Dokument: Photochemische und strukturelle Untersuchungen neuartiger Bilin-bindender Photorezeptoren

Titel:Photochemische und strukturelle Untersuchungen neuartiger Bilin-bindender Photorezeptoren
Weiterer Titel:Photochemical and structural studies of novel bilin-binding photoreceptors
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=38515
URN (NBN):urn:nbn:de:hbz:061-20160615-095816-5
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor:M.Sc. Gutt, Alexander [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]12,52 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 01.06.2016 / geändert 01.06.2016
Beitragende:Prof. Dr. Gärtner, Wolfgang [Betreuer/Doktorvater]
Prof. Dr. Jaeger, Karl-Erich [Gutachter]
Stichwörter:Photobiology, Photorezeptoren, GAF-Domänen, Blitzlichtphotolyse
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 540 Chemie
Beschreibungen:Photorezeptoren sind Licht-detektierende Systeme, die einen äußeren Lichtreiz wahrneh-men und in ein physiologisches Signal umwandeln. Dabei nehmen sie vor allem die Inten-sität, Wellenlänge, Periodizität und Richtung des Lichts wahr. Hier wird besonders die Klasse der Phytochrome bearbeitet. Diese können in fünf wohldefinierte Familien unterteilt werden, welche in erster Linie durch die Struktur der Chromophore und die jeweilige Photochemie bestimmt werden. Eine dieser Familien sind die ‚klassischen‘ Phytochrome, welche wichtige regulatorische Aufgaben in der Photomorphogenese von Pflanzen über-nehmen. Sie zeigen in ihrem photosensorischen Bereich eine PAS-GAF-PHY Struktur und tragen einen offenkettigen Tetrapyrrol- (Bilin) Chromophor, der kovalent an ein Cystein in der GAF-Domäne gebunden ist. In den letzten Jahrzehnten konnten derartige kanonische Phytochrome zusätzlich in Bakterien und Pilzen nachgewiesen werden.

Diese Thesis beinhaltet insbesondere die kinetische Untersuchung verschiedener Photozyklen in Bezug auf mögliche Intermediate und deren Lebenszeiten. Dabei werden klassische Phytochrome aus den Familien der cyanobakteriellen (Cph), der bacteriophy-tochromen (BphP) und der pilzlichen (Fph) Phytochrome als auch die neuartigen Cyanobacteriochrome (CBCRs) untersucht. Die zeitaufgelösten kinetischen Absorptions-messungen wurden mittels der Methode der Blitzlichtphotolyse durchgeführt.

i) Vergleich der Photozyklen klassischer Phytochrome
Der erste Teil dieser Thesis befasst sich mit der vergleichenden Gegenüberstellung von vier Phytochromen aus drei Phytochrom-Unterfamilien. Untersucht wurde SynCph2(1-2) aus Synechocystis sp. PCC 6803, welches eine GAF-GAF Bidomäne besitzt, wobei ne-ben der Charakterisierung des Wildtyp-Proteins insbesondere die stabilisierende Wirkung der GAF2-Domäne auf den Bilin-Chromophor mit Hilfe von Punktmutationen genauer untersucht wurde. Daneben wurden zwei Bacteriophytochrome, PstBphP1 aus Pseudomo-nas syringae pv. tomato und PaBphP aus Pseudomonas aeruginosa, welches zu den bathy-Phytochromen zählt, sowie ein pilzliches Phytochrom, FphA aus Aspergillus nidulans, spektroskopisch charakterisiert.

Es konnte gezeigt werden, dass die Alanin-Mutanten S385A und W389A von SynCph2(1-2) einen deutlichen Einfluss auf den Photozyklus und vor allem auf die Bil-dung des Pfr-Zustandes haben, wohingegen sich der Austausch in eine ähnlich große und aromatische Aminosäure (W389F) nicht auswirkt. Der bathychrome Charakter von PaBphP wirkt sich nicht auf den Photozyklus aus und ist sehr vergleichbar zu den kanoni-schen Phytochromen wie CphA bzw. Cph1, wobei die Konversion aus dem Grundzustand in das Photoprodukt keine sichtbaren Intermediate aufzeigt. PstBphP1 und FphA fehlt im Vergleich zu den kanonischen Phytochromen ein Intermediat beim Übergang in den Pfr-Zustand was auf einen unterschiedlichen Prozess bei der Bildung des Photoprodukts hin-deutet. Die Rückkonversion verläuft bei PstBphP1 ‚klassisch‘, wohingegen bei FphA keine Intermediate identifiziert werden können.

