Dokument: Ammonium-induzierte Veränderungen der Kalium- und Calciumhomöostase in Hirnschnitten der Maus

Titel:Ammonium-induzierte Veränderungen der Kalium- und Calciumhomöostase in Hirnschnitten der Maus
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=30031
URN (NBN):urn:nbn:de:hbz:061-20140716-092102-1
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Haack, Nicole [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,74 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 16.07.2014 / geändert 16.07.2014
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:Hepatische Enzephalopathie (HE) ist eine komplexe neurologische Störung, die durch Leberversagen induziert wird. Als Ursache für die HE gilt eine Erhöhung des extrazellulären Ammoniums ([NH4+]o). Es gibt Hinweise, dass NH4+ die Ionen-Homöostase beeinflusst und einige der HE-Symptome scheinen nur durch diese Störungen zu entstehen. So induziert NH4+ eine Zunahme der intrazellulären Natriumkonzentration und verändert die pH-Werte in Neuronen und Astrozyten (Kelly und Rose 2010). In der vorliegende Studie wurden die NH4+-induzierten Veränderungen der extrazellulären Kalium-Konzentration ([K+]o), und der intrazellulären Calcium-Konzentration ([Ca2+]i), untersucht.
Die [K+]o wurde mittels K+-sensitiven Mikroelektroden gemessen, doch jeder K+-Sensor detektiert NH4+ ebenfalls. Daher entwickelten wir eine Formel, um dieses NH4+- induzierte Artefakt herauszurechnen. In der Tat, konnten wir so zum ersten Mal die NH4+-induzierten Veränderungen der [K+]o untersuchen. Somit konnten wir zeigen, dass NH4+ einen transienten [K+]o-Anstieg im Hippocampus, in akuten Schnitten des Mäusegehirns, induziert. Nach dem transienten Anstieg sank [K+]o auf den Ruhewert zurück. Das Auswaschen des NH4+ führte zu einem temporären [K+]o-Unterschuss. Pharmakologische Experimente deuten darauf hin, dass der NH4+-induzierte [K+]o-Anstieg auf eine Verringerung des K+-Transportes durch die Na+/K+-ATPase und der [K+]o-Unterschuss durch eine erhöhte Pumpaktivität der Na+/K+-ATPase bedingt ist.
Innerhalb der Astrozyten ist Ca2+ ein wichtiger Mediator der Neuro-Glia-Interaktion und der neuronalen Plastizität. Daher untersuchten wir, im zweiten Teil der Studie, mittels Fluoreszenzmessung mit Fura-2, die Wirkung von NH4+ auf [Ca2+]i in Astrozyten der verschiedenen Hirnregionen. Astrozyten des Hippocampus und Kortex wurden durch Färbung mit dem Vitalfarbstoff SR101 identifiziert; Bergmann-Gliazellen des Kleinhirns durch ihre Morphologie. In allen untersuchten Hirnregionen induzierte NH4+ eine kleine, aber anhaltende Erhöhung der [Ca2+]i, die durch eine Öffnung der NMDA-R und Freisetzung von Ca2+ aus intrazellulären Speichern bedingt ist.
Zusammengenommen zeigen unsere Experimente, dass NH4+ komplexe Störungen der [K+]o und [Ca2+]i induziert. Die Beeinflussung der K+ bzw. Ca2+-Homöostase, könnte zu der gesteigerten neuronalen Erregung oder zu der Störung der Neurotransmission beitragen, die während der HE beobachtet werden können.

Hepatic encephalopathy (HE) is a complex neurological disorder caused by liver failure, which is attributed to an increase of extracellular ammonium ([NH4+]). There is evidence that NH4+ induces disturbance of ion-homeostasis in general and some of the symptoms during the HE seem to arise just by this disturbance. For example NH4+ induces an increase in intracellular sodium concentration and changes in pH in neurons and astrocytes (Kelly and Rose 2010). The aim of this study was to investigate the NH4+-induced changes of extracellular potassium concentration ([K+]o) and intracellular calcium concentration ([Ca2+]i).
[K+]o was determined by K+-sensitive microelectrodes, but all available K+-sensor were affected by NH4+. So we developed a formula to calculate this NH4+- induced artifact. In this study we determined for the first time the NH4+-induced dysregulation of [K+]o. We were able to show that NH4+ induced a transient [K+]o-increase in the hippocampus of acute mouse brainslices. After this transient increase, [K+]o slowly declined to the baseline. Upon NH4+ removal, [K+]o temporarily decreased below the baseline. Pharmacological experiments indicate that the NH4+-induced increase in [K+]o is due to a reduction of the Na+/K+-ATPase-mediated inward transport of K+, and that an increased pump activity after NH4+ washout is responsible for the [K+]o undershoot.
Astrocyte Ca2+ is an important mediator of neuron-glia interaction and neural plasticity. So in the second part of the study, we analyzed the effect of NH4+ on [Ca2+]i of astrocytes in different brain regions, determined by calcium imaging with the indicator dye Fura-2. Astrocytes of hippocampus and cortex were identified by staining with the vital dye SR101; cerebellar Bergmann glia cells were identified based on their morphology. In all brain regions studied, NH4+ induced a small, but persistent elevation in [Ca2+]i. The major mechanisms of generation of the NH4+-induced [Ca2+]i increase is NMDA receptor activation and release of Ca2+ from intracellular stores.
