Dokument: Einfluss einer milden Hypothermie auf die Mikrozirkulation der Magenschleimhaut während systemischer Hypoxie

Titel:Einfluss einer milden Hypothermie auf die Mikrozirkulation der Magenschleimhaut während systemischer Hypoxie
Weiterer Titel:Effects of mild hypothermia on gastric microcirculation during systemic hypoxia
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=31384
URN (NBN):urn:nbn:de:hbz:061-20141124-114745-3
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Weiß, Susanne [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]842,8 KB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 10.11.2014 / geändert 10.11.2014
Beitragende:Prof. Dr. Picker, Olaf [Betreuer/Doktorvater]
Prof. Dr. May, Petra [Gutachter]
Stichwörter:Hypothermie, Hypoxie, Gastrointestinaltrakt, Mikrozirkulation, Mikrovaskuläre Hämoglobinoxygenierung, Mikrovaskulärer Blutfluss, Reflexionsspektrometrie, Laserdopplerflussmessung, Levosimendan, Glibenclamid
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibung:Zusammenfassung
Einfluss einer milden Hypothermie auf die Mikrozirkulation der Magenschleimhaut während systemischer Hypoxie

Fragestellungen und Ziele: Die gastrointestinale Schleimhaut bildet eine effektive Barriere gegen die Translokation von im Darmlumen enthaltenen Bakterien und deren Toxinen in das Blut und in das lymphatische System. Eine Beeinträchtigung dieser Barrierefunktion begünstigt durch den Übertritt der Bakterien und Endotoxine den Beginn einer systemischen Inflammationsreaktion mit verschiedensten Komplikationen. Hypoxische Situationen treten in der Intensivmedizin aus unterschiedlichen Gründen auf und können über eine reduzierte Oxygenierung die Barrierefunktion der gastrointestinalen Schleimhaut herabsetzen.
Milde Hypothermie wird bereits erfolgreich in einigen klinischen Bereichen zur Verbesserung und Erhaltung verschiedener Gewebefunktionen während und nach hypoxischen Ereignissen angewandt. Sie zeigte auch bereits positive Wirkungen auf die mikrovaskuläre Oxygenierung der gastrointestinalen Schleimhaut während eines hämorrhagischen Schocks. Zu klären war nun, ob Hypothermie auch eine positive Wirkung auf die mikrovaskuläre Hämoglobinoxygenierung (µHbO2) unter physiologischen Bedingungen und unter zusätzlicher systemischer Hypoxie hat.
Da sowohl die Hypothermie als auch die Hypoxie über eine Kalziumdesensibiliserung des Myokards und durch eine Änderung des Gefäßtonus über vaskuläre K+-ATP-Kanäle das Herzzeitvolumen verringern, sollte weiterhin geklärt werden, ob der K+-ATP-Kanalantagonist Glibenclamid oder der K+-ATP-Kanalagonist und Kalziumsensitizer Levosimendan über eine K+-ATP-Kanal- Modulation oder über eine Kalziumsensibilisierung die µHbO2 beeinflussen.

Methodik: Die Effekte einer milden Hypothermie (34 °C) auf die µHbO2 wurden zunächst unter physiologischen Bedingungen und danach unter zusätzlicher Hypoxie (FiO2 = 0,12 für 15 Minuten) in wiederholten Versuchen an fünf gesunden, weiblichen Foxhounds in Allgemeinanästhesie mit Sevofluran untersucht. Zum Vergleich dienten Versuche unter Normothermie (37,5 °C). Weiterhin wurden in zusätzlichen Versuchen unter Hypothermie Glibenclamid (0,2 mg ∙ kg-1 über 10 Minuten) bzw. Levosimendan (20 µg ∙ kg-1 über 15 Minuten, gefolgt von einer kontinuierlichen Infusion von 0,25 µg ∙ kg-1 ∙ min-1) vor Beginn der hypoxischen Phase appliziert. Dabei wurden in allen Versuchen die systemischen Kreislaufparameter, die gastrale und orale µHbO2 mittels Reflexionsspektrophotometrie und der mikrovaskuläre Blutfluss mittels Laserdopplerflussmessung kontinuierlich aufgezeichnet und regelmäßig Blutgasanalysen durchgeführt.

