosynthetic activity at ≤ 17 kGy. But, additional culture assay revealed that the photobiont lost its reproductive ability already at 6 kGy.
Concerning metabolic and photosynthetic activity, a remarkable radiation-resistance was shown. It might be caused by the dramatically reduced radiolysis of water, sparing the dry samples the indirect effects of radiation. In addition, anhydrobiosis is characterised by several counter-mechanisms against radicals and oxidative stress. By that, one could conclude that that desiccation resistance and resistance towards radiation invoke the same mechanisms.
The present study provided results on the viability and resistance of lichens, especially X. elegans, under space and Mars-like conditions. As well it provided first in-sights to lichens’ resistance towards ionizing radiation resp. simulated cosmic rays. Methods used in the framework of this study were partly modified and well-established to astrobiological experiments.
Quelle:Ahmadjian, V. (1965). Lichens. Annual Reviews in Microbiology, 19(1), 1-20.
Ahmadjian, V. (1967). A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6(2), 127-160.
Ajello, M., Albert, A., Allafort, A., Baldini, L., Barbiellini, G., Bastieri, D., ..., Bregeon, J. (2014). Impulsive and long duration high-energy gamma-ray emission from the very bright 2012 March 7 solar flares. The Astrophysical Journal 789(1), 20-35.
Arrhenius, S. (1903). Die Verbreitung des Lebens im Weltenraum. Die Umschau 7, 481-485.
Aubert, S., Juge, C., Boisson, A.M., Gout, E., Bligny, R. (2007). Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226(5), 1287-1297.
Backhaus, T., de la Torre, R., Lyhme, K., de Vera, J.-P., Meeßen, J. (2015). Desiccation and low temperature attenuate the effect of UVC 254 nm in the photobiont of the astrobiologically relevant lichens Circinaria gyrosa and Buellia frigida. International Journal of Astrobiology 14(03), 479-488.
Baqué, M., Scalzi, G., Rabbow, E., Rettberg, P., Billi, D. (2013). Biofilm and planktonic life-styles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations. Origins of Life and Evolution of Biospheres 43(4-5), 377-389.
Baqué, M., Verseux, C., Böttger, U., Rabbow, E., Billi, D., de Vera, J.-P. (2015) Preservation of cyanobacterial biomarkers after Martian ground-based simulation exposure. EANA 2014, 13.-16. Okt. 2014, Edinburgh, UK.
Barták, M., Váczi, P., Hájek, J., Smykla, J. (2007). Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria ele-gans. Polar Biology 31(1), 47-51.
Bauermeister, A., Moeller, R., Reitz, G., Sommer, S., Rettberg, P. (2011). Effect of relative humidity on Deinococcus radiodurans’ resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation. Microbial ecology 61(3), 715-722.
Beblo, K. (2010). Untersuchungen zur Überlebensfähigkeit thermophiler und hyperthermo-philer Mikroorganismen nach Trocknung und Strahlenexposition. Dissertation an der Na-turwissenschaftlichen Fakultät III Biologie und vorklinische Medizin der Universität Re-gensburg .
Belnap, J., Büdel, B., Lange, O.L. (2001). Biological soils crusts: characteristics and distribution. Ecological Studies 150, 3–31.
Benton, E.R., Benton, E.V. (2001). Space radiation dosimetry in low-Earth orbit and beyond. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 184(1), 255-294.
Berger, T., Reitz, G., Burmeister, R., Beaujean, R., Zapp, N. (2005). MATROSHKA - Over-view of 2004-2005. WRMISS 2005, NIRS, Japan
Berger, T., Hajek, M., Bilski, P., Körner, C., Vanhavere, F., Reitz, G. (2012). Cosmic radia-tion exposure of biological test systems during the EXPOSE-E mission. Astrobiology 12(5), 387–392.
Bertrand, M., Chabin, A., Brack, A., Cottin, H., Chaput, D., Westall, F. (2012). The PROCESS experiment: exposure of amino acids in the EXPOSE-E experiment on the International Space Station and in laboratory simulations. Astrobiology 12(5), 426-435.
Bieger-Dose, A., Dose, K., Meffert, R., Mehler, M., Risi, S. (1992). Extreme dryness and DNA-protein cross-links. Advances in Space Research 12(4), 265-270.
Billi, D., Potts, M. (2000). Life without water: responses of prokaryotes to desiccation. In: Storey, K.B., Storey, J. (Eds) Environmental stressors and gene responses. Elsevier Sci-ence B.V., pp 181-192.
Billi, D., Viaggiu, E., Cockell, C. S., Rabbow, E., Horneck, G., Onofri, S. (2011). Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and Martian conditions. Astrobiology 11(1), 65-73.
Bischof, K., Hanelt, D., Wiencke, C. (2000). Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211 (4), 555–562.
Blumthaler, M., Ambach, W., Ellinger, R. (1997). Increase in solar UV radiation with alti-tude. Journal of Photochemistry and Photobiology B: Biology 39(2):130-134.
Böttger, U., Meessen, J., Martinez-Frias, J., Hübers, H.W., Rull, F., Sánchez, F.J., ... , de Ve-ra, J. P. (2014). Raman spectroscopic analysis of the calcium oxalate producing extremo-tolerant lichen Circinaria gyrosa. International Journal of Astrobiology 13(1), 19-27.