Taken together, our experiments demonstrate that NH4+ evokes complex changes in [K+]o and [Ca2+]i. These changes lead to an impairment of ion-homeostasis, which might contribute to the altered excitability, or to the disturbance of neurotransmission, both are observed during HE.
Quelle:• Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 7(1):41-53
• Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron. 59(6):932-46
• Albrecht J and Jones EA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J. Neurol. Sci. 170:138–146
• Albrecht J and Norenberg MD (2006) Glutamine: A trojan horse in ammonia neurotoxicity. Hepatology 44:788-794
• Alger BE and Nicoll RA (1983) Ammonia does not selectively block IPSPs in rat hippocampal pyramidal cells. J Neurophysiol. 49(6):1381-91
• Amédée T, Robert A, Coles JA (1997) Potassium homeostasis and glial energy metabolism. Glia 21: 46-55
• Amiry-Moghaddam M and Ottersen O. (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci. 4(12):991-1001
• Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 15(4):961-73
• Arima H, Yamamoto N, Sobue K, Umenishi F, Tada T, Katsuya H, Asai K. (2003) Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem. 278(45):44525-34
• Bai G, Rama Rao KV, Murthy CR, Panickar KS, Jayakumar AR, Norenberg MD (2001) Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J Neurosci Res. 66(5):981-91
• Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci. 22(20):9134-41
• Ballanyi K, Grafe P and ten Bruggencate G (1987) Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol. 382:159-174
• Ballanyi K and Kettenmann H (1990) Intracellular Na+ activity in cultured mouse oligodendrocytes. J Neurosci Res. 26(4):455-460
• Balestrino M, Aitken PG and Somjen GG (1986) The effects of moderate changes of extracellular K+ and Ca2+ on synaptic and neural function in the CA1 region of the hippocampal slice. Brain Res. 377:229-239
• Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci. 24(6):353-60
• Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci.(9):728-39
• Bender AS and Norenberg MD (1996) Effects of ammonia on Image -glutamate uptake in cultured astrocytes. Neurochem. Res. 21:567-573
• Bender AS and Norenberg MD (1998) Effect of benzodiazepines and neurosteroids on ammonia-induced swelling in cultured astrocytes. J Neurosci Res 54:673-680
• Bennett MV, Contreras JE, Bukauskas FF, Sáez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 26(11):610-7
• Bergeron MJ, Gagnon E, Wallendorff B, Lapointe JY and Isenring P (2003) Ammonium transport and pH regulation by K+-Cl- cotransporters. Am J Physiol 285:68-78
• Berridge MJ (1994) The biology and medicine of calcium signalling. Mol Cell Endocrinol 98:119-124
• Berridge MJ, Bootman MD, Lipp P (1998) Calcium-a life and death signal. Nature 395(6703):645-8
• Berridge MJ, Lipp P, Bootman MD (2000). The versatility and universality of calcium signalling. Nat Rev Mol Cell Bio 1:11-21
• Berridge MJ, Bootman MD, Roderick HL (2003). Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517-527
• Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A. (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature ;391(6664):281-5
• Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci. 7(6):613-20
• Blaustein MP and Golovina VA (2001) Structural complexity and functional diversity of endoplasmic reticulum Ca(2+) stores. Trends Neurosci. 24(10):602-8
• Blei AT, Olafsson S, Therrien G, Butterworth RF (1994) Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology.19(6):1437-44
• Bondareff W and Pysh JJ (1968) Distribution of the extracellular space during postnatal maturation of rat cerebral cortex. Anat Rec 4:773-780
• Bradford HF, Ward HK and Foley P (1989) Gluaminase inhibition und the release of neurotransmitter glutamate from synaptosomes. Brain Res 476:29-34
• Brookes N (2002) Ammonium ion transport in Astrocytes : Functional implications Neuroglia in the aging brain, Jean De Vellis Humana Press Inc. S. 275-291
• Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ (2010) Astrocyte Glutamine Synthetase: Importance in Hyperammonemic Syndromes and Potential Target for Therapy. Neurother. 7:452-470
• Brown AM and Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia (12):1263-71
• Butt AM and Kalsi A (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med. 10(1):33-44
• Butterworth RF (1998) Effects of hyperammonaemia on brain function. J Inher Metab Dis 21:6-20
• Butterworth RF (2001) Glutamate transporter and receptor function in disorders of ammonia metabolism. Res Reviews 7:276-279
• Butterworth RF (2002) Glutamate transporters in hyperammonemia. Neurochem Int 41:81-85
• Camacho A and Massieu L (2006) Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res. 37(1):11-8
• Capocaccia L and Angelico M (1991) Fulminant hepatic failure. Clinical features, etiology, epidemiology, and current management, Dig. Dis. Sci. 36:775–779
• Carafoli E. (2004) Calcium-mediated cellular signals: a story of failures. Trends Biochem Sci. 29(7):371-9
• Carmignoto G and Gómez-Gonzalo M (2010) The contribution of astrocyte signalling to neurovascular coupling. Brain Res Rev. 63(1-2):138-48
• Catterall WA and Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron. 59(6):882-901
• Chalmers S and Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem. 278(21):19062-70