Ergebnisse und Schlussfolgerungen: Unter physiologischen Bedingungen steigerte eine milde Hypothermie die Oxygenierung der oralen Schleimhaut während die der Magenschleimhaut unverändert blieb. Unter Anwendung von milder Hypothermie sind die Auswirkungen einer zusätzlichen Hypoxie auf die orale und gastrale Mikrozirkulation abschwächt und die Hypothermie wirkt somit potentiell protektiv auf die Schleimhaut. Zur Verringerung der hypothermiebedingten kardiodepressiven Wirkungen eignete sich Levosimendan über eine kalziumsensibilisierende Wirkung. Da weder der K+-ATP-Kanalantagonist Glibenclamid, noch der K+-ATP-Kanalagonist und Kalziumsensitizer Levosimendan zu lokalen Veränderungen der gastrointestinalen µHbO2 geführt haben, scheinen weder vaskuläre K+-ATP-Kanäle noch eine lokale Kalziumdesensibilisierung im Splanchnikusgebiet an der Regulation der gastrointestinalen Mikrozirkulation unter Hypoxie und Hypothermie beteiligt zu sein.
Quelle:1. Deitch EA. Simple intestinal obstruction causes bacterial translocation in man. Arch Surg 1989; 124(6):699–701.
2. Deitch EA. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 1990; 125(3):403–4.
3. Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg 1996; 20(4):411–7.
4. Chieveley-Williams S, Hamilton-Davies C. The role of the gut in major surgical postoperative morbidity. Int Anesthesiol Clin 1999; 37(2):81–110.
5. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multiple-organ-failure syndrome. Arch Surg 1986; 121(2):196–208.
6. Ceppa EP, Fuh KC, Bulkley GB. Mesenteric hemodynamic response to circulatory shock. Curr Opin Crit Care 2003; 9(2):127–32.
7. Jacobson LF, Noer RJ. The vascular pattern of the intestinal villi in various laboratory animals and man. Anat. Rec 1952; 114(1):85–101.
8. Lundgren O. The circulation of the small bowel mucosa. Gut 1974; 15(12):1005–13.
9. Haglund U, Hultén L, Ahren C, Lundgren O. Mucosal lesions in the human small intestine in shock. Gut 1975; 16(12):979–84.
10. Shepherd AP. Intestinal O2 consumption and 86Rb extraction during arterial hypoxia. Am. J. Physiol. 1978; 234(3):E248-51.
11. Granger HJ, Norris CP. Intrinsic regulation of intestinal oxygenation in the anesthetized dog. Am. J. Physiol. 1980; 238(6):H836-43.
12. Granger DN, Kvietys PR, Perry MA. Role of exchange vessels in the regulation of intestinal oxygenation. Am. J. Physiol. 1982; 242(6):G570-4.
13. Payne JG, Bowen JC. Hypoxia of canine gastric mucosa caused by Escherichia coli sepsis and prevented with methylprednisolone therapy. Gastroenterology 1981; 80(1):84–93.
14. Schwarte LA, Schwartges I, Thomas K, Schober P, Picker O. The effects of levosimendan and glibenclamide on circulatory and metabolic variables in a canine model of acute hypoxia. Intensive Care Med 2011; 37(4):701–10.
15. Fiddian-Green RG. Splanchnic ischaemia and multiple organ failure in the critically ill. Ann R Coll Surg Engl 1988; 70(3):128–34.
16. Colgan SP, Dzus AL, Parkos CA. Epithelial exposure to hypoxia modulates neutrophil transepithelial migration. J. Exp. Med. 1996; 184(3):1003–15.
17. Molmenti EP, Ziambaras T, Perlmutter DH. Evidence for an acute phase response in human intestinal epithelial cells. J. Biol. Chem. 1993; 268(19):14116–24.
18. McGovern NN, Cowburn AS, Porter L, Walmsley SR, Summers C, Thompson AAR et al. Hypoxia selectively inhibits respiratory burst activity and killing of Staphylococcus aureus in human neutrophils. J. Immunol 2011; 186(1):453–63.
