Dokument: Charakterisierung der Sirt1 Expression im Mausgehirn - speziell in den Oligodendrozyten -

Titel:Charakterisierung der Sirt1 Expression im Mausgehirn - speziell in den Oligodendrozyten -
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=30889
URN (NBN):urn:nbn:de:hbz:061-20141002-075444-9
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Eckstein, Denise [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]4,83 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 01.10.2014 / geändert 01.10.2014
Beitragende:Professor Aktas, Orhan [Gutachter]
Prof. Dr. Schulz, Wolfgang A. [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibung:Sirt1 ist eine biologisch hoch konservierte Histon-Deazetylase (HDAC) der Gruppe III, die über einen Nikotinamid-Adenin-Dinukleotid (NAD+) abhängigen Mechanismus die Lysinreste in Proteinen deazetyliert und zahlreiche relevante zellbiologische Funktionen ausübt. In den Stammzellnischen des adulten Gehirns existieren selbst erneuernde neurale Vorläuferzellen (NVZ), die Neurone, Astrozyten und Oligodendrozyten generieren können. Es ist bekannt, dass Sirt1 in die Differenzierung von NVZ involviert ist, unter oxidativen Bedingungen die Differenzierung in Richtung der Astrozyten lenkt und unter den entzündlich demyelinisieren-den Bedingungen der EAE (experimentelle autoimmune Enzephalomyelitis als Tiermodell der Multiplen Sklerose) vermehrt exprimiert wird (5). Die mangelnde Remyelinisierung in diesen Erkrankungen ist unter anderem auf unzureichende Regenerationsfähigkeit der Oligodendrozyten zurückzuführen. Einerseits ist bekannt, dass HDAC der Gruppen I und II für die gezielte Differenzierung von Oligodendrozyten notwendig sind (99). Andererseits wurde in Oligodendrozytenvorläuferzellen (OVZ) mit ausgeschalteter Sirt2 Funktion (HDAC Gruppe III) in vitro eine Differenzierung der Zellen in ein reiferes Stadium beobachtet (81). Der Einfluss von Sirt1 auf die Zelllinie der Oligodendrozyten hingegen ist weitgehend unbekannt. Daher stellte sich für die vorliegende Arbeit die Frage, ob auch Sirt1 sich in den Zellen der Oligodendrozytenlinie findet, dort einen Einfluss auf die Differenzierung hat und ob die Expression von Sirt1 dort sich in der EAE verändert.
In der vorliegenden Arbeit erfolgte zunächst eine Charakterisierung der physiologischen Expressionsmuster von Sirt1 im gesunden Mausgehirn mittels Immunfluoreszenz (IF) und qRT-PCR, gefolgt von in vitro Experimenten zur spontanen Differenzierungsfähigkeit von Sirt1Δex4/Δex4 NVZ (konditioneller Knockout des katalytischen Zentrums (129Sv.129Sv (C57BL/6)-SIRT1tm)) und einer Analyse der Sirt1Δex4/Δex4 Mausembryonen im Vergleich zu Wildtyp-Geschwistern. Die Sirt1 Expression in der EAE in C57/B6 Mäusen wurde via qRT-PCR, IF und Western Blot analysiert.
Es stellte sich heraus, dass Sirt1 in den Keimzellregionen (SVZ und SGZ) des adulten Mausgehirnes in multipotenten Stammzellen (Nestin/Sox2), aber auch in den spezifischen OVZ (PDGFR) exprimiert wird. Weiterhin fand sich Sirt1 im Kleinhirnmark adulter Mausgehirne in differenzierten Oligodendrozyten, aber vor allem in den OVZ. Bei Abwesenheit funktionalen Sirt1 Proteins in Sirt1Δex4/Δex4 NVZ-Kulturen in vitro war im qRT-PCR Screening eine Reduktion von Zellzyklusinhibitoren (wie zum Beispiel p21 und PTEN) und Inhibitoren der OVZ Differenzierung (wie zum Beispiel Hes5 und insbesondere ID2) nachweisbar. Im Einklang damit waren die Marker der OVZ Differenzierung (Mash1, Sox10) erhöht. In der Immunhistochemie der Sirt1Δex4/Δex4 NVZ-Kulturen konnte dieser Effekt der Induktion der Oligodendrozytendifferenzierung bei Verlust des funktionalen Sirt1 Proteins ebenfalls gezeigt werden. Dies wird durch unsere Beobachtung unterstützt, dass Sirt1Δex4/Δex4 Mäuse (E17) in der Mehrzahl eine deutlich verfrühte Expression der Myelinmarker (MBP, CNPase) zeigten. Die Stammzelllokalisation und –anzahl (Sox2) war in diesen Tieren nicht verändert. Sirt1 wurde unter den inflammatorischen Bedingungen der EAE im Kleinhirn induziert. Sirt1 fand sich aber nicht in der ortsständigen Mikroglia (Iba1) und nur vereinzelt in einwandernden Monozyten (Ly6c). Sirt1 war in den OVZ (PDGFα, NG2) im Kleinhirnmark unter den Bedingungen der EAE signifikant vermehrt exprimiert.