• Chatton JY, Marquet P, Magistretti PJ (2000) A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics. Eur J Neurosci. 12(11):3843-53
• Chen J, Tan Z, Zeng L, Zhang X, He Y, Gao W, Wu X, Li Y, Bu B, Wang W, Duan S (2013) Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia. 61(2):178-91
• Choi DW (1988 A) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11(10):465-9
• Choi DW (1988 B) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8):623-34
• Choi S, Klingauf J, Tsien RW (2000) Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nat Neurosci. 3(4):330-6
• Clapham DE (2007) Calcium signaling. Cell 131(6):1047-58
• Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science. 258(5087):1498-501
• Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P (1999) Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29(3):648-53
• Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem. 278(2):1354-62
• Coles JA and Poulain DA (1991) Extracellular K+ in the supraoptic nucleus of the rat during reflex bursting activity by oxytocin neurones. J Physiol 439: 383-409
• Cooper A and Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev Vol 67:440-519
• Danbolt NC (2001) Glutamate uptake. Prog Neurobiol. 65(1):1-105
• D'Ambrosio R, Gordon DS and Winn HR (2002) Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 87:87–102

• De Knegt RJ, Schalm SW, van der Rijt CCD, Fekkes D, Dalm E and Hekking-Weyma I (1994) Extracellular brain glutamate during acute liver failure and during acute hyperammonemia simulating acute liver failure: An experimental study based on in vivo brain dialysis. J. Hepatol. 20:19-26
• Dienel GA and Cruz NF (2003) Neighborly interactions of metabolically-activated astrocytes in vivo. Neurochem Int. 43(4-5):339-54
• Dietzel I, Heinemann U and Lux HD (1989) Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia 2:25-44
• Dumas TC (2005) Late postnatal maturation of excitatory synaptic transmission permits adult-like expression of hippocampal-dependent behaviors. Hippocampus. 15(5):562-78
• Eduardo E and Benarroch MD (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc. 80:1326-1338
• Ehrlich M, Plum F, Duffy TE (1980) Blood and brain ammonia concentrations after portacaval anastomosis. Effects of acute ammonia loading. J Neurochem. 34(6):1538-42
• Fan P, Lavoie J, Lé NL, Szerb JC and Butterworth RF (1990) Neurochemical and electrophysiological studies on the inhibitory effect of ammonium ions on synaptic transmission in slices of rat hippocampus: evidence for a postsynaptic action. J Neurosci 37:327-334
• Fan P and Szerb JC (1993) Effects of ammonium ions on synaptic transmission and on responses to quisqualate and N-methyl-D-aspartate in hippocampal CA1 pyramidal neurons in vitro. Brain Res 632:225-231
• Felipo V and Butterworth R (2002) Neurobiology of ammonia. Prog Neurobiol 67:259-279
• Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron. 43(5):729-43
• Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT (2002) Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 35(3):716-21
• Fiacco TA and McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24(3):722-32
• Filosa JA and Blanco VM (2007) Neurovascular coupling in the mammalian brain. Exp Physiol. (4):641-6
• Finkbeiner S and Greenberg ME (1996) Ca(2+)-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron. 16(2):233-6
• Fries AW, Dadsetan S, Keiding S, Bak LK, Schousboe A, Waagepetersen HS, Simonsen M, Ott P, Vilstrup H, Sørensen M (2014) Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats. J Cereb Blood Flow Metab. 34(3):460-6
• Gallo V and Ghiani CA (2000) Glutamate receptors in glia: new cells, new inputs and new functions Trends in Pharmacological Sciences 21,7,1:252-258
• Ganda OP and Ruderman NB (1976) Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism 25(4):427-35
• Ganz R, Swain M, Traber P, DalCanto M, Butterworth RF, Blei AT (1989) Ammonia-Induced Swelling of Rat Cerebral Cortical Slices: Implications for the Pathogenesis of Brain Edema in AcuteHepatic Failure. Metab Brain Dis. 4(3):213-23
• Gardner-Medwin AR (1983) Analysis of potassium dynamics in mammalian brain tissue. J Physiol 335:393-426
• Geck P and Pfeifer B (1970) Na+/K+/2 Cl--cotransport in animal cells - its role in volume regulation. Ann NY Aced Sci 456:166-182
• Gelebart P, Opas M, Michalak M. (2005) Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol.37(2):260-6
• Giaume C and Theis M (2010) Pharmacological and genetic approaches to study connexinmediated channels in glial cells of the central nervous system. Brain Res Rev 63:160-176
• Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N. (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions Nat Rev Neurosci 2010; 11(2): 87-99
• Gibbs ME, Hutchinson D, Hertz L (2008) Astrocytic involvement in learning and memory consolidation. Neurosci Biobehav Rev. 32(5):927-44
• Görg, B., Morwinsky, A., Keitel, V., Schrör, K. und Häussinger, D. (2010): Ammonia triggers exocytotic release of L-glutamate from cultured rat astrocytes. Glia 58:691-705
• Golovina VA and Blaustein MP (2000) Unloading and refilling of two classes of spatially resolved endoplasmic reticulum Ca(2+) stores in astrocytes. Glia. 31(1):15-28
• Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55(12):1214-21
• Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456(7223):745-9
