Dokument: Die Bedeutung der räumlichen Separation von Schallquellen in der akustischen Suche
Titel: | Die Bedeutung der räumlichen Separation von Schallquellen in der akustischen Suche | |||||||
Weiterer Titel: | The impact of spatial separation of sound sources in auditory search | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=23566 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20130124-121518-3 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Regenbrecht, Gunnar [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | PD Dr. Mayr, Susanne [Gutachter] Prof. Dr. Buchner, Axel [Gutachter] | |||||||
Stichwörter: | auditory search, spatial separation, reverberation, reflections, visual cue, auditory cue, pitch, similarity | |||||||
Dewey Dezimal-Klassifikation: | 100 Philosophie und Psychologie » 150 Psychologie | |||||||
Beschreibungen: | Schallquellen von verschiedenen räumlichen Positionen können besser wahrgenommen werden, als wenn sie von einer gemeinsamen räumlichen Position gespielt werden. Dieser Effekt der räumlichen Separation wurde vor allem für Sprachreize mit vorhersehbarem Ort und wenigen Distraktoren beschrieben. In den Untersuchungen dieser Arbeit wurden bis zu acht naturalistische Geräusche über bis zu acht im Kreis um die Teilnehmer angeordnete Lautsprecher dargeboten. Dabei wurden in der Bedingung mit Separation verschiedene Lautsprecher und in der Bedingung ohne Separation genau ein Lautsprecher zufällig für die Wiedergabe der Geräusche ausgewählt. In den Untersuchungen 1 bis 3 konnte die Präsentationsdauer 250, 500, 1000 oder 1500 ms betragen. Die Aufgabe bestand in jedem Durchgang darin, die An- oder Abwesenheit eines zufällig ausgewählten Zielgeräusches in einem Gemisch aus vier bis acht Geräuschen rückzumelden. In einem Raum mit Reflexionen in Untersuchung 1 konnte ausschließlich für sechs gleichzeitig präsentierte Geräusche und lediglich in der Sensitivität ein Vorteil räumlich separierter Schallquellen gefunden werden – bei vergleichbar langen Reaktionszeiten. Untersuchung 2 wurde – wie alle weiteren Untersuchungen – in einem reflexionsarmen Raum durchgeführt und zeigte einen generellen Vorteil der Separation sowohl in der Sensitivität als auch in den Reaktionszeiten. In Untersuchung 3 wurde der Zielhinweis akustisch statt visuell dargeboten. Ein Vorteil räumlicher Separation zeigte sich ausschließlich in den Reaktionszeiten und auch nur bei sechs gleichzeitig präsentierten Geräuschen oder bei abwesendem Ziel, während die dazugehörigen Sensitivitäten sich nicht unterschieden. In keiner der drei Untersuchungen konnte ein Einfluss der Präsentationsdauer auf den Effekt der räumlichen Separation gefunden werden. In Untersuchung 4 mit visuellem Zielhinweis wurde schließlich die Ähnlichkeit von akustischen Reizen mit Hilfe von Musikinstrumenten variiert, die in gleicher oder verschiedener Tonhöhe dargeboten wurden. Obwohl keine Interaktion zwischen Separation und Tonhöhe gefunden werden konnte, lieferten Post-hoc-Tests nur für gleiche und nicht für verschiedene Tonhöhen einen Vorteil räumlich separierter Schallquellen. Die Ergebnisse zeigen, dass der Effekt räumlicher Separation auch in komplexen Hörsituationen mit bis zu acht naturalistischen Geräuschen, wechselndem Ziel und unvorhersagbarer Zielposition gefunden werden kann. Räumliche Hinweise bei akustischen Suchaufgaben scheinen aber vor allem in Situationen genutzt werden, in denen spektrotemporale Hinweise alleine nennenswert weniger hilfreich sind als beide Arten von Hinweisen zusammen.Perceiving sound sources from different spatial positions is easier than perceiving sound sources played from one common spatial position. This effect of spatial separation was specified primarily for speech stimuli presented from a predictable location and involving only few distractors. In the studies of this thesis, up to eight naturalistic sounds were presented through speakers arranged in a circle around the participants. Different randomly selected speakers were used in the spatially separated condition, whereas the sounds were played by one randomly selected common speaker in the condition without separation. The durations of the sounds in studies 1 to 3 could be 250, 500, 1000, or 1500 ms, and the task in each trial was to indicate the presence or absence of a randomly selected target sound within the mix of four, six or eight different