Brandt, A., de Vera, J.-P., Onofri, S., Ott, S. (2015). Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. International Journal of Astrobiology 14(3), 411-425. (PUBL. 2)
Brandt, A., Posthoff, E., de Vera, J.-P., Onofri, S., Ott, S. (2016). Characterization of viabil-ity, growth and ultrastructural effects of the Xanthoria elegans photobiont after 1.5 years of space exposure on the International Space Station. Origins of Life and Evolution of Biospheres 46(2), 311-321. (PUBL. 3)
Brandt, A., Meeßen, J., Jänicke, R., Ott, S. Simulated deep space radiation: Impact of four different types of high-dose ionizing radiation on the lichen Xanthoria elegans. Astrobiology (in review). (PUBL. 4)
Britt, A.B. (1996). DNA damage and repair in plants. Annual review of plant biology 47(1), 75-100.
Brodo, I.M., Sharnoff, S.D., Sharnoff, S. (2001). Lichens of North America. Yale University Press, New Haven, London.
Brown, D.H., Rapsch, S., Beckett, A., Ascaso, C. (1987). The effect of desiccation on cell shape in the lichen Parmelia sulcata Taylor. New Phytologist 105(2), 295-299.
Brunauer, G., Stocker-Wörgötter, E. (2005). Culture of lichen fungi for future production of biologically active compounds. Symbiosis 38(2), 187–201.
Büdel, B., Scheidegger, C. (1996). Thallus morphology and anatomy. In: Nash, T.H. III (Ed.): Lichen biology. Cambridge University Press, Cambridge, pp 37–64.
Buffoni Hall, Roberta (2002). Buffoni Hall, R. (2002). Effects of increased UV-B radiation on the lichen Cladonia arbuscula spp. mitis: UV-absorbing pigments and DNA damage. Department of Cell and Organism Biology, Lund University.
Cadet, J., Sage, E., Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 571(1), 3-17.
Clark, B.C. (2001). Planetary interchange of bioactive material: probability factors and implications. Origins of Life and Evolution of the Biospheres 31(1), 185-197.
Cockell, C. S. (1998). Biological effects of high ultraviolet radiation on early Earth - a theo-retical evaluation. Journal of theoretical biology 193(4), 717-729.
Cockell, C.S. (2014). Trajectories of Martian habitability. Astrobiology 14(2), 182-203.
Cooper, R. (1953). The Role of Lichens in Soil Formation and Plant Succession. Ecology 34(4), 805-807.
Cox, C.S. (1993). Roles of water molecules in bacteria and viruses. Origins of Life and Evolution of the Biospheres 23(1), 29-36.
Crowe, J.H., Hoekstra, F.A., Crowe, L.M. (1992). Anhydrobiosis. Annual Review of Physiol-ogy 54(1), 579-599.
Crowe, J.H., Carpenter, J.F., Crowe, L.M. (1998). The role of vitrification in anhydrobiosis. Annual Review of Physiology 60, 73–103.
Dachev, T., Horneck, G., Häder, D.-P., Schuster, M., Richter, P., Lebert, M., Demets, Rene (2012) Time profile of Cosmic Radiation exposure during the EXPOSE-E mission: The R3DE instrument. Astrobiology 12(5), 403-411.
Daly, M.J. (2012). Death by protein damage in irradiated cells. DNA repair 11(1), 12-21.
de la Torre, R., Sancho, L.G., Horneck, G., de los Ríos, A., Wierzchos, J., Olsson-Francis, K., Cockell, C., Rettberg, P., Berger, T., de Vera, J.-P., Ott, S., Frías, J.M., Gonzalez, P.M., Lucas, M.M., Reina, M., Pintado, A., Demets, R., (2010). Survival of lichens and bacteria exposed to outer space conditions—Results of the Lithopanspermia experiments. Icarus 208(2), 735–748.
de la Torre, R., Miller, A.Z., Cubero, B., Raguse, M., Meeßen, J.: The effect of high-dose ionizing radiation on the astrobiological model lichen Circinaria gyrosa. Astrobiology, in review
de la Vega, U.P., Rettberg, P., Reitz, G. (2007). Simulation of the environmental climate conditions on Martian surface and its effect on Deinococcus radiodurans. Advances in Space Research 40(11), 1672 - 1677.
de los Ríos, A., Wierzchos, J., Sancho, L.G., Ascaso, C. (2004). Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiological Ecology 50(3),143 - 152.
de los Ríos, A., Ascaso, C., Wierzchos, J. (2010). Study of lichens with different state of hydration by the combination of low temperature scanning electron and confocal laser scanning microscopies. International Microbiology 2(4), 251–257.
de Vera, J.-P., Horneck, G., Rettberg, P., Ott, S. (2003). The potential of the lichen symbiosis to cope with the extreme conditions of outer space I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. International Journal of Astrobiology 1(4), 285–293.
de Vera, J.-P. (2005). Grenzen des Überlebens: Flechten als Modellorganismen für das Potential von Adaptations-mechanismen unter Extrembedingungen. Dissertation Heinrich-Heine University, ULB Düsseldorf, 1–180
de Vera, J.-P., Rettberg, P., Ott, S. (2008). Life at the limits: capacities of isolated and cul-tured lichen symbionts to resist extreme environmental stresses. Origins of Life and Evolution of the Biospheres 38(5), 457–468.
de Vera, J.-P., Ott, S. (2010). Resistance of symbiotic eukaryotes. Survival to simulated space conditions and asteroid impact cataclysms. In: Seckbach J, Grube M (Eds.) Symbioses and stress: Joint ventures in biology. Cellular origin, life in extreme habitats and astrobiology 17, 595–611.
de Vera, J.-P., Möhlmann, D., Butina, F., Lorek, A., Wernecke, R., Ott, S. (2010). Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. Astrobiology 10(2), 215–227.