ii) Spektroskopische Untersuchung dreier GAF-Domänen der CBCRs
Im zweiten Teil der Arbeit werden drei Vertreter der Cyanobacteriochrome unter-sucht. Die CBCRs nehmen in der Klasse der Phytochrome eine außergewöhnliche Stellung ein. Dies zeigt sich u.a. durch ihre Fähigkeit, mit Hilfe einer einzelnen GAF-Domäne den Chromophor kovalent zu binden und einen reversiblen, photochromen Photozyklus zu durchlaufen. Untersucht wurde die GAF3-Domäne von Slr1393 aus Synechocystis sp. PCC 6803, die einen Rot/Grün-Photozyklus zeigt, die GAF1-Domäne aus AphC aus Nostoc sp. PCC 7120, welche einen klassischen Rot/Dunkelrot-Photozyklus aufweist, sowie die GAF3-Domäne aus demselben Organismus mit einem außergewöhnlichen Rot/Orange-Photozyklus, der durch die Erstellung zweier Punktmutationen in der Nähe des Chromo-phors (S487R und S487G) genauer untersucht wurde. Zusätzlich wurde bei 1393gaf3 der Einfluss der Chromophor-Bindung bei Zugabe in vivo als auch in vitro genauer untersucht. Genauere Informationen über Chromophor-Protein Wechselwirkungen konnten durch drei Mutanten (R508N, D531T und N532Y) erhalten werden, die bereits großen Einfluss auf die steady-state Absorption des Pg-Photoproduktes aufweisen.

Die CBCR GAF-Domänen zeigen im Vergleich zu den klassischen Phytochromen einen deutlich vereinfachten Photozyklus, der vermutlich auf die geringe Proteingröße und die dadurch mögliche hohe Flexibilität zurückzuführen ist, die es leichter möglich macht, der durch die Chromophor-Isomerisierung erzwungenen Konfirmationsänderungen zu fol-gen. Das außergewöhnliche thermisch sehr instabile und deutlich weniger hypsochrom verschobene Photoprodukt der GAF3-Domäne von AphC lässt sich mit einem möglicher-weise gehinderten Intermediat eines rot/grün Photozyklus erklären. Die generierten Muta-tionen bewirkten eine deutlich stabilisierende Wirkung auf die thermische Rückkehr in den Grundzustand.

Photoreceptors are light-detecting systems that convert the external stimulus light into a physiological signal by sensing the intensity, wavelength, periodicity and direction. The focus in this work was set on the phytochrome photoreceptors. Phytochromes can be sepa-rated into five well-defined families, specified for their chromophore structure and their respective photochemistry. One of these families, the ‘classical’ phytochromes, comply important regulatory functions in the photomorphogenesis of plants. Their light-sensing part consists of a PAS-GAF-PHY structure with an open-chain tetrapyrrole (bilin) chromophore covalently bound to a cysteine in the GAF domain. In recent decades canonical phytochromes with such domain architecture could also be detected in bacteria and fungi.

This thesis is dedicated in particular to kinetic studies of various photocycles aiming at identification of potential intermediates and their lifetimes. Therefore, classical phy-tochromes from the families of cyanobacterial (Cph), bacteriophytochromes (BphP) and fungal (Fph) phytochromes as well as the novel cyanobacteriochromes (CBCRs) were ex-amined. The time-resolved kinetic absorption measurements were performed using the method of flash photolysis.

i) Comparison of the photocycles of classical phytochromes
The first part of this thesis deals with the comparative analysis of four phyto-chromes belonging to three phytochrome-subfamilies. The examination of SynCph2(1-2) from Synechocystis sp. PCC 6803, carrying a photosensory GAF-GAF bidomain, is based on the characterization of the wildtype-protein and in particular on the mutational analysis of the stabilizing effect on the chromophore of the GAF2 domain. In addition, two bacteri-ochromes, PstBphP1 from Pseudomonas syringae pv. tomato und PaBphP from Pseudo-monas aeruginosa (member of bathy-phytochromes) as well as a fungal phytochrome, FphA from Aspergillus nidulans, had been spectroscopically characterized.

Results reveal an important effect of position 385 and 389 of SynCph2(1-2) on the photocycle. Exchange of these amino acids into alanines (S385A and W389F) affect espe-cially the formation of the Pfr-Photoprodukt, whereas the exchange at position 389 into a similarly large, aromatic amino acid (W389F) has no noticeable effect. The bathochromic nature of PaBphP does not alter the photocycle significantly. Its light-driven conversions are very comparable to those of canonical phytochromes such as CphA or Cph1, although the photoconversion from the parent state to the photoproduct shows no noticeable inter-mediates. Both PstBphP1 and FphA are missing an intermediate in the transition to the Pfr-state (in comparison to canonical phytochromes) suggesting different processes in the for-mation of the photoproduct. The reverse conversion from PstBphP1 proceeds in a ‘classi-cal’ manner, whereas FphA shows no identifiable intermediates.

