Dokument: Die Rolle des Transkriptionsfaktor HIF-1 bei der strahlungsbedingten Hautschädigung und Signaltransduktion in Hautzellen

Titel:Die Rolle des Transkriptionsfaktor HIF-1 bei der strahlungsbedingten Hautschädigung und Signaltransduktion in Hautzellen
Weiterer Titel:The role of the transcription factor HIF-1 in radiation-induced skin damage and signal transduction in skin cells
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=34738
URN (NBN):urn:nbn:de:hbz:061-20150709-110649-5
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor:M. Sc. Sondenheimer, Kevin [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]5,70 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 09.07.2015 / geändert 09.07.2015
Beitragende:Prof. Dr. Krutmann, Jean [Betreuer/Doktorvater]
Prof. Dr. Urlacher, Vlada [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Ultraviolette (UV) Strahlung, insbesondere der energiereichste Teil des solaren Spektrums, die UVB-Strahlung, gehört zu den wichtigsten Umweltfaktoren, die eine Schädigung der Haut, wie z.B. die Entwicklung von Hautkrebs und vorzeitiger Hautalterung, hervorrufen. Dies ist wesentlich bedingt durch die Fähigkeit von UVB-Strahlung direkte DNS-Schäden zu verursachen. Zellen haben zum Schutz vor exogenen und endogenen Noxen hochspezialisierte Kompensationsmechanismen entwickelt. Hierzu zählt die DNS-Reparatur. Eine funktionierende DNS-Reparatur ist essentiell für das Überleben der Zelle und die Vermeidung von Mutationen. Der Hypoxie-Induzierbare Faktor (HIF)-1α ist ein wichtiger Regulator bei der zellulären Stressantwort und spielt besonders bei der Adaptation an Hypoxie eine große Rolle. Vor kurzem konnte gezeigt werden, dass dieser Transkriptionsfaktor auch in der Regulation der UVB-induzierten DNS-Reparatur von Bedeutung ist.
Das Ziel der vorliegenden Arbeit war es, die Funktion von HIF-1 in einem konditionalen Mausmodell, welches eine gezielte Deletion von HIF-1α in den Keratinozyten der Oberhaut ermöglicht, bei der UVB-induzierten Stressantwort zu untersuchen. Darüber hinaus sollten neue Mechanismen in der Photokarzinogenese und der UV-induzierten Hautalterung aufgedeckt werden, die eine Beteiligung von HIF-1α zeigen. In HIF-1α profizienten murinen Keratinozyten konnte in vitro eine UVB abhängige Stabilisierung von HIF-1α nachgewiesen werden, die eine erhöhte mRNS- und Protein Expression der DNS-Reparaturenzyme CSA, CSB, XPB und XPG zur Folge hatte. Im Gegensatz dazu waren diese Reparaturproteine in HIF-1α defizienten Zellen nicht verstärkt exprimiert und es zeigte sich eine deutlich verminderte UVB-induzierte CPD-Reparatur. In zwei in vivo Experimenten wurde ein bislang unbekannter HIF-1α spezifischer Einfluss auf die Pigmentierung und die Faltenbildung der Maushaut identifiziert. Eine die Keratinozyten betreffende Deletion von HIF-1α führte zu einer erhöhten UVB-induzierten Pigmentierung, aber zu einer geringeren Faltenbildung. Zudem wiesen HIF-1α defiziente Mäuse verstärkte UVB-induzierte Hautschäden auf. Es wurde eine verstärkte epidermale Hyperplasie, ein erhöhter transepidermaler Wasserverlust und eine verstärkte Reduktion des subkutanen Fettgewebes beobachtet.
Die Entdeckung, dass der Transkriptionsfaktor HIF-1α ein wichtiger Regulator in der UVB-induzierten DNS-Reparatur ist, könnte zur Entwicklung neuer Behandlungsstrategien bei der Photokarzinogenese beitragen. Zusätzliche durch HIF-1α modulierte Signalwege bei der Melanogenese, der Faltenbildung und der strahlungsbedingten Hautschädigung lassen auf einen weitreichenden Einfluss dieses Transkriptionsfaktors in der Physiologie und Pathophysiologie der Haut schließen.

