Dokument: Establishment of C 4 Photosynthesis in Ontogeny and Evolution

Titel:Establishment of C 4 Photosynthesis in Ontogeny and Evolution
Weiterer Titel:Etablierung der C4-Photosynthese während Ontogenese und Evolution
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=36948
URN (NBN):urn:nbn:de:hbz:061-20160122-162629-3
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor:M. Sc Denton, Alisandra [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]89,28 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 22.01.2016 / geändert 22.01.2016
Beitragende:Prof. Dr. Weber, Andreas P. M. [Gutachter]
Prof. Dr. Rose, Laura [Gutachter]
Stichwörter:C4 photosynthesis, evolution, gene duplication, transcriptome
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 580 Pflanzen (Botanik)
Beschreibungen:Many plant species harbor an adaptive photosynthetic trait known as C4 photosynthesis.
The C4 cycle is a biochemical pump that concentrates CO2 in the vicinity of the central
carbon fixing enzyme Rubisco, suppressing the fixation of O2 and thereby photorespiration.
This is highly advantageous for C4 plants because photorespiration is energetically
costly and results in a net loss of carbon. Further, C4 plants show increased water-use
efficiency, as they are more able to modulate stomatal opening and closing and maintain
a sufficient CO2 concentration near Rubisco; and increased nitrogen use efficiency, as
they can reduce the amount of nitrogen that must be invested in the extremely abundant
Rubisco protein. These characteristics result in a strong selective advantage for C4
species in hot and arid environments.

The C4 trait is found in many high-biomass producing crop plants, including maize,
sorghum, and sugar cane. Therefore, there is strong interest in engineering C4 photosynthesis
into crop plants of the ancestral C3 photosynthetic type. A fully integrated C4
photosynthetic trait requires complex modifications to support the CO2 concentrating
C4 cycle.

In most species with C4 photosynthesis, CO2 is initially fixed in the exterior mesophyll
(M) tissue and then pumped into interior bundle sheath (BS) tissue, where the CO2 is
released and then re-fixed by Rubisco. Extensive changes in anatomy are required,
both to reduce diffusional distances for the metabolites of the C4 cycle and to take
advantage of the concentrated CO2 . These changes include an increased vein density,
enlarged bundle sheath cells, increased organelle content in bundle sheath cells, and
modifications to the BS cell wall that reduce diffusive escape of CO2 . C4 photosynthesis
requires specialization of function between M and BS cells, notably with the Calvin-
Benson-Bassham (CBB) cycle and the photorespiratory cycle restricted primarily to the
BS. Further common changes include the restriction of photosystem II to M tissue, and
the establishment of redox shuttles to balance energy between the two tissue types.

The high complexity of the C4 trait leads to both evolutionary questions and engineering
challenges. The evolution of C4 photosynthesis is particularly intriguing, because
despite the high complexity and lack of master regulator, C4 photosynthesis evolves in a
vhighly convergent fashion. A step wise model summarizes a commonly observed path to
C4 photosynthesis, starting with genetic and anatomical preconditioning, and proceeding
to the establishment of a photorespiratory pump and later the up-regulation and
optimization of the cycle.

Three manuscripts examine what facilitates the evolution of C4 photosynthesis, with
findings consistent with, but providing additional detail to the standing model for C4
evolution. In Denton et al. (in preparation), we elucidated how duplication contributes
to the C4 trait in maize, beyond the core C4 genes. Paralogs with functions relevant
to anatomical specialization, including cell wall and auxin response, showed specific
patterns of divergence in immature tissue. Paralogs with functions relevant to energy
balance, namely 3 out of the 4 ATP consuming enzymes in the CBB and photorespiratory
cycles, showed complementary expression in mature M and BS tissue. Further BS or M
tissue specificity was related to duplication level on a genome wide scale.

In Denton et al. (2013) we reviewed recent progress in understanding anatomical
preconditioning factors, such as BS cell size and dense vein spacing, and their advantages
in hot and arid environments.