Dietz, S., Büdel, B., Lange, O.L. Bilger, W. (2000). Transmittance of light through the cortex of lichens from contrasting habitats. Bibliotheca Lichenologica 75, 171–182.
Doran, P.T., Lyons, W.B., McKnight, D.M. (Eds.) (2010). Life in Antarctic deserts and other cold dry environments: astrobiological analogs (Vol. 5). Cambridge University Press, Cambridge, GB.
Dose, K., Bieger-Dose, A., Labusch, M., Gill, M. (1992). Survival in extreme dryness and DNA-single-strand breaks. Advances in Space Research 12(4), 221-229.
Dose, K., Gill, M. (1995). DNA stability and survival of Bacillus subtilis spores in extreme dryness. Origins of Life and Evolution of the Biosphere 25(1-3), 277-293.
Douki, T., Cadet, J. (2001). Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photole-sions. Biochemistry 40(8), 2495-2501.
Douki, T., Reynaud-Angelin, A., Cadet, J., Sage, E. (2003). Bipyrimidine photoproducts ra-ther than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 42(30), 9221-9226.
Dyer, P., Crittenden, P. (2008). Antarctic lichens: life in the freezer. Microbiology Today 35(2), 74-77.
Elix, J.A. (1996), Biochemistry and secondary metabolites. In: Nash, T.H. III (Ed.): Lichen biology. Cambridge University Press, Cambridge, pp 154-180.
Emerson, F.W. (1947). Basic botany. The Blakiston Co., Philadelphia
Engelen, A., Buschbom, J., Convey, P., Ott, S. (2008). Specificity and selectivity of algal partners in lichen symbioses at coastal and inland sites in Antarctica. In: Antarktische Nunatakker als Modell-Ökosystem für initiale Besiedlungsprozesse und Artendiversität in nacheiszeitlichen Perioden. Dissertation Heinrich-Heine-Universität Düsseldorf, pp 75-96.
Epp, E.R., Weiss, H., Santomasso, A. (1968). The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Radiation research 34(2), 320-325.
Flemming, H.C., Neu, T.R., Wozniak, D.J. (2007). The EPS matrix: the house of biofilm cells. Journal of Bacteriology 189, 7945–7947.
Frey, R.L.W., Lösch, R. (2004). Lehrbuch der Geobotanik. Spektrum Akademischer Verlag, Elsevier GmbH, München .
Friedmann, E.I., Hua, M., Ocampo-Friedmann, R. (1988). Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58(2/3), 251-259.
Friedmann, E.I., Ocampo-Friedmann, R. (1995). A primitive cyanobacterium as pioneer mi-croorganism for terraforming Mars. Advances in Space Research 15(3), 243-246.
Frösler, J., Flemming, H.C., Wingender, J. (2013). The influence of extracellular polymeric substances on the desiccation tolerance of Deinococcus geothermalis biofilms. EANA Astrobiology Conference, 22 - 25 July, 2013, Szczecin, Poland.
Frohnmeyer, H., Staiger, D. (2003). Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant physiology 133(4), 1420-1428.
Gannutz, T.P. (1972). Effects of gamma radiation on lichens—i. acute gamma radiation on lichen algae and fungi. Radiation Botany 12(5), 331-338.
Gargaud, M. (Ed.) (2011). Encyclopedia of astrobiology (Vol. 1). Springer Science & Busi-ness Media, Berlin.
Gasulla, F., de Nova, P.G., Esteban-Carrasco, A., Zapata, J.M., Barreno, E., Guéra, A. (2009). Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta, 231(1), 195-208.
Gauslaa, Y., Solhaug, K. A. (2001). Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 126(4), 462-471.
Gauslaa, Y., Solhaug, K.A. (2004). Photoinhibition in lichens depends on cortical characteristics and hydration. The Lichenologist, 36(2), 133-143.
Gauslaa, Y., McEvoy, M. (2005). Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic and Applied Ecology 6(1), 75-82.
Ghetti, F., Checcucci, G., Bornman, J.F. (Eds.). (2006). Environmental UV radiation: Impact on ecosystems and human health and predictive models. NATO Science Series IV: Pro-ceedings of the NATO Advanced Study Institute on Environmental UV Radiation, Pisa, Italy, June 2001 (Vol. 57). Springer Science & Business Media, Springer Netherlands.
Goodhead, D.T. (1994). Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. International Journal of Radiation Biology 65(1), 7-17.
Goretzki, G. (1987). Medizinische Strahlenkunde – Physikalisch-technische Grundlagen. Urban und Schwarzenberg, München.
Gow, N.A., Gadd, G.M. (Eds.) (1995). The growing fungus. Chapman & Hall, London
Grube, M. (2010). Die hard: lichens. In: Seckbach, J., Grube, M. (Eds.) Symbioses and Stress. Cellular origin, life in extreme habitats and astrobiology 17 . Springer Science & Business Media, Springer Netherlands, pp. 509-523.
Gusev, O., Nakahara, Y., Vanyagina, V., Malutina, L., Cornette, R., Sakashita, T., ..., Okuda, T. (2010). Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chi-ronomid: linkage with radioresistance. PLoS One 5(11), e14008.
Gusev, O., Okuda, T. (2012). “Life Without Water”: The sleeping chironomid and other an-hydrobiotic invertebrates and their utilization in Astrobiology. In: Life on Earth and Other Planetary Bodies (pp. 121-138). Springer Netherlands.
Hájek, J., Váczi, P., Barták, M., Jahnová, L. (2012). Interspecific differences in cryoresistance of lichen symbiotic algae of genus Trebouxia assessed by cell viability and chlorophyll fluorescence. Cryobiology 64(3), 215-222.