ii) Spectroscopic investigation of three GAF domains from CBCRs
In the second part of this work, three representatives of the Cyanobacteriochromes were investigated. The CBCRs assume an exceptional position within the phytochrome photoreceptors. This is apparent, among other things, by their ability to covalently bind the chromophore and undergo a reversible photochromic photocycle with help of only one GAF domain. This study comprised the GAF3 domain from Slr1393 of Synechocystis sp. PCC 6803, showing a red/green photocycle, the GAF1 domain from AphC of Nostoc sp. PCC 7120, showing a classical red/dark red photocycle, as well as the GAF3 domain from the same organism with an exceptional red/orange photocycle. For this CBCR-GAF do-main, also two point mutations located close to the chromophore (S487R and S487G) were included into the time-resolved analysis. The remarkable thermally very unstable and sig-nificantly less hypsochromically shifted photoproduct of the GAF3 domain from AphC can be explained by a possibly hindered intermediate of a red/green photocycle. The generated mutations caused a remarkably stabilizing effect on the thermal recovery to the parent state.

In addition, the influence of the chromophore binding mode by either in vivo or in vitro addition was examined in more detail for the 1393gaf3. Further information regarding the chromophore-protein interactions was obtained using three mutants (R508N, D531T and N532Y) who have a major influence on the steady-state absorption of the Pg photo-product.

In comparison to the classical phytochromes, the CBCR GAF domains show a sig-nificantly simplified photocycle. This is probably due to the low protein size, maybe ena-bling a high flexibility allowing more easily to follow the forced confirmation changes triggered by the photoisomerization.
Quelle:1. Kilian, U., and Aschemeier, R. (2012) Das große Buch vom Licht, Primus Verlag
2. Walther, T., and Walther, H. (2010) Was ist Licht? Von der klassischen Optik zur Quantenoptik, Verlag C. H. Beck
3. Hart, J. W. (1988) Light and plant growth, Unwin Hyman
4. Björn, L. O. (2015) Photobiology: The Science of Life and Light, Springer
5. Jablonski Diagramm, http://web.uvic.ca/ail/techniques/epi-fluorescence.html. Advanced Imaging Laboratory, University of Victoria
6. Lakowicz, J. R. (2007) Principles of Fluorescence Spectroscopy, Springer
7. Christie, J. M. (2007) Phototropin blue-light receptors. Annual Review of Plant Biology 58, 21-45
8. Losi, A., and Gärtner, W. (2012) The Evolution of Flavin-Binding Photoreceptors: An Ancient Chromophore Serving Trendy Blue-Light Sensors. Annual Review of Plant Biology 63, 49-72
9. van der Horst, M. A., Key, J., and Hellingwerf, K. J. (2007) Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too. Trends in microbiology 15, 554-562
10. Béjà, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S. B., Gates, C. M., Feldman, R. A., Spudich, J. L., Spudich, E. N., and DeLong, E. F. (2000) Bacterial Rhodopsin: Evidence for a New Type of Phototrophy in the Sea. Science 289, 1902-1906
11. Ernst, O. P., Lodowski, D. T., Elstner, M., Hegemann, P., Brown, L. S., and Kandori, H. (2014) Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chemical Reviews 114, 126-163
12. Batschauer, A. (2003) Photoreceptors and Light Signalling, Royal Society of Chemistry
13. Meyer, T. E. (1985) Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochimica et Biophysica Acta 806, 175-183
14. Pellequer, J. L., Wager-Smith, K. A., Kay, S. A., and Getzoff, E. D. (1998) Photoactive yellow protein: A structural prototype for the three-dimensional fold of the PAS domain superfamily. Proceedings of the National Academy of Sciences of the United States of America 95, 5884-5890