Finally, in Heckmann et al. (2013) we modeled and cross
checked the evolutionary progression from C3 to fully integrated C4 biochemistry.
Establishment of the C4 photosynthetic anatomy occurs not in mature but in developing
tissues, and a full mechanistic understanding of the C4 trait requires comparative
ontogenies. Two manuscripts in this thesis generate and analyze comparative ontogeny
data. Denton et al. (in preparation) compares BS and M tissues in maize leaf development,
and showed, in addition to tissue specific paralogs, transcriptional regulators with
early tissue specificity. Kuelahoglu et al. (2014), compares leaf ontogeny in closely related
C3 and C4 Cleomaceae species, and finds a link between transcription and anatomy
for both enlarged BS and dense vein spacing in the C4 species. The enlarged BS correlated
with a higher BS ploidy level and down-regulation of a key endoreduplication
inhibiting transcription factor in the C4 species. The increased vein formation in the C4
species appears to be facilitated by a delay in tissue differentiation observed at both the
transcriptional and anatomical level.

Taken together, the manuscripts in this thesis have contributed to understanding
the natural evolutionary path towards C4 photosynthesis and provided insight into the
mechanisms and details of a fully integrated C4 trait.

In vielen Pflanzenarten findet sich das adaptive Merkmal, das als C4-Syndrom bekannt
ist. Der C4-Zyklus beinhaltet eine biochemische Pumpe, die CO2 in der Naehe des
wesentlichen Kohlenstoff-fixierenden Enzyms Rubisco anreichert und dadurch die Fixierung von O2 und
somit die Photorespieration unterdrueuckt. Dies ist von großem Vorteil
fuer C4-Pflanzen, da die Photorespiration energieaufwendig ist und in einem NettoVerlust von Kohlenstoff resultiert.
Darueberhinaus weisen C4-Pflanzen eine erhoehte Wassernutzungseffizienz auf,
da sie besser dazu in der Lage sind, das Offnen und Schließen
der Stomata zu regulieren und eine ausreichende CO2-Konzentration um Rubisco aufrechtzuerhalten.
Außerdem verfuegen sie ueber eine effizientere Stickstoffnutzung, da
weniger Stickstoff in die Produktion von Rubisco investiert werden muss. Diese Eigenschaften
schlagen sich in einem starken selektiven Vorteil fuer C4-Spezies in heißen und
trockenen Umgebungen nieder.

Das C4-Syndrom kommt in vielen Nutzpflanzen vor, die grosse Mengen an Biomasse
produzieren, darunter Mais, Sorghum und Zuckerrohr. Aus diesem Grund besteht ein
grosses Interesse daran, Nutzpflanzen mit dem ancestralen C3-Typ der Photosynthese zur
Nutzung der C4-Photosynthese zu modifizieren. Zur vollstaendigen Integration des C4-Photosyntheseweges
bedarf es komplexer Modifikationen, um den CO2-Konzentrations-Zyklus zu unterstuetzen.

In den meisten C4-Spezies wird CO2 zuerst im aeusseren Mesophyll-Gewebe (M) fixiert
und anschliessend in die inneren Buendelscheidenzellen (BS) gepumpt, wo CO2 freigesetzt
und durch Rubisco re-fixiert wird. Umfangreiche Anderungen in der Anatomie sind
noetig, um Diffusionswege der Metaboliten des C4-Zyklus zu reduzieren und um Nutzen
aus der CO2-Konzentration ziehen zu koennen. Diese Anderungen
beinhalten eine erhoehte Blattaderdichte, vergroesserte Buendelscheidenzellen, eine erhoehte Anzahl von Organellen
in den Buendelscheidenzellen und Modifikationen der BS-Zellwand, die den Austritt von
CO2 durch Diffusion reduzieren. C4 Photosynthese erfordert die funktionelle Spezialisierung
von M- und BS-Zellen, insbesondere eine Beschraenkung des Calvin-Benson-Bassham-Zyklus
(CBB) und des photorespirativen Zyklus primaer auf das BS-Gewebe.
Weitere verbreitete Anpassungen beinhalten die Beschraenkung des Photosystem II zum
M-Gewebe und die Etablierung von Redox-Shuttles, um Energie zwischen den beiden
Geweben auszugleichen.

Die hohe Komplexitaet der C4-Photosynthese fuehrt sowohl zu Fragen ihrer Evolution
als auch zu technischen Herausforderungen. Die Evolution der C4-Photosynthese ist
dadurch besonders faszinierend, dass sie – trotz ihrer so hohen Komplexitaet und Abwesenheit
eines Master-Regulator-Gens – mehrfach unabhaengig evolutionaer hochgradig
konvergent entstanden ist. Ein schrittweises Modell fasst einen oft beobachteten Weg zur
C4-Photosynthese zusammen, ausgehend von genetischer und anatomischer Praekonditionierung,
ueber die Etablierung der photorespiratorischen Pumpe und anschliessender Hochregulierung und Optimierung des Zyklus.