Hale, M. E. (1976). Lichen structure viewed with the scanning electron microscope. In: Brown, D.H., Hawksworth, D.L., Bailey, B.H. (Eds.) Lichenology: Progress and Prob-lems; Proceedings of an international Symposium. Academic Press, London
Harrison, J.P., Gheeraert, N., Tsigelnitskiy, D., Cockell, C.S. (2013). The limits for life under multiple extremes. Trends in microbiology 21(4), 204-212.
Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigen-brode, J. L., ..., Burmeister, S. (2013). Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 343(6169), DOI: 10.1126/science.1244797.
Hawksworth, D.L., Kirk, P.M., Sutton, B.C., Pegler, D.N. (1995). Ainsworth & Bisby's dic-tionary of the fungi. CAB Wallingford, GB.
Henssen, A., Jahns, H.M., Santesson, J. (1974). Lichenes: eine Einführung in die Flechten-kunde. Verlag G. Thieme, Stuttgart.
Holmstrup, M., Sjursen, H., Ravn, H., Bayley, M. (2001). Dehydration tolerance and water vapour absorption in two species of soil‐dwelling Collembola by accumulation of sugars and polyols. Functional Ecology 15(5), 647-653.
Holzinger, A., Lütz, C. (2006). Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37(3), 190-207.
Holzinger, A., Karsten, U. (2013). Desiccation stress and tolerance in green algae: conse-quences for ultrastructure, physiological and molecular mechanisms. Frontiers in Plant Science 4.
Honegger, R. (1986). Ultrastructural studies in lichens. New Phytologist 103(4), 785-795.
Honegger, R. (1991). Functional aspects of the lichen symbiosis. Annual Review of Plant Biology 42(1), 553-578.
Honegger, R. (1992). Lichens: Mycobiont-photobiont relationships. In: Reisser, W. (Ed.) Algae and symbioses. Biopress Limited, Bristol, pp 255–276.
Honegger, R. (1995). Experimental studies with foliose macrolichens: fungal response to spatial disturbance at the organismic level and to spatial problems at the cellular level during drought stress events. Canadian Journal of Botany 73 (Suppl. I), S569-S578.
Honegger, R. (1996). Experimental studies of growth and regenerative capacity in the foliose lichen Xanthoria parietina. New Phytologist 133, 573-581.
Honegger, R. (1998). The lichen symbiosis - what is so spectacular about it? The Lichenolo-gist 30(3), 193-212.
Honegger, R. (2003). The impact of different long‐term storage conditions on the viability of lichen‐forming ascomycetes and their green algal photobiont, Trebouxia spp. Plant Biology 5(3), 324-330.
Honegger, R. (2009). Lichen-forming fungi and their photobionts. In: Deising, H.B. (Ed.) Plant relationships, The Mycota 5. Springer Berlin Heidelberg, pp 307-333.
Horneck, G., Bücker, H., Reitz, G., Requardt, H., Dose, K., Martens, K.D., Mennigmann, H.D., Weber, P. (1984). Life Sciences Microorganisms in the Space Environment. Science 225(4658), 226-228.
Horneck, G. (1992). Radiobiological experiments in space: a review. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 20(1), 185-205.
Horneck, G. (1993). Responses of Bacillus subtilis spores to space environment: Results from experiments in space. Origins of Life and Evolution of the Biospheres 23(1), 37-52.
Horneck, G. (1994). HZE particle effects in space. Acta Astronaut 32(11), 749-755.
Horneck, G., Bücker, H., Reitz, G. (1994). Long-term survival of bacterial spores in space. Advances in Space Research 14(10), 41-45.
Horneck, G. (1998). Exobiological experiments in Earth orbit. Advances in Space Research, 22(3) 317-326.
Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Star-ke, V., Baumstark-Khan, C. (2001). Protection of bacterial spores in space, a contribution to the discussion on Panspermia. Origins of Life and Evolution of the Biospheres 31(6), 527-547.
Horneck, G., Mileikowsky, C., Melosh, H.J., Wilson, J.W., Cucinotta, F.A., Gladman, B. (2002). Viable transfer of microorganisms in the solar system and beyond. In: Horneck, G., Baumstark-Khan, C. (Eds.) Astrobiology - The quest for the conditions of life. Chap 4, pp. 57-76. Springer Verlag, Berlin Heidelberg.
Horneck, G. (2003). Anhydrobiosis, a capacity for longterm survival of hostile environmental conditons. Geochimica et Cosmochimica Acta Supplement 67(18), 157.
Horneck, G., Stöffler, D., Ott, S., Hornemann, U., Cockell, C.S., Moeller, R., Meyer, C., de Vera, J.-P., Schade, S., Artemieva, N.A. (2008). Microbial rock inhabitants survive hyper-velocity impacts on Mars-like host planets: first phase of Lithopanspermia experimentally tested. Astrobiology 8(1), 17-44.
Horneck, G., Klaus, D.M., Mancinelli, R.L. (2010). Space microbiology. Microbiology and Molecular Biology Reviews 74(1), 121-156.
Horneck, G., Zell, M. (2012). Introduction to the EXPOSE-E Mission. Astrobiology 12(5), 373-373.
Horneck, G., Moeller, R., Cadet, J., Douki, T., Mancinelli, R.L., Nicholson, W.L., Vaishampayan, P., Venkateswaran, K.J., Stackebrandt, E. (2012). Resistance of bacterial endospores to outer space for planetary protection purposes - experiment PROTECT of the EXPOSE-E mission. Astrobiology 12(5), 445-456.