15. Meyer, T. E., Kyndt, J. A., Memmi, S., Moser, T., Colón-Acevedo, B., Devreese, B., and Van Beeumen, J. J. (2012) The growing family of photoactive yellow proteins and their presumed functional roles. Photochemical & Photobiolgical Sciences 11, 1495-1514
16. Yang, H. Q., Wu, Y. J., Tang, R. H., Liu, D., Liu, Y., and Cashmore, A. R. (2000) The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response. Cell 103, 815-827
17. Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L. O., van der Horst, G. T., Batschauer, A., and Ahmad, M. (2011) The Cryptochromes: Blue Light Photoreceptors in Plants and Animals. Annual Review of Plant Biology 62, 335-364
18. Sancar, A. (2003) Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chemical Reviews 103, 2203-2237
19. Liu, H., Liu, B., Zhao, C., Pepper, M., and Lin, C. (2011) The action mechanisms of plant cryptochromes. Trends in Plant Science 16, 684-691
20. Wang, J., Du, X., Pan, W., Wang, X., and Wu, W. (2015) Photoactivation of the cryptochrome/photolyase superfamily. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 22, 84-102
21. Liu, Z., Wang, L., and Zhong, D. (2015) Dynamics and mechanisms of DNA repair by photolyase. Physical Chemistry Chemical Physics 17, 11933-11949
22. Kneuttinger, A. C., Kashiwazaki, G., Prill, S., Heil, K., Müller, M., and Carell, T. (2013) Formation and Direct Repair of UV-induced Dimeric DNA Pyrimidine Lesions. Photochemistry and Photobiology 90, 1-14
23. Brudler, R., Hitomi, K., Daiyasu, H., Toh, H., Kucho, K., Ishiura, M., Kanehisa, M., Roberts, V. A., Todo, T., Tainer, J. A., and Getzoff, E. D. (2003) Identification of a New Cryptochrome Class. Structure, Function, and Evolution. Molecular cell 11, 59-67
24. Mei, Q., and Dvornyk, V. (2015) Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes. PLoS One 10
25. Huala, E., Oeller, P. W., Liscum, E., Han, I. S., Larsen, E., and Briggs, W. R. (1997) Arabidopsis NPH1: A Protein Kinase with a Putative Redox-Sensing Domain. Science 278, 2120-2123
26. Jurk, M., Dorn, M., Kikhney, A., Svergun, D., Gärtner, W., and Schmieder, P. (2010) The Switch that Does Not Flip: The Blue-Light Receptor YtvA from Bacillus subtilis Adopts an Elongated Dimer Conformation Independent of the Activation State as Revealed by a Combined AUC and SAXS Study. Journal of molecular biology 403, 78-87
27. van der Horst, M. A., and Hellingwerf, K. J. (2004) Photoreceptor Proteins, "Star Actors of Modern Times": A Review of the Functional Dynamics in the Structure of Representative Members of Six Different Photoreceptor Families. Accounts of chemical research 37, 13-20
28. Losi, A., and Gärtner, W. (2011) Old Chromophores, New Photoactivation Paradigms, Trendy Applications: Flavins in Blue Light-Sensing Photoreceptors. Photochemistry and Photobiology 87, 491-510
29. Moran, L. A., and Horton, H. R. (2012) Principles of Biochemistry, Pearson
30. Herrou, J., and Crosson, S. (2011) Function, structure and mechanism of bacterial photosensory LOV proteins. Nature Reviews Microbiology 9, 713-723
31. Möglich, A., and Moffat, K. (2007) Structural Basis for Light-dependent Signaling in the Dimeric LOV Domain of the Photosensor YtvA. Journal of molecular biology 373, 112-126
32. Raffelberg, S., Mansurova, M., Gärtner, W., and Losi, A. (2011) Modulation of the Photocycle of a LOV Domain Photoreceptor by the Hydrogen-Bonding Network. Journal of the American Chemical Society 133, 5346-5356
33. Mehlhorn, J., Lindtner, T., Richter, F., Glaß, K., Steinocher, H., Beck, S., Hegemann, P., Kennis, J. T., and Mathes, T. (2015) Light-Induced Rearrangement of the beta5 Strand in the BLUF Photoreceptor SyPixD (Slr1694). The Journal of Physical Chemistry Letters 6, 4749-4753
34. Losi, A. (2007) Flavin-based Blue-light Photosensors: A Photobiophysics Update. Photochemistry and Photobiology 83, 1283-1300