Drei der Manuskripte dieser Arbeit beschaeftigen sich mit den Voraussetzungen der
Evolution der C4-Photosynthese. Die hier gewonnen Erkenntnisse decken sich mit den
bestehenden Modellen und ergaenzen sie um zusaetzliche Details. In Denton et al. (in preparation)
erlaeutern wir, wie Genduplikationen, ueber die Haupt-C4-Gene hinaus, zum
C4-Syndrom in Mais beitragen. Paraloge, die eine fuer die anatomische Spezialisierung
wichtige Funktion haben, wie etwa Zellwand- oder Auxin-Response-Funktion, zeigten
spezifische Divergenzmuster in jungen Geweben. Drei der vier ATP-verbrauchenden
Enzyme des CBB- und des photorespiratorischen Zyklus sind Paraloge mit Funktionen
die fuer den Energieausgleich wichtig sind und, zeigten komplementaere Expression in voll
entwickeltem M- und BS-Gewebe. Darueberhinaus hing die BS- bzw. M-Spezifitaet mit
dem Duplikationsgrad auf genomweiter Ebene zusammen.

In Denton et al. (2013) haben wir die juengsten Fortschritte und Erkenntisse aus dem
Bereich der Praekonditionierung, wie etwa BS-Zellgroesse, hohe Blattaderdichte, und die
Vorteile in heissen und trockenen Umgebungen, analysiert.

Abschliessend modellierten und ueberprueften wir in Heckmann et al. (2013) den evolutionaeren
Verlauf ausgehend von einem C3-Zustand zur vollstaendig integrierten C4-Biochemie und fanden.

Die Errichtung der C4-photosynthetischen Anatomie findet nicht in vollentwickelten,
sondern in sich entwickelnden Geweben statt; zu einem vollen mechanistischen
Verstaendnis sind vergleichende Studien der Ontogenese erforderlich. Zwei der Manuskripte
dieser Arbeit generierten und analysierten solche vergleichende Ontogenese-Daten. Den-
ton et al. (in preparation) vergleicht BS- und M-Gewebe waehrend der Entwicklung des
Mais-Blattes und zeigte, zusaetzlich zu gewebespezifischen Paralogen, Transkriptionsreglatoren
mit frueher Gewebe-Spezifitaet. Kuelahoglu et al. (2014) vergleicht die Blatt-Ontogenese
zwischen zwei nahe verwandten C3- und C4-Cleomaceae-Spezies und findet
eine Verbindung zwischen Transkription und Anatomie fuer vergroesserte BS und hohe
Blattaderdichte in den C4-Spezies. Die vergroesserten BS in den C4-Spezies korrelierten
mit hoeheren BS-Ploiditaetsstufen und der Herunterregulation eines Transkriptionsfaktors,
der eine Schluesselrolle in der Inhibition der Endoreduplikation spielt. Die vergroesserte
Blattaderdichte scheint durch eine Verzoegerung der Gewebedifferenzierung ermoeglicht zu
sein, welche auf transkriptionaler und anatomischer Ebene beobachtet werden konnte.

Zusammengenommen tragen die Manuskripte in dieser Arbeit zum Verstaendnis ueber
die fuer die Entwicklung der C4-Photosynthese noetigen Schritte bei und bieten Einblicke
in die Mechanismen und Details des vollstaendig integrierten C4-Syndroms
Quelle:Andrews, T. J., Lorimer, G. H., and Tolbert, N. E. (1971). Incorporation of molecular
oxygen into glycine and serine during photorespiration in spinach leaves. Biochemistry,
10(25):4777–4782.

Badger, M. and Andrews, T. (1987). Co-evolution of rubisco and co2 concentrating
mechanisms. In Biggins, J., editor, Progress in Photosynthesis Research, pages 601–
609. Springer Netherlands.

Bassham, J. A., Benson, A. A., Kay, L. D., Harris, A. Z., Wilson, A. T., and Calvin, M.
(1954). The path of carbon in photosynthesis. xxi. the cyclic regeneration of carbon
dioxide acceptor1. Journal of the American Chemical Society, 76(7):1760–1770.