Huneck, S., Yoshimura, I. (1996). Identification of lichen substances. Springer Verlag, Berlin Heidelberg.
Huneck, S. (1999). The significance of lichens and their metabolites. Naturwissenschaften 86(12), 559-570.
ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Pro-tection. ICRP Publication 60. Ann. ICRP 21 (1-3).
ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37(2-4).
Jahns, H.M. (1988). The lichen thallus. In: Galun, M. (Ed.) CRC handbook of lichenology, Vol. I., CRC Press, Boca Ranton, pp 95–143.
Jasinghe, V.J., Perera, C O. (2005). Distribution of ergosterol in different tissues of mush-rooms and its effect on the conversion of ergosterol to vitamin D 2 by UV irradiation. Food chemistry 92(3), 541-546.
Jensen, M. (2002). Measurement of chlorophyll fluorescence in lichens. In: Kranner, I., Be-ckett, R.P., Varma, A.K. (Eds.) Protocols in Lichenology. Springer Laboratory Manuals, Springer Verlag, Berlin Heidelberg, pp 135-151.
Jones, A.E., Shanklin, J.D. (1995). Continued decline of total ozone over Halley, Antarctica, since 1985. Nature 376, 409-411.
Kappen, L., Friedmann, E.I. (1983). Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. Polar Biology 1(4), 227-232.
Kappen, L. (1988) Ecophysiological relationships in different climatic regions. In: Galun, M. (Ed.) CRC Handbook of Lichenology (Vol. 2), CRC Press, Boca Raton, USA. pp 37 - 100
Kappen, L. (1993). Plant activity under snow and ice, with particular reference to lichens. Arctic 46(4), 297-302.
Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M., Hestmark, G. (1996). Cold resistance and metabolic activity of lichens below 0° C. Advances in Space Research 18(12), 119-128.
Kappen, L., Schroeter, B., Green, T.G.A., Seppelt, R D. (1998). Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia 113(3):325-331.
Kappen, L. (2000). Some aspects of the great success of lichens in Antarctica. Antarctic Sci-ence 12(03), 314-324.
Kappler, A., Pasquero, C., Konhauser, K.O., Newman, D.K. (2005). Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33(11), 865-868.
Keresztes, E., Kovács, Á. (2002). Effect of gamma and UV-B/C radiation on plants cells. Micron 33(2), 199-210.
Klebesadel, R.W., Strong, I.B., Olson, R.A. (1973). Observations of gamma-ray bursts of cosmic origin. The Astrophysical Journal 182, L85-L88.
Kminek, G., Rummel, J.D. (2015). Research Highlights: COSPARS’s planetary protection policy. Space Research Today 193, 7-19.
Kranner, I., Zorn, M., Turk, B., Wornik, S., Beckett, R. P., Batič, F. (2003). Biochemical traits of lichens differing in relative desiccation tolerance. New Phytologist 160(1), 167-176.
Kranner, I., Cram, W.J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E., Pfeifhofer, H.W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences 102(8), 3141–3146.
Kranner, I., Beckett, R., Hochman, A., Nash III, T.H. (2008). Desiccation-tolerance in li-chens: a review. The Bryologist 111(4), 576-593.
Krause, G.H., Jahns, P. (2004). Non-photochemical energy dissipation determined by chloro-phyll fluorescence quenching: characterization and function. In Chlorophyll a Fluores-cence, Springer Netherlands, 463-495.
Kraushaar, W.L., Clark, G.W., Garmire, G.P., Borken, R., Higbie, P., Leong, V., Thorsos, T. (1972). High-energy cosmic gamma-ray observations from the OSO-3 satellite. Astrophysical Journal 177, 341-363.
Krieger, H. (2004, 2012): Grundlagen der Strahlungsphysik und des Strahlenschutzes.
Kvenvolden, K.A., Lawless, J.G., Ponnamperuma, C. (1971). Non-protein amino acids in the Murchison meteorite. Proceedings of the National Academy of Sciences 68(2), 486-490.
Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., ..., Rauer, H. (2009). What makes a planet habitable? The Astronomy and Astrophysics Review 17(2), 181-249.
Lange, O.L., Kappen, L. (1972). Photosynthesis of lichens from Antarctica. In: Llano, G.A. (Ed.) Antarctic Terrestrial Biology. American Geophysical Union., Washington, D. C., pp 83-95.
Lange, O. L., S. C. Hahn, A. Meyer, and J. D. Tenhunen. (1998). Upland tundra in the foot-hills of the Brooks Range, Alaska, U.S.A.: Lichen long-term photosynthetic CO2 uptake and net carbon gain. Arctic and Alpine Research 30:252–261.
Lange, O.L., Green, T.G.A., Heber, U. (2001). Hydration‐dependent photosynthetic produc-tion of lichens: what do laboratory studies tell us about field performance?. Journal of Experimental Botany, 52(363), 2033-2042.
Lawrey, J.D. (1989). Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. Bryologist (92)3, 26-328.
Leuko, S., Rothschild, L.J., Burns, B.P. (2010). Halophilic archaea and the search for extinct and extant life on Mars. Journal of Cosmology 5, 940-950
Lewis, D.H. (1991). Mutualistic symbioses in the origin and evolution of land plants. In: Margulis, L., Fester, R. (Eds.) Symbiosis as an Evolutionary Innovation in Speciation and Morphogenesis, MIT Press, Cambridge, USA, pp 288–300.
Longton, R.E. (1988). Studies in polar research: Biology of polar bryophytes and lichens. Cambridge University Press, Cambridge, GB.