35. Masuda, S. (2013) Light Detection and Signal Transduction in the BLUF Photoreceptors. Plant & Cell Physiology 54, 171-179
36. Jung, A., Reinstein, J., Domratcheva, T., Shoeman, R. L., and Schlichting, I. (2006) Crystal Structures of the AppA BLUF Domain Photoreceptor Provide Insights into Blue Light-mediated Signal Transduction. Journal of molecular biology 362, 717-732
37. Jung, A., Domratcheva, T., Tarutina, M., Wu, Q., Ko, W. H., Shoeman, R. L., Gomelsky, M., Gardner, K. H., and Schlichting, I. (2005) Structure of a bacterial BLUF photoreceptor: Insights into blue light-mediated signal transduction. Proceedings of the National Academy of Sciences 102, 12350-12355
38. Fudim, R., Mehlhorn, J., Berthold, T., Weber, S., Schleicher, E., Kennis, J. T., and Mathes, T. (2015) Photoinduced formation of flavin radicals in BLUF domains lacking the central glutamine. FEBS Journal 282, 3161-3174
39. Hughes, J., Lamparter, T., Mittmann, F., Hartmann, E., Gärtner, W., Wilde, A., and Borner, T. (1997) A prokaryotic phytochrome. Nature 386, 663
40. Rockwell, N. C., and Lagarias, J. C. (2010) A Brief History of Phytochromes. ChemPhysChem 11, 1172-1180
41. Karniol, B., Wagner, J. R., Walker, J. M., and Vierstra, R. D. (2005) Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochemical Journal 392, 103-116
42. Rockwell, N. C., Su, Y. S., and Lagarias, J. C. (2006) Phytochrome Structure and Signaling Mechanisms. Annual Review of Plant Biology 57, 837-858
43. Gärtner, W. (2010) Lights on: A Switchable Fluorescent Biliprotein. ChemBioChem 11, 1649-1652
44. Warren, M., and Smith, A. (2009) Tetrapyrroles: Birth, Life and Death, Springer New York
45. Butler, W. L., Norris, K. H., Siegelman, H. W., and Hendricks, S. B. (1959) Detection, Assay, and Preliminary Purification of the Pigment Controlling Photoresponsive Development of Plants. Proceedings of the National Academy of Sciences 45, 1703-1708
46. Clack, T., Mathews, S., and Sharrock, R. A. (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant molecular biology 25, 413-427
47. Whitelam, G. C., Patel, S., and Devlin, P. F. (1998) Phytochromes and photomorphogenesis in Arabidopsis. Philosophical Transactions of the Royal Society 353, 1445-1453
48. Rockwell, N. C., and Lagarias, J. C. (2006) The Structure of Phytochrome: A Picture Is Worth a Thousand Spectra. The Plant cell 18, 4-14
49. Devlin, P. F., Yanovsky, M. J., and Kay, S. A. (2003) A Genomic Analysis of the Shade Avoidance Response in Arabidopsis. Plant Physiology 133, 1617-1629
50. Schäfer, E., and Nagy, F. (2006) Photomorphogenesis in Plants and Bacteria: Function and Signal Transduction Mechanisms, Springer Netherlands
51. Briggs, W. R., and Spudich, J. L. (2006) Handbook of Photosensory Receptors, Wiley
52. Kim, P. W., Rockwell, N. C., Martin, S. S., Lagarias, J. C., and Larsen, D. S. (2014) Dynamic Inhomogeneity in the Photodynamics of Cyanobacterial Phytochrome Cph1. Biochemistry 53, 2818-2826
53. Kim, P. W., Rockwell, N. C., Martin, S. S., Lagarias, J. C., and Larsen, D. S. (2014) Heterogeneous Photodynamics of the Pfr state in the Cyanobacterial Phytochrome Cph1. Biochemistry 53, 4601-4611
54. Jorissen, H. J. M. M., Quest, B., Remberg, A., Coursin, T., Braslavsky, S. E., Schaffner, K., Tandeau de Marsac, N., and Gärtner, W. (2002) Two independent, light-sensing two-component systems in a filamentous cyanobacterium. European Journal of Biochemistry 269, 2662-2671
55. Essen, L. O., Mailliet, J., and Hughes, J. (2008) The structure of a complete phytochrome sensory module in the Pr ground state. Proceedings of the National Academy of Sciences 105, 14709-14714
56. Anders, K., Daminelli-Widany, G., Mroginski, M. A., von Stetten, D., and Essen, L. O. (2013) Structure of the Cyanobacterial Phytochrome 2 Photosensor Implies a Tryptophan Switch for Phytochrome Signaling. The Journal of Biological Chemistry 288, 35714-35725