Ultraviolet (UV) radiation, especially the part of the solar spectrum with the highest energy, the UVB radiation, is the major environmental factor responsible for skin damage for example skin carcinogenesis and premature skin aging. This is mainly induced by the ability of UVB-radiation to cause direct DNA damage. Cells have developed highly specialized compensatory mechanisms including DNA repair to cope with exogenous and endogenous noxae. A functional DNA repair is essential for the cell survival and to avoid mutations. The hypoxia-inducible factor (HIF)-1α is a major regulator of the cellular stress response and plays an important role especially in cellular adaptation to hypoxia. A few years ago, it was shown that this transcription factor is also involved in the regulation of the UVB-induced DNA repair.
The aim of this work was to investigate the function of HIF-1 in the UVB-induced stress response by the use of a conditional mouse model which allows a specific deletion of HIF-1α in the keratinocytes of the epidermis. Moreover, new mechanisms of photocarcinogenesis and UV induced skin aging should be revealed, showing the involvement of HIF-1α. In HIF-1α proficient murine keratinocytes a UVB-dependent stabilization of HIF-1α was detected, which leads to an increased mRNA and protein expression of the DNA repair enzymes CSA, CSB, XPB and XPG. In contrast these repair proteins were not enhanced induced in HIF-1α deficient cells which leads to a significantly decreased CPD-repair. In two in vivo experiments a previously unknown influence of HIF-1α on the pigmentation and wrinkle formation of murine skin could be identified. A specific deletion of HIF-1α in keratinocytes led to an enhanced UVB-induced pigmentation but results in a reduced wrinkle formation. In addition HIF 1α deficient mice show several other UVB-induced changes of the skin including an enhanced epidermal hyperplasia, an increased loss of transepidermal water and an enhanced reduction of subcutaneous fat.
The detection of the transcription factor HIF-1α as a regulator of the UVB-induced DNA repair can lead to development of new therapeutic strategies in photocarcinogenesis. Additional modulated HIF-1α pathways in the melanogenesis, the wrinkle formation and the radiation-induced skin damage lead to the suggestion that this transcription factor has a wide influence on physiology and pathophysiology of the skin.
Quelle:1 Bakkenist CJ, Kastan MB: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499-506 (2003).
2 Bedogni B, Welford SM, Cassarino DS, Nickoloff BJ, Giaccia AJ, Powell MB: The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell 8:443-454 (2005).
3 Bell EL, Emerling BM, Chandel NS: Mitochondrial regulation of oxygen sensing. Mitochondrion 5:322-332 (2005).
4 Berneburg M, Krutmann J: Photoimmunology, DNA repair and photocarcinogenesis. J Photochem Photobiol B 54:87-93 (2000).
5 Bernhard D, Moser C, Backovic A, Wick G: Cigarette smoke--an aging accelerator? Exp Gerontol 42:160-165 (2007).
6 Bersten DC, Sullivan AE, Peet DJ, Whitelaw ML: bHLH-PAS proteins in cancer. Nat Rev Cancer 13:827-841 (2013).
7 Brahimi-Horn MC, Bellot G, Pouyssegur J: Hypoxia and energetic tumour metabolism. Curr Opin Genet Dev 21:67-72 (2011).
8 Brash DE, Ponten J: Skin precancer. Cancer Surv 32:69-113 (1998).
9 Busca R, Berra E, Gaggioli C, Khaled M, Bille K, Marchetti B, Thyss R, Fitsialos G, Larribere L, Bertolotto C, Virolle T, Barbry P, Pouyssegur J, Ponzio G, Ballotti R: Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. J Cell Biol 170:49-59 (2005).
10 Cadet J, Douki T, Gasparutto D, Ravanat JL: Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531:5-23 (2003).
11 Cadet J, Bellon S, Douki T, Frelon S, Gasparutto D, Muller E, Pouget JP, Ravanat JL, Romieu A, Sauvaigo S: Radiation-induced DNA damage: formation, measurement, and biochemical features. J Environ Pathol Toxicol Oncol 23:33-43 (2004).
12 Chang TS: An updated review of tyrosinase inhibitors. Int J Mol Sci 10:2440-2475 (2009).
13 Chen CS, Wang YC, Yang HC, Huang PH, Kulp SK, Yang CC, Lu YS, Matsuyama S, Chen CY, Chen CS: Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res 67:5318-5327 (2007).