Lud, D., Huiskes, A.H.L., Moerdijk, T.C.W., Rozema, J. (2001). The effects of altered levels of UV-B radiation on an Antarctic grass and lichen. In: Rozema, J., Manetas, Y., Björn, L.O. (Eds.) Advances in vegetation science 18. Responses of plants to UV-B radiation. Springer Science and Business Media, pp 87-99.
Lütz, C., Seidlitz, H.K., Meindl, U. (1997). Physiological and structural changes in the chlo-roplast of the green alga Micrasterias denticulata induced by UV B simulation. Plant Ecology 128,55–64.
Lütz, C., Schönauer, E., Neuner, G. (2005). Physiological adaptation to early spring condi-tions in green overwintering leaves of some alpine plants. Phyton 45(3), 139–156.
Mackerness, S.A-H., Jordan, B.R., Thomas, B. (1999). Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B: 280–320 nm) in green and etiolated buds of pea (Pisum sativum L.). J. Photochemistry and Photobiology B: Biology 48 (2), 180 - 188.
Mancinelli, R.L., White, M.R., Rothschild, L.J. (1998). Biopan-survival I: exposure of the osmophiles Synechococcus sp.(Nageli) and Haloarcula sp. to the space environment. Ad-vances in Space Research 22(3), 327-334.
Martin, W., Baross, J., Kelley, D., Russell, M.J. (2008). Hydrothermal vents and the origin of life. Nature Reviews Microbiology 6(11), 805-814.
Maxwell, K., Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659-668.
McEvoy, M., Solhaug, K. A., Gauslaa, Y. (2007). Solar radiation screening in usnic acid-containing cortices of the lichen Nephroma arcticum. Symbiosis (Rehovot) 43(3), 143-150.
Meeßen, J. (2011). Erkennungsmechanismen in der Flechtensymbiose. Präkontakt-Studien und molekulare Analyse. Dissertation, Heinrich-Heine-Universität Düsseldorf.
Meeßen, J., Sánchez, F.J., Brandt, A., Balzer, E.M., de la Torre, R., Sancho, L.G., de Vera, J.-P., Ott, S. (2013a). Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics. Origins of Life and Evolution of Biospheres 43(3), 283-303. (PUBL. 1)
Meeßen, J., Sánchez, F. J., Sadowsky, A., de la Torre, R., Ott, S., de Vera, J.-P. (2013b). Ex-tremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds. Origins of Life and Evolution of Biospheres 43(6), 501-526.
Meeßen, J., Backhaus, T., Brandt, A., Raguse, M., de Vera, J.-P., de la Torre, R.: STARLIFE 2: The effect of high dose ionizing radiation on the isolated photobiont of the astrobiological model lichen Circinaria gyrosa. Astrobiology (in review). (PUBL. 5)
Melosh, H.J. (1984). Impact ejection, spallation, and the origin of meteorites. Icarus 59(2), 234–260.
Meyer, C., Fritz, J., Misgaiski, M., Stoeffler, D., Artemieva, N.A., Hornemann, U., Moeller, R., de Vera, J.-P., Cockell, C.S., Horneck, G., Ott, S., Rabbow, E. (2011). Shock experi-ments in support of the Lithopanspermia theory: the influence of host rock composition, temperature, and shock pressure on the survival rate of endolithic and epilithic microorganisms. Meteoritics and Planetary Science 46(5), 701–718.
Mileikowsky, C. ( 2000) Natural Transfer of Microbes in space, part I: from Mars to Earth and Earth to Mars. Icarus 145(2), 391-427.
Millard, P.J., Roth, B.L., Thi, H.P., Yue, S.T., Haugland, R.P. (1997). Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Applied and Environmental Microbiology 63(7), 2897-2905.
Moeller, R., Schuerger, A.C., Reitz, G., Nicholson, W.L. (2012). Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated Mars surface conditions. Applied Environmental Microbiology 78 (24), 8849-8853.
Moissl-Eichinger, C. (2011). Archaea in artificial environments: their presence in global spacecraft clean rooms and impact on planetary protection. The ISME journal 5(2), 209-219.
Montenbruck, O., Gill, E. (2012). Satellite orbits: models, methods and applications. Springer Science & Business Media, Berlin.
Musilova, M., Wright, G., Ward, J.M., Dartnell, L.R. (2015). Isolation of radiation-resistant bacteria from Mars analog antarctic dry valleys by preselection, and the correlation be-tween radiation and desiccation resistance. Astrobiology 15(12), 1076-1090.
NASA, Jet Propulsion Laboratory, California Institute of Technology: Exoplaneten, aktuelle Zahlen online: http://planetquest.jpl.nasa.gov/
NASA, Definition Astrobiology: https://astrobiology.nasa.gov/about-astrobiology/
Nash III, T.H., White, S.L., Marsh, J.E. (1977). Lichen and moss distribution and biomass in hot desert ecosystems. The Bryologist 80(3), 470-479.
Nawkar, G.M., Maibam, P., Park, J.H., Sahi, V.P., Lee, S.Y., Kang, C.H. (2013). UV-induced cell death in plants. International Journal of Molecular Sciences 14(1), 1608-1628.
Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews 64(3), 548-572.
Nicholson, W.L. (2009) Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends in Microbiology 17(6) 243-250.
Nifontova, M.G., Ravinskaya, A.P., Shapiro, I.A. (1995) Effect of acute gamma radiation on some physiological features of lichens. Lichenologist 27(3), 215-224.
Nussinov, M.D., Lysenko, S.V. (1983). Cosmic vacuum prevents radiopanspermia. Origins of life 13(2), 153-164.
