Dokument: Der Einfluss des Arylhydrocarbon-Rezeptors auf den circadianen Rhythmus

Titel:Der Einfluss des Arylhydrocarbon-Rezeptors auf den circadianen Rhythmus
Weiterer Titel:The influence of the aryl hydrocarbon receptor on the circadian rhythm
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=21779
URN (NBN):urn:nbn:de:hbz:061-20120704-094600-6
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor:Dr. rer. nat. Pfeiffer, Roland [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]5,04 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 03.07.2012 / geändert 03.07.2012
Beitragende:Prof. Dr. Fritsche, Ellen [Betreuer/Doktorvater]
Prof. Dr. Proksch Peter [Gutachter]
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 540 Chemie
Beschreibungen:Bedingt durch die Rotation der Erde werden circa 30% des menschlichen Genoms rhythmisch exprimiert. Auch verschiedene Funktionen der Haut weisen einen circadianen Rhythmus auf.
In dieser Arbeit sollte überprüft werden, ob die UVB-vermittelte Aktivierung des AhR durch das Photoprodukt FICZ den circadianen Rhythmus in Keratinozyten beeinflussen kann. Weiterhin sollte der Mechanismus dieser Wechselwirkung aufgeklärt werden und eventuelle Auswirkungen auf die Hauthomöostase überprüft werden.
Folgende Ergebnisse wurden erzielt:
1. Es konnten Versuchsbedingungen etabliert werden, mit der die Periodizität der Markergene Bmal1 und Per1 nachzuweisen war. Dazu wurden in HaCaT-Zellen die Expression der circadian regulierten Gene Bmal1, Per1, Per2, Cry2, DBP und Rev-Erbα mittels Serumschockmethode synchronisiert. Die Zyklusdauer betrug im Mittel 22,5 Stunden. Diese Befunde konnten mit Hilfe eines Bmal1-Promotor-Luciferase-Konstruktes bestätigt werden.
2. In den Wildtyp-HaCaT-, jedoch nicht in AhR-defizienten Zellen, konnte nach Zugabe von AhR-Agonisten eine Erhöhung der Bmal1-Expression nachgewiesen werden. Diese Erhöhung ist phasenabhängig auf die induktive Phase der Bmal1-Expression beschränkt. Unter Verwendung verschiedener mit der Aktivität des AhR in Verbindung gebrachter Inhibitoren erhärtete sich die Hypothese einer nicht-transkriptionellen Interaktion zwischen AhR und dem circadianen Gen Bmal1.
3. Die Ergebnisse der mRNS-Expressionsanalysen ließen sich nicht im Western-Blot verifizieren, sodass ein endgültiger Nachweis der Wechselwirkung des AhR mit der Bmal1-Expression noch aussteht.
4. Bei den Untersuchungen der physiologischen Relevanz des circadianen Rhythmus für die Stressantwort nach UVB-Bestrahlung, zeigte sich, dass UVB den circadianen Rhythmus unabhängig von der Aktivität des AhR beeinflusst.

Die Untersuchungen lassen eine Interaktion des AhR mit Bmal1 erkennen. Die zugrunde liegenden Mechanismen bleiben jedoch ungeklärt und bedürfen weiterer Untersuchungen.

Due to the earth rotation approximatly 30% of the human genome is expressed rhythmically. Also different skin functions show an circadian rhythm.
The aim of this work was to analyse, if the UVB mediated activation of the AhR via the photoproduct FICZ has an inpact on the circadian rhythm in keratinocytes. Furthermore the mechanism of such an interaction should be elucidated and possible effects on skin homoestasis should be proven.

Following results were optained:
1. Test conditions could be established to prove the periodicity of the marker genes Bmal1 and Per1. For that purpose the expression of the circadian regulated genes Bmal1, Per1, Per2, Cry2, DBP and Rev-Erbα in HaCaT keratinocytes was synchronized with a serumshock. The cycle time was 22,5 hours in the middle. These findings could be verified by using a Bmal1-promotor-luciferase-construct.