14 Chen D, Li M, Luo J, Gu W: Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem 278:13595-13598 (2003).
15 Cho YS, Bae JM, Chun YS, Chung JH, Jeon YK, Kim IS, Kim MS, Park JW: HIF-1alpha controls keratinocyte proliferation by up-regulating p21(WAF1/Cip1). Biochim Biophys Acta 1783:323-333 (2008).
16 Cho YS, Kim CH, Park JW: Involvement of HIF-1alpha in UVB-induced epidermal hyperplasia. Mol Cells 28:537-543 (2009).
17 Citterio E, Rademakers S, van der Horst GT, van Gool AJ, Hoeijmakers JH, Vermeulen W: Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. J Biol Chem 273:11844-11851 (1998).
18 Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M: A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 2:259-265 (1998).
19 Crosby ME, Kulshreshtha R, Ivan M, Glazer PM: MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69:1221-1229 (2009).
20 Crossin KL: Oxygen levels and the regulation of cell adhesion in the nervous system: a control point for morphogenesis in development, disease and evolution? Cell Adh Migr 6:49-58 (2012).
21 DiGiovanna JJ, Kraemer KH: Shining a light on xeroderma pigmentosum. J Invest Dermatol 132:785-796 (2012).
22 El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, .: WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169-1174 (1994).
23 Evans SM, Schrlau AE, Chalian AA, Zhang P, Koch CJ: Oxygen levels in normal and previously irradiated human skin as assessed by EF5 binding. J Invest Dermatol 126:2596-2606 (2006).
24 Everett MA, Yeargers E, Sayre RM, Olson RL: Penetration of epidermis by ultraviolet rays. Photochem Photobiol 5:533-542 (1966).
25 Fandrey J, Gorr TA, Gassmann M: Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 71:642-651 (2006).
26 Feige E, Yokoyama S, Levy C, Khaled M, Igras V, Lin RJ, Lee S, Widlund HR, Granter SR, Kung AL, Fisher DE: Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proc Natl Acad Sci U S A 108:E924-E933 (2011).
27 Filippi S, Latini P, Frontini M, Palitti F, Egly JM, Proietti-De-Santis L: CSB protein is (a direct target of HIF-1 and) a critical mediator of the hypoxic response. EMBO J 27:2545-2556 (2008).
28 Frew AJ, Johnstone RW, Bolden JE: Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 280:125-133 (2009).
29 Fritsche E, Schafer C, Calles C, Bernsmann T, Bernshausen T, Wurm M, Hubenthal U, Cline JE, Hajimiragha H, Schroeder P, Klotz LO, Rannug A, Furst P, Hanenberg H, Abel J, Krutmann J: Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci U S A 104:8851-8856 (2007).
30 Gaymes TJ, Padua RA, Pla M, Orr S, Omidvar N, Chomienne C, Mufti GJ, Rassool FV: Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apoptosis? Mol Cancer Res 4:563-573 (2006).
31 Giatromanolaki A, Sivridis E, Kouskoukis C, Gatter KC, Harris AL, Koukourakis MI: Hypoxia-inducible factors 1alpha and 2alpha are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin. Melanoma Res 13:493-501 (2003).
32 Gilchrest BA: Skin aging and photoaging: an overview. J Am Acad Dermatol 21:610-613 (1989).
33 Golubovskaya VM, Cance WG: Targeting the p53 pathway. Surg Oncol Clin N Am 22:747-764 (2013).
34 Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88-91 (1996).
35 Hanna SC, Krishnan B, Bailey ST, Moschos SJ, Kuan PF, Shimamura T, Osborne LD, Siegel MB, Duncan LM, O'Brien ET, III, Superfine R, Miller CR, Simon MC, Wong KK, Kim WY: HIF1alpha and HIF2alpha independently activate SRC to promote melanoma metastases. J Clin Invest 123:2078-2093 (2013).
36 Hansson LO, Friedler A, Freund S, Rudiger S, Fersht AR: Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53. Proc Natl Acad Sci U S A 99:10305-10309 (2002).