sounds. Study 1 was conducted in a room with reflections and provided an advantage of separation solely in the sensitivity and with only six simultaneously presented sounds (accompanied by comparable reaction times). For study 2 and all further studies a semi-anechoic chamber was used. Under these circumstances, a general advantage of spatial separation in terms of higher sensitivities and faster reaction times could be observed. In study 3 the target cue was presented acoustically instead of visually. An advantage of spatial separation could be found exclusively in the reaction times and only when six sounds were presented or when the target was absent, while the sensitivity remained the same. In these three studies with varying sound durations, no influence of this variable on the separation effect became apparent. In study 4, a visual target cue was employed, and the similarity between the stimuli was varied by using same or different pitch stimuli. Although there was no interaction between separation and pitch, post hoc tests showed a significant advantage of spatially separated sound sources only for same but not for different pitch stimuli. Taken as a whole, the results demonstrate that the effect of spatial separation could also be found in complex listening settings featuring up to eight simultaneous naturalistic sounds, a changing target, and an unpredictable target location. In auditory search, however, spatial cues seem to be used mainly in situations in which spectro-temporal cues were noticeably less helpful than both types of cues together. | |||||||
Quelle: | Abouchacra, K. S., Breitenbach, J., Mermagen, T., & Letowski, T. (2001). Binaural helmet: Improving speech recognition in noise with spatialized sound. Human Factors, 43(4), 584-594. doi: 10.1518/001872001775870368
Arbogast, T. L., & Kidd, G., Jr. (2000). Evidence for spatial tuning in informational masking using the probe-signal method. Journal of the Acoustical Society of America, 108(4), 1803-1810. doi: 10.1121/1.1289366 Arbogast, T. L., Mason, C. R., & Kidd, G., Jr. (2002). The effect of spatial separation on informational and energetic masking of speech. Journal of the Acoustical Society of America, 112(5), 2086-2098. doi: 10.1121/1.1510141 Arbogast, T. L., Mason, C. R., & Kidd, G., Jr. (2005). The effect of spatial separation on informational masking of speech in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 117(4), 2169-2180. doi: 10.1121/1.1861598 Arrabito, G. R. (2006). Three-dimensional auditory display for enhancing detection of passive sonar signals. Human Factors, 48(3), 465-473. doi: 10.1518/001872006778606769 Baldis, J. J. (2001). Effects of Spatial Audio on Memory, Comprehension, and Preference during Desktop Conferences. Paper presented at the CHI '01: Proceedings of the SIGCHI con- ference on Human factors in computing systems, New York. Begault, D. R. (1992). Perceptual Effects of Synthetic Reverberation on 3-Dimensional Audio Systems. Journal of the Audio Engineering Society, 40(11), 895-904. Begault, D. R. (1999). Virtual acoustic displays for teleconferencing: Intelligibility advantage for "telephone-grade" audio. Journal of the Audio Engineering Society, 47(10), 824- 828. Best, V., Ozmeral, E., Gallun, F. J., Sen, K., & Shinn-Cunningham, B. G. (2005). Spatial unmasking of birdsong in human listeners: energetic and informational factors. The Journal of the Acoustical Society of America, 118(6), 3766-3773. doi: 10.1121/1.2130949 Blauert, J. (1997). Spatial Hearing. Cambridge, Massachusetts: The MIT Press. Bortz, J., & Schuster, C. (2010). Statistik für Human- und Sozialwissenschaftler. Berlin: Sprin- ger.Literaturverzeichnis Seite 87 Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. 1990. Auditory scene analysis: The perceptual organization of sound xiii, 773 pp Cambridge, MA, US: The MIT Press; US. Bregman, A. S. (1993). Auditory scene analysis: Hearing in complex environments. In S. McAdams & E. Bigand (Eds.), Thinking in sound: The cognitive psychology of human audition (pp. 10-36). New York: Oxford University Press. Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions. Acustica, 86(1), 117-128. Bronkhorst, A. W., & Plomp, R. (1988). The effect of head-induced interaural time and level differences on speech intelligibility in noise. Journal of the Acoustical Society of Ameri- ca, 83(4), 1508-1516. doi: 10.1121/1.395906 Bronkhorst, A. W., & Plomp, R. (1990). A clinical test for the assessment of binaural speech perception in noise. Audiology, 29(5), 275-285. doi: 10.3109/00206099009072858 Bronkhorst, A. W., & Plomp, R. (1992). Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. Journal of the Acoustical Society of America, 92(6), 3132-3139. doi: 10.1121/1.404209 Byrne, D., Dillon, H., Tran, K., Arlinger, S., Wilbraham, K., Cox, R., . . . Ludvigsen, C. (1994). An International Comparison of Long-Term Average Speech Spectra. Journal of the Acoustical Society of America, 96(4), 2108-2120. doi: 10.1121/1.410152 Chen, Y.-C., & Spence, C. (2011). Crossmodal semantic priming by naturalistic sounds and spoken words enhances visual sensitivity. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1554-1568. doi: 10.1037/a0024329 Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates Inc. Colburn, H. S., Shinn-Cunningham, B. G., Kidd, G., & Durlach, N. (2006). The perceptual consequences of binaural hearing. International Journal of Audiology, 45(Supplement 1), 34-44. doi: 10.1080/14992020600782642 Culling, J. F., & Akeroyd, M. A. (2010). Spatial Hearing. In D. R. Moore (Ed.), The Oxford Handbook of Auditory Science: Hearing. New York: Oxford University Press Inc. Culling, J. F., Hawley, M. L., & Litovsky, R. Y. (2004). The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. Journal of the Acoustical Society of America, 116(2), 1057-1065. doi: 10.1121/1.1925967 Culling, J. F., Hodder, K. I., & Toh, C. Y. (2003). Effects of reverberation on perceptual segregation of competing voices. Journal of the Acoustical Society of America, 114(5), 2871-2876. doi: 10.1121/1.1616922 Darwin, C. J. (2006). Contributions of binaural information to the separation of different sound sources. International Journal of Audiology, 45(Suppl1), S20-S24. doi: http://dx.doi.org/10.1080/14992020600782592 Darwin, C. J., Brungart, D. S., & Simpson, B. D. (2003). Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers. Journal of the Acoustical Society of America, 114(5), 2913-2922. doi: 10.1121/1.1616924 Dirks, D. D., & Wilson, R. H. (1969). The effect of spatially separated sound sources on speech intelligibility. Journal of Speech and Hearing Disorders, 12(1), 5-38. Doll, T. J., & Hanna, T. E. (1995). Spatial and spectral release from masking in three-dimensional auditory displays. Human Factors, 37(2), 341-355. doi: 10.1518/001872095779064573 Drullman, R., & Bronkhorst, A. W. (2000). Multichannel speech intelligibility and talker recognition using monaural, binaural, and three-dimensional auditory presentation. Journal of the Acoustical Society of America, 107(4), 2224-2235. doi: 10.1121/1.428503 Durlach, N. I., Mason, C. R., Kidd, G., Jr., Arbogast, T. L., Colburn, H. S., & Shinn-Cunningham, B. G. (2003). Note on informational masking. Journal of the Acoustical Socie- ty of America, 113(6), 2984-2987. doi: 10.1121/1.1570435 Ebata, M. (2003). Spatial unmasking and attention related to the cocktail party problem. Acoustical Science and Technology, 24(5), 208-219. doi: 10.1250/ast.24.208 Eckstein, M. P. (2011). Visual search: A retrospective. Journal of Vision, 11(5). doi: 10.1167/11.5.14 Eramudugolla, R., McAnally, K. I., Martin, R. L., Irvine, D. R. F., & Mattingley, J. B. (2008). The role of spatial location in auditory search. Hearing research, 238(1-2), 139-146. doi: 10.1016/j.heares.2007.10.004 Ericson, M. A., & McKinley, R. L. (1997). The intelligibility of multiple talkers separated spatially in noise. Binaural and spatial hearing in real and virtual environments (pp. 701- 724). Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc; England. Fastl, H., & Zwicker, E. (2007). Psychoacoustics. Berlin: Springer. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. doi: 10.3758/BF03193146 Feddersen, W. E., Sandel, T. T., Teas, D. C., & Jeffress, L. A. (1957). Localization of high-frequency tones. Journal of the Acoustical Society of America, 29, 988-991. doi: 10.1121/1.1909356 Festen, J. M., & Plomp, R. (1990). Effects of fluctuating noise and interfering speech on the speech-reception threshold for impaired and normal hearing. Journal of the Acoustical Society of America, 88(4), 1725-1736. doi: 10.1121/1.400247 Freyman, R. L., Helfer, K. S., McCall, D. D., & Clifton, R. K. (1999). The role of perceived spatial separation in the unmasking of speech. Journal of the Acoustical Society of America, 106(6), 3578-3588. doi: 10.1121/1.428211 Garadat, S. N., Litovsky, R. Y., Yu, G., & Zeng, F.