Dokument: Destabilisierung von Synapsen durch beta-Amyloid in kultivierten Mausneuronen
Titel: | Destabilisierung von Synapsen durch beta-Amyloid in kultivierten Mausneuronen | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=33177 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20150212-155734-8 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Achtzehn, Katharina [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Gottmann, Kurt [Gutachter] Prof. Dr. Müller, Hans Werner [Gutachter] | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibung: | Die molekularen Pathomechanismen der Alzheimerschen Demenz (AD) sind nicht vollständig geklärt. Möglicherweise besteht ein Zusammenhang der funktionellen und strukturellen Beeinträchtigungen von Synapsen durch Amyloid β (Aβ) mit einer Störung des neuronalen Zelladhäsionsmoleküls N-Cadherin.
Das Ziel dieser Arbeit war es, diesen Zusammenhang zu untersuchen. Dazu wurden primäre Zellkulturen aus kortikalen Mausneuronen angefertigt. An DIV 9 (days in vitro) wurde ein Medienwechsel mit 7PA2 konditioniertem Medium (KM) vorgenommen, welches zellulär sezernierte Aβ Peptide enthält. Nach mehreren Tagen Inkubation wurden durch immuncytochemische Färbung der dendritische Marker MAP2, Mikrotubuli-assoziiertes Protein, sowie der synaptische Marker VAMP2, vesikelassoziiertes Membranprotein, auch Synaptobrevin (Präsynapse) und das postsynaptische Dichte-Protein PSD95 (Postsynapse) dargestellt. Die quantitative Auswertung der VAMP2 Puncta ergab nach 3 Tagen Inkubation mit 7PA2 KM eine signifikante Abnahme der Dichte der VAMP2 Puncta, nach 4 Tagen zeigte sich zusätzlich eine signifikante Reduktion der Größe der VAMP2 Puncta. Die Gesamtfluoreszenz (Produkt aus Fläche und mittlerer Intensität der Fluoreszenz) der VAMP2 Puncta zeigte nach 3 Tagen eine signifikante Verminderung. Dies war nach 4 Tagen weiterhin als Tendenz, jedoch nicht statistisch signifikant zu beobachten. Die quantitative Auswertung der PSD95 Puncta ergab uneindeutige Effekte, sodass ein unspezifischer Einfluss des 7PA2 KM auf die PSD95 Puncta nicht ausgeschlossen werden konnte. In einem weiteren Versuchsansatz wurde den Zellkulturen zusätzlich zu 7PA2 KM das INP blocking Peptid zugegeben, welches die Funktion des Zelladhäsionsmoleküls N-Cadherin inhibiert. Die quantitative Auswertung der VAMP2 Puncta ergab unter diesen Bedingungen bereits nach 2 Tagen eine signifikante Reduktion sowohl der Dichte als auch der Größe der VAMP2 Puncta. Die quantitative Auswertung der PSD95 Puncta zeigte keine Effekte auf die Dichte und Gesamtfluoreszenz der Puncta. Es zeigte sich nach 2 Tagen eine signifikante Reduktion der Größe der PSD95 Puncta, welche aufgrund der unspezifischen Effekte der Vorversuche ebenfalls als unspezifischer Effekt einzuordnen ist. Die beschriebenen Befunde geben einen starken Hinweis darauf, dass die Blockierung von N-Cadherin vermittelter synaptischer Adhäsion einen beschleunigenden Effekt auf die Synaptotoxizität von Aβ ausübt, was einen neuen Ansatz zur Klärung der synaptischen Pathomechanismen der AD darstellen könnte. | |||||||
Quelle: | Abe, K; Chisaka, O; Van Roy, F et al. Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. Nat. Neurosci. 2004; 7, 357–363.