57. Anders, K., Gutt, A., Gärtner, W., and Essen, L. O. (2014) Phototransformation of the Red Light Sensor Cyanobacterial Phytochrome 2 from Synechocystis Species Depends on Its Tongue Motifs. The Journal of Biological Chemistry 289, 25590-25600
58. Bhoo, S. H., Davis, S. J., Walker, J., Karniol, B., and Vierstra, R. D. (2001) Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414, 776-779
59. Auldridge, M. E., and Forest, K. T. (2011) Bacterial phytochromes: More than meets the light. Critical Reviews in Biochemistry and Molecular Biology 46, 67-88
60. Karniol, B., and Vierstra, R. D. (2003) The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties. Proceedings of the National Academy of Sciences 100, 2807-2812
61. Giraud, E., Fardoux, J., Fourrier, N., Hannibal, L., Genty, B., Bouyer, P., Dreyfus, B., and Verméglio, A. (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417, 202-205
62. Tasler, R., Moises, T., and Frankenberg-Dinkel, N. (2005) Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa. FEBS Journal 272, 1927-1936
63. Purschwitz, J., Müller, S., Kastner, C., and Fischer, R. (2006) Seeing the rainbow: light sensing in fungi. Current Opinion in Microbiology 9, 566-571
64. Corrochano, L. M. (2011) Fungal photobiology: a synopsis. IMA Fungus 2, 25-28
65. Fuller, K. K., Loros, J. J., and Dunlap, J. C. (2015) Fungal photobiology: visible light as a signal for stress, space and time. Current Genetics 61, 275-288
66. Fuller, K. K., Ringelberg, C. S., Loros, J. J., and Dunlap, J. C. (2013) The Fungal Pathogen Aspergillus fumigatus Regulates Growth, Metabolism, and Stress Resistance in Response to Light. mBio 4
67. Brandt, S., von Stetten, D., Günther, M., Hildebrandt, P., and Frankenberg-Dinkel, N. (2008) The Fungal Phytochrome FphA from Aspergillus nidulans. The Journal of Biological Chemistry 283, 34605-34614
68. Ikeuchi, M., and Ishizuka, T. (2008) Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochemical & Photobiolgical Sciences 7, 1159-1167
69. Rockwell, N. C., Ohlendorf, R., and Möglich, A. (2013) Cyanobacteriochromes in full color and three dimensions. Proceedings of the National Academy of Sciences 110, 806-807
70. Ma, Q., Hua, H. H., Chen, Y., Liu, B. B., Krämer, A. L., Scheer, H., Zhao, K. H., and Zhou, M. (2012) A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in Nostoc sp. PCC7120. FEBS Journal 279, 4095-4108
71. Burgie, E. S., Walker, J. M., Phillips, G. N., Jr., and Vierstra, R. D. (2013) A Photo-Labile Thioether Linkage to Phycoviolobilin Provides the Foundation for the Blue/Green Photocycles in DXCF-Cyanobacteriochromes. Structure 21, 88-97
72. Ishizuka, T., Kamiya, A., Suzuki, H., Narikawa, R., Noguchi, T., Kohchi, T., Inomata, K., and Ikeuchi, M. (2011) The Cyanobacteriochrome, TePixJ, Isomerizes Its Own Chromophore by Converting Phycocyanobilin to Phycoviolobilin. Biochemistry 50, 953-961
73. Rockwell, N. C., Martin, S. S., Gulevich, A. G., and Lagarias, J. C. (2012) Phycoviolobilin Formation and Spectral Tuning in the DXCF Cyanobacteriochrome Subfamily. Biochemistry 51, 1449-1463
74. Rockwell, N. C., Martin, S. S., Gan, F., Bryant, D. A., and Lagarias, J. C. (2015) NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning. Photochemical & Photobiolgical Sciences 14, 258-269
75. Fukushima, Y., Iwaki, M., Narikawa, R., Ikeuchi, M., Tomita, Y., and Itoh, S. (2011) Photoconversion Mechanism of a Green/Red Photosensory Cyanobacteriochrome AnPixJ: Time-Resolved Optical Spectroscopy and FTIR Analysis of the AnPixJ-GAF2 Domain. Biochemistry 50, 6328-6339
76. Rockwell, N. C., Martin, S. S., and Lagarias, J. C. (2012) Red/green Cyanobacteriochromes: Sensors of Color and Power. Biochemistry 51, 9667-9677