Nybakken, L., Solhaug, K. A., Bilger, W., Gauslaa, Y. (2004). The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habi-tats. Oecologia 140(2), 211-216.
Obermayer, W., Poelt, J. (1992). Contributions to the knowledge of the lichen flora of the Himalayas III. On Lecanora somervellii Paulson (Lichenized Ascomycotina, Lecanorace-ae). The Lichenologist 24(2), 111-117.
Onofri, S., de la Torre, R., de Vera, J.-P., Ott, S., Zucconi, L., Selbmann, L., Scalzi, G., Van-kateswaran, K.J., Rabbow, E., Sánchez Iñigo, F.J., Horneck, G. (2012). Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12(5), 508-516.
Ortega-Retuerta, E., Passow, U., Duarte, C.M., Reche, I. (2009). Effects of ultraviolet B ra-diation on (not so) transparent exopolymer particles. Biogeoscience Discussions 6, 7599-7625
Øvstedal, D.O., Lewis Smith, R.I. (2001). Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge University Press, Cambridge, pp 66-365.
Palmer Jr, R.J., Friedmann, E.I. (1990). Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microbial Ecology 19(1), 111-118.
Perez-Ortega, S., Ortiz-Álvarez, R., Green, T.A., de los Rios, A. (2012). Lichen myco-and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiology Ecology 82(2), 429-448.
Persson, D., Halberg, K.A., Jørgensen, A., Ricci, C., Møbjerg, N., Kristensen, R.M. (2011). Extreme stress tolerance in tardigrades: surviving space conditions in low earth orbit. Journal of Zoological Systematics and Evolutionary Research 49(s1), 90-97.
Rabbow, E., Rettberg, P., Barczyk, S., Bohmeier, M., Parpart, A., Panitz, C., Horneck, G., von Heise-Rotenburg, R., Hoppenbrouwers, T., Willnecker, R., Baglioni, P., Demets, R., Dettmann, J., Reitz, G. (2012). EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12(5), 374–386.
Raggio, J., Pintado, A., Ascaso, C., de la Torre, R., de los Ríos, A., Wierzchos, J., ..., Sancho, L.G. (2011). Whole lichen thalli survive exposure to space conditions: results of Litho-panspermia experiment with Aspicilia fruticulosa. Astrobiology 11(4), 281-292.
Rassow, J. (1980). Physikalisch-methodische Grundlagen der Strahlentherapie. In: Scherer, E. (Ed.) Strahlentherapie. Radiologische Onkologie. 2. Auflage, Springer Verlag Berlin Heidelberg.
Ravanat, J.L., Douki, T., Cadet, J. (2001) Direct and indirect effects of UV radiation on DNA and its components. Journal of Photochemistry and Photobiology B: Biology 63(1), 88-102.
Rebecchi, L., Altiero, T., Guidetti, R. (2007). Anhydrobiosis: the extreme limit of desiccation tolerance. Invertebate Survival Journal 4, 65-81.
RedShift Report (2011). van Bavinchove, C., Beuselinck, T. (Reviewers) EXPOSE: Environ-mental history by calculation - EXPOSE-E simulation results. Ref: EXP-RP-017-RS ISS. A(2). RedShift Design and Engineering BVBA (125 pp).
Reitz, G. (2008). Characteristic of the radiation field in low Earth orbit and in deep space. Zeitschrift für Medizinische Physik 18(4), 233-243.
Reitz, G., Berger, T., Hajek, M., Burmeister, S., Labrenz, J., Pálfalvi, J.K., Kató, Z., Bilski, P., Puchalska, M., Sihver, L., Hager, L., Tanner, R. (2011). Human model MATROSHKA for radiation exposure determination of astronauts. In: "Let's embrace space - Space Re-search achievements under the 7th Framework Programme" European Commission, DG Enterprise and Industry; European Union, Brussels, pp 300-310.
Rettberg, P., Horneck, G., Strauch, W., Facius, R., Seckmeyer, G. (1998). Simulation of planetary UV radiation climate on the example of the early Earth. Advances in Space Research 22(3), 335-339.
Rettberg, P., Rothschild, L. J. (2002). Ultraviolet radiation in planetary atmospheres and biological implications. In: Horneck, G., Baumstark-Khan, C. (Eds.) Astrobiology: the quest for the conditions of life. Springer Verlag, Berlin Heidelberg, pp. 233-243.
Riley, P.A. (1994). Free radicals in biology: oxidative stress and the effects of ionizing radiation. International journal of radiation biology 65(1), 27-33.
Rundel, P. W. (1978). The ecological role of secondary lichen substances. Biochemical Sys-tematics and Ecology 6(3), 157-170.
Sadowsky, A., Ott, S. (2012). Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis 58(1-3), 81-90.
Sánchez, F.J., Mateo-Martí, E., Raggio, J., Meeßen, J., Martínez-Frías, J., Sancho, L. G., Ott, S., de la Torre, R. (2012). The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions - a model test for the survival capacity of an eukaryotic extremophile. Planetary and Space Science 72(1), 102-110.
Sánchez, F.J., Meeßen, J., Ruiz, M.G., Sancho, L., Ott, S., Vílchez, C., Horneck, G., Sa-dowsky, A., de la Torre, R. (2014). UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances. International Journal of Astrobiology 13(1), 1-18.
Sancho, L.G., de la Torre, R., Horneck, G., Ascaso, C., de los Rios, A., Pintado, A., ..., Schus-ter, M. (2007). Lichens survive in space: results from the 2005 LICHENS experiment. As-trobiology 7(3), 443-454.