19. Allen DB, Maguire JJ, Mahdavian M, Wicke C, Marcocci L, Scheuenstuhl H et al. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg 1997; 132(9):991–6.
20. Bynum TE, Jacobson ED. Nonocclusive intestinal ischemia. Arch Intern Med 1979; 139(3):281–2.
21. Mathison JC, Ulevitch RJ. The clearance, tissue distribution, and cellular localization of intravenously injected lipopolysaccharide in rabbits. J. Immunol 1979; 123(5):2133–43.
22. Nolan JP. Endotoxin, reticuloendothelial function, and liver injury. Hepatology; 1(5):458–65.
23. Lindert KA, Caldwell-Kenkel JC, Nukina S, Lemasters JJ, Thurman RG. Activation of Kupffer cells on reperfusion following hypoxia: particle phagocytosis in a low-flow, reflow model. Am. J. Physiol 1992; 262(2 Pt 1):G345-50.
24. Meyer TA, Wang J, Tiao GM, Ogle CK, Fischer JE, Hasselgren PO. Sepsis and endotoxemia stimulate intestinal interleukin-6 production. Surgery 1995; 118(2):336–42.
25. Van Leeuwen PA, Boermeester MA, Houdijk AP, Ferwerda CC, Cuesta MA, Meyer S et al. Clinical significance of translocation. Gut 1994; 35(1 Suppl):S28-34.
26. Ding J, Magnotti LJ, Huang Q, Xu DZ, Condon MR, Deitch EA. Hypoxia combined with Escherichia coli produces irreversible gut mucosal injury characterized by increased intestinal cytokine production and DNA degradation. Shock 2001; 16(3):189–95.
27. Baylor AE, Diebel LN, Liberati DM, Dulchavsky SA, Brown WJ, Diglio CA. The synergistic effects of hypoxia/reoxygenation or tissue acidosis and bacteria on intestinal epithelial cell apoptosis. J Trauma 2003; 55(2):241-7; discussion 247-8.
28. Xu DZ, Lu Q, Kubicka R, Deitch EA. The effect of hypoxia/reoxygenation on the cellular function of intestinal epithelial cells. J Trauma 1999; 46(2):280–5.
29. Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 2008; 34(12):2210–7.
30. Vellinga NAR, Ince C, Boerma EC. Microvascular dysfunction in the surgical patient. Curr Opin Crit Care 2010; 16(4):377–83.
31. Piagnerelli M, Ince C, Dubin A. Microcirculation. Crit Care Res Pract 2012; 2012:867176.
32. Sakr Y, Dubois M, Backer D de, Creteur J, Vincent J. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 2004; 32(9):1825–31.
33. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med 2002; 346(8):557–63.
34. Benson DW, Williams GR, Spencer FC, Yates AJ. The use of hypothermia after cardiac arrest. Anesth. Analg. 1959; 38:423–8.
35. Rosomoff HL. Protective effects of hypothermia against pathological processes of the nervous system. Ann. N. Y. Acad. Sci. 1959; 80:475–86.
36. Carlsson C, Hägerdal M, Siesjö BK. Protective effect of hypothermia in cerebral oxygen deficiency caused by arterial hypoxia. Anesthesiology 1976; 44(1):27–35.
37. Hall NJ, Eaton S, Peters MJ, Hiorns MP, Alexander N, Azzopardi DV et al. Mild controlled hypothermia in preterm neonates with advanced necrotizing enterocolitis. Pediatrics 2010; 125(2):e300-8.
38. Dae MW, Gao DW, Sessler DI, Chair K, Stillson CA. Effect of endovascular cooling on myocardial temperature, infarct size, and cardiac output in human-sized pigs. Am. J. Physiol. Heart Circ. Physiol. 2002; 282(5):H1584-91.
39. Wood SC. Interactions between hypoxia and hypothermia. Annu Rev Physiol 1991; 53:71–85.
40. Wood SC, Gonzales R. Hypothermia in hypoxic animals: mechanisms, mediators, and functional significance. Comp. Biochem. Physiol. B, Biochem. Mol. Biol 1996; 113(1):37–43.
41. Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit. Care Med 2009; 37(3):1101–20.
42. Parissis H, Hamid U, Soo A, Al-Alao B. Brief review on systematic hypothermia for the protection of central nervous system during aortic arch surgery: a double-sword tool? J Cardiothorac Surg 2011; 6:153.
43. Stefanutti G, Pierro A, Parkinson EJ, Smith VV, Eaton S. Moderate hypothermia as a rescue therapy against intestinal ischemia and reperfusion injury in the rat. Crit. Care Med. 2008; 36(5):1564–72.
44. Alva N, Carbonell T, Palomeque J. Hypothermic protection in an acute hypoxia model in rats: Acid–base and oxidant/antioxidant profiles. Resuscitation 2010; 81(5):609–16.
45. Chopp M, Knight R, Tidwell CD, Helpern JA, Brown E, Welch KM. The metabolic effects of mild hypothermia on global cerebral ischemia and recirculation in the cat: comparison to normothermia and hyperthermia. J Cereb Blood Flow Metab 1989; 9(2):141–8.
46. Hua Y, Hisano K, Morimoto Y. Effect of mild and moderate hypothermia on hypoxic injury in nearly pure neuronal culture. J Anesth 2010; 24(5):726–32.
47. Xu L, Yenari MA, Steinberg GK, Giffard RG. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. J. Cereb. Blood Flow Metab. 2002; 22(1):21–8.
48. Li H, Wang D. Mild hypothermia improves ischemic brain function via attenuating neuronal apoptosis. Brain Res 2011; 1368:59–64.
49. The hypothermia after cardiac arrest study group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med 2002; 346(8):549–56.
50. Fink EL, Callaway CW, Tisherman SA, Kochanek PM. Winning the cold war: inroads into implementation of mild hypothermia after cardiac arrest in adults from the European Resuscitation Council Hypothermia After Cardiac Arrest Registry Study Group. Crit. Care Med 2007; 35(4):1199–202.
51. Leone BJ, Watke CM, Osgood CF, Richardson KM, Brittin KB, White WD et al. Effect of mild hypothermia during cardiopulmonary bypass on erythrocytic hemoglobin oxygen delivery. J. Cardiothorac. Vasc. Anesth. 1998; 12(4):393–6.
52. Stowe DF, Fujita S, An J, Paulsen RA, Varadarajan SG, Smart SC. Modulation of myocardial function and [Ca2+] sensitivity by moderate hypothermia in guinea pig isolated hearts. Am. J. Physiol. 1999; 277(6 Pt 2):H2321-32.
53. McIntyre LA, Fergusson DA, Hébert PC, Moher D, Hutchison JS. Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA 2003; 289(22):2992–9.
54. Schwab S, Georgiadis D, Berrouschot J, Schellinger PD, Graffagnino C, Mayer SA. Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke 2001; 32(9):2033–5.
55. Cotten CM, Shankaran S. Hypothermia for hypoxic-ischemic encephalopathy. Expert Rev Obstet Gynecol 2010; 5(2):227–39.
56. Tissier R, Ghaleh B, Cohen MV, Downey JM, Berdeaux A. Myocardial protection with mild hypothermia. Cardiovasc. Res. 2012; 94(2):217–25.
57. Götberg M, Olivecrona GK, Koul S, Carlsson M, Engblom H, Ugander M et al. A pilot study of rapid cooling by cold saline and endovascular cooling before reperfusion in patients with ST-elevation myocardial infarction. Circ Cardiovasc Interv 2010; 3(5):400–7.
58. Deniz T, Agalar C, Agalar F, Comu FM, Caglayan O, Alpay Y et al. The effect of hypothermia on splanchnic flows and lung in a two-hit hemorrhagic shock model. J. Surg. Res 2010; 158(1):121–6.
59. Dudgeon DL, Randall PA, Hill RB, McAfee JG. Mild hypothermia: its effect on cardiac output and regional perfusion in the neonatal piglet. J. Pediatr. Surg 1980; 15(6):805–10.
