Dokument: Untersuchungen zur Struktur und Funktion der bakteriellen 6S RNA und Charakterisierung der 6S RNA Wechselwirkung mit RNA-Polymerase
Titel: | Untersuchungen zur Struktur und Funktion der bakteriellen 6S RNA und Charakterisierung der 6S RNA Wechselwirkung mit RNA-Polymerase | |||||||
Weiterer Titel: | Structural and functional studies on bacterial 6S RNA and characterization of the 6S RNA-RNA polymerase interaction | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=28030 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20140109-123200-6 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Englisch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Dr. Steuten, Benedikt [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Wagner, Rolf [Gutachter] Prof. Dr. Ernst, Joachim F. [Gutachter] Prof. Dr. Franz Narberhaus [Gutachter] | |||||||
Stichwörter: | ncRNA, Transkriptionsregulation, RNA-Polymerase, E. coli | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie | |||||||
Beschreibungen: | Die Transkription von Genen ist ein grundlegender Prozess in allen biologischen Systemen. In prokaryotischen Zellen wird die gesamte Transkription durch lediglich eine RNA Polymerase (RNAP) katalysiert, welche daher einer komplexen Regulation unterliegt. Die Aktivität der RNAP wird durch verschiedenste, zelluläre Komponenten, wie Proteine, niedermolekulare Verbindungen und Nukleinsäuren, kontrolliert. Obwohl Ribonukleinsäure (RNA) das eigentliche Produkt der Transkription ist, stellt die bakterielle 6S RNA ein Paradebeispiel für die Regulation der Transkription durch eine kleine, nicht-kodierende RNA (ncRNA) dar. In dieser Dissertation wurden funktionelle und strukturelle Details der 6S RNA-RNAP Interaktion genauer untersucht.
Neben der 6S RNA aus E. coli wurden die Sekundärstrukturen verschiedener 6S RNAs aus phylogenetisch entfernten Cyanobakterien analysiert. Aufgrund der strukturellen Ähnlichkeit wurden diese 6S RNAs für heterologe in vitro Studien mit der RNAP aus E. coli verwendet. Trotz des Fehlens größerer Sequenz-Konservierung weisen die 6S RNAs aus E. coli und den cyanobakteriellen Spezies sehr ähnliche Eigenschaften auf. Dazu gehören die spezifische Bindung an die RNAP sowie das pRNA-vermittelte Ablösen von der RNAP. Die einheitliche Struktur der 6S RNA erlaubt eine präzise Lokalisierung im aktiven Zentrum der RNAP, wodurch in einer ungewöhnlichen, RNA-abhängigen Transkription kurze product RNAs (pRNAs) synthetisiert werden können. Eine strukturelle Analyse der resultierenden 6S-pRNA Hybride hat gezeigt, dass die 6S RNA einer Konformationsänderung unterliegt, welche das Ablösen von der RNAP fördert und dadurch den intrazellulären Abbau der 6S RNA einleitet. Die Bedeutung der strukturellen Veränderung der 6S RNA nach pRNA Transkription in vivo konnte durch eine chemische footprint Analyse untermauert werden. In dieser Arbeit wurden darüber hinaus Regionen der 6S RNA-RNAP Interaktion genauer charakterisiert. Dazu wurde die räumliche Nachbarschaft zwischen funktionellen Domänen der RNAP σ70 Untereinheit und der 6S RNA durch Anwendung der chemischen Nuklease FeBABE bestimmt. Die räumliche Zuordnung der 6S RNA Spaltungspositionen sowie die Zuhilfenahme von Tertiärstrukturvorhersagen für 6S RNA Fragmente erlaubten die Modellierung einer drei-dimensionalen 6S RNA Struktur relativ zu der hoch-aufgelösten Kristallstruktur der RNAP aus E. coli. Dieses Modell gibt die größtenteils helikale Topologie der 6S RNA wider und beschreibt einen plausiblen Pfad der RNA entlang der RNAP. Eine Erweiterung der Analysen mittels 6S RNA Mutanten hebt die