Zusammenfassend ergaben sich Hinweise, dass Sirt1 die Differenzierung zu reifen Oligodendrozyten inhibiert. Dies konnte unlängst durch eine unabhängige Publikation bestätigt werden (6). Es könnte durch selektive Sirt1 Inaktivierung ein neuer Ansatz in der regenerativen Therapie demyelinisierender Erkrankungen gefunden werden.
Quelle:Literaturverzeichnis
1. Yang T, Sauve AA 2006 NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity. Springer AAPS J 8:E632-E643 Abbildung 1; with kind permission from Springer Science and Business Media
2. Stromnes IM, Goverman JM 2006 Passive induction of experimental allergic encephalomyelitis. Nat Protoc 1:1952-1960
3. Lublin FD, Reingold SC 1997 Guidelines for clinical trials of new therapeutic agents in multiple sclerosis: relations between study investigators, advisors, and sponsors. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 48:572-574
4. Arias-Carrion O 2008 Basic mechanisms of rTMS: Implications in Parkinson's disease. Int Arch Med 1:2
5. Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schroter F, Ninnemann O, Siegert E, Bendix I, Brustle O, Nitsch R, Zipp F, Aktas O 2008 Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10:385-394
6. Rafalski VA, Ho PP, Brett JO, Ucar D, Dugas JC, Pollina EA, Chow LML, Ibrahim A, Baker SJ, Barres BA, Steinman L, Brunet A 2013 Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nat Cell Biol 15:614-624
7. Stüve O, Oksenberg J. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. 2006 Jan 10 [Updated 2010 May 11]. Multiple Sclerosis Overview. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2014. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1316/
8. Sawcer S 2008 The complex genetics of multiple sclerosis: pitfalls and prospects. Brain 131:3118-3131
9. Pierrot-Deseilligny C 2009 Clinical implications of a possible role of vitamin D in multiple sclerosis. J Neurol 256:1468-1479
10. Banwell B, Krupp L, Kennedy J, Tellier R, Tenembaum S, Ness J, Belman A, Boiko A, Bykova O, Waubant E, Mah JK, Stoian C, Kremenchutzky M, Bardini MR, Ruggieri M, Rensel M, Hahn J, Weinstock-Guttman B, Yeh EA, Farrell K, Freedman M, Iivanainen M, Sevon M, Bhan V, Dilenge ME, Stephens D, Bar-Or A 2007 Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. Lancet Neurol 6:773-781
11. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A 2006 Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296:2832-2838
12. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH 2008 B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676-688
13. Mathey EK, Derfuss T, Storch MK, Williams KR, Hales K, Woolley DR, Al-Hayani A, Davies SN, Rasband MN, Olsson T, Moldenhauer A, Velhin S, Hohlfeld R, Meinl E, Linington C 2007 Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 204:2363-2372
14. Rohkamm 2008 Taschenatlas Neurologie. Thieme
15. Bechtold DA, Kapoor R, Smith KJ 2004 Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Ann Neurol 55:607-616
16. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W 2000 Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123 ( Pt 6):1174-1183
17. Aktas O, Ullrich O, Infante-Duarte C, Nitsch R, Zipp F 2007 Neuronal damage in brain inflammation. Arch Neurol 64:185-189
18. Aktas O, Waiczies S, Zipp F 2007 Neurodegeneration in autoimmune demyelination: recent mechanistic insights reveal novel therapeutic targets. J Neuroimmunol 184:17-26
19. Guthrie TC, Nelson DA 1995 Influence of temperature changes on multiple sclerosis: critical review of mechanisms and research potential. J Neurol Sci 129:1-8
20. Uhthoff W 1890 Untersuchungen über die bei der multiplen Herdsklerose vorkommenden Augenstörungen. Arch Psychiatr Nervenkrankh; 21:305–410
21. Gutrecht JA 1989 Lhermitte's sign. From observation to eponym. Arch Neurol 46:557-558
22. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS 2011 Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292-302
23. Kabat EA, Wolf A, Bezer AE 1947 The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvants. J Exp Med 85:117-130
24. Kawakami N, Lassmann S, Li Z, Odoardi F, Ritter T, Ziemssen T, Klinkert WE, Ellwart JW, Bradl M, Krivacic K, Lassmann H, Ransohoff RM, Volk HD, Wekerle H, Linington C, Flugel A 2004 The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J Exp Med 199:185-197
25. Stromnes IM, Goverman JM 2006 Active induction of experimental allergic encephalomyelitis. Nat Protoc 1:1810-1819