Abe, K; Takeichi, M. NMDA-receptor activation induces calpain-mediated beta-catenin cleavages for triggering gene expression. Neuron 2007; 53, 387–397. Aberle, H; Butz, S; Stappert, J et al. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 1994; 107:3655-3663. Abramov, E; Dolev, I; Fogel, H et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nature Neuroscience 2009; 12; 1567–1576 Almeida, CG; Tampellini, D; Takahashi, RH et al. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis. 2005; 20(2):187-98. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie 1907; 64: 146-8 Andreyeva, A; Nieweg, K; Horstmann, K et al. C-terminal fragment of N-cadherin accelerates synapse destabilization by amyloid-β. Brain 2012; 135(7): 2140-54 Angst, BD; Marcozzi, C; Magee, AI. The cadherin superfamily: diversity in form and function. J Cell Sci. 2001; 114:629–641. Arikkath, J; Reichardt, LF. Cadherins and catenins at synapses: roles in synaptogenesis ans synaptic plasticity. Trends Neurosci. 2008; 31:487-94 Augustine, GJ; Charlton, MP; Smith, SJ. Calcium action in synaptic transmitter release. Annu Rev Neurosci. 1987;10:633-93. Bamji, SX; Shimazu, K; Kimes, N et al. Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 2003 40: 719-731. Bamji, SX; Rico, B; Kimes, N et al. BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-β-catenin interactions. J Cell Biol 2006; 174:289-299. Bamji, SX; Shimazu, K; Kimes, N et al. Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron. 2003;40:719–731. Barth, AI; Nathke, IS; Nelson, WJ. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol. 1997; 9: 683–690. Benson, DL; Tanaka, H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J Neurosci 1998; 18:6892-6904. Bentahir, M; Nyabi, O; Verhamme, J et al.Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 2006; 96: 732–42. Bickel, H. Demenzsyndrom und Alzheimer Krankheit: Eine Schätzung des Krankenbestandes und der jährlichen Neuerkrankungen in Deutschland. Gesundheitswesen 2000; 62(4): 211-218; Georg Thieme Verlag Stuttgart Bozdagi, O; Valcin, M; Poskanzer, K et al. Temporally distinct demands for classic cadherins in synpase formation and maturation. Mol Cell Neurosci 2004; 27:509-521. Bozdagi, O; Wang, XB; Nikitczuk, JS et al. Persistance of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin. J Neurosci 2010; 28:9984-9989. Brunger AT. Structural insights into the molecular mechanism of Ca(2+)-dependent exocytosis. Curr Opin Neurobiol. 2000; Jun;10(3):293-302. Cai, H; Wang, Y; McCarthy, D et al., BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nature Neuroscience 2001; 4:233–234. Cao, XW; Südhof, TC. A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 2001; 293:115–120. Chang, EH; Savage, MJ; Flood, DG et al. AMPA receptor downscaling at the onset of Alzheimer`s disease pathology in double knockin mice. Proc Natl Acad Sci USA 2006; 103: 3410-3415. Chen, QS; Kagan, BL; Hirakura, Y et al. Impairment of hippocampal long-term potentiation by Alzheimer amyloid beta-peptides. Journal of Neuroscience Research 2000; 60:65–72. Chen, X; Nelson, CD; Li, X et al. PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci. 2011 31: 6329-6338. Cirrito, JR; Yamada, KA; Finn, MB et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 2005; 48:913–922. Dawson, GR; Seabrook, GR; Zheng, H et al. Age-related cognitive deficits, impaired long-term potention and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neurosci 1999; 90:1–13 De Strooper B. Proteases and proteolysis in Alzheimer’s disease: a multifactorial view on the disease process. Physiol Rev 2010; 90: 465–94. Dinamarca, MC; Colombres, M; Cerpa, W et al. Beta-amyloid oligomers affect the structure and function of the postsynaptic region: role of the Wnt signaling pathway. Neurodegener Dis. 2008;5(3-4):149-52. Dougherty, JJ; Wu, J; Nichols, RA. Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. The Journal of Neuroscience 2003; 23: 6740–6747. Elste, AM; Benson, DL. Structural basis for developmentally regulated changes in cadherin function at synapses. J Comp Neurol 2006; 495: 324-335. Evans, NA; Facci, L; Owen, DE et al. Abeta(1-42) reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: a quantitative analysis. J Neurosci Methods. 2008;175(1): 96-103. Evin, G; Zhu, A.;Holsinger, RMD et al. Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets. Journal of Neuroscience Research 2003; 74 (3): 386–392. Gallin, WJ; Edelman, GM; Cunningham, BA. Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proc. Natl Acad. Sci. USA 1983; 80, 1038–1042. Gao, Y; Pimplikar, SW. The γ-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc Natl Acad Sci USA2 2001; 98: 14979–14984. Garner, CC; Kindler, S; Gundelfinger, ED. Molecular determinants of presynaptic active zones. Curr Opin Neurobiol. 2000;10(3):321-7. Gasic, M; Hollmann, M. Molecular neurobiology of glutamate receptors. Annu Rev Physiol 1992; 54: 507-536. Geppert, M; Goda, Y; Hammer, RE et al. Synaptotagmin I: a major Ca2+ sensor for neurotransmitter release at a central synapse. Cell 1994; 79: 717-727. Ghosh, AK; Brindisi, M; Tang, J. Developing β-secretase inhibitors for treatment of Alzheimer's disease. J Neurochem. 2012; 1:71-83. Goldgaber, D; Lerman, MI; McBride, OW et al. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science. 1987; 235(4791):877-80. Green, PJ; Walsh, FS; Doherty, P. Signal transduction mechanisms underlying axonal growth responses stimulated by cell adhesion molecules. Rev Neurol 1997; 153: 509-514 Haass, C; Selkoe, DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid b-peptide. Nat Rev Mol Cell Biol 2007; 8: 101–12 Haass C, Selkoe DJ. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 1993; 75: 1039-1042. Halbleib, JM; Nelson, WJ. Cadherins in development: cell adhesion, sorting and tissue morphogenesis. Genes Dev 2006; 20: 3199-3214. Heuser, JE; Reese, TS; Dennis, MJ et al. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979; 81(2): 275-300. Himeda, T; Mizuno, K; Kato, H et al. Effects of age on immunohistochemical changes in the mouse hippocampus. Mech Ageing Dev. 2005; 126(6-7): 673-7. Holsinger, RM; McLean, CA; Beyreuther, K et al. Increased expression of the amyloid precursor β-secretase in Alzheimer's disease. Ann Neurol 2002; 51: 783–786. Hsieh, H; Boehm, J; Sato, C et al. AMPAR removal underlies Ab-induced synaptic depression and dendritic spine loss. Neuron 2006; 52: 831–43. Wang, H; Megill, A; He, K et al. Consequences of Inhibiting Amyloid Precursor Protein Processing Enzymes on Synaptic Function and Plasticity. Neural Plast 2012; 2012:272374 Huntley, GW; Benson, DL. Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections. J Comp Neurol 1999; 407:453–471 Inuzuka, H; Miyatani, S; Takeichi, M. R-cadherin: a novel Ca2+-dependent cell–cell adhesion molecule expressed in the retina. Neuron 1991; 7: 69–79. Jüngling, K; Eulenburg, V; Moore, R et al. N-cadherin transsynaptically regulates short-term plasticity at glutamatergic synapses in embryonic stem cell-derived neurons. J Neurosci 2006; 26: 6968-6978. Kadowaki, M; Nakamura, S; Machon, O et al. N-cadherin mediates cortical organization in the mouse brain. Dev Biol 2007; 304:22-33. Kamenetz, F; Tomita, T; Hsieh, H et al. APP processing and synaptic function. Neuron 2003; 37(6):925-37. Kang, J; Lemaire, HG; Unterbeck, A et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987; 325: 733–736. Kang, JE; Lim, MM; Bateman, RJ et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 2009; 326:1005–1007. Kemler, R; Ozawa, M. Uvomorulin-catenin complex: cytoplasmatic anchorage of a Ca2+ dependent cell adhesion molecule. Bioessay 1989; 11: 88-91. Kim, JH; Anwyl, R; Suh, YH et al. Use-dependent effects of amyloidogenic fragments of beta-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. The Journal of Neuroscience 2001; 21(4): 1327–1333. Kimberly, WT; Zheng, JB; Guenette, SY et al. The intracellular domain of the β-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 2001; 276: 40288–40292. Kiryushko, D; Berezin, V; Bock, E. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci. 2004; 1014: 140-54. Koffie, RM; Meyer-Luehmann, M; Hashimoto, T et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 2009; 106: 4012-4017. Kuo,YM; Emmerling, MR; Vigo-Pelfrey, C et al. Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem. 1996 Feb 23; 271(8):4077-81. Kwiatkowski, AV; Weis, WI; Nelson, WJ. Catenins: playing both sides of the synapse. Curr Opin Cell Biol 2007; 19: 551–6. Laird, FM; Cai, H; Savonenko, AV et al., BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. The Journal of Neuroscience 2005; 25(50): 11693–11709. Lammich, S; Kojro, E; Postina, R et al. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A. 1999; 96(7): 3922-7. Leicht, HHS; Heider, D; Bachmann, C et al. AdeCoDe study group: Net costs of dementia by disease stage. Acta Psychiatr Scand. 2011; 124(5): 348-395. Leissring, MA; Murphy, MP; Mead, TR et al. A physiological signaling role for the γ-secretase-derived intracellular fragment of APP. Proc Natl Acad Sci USA 2002; 99: 4697–4702. Lendon, CL; Ashall, F; Goate, AM. Exploring the etiology of Alzheimer disease using molecular genetics. Journal of the American Medical Association 1997; 277(10): 825–831, 1997. Li, S; Hong, S; Shepardson, NE et al. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 2009; 62: 788-801. Li, QX; Cappai, R; Evin, G et al. Products of the Alzheimer's disease amyloid precursor protein generated by β-secretase are present in human platelets, and secreted upon degranulation. Am J Alz Dis 1998; 13: 236–244. Li, Z; Sheng, M. Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol. 2003; 4(11): 833-41. Lim, RW; Halpain, S. Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein. J Biol Chem. 2000; 275:20578-20587 Lobello, K; Ryan, JM; Liu, E et al. Targeting Beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer`s disease. Int J Alzheimers Dis. 2012; 2012:628070 Luo, Y; Bolon, B; Kahn, S et al., Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nature Neuroscience 2001; 4(3): 231–232, 2001. Malinverno, M; Carta, M; Epis, R et al. Synaptic localization and activity of ADAM10 regulate excitatory synapses through N-cadherin cleavage. J Neurosci 2010; 30: 16343-16355. Maramboud, P; Wen, PH; Dutt, A et al. A CBP binding transcriptional repressor produced by the PS1/ε-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 2003; 114: 635-645. Masters, CL; Simms, G; Weinman, NA et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Nat Acad Sci U S A 1985; 82(12):4245-9. Malinverno, M; Carta, M; Epis, R et al. Synaptic localization and activity of ADAM10 regulate excitatory synapses through N-cadherin cleavage. J. Neurosci. 2010; 30(48):16343-55. Milward, EA; Papadopoulos, R; Fuller, SJ et al. The amyloid protein precursor of Alzheimer’s disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 1992; 9:129–137 Mochida, S. Protein-protein interactions in neurotransmitter release. Neurosci Res. 2000; 36(3):175-82. Mucke, L; Masliah, E; Yu, GQ et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 2000; 20:4050–4058. Murase, S; Schuman, EM. The role of cell adhesion molecules in synaptic plasticity and memory. Curr. Opin. Cell Biol. 1999; 11, 549–553. Murase, S; Mosser, E; Schuman, EM. Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 2002; 35:91–105. Nagar, B; Overduin, M; Ikura, M et al. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature. 