Bedeutung von asymmetrischen bulge loops innerhalb der 6S RNA internal stem Struktur als potentielle Interaktionsstellen für die RNAP hervor.Transcription of genes is a fundamental process in all biological systems. In prokaryotic cells the transcription is catalysed by a single RNA polymerase (RNAP), which is thus subject to a complex regulatory network. The activity of RNA polymerase is controlled by a variety of molecules including proteins, low-molecular compounds and nucleic acids. Although RNA is the actual product of transcription the bacterial 6S RNA is a prime example for the regulation of transcription via a small, non-coding RNA. In this PhD thesis structural and functional implications of the 6S RNA-RNAP interaction were investigated. In addition to the well-studied 6S RNA from E. coli the secondary structures of several 6S RNAs from the phylogenetically distant cyanobacteria were analysed in detail. Due to the structural similarity those RNAs were used for heterologous in vitro studies with E. coli RNAP. Despite the lack of major sequence conservation the 6S RNAs from E. coli and the cyanobacterial species exhibit the same characteristics, comprising RNAP binding and pRNA-mediated release from RNAP. The common 6S RNA structure allows the positioning in the RNAP active site resulting in an unusual RNA-templated transcription of short product RNAs (pRNA). A structural probing of the 6S-pRNA hybrid revealed that 6S RNA undergoes a conformational rearrangement, which facilitates the release from RNAP and probably induces the intracellular degradation of 6S RNA. The significance of this structural transition of 6S RNA in vivo was underscored by a chemical footprint technique. Additionally, the 6S RNA-RNAP interaction sites were further scrutinized in this work. Therefore the spatial neighborhood between functional domains of the RNAP σ70 subunit and 6S RNA was mapped by applying the chemical nuclease FeBABE. The spatial assignment of the generated 6S RNA cleavage sites and tertiary structure predictions of 6S RNA fragments allowed the modelling of a three-dimensional 6S RNA structure relative to the high resolution crystal structure of RNAP. This model nicely reflects the helical topology of the RNA and proposes a reliable path of 6S RNA across the RNAP. Moreover, extension of the studies with 6S RNA mutants emphasize the importance of asymmetric bulge loops within the 6S RNA internal stem as potential interaction sites for RNAP. | |||||||
Quelle: | Aviv, M., Giladi, H., Oppenheim, A. B. and Glaser, G. (1996) Analysis of the shut-off of ribosomal RNA promoters in Escherichia coli upon entering the stationary phase of growth. FEMS Microbiol Lett 140(1): 71-76.
Bahadur, R. P., Zacharias, M. and Janin, J. (2008) Dissecting protein-RNA recognition sites. Nucleic Acids Res 36(8): 2705-2716. Baracchini, E. and Bremer, H. (1988) Stringent and growth control of rRNA synthesis in Escherichia coli are both mediated by ppGpp. J Biol Chem 263: 2597-2602. Barrick, J. E., Sudarsan, N., Weinberg, Z., Ruzzo, W. L. and Breaker, R. R. (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11(5): 774-784. Beckmann, B. M., Burenina, O. Y., Hoch, P. G., Kubareva, E. A., Sharma, C. M. and Hartmann, R. K. (2011) In vivo and in vitro analysis of 6S RNA-templated short transcripts in Bacillus subtilis. RNA Biol 8(5). Beckmann, B. M., Hoch, P. G., Marz, M., Willkomm, D. K., Salas, M. and Hartmann, R. K. (2012) A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis. The EMBO journal 31(7): 1727-1738. Bochkareva, A. and Zenkin, N. (2013) The σ70 region 1.2 regulates