26. Gold R, Linington C, Lassmann H 2006 Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953-1971
27. bromson-Leeman S, Bronson R, Luo Y, Berman M, Leeman R, Leeman J, Dorf M 2004 T-cell properties determine disease site, clinical presentation, and cellular pathology of experimental autoimmune encephalomyelitis. Am J Pathol 165:1519-1533
28. Zhou SR, Moscarello MA, Whitaker JN 1995 The effects of citrullination or variable amino-terminus acylation on the encephalitogenicity of human myelin basic protein in the PL/J mouse. J Neuroimmunol 62:147-152
29. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, Ravid R, Rajewsky K 2000 Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393-404
30. Bourquin C, Schubart A, Tobollik S, Mather I, Ogg S, Liblau R, Linington C 2003 Selective unresponsiveness to conformational B cell epitopes of the myelin oligodendrocyte glycoprotein in H-2b mice. J Immunol 171:455-461
31. Kornberg RD 1974 Chromatin structure: a repeating unit of histones and DNA. Science 184:868-871
32. Luger K 2003 Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 13:127-135
33. Workman JL, Kingston RE 1998 Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545-579
34. Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR, Caldwell JA, Mollah S, Cook RG, Shabanowitz J, Hunt DF, Allis CD 2002 Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22:1298-1306
35. Sims RJ, III, Nishioka K, Reinberg D 2003 Histone lysine methylation: a signature for chromatin function. Trends Genet 19:629-639
36. Strahl BD, Allis CD 2000 The language of covalent histone modifications. Nature 403:41-45
37. Ramadori G, Coppari R 2010 Pharmacological manipulations of CNS sirtuins: Potential effects on metabolic homeostasis. Pharmacological Research 62:48-54
38. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y 2007 Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282:6823-6832
39. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D 2004 Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16:93-105
40. Vaziri H, Dessain SK, Ng EE, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA 2001 hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149-159
41. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF 2003 Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 100:10794-10799
42. Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE 2008 SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2:241-251
43. Saunders LR, Verdin E 2007 Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26:5489-5504
44. Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, Kim S, Xu X, Zheng Y, Chilton B, Jia R, Zheng ZM, Appella E, Wang XW, Ried T, Deng CX 2008 Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14:312-323
45. Yi J, Luo J 2010 SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta 1804:1684-1689
46. Flick F, Luscher B 2012 Regulation of sirtuin function by posttranslational modifications. Front Pharmacol 3:29
47. Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD, Chen J 2006 Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8:1025-1031
48. Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB 2005 Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123:437-448
49. Chang KT, Min KT 2002 Regulation of lifespan by histone deacetylase. Ageing Res Rev 1:313-326
50. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA 2003 Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191-196
51. Rogina B, Helfand SL 2004 Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101:15998-16003
52. Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA 2008 SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907-918
53. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I 2005 Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623-4635
54. Tang BL, Chua CE 2008 SIRT1 and neuronal diseases. Mol Aspects Med 29:187-200
55. Takata T, Ishikawa F 2003 Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in. Biochem Biophys Res Commun 301:250-257
56. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, hado De OR, Leid M, McBurney MW, Guarente L 2004 Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429:771-776
57. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM 2006 Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745-21754
58. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH 2007 SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26:3169-3179