Bauwe, H., Hagemann, M., and Fernie, A. R. (2010). Photorespiration: players, partners
and origin. Trends in plant science, 15(6):330–336.

Bellasio, C. and Griffiths, H. (2014). The Operation of Two Decarboxylases, Transam-
ination, and Partitioning of C4 Metabolic Processes between Mesophyll and Bundle
Sheath Cells Allows Light Capture To Be Balanced for the Maize C4 Pathway. Plant
Physiology, 164(1):466–80.

Blackburn, D. (2005). Amniote perspectives on the evolutionary origins of viviparity and
placentation. In Grier, H. and Uribe, M., editors, Viviparous Fishes, pages 301–322.
New Life Publications, Homestead, Florida.

Bowes, G. (1991). Growth at elevated co2: photosynthetic responses mediated through
rubisco. Plant, Cell & Environment, 14(8):795–806.

Braeutigam, A., Kajala, K., Wullenweber, J., Sommer, M., Gagneul, D., Weber, K. L.,
Carr, K. M., Gowik, U., Mass, J., Lercher, M. J., Westhoff, P., Hibberd, J. M., and
Weber, A. P. M. (2011). An mRNA blueprint for C4 photosynthesis derived from
comparative transcriptomics of closely related C3 and C4 species. Plant Physiology,
155(1):142–56.

Braeutigam, A., Schliesky, S., Kuelahoglu, C., Osborne, C. P., and Weber, A. P. M. (2014).
Towards an integrative model of C4 photosynthetic subtypes: insights from comparative
transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. Journal of Experimental Botany, 65(13):3579–93.

Braeutigam, A. and Weber, A. P. M. (2011). Do metabolite transport processes limit
photosynthesis? Plant physiology, 155(1):43–8.

Brodribb, T. J. and Feild, T. S. (2010). Leaf hydraulic evolution led a surge in leaf photo-
synthetic capacity during early angiosperm diversification. Ecology letters, 13(2):175–
83.

Carmo-Silva, A. E., Gore, M. A., Andrade-Sanchez, P., French, A. N., Hunsaker, D. J.,
and Salvucci, M. E. (2012). Decreased co2 availability and inactivation
of rubisco limit photosynthesis in cotton plants under heat and drought stress in the
field. Environmental and Experimental Botany, 83:1–11.

Chain, F. J. J., Ilieva, D., and Evans, B. J. (2008). Duplicate gene evolution and
expression in the wake of vertebrate allopolyploidization. BMC Evolutionary Biology,
8:43.

Chamovitz, D. A., Wei, N., Osterlund, M. T., von Arnim, A. G., Staub, J. M., Matsui,
M., and Deng, X.-W. (1996). The cop9 complex, a novel multisubunit nuclear regulator
involved in light control of a plant developmental switch. Cell, 86(1):115–121.

Chang, M. C. and Keasling, J. D. (2006). Production of isoprenoid pharmaceuticals by
engineered microbes. Nature chemical biology, 2(12):674–681.

Chang, Y.-M., Liu, W.-Y., Shih, a. C.-C., Shen, M.-N., Lu, C.-H., Lu, M.-Y. J., Yang,
H.-W., Wang, T.-Y., Chen, S. C.-C., Chen, S. M., Li, W.-H., and Ku, M. S. B. (2012).
Characterizing Regulatory and Functional Differentiation between Maize Mesophyll
and Bundle Sheath Cells by Transcriptomic Analysis. Plant Physiology.

Christin, P.-A., Besnard, G., Samaritani, E., Duvall, M. R., Hodkinson, T. R.,
Savolainen, V., and Salamin, N. (2008). Oligocene CO2 decline promoted C4
photosynthesis in grasses. Current Biology : CB, 18(1):37–43.

Christin, P.-A., Edwards, E. J., Besnard, G., Boxall, S. F., Gregory, R., Kellogg, E. a.,
Hartwell, J., and Osborne, C. P. (2012). Adaptive Evolution of C(4) Photosynthesis
through Recurrent Lateral Gene Transfer. Current Biology : CB, 22(5):445–449.

Denton, A. K., Mass, J., Kuelahoglu, C., Lercher, M., Shiu, S.-H., Braeutigam, A., and
Weber, A. P. (in preparation). Expression divergence following gene duplication contributes
to the evolution of the complex trait C 4 photosynthesis.