2. Treatment with an AhR agonist in wildtyp-HaCaT but not in AhR-deficient cells led to an increase of the Bmal1 expression. This increase was phase dependently limited to the inductive part of the Bmal1 expression. With the application of different inhibitors, associated with the AhR activity, the hypothesis of a non transcriptional interaction between the AhR and the circadian gene Bmal1 could be hardened.
3. The results of the mRNA expression experiments could not be verified by Western-Blot experiments. A final proof of the interaction of the AhR with the Bmal1 expression remains elusive.
4. The investigations of the physiological relevance of the circadian rhythm to the stress response afte UVB-exposure revealed that UVB-exposure affects the circadian rhythm in an AhR independen way.

The experiments reveal an interaction of the AhR with Bmal1. However the underlying mechanisms have to be part of further investigations.
Quelle:1. Abbott BD, Perdew G H, Buckalew A R, Birnbaum L S. 1994. Interactive regulation of Ah and glucocorticoid receptors in the synergistic induction of cleft palate by 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone. Toxicol Appl Pharmacol. 128 138-150. 2. Airola MV, Du J, Dawson J H, Crane B R. 2010. Heme binding to the Mammalian circadian clock protein period 2 is nonspecific. Biochemistry 49 4327-4338. 3. Akashi M, Hayasaka N, Yamazaki S, Node K. 2008. Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus. J Neurosci. 28 4619-4623. 4. Akashi M, Tsuchiya Y, Yoshino T, Nishida E. 2002. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol. Cell Biol 22 1693-1703. 5. Alapetite C, Wachter T, Sage E, Moustacchi E. 1996. Use of the alkaline comet assay to detect DNA repair deficiencies in human fibroblasts exposed to UVC, UVB, UVA and gamma-rays. Int. J Radiat. Biol 69 359-369. 6. Asher G, Schibler U. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13 125-137. 7. Bachmeier BE, Vene R, Iancu C M, Pfeffer U, Mayer B, Noonan D, Albini A, Jochum M, Nerlich A G. 2005. Transcriptional control of cell density dependent regulation of matrix metalloproteinase and TIMP expression in breast cancer cell lines. Thromb. Haemost. 93 761-769. 8. Balsalobre A, Brown S A, Marcacci L, Tronche F, Kellendonk C, Reichardt H M, Schutz G, Schibler U. 2000. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289 2344-2347. 9. Balsalobre A, Damiola F, Schibler U. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93 929-937. 10. Beischlag TV, Luis M J, Hollingshead B D, Perdew G H. 2008. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev. Eukaryot. Gene Expr. 18 207-250. 11. Beischlag TV, Perdew G H. 2005. ER alpha-AHR-ARNT protein-protein interactions mediate estradiol-dependent transrepression of dioxin-inducible gene transcription. J Biol Chem 280 21607-21611 . 12. Bell-Pedersen D, Cassone V M, Earnest D J, Golden S S, Hardin P E, Thomas T L, Zoran M J. 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6 544-556. 13. Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E. 2007. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J Biol Chem 282 13011-13021. 14. Birder LA, Perl E R. 1994. Cutaneous sensory receptors. J Clin. Neurophysiol. 11 534-552. 15. Bjarnason GA, Jordan R. 2002. Rhythms in human gastrointestinal mucosa and skin. Chronobiol. Int. 19 129-140. 16. Bjarnason GA, Jordan R C, Wood P A, Li Q, Lincoln D W, Sothern R B, Hrushesky W J, Ben-David Y. 2001. Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158 1793-1801. 17. Bordone L, Guarente L. 2005. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol 6 298-305. 18. Boukamp P, Petrussevska R T, Breitkreutz D, Hornung J, Markham A, Fusenig N E. 1988. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106 761-771. 19. Buhr ED, Yoo S H, Takahashi J S. 2010. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330 379-385. 20. Bunger MK, Wilsbacher L D, Moran S M, Clendenin C, Radcliffe L A, Hogenesch J B, Simon M C, Takahashi J S, Bradfield C A. 2000. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103 1009-1017. 21. Burbach KM, Poland A, Bradfield C A. 1992. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc. Natl. Acad. Sci. U. S. A 89 8185-8189. 22. Busino L, Bassermann F, Maiolica A, Lee C, Nolan P M, Godinho S I, Draetta G F, Pagano M. 2007. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316 900-904. 23. Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo J J, Sassone-Corsi P. 2005. Circadian clock control by SUMOylation of BMAL1. Science 309 1390-1394. 24. Carver LA, Hogenesch J B, Bradfield C A. 1994. Tissue specific expression of the rat Ah-receptor and ARNT mRNAs. Nucleic Acids Res 22 3038-3044. 25. Chang L, Liu Y Y, Zhu B, Li Y, Hua H, Wang Y H, Zhang J, Jiang Z, Wang Z R. 2009. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells. Braz. J Med. Biol Res 42 882-891. 26. Chen YH, Tukey R H. 1996. Protein kinase C modulates regulation of the CYP1A1 gene by the aryl hydrocarbon receptor. J Biol Chem 271 26261-26266. 27. Cho YC, Zheng W, Jefcoate C R. 2004. Disruption of cell-cell contact maximally but transiently activates AhR-mediated transcription in 10T1/2 fibroblasts. Toxicol Appl Pharmacol. 199 220-238. 28. Cleaver JE. 1968. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218 652-656. 29. Collins AR, Oscoz A A, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith C C, Stetina R. 2008. The comet assay: topical issues. Mutagenesis 23 143-151. 30. Coogan AN, Piggins H D. 2003. Circadian and photic regulation of phosphorylation of ERK1/2 and Elk-1 in the suprachiasmatic nuclei of the Syrian hamster. J Neurosci. 23 3085-3093. 31. Cowden KD, Simon M C. 2002. The bHLH/PAS factor MOP3 does not participate in hypoxia responses. Biochem Biophys. Res Commun. 290 1228-1236. 32. Crews ST, Thomas J B, Goodman C S. 1988. The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell 52 143-151. 33. Damiola F, Le M N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14 2950-2961. 34. Davarinos NA, Pollenz R S. 1999. Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytosplasmic proteasome following nuclear export. J Biol Chem 274 28708-28715. 35. Denis M, Cuthill S, Wikstrom A C, Poellinger L, Gustafsson J A. 1988. Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem Biophys. Res Commun. 155 801-807. 36. DiBartolomeis MJ, Moore R W, Peterson R E, Christian B J, Jefcoate C R. 1987. Altered regulation of adrenal steroidogenesis in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rats. Biochem Pharmacol. 36 59-67. 37. Dietrich C, Kaina B. 2010. The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis 31 1319-1328. 38. Dioum EM, Rutter J, Tuckerman J R, Gonzalez G, Gilles-Gonzalez M A, McKnight S L. 2002. NPAS2: a gas-responsive transcription factor. Science 298 2385-2387. 39. Doi M, Hirayama J, Sassone-Corsi P. 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125 497-508. 40. Dong B, Matsumura F. 2008. Roles of cytosolic phospholipase A2 and Src kinase in the early action of 2,3,7,8-tetrachlorodibenzo-p-dioxin through a nongenomic pathway in MCF10A cells. Mol. Pharmacol. 74 255-263. 41. Dziema H, Oatis B, Butcher G Q, Yates R, Hoyt K R, Obrietan K. 2003. The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. Eur. J Neurosci. 17 1617-1627. 