77. Chen, Y., Zhang, J., Luo, J., Tu, J. M., Zeng, X. L., Xie, J., Zhou, M., Zhao, J. Q., Scheer, H., and Zhao, K. H. (2012) Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics. FEBS Journal 279, 40-54
78. Xu, X. L., Gutt, A., Mechelke, J., Raffelberg, S., Tang, K., Miao, D., Valle, L., Borsarelli, C. D., Zhao, K. H., and Gärtner, W. (2014) Combined Mutagenesis and Kinetics Characterization of the Bilin-Binding GAF Domain of the Protein Slr1393 from the Cyanobacterium Synechocystis PCC6803. ChemBioChem 15, 1190-1199
79. Terauchi, K., Montgomery, B. L., Grossman, A. R., Lagarias, J. C., and Kehoe, D. M. (2004) RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness. Molecular Microbiology 51, 567-577
80. Hirose, Y., Narikawa, R., Katayama, M., and Ikeuchi, M. (2010) Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter. Proceedings of the National Academy of Sciences 107, 8854-8859
81. Hirose, Y., Rockwell, N. C., Nishiyama, K., Narikawa, R., Ukaji, Y., Inomata, K., Lagarias, J. C., and Ikeuchi, M. (2013) Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Proceedings of the National Academy of Sciences 110, 4974-4979
82. Rockwell, N. C., Martin, S. S., and Lagarias, J. C. (2012) Mechanistic Insight into the Photosensory Versatility of DXCF Cyanobacteriochromes. Biochemistry 51, 3576-3585
83. Narikawa, R., Enomoto, G., Ni Ni, W., Fushimi, K., and Ikeuchi, M. (2014) A New Type of Dual-Cys Cyanobacteriochrome GAF Domain Found in Cyanobacterium Acaryochloris marina, Which Has an Unusual Red/Blue Reversible Photoconversion Cycle. Biochemistry 53, 5051-5059
84. Rockwell, N. C., Martin, S. S., Gulevich, A. G., and Lagarias, J. C. (2014) Conserved Phenylalanine Residues Are Required for Blue-Shifting of Cyanobacteriochrome Photoproducts. Biochemistry 53, 3118-3130
85. Song, C., Narikawa, R., Ikeuchi, M., Gärtner, W., and Matysik, J. (2015) Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. The Journal of Physical Chemistry 119, 9688-9695
86. Velazquez Escobar, F., Utesch, T., Narikawa, R., Ikeuchi, M., Mroginski, M. A., Gärtner, W., and Hildebrandt, P. (2013) Photoconversion Mechanism of the Second GAF Domain of Cyanobacteriochrome AnPixJ and the Cofactor Structure of Its Green-Absorbing State. Biochemistry 52, 4871-4880
87. Narikawa, R., Ishizuka, T., Muraki, N., Shiba, T., Kurisu, G., and Ikeuchi, M. (2013) Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Proceedings of the National Academy of Sciences 110, 918-923
88. Kehoe, D. M., and Gutu, A. (2006) Responding to Color: The Regulation of Complementary Chromatic Adaptation. Annual Review of Plant Biology 57, 127-150
89. Rockwell, N. C., Martin, S. S., and Lagarias, J. C. (2015) Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Photochemical & Photobiolgical Sciences 14, 929-941
90. Rockwell, N. C., Martin, S. S., Feoktistova, K., and Lagarias, J. C. (2011) Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Proceedings of the National Academy of Sciences 108, 11854-11859
91. Enomoto, G., Hirose, Y., Narikawa, R., and Ikeuchi, M. (2012) Thiol-Based Photocycle of the Blue and Teal Light-Sensing Cyanobacteriochrome Tlr1999. Biochemistry 51, 3050-3058
92. Yoshihara, S., Katayama, M., Geng, X., and Ikeuchi, M. (2004) Cyanobacterial Phytochrome-like PixJ1 Holoprotein Shows Novel Reversible Photoconversion Between Blue- and Green-absorbing Forms. Plant Cell Physiology 45, 1729-1737
93. Gottlieb, S. M., Kim, P. W., Corley, S. C., Madsen, D., Hanke, S. J., Chang, C. W., Rockwell, N. C., Martin, S. S., Lagarias, J. C., and Larsen, D. S. (2014) Primary and Secondary Photodynamics of the Violet/Orange Dual-Cysteine NpF2164g3 Cyanobacteriochrome Domain from Nostoc punctiforme. Biochemistry 53, 1029-1040
94. iba-lifesciences. (2014) Expression and purification of proteins using Strep-tag® or Twin-Strep-tag® - A comprehensive manual.