• Grijalba MT, Vercesi AE, Schreier (1999) Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry 38(40):13279-87
• Haack N (2010) Einfluss von Ammonium auf die extrazelluläre Kaliumhomöostase im Hippocampus. Diplomarbeit Institut für Neurobiologie der Heinrich-Heine-Universität
• Haas M (1989) Properties and diversity of (Na-K-Cl) cotransporters. Annu Rev Physiol 51:443-457
• Haas M and Forbush B (1998) The Na-K-Cl cotransporters. J Bioen Biomemb 30:161-172
• Häussinger D, Kircheis G, Fischer R, Schliess F and Dahl S (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32:1035-1038
• Häussinger D and Schliess F (2005) Astrocyte swelling and protein tyrosine nitration in hepatic encephalopathy. Neurochem Int 47. 1-2:64-70
• Häussinger D and Schliess F (2008) Pathogenetic mechanisms of hepatic encephalopathy. Gut 57: 1156-1165
• Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 13(2):54-63
• Hamberger A, Hedquist B and Nyström B (1979) Ammonium ion inhibition of evoked release of endogenous glutamate from hippocampal slices. J. Neurochem. 33:1295-1302
• Hamilton SL (2005) Ryanodine receptors. Cell Calcium 38(3-4):253-60
• Hamilton NB and Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci. 11(4):227-38
• Hansson E, Muyderman H, Leonova J, Allansson L, Sinclair J, Blomstrand F, Thorlin T, Nilsson M, Rönnbäck L (2000) Astroglia and glutamate in physiology and pathology: aspects on glutamate transport, glutamateinduced cell swelling and gap-junction communication. Neurochem Int. 37(2-3):317-29
• Hansson MJ, Månsson R, Morota S, Uchino H, Kallur T, Sumi T, Ishii N, Shimazu M, Keep MF, Jegorov A, Elmér E (2008) Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic Biol Med. 45(3):284-94
• Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2(3):185-93
• Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 86(3):1009-31
• Heinemann U and Lux HD (1975) Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Res 1:63-76
• Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature. 463(7278):232-6
• Herman MA and Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci. 27(36):9736-41
• Hermenegildo C, Marcaida G, Montoliu C, Grisolía S, Miñana MD and Felipo V (1996) NMDA receptor antagonists prevent acute ammonia toxicity in mice. Neurochem. Res. 21:1237-1244
• Hermenegildo C, Monfort P and Felipo V (2000) Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31(3):709-715
• Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res. 57(4):417-28
• Hilgard P and Gerken G (2004) Hepatische Enzephalopathie. Med Klin 99: 591−602
• Hilgier W, Oja SS, Saransaari P and Albrecht J (2004) A novel glycine site-specific N-methyl-d-aspartate receptor antagonist prevents activation of the NMDA/NO/CGMP pathway by ammonia, Brain Res. 1015:186–188
• Hindfelt B, Plum F, and Duffy TE (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest. 59(3):386-96
• Holmin T and Siesjö BK (1974) The effect of porta-caval anastomosis upon the energy state and upon acid-base parameters of the rat brain. J Neurochem. 22(3):403-12
• Jalan R, Olde Damink SW, Hayes PC, Deutz NE, Lee A (2004) Pathogenesis of intracranial hypertension in acute liver failure: inflammation, ammonia and cerebral blood flow. J Hepatol 41:613-620
• Jayakumar AR, Rama Rao KV, Schousboe A, Norenberg MD (2004) Glutamine induced free radical production in cultured astrocytes. Glia 46:296-301
• Jayakumar AR, Rama Rao KV, Murthy RK, Norenberg MD (2006 A) Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int 48:623-628
• Jayakumar AR, Panickar KS, Murthy ChR, Norenberg MD (2006 B) Oxidative stress and mitogen-activated protein kinase phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci. 26(18):4774-84
• Jayakumar AR, Liu M, Moriyama M, Ramakrishnan R, Forbush B, Reddy PV and Norenberg MD (2008) Na-K-Cl cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem 283:33874-33882
• Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nature Neurosci 10:331-339
• Kacem K, Lacombe P, Seylaz J, Bonvento G (1998) Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study Glia 23(1): 1-10
• Kahlert S and Reiser G (2002) Swelling of mitochondria in cultured rat hippocampal astrocytes is induced by high cytosolic Ca(2+) load, but not by mitochondrial depolarization. FEBS Lett. 529(2-3):351-5
• Kala G, Kumarathasan R, Peng L, Leenen FH, Hertz L (2000) Stimulation of Na+,K+-ATPase activity, increase in potassium uptake, and enhanced production of ouabain-like compoands in ammonia-treated mouse astrocytes. Neurochem Int 36:203-211
• Kelly T and Church J (2005) The weak bases NH(3) and trimethylamine inhibit the medium and slow afterhyperpolarizations in rat CA1 pyramidal neurons. Pflugers Arch 451:418-427
• Kelly T, Kafitz KW, Roderigo C and Rose CR (2009) Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia. 57(9):921-934
• Kelly T and Rose CR (2010): Intra- und extrazelluläre Ionenverschiebungen bei hepatischer Enzephalopathie und ihre funktionellen Folgen. Invited Review. Neuroforum (Organ der Neurowiss. Gesellschaft): Volume 02/2010
• Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35:497-506
• Koch Daniel (2011) Mechanismen Ammonium-induzierter extrazellulärer Kalium-Änderungen im Hippocampus der Maus. Diplomarbeit Institut für Neurobiologie der Heinrich-Heine-Universität.