promoter escape by unwinding DNA downstream of the transcription start site. Nucleic Acids Res 41(8): 4565-4572. Bohn, C., Rigoulay, C., Chabelskaya, S., Sharma, C. M., Marchais, A., Skorski, P., Borezee-Durant, E., Barbet, R., Jacquet, E., Jacq, A., Gautheret, D., Felden, B., Vogel, J. and Bouloc, P. (2010) Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res 38(19): 6620-6636. Brown, J. W. and Ellis, J. C. (2005) Comparative analysis of RNA secondary structures: 6S RNA. Weinheim, Wiley-VCH Verlag GmbH & Co. Brownlee, G. G. (1971) Sequence of 6S RNA of E. coli. Nat New Biol 229(5): 147-149. Cabrera-Ostertag, I. J., Cavanagh, A. T. and Wassarman, K. M. (2013) Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli. Nucleic Acids Res 41(15):7501-7511. Carpousis, A. J. and Gralla, J. D. (1980) Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Biochemistry 19(14): 3245-3253. Cavanagh, A. T., Chandrangsu, P. and Wassarman, K. M. (2010) 6S RNA regulation of relA alters ppGpp levels in early stationary phase. Microbiology 156(Pt 12):3791-800. Cavanagh, A. T., Klocko, A. D., Liu, X. and Wassarman, K. M. (2008) Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of σ70. Mol Microbiol 67(6): 1242-1256. Cavanagh, A. T., Sperger, J. M. and Wassarman, K. M. (2011) Regulation of 6S RNA by pRNA synthesis is required for efficient recovery from stationary phase in E. coli and B. subtilis. Nucleic Acids Res 40(5):2234-46. Cavanagh, A. T. and Wassarman, K. M. (2013) 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis. J Bacteriol 195(9): 2079-2086. Chae, H., Han, K., Kim, K. S., Park, H., Lee, J. and Lee, Y. (2011) Rho-dependent termination of ssrS (6S RNA) transcription in Escherichia coli: implication for 3' processing of 6S RNA and expression of downstream ygfA (putative 5-formyl-tetrahydrofolate cyclo-ligase). J Biol Chem 286(1): 114-122. Cramer, P., Bushnell, D. A. and Kornberg, R. D. (2001) Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292(5523): 1863-1876. Decker, K. B. and Hinton, D. M. (2009) The secret to 6S: regulating RNA polymerase by ribo-sequestration. Mol Microbiol 73(2): 137-140. Espinoza, C. A., Allen, T. A., Hieb, A. R., Kugel, J. F. and Goodrich, J. A. (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11(9): 822-829. Faucher, S. P., Friedlander, G., Livny, J., Margalit, H. and Shuman, H. A. (2010) Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci U S A 107(16): 7533-7538. Gildehaus, N., Neusser, T., Wurm, R. and Wagner, R. (2007) Studies on the function of the riboregulator 6S RNA from E. coli: RNA polymerase binding, inhibition of in vitro transcription and synthesis of RNA-directed de novo transcripts. Nucleic Acids Res 35(6): 1885-1896. Gupta, R. S. and Mathews, D. W. (2010) Signature proteins for the major clades of Cyanobacteria. BMC Evol Biol 10: 24. Haugen, S. P., Ross, W., Manrique, M. and Gourse, R. L. (2008) Fine structure of the promoter-sigma region 1.2 interaction. Proc Natl Acad Sci U S A 105: 3292-3297. Hernandez, J. V. and Bremer, H. (1990) Guanosine tetraphosphate (ppGpp) dependence of the growth rate control of rrnB P1 promoter activity in Escherichia coli. J Biol Chem 265: 11605-11614. Hindley, J. (1967) Fractionation of 32P-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. J Mol Biol 30(1): 125-136. Hsu, L. M., Zagorski, J., Wang, Z. and Fournier, M. J. (1985) Escherichia coli 6S RNA gene is part of a dual-function transcription unit. J Bacteriol 161(3): 1162-1170. Hudson, B. P., Quispe, J., Lara-Gonzalez, S., Kim, Y., Berman, H. M., Arnold, E., Ebright, R. H. and