Denton, A. K., Simon, R., and Weber, A. P. (2013). C4 photosynthesis: From evolutionary
analyses to strategies for synthetic reconstruction of the trait. Current Opinion
in Plant Biology, 16(3):315–321.

Dohmann, E. M., Levesque, M. P., De Veylder, L., Reichardt, I., J ̈
urgens, G., Schmid, M., and Schwechheimer, C. (2008). The arabidopsis cop9 signalosome is essential for
g2 phase progression and genomic stability. Development, 135(11):2013–2022.

Eastman, P. A. K., Dengler, N. G., and Peterson, C. A. (1988). Suberized Bundle
Sheaths in Grasses (Poaceae) of Different Photosynthetic Types I. Anatomy, Ultra-
structure and Histochemistry. Protoplasma, 142:92–111.

Edwards, E. J. and Smith, S. a. (2010). Phylogenetic analyses reveal the shady history
of C4 grasses. Proceedings of the National Academy of Sciences of the United States
of America, 107(6):2532–7.

Edwards, E. J., Smith, S. A., and Consortium, C. G. (2010). Ecosystem Science. 587.

Ehleringer, J. R., Cerling, T. E., and Helliker, B. R. (1997). C4 photosynthesis, atmo-
spheric co2, and climate. Oecologia, 112(3):285–299.

Falke, K. C., Glander, S., He, F., Hu, J., de Meaux, J., and Schmitz, G. (2013). The
spectrum of mutations controlling complex traits and the genetics of fitness in plants.
Current Opinion in Genetics & Development, 23(6):665–71.

Furbank, R. T. (2011). Evolution of the C(4) photosynthetic mechanism: are there really
three C(4) acid decarboxylation types? Journal of Experimental Botany, 62(9):3103–8.

Gowik, U., Braeutigam, A., Weber, K. L., Weber, A. P. M., and Westhoff, P. (2011a).
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes
does it take to make C4? The Plant Cell, 23(6):2087–105.

Gowik, U., Braeutigam, A., Weber, K. L., Weber, A. P. M., and Westhoff, P. (2011b).
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes
does it take to make C4? The Plant cell, 23(6):2087–105.

Gowik, U. and Westhoff, P. (2010). The Path from C3 to C4 Photosynthesis. Plant
Physiology, 155(January):56–63.

Grass Phylogeny Working Group II (2011). New grass phylogeny resolves deep
evolutionary relationships and discovers C4 origins. New Phytologist, pages 304–312.

Griffiths, H., Weller, G., Toy, L. F., and Dennis, R. J. (2013). You’re So Vein: Bundle
Sheath Physiology, Phylogeny and Evolution in C3 and C4 Plants. Plant, Cell &
Environment, 36(2):249–261.

Haberlandt, G. (1904). Physiologische Pflanzenanatomie. W. Engelmann.
Hammond-Kosack, K. E. and Jones, J. D. G. (1997). Plant disease resistance genes. An-
nual Review of Plant Physiology and Plant Molecular Biology, 48(1):575–607. PMID:
15012275.

Hatch, M. D. (1987). C¡ sub¿ 4¡/sub¿ photosynthesis: a unique elend of modified
biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta (BBA)-
Reviews on Bioenergetics, 895(2):81–106.

Heckmann, D., Schulze, S., Denton, A., Gowik, U., Westhoff, P., Weber, A. P. M., and
Lercher, M. J. (2013). Predicting C4 photosynthesis evolution: modular, individually
adaptive steps on a Mount Fuji fitness landscape. Cell, 153(7):1579–88.

Hellsten, U., Khokha, M. K., Grammer, T. C., Harland, R. M., Richardson, P., and
Rokhsar, D. S. (2007). Accelerated gene evolution and subfunctionalization in the
pseudotetraploid frog Xenopus laevis. BMC Biology, 5:31.

Kajala, K., Brown, N. J., Williams, B. P., Borrill, P., Taylor, L. E., and Hibberd, J. M.
(2012). Multiple Arabidopsis genes primed for recruitment into C photosynthesis. The
Plant journal : for cell and molecular biology, 69(1):47–56.

Kang, J., Mizukami, Y., Wang, H., Fowke, L., and Dengler, N. G. (2007). Modification of
cell proliferation patterns alters leaf vein architecture in arabidopsis thaliana. Planta,
226(5):1207–1218.

Kramer, D. M. and Evans, J. R. (2011). The importance of energy balance in improving
photosynthetic productivity. Plant physiology, 155(1):70–78.