59. Araki T, Sasaki Y, Milbrandt J 2004 Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010-1013
60. Blander G, Olejnik J, Krzymanska-Olejnik E, McDonagh T, Haigis M, Yaffe MB, Guarente L 2005 SIRT1 shows no substrate specificity in vitro. J Biol Chem 280:9780-9785
61. Frye RA 1999 Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260:273-279
62. Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J, Elmquist JK, Coppari R 2008 Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 28:9989-9996
63. Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, Sato M, Horio Y 2008 Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci U S A 105:15599-15604
64. Zipp F, Aktas O 2006 The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29:518-527
65. Monje ML, Toda H, Palmer TD 2003 Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760-1765
66. GallÆ M, Van Gool F, Leo O 2011 Sirtuins and inflammation: Friends or foes? Biochemical Pharmacology 81:569-576
67. Imler J, Petro TM 2009 Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+IL-10+ T cells, CD4- IFN-[gamma]+ cells, and decreased macrophage IL-6 expression. International Immunopharmacology 9:134-143
68. Shindler KS, Ventura E, Dutt M, Elliott P, Fitzgerald DC, Rostami A 2010 Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol 30:328-339
69. Nimmagadda VK, Bever CT, Vattikunta NR, Talat S, Ahmad V, Nagalla NK, Trisler D, Judge SIV, Royal W, Chandrasekaran K, Russell JW, Makar TK 2013 Overexpression of SIRT1 Protein in Neurons Protects against Experimental Autoimmune Encephalomyelitis through Activation of Multiple SIRT1 Targets. The Journal of Immunology 190:4595-4607
70. Zhang J, Chen J, Li Y, Cui X, Zheng X, Roberts C, Lu M, Elias SB, Chopp M 2008 Niaspan treatment improves neurological functional recovery in experimental autoimmune encephalomyelitis mice. Neurobiology of Disease 32:273-280
71. Hara N, Yamada K, Shibata T, Osago H, Hashimoto T, Tsuchiya M 2007 Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J Biol Chem 282:24574-24582
72. Kaneko S, Wang J, Kaneko M, Yiu G, Hurrell JM, Chitnis T, Khoury SJ, He Z 2006 Protecting Axonal Degeneration by Increasing Nicotinamide Adenine Dinucleotide Levels in Experimental Autoimmune Encephalomyelitis Models. The Journal of Neuroscience 26:9794-9804
73. Berger F, Ramirez-Hernandez MH, Ziegler M 2004 The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci 29:111-118
74. Taylor DM, Maxwell MM, Luthi-Carter R, Kazantsev AG 2008 Biological and potential therapeutic roles of sirtuin deacetylases. Cell Mol Life Sci 65:4000-4018
75. Haigis MC, Guarente LP 2006 Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913-2921
76. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E 2003 The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11:437-444
77. Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA 2003 Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23:3173-3185
78. Inoue T, Hiratsuka M, Osaki M, Yamada H, Kishimoto I, Yamaguchi S, Nakano S, Katoh M, Ito H, Oshimura M 2007 SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 26:945-957
79. Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D 2006 SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256-1261
80. Southwood CM, Peppi M, Dryden S, Tainsky MA, Gow A 2007 Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res 32:187-195
81. Li W, Zhang B, Tang J, Cao Q, Wu Y, Wu C, Guo J, Ling EA, Liang F 2007 Sirtuin 2, a Mammalian Homolog of Yeast Silent Information Regulator-2 Longevity Regulator, Is an Oligodendroglial Protein That Decelerates Cell Differentiation through Deacetylating {alpha}-Tubulin. J Neurosci 27:2606-2616
82. Tang BL, Chua CEL 2008 SIRT2, tubulin deacetylation, and oligodendroglia differentiation. Cell Motil Cytoskeleton 65:179-182
83. Wallace DC 2005 A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359-407
84. Shi T, Wang F, Stieren E, Tong Q 2005 SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280:13560-13567
85. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L 2006 SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941-954
86. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW 2006 Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315-329
87. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF 2009 SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62-74
88. Liszt G, Ford E, Kurtev M, Guarente L 2005 Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280:21313-21320
89. Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, Gao J, Schneider JI, Chai H, Bronson RT, Tsai LH, Deng CX, Alt FW 2010 Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proceedings of the National Academy of Sciences 107:21790-21794
90. Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L 2006 Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20:1075-1080
91. Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E 2008 Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703-710
92. Miron VE, Kuhlmann T, Antel JP 2011 Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim Biophys Acta 1812:184-193
93. Pfeiffer SE, Warrington AE, Bansal R 1993 The oligodendrocyte and its many cellular processes. Trends in Cell Biology 3:191-197
94. Ruffini F, Arbour N, Blain M, Olivier A, Antel JP 2004 Distinctive Properties of Human Adult Brain-Derived Myelin Progenitor Cells. The American Journal of Pathology 165:2167-2175
95. Nait-Oumesmar B, Picard-Riera N, Kerninon C, Baron-Van EA 2008 The role of SVZ-derived neural precursors in demyelinating diseases: from animal models to multiple sclerosis. J Neurol Sci 265:26-31
96. Levine JM, Reynolds R, Fawcett JW 2001 The oligodendrocyte precursor cell in health and disease. Trends in Neurosciences 24:39-47
97. Wren D, Wolswijk G, Noble M 1992 In vitro analysis of the origin and maintenance of O-2Aadult progenitor cells. The Journal of Cell Biology 116:167-176
98. Liu J, Casaccia P 2010 Epigenetic regulation of oligodendrocyte identity. Trends in Neurosciences 33:193-201
99. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR 2009 HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12:829-838
100. Liu A, Han YR, Li J, Sun D, Ouyang M, Plummer MR, Casaccia-Bonnefil P 2007 The Glial or Neuronal Fate Choice of Oligodendrocyte Progenitors Is Modulated by Their Ability to Acquire an Epigenetic Memory. J Neurosci 27:7339-7343
101. Lyssiotis CA, Walker J, Wu C, Kondo T, Schultz PG, Wu X 2007 Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc Natl Acad Sci U S A 104:14982-14987
102. Yu Y, Casaccia P, Lu QR 2010 Shaping the oligodendrocyte identity by epigenetic control. Epigenetics 5:124-128
103. Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M 2003 The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677-1689
104. Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJM, Casaccia-Bonnefil P 2008 Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 11:1024-1034
105. Liu A, Li J, Marin-Husstege M, Kageyama R, Fan Y, Gelinas C, Casaccia-Bonnefil P 2006 A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO J 25:4833-4842
106. Samanta J, Kessler JA 2004 Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131:4131-4142
107. Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P 2002 Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 22:10333-10345
108. Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M 1998 Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18:237-250
109. Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M 2002 Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16:165-170
110. Finzsch M, Stolt CC, Lommes P, Wegner M 2008 Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development 135:637-646
111. Takada N, Kucenas S, Appel B 2010 Sox10 is necessary for oligodendrocyte survival following axon wrapping. Glia 58:996-1006
112. Ito Y, Wiese S, Funk N, Chittka A, Rossoll W, Bommel H, Watabe K, Wegner M, Sendtner M 2006 Sox10 regulates ciliary neurotrophic factor gene expression in Schwann cells. Proc Natl Acad Sci U S A 103:7871-7876
113. Barres BA, Burne JF, Holtmann B, Thoenen H, Sendtner M, Raff MC 1996 Ciliary Neurotrophic Factor Enhances the Rate of Oligodendrocyte Generation. Mol Cell Neurosci 8:146-156
114. Li H, Lu Y, Smith HK, Richardson WD 2007 Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci 27:14375-14382
115. Kuspert M, Hammer A, Bosl MR, Wegner M 2011 Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer. Nucleic Acids Res 39:1280-1293
116. Li H, He Y, Richardson WD, Casaccia P 2009 Two-tier transcriptional control of oligodendrocyte differentiation. Curr Opin Neurobiol 19:479-485
117. Parras CM, Hunt C, Sugimori M, Nakafuku M, Rowitch D, Guillemot F 2007 The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J Neurosci 27:4233-4242
118. Parras CM, Galli R, Britz O, Soares S, Galichet C, Battiste J, Johnson JE, Nakafuku M, Vescovi A, Guillemot F 2004 Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J 23:4495-4505