-G. (2009). Role of binaural hearing in speech intelligibility and spatial release from masking using vocoded speech. Journal of the Acoustical Society of America, 126(5), 2522-2535. doi: 10.1121/1.3238242 Giguere, C., & Abel, S. M. (1993). Sound Localization - Effects of Reverberation Time, Speaker Array, Stimulus Frequency, and Stimulus Rise Decay. Journal of the Acoustical Society of America, 94(2), 769-776. doi: 10.1121/1.408206 Gygi, B., Kidd, G. R., & Watson, C. S. (2004). Spectral-temporal factors in the identification of environmental sounds. Journal of the Acoustical Society of America, 115(3), 1252-1265. doi: 10.1121/1.1635840 Hartmann, W. M. (1983). Localization of Sound in Rooms. Journal of the Acoustical Society of America, 74(5), 1380-1391. doi: 10.1121/1.390163 Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: effect of location and type of interferer. Journal of the Acoustical Society of America, 115(2), 833-843. doi: 10.1121/1.1639908 Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6(2), 65-70. Ihlefeld, A., & Shinn-Cunningham, B. G. (2008). Disentangling the effects of spatial cues on selection and formation of auditory objects. The Journal of the Acoustical Society of America, 124(4), 2224-2235. doi: 10.1121/1.2973185 Kidd, G., Arbogast, T. L., Mason, C. R., & Gallun, F. J. (2005). The advantage of knowing where to listen. Journal of the Acoustical Society of America, 118(6), 3804-3815. doi: 10.1121/1.2109187 Kidd, G., Mason, C. R., Brughera, A., & Hartmann, W. M. (2005). The role of reverberation in release from masking due to spatial separation of sources for speech identification. Acta Acustica United with Acustica, 91(3), 526-536. Koehnke, J., & Besing, J. M. (1996). A procedure for testing speech intelligibility in a virtual listening environment. Ear and Hearing, 17(3), 211-217. doi: 10.1097/00003446-199606000-00004 Kulkarni, A., & Colburn, H. S. (2000). Variability in the characterization of the headphone transfer-function. Journal of the Acoustical Society of America, 107(2), 1071-1074. doi: 10.1121/1.428571 Lee, A. K. C., & Shinn-Cunningham, B. G. (2008). Effects of reverberant spatial cues on attention-dependent object formation. Jaro-Journal of the Association for Research in Otolaryngology, 9(1), 150-160. doi: 10.1007/S10162-007-0109-4 MacDonald, J. A., Balakrishnan, J. D., Orosz, M. D., & Karplus, W. J. (2002). Intelligibility of speech in a virtual 3-D environment. Human Factors, 44(2), 272-286. doi: 10.1518/0018720024497934 Macpherson, E. A., & Middlebrooks, J. C. (2000). Localization of brief sounds: Effects of level and background noise. Journal of the Acoustical Society of America, 108(4), 1834- 1849. doi: 10.1121/1.1310196 McAnally, K. I., & Martin, R. L. (2007). Spatial audio displays improve the detection of target messages in a continuous monitoring task. Human Factors, 49(4), 688-695. doi: 10.1518/001872007X215764 Miller, G. A., & Licklider, J. C. R. (1950). The intelligibility of interrupted speech. Journal of the Acoustical Society of America, 22, 167-173. doi: 10.1121/1.1906584 Mondor, T. A., Breau, L. M., & Milliken, B. (1998). Inhibitory processes in auditory selective attention: Evidence of location-based and frequency-based inhibition of return. Perception & Psychophysics, 60(2), 296-302. doi: 10.3758/BF03206038 Mondor, T. A., & Bregman, A. S. (1994). Allocating attention to frequency regions. Attention, Perception & Psychophysics, 56(3), 268-276. doi: 10.3758/BF03209761 Moore, B. C. J. (2004). An Introduction to the Psychology of Hearing (Fifth ed.): Academic Press. Morton, J., Crowder, R. G., & Prussin, H. A. (1971). Experiments with the stimulus suffix effect. Journal of Experimental Psychology, 91(1), 169-190. Nelson, W. T., Bolia, R. S., Ericson, M. A., & McKinley, R. L. (1998a). Monitoring the Simultaneous Presentation of Multiple Spatialized Speech Signals in the Free Field. Paper pre- sented at the 16th International Congress on Acoustics and the 135th Meeting of the Acoustical Society of America. Nelson, W. T., Bolia, R. S., Ericson, M. A., & McKinley, R. L. (1998b). Monitoring the simultaneous presentation of spatialized speech signals in a virtual acoustic environment. Proceedings of the 1998 IMAGE Conference, 