Kronforst, M. R., Barsh, G. S., Kopp, A., Mallet, J., Monteiro, A., Mullen, S. P., Protas,
M., Rosenblum, E. B., Schneider, C. J., and Hoekstra, H. E. (2012). Unraveling
the thread of nature’s tapestry: the genetics of diversity and convergence in animal
pigmentation. Pigment Cell & Melanoma Research, 25(4):411–33.

Kuelahoglu, C., Denton, A. K., Sommer, M., Mass, J., Schliesky, S., Wrobel, T. J., Berckmans, B.,
Gongora-Castillo, E., Buell, C. R., Simon, R., De Veylder, L., Braeutigam,
A., and Weber, A. P. M. (2014). Comparative Transcriptome Atlases Reveal Altered
Gene Expression Modules between Two Cleomaceae C3 and C4 Plant Species. The
Plant Cell, 26(August):3243–3260.

Kuelahoglu, C., Schliesky, S., Sommer, M., Alisandra K. Denton, A. H., Buell, C. R.,
Braeutigam, A., and Weber, A. P. M. (submitted). Plasticity of C4 photosynthesis in
the amphibious sedge Eleocharis retroflexa.

Lee, H. O., Davidson, J. M., and Duronio, R. J. (2009). Endoreplication: polyploidy
with purpose. Genes & Development, 23(21):2461–2477.

Li, P., Ponnala, L., Gandotra, N., Wang, L., Si, Y., Tausta, S. L., Kebrom, T. H.,
Provart, N., Patel, R., Myers, C. R., Reidel, E. J., Turgeon, R., Liu, P., Sun, Q.,
Nelson, T., and Brutnell, T. P. (2010). The developmental dynamics of the maize leaf
transcriptome. Nature Genetics, 42(12):1060–1067.

McKown, A. D. and Dengler, N. G. (2007). Key innovations in the evolution of Kranz
anatomy and C4 vein pattern in Flaveria (Asteraceae). American Journal of Botany,
94(3):382–99.

McKown, A. D. and Dengler, N. G. (2010). Vein patterning and evolution in C4 plants.
Botany, 88(9):775–786.

Melis, A. (2013). Carbon partitioning in photosynthesis. Current Opinion in Chemical
Biology, 17(3):453 – 456. Next generation therapeutics Energy.

Morgan, C., Turner, S., and Rawsthorne, S. (1993). Coordination of the cell-specific dis-
tribution of the four subunits of glycine decarboxylase and of serine hydroxymethyl-
transferase in leaves of c3-c4 intermediate species from different genera. Planta,
190(4):468–473.

Pagani, M., Zachos, J., Freeman, K., Tipple, B., and Bohaty, S. (2005). Marked de-
cline in atmospheric carbon dioxide concentrations during the Paleogene. Science,
(July):600–604.

Paulus, J. K., Schlieper, D., and Groth, G. (2013). Greater efficiency of photosyn-
thetic carbon fixation due to single amino-acid substitution. Nature Communications,
4:1518.

Pick, T. R., Braeutigam, A., Schlueter, U., Denton, A. K., Colmsee, C., Scholz, U.,
Fahnenstich, H., Pieruschka, R., Rascher, U., Sonnewald, U., and Weber, A. P. M.
(2011). Systems analysis of a maize leaf developmental gradient redefines the current
C4 model and provides candidates for regulation. The Plant Cell, 23(12):4208–20.

Piperno, D. and Sues, H. (2005). Dinosaurs Dined on Grass. Science(Washington),
310(November):1126–1128.

Romanowska, E., Kargul, J., Powikrowska, M., Finazzi, G., Nield, J., Drozak, A., and
Pokorska, B. (2008). Structural organization of photosynthetic apparatus in agranal
chloroplasts of maize. Journal of Biological Chemistry, 283(38):26037–26046.

Sage, R. F. (2004). The evolution of c4 photosynthesis. New Phytologist, 161(2):341–370.

Sage, R. F., Christin, P.-A., and Edwards, E. J. (2011). The C(4) plant lineages of
planet Earth. Journal of experimental botany, 62(9):3155–69.

Sage, R. F. and Pearcy, R. W. (1987). The nitrogen use efficiency of c3 and c4 plants
ii. leaf nitrogen effects on the gas exchange characteristics of chenopodium album (l.)
and amaranthus retroflexus (l.). Plant Physiology, 84(3):959–963.