37 Hasan S, Hassa PO, Imhof R, Hottiger MO: Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 410:387-391 (2001).
38 Hosseini M, Ezzedine K, Taieb A, Rezvani HR: Oxidative and energy metabolism as potential clues for clinical heterogeneity in nucleotide excision repair disorders. J Invest Dermatol 135:341-351 (2015).
39 Hynes RO: Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11-25 (1992).
40 Jux B, Kadow S, Luecke S, Rannug A, Krutmann J, Esser C: The aryl hydrocarbon receptor mediates UVB radiation-induced skin tanning. J Invest Dermatol 131:203-210 (2011).
41 Kamarthapu V, Nudler E: Rethinking transcription coupled DNA repair. Curr Opin Microbiol 24C:15-20 (2015).
42 Kamenisch Y, Fousteri M, Knoch J, von Thaler AK, Fehrenbacher B, Kato H, Becker T, Dolle ME, Kuiper R, Majora M, Schaller M, van der Horst GT, van SH, Rocken M, Rapaport D, Krutmann J, Mullenders LH, Berneburg M: Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J Exp Med 207:379-390 (2010).
43 Kawada S, Ohtani M, Ishii N: Increased oxygen tension attenuates acute ultraviolet-B-induced skin angiogenesis and wrinkle formation. Am J Physiol Regul Integr Comp Physiol 299:R694-R701 (2010).
44 Kawada S, Ishii N: Suppression of UVB-induced HIF-1alpha up-regulation by hyperoxia does not prevent wrinkle formation associated with increased MMPs activity in mouse skin. Biomed Res 32:363-372 (2011).
45 Ke Q, Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469-1480 (2006).
46 Kietzmann T, Jungermann K, Gorlach A: Regulation of the hypoxia-dependent plasminogen activator inhibitor 1 expression by MAP kinases. Thromb Haemost 89:666-673 (2003).
47 Kim EJ, Kim YK, Kim JE, Kim S, Kim MK, Park CH, Chung JH: UV modulation of subcutaneous fat metabolism. J Invest Dermatol 131:1720-1726 (2011).
48 Kim HH, Lee MJ, Lee SR, Kim KH, Cho KH, Eun HC, Chung JH: Augmentation of UV-induced skin wrinkling by infrared irradiation in hairless mice. Mech Ageing Dev 126:1170-1177 (2005).
49 Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, DiGiovanna JJ: Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145:1388-1396 (2007).
50 Krutmann J, Schroeder P: Role of mitochondria in photoaging of human skin: the defective powerhouse model. J Investig Dermatol Symp Proc 14:44-49 (2009).
51 Krutmann J: [How the sun ages our skin. The dermis as the driving force]. Hautarzt 62:588-590 (2011).
52 Laugel V: Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev 134:161-170 (2013).
53 Lee JH, Choy ML, Ngo L, Foster SS, Marks PA: Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci U S A 107:14639-14644 (2010).
54 Lee YA, Choi HM, Lee SH, Hong SJ, Yang HI, Yoo MC, Kim KS: Hypoxia differentially affects IL-1beta-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1alpha-dependent manner. Rheumatology (Oxford) 51:443-450 (2012).
55 Lehmann AR, McGibbon D, Stefanini M: Xeroderma pigmentosum. Orphanet J Rare Dis 6:70 (2011).
56 Lining X, Uchi H, Hayashida S, Tsuji G, Kido M, Nakahara T, Takeuchi S, Takahara M, Moroi Y, Furue M: Expression of hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha with progression of keratinocytic neoplasms. J Dermatol Sci 56:135-136 (2009).
57 Luecke S, Backlund M, Jux B, Esser C, Krutmann J, Rannug A: The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis. Pigment Cell Melanoma Res 23:828-833 (2010).
58 Majmundar AJ, Wong WJ, Simon MC: Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294-309 (2010).
59 Mallery DL, Tanganelli B, Colella S, Steingrimsdottir H, van Gool AJ, Troelstra C, Stefanini M, Lehmann AR: Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. Am J Hum Genet 62:77-85 (1998).
60 Marks PA, Xu WS: Histone deacetylase inhibitors: Potential in cancer therapy. J Cell Biochem 107:600-608 (2009).
61 Marrot L, Meunier JR: Skin DNA photodamage and its biological consequences. J Am Acad Dermatol 58:S139-S148 (2008).
62 Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH: Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15:465-481 (2014).