159-166. Nelson, W. T., Bolia, R. S., Ericson, M. A., & McKinley, R. L. (1999). Spatial audio displays for speech communications: A comparison of free and virtual acoustic environments. Paper presented at the Proceedings of the Human Factors and Ergonomics Society 43rd Meeting. Noble, W., & Perrett, S. (2002). Hearing speech against spatially separate competing speech versus competing noise. Perception & Psychophysics, 64(8), 1325-1336. Oxenham, A. J., Fligor, B. J., Mason, C. R., & Kidd, G., Jr. (2003). Informational masking and musical training. Journal of the Acoustical Society of America, 114(3), 1543-1549. doi: 10.1121/1.1598197 Peissig, J., & Kollmeier, B. (1997). Directivity of binaural noise reduction in spatial multiple noise-source arrangements for normal and impaired listeners. Journal of the Acoustical Society of America, 101(3), 1660-1670. doi: 10.1121/1.418150 Rakerd, B., & Hartmann, W. M. (1985). Localization of sound in rooms, II: The effects of a single reflecting surface. The Journal of the Acoustical Society of America, 78(2), 524- 533. Richards, V. M., & Kidd, G., Jr. (2009). Auditory masking with complex stimuli. In M. Gazzaniga (Ed.), The cognitive neurosciences (Fourth ed., pp. 343-352). Cambridge, MA: Massachusetts Institute of Technology. Ruggles, D., & Shinn-Cunningham, B. G. (2011). Spatial selective auditory attention in the presence of reverberant energy: individual differences in normal-hearing listeners. Jaro-Journal of the Association for Research in Otolaryngology, 12(3), 395-405. doi: 10.1007/s10162-010-0254-z Sach, A. J., Hill, N. I., & Bailey, P. J. (2000). Auditory spatial attention using interaural time differences. Journal of experimental psychology Human perception and performance, 26(2), 717-729. doi: 10.1037//0096-1523.26.2.717 Scharf, B. (1998). Auditory attention: The psychoacoustical approach. In H. Pashler, Attention (pp. 75-117). Hove, England: Psychology Press/Erlbaum (UK) Taylor & Francis. Shackleton, T. M., Meddis, R., & Hewitt, M. J. (1994). The Role of Binaural and Fundamental-Frequency Difference Cues in the Identification of Concurrently Presented Vowels. Quarterly Journal of Experimental Psychology - Human Experimental Psychology, 47(3), 545-563. doi: 10.1080/14640749408401127 Shinn-Cunningham, B. G. (2005). Influences of spatial cues on grouping and understanding sound. Paper presented at the Proceedings of Forum Acusticum, Budapest. Shinn-Cunningham, B. G., Santarelli, S., & Kopco, N. (2000). Tori of confusion: Binaural localization cues for sources within reach of a listener. Journal of the Acoustical Society of America, 107(3), 1627-1636. doi: 10.1121/1.428447 Slattery, W. H., 3rd, & Middlebrooks, J. C. (1994). Monaural sound localization: acute versus chronic unilateral impairment. Hearing Research, 75(1-2), 38-46. doi: 10.1016/0378-5955(94)90053-1 Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of Measuring Recognition Memory - Applications to Dementia and Amnesia. Journal of Experimental Psychology: General, 117(1), 34-50. Spence, C. J., & Driver, J. (1994). Covert Spatial Orienting in Audition - Exogenous and Endogenous Mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 555-574. doi: 10.1037/0096-1523.20.3.555 Stern, R. M., & Trahiotis, C. (1995). Models of binaural interaction. Hearing (pp. 347-386). San Diego, CA: Academic Press; US. Wightman, F. L., & Kistler, D. J. (1997). Monaural sound localization revisited. Journal of the Acoustical Society of America, 101(2), 1050-1063. doi: 10.1121/1.418029 Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M., Herz, R. S., Lederman, S. J., & Merfeld, D. M. (2009). Sensation and Perception. Sunderland, Massachusetts U.S.A.: Sinauer Associates, Inc. Yost, W. A., Dye, R. H., Jr., & Sheft, S. (1996). A simulated "coctail party" with up to three sound sources. Attention, Perception, & Psychophysics, 58(7), 1026-1036. doi: 10.3758/BF03206830 Zhang, P. X., & Hartmann, W. M. (2010). On the ability of human listeners to distinguish between front and back. Hearing Research, 260(1-2), 30-46. doi: 10.1016/j.heares.2009.11.001 | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Psychologie » Allgemeine Psychologie und Arbeitspsychologie | |||||||
Dokument erstellt am: | 24.01.2013 | |||||||
Dateien geändert am: | 24.01.2013 | |||||||
Promotionsantrag am: | 08.10.2012 | |||||||
Datum der Promotion: | 07.12.2012 |