1996; 28;380(6572):360-4 Nakanishi, S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 1994 13: 1031-37. Nimmrich, V; Grimm, C; Draguhn, A et al. Amyloid β oligomers (Aβ1-42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium channels. J Neurosci 2008; 28: 788-797. Nose, A; Tsuji, K; Takeichi,M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 1990; 61, 147-155 Okuda, T; Yu, LM; Cingolani, LA et al. Beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America 2007; 104:13479–13484. Olson, MI;Shaw,CM. Presenile dementia and Alzheimer's disease in Mongolism. Brain 1969; 92 (1): 147-156. Parodi, J; Sepulveda, FJ; Roa, J et al. Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem 2010; 285: 2506-2514. Patel, SD; Ciatto, C; Chen, CP et al. Type ll Cadherin ectodomain structures: implications for classical cadherin specificity. Cell 2006; 124, 1255-1268 Peyrieras, N; Hyafil, F; Louvard, D et al. Uvomorulin: a nonintegral membrane protein of early mouse embryo. Proc. Natl Acad. Sci. USA 1983; 80, 6274–6277. Pham, E; Crews, L; Ubhi, K et al. Progressive accumulation of amyloid-β oligomers in Alzheimer’s disease and APP transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J. 2010; 277(14): 3051-67. Plant, LD; Boyle, JP; Smith, IF et al. The production of amyloid beta peptide is a critical requirement for the viability of central neurons. The Journal of Neuroscience 2003; 23(13): 5531–5535. Pokutta, S; Weis, WI. Structure and mechanisms of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol. 2007; 23:237-61 Puzzo, D; Privitera, L; Leznik, E. et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. The Journal of Neuroscience 2008; 28(53): 14537–14545. Radice, GL; Rayburn, H; Matsunami, H et al. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 1997; 181: 64-78. Reiss, K; Maretzky, T; Ludwig, A et al. ADAM 10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J 2005; 24: 742-752. Roberds, SL; Anderson, J; Basi, G et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Human Molecular Genetics 2001; 10(12): 1317–1324. Roselli, F; Tirard, M; Lu, J et al. Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci. 2005; 25(48):11061-70. Russell, CL; Semerdjieva, S; Empson, RM et al. Amyloid-β acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2. PLoS One 2012; 7(8): e43201. Saglietti, L; Dequidt, C; Kamieniarz, K et al. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron 2007 54: 461-477. Sastre, M; Steiner, H; Fuchs, K et al. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep 2001; 2: 835–841. Scheuner, D; Eckman, C; Jensen, M et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Medicine 1996; 2(8): 864–870. Selkoe, DJ. Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci. 1994; 17: 489-517. Selkoe, DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev. 2001; 81(2):741-66. Seubert, P; Oltersdorf, T; Lee, MG et al. Secretion of β amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide. Nature 1993; 361: 260–263. Seubert, P; Vigo-Pelfrey, C; Esch, F et al. Isolation and quantification of soluble Alzheimer's betapeptide from biological fluids. Nature 1992; 359: 325-327. Shankar, GM; Li, S; Mehta, TH et al. Amyloid-beta protein dimers isolated directly from Alzheimer`s brains impair synaptic plasticity and memory. Nat Med 2008; 14: 837-842 Shankar, GM; Townsend, M; Walsh, DM et al. (2007) Natural oligomers of the Alzheimer amyloid beta-protein induce hippocampal synapse loss but can be neutralized by antibodies and small molecules. J. Neurosci. 2007; 27(11): 2866-75. Shapiro, L; Colman, DR. The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron 1999; 23:427–430 Shoji, M; Golde, TE; Ghiso, J et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 1992; 258: 126-129. Siu, R; Fladd, C; Rotin, D. N-cadherin is an in vivo substrate for protein tyrosine phosphatase sigma (PTPsigma) and participates in PTPsigma-mediated inhibition of axon growth. Mol Cell Biol. 2007;27(1):208-19. Stan, A; Pielarski, KN; Brigadski, T et al. Essential cooperation of N-cadherin and neuroligin I in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci 2010; 107: 11116-11121. Stappert, J; Kemler, R. A short core region of E-cadherin is essential for catenin binding and is highly phosphorylated. Cell Adhes Commun 1994 2: 319-327. Stern, Y. Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 2006; 20:S69–74. Südhof, TC; Rizo, J. Synaptic vesicle exocytosis. Cold Spring Harb. Perspect. Biol. 2011; 3(12): a005637. Suzuki, SC; Takeichi, M. Cadherins in neuronal morphogenesis and function. Dev Growth Differ. 2008; 50 Suppl 1: 119-30. Sze, CI; Troncoso, JC; Kawas, C et al. Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol. 1997; 56(8):933-44. Tai, CY; Mysore, SP; Chiu, C et al. Activity-regulated N-cadherin endocytosis. Neuron 2007; 54: 771-785. Takeishi M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 1990; 59: 237-252. Tampellini, D; Capetillo-Zarate, E; Dumont, M et al. Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice. J Neurosci. 2010; 30(43): 14299-304. Tampellini, D; Rahman, N; Gallo, EF et al. Synaptic activity reduces intraneuronal Abeta, promotes APP transport to synapses, and protects against Abeta-related synaptic alterations. J Neurosci. 2009; 29(31): 9704-13. Tanaka, H; Shan, W; Phillips, GR et al. Molecular modification of N-cadherin in response to synaptic activity. Neuron 2000; 25, 93–107. Tang, L; Hung, CP; Schuman, EM. A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 1998; 20: 1165-1175. Terry, RD; Masliah, E; Salmon, DP et al. Physical basis of cognitive alterations in Alzheimer`s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572-580. Tienari, PJ; De Strooper, B; Ikonen, E et al. Neuronal sorting and processing of amyloid precursor protein: implications for Alzheimer's disease. Cold Spring Harb Symp Quant Biol 1996; 61: 575–585. Thoumine, O; Lambert, M; Mège, RM et al. Regulation of N-cadherin dynamics at neuronal contacts by ligand binding and cytoskeletal coupling. Mol Biol Cell 2006; 17: 862-875. Togashi, H; Abe, K; Mizoguchi, A et al. Cadherin regulates dendritic spine morphogenesis. Neuron 2002; 35: 77-89. Togashi, H; Miyoshi, J; Honda, T et al. Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. The Journal of cell biology. 2006;174:141–151. Uemura, K; Kihara, T; Kuzuya, A et al. Characterization of sequential N-cadherin cleavage by ADAM10 and PS1. Neurosci Lett 2006; 402: 278-283. Vassar, R; Bennett, BD; Babu-Khan, S et al. Β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286 (5440): 735–741. Walsh, DM; Klyubin, I; Fadeeva, JV et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002a; 416: 535-539. Walsh, DM; Klyubin, I; Fadeeva, JV et al. Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans. 2002b 30, 552–557 Walsh, DM; Selkoe, DJ. Aβ Oligomers – a decade of discovery. J Neurochem 2007; 101: 1172-1184. Washbourne, P; Dityatev, A; Scheiffele, P et al. Cell adhesion molecules in synapse formation. J Neurosci 2004;24: 9244-9249. Weidemann, A; Eggert, S; Reinhard, FBM et al. A novel ϵ-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochem 2002; 41: 2825–2835. Wilkinson, FL; Holley, RJ; Langford-Smith, KJ et al. Neuropathology in Mouse Models of Mucopolysaccharidosis Type I, IIIA and IIIBPLoS One 2012; 7(4): e35787. Williams, EJ; Williams, G; Gour, B et al. INP, a novel N-cadherin antagonist targeted to the amino acids that flank the HAV motif. Molecular Cell Neurosci 2000; 15:456-464. Wolfe, MS; Haass, C. The role of presenilins in γ-secretase activity. J Biol Chem 2001; 276: 5413–5416. Yoshida, C; Takeichi, M. Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell 1982; 28, 217–224. Yu, X. Tools for studying the role of N-cadherin mediated extracellular interaction in neuronal development and function. Cell Adh Migr 2011; 5(3): 227–231 | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 12.02.2015 | |||||||
Dateien geändert am: | 12.02.2015 | |||||||
Promotionsantrag am: | 02.04.2014 | |||||||
Datum der Promotion: | 15.12.2014 |