60. Okano N, Hiraoka H, Owada R, Fujita N, Kadoi Y, Saito S et al. Hepatosplanchnic oxygenation is better preserved during mild hypothermic than during normothermic cardiopulmonary bypass. Can J Anaesth 2001; 48(10):1011–4.
61. Vollmer C, Bauer I, Swertz M, Picker O. Hypothermia improves gastric mucosal oxygenation during haemorrhagic shock. European journal of anaesthesiology 2012; 29:63.
62. Ohta S. Effect of mild hypothermia on the coefficient of oxygen delivery in hypoxemic dogs. J Appl Physiol (1985). 1995;78(6):2095-9
63. He X, Su F, Taccone FS, Maciel LK, Vincent J. Cardiovascular and microvascular responses to mild hypothermia in an ovine model. Resuscitation. 2012;83(6):760-6
64. Allen DG, Orchard CH. Myocardial contractile function during ischemia and hypoxia. Circ Res 1987; 60(2):153–68.
65. Prec O, Rosenman R, Braun K, Rodbard S, Katz LN. the cardiovascular effects of acutely induced hypothermia. J Clin Invest 1949; 28(2):293–300.
66. Lopez M, Sessler DI, Walter K, Emerick T, Ozaki M. Rate and gender dependence of the sweating, vasoconstriction, and shivering thresholds in humans. Anesthesiology 1994; 80(4):780–8.
67. McCullough L, Arora S. Diagnosis and treatment of hypothermia. Am Fam Physician 2004; 70(12):2325–32.
68. Eyster JAE, Meek WJ. The origin and conduction of the heart beat. Physiological Reviews 1921; 1(1):1–43.
69. Brüx A, Girbes ARJ, Polderman KH. Kontrollierte milde und moderate Hypothermie. Anaesthesist 2005; 54(3):225–44.
70. Lange M, Morelli A, Westphal M. Inhibition of potassium channels in critical illness. Curr Opin Anaesthesiol 2008; 21(2):105–10.
71. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N. Engl. J. Med 2001; 345(8):588–95.
72. Pataricza J, Hohn J, Petri A, Balogh A, Papp JG. Comparison of the vasorelaxing effect of cromakalim and the new inodilator, levosimendan, in human isolated portal vein. J Pharm Pharmacol 2000; 52(2):213–7.
73. Lee JA, Allen DG. Mechanisms of acute ischemic contractile failure of the heart. Role of intracellular calcium. J. Clin. Invest. 1991; 88(2):361–7.
74. Haikala H, Kaivola J, Nissinen E, Wall P, Levijoki J, Lindén IB. Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J. Mol. Cell. Cardiol 1995; 27(9):1859–66.
75. Levijoki J, Pollesello P, Kaivola J, Tilgmann C, Sorsa T, Annila A et al. Further evidence for the cardiac troponin C mediated calcium sensitization by levosimendan: structure-response and binding analysis with analogs of levosimendan. J. Mol. Cell. Cardiol 2000; 32(3):479–91.
76. Schwarte L, Schwartges I, Scheeren T, Fournell A, Picker O. Levosimendan pretreatment improves systemic hemodynamics and metabolism during acute hypoxia in dogs. Eur J Anaesthesiol 2007;24(6):146–7.
77. Schwarte L, Picker O, Bornstein SR, Fournell A, Scheeren TWL. Levosimendan is superior to milrinone and dobutamine in selectively increasing microvascular gastric mucosal oxygenation in dogs. Critical Care Medicine 2005; 33(1):135–42.
78. Oldner A, Konrad D, Weitzberg E, Rudehill A, Rossi P, Wanecek M. Effects of levosimendan, a novel inotropic calcium-sensitizing drug, in experimental septic shock. Crit Care Med 2001; 29(11):2185–93.
79. Hohn J, Pataricza J, Petri A, Toth GK, Balogh A, Varro A et al. Levosimendan interacts with potassium channel blockers in human saphenous veins. Basic Clin Pharmacol Toxicol 2004; 94(6):271–3.