• Kofuji P and Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1043-1054
• Kojima S, Nakamura T, Nidaira T, Nakamura K, Ooashi N, Ito E, Watase K, Tanaka K, Wada K, Kudo Y, Miyakawa H (1999) Optical detection of synaptically induced glutamate transport in hippocampal slices. J Neurosci. 19(7):2580-8
• Kosenko E, Kaminsky YG, Felipo V, Miñana MD, Grisolía S (1993) Chronic hyperammonemia prevents changes in brain energy and ammonia metabolites induced by acute ammonium intoxication. Biochim Biophys Acta. 1180(3):321-326
• Kosenko E, Kaminsky Y, Grau E, Miñana MD, Marcaida G, Grisolía S, Felipo V (1994) Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+,K(+)-ATPase. J Neurochem. 63(6):2172-8
• Kosenko E, Kaminsky Y, Kaminsky A, Valencia M, Lee L, Hermenegildo C, Felipo V (1997) Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res. 27(6):637-44
• Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sánchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide, Neurochem Int. 43(4–5): 493-499
• Kostyuk P and Verkhratsky A (1994) Calcium stores in neurons and glia. Neuroscience 63(2):381-404
• Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett. 495(1-2):12-5
• Kozlov AS, Angulo MC, Audinat E, Charpak S (2006) Target cell-specific modulation of neuronal activity by astrocytes Proc Natl Acad Sci USA 103(26):10058-63
• Kreisman NR and Smith ML (1993) Potassium-induced changes in excitability in the hippocampal CA1 region of immature and adult rats. Brain Res Dev Brain Res 76:67-73
• Kundra A, Jain A, Banga A, Bajaj G, Kar P (2005) Evaluation of plasma ammonia levels in patients with acute liver failure and chronic liver disease and its correlation with the severity of hepatic encephalopathy and clinical features of raised intracranial tension. Clin Biochem. 38(8):696-9
• Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A. (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673-2683
• Lang W, Blöck TM and Zander R (1998) Solubility of NH3 and apparent pK of NH4+ in human plasma, isotonic salt solutions and water at 37°C. Clin Chim Acta 273: 43-58
• Larsen FS, Adel HB, Pott F, Ejlersen E, Secher NH, Paulson OB, Knudsen EM (1996) Dissociated cerebal vasoparalysis in acute liver failure. A hypothesis of gradual cerebral hyperaemia. J Hepatol 25:145-151
• Latorre R and Miller C (1983). Conduction and selectivity in potassium channels . J. Membr. Biol . 71:11-30
• Lau A and Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 460(2):525-42
• Lavoie J, Giguére JF, Layrargues GP and Butterworth RF (1987) Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J. Neurochem. 49:692–697
• Lesage F (2003) Parmacology of neuronal background potassium channels. Neuropharmacology 44:1-7
• Lerma J, Herranz AS, Herreras O, Abraira V, Martín del Río R (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res. 384(1):145-55
• Li Z and Sheng M (2003) Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol. 4(11):833-41
• Liu X, Titz S, Lewen A, Misgeld U (2003) KCC2 Mediates NH4+ uptake in cultured rat brain neurons. J Neurophysiol 90:2785-2790
• Llansola M, Rodrigo R, Monfort P, Montoliu C, Kosenko E, Cauli O, Piedrafita B, El Mlili N, Felipo V (2007) NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab Brain Dis. 22(3-4):321-335
• Loaiza A, Porras OH, Barros LF (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci. 23(19):7337-42
• Lopez T, Lopez-Colome AM, Ortega A (1997) NMDA receptors in cultured radial glia. FEBS Lett 405:245-248
• Malcolm JE, Vernon FL, Merrifield AJ, Beatson TR (1959) Fulminating eclampsia treated by hypothermia. Lancet. 1(7078):863-4
• Mans AM, Saunders SJ, Kirsch RE and Biebuyck JF (1979) Correlation of plasma and brain amino acid and putative neurotransmitter alterations during acute hepatic coma in the rat. J. Neurochem 32(2): 285–292
• Mans AM, DeJoseph MR, Hawkins RA (1994) Metabolic abnormalities and grade of encephalopathy in acute hepatic failure. J Neurochem 63:1829-1838
• Marcaggi P and Coles JA (2001) Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signalling. Prog Neurobiol 64:157-183
• Marcaida G, Felipo V, Hermenegildo C, Miñana MD and Grisolía S (1992) Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett. 296:67-68
• Meier SD (2007) Inaugural-Dissertation an der Heinrich-Heine- Universität GABA-induced Ca2+ signaling in rat hippocampal astrocytes
• Mena EE and Cotman CW (1985) Pathologic concentrations of ammonium ions block L-glutamate uptake. Exp. Neurol. 89:259-260
• Michalak A, Rose C, Butterworth J and Butterworth RF (1996) Neuroactive amino acides and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure. Hepatology 24:908-914
• Michalak M and Opas M (2009) Endoplasmic and sarcoplasmic reticulum in the heart. Trends Cell Biol. 19(6):253-9
• Milne MD, Scribner BH and Crawford MA (1958) Non-ionic diffusion and the excretion of weak acids and bases. Am J Med 24:709-729
• Miñana MD, Kosenko E, Marcaida G, Hermenegildo C, Montoliu C, Grisolia S, Felipo V (1997) Modulation of glutamine synthesis in cultured astrocytes by nitric oxide. Cell. Mol. Neurobiol. 17, 433–445
• Minelli A, Lyons S, Nolte C, Verkhratsky A, Kettenmann H (2000) Ammonium triggers calcium elevation in cultured mouse microglial cells by initiating Ca(2+) release from thapsigargin-sensitive intracellular stores. Pflugers Arch. 439(3):370-7