Lawson, C. L. (2009) Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Proc Natl Acad Sci U S A 106(47): 19830-19835. Jeanguenin, L., Lara-Nunez, A., Pribat, A., Mageroy, M. H., Gregory, J. F., 3rd, Rice, K. C., de Crecy-Lagard, V. and Hanson, A. D. (2010) Moonlighting glutamate formiminotransferases can functionally replace 5-formyltetrahydrofolate cycloligase. J Biol Chem 285(53): 41557-41566. Jishage, M. and Ishihama, A. (1995) Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: Intracellular levels of 70 and 38. J Bacteriol 177: 6832-6835. Kim, K. S. and Lee, Y. (2004) Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Res 32(20): 6057-6068. Klocko, A. D. and Wassarman, K. M. (2009) 6S RNA binding to Eσ70 requires a positively charged surface of σ70 region 4.2. Mol Microbiol 73(2): 152-164. Kondo, J., Dock-Bregeon, A. C., Willkomm, D. K., Hartmann, R. K. and Westhof, E. (2013) Structure of an A-form RNA duplex obtained by degradation of 6S RNA in a crystallization droplet. Acta crystallographica. Section F, Structural biology and crystallization communications 69(Pt 6): 634-639. Kusano, S., Ding, Q., Fujita, N. and Ishihama, A. (1996) Promoter selectivity of Escherichia coli RNA polymerase E70 and E38 holoenzymes. J Biol Chem 271: 1989-2004. Lee, C. A., Fournier, M. J. and Beckwith, J. (1985) Escherichia coli 6S RNA is not essential for growth or protein secretion. J Bacteriol 161(3): 1156-1161. Lee, J. Y., Park, H., Bak, G., Kim, K. S. and Lee, Y. (2013) Regulation of transcription from two ssrS promoters in 6S RNA biogenesis. Molecules and cells 36(3):227-234. Lee, S. Y., Bailey, S. C. and Apirion, D. (1978) Small stable RNAs from Escherichia coli: evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J Bacteriol 133(2): 1015-1023. Murakami, K. S. (2013) X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. J Biol Chem 288(13): 9126-9134. Murakami, K. S., Masuda, S., Campbell, E. A., Muzzin, O. and Darst, S. A. (2002) Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296: 12185-11290. Murakami, K. S., Masuda, S. and Darst, S. A. (2002) Structural basis of transcription initiation: RNA polymerase holoenzyme at 4.4 Å resolution. Science 296: 1280-1284. Murray, H. D., Schneider, D. A. and Gourse, R. L. (2003) Control of rRNA expression by small molecules is dynamic and nonredundant. Molecular Cell 12: 125-134. Naryshkina, T., Kuznedelov, K. and Severinov, K. (2006) The Role of the Largest RNA Polymerase Subunit Lid Element in Preventing the Formation of Extended RNA-DNA Hybrid. J Mol Biol 361: 634-643. Neußer, T., Gildehaus, N., Wurm, R. and Wagner, R. (2008) Studies on the expression of 6S RNA from E. coli: involvement of regulators important for stress and growth adaptation. Biol Chem 389(3): 285-297. Neußer, T., Polen, T., Geißen, R. and Wagner, R. (2010) Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genomics 11: 165-178. Nudler, E. and Mironov, A. S. (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29(1): 11-17. Panchapakesan, S. S. and Unrau, P. J. (2012) E. coli 6S RNA release from RNA polymerase requires σ70 ejection by scrunching and is orchestrated by a conserved RNA hairpin. RNA 18(12): 2251-2259. Ponicsan, S. L., Houel, S., Old, W. M., Ahn, N. G., Goodrich, J. A. and Kugel, J. F. (2013) The Non-Coding B2 RNA Binds to the DNA Cleft and Active-Site Region of RNA Polymerase II. J Mol Biol 425(19):3625-3638. Raghavan, R., Groisman, E. A. and Ochman, H. (2011) Genome-wide detection of novel regulatory RNAs in E. coli. Genome research 21(9): 1487-1497. Richter, D. (1980) Uncharged tRNA inhibits guanosine 3',5'-bis (diphosphate) 