80. Gardiner SM, Kemp PA, March JE, Bennett T. Regional haemodynamic responses to infusion of lipopolysaccharide in conscious rats: effects of pre- or post-treatment with glibenclamide. Br. J. Pharmacol. 1999; 128(8):1772–8.
81. Vallet B, Curtis SE, Guery B, Mangalaboyi J, Menager P, Cain SM et al. ATP-sensitive K+ channel blockade impairs O2 extraction during progressive ischemia in pig hindlimb. J Appl Physiol 1995; 79(6):2035–42.
82. Evgenov OV, Pacher P, Williams W, Evgenov NV, Mabley JG, Cicila J et al. Parenteral administration of glipizide sodium salt, an inhibitor of adenosine triphosphate-sensitive potassium channels, prolongs short-term survival after severe controlled hemorrhage in rats. Crit. Care Med. 2003; 31(10):2429–36.
83. Maybauer DM, Salsbury JR, Westphal M, Maybauer MO, Salzman AL, Szabó C et al. The ATP-sensitive potassium-channel inhibitor glibenclamide improves outcome in an ovine model of hemorrhagic shock. Shock 2004; 22(4):387–91.
84. Hammel H, Wyndham C, Hardy J. Heat production and heat loss in the dog at 8-36 °C environmental temperature. Am J Physiol 1958; (194):99–108.
85. Coyne MD, Kesick CM, Doherty TJ, Kolka MA, Stephenson LA. Circadian rhythm changes in core temperature over the menstrual cycle: method for noninvasive monitoring. Am J Physiol Regul Integr Comp Physiol 2000; 279(4):R1316-20.
86. Lilleberg J, Laine M, Palkama T, Kivikko M, Pohjanjousi P, Kupari M. Duration of the haemodynamic action of a 24-h infusion of levosimendan in patients with congestive heart failure. Eur J Heart Fail 2007; 9(1):75–82.
87.Van Leersum. Eine Methode zur Erleichterung der Blutdruckmessung bei Tieren. Pflugers Arch 1911; (142):377–95.
88. Spiegel T von, Hoeft A. Transpulmonale Indikatorverfahren in der Intensivmedizin. Der Anästhesist 1998; (47):220–8.
89 Gebrauchsanweisung PiCCO - Version 4.1.x. – Hrsg. Pulsion Medical Systems AG- München 2000
90. Segal E.Transpulmonary thermodilution cardiac output measurement using the axillary artery in critically ill patients. J Clin Anesthesia 2002; (14):210–3.
91. Sakka S, Reinhart K, Meier-Hellmann A. Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 1999; (25):843–6.
92. Zoellner C, Briegel J, Kilger E, Haller M. Retrospektive Analyse von transpulmonal und pulmonalarteriell gemessenen Herzzeitvolumen bei ARDS-Patienten. Anaesthesist 47; 98(11):912–7.
93. Rossing RG, Cain SM. A nomogram relating pO2, pH, temperature, and hemoglobin saturation in the dog. J Appl Physiol 1966; 21(1):195–201.
94. Schmidt R, Thews G, Lang F. Physiologie des Menschen. 28th ed. Berlin, Heidelberg, New York: Springer; 2000.
95. Pinsky M, Brochard L, Mancho J. Applied Physiology in Intensive Care Medicine. Berlin, Heidelberg, New York: Springer; 2007.
96. Krug A. Mikrozirkulation und Sauerstoffversorgung des Gewebes: Methode des sogenannten O2C (oxygen to see). Phlebologie 2006; 35(6):300–12.
97. Schwarte LA, Picker O, Schindler AW, Fournell A, Scheeren TWL. Fenoldopam - but not dopamine - selectively increases gastric mucosal oxygenation in dogs. Critical Care Medicine 2003; 31(7):1999–2005.
98. Hoff D, Gregersen H, Hatlebakk JG. Mucosal blood flow measurements using laser Doppler perfusion monitoring. WJG 2009; 15(2):198–203.
99. Greene SA, Benson GJ, Trnquilli WJ, Grimm KA. Relationship of canine bispectral index to multiples of sevoflurane minimal alveolar soncentration, using patch or subdermal electrodes. Comparative Medicine 2002; (5):424–8.