• Monfort P, Kosenko E, Erceg S, Canales JJ, Felipo V (2002 A) Molecular mechanism of acute ammonia toxicity: role of NMDA receptors. Neurochem Int 41:95-102
• Monfort P, Muñoz MD, ElAyadi A, Kosenko E, Felipo V (2002 B) Effects of hyperammonemia and liver failure on glutamatergic neurotransmission. Metab Brain Dis.17(4): 237-250
• Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci. 24(11):2633-42
• Moroni F, Lombardi G, Moneti G and Cortesini C (1983) The release and neosynthesis of glutamic acid are increased in experimental models of hepatic encephalopathy. J. Neurochem. 40:850-854
• Mort D, Marcaggi P, Grant J, and Attwell D (2001) Effect of acute exposure to ammonia on glutamate transport in glial cells isolated from the salamander retina. J Neurophys 86:836-844
• Moser H (1987) Electrophysiological evidence for ammonium as a substitute for potassium in activating the sodium pump in a crayfish sensory neuron. Can J Physiol Pharmacol. 65:141-145
• Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A. 102(15):5606-11
• Murthy CR, Rama Rao KV, Bai G, Norenberg MD (2001) Ammonia induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res. 66(2):282-8
• Murthy CR and Norenberg MD (2002) Suppression of ammonia-induced swelling by aspartate but not by ornithine in primary cultures of rat astrocytes. Neurochem Int. 41(2-3):171-6
• Nagaraja TN and Brookes N (1998) Intracellular acidification induced by passive and active transport of ammonium ions in astrocytes. J Physiol Cell Physiol 274:883-891
• Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience. 129(4):905-13
• Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev. (1-3):191-215
• Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis. 13(4):319-35
• Norenberg MD, Baker L, Norenberg LO, Blicharska J, Bruce-Gregorios JH, Neary JT (1991) Ammonia-induced astrocyte swelling in primary culture. Neurochem Res 16:833-836
• Norenberg MD, Rama Rao KV, Jayakumar AR (2008) Signalling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis. 2009 Mar;24(1):103-17
• Norenberg MD, Rama Rao KV, Jayakumar AR (2009) Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis 24:103-117
• Nyitrai G, Kékesi KA, Juhász G (2006) Extracellular level of GABA and Glu: in vivo microdialysis-HPLC measurements. Curr Top Med Chem. 6(10):935-40
• Oliet SH and Mothet JP (2006) Molecular determinants of D-serine-mediated gliotransmission: from release to function. Glia. 54(7):726-37
• Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol. 30(1):75-90
• Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F, Arroliga AC, Mullen KD (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 114(3):188-93
• Oppong KNW, Bartlett K, Record CO and Mardini HA (1995) Synaptosomal glutamate transport in thioacetamide-induced hepatic encephalopathy in the rat. Hepatology 22:553-558
• Orkand RK, Nicholls JG and Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of Amphibia. J Neurophysiol 29:788–806
• Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 4(7):552-65
• Ott P and Larsen FS (2004) Blood–brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int 44:185-198
• Pan CF, Zhu SM, Zheng YY (2010) Ammonia induces upregulation of aquaporin-4 in neocortical astrocytes of rats through the p38 mitogen-activated protein kinase pathway. Chin Med J 123(14):1888-92
• Panatier A, Vallée J, Haber M, Murai KK, Lacaille JC, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell. 146(5):785-98
• Pappas CA and Ransom BR (1994) Depolarization-induced alkalinization (DIA) in rat hippocampal astrocytes. J Neurophysiol 72:2816-2826
• Parpura V and Zorec R (2010) Gliotransmission: Exocytotic release from astrocytes. Brain Res Rev. (1-2):83-92
• Payne JA, Stevenson TJ, and Donaldson LF (1996) Molecularcharacterization of a putative K-Cl- cotransporter in rat brain.A neuronal-specific isoform. J Biol Chem 271:16245-16252
• Pellerin L and Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 91(22):10625-9
• Pellerin L and Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab. 32(7):1152-66
• Peng TI and Jou MJ (2010) Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci. 1201:183-8
• Perea G and Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science. 317(5841):1083-6
• Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32(8):421-31
• Peter O and Hendrik V (2014) Cerebral effects of ammonia in liver disease: current hypotheses. Metabolic Brain Disease Feb, 1-11
• PhearEA, SherlockS, Summerskill WHJ (1955) Blood-ammonium levels in liver disease and hepatic coma. Lancet 7, 836-840
• Phelps ME, Hoffmann EJ and Raybaud C (1977) Factors which affect cerebral uptake and retention of 13NH3. Stroke 8: 694-702
• Porras OH, Ruminot I, Loaiza A, Barros LF (2008) Na+-Ca2+ cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia. 56(1):59-68
• Porter JT and McCarthy KD (1995) GFAP-Positive Hippocampal Astrocytes In Situ Respond to Glutamatergic Neuroligands With Increases in [Ca2+], Glia 13:101-112
• Porter JT and McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol. 51(4):439-55
• Provent P, Kickler N, Barbier EL, Bergerot A, Farion R, Goury S, Marcaggi P, Segebarth C, Coles JA (2007) The ammonium-induced increase in rat brain lactate concentration is rapid and reversible and is compatible with trafficking and signaling roles for ammonium. J Cereb Blood Flow Metab 27(11):1830-40