Sage, R. F., Sage, T. L., and Kocacinar, F. (2012). Photorespiration and the evolution
of C4 photosynthesis. Annual Review of Plant Biology, 63(January):19–47.

Sage, R. F. and Zhu, X.-G. (2011). Exploiting the engine of C4 photosynthesis. Journal
of Experimental Botany, 62(9):2989–3000.

Scarpella, E. and Meijer, A. H. (2004). Pattern formation in the vascular system of
monocot and dicot plant species, volume 164.

Sheen, J. (1999). C4 Gene Expression. Annual Review of Plant Physiology and Plant
Molecular Biology, 50:187–217.

Sommer, M., Braeutigam, A., and Weber, A. P. M. (2012). The Dicotyledonous NAD-
malic Enzyme C4 Plant Cleome gynandra Displays Age-Dependent Plasticity of C4
Decarboxylation Biochemistry. Plant Bbiology, 14(4):621–9.

Tausta, S. L., Li, P., Si, Y., Gandotra, N., Liu, P., Sun, Q., Brutnell, T. P., and Nelson,
T. (2014). Developmental dynamics of Kranz cell transcriptional specificity in maize
leaf reveals early onset of C4-related processes. Journal of Experimental Botany,
65(13):3543–55.

Tcherkez, G. G. B., Farquhar, G. D., and Andrews, T. J. (2006). Despite slow cataly-
sis and confused substrate specificity, all ribulose bisphosphate carboxylases may be
nearly perfectly optimized. Proceedings of the National Academy of Sciences of the
United States of America, 103(19):7246–51.

van den Bergh, E., Kuelahoglu, C., Braeutigam, A., Hibberd, J. M., Weber, A. P., Zhu,
X.-G., and Eric Schranz, M. (2014). Gene and genome duplications and the origin of
C4 photosynthesis: Birth of a trait in the Cleomaceae. Current Plant Biology, pages
1–8.

Vogan, P. J., Frohlich, M. W., and Sage, R. F. (2007). The functional significance of C3-
C4 intermediate traits in Heliotropium L. (Boraginaceae): gas exchange perspectives.
Plant, Cell & Environment, 30(10):1337–45.

von Caemmerer, S., Quick, W. P., and Furbank, R. T. (2012). The development of c4
rice: Current progress and future challenges. Science, 336(6089):1671–1672.

Wang, P., Kelly, S., Fouracre, J. P., and Langdale, J. a. (2013). Genome-wide transcript
analysis of early maize leaf development reveals gene cohorts associated with the
differentiation of C4 Kranz anatomy. The Plant Journal : For Cell and Molecular
Biology, 75(4):656–70.

Wang, X., Gowik, U., Tang, H., Bowers, J. E., Westhoff, P., and Paterson, A. H. (2009).
Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses.
Genome biology, 10(6):R68.

Wang, Y., Braeutigam, A., Weber, A. P. M., and Zhu, X.-G. (2014). Three distinct
biochemical subtypes of C4 photosynthesis? A modelling analysis. Journal of Exper-
imental Botany, 65(13):3567–78.

Weber, A. P. M. and von Caemmerer, S. (2010). Plastid transport and metabolism
of C3 and C4 plants–comparative analysis and possible biotechnological exploitation.
Current opinion in plant biology, 13(3):257–65.

Williams, B. P., Aubry, S., and Hibberd, J. M. (2012). Molecular evolution of genes
recruited into C4 photosynthesis. Trends in Plant Science, 17(4):213–20.

Xu, J., Yuan, Y., Xu, Y., Zhang, G., Guo, X., Wu, F., Wang, Q., Rong, T., Pan, G.,
Cao, M., et al. (2014a). Identification of candidate genes for drought tolerance by
whole-genome resequencing in maize. BMC plant biology, 14(1):83.

Xu, X., Zhou, Z., Dudley, R., Mackem, S., Chuong, C.-M., Erickson, G. M., and Varric-
chio, D. J. (2014b). An integrative approach to understanding bird origins. Science,
346(6215).
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Biochemie der Pflanzen
Dokument erstellt am:22.01.2016
Dateien geändert am:22.01.2016
Promotionsantrag am:21.04.2015
Datum der Promotion:22.07.2015
english
Benutzer
Status: Gast
Aktionen