100. Thuong M. Quels sont les outils d’évaluation de la sédation et de l’analgésie ? Annales Françaises d’Anesthésie et de Réanimation 2008; 27(7-8):581–95.
101. Sandlin D. A closer look at bispectral index monitoring. Journal of PeriAnesthesia Nursing 2001; 16(6):420–2.
102. Yao Z, Gross G. Glibenclamide antagonizes adenosine A1 receptor-mediated cardioprotection in stunned canine myocardium. Circulation 1993; (88):235–44.
103. Kersten J, Montgomery M, Pagel P, Warltier D. Levosimendan, a new positive inotropic drug, decreases myocardial infarct size via activation of K(ATP) channels. Anesth. Analg 2000; (90):5–11.
104. Kazama T, Kazuyuki I. Comparison of MAC and the rate of rise of alveolar concentration of sevoflurane with halothane and isoflurane in the dog. Anesthesiology 1988; (68):435–7.
105. Schwartges I, Schwarte LA, Fournell A, Scheeren TWL, Picker O. Hypercapnia induces a concentration-dependent increase in gastric mucosal oxygenation in dogs. Intensive Care Med 2008; 34(10):1898–906.
106. Dressman JB. Comparison of Canine and Human Gastrointestinal Physiology. Pharmaceutical Research 1986; 3(3):123–31.
107. Deitch E. A.. Bacterial translocation: studies of mice and men. Am. J. Gastroenterol. 1998; 93(2):277–8.
108. Polderman KH, Peerdeman SM, Girbes AR. Hypophosphatemia and hypomagnesemia induced by cooling in patients with severe head injury. J. Neurosurg 2001; 94(5):697–705.
109. Boutilier RG. Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol. 2001; 204(Pt 18):3171–81.
110. Shin J, Kim J, Song K, Kwak Y. Core temperature measurement in therapeutic hypothermia according to different phases: Comparison of bladder, rectal, and tympanic versus pulmonary artery methods. Resuscitation. 2013;84(6):810-7.
111. Siegemund M, van Bommel J, Ince C. Assessment of regional tissue oxygenation. Intensive Care Med 1999; 25(10):1044–60.
112. Hasibeder W, Germann R, Sparr H, Haisjackl M, Friesenecker B, Luz G et al. Vasomotion induces regular major oscillations in jejunal mucosal tissue oxygenation. Am. J. Physiol 1994; 266(6 Pt 1):G978-86.
113. Sielenkämper AW, Eicker K, van Aken H. Thoracic epidural anesthesia increases mucosal perfusion in ileum of rats. Anesthesiology 2000; 93(3):844–51.
114. Lübbers DW, Baumgärtl H. Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int 1997; 51(2):372–80.
115. Leung FW, Slodownik E, Jensen DM, van Deventer GM, Guth PH. Gastroduodenal mucosal hemodynamics by endoscopic reflectance spectrophotometry. Gastrointest. Endosc 1987; 33(4):284–8.
116. Sato N, Kawano S, Kamada T, Takeda M. Hemodynamics of the gastric mucosa and gastric ulceration in rats and in patients with gastric ulcer. Dig. Dis. Sci 1986; 31(2 Suppl):35S-41S.
117. Gandjbakhche AH, Bonner RF, Arai AE, Balaban RS. Visible-light photon migration through myocardium in vivo. Am. J. Physiol 1999; 277(2 Pt 2):H698-704.
118. Schwarte LA, Scheeren TWL, Lorenz C, Bruyne F de, Fournell A. Moderate increase in intraabdominal pressure attenuates gastric mucosal oxygen saturation in patients undergoing laparoscopy. Anesthesiology 2004; 100(5):1081–7.
119. Temmesfeld-Wollbrück B, Szalay A, Mayer K, Olschewski H, Seeger W, Grimminger F. Abnormalities of gastric mucosal oxygenation in septic shock: partial responsiveness to dopexamine. Am. J. Respir. Crit. Care Med 1998; 157(5 Pt 1):1586–92.