119. Zhou Q, Choi G, Anderson DJ 2001 The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31:791-807
120. Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y 2002 The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12:1157-1163
121. Ligon KL, Fancy SP, Franklin RJ, Rowitch DH 2006 Olig gene function in CNS development and disease. Glia 54:1-10
122. Buffo A, Vosko MR, Erturk D, Hamann GF, Jucker M, Rowitch D, Gotz M 2005 Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci U S A 102:18183-18188
123. Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE 2010 NG2+ CNS Glial Progenitors Remain Committed to the Oligodendrocyte Lineage in Postnatal Life and following Neurodegeneration. Neuron 68:668-681
124. Wilson HC, Scolding NJ, Raine CS 2006 Co-expression of PDGF [alpha] receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. Journal of Neuroimmunology 176:162-173
125. Grako KA, Ochiya T, Barritt D, Nishiyama A, Stallcup WB 1999 PDGF (alpha)-receptor is unresponsive to PDGF-AA in aortic smooth muscle cells from the NG2 knockout mouse. J Cell Sci 112:905-915
126. Baracskay KL, Kidd GJ, Miller RH, Trapp BD 2007 NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells. Glia 55:1001-1010
127. Zhu X, Bergles DE, Nishiyama A 2008 NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135:145-157
128. Nishiyama A, Komitova M, Suzuki R, Zhu X 2009 Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9-22
129. Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD 2010 NG2 Glia Generate New Oligodendrocytes But Few Astrocytes in a Murine Experimental Autoimmune Encephalomyelitis Model of Demyelinating Disease. J Neurosci 30:16383-16390
130. Tan AM, Zhang W, Levine JM 2005 NG2: a component of the glial scar that inhibits axon growth. J Anat 207:717-725
131. Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Shudou M, Chuai M, Imai Y, Takahashi H, Tanaka J 2008 Accumulation of macrophage-like cells expressing NG2 proteoglycan and Iba1 in ischemic core of rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 28:149-163
132. Zhu L, Lu J, Tay SS, Jiang H, He BP 2010 Induced NG2 expressing microglia in the facial motor nucleus after facial nerve axotomy. Neuroscience 166:842-851
133. Karram K, Goebbels S, Schwab M, Jennissen K, Seifert G, Steinh+ñuser C, Nave KA, Trotter J 2008 NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse. genesis 46:743-757
134. Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P 1988 Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor ceil. Nature 333:560-562
135. Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD 1988 Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333:562-565
136. Fruttiger M, Karlsson L, Hall AC, Abramsson A, Calver AR, Bostrom H, Willetts K, Bertold CH, Heath JK, Betsholtz C, Richardson WD 1999 Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126:457-467
137. Calver AR, Hall AC, Yu WP, Walsh FS, Heath JK, Betsholtz C, Richardson WD 1998 Oligodendrocyte Population Dynamics and the Role of PDGF In Vivo. Neuron 20:869-882
138. Akiyama K, Ichinose S, Omori A, Sakurai Y, Asou H 2002 Study of expression of myelin basic proteins (MBPs) in developing rat brain using a novel antibody reacting with four major isoforms of MBP. J Neurosci Res 68:19-28
139. Gravel M, Peterson J, Yong VW, Kottis V, Trapp B, Braun PE 1996 Overexpression of 2',3'-cyclic nucleotide 3'-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol Cell Neurosci 7:453-466
140. Dyer CA 1993 Novel oligodendrocyte transmembrane signaling systems. Investigations utilizing antibodies as ligands. Mol Neurobiol 7:1-22
141. Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, Ibrahim A, Ligon KL, Rowitch DH, Barres BA 2009 Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172-185
142. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA 1994 Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368:753-756
143. Wang Y, Sharpless N, Chang S 2013 p16INK4a protects against dysfunctional telomere-induced ATR-dependent DNA damage responses. J Clin Invest 123:4489-4501
144. Gartel AL, Radhakrishnan SK 2005 Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65:3980-3985
145. Doetsch F, Verdugo JM, Caille I, varez-Buylla A, Chao MV, Casaccia-Bonnefil P 2002 Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. J Neurosci 22:2255-2264
146. varez-Buylla A, Garcia-Verdugo JM, Tramontin AD 2001 A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287-293