• Pschyrembel klinisches Wörterbuch (2002) 259 Auflage, Berlin de Gruyter
• Putney JW (2003) Capacitative calcium entry in the nervous system. Cell Calcium 34:339-344
• Putney JW (2009) Capacitatice calcium entry: from concept to molecules. Immunol Rev 231:10-22
• Putney JW (2011) The physiological function of store-operated calcium entry. Neurochem Res 36:1157-1165
• Pysh JJ (1969) The development of the extracellular space in neonatal rat inferior colliculus: an electron microscopic study. Am J Anat. 124(4):411-429
• Rama Rao KV, Jayakumar AR, Norenberg DM (2003) Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metab Brain Dis. 18(2):113-27
• Rama Rao KV, Jayakumar AR, Norenberg MD (2005) Differential response of glutamine in cultured neurons and astrocytes. J Neurosci Res 79:193-199
• Rama Rao KV and Norenberg MD (2007) Aquaporin-4 in hepatic encephalopathy. Metab Brain Dis. 22(3-4):265-75
• Ransom BR (2004) Gap junctions 19: 299. Neuroglia Kettenmann, Oxford University Press
• Rao KV, Panickar KS, Jayakumar AR, Norenberg MD (2005) Astrocytes protect neurons from ammonia toxicity. Neurochem Res. 30(10):1311-8
• Ratnakumari L, Qureshi IA, Butterworth RF (1994) Regional amino acid neurotransmitter changes in brains of spf/Y mice with congenital ornithine transcarbamylase deficiency. Metab Brain Dis 9(1):43-51
• Reddy PV, Murthy ChR, Reddanna P (2004) Fulminant hepatic failure induced oxidative stress in nonsynaptic mitochondria of cerebral cortex in rats. Neurosci Lett. 368(1):15-20
• Rodrigo R, Cauli O, Boix J, ElMlili N, Agusti A and Felipo V (2009) Role of NMDA receptors in acute liver failure and ammonia toxicity: Therapeutical implications. Neurochemistry International. 55:113-118
• Rojas H, Colina C, Ramos M, Benaim G, Jaffe EH, Caputo C, DiPolo R (2007) Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Ca(i)2+-induced Ca2+ release in rat cerebellar Type-1 astrocytes. J Neurochem. 100(5):1188-202
• Rose C (2002) Increased extracellular brain glutamate in acute liver failure: decreased uptake or increased release? Metabolic Brain Disease 17: 251-261
• Rose C, Kresse W, Kettenmann H (2005) Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. Journal of biological chemistry, 280: 20937-20944
• Rose CR (1997): Intracellular Na+ regulation in neurons and glia: Functional implications. The Neuroscientist 3:85-88
• Rose CR and Karus C (2013) Two sides of the same coin: sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 61:1191-1205
• Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675-86
• Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211-276
• Sáez JC, Contreras JE, Bukauskas FF, Retamal MA, Bennett MV (2003) Gap junction hemichannels in astrocytes of the CNS. Acta Physiol Scand. 179(1):9-22
• Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem.282(8):5296-5301
• Sathyasaikumar KV, Swapna I, Reddy PV, Murthy ChR, Dutta Gupta A, Senthilkumaran B, Reddanna P (2007) Fulminant hepatic failure in rats induces oxidative stress differentially in cerebral cortex, cerebellum and pons medulla. Neurochem Res. 32(3):517-24
• Scemes E and Spray DC (2012) Extracellular K⁺ and astrocyte signaling via connexin and pannexin channels. Neurochem Res. 37(11):2310-6
• Schellinger PD, Hartmann MK, Klingmann Ch, Meinck HM (2003) Hepatische Enzephalopathie. Der Nervenarzt 74(12): 1078-1087
• Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J 15:1270-1272
• Schliess F, Görg B, Fischer R, Desjardins P, Bidmon H, Herrmann A, Butterworth R, Zilles K and Häussinger D (2002) Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 16(7):739-741
• Schmidt W, Wolf G, Grungreiff K, Meier M, Reum T (1990) Hepatic encephalopathy influences high-affinity uptake of transmitter glutamate and aspartate into the hippocampal formation. Metab Brain Dis 5:19-31
• Schomberg SL, Su G, Haworth RA, Sun D (2001) Stimulation of Na-K-2Cl Cotransporter in neurons by activation of non-NMDA ionotropic receptor and group-I mGluRs. J Neurophysiol 85:2563-2575
• Schousboe A, Sonnewald U, Civenni G, Gegelashvili G (1997) Role of astrocytes in glutamate homeostasis Implications for excitotoxicity. Adv Exp Med Biol. 429:195-206
• Serrano A, Robitaille R, Lacaille JC (2008) Differential NMDA-dependent activation of glial cells in mouse hippocampus. Glia 56:1648-1663
• Shelton MK and McCarthy KD (1999) Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. Glia 26(1):1-11
• Simard M and Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. J Neurosci 129:877-896
• Steinhäuser C and Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19:339-345
• Stephan J, Haack N, Kafitz KW, Durry S, Koch D, Hochstrate P, Seifert G, Steinhäuser C, Rose CR (2012) Kir4.1 channels mediate a depolarization of hippocampal astrocytes under hyperammonemic conditions in situ. Glia 60(6):965-78
• Su G, Haworth RA, Dempsey RJ and Sun D (2000) Regulation of Na+-K+-Cl- cotransporter in primary astrocytes by dibutyryl cAMP and high [K+] o. Am J Physiol Cell Physiol 279:1710-1721
• Su G, Kintner DB and Sun D (2002) Contribution of Na+-K+-Cl- cotransporter to high-[K+]o-induced swelling and EAA release in astrocytes. Am J Physiol Cell Physiol 282:1136-1146
• Subbalakshmi GY and Murthy CR (1983) Acute metabolic effects of ammonia on the enzymes of glutamate metabolism in isolated astroglial cells. Neurochem Int. 5(5):593-7