120. Iwao T, Toyonaga A, Ikegami M, Oho K, Sumino M, Sakaki M et al. Gastric mucosal blood flow after smoking in healthy human beings assessed by laser Doppler flowmetry. Gastrointest Endosc 1993; 39(3):400–3.
121. Coetzee A, Swanepoel C. The oxyhemoglobin dissociation curve before, during and after cardiac surgery. Scand. J. Clin. Lab. Invest. Suppl. 1990; 203:149–53.
122. Zhao Q, Zhang X, Wang L. Mild hypothermia therapy reduces blood glucose and lactate and improves neurologic outcomes in patients with severe traumatic brain injury. J Crit Care 2011; 26(3):311–5.
123. Vejchapipat P, Poomsawat S, Poovorawan Y, Proctor E, Pierro A. The effects of moderate hypothermia on energy metabolism and serum inflammatory markers during laparotomy. Pediatr. Surg. Int. 2006; 22(1):66–71.
124. Kusuoka H, Ikoma Y, Futaki S, Suga H, Kitabatake A, Kamada T et al. Positive inotropism in hypothermia partially depends on an increase in maximal Ca(2+)-activated force. Am. J. Physiol 1991; 261(4 Pt 2):H1005-10.
125. Ristagno G, Tantillo S, Sun S, Weil MH, Tang W. Hypothermia improves ventricular myocyte contractility under conditions of normal perfusion and after an interval of ischemia. Resuscitation 2010; 81(7):898–903.
126. Goldberg LI. Effects of hypothermia on contractility of the intact dog heart. Am. J. Physiol 1958; 194(1):92–8.
127. Tveita T, Mortensen E, Hevrøy O, Refsum H, Ytrehus K. Experimental hypothermia: effects of core cooling and rewarming on hemodynamics, coronary blood flow, and myocardial metabolism in dogs. Anesth. Analg. 1994; 79(2):212–8.
128. Greene PS, Cameron DE, Mohlala ML, Dinatale JM, Gardner TJ. Systolic and diastolic left ventricular dysfunction due to mild hypothermia. Circulation 1989; 80(5 Pt 2):III44-8.
129. Fischer UM, Cox CS, JR, Laine GA, Mehlhorn U, Allen SJ. Mild hypothermia impairs left ventricular diastolic but not systolic function. J Invest Surg 2005; 18(6):291–6.
130. Rieg AD, Schroth SC, Grottke O, Hein M, Ackermann D, Rossaint R et al. Influence of temperature on the positive inotropic effect of levosimendan, dobutamine and milrinone. Eur J Anaesthesiol 2009; 26(11):946–53.
131. Rungatscher A, Linardi D, Tessari M, Menon T, Luciani GB, Mazzucco A et al. Levosimendan is superior to epinephrine in improving myocardial function after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg 2012; 143(1):209–14.
132. Lathrop DA, Contney SJ, Bosnjak ZJ, Stowe DF. Reversal of hypothermia-induced action potential lengthening by the KATP channel agonist bimakalim in isolated guinea pig ventricular muscle. Gen. Pharmacol. 1998; 31(1):125–31.
133. Jin S, Niu L, Deng C, Yao Z, Zhou Y. Effect of temperature on the activation of myocardial KATP channel in guinea pig ventricular myocytes: a pilot study by whole cell patch clamp recording. Chin. Med. J. 2006; 119(20):1721–6.
134. Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N. Levosimendan, a novel Ca2+ sensitizer, activates the glibenclamide-sensitive K+ channel in rat arterial myocytes. Eur. J. Pharmacol 1997; 333(2-3):249–59.
135. Vollmer C, Schwartges I, Swertz M, Beck C, Bauer I, Picker O. Hypothermia improves oral and gastric mucosal microvascular oxygenation during hemorrhagic shock in dogs. Oxid Med Cell Longev 2013 (in press)
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:Februar 2011 bis Oktober 2014
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:24.11.2014
Dateien geändert am:24.11.2014
Promotionsantrag am:11.11.2013
Datum der Promotion:29.10.2014
english
Benutzer
Status: Gast
Aktionen