42. Eide EJ, Kang H, Crapo S, Gallego M, Virshup D M. 2005. Casein kinase I in the mammalian circadian clock. Methods Enzymol. 393 408-418. 43. Eide EJ, Vielhaber E L, Hinz W A, Virshup D M. 2002. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J Biol Chem 277 17248-17254. 44. Enan E, Matsumura F. 1996. Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Biochem Pharmacol. 52 1599-1612. 45. Fernandez-Salguero PM, Hilbert D M, Rudikoff S, Ward J M, Gonzalez F J. 1996. Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol. 140 173-179. 46. Fischer TW, Slominski A, Zmijewski M A, Reiter R J, Paus R. 2008. Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp. Dermatol 17 713-730. 47. Forman BM, Chen J, Blumberg B, Kliewer S A, Henshaw R, Ong E S, Evans R M. 1994. Cross-talk among ROR alpha 1 and the Rev-erb family of orphan nuclear receptors. Mol. Endocrinol. 8 1253-1261. 48. Fritsch P. 2004. Dermatologie und Venerologie. Springer Verlag. 49. Fritsche E, Schafer C, Calles C, Bernsmann T, Bernshausen T, Wurm M, Hubenthal U, Cline J E, Hajimiragha H, Schroeder P, Klotz L O, Rannug A, Furst P, Hanenberg H, Abel J, Krutmann J. 2007. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc. Natl. Acad. Sci. U. S. A 104 8851-8856. 50. Gasparro FP, Mitchnick M, Nash J F. 1998. A review of sunscreen safety and efficacy. Photochem. Photobiol. 68 243-256. 51. Gauger MA, Sancar A. 2005. Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res 65 6828-6834. 52. Gehring W, Rosbash M. 2003. The coevolution of blue-light photoreception and circadian rhythms. J Mol. Evol. 57 Suppl 1 S286-S289. 53. Gekakis N, Staknis D, Nguyen H B, Davis F C, Wilsbacher L D, King D P, Takahashi J S, Weitz C J. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280 1564-1569. 54. Geyfman M, Andersen B. 2010. Clock genes, hair growth and aging. Aging (Albany. NY) 2 122-128. 55. Gielen JE, Goujon F M, Nebert D W. 1972. Genetic regulation of aryl hydrocarbon hydroxylase induction. II. Simple Mendelian expression in mouse tissues in vivo. J Biol Chem 247 1125-1137. 56. Gielen JE, Nebert D W. 1971. Aryl hydrocarbon hydroxylase induction in mammalian liver cell culture. I. Stimulation of enzyme activity in nonhepatic cells and in hepatic cells by phenobarbital, polycyclic hydrocarbons, and 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane. J Biol Chem 246 5189-5198. 106 Anhang 57. Gilchrest B, Krutman J. Photoaging of skin. In Skin Aging, Gilchrest B, Krutmann J (eds). Springer: New York. 58. Godinho SI, Maywood E S, Shaw L, Tucci V, Barnard A R, Busino L, Pagano M, Kendall R, Quwailid M M, Romero M R, O'neill J, Chesham J E, Brooker D, Lalanne Z, Hastings M H, Nolan P M. 2007. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316 897-900. 59. Goerz G, Merk H, Bolsen K, Tsambaos D, Berger H. 1983. Influence of chronic UV-light exposure on hepatic and cutaneous monooxygenases. Experientia. 60. Gradin K, Toftgard R, Poellinger L, Berghard A. 1999. Repression of dioxin signal transduction in fibroblasts. Identification Of a putative repressor associated with Arnt. J Biol Chem 274 13511-13518. 61. Gradin K, Wilhelmsson A, Poellinger L, Berghard A. 1993. Nonresponsiveness of normal human fibroblasts to dioxin correlates with the presence of a constitutive xenobiotic response element-binding factor. J Biol Chem 268 4061-4068. 62. Griffin EA, Jr., Staknis D, Weitz C J. 1999. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286 768-771. 63. Gu YZ, Hogenesch J B, Bradfield C A. 2000. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol 40 519-561. 64. Guillaumond F, Dardente H, Giguere V, Cermakian N. 2005. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20