147. Chiasson BJ, Tropepe V, Morshead CM, van der KD 1999 Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19:4462-4471
148. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA 2000 Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci U S A 97:13883-13888
149. Doetsch F, Garcia-Verdugo JM, varez-Buylla A 1997 Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046-5061
150. Doetsch F 2003 A niche for adult neural stem cells. Curr Opin Genet Dev 13:543-550
151. Ray J, Peterson DA, Schinstine M, Gage FH 1993 Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci U S A 90:3602-3606
152. Palmer TD, Takahashi J, Gage FH 1997 The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389-404
153. Seaberg RM, van der KD 2002 Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784-1793
154. Seaberg RM, van der KD 2003 Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26:125-131
155. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL 1996 Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16:1091-1100
156. Ciccolini F, Svendsen CN 1998 Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci 18:7869-7880
157. McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M 2003 The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23:38-54
158. Bernal J 2005 Thyroid hormones and brain development. Vitam Horm 71:95-122
159. Baas D, Bourbeau D, Sarlieve LL, Ittel ME, Dussault JH, Puymirat J 1997 Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia 19:324-332
160. Kaufman 1998 The Atlas of Mouse Development. Academic Press
161. King IL, Dickendesher TL, Segal BM 2009 Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113:3190-3197
162. McKay R 1997 Stem cells in the central nervous system. Science 276:66-71
163. Michalczyk K, Ziman M 2005 Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20:665-671
164. Hisahara S, Chiba S, Matsumoto H, Horio Y 2005 Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2alpha). J Pharmacol Sci 98:200-204
165. Ferri AL, Cavallaro M, Braida D, Di CA, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP, Sala M, DeBiasi S, Nicolis SK 2004 Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131:3805-3819
166. Kempermann 2006 Adult Neurogenesis: Stem Cells and Neuronal Development in the Adult Brain. Oxford University Press; 200
167. Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G 2003 Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373-382
168. Seri B, Garcia-Verdugo JM, McEwen BS, varez-Buylla A 2001 Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153-7160
169. Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M, Kempermann G 2003 Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455-463
170. Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, varez-Buylla A 2004 Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359-378
171. Michan S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W, Mervis RF, Chen J, Guerin KI, Smith LE, McBurney MW, Sinclair DA, Baudry M, de CR, Longo VD 2010 SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30:9695-9707
172. Marshall CA, Novitch BG, Goldman JE 2005 Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J Neurosci 25:7289-7298
173. Chen Y, Miles DK, Hoang T, Shi J, Hurlock E, Kernie SG, Lu QR 2008 The basic helix-loop-helix transcription factor olig2 is critical for reactive astrocyte proliferation after cortical injury. J Neurosci 28:10983-10989
174. Pallas M, Pizarro JG, Gutierrez-Cuesta J, Crespo-Biel N, Alvira D, Tajes M, Yeste-Velasco M, Folch J, Canudas AM, Sureda FX, Ferrer I, Camins A 2008 Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 154:1388-1397
175. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J 2007 Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100:1512-1521
176. Finkel T, Deng CX, Mostoslavsky R 2009 Recent progress in the biology and physiology of sirtuins. Nature 460:587-591
177. Kwon HS, Ott M 2008 The ups and downs of SIRT1. Trends Biochem Sci 33:517-525
178. Lafontaine-Lacasse M, Richard D, Picard F 2010 Effects of age and gender on Sirt 1 mRNA expressions in the hypothalamus of the mouse. Neurosci Lett 480:1-3
179. Sasaki T, Maier B, Bartke A, Scrable H 2006 Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 5:413-422
180. Sakamoto J, Miura T, Shimamoto K, Horio Y 2004 Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett 556:281-286
181. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R 1990 A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346:245-250
182. Zappone MV, Galli R, Catena R, Meani N, De BS, Mattei E, Tiveron C, Vescovi AL, Lovell-Badge R, Ottolenghi S, Nicolis SK 2000 Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127:2367-2382
183. Shen S, Li J, Casaccia-Bonnefil P 2005 Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169:577-589
184. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH 2004 Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101:16659-16664
185. Cunliffe VT, Casaccia-Bonnefil P 2006 Histone deacetylase 1 is essential for oligodendrocyte specification in the zebrafish CNS. Mech Dev 123:24-30
186. Revollo JR, Grimm AA, Imai S 2004 The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279:50754-50763
187. Zhang T, Berrocal JG, Frizzell KM, Gamble MJ, DuMond ME, Krishnakumar R, Yang T, Sauve AA, Kraus WL 2009 Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem 284:20408-20417
188. van d, V, Ho C, O'Neil C, Barbosa N, Scott R, Cregan SP, Pickering JG 2007 Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 282:10841-10845
189. Zhang J 2003 Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked Bioessays 25:808-814
190. Kolthur-Seetharam U, Dantzer F, McBurney MW, de MG, Sassone-Corsi P 2006 Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5:873-877
191. Kauppinen TM, Suh SW, Genain CP, Swanson RA 2005 Poly(ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. J Neurosci Res 81:190-198
192. Selvaraj V, Soundarapandian MM, Chechneva O, Williams AJ, Sidorov MK, Soulika AM, Pleasure DE, Deng W 2009 PARP-1 deficiency increases the severity of disease in a mouse model of multiple sclerosis. J Biol Chem 284:26070-26084
193. Sasaki Y, Ohsawa K, Kanazawa H, Kohsaka S, Imai Y 2001 Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem Biophys Res Commun 286:292-297
194. Moransard M, Dann A, Staszewski O, Fontana A, Prinz M, Suter T 2011 NG2 expressed by macrophages and oligodendrocyte precursor cells is dispensable in experimental autoimmune encephalomyelitis. Brain 134:1315-1330
195. Allen IV, McQuaid S, Mirakhur M, Nevin G 2001 Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurol Sci 22:141-144
196. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG 2000 Multiple sclerosis. N Engl J Med 343:938-952
197. Pfister JA, Ma C, Morrison BE, D'Mello SR 2008 Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One 3:e4090
198. Zhang J, Lee SM, Shannon S, Gao B, Chen W, Chen A, Divekar R, McBurney MW, Braley-Mullen H, Zaghouani H, Fang D 2009 The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest 119:3048-3058
Rechtliche Vermerke:Hiermit erklärt der Autor folgendes bezüglich vier Abbildungen aus der Einleitung, die lediglich den Inhalt der Einleitung verdeutlichen und keinen Anteil an der wissenschaftlichen Leistung der Dissertation haben:
1. Abbildung 2 ist gemäß Zitat in der Arbeit aus Stromnes 2006 (2) entnommen. Hierzu liegt eine Genehmigung der „Nature Publishing Group“ vor diese Abbildung in gedruckter und elektronischer Form im Rahmen meiner Dissertation gemäß den Bedingungen des Vertrages (License Number 3464360496909) zu nutzen.
2. Abbildung 3 ist gemäß dem Zitat in der Arbeit aus Yang 2006 (1) entnommen. Hierzu liegt eine Genehmigung von „Springer“ vor diese Abbildung im Rahmen meiner Dissertation gemäß den Bedingungen des Vertrages (License Number 3464370860554) zu nutzen. Dies beinhaltet ebenfalls eine elektronische Version im Magazin/Speicher der Universität inklusive UMI.
3. Abbildung 4 ist in den öffentlichen Besitz übergeben worden. Das heißt sie darf von jedem ohne jede Bedingungen für jeden Zweck genutzt werden, solange keine geltenden Gesetze gebrochen werden.
4. Abbildung 6 beinhaltet Teile, die im Rahmen eines „open access“ 2008 von Arias-Carrion (4) veröffentlicht worden sind und gemäß der angegebenen Lizenz ohne Einschränkungen verändert und veröffentlicht werden dürfen.
Bezüglich dieser oben genannten Abbildungen ist der Autor dann natürlich NICHT „allein berechtigt, über die urheberrechtlichen Nutzungsrechte zu verfügen“, sondern darf sie lediglich im Rahmen der Dissertation in oben aufgeführter Weise nutzen.
Der Rest der Arbeit bleibt davon unberührt, hier liegt das Urheberrecht beim Autor.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:02.10.2014
Dateien geändert am:02.10.2014
Promotionsantrag am:16.12.2013
Datum der Promotion:12.08.2014
english
Benutzer
Status: Gast
Aktionen