63 Maverakis E, Miyamura Y, Bowen MP, Correa G, Ono Y, Goodarzi H: Light, including ultraviolet. J Autoimmun 34:J247-J257 (2010).
64 Mendez-Acuna L, Di Tomaso MV, Palitti F, Martinez-Lopez W: Histone post-translational modifications in DNA damage response. Cytogenet Genome Res 128:28-36 (2010).
65 Merk HF, Abel J, Baron JM, Krutmann J: Molecular pathways in dermatotoxicology. Toxicol Appl Pharmacol 195:267-277 (2004).
66 Michiels C, Minet E, Mottet D, Raes M: Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radic Biol Med 33:1231-1242 (2002).
67 Monsel G, Ortonne N, Bagot M, Bensussan A, Dumaz N: c-Kit mutants require hypoxia-inducible factor 1alpha to transform melanocytes. Oncogene 29:227-236 (2010).
68 Moriwaki S, Kraemer KH: Xeroderma pigmentosum--bridging a gap between clinic and laboratory. Photodermatol Photoimmunol Photomed 17:47-54 (2001).
69 Neckers L, Ivy SP: Heat shock protein 90. Curr Opin Oncol 15:419-424 (2003).
70 Niculescu AB, III, Chen X, Smeets M, Hengst L, Prives C, Reed SI: Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18:629-643 (1998).
71 Nys K, Maes H, Dudek AM, Agostinis P: Uncovering the role of hypoxia inducible factor-1alpha in skin carcinogenesis. Biochim Biophys Acta 1816:1-12 (2011).
72 O'Toole EA, van KR, Chen M, Woodley DT: Hypoxia induces epidermal keratinocyte matrix metalloproteinase-9 secretion via the protein kinase C pathway. J Cell Physiol 214:47-55 (2008).
73 Obacz J, Pastorekova S, Vojtesek B, Hrstka R: Cross-talk between HIF and p53 as mediators of molecular responses to physiological and genotoxic stresses. Mol Cancer 12:93 (2013).
74 Ogryzko VV, Wong P, Howard BH: WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases. Mol Cell Biol 17:4877-4882 (1997).
75 Ozdirim E, Topcu M, Ozon A, Cila A: Cockayne syndrome: review of 25 cases. Pediatr Neurol 15:312-316 (1996).
76 Paskin TR, Jellies J, Bacher J, Beane WS: Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength. PLoS One 9:e114708 (2014).
77 Patel MP, Masood A, Patel PS, Chanan-Khan AA: Targeting the Bcl-2. Curr Opin Oncol 21:516-523 (2009).
78 Petruccelli LA, Dupere-Richer D, Pettersson F, Retrouvey H, Skoulikas S, Miller WH, Jr.: Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PLoS One 6:e20987 (2011).
79 Pfeifer GP, You YH, Besaratinia A: Mutations induced by ultraviolet light. Mutat Res 571:19-31 (2005).
80 Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, Wakamatsu K, Bechara EJ, Halaban R, Douki T, Brash DE: Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347:842-847 (2015).
81 Ramanathan B, Smerdon MJ: Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J Biol Chem 264:11026-11034 (1989).
82 Ramirez A, Page A, Gandarillas A, Zanet J, Pibre S, Vidal M, Tusell L, Genesca A, Whitaker DA, Melton DW, Jorcano JL: A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis 39:52-57 (2004).
83 Rawlings AV, Voegeli R: Stratum corneum proteases and dry skin conditions. Cell Tissue Res 351:217-235 (2013).
84 Rezvani HR, Dedieu S, North S, Belloc F, Rossignol R, Letellier T, de VH, Taieb A, Mazurier F: Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure. J Biol Chem 282:16413-16422 (2007).
85 Rezvani HR, Mahfouf W, Ali N, Chemin C, Ged C, Kim AL, de VH, Taieb A, Bickers DR, Mazurier F: Hypoxia-inducible factor-1alpha regulates the expression of nucleotide excision repair proteins in keratinocytes. Nucleic Acids Res 38:797-809 (2010).
86 Rezvani HR, Ali N, Serrano-Sanchez M, Dubus P, Varon C, Ged C, Pain C, Cario-Andre M, Seneschal J, Taieb A, de VH, Mazurier F: Loss of epidermal hypoxia-inducible factor-1alpha accelerates epidermal aging and affects re-epithelialization in human and mouse. J Cell Sci 124:4172-4183 (2011).