3'- pyrophosphohydrolase [ppGppase], the spoT gene product, from Escherichia coli. Mol Gen Genet 178(2): 325-327. Sharma, C. M., Hoffmann, S., Darfeuille, F., Reignier, J., Findeiss, S., Sittka, A., Chabas, S., Reiche, K., Hackermuller, J., Reinhardt, R., Stadler, P. F. and Vogel, J. (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286): 250-255. Shephard, L., Dobson, N. and Unrau, P. J. (2010) Binding and release of the 6S transcriptional control RNA. RNA 16(5): 885-892. Smith, C., Heyne, S., Richter, A. S., Will, S. and Backofen, R. (2010) Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA. Nucleic Acids Res 38(Web Server issue): W373-377. Storz, G., Vogel, J. and Wassarman, K. M. (2011) Regulation by small RNAs in bacteria: expanding frontiers. Molecular Cell 43(6): 880-891. Trotochaud, A. E. and Wassarman, K. M. (2004) 6S RNA function enhances long-term cell survival. J Bacteriol 186(15): 4978-4985. Trotochaud, A. E. and Wassarman, K. M. (2005) A highly conserved 6S RNA structure is required for regulation of transcription. Nature Structural Biol 12: 313-319. Trotochaud, A. E. and Wassarman, K. M. (2006) 6S RNA Regulation of pspF Transcription Leads to Altered Cell Survival at High pH. J Bacteriol 188(11): 3936-3943. Vassylyev, D. G., Sekine, S. I., Laptenko, O., Lee, J., Vassylyeva, M. N., Borukhov, S. and Yokoyama, S. (2002) Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417: 712-719. Vassylyev, D. G., Vassylyeva, M. N., Perederina, A., Tahirov, T. H. and Artsimovitch, I. (2007) Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448(7150): 157-162. Wagner, S. D., Yakovchuk, P., Gilman, B., Ponicsan, S. L., Drullinger, L. F., Kugel, J. F. and Goodrich, J. A. (2013) RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA. The EMBO journal 32(6): 781-790. Wassarman, K. M. and Saecker, R. M. (2006) Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science 314(5805): 1601-1603. Wassarman, K. M. and Storz, G. (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101: 613-623. Watanabe, T., Sugiura, M. and Sugita, M. (1997) A novel small stable RNA, 6Sa RNA, from the cyanobacterium Synechococcus sp. strain PCC6301." FEBS Lett 416(3): 302-306. Waters, L. S. and Storz, G. (2009) Regulatory RNAs in bacteria. Cell 136(4): 615-628. Weeks, K. M. and Crothers, D. M. (1993) Major groove accessibility of RNA. Science 261(5128): 1574-1577. Werner, F. and Grohmann, D. (2011) Evolution of multisubunit RNA polymerases in the three domains of life. Nature Reviews Microbiology 9(2): 85-98. Wurm, R., Neußer, T. and Wagner, R. (2010) 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products. Biol Chem 39: 187-196. Yakovchuk, P., Goodrich, J. A. and Kugel, J. F. (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci U S A 106(14): 5569-5574. Zaychikov, E., Martin, E., Denissova, L., Kozöov, M., Markovtsov, V., Kashlev, M., Heumann, H., Nikiforov, V., Goldfarb, A. and Mustaev, A. (1996) Mapping of catalytic residues in the RNA polymerase active center. Science 237: 107-109. Zhang, G., Campbell, E. A., Minakhin, L., Richter, C., Severinov, K. and Darst, S. A. (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98: 811-824. Zhang, Y., Feng, Y., Chatterjee, S., Tuske, S., Ho, M. X., Arnold, E. and Ebright, R. H. (2012). Structural basis of transcription initiation. Science 338(6110): 1076-1080. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Molekularbiologie der Prokaryoten | |||||||
Dokument erstellt am: | 09.01.2014 | |||||||
Dateien geändert am: | 09.01.2014 | |||||||
Promotionsantrag am: | 01.10.2013 | |||||||
Datum der Promotion: | 13.12.2013 |