• Suzuki K, Matsuo N, Moriguchi T, Takeyama N, Kitazawa Y, Tanaka T (1992). Changes in brain ECF amino acids in rats with experimentally induced hyperammonemia. Metab Brain Dis 7:63-75
• Swain MS, Blei AT, Butterworth RF and Kraig RP (1991) Intracellular pH rises and astrocytes swell after portacaval anastomosis in rats. Am. J. Physiol. 261:1491–1496
• Swain M, Butterworth RF, Blei AT (1992 A) Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 15:449-453
• Swain MS, Bergeron M, Audet R, Blei AT, Butterworth RF (1992 B) Monitoring of neurotransmitter amino acids by means of an indwelling cisterna magna catheter: a comparison of two rodent models of fulminant liver failure. Hepatology 16:1028-1035
• Syková E, Mazel T and Simonová Z. (1998) Diffusion constraints and neuron-glia interaction during aging. Exp Gerontol 33(7-8):837-51
• Syková E and Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277-1340
• Szatkowski M, Barbour B and Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443-446
• Szerb J and Butterworth R (1992) Effect of ammonium ion on synaptic transmission in the mammalian central nervous system. Prog Neurobiol 39: 135-153
• Talley EM, Solorzano G, Lei Q, Kim D and Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505
• Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1991) Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 261:H825-829
• Takahashi S, Driscoll BF, Law MJ and Sokoloff L (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Neurobiology Proc. Natl. Acad. Sci. USA 92:4616-4620
• Tanigami H, Rebel A, Martin LJ, Chen TY, Brusilow SW, Traystman RJ, Koehler RC (2005) Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience 131:437-449
• Titz S, Hormuzdi S, Lewen A, Monyer H and Misgeld U (2006) Intracellular acidification in neurons induced by ammonium depends on KCC2 function. Eur J Neurosci 23(2):454-464
• Tossman U, Delin A, Eriksson LS, Ungerstedt U (1987). Brain cortical amino acids measured by intracerebral dialysis in portocaval shunted rats. Neurochem Res 12:265-269
• Traber TG, Dal Canto MC, Ganger T, Blei AT (1987) Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: ultrastructure and integrity of the blood-brain barrier. Hepatology 7:1272-1277
• Tzingounis AV and Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci. 8(12):935-47
• Vaca L (2010) SOCIC: the store-operated calcium influx complex. Cell Calcium 47:199-209
• Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21(1):2-21
• Vaquero J, Chung C, Blei AT (2003) Brain edema in acute liver failure. A window to the pathogenesis of hepatic encephalopathy. Ann Hepatol 2:12-22
• Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev.78(1):99-141
• Verkhratsky A and Kirchhoff F (2007) NMDA Receptors in Glia. Neuroscientist 13:28-37
• Verkhratsky A and Steinhäuser C (2008) Full-length review: Ion channels in glial cells. Brain Research Reviews 32:380–412
• Volterra A and Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 6(8):626-40
• Voskuyl RA and ter Keurs HE (1981) Modification of neuronal activity in olfactory cortex slices by extracellular K+. Brain Res 230:372-377
• Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26(20):5438-5447
• Walz W and Hertz L (1983) Intracellular ion changes of astrocytes in response to extracellular potassium. J Neurosci Res. 10(4):411-23
• Walz W (1992) Mechanism of rapid K(+)-induced swelling of mouse astrocytes. Neurosci Lett. 135(2):243-6
• Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36:291-300
• Watanabe A, Takei N and Higashi T (1984) Glutamic acid and glutamine levels in serum and cerebrospinal fluid in hepatic encephlopathy. Biochem. Med. 32:225-231
• Wettschureck N and Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev. 85(4):1159-204
• Williams JR and Payne JA (2004) Cation transport by the neuronal K+-Cl- cotransporter KCC2: thermodynamics and kinetics of alternate transport modes Am. J. Physiol. Cell Physiol. 287:C919-C931
• Willard-Mack CL, Koehler RC, Hirata T, Cork LC, Takahashi H, Traystman RJ, Brusilow SW (1996) Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71:589-599
• Xu G, Wang W, Kimelberg HK, Zhou M (2010) Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions. Glia 58:481-493
• Yan Y, Dempsey RJ, Flemmer A, Forbush B and Sun D (2003) Inhibition of Na+-K+-Cl--cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res 961:22-31
• Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci U S A. 100(25):15194-9
• Yarowsky P, Boyne AF, Wierwille R, and Brookes N (1986) Effect of monensin on deoxyglucose uptake in cultured astrocytes: energy metabolism is coupled to sodium entry. J Neurosci 6:859-66
• Zerangue N and Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383(6601):634-7
• Zieve L (1987) Pathogenesis of hepatic encephalopathy. Metab Brain Dis. 2(3):147-65
• Zelenina M (2010) Regulation of brain aquaporins. Neurochem Int. (4):468-88
• Zwingmann C, Chatauret N, Rose C, Leibfritz D, Butterworth RF (2004) Selective alterations of brain osmolytes in acute liver failure: protective effect of mild hypothermia. Brain Res 999:118-12
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Neurobiologie
Dokument erstellt am:16.07.2014
Dateien geändert am:16.07.2014
Promotionsantrag am:21.05.2014
Datum der Promotion:03.07.2014
english
Benutzer
Status: Gast
Aktionen