95. Reider, G. A. (2013) Photonik: Eine Einführung in die Grundlagen, Springer Vienna
96. Linschitz, H., and Kasche, V. (1967) Kinetics of Phytochrome Conersion: Multiple Pathways in the Pr to Pfr Reaction, as studied by Double-Flash Technique. Proceedings of the National Academy of Sciences 58, 1059-1064
97. Ruzsicska, B. P., Braslavsky, S. E., and Schaffner, K. (1985) The Kinetics of the Early Stages of the Phytochrome Phototransformation Pr - Pfr. A Comparative-Study of Small (60 kDalton) and Native (124 kDalton) Phytochromes from Oat. Photochemistry and Photobiology 41, 681-688
98. Zhang, C. F., Farrens, D. L., Björling, S. C., Song, P. S., and Kliger, D. S. (1992) Time-Resolved Absorption Studies of Native Etiolated Oat Phytochrome. Journal of the American Chemical Society 114, 4569-4580
99. Chen, E., Lapko, V. N., Lewis, J. W., Song, P. S., and Kliger, D. S. (1996) Mechanism of Native Oat Phytochrome Photoreversion: A Time-Resolved Absorption Investigation. Biochemistry 35, 843-850
100. Kendrick, R. E., and Spruit, C. J. (1977) Phototransformations Of Phytochrome. Photochemistry and Photobiology 26, 201-214
101. Eilfeld, P., and Rüdiger, W. (1985) Absorption-Spectra of Phytochrome Intermediates. Zeitschrift für Naturforschung C 40c, 109-114
102. Braslavsky, S. E., Gärtner, W., and Schaffner, K. (1997) Phytochrome photoconversion. Plant Cell and Environment 20, 700-706
103. Schmidt, P., Westphal, U. H., Worm, K., Braslavsky, S. E., Gärtner, W., and Schaffner, K. (1996) Chromophore-protein interaction controls the complexity of the phytochrome photocycle. Journal of Photochemistry and Photobiology B: Biology 34, 73-77
104. Schmidt, P., Gensch, T., Remberg, A., Gärtner, W., Braslavsky, S. E., and Schaffner, K. (1998) The Complexity of the Pr to Pfr Phototransformation Kinetics Is an Intrinsic Property of Native Phytochrome. Photochemistry and Photobiology 68, 754-761
105. Chizhov, I., Zorn, B., Manstein, D. J., and Gärtner, W. (2013) Kinetic and Thermodynamic Analysis of the Light-induced Processes in Plant and Cyanobacterial Phytochromes. Biophysical Journal 105, 2210-2220
106. Remberg, A., Lindner, I., Lamparter, T., Hughes, J., Kneip, C., Hildebrandt, P., Braslavsky, S. E., Gärtner, W., and Schaffner, K. (1997) Raman Spectroscopic and Light-Induced Kinetic Characterization of a Recombinant Phytochrome of the Cyanobacterium Synechocystis. Biochemistry 36, 13389-13395
107. van Thor, J. J., Borucki, B., Crielaard, W., Otto, H., Lamparter, T., Hughes, J., Hellingwerf, K. J., and Heyn, M. P. (2001) Light-Induced Proton Release and Proton Uptake Reactions in the Cyanobacterial Phytochrome Cph1. Biochemistry 40, 11460-11471
108. Song, C., Rohmer, T., Tiersch, M., Zaanen, J., Hughes, J., and Matysik, J. (2013) Solid-State NMR Spectroscopy to Probe Photoactivation in Canonical Phytochromes. Photochemistry and Photobiology 89, 259-273
109. Dasgupta, J., Frontiera, R. R., Taylor, K. C., Lagarias, J. C., and Mathies, R. A. (2009) Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proceedings of the National Academy of Sciences 106, 1784-1789
110. Andel, F., 3rd, Lagarias, J. C., and Mathies, R. A. (1996) Resonance Raman Analysis of Chromophore Structure in the Lumi-R Photoproduct of Phytochrome. Biochemistry 35, 15997-16008
111. Rohmer, T., Lang, C., Bongards, C., Gupta, K. B., Neugebauer, J., Hughes, J., Gärtner, W., and Matysik, J. (2010) Phytochrome as Molecular Machine: Revealing Chromophore Action during the Pfr --> Pr Photoconversion by Magic-Angle Spinning NMR Spectroscopy. Journal of the American Chemical Society 132, 4431-4437
112. Wu, S. H., and Lagarias, J. C. (2000) Defining the Bilin Lyase Domain: Lessons from the Extended Phytochrome Superfamily. Biochemistry 39, 13487-13495
113. Gärtner, W., Hill, C., Worm, K., Braslavsky, S. E., and Schaffner, K. (1996) Influence of expression system on chromophore binding and preservation of spectral properties in recombinant phytochrome A. European Journal of Biochemistry 236, 978-983
114. Narikawa, R., Fukushima, Y., Ishizuka, T., Itoh, S., and Ikeuchi, M. (2008) A Novel Photoactive GAF Domain of Cyanobacteriochrome AnPixJ That Shows Reversible Green/Red Photoconversion. Journal of molecular biology 380, 844-855
115. Slavov, C., Xu, X., Zhao, K. H., Gärtner, W., and Wachtveitl, J. (2015) Detailed insight into the ultrafast photoconversion of the cyanobacteriochrome Slr1393 from Synechocystis sp. Biochimica et Biophysica Acta 1847, 1335-1344
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Chemie » Biochemie
Dokument erstellt am:15.06.2016
Dateien geändert am:15.06.2016
Promotionsantrag am:01.04.2016
Datum der Promotion:10.05.2016
english
Benutzer
Status: Gast
Aktionen