87 Ruan K, Song G, Ouyang G: Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 107:1053-1062 (2009).
88 Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW: The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci U S A 98:10833-10838 (2001).
89 Rumora AE, Kolodziejczak KM, Malhowski WA, Nunez ME: Thymine dimer-induced structural changes to the DNA duplex examined with reactive probes (dagger). Biochemistry 47:13026-13035 (2008).
90 Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, Johnson RS: Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 60:4010-4015 (2000).
91 Salceda S, Caro J: Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642-22647 (1997).
92 Schieke S, Stege H, Kurten V, Grether-Beck S, Sies H, Krutmann J: Infrared-A radiation-induced matrix metalloproteinase 1 expression is mediated through extracellular signal-regulated kinase 1/2 activation in human dermal fibroblasts. J Invest Dermatol 119:1323-1329 (2002).
93 Schreck I, Chudziak D, Schneider S, Seidel A, Platt KL, Oesch F, Weiss C: Influence of aryl hydrocarbon- (Ah) receptor and genotoxins on DNA repair gene expression and cell survival of mouse hepatoma cells. Toxicology 259:91-96 (2009).
94 Schroeder P, Lademann J, Darvin ME, Stege H, Marks C, Bruhnke S, Krutmann J: Infrared radiation-induced matrix metalloproteinase in human skin: implications for protection. J Invest Dermatol 128:2491-2497 (2008).
95 Schroeder P, Haendeler J, Krutmann J: The role of near infrared radiation in photoaging of the skin. Exp Gerontol 43:629-632 (2008).
96 Schroeder P, Krutmann J: [IRA protection. Needs and possibilities]. Hautarzt 60:301-304 (2009).
97 Scortegagna M, Martin RJ, Kladney RD, Neumann RG, Arbeit JM: Hypoxia-inducible factor-1alpha suppresses squamous carcinogenic progression and epithelial-mesenchymal transition. Cancer Res 69:2638-2646 (2009).
98 Semenza GL, Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447-5454 (1992).
99 Semenza GL: Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588-594 (1998).
100 Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721-732 (2003).
101 Sklar LR, Almutawa F, Lim HW, Hamzavi I: Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci 12:54-64 (2013).
102 Slominski A, Kim TK, Brozyna AA, Janjetovic Z, Brooks DL, Schwab LP, Skobowiat C, Jozwicki W, Seagroves TN: The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1alpha expression and HIF-dependent attendant pathways. Arch Biochem Biophys 563:79-93 (2014).
103 Spivak G: UV-sensitive syndrome. Mutat Res 577:162-169 (2005).
104 Tamburini BA, Tyler JK: Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25:4903-4913 (2005).
105 Tanaka K, Kawai K, Kumahara Y, Ikenaga M, Okada Y: Genetic complementation groups in cockayne syndrome. Somatic Cell Genet 7:445-455 (1981).
106 Thrash-Bingham CA, Tartof KD: aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst 91:143-151 (1999).
107 Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E, Clerici C: Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem 279:14871-14878 (2004).
108 Vaupel P, Mayer A, Hockel M: Tumor hypoxia and malignant progression. Methods Enzymol 381:335-354 (2004).
109 Wallace SS: Base excision repair: a critical player in many games. DNA Repair (Amst) 19:14-26 (2014).
110 Wang W: Oxygen partial pressure in outer layers of skin: simulation using three-dimensional multilayered models. Microcirculation 12:195-207 (2005).
111 Wenger RH: Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203:1253-1263 (2000).
112 Wenger RH, Stiehl DP, Camenisch G: Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12 (2005).
113 Yuan J, Glazer PM: Mutagenesis induced by the tumor microenvironment. Mutat Res 400:439-446 (1998).
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:November 2011 - Mai 2015
Fachbereich / Einrichtung:Sonstige Einrichtungen/Externe » An-Institute » Institut für Umweltmedizinische Forschung (IUF) an der HHU
Dokument erstellt am:09.07.2015
Dateien geändert am:09.07.2015
Promotionsantrag am:07.05.0015
Datum der Promotion:17.06.0015
english
Benutzer
Status: Gast
Aktionen