Scalzi, G., Selbmann, L., Zucconi, L., Rabbow, E., Horneck, G., Albertano, P., Onofri, S. (2012). LIFE Experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the International Space Station. Origins of Life and Evolution of Biospheres 42(2), 253–262
Scheidegger, C., Schroeter, B., Frey, B. (1995). Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts. Planta 197(2), 399-409.
Schroeter, B., Scheidegger, C. (1995). Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytologist 131 (2), 273-285.
Schuster, G., Ott, S., Jahns, H. M. (1985). Artificial cultures of lichens in the natural envi-ronment. Lichenologist 17(3), 247-253.
Selbmann, L., De Hoog, G.S., Mazzaglia, A., Friedmann, E.I., Onofri, S. (2005). Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Studies in Mycology 51, 1-32.
Sinha, R. P., Häder, D.P. (2002). UV-induced DNA damage and repair: a review. Photochem-ical & Photobiological Sciences 1(4), 225-236.
Shikazono, N., Noguchi, M., Fujii, K., Urushibara, A., Yokoya, A. (2009). The yield, pro-cessing, and biological consequences of clustered DNA damage induced by ionizing radiation. Journal of radiation research 50(1), 27-36.
Shuster, D.L., Weiss, B.P. (2005). Martian surface paleo-temperatures from thermo-chronology of meteorites. Science 309(5734), 594–600.
Shields, L. M., Rickard, W. H. (1961). A preliminary evaluation of radiation effects at the Nevada test site. In: Recent Advances in Botany, University of Toronto Press New York, 1387-1390.
Sigfridsson, B., Oquist, G. (1980). Preferential distribution of excitation energy into photosystem I of desiccated samples of the lichen Cladonia impexa and the isolated lichen‐alga Trebouxia pyriformis. Physiologia Plantarum, 49(4), 329-335.
Solhaug, K.A., Gauslaa, Y. (1996). Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia, 108(3), 412-418.
Solhaug, K.A., Gauslaa, Y., Nybakken, L., Bilger, W. (2003). UV-induction of sun-screening pigments in lichens. New Phytologist 158(1), 91–100.
Solhaug, K.A., Gauslaa, Y. (2004). Photosynthates stimulate the UV‐B induced fungal an-thraquinone synthesis in the foliose lichen Xanthoria parietina. Plant, Cell & Environment 27(2), 167-176.
Solhaug, K.A., Larsson, P., Gauslaa, Y. (2010). Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pig-ments. Planta 231(5),1003–1011.
Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen Bazire, G. (1971). Purification and proper-ties of unicellular bluegreen algae (Order Chroococcales). Bacteriological Reviews 35(2), 171-205.
Stöffler, D., Horneck, G., Ott, S., Hornemann, U., Cockell, C.S., Moeller, R., ..., Artemieva, N.A. (2007). Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets. Icarus 186(2), 585-588.
Thomson, W. (1871). Presidential address to the British Association for the Advancement of Science. Nature 4, 262–270.
Thwaites, D.I. (1983). Bragg's rule of stopping power additivity: a compilation and summary of results. Radiation Research 95(3), 495-518.
Vaishampayan, P.A., Rabbow, E., Horneck, G., Venkateswaran, K.J. (2012). Survival of Ba-cillus pumilus spores for a prolonged period of time in real space conditions. Astrobiology 12(5), 487-497.
Vass, I. (1997). Adverse effects of UV-B light on the structure and function of the photosyn-thetic apparatus. In: Pessarakli, M. (Ed.), Handbook of Photosynthesis. Dekker, New York, pp 931–949.
Verter, F. (1982). Cosmic gamma-ray bursts. Physics Reports 81(4), 293-349.
Wassmann, M., Moeller, R., Rabbow, E., Panitz, C., Horneck, G., Reitz, G., ... , Rettberg, P. (2012). Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-Earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E. Astrobiology 12(5), 498-507.
Wieners, P.C., Mudimu, O., Bilger, W. (2012). Desiccation-induced nonradiative dissipation in isolated green lichen algae. Photosynthesis Research 113(1), 239–247.
Woodwell, G.M., Gannutz, T.P. (1967). Effects of chronic gamma irradiation on lichen com-munities of a forest. American Journal of Botany 54(10), 1210-1215.
Wynn-Williams, D.D., Edwards, H.G.M., Newton, E.M. Holder, J.M. (2002). Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces. International Journal of Astrobiology 1(1), 39–49.
Ziegler, J.F., Biersack, J.P. (1985). The stopping and range of ions in matter. In: (Bromley, A. (Ed) Treatise on Heavy-Ion Science, Springer US. pp 93-129.
Ziegler, J.F., Ziegler, M.D., Biersack, J.P. (2010). SRIM–The stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(11), 1818-1823.
Yuan, X., Xiao, S., Taylor, T. N. (2005). Lichen-like symbiosis 600 million years ago. Sci-ence 308(5724):1017-1020.
Zahnle, K., Arndt, N., Cockell, C., Halliday, A., Nisbet, E., Selsis, F., Sleep, N.H. (2007). Emergence of a habitable planet. In: Fishbaugh, K.E., Lognonné, P., Raulin, F., des Ma-rais, D.J., Korablev, O. (Eds.) Geology and Habitability of Terrestrial planets, Springer New York, pp 35-78.
Zhdanova, N.N., Zakharchenko, V.A., Vember, V.V., Nakonechnaya, L.T. (2000). Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research 104(12), 1421-1426.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Botanik
Dokument erstellt am:10.06.2016
Dateien geändert am:10.06.2016
Promotionsantrag am:06.08.2014
Datum der Promotion:27.05.2016
english
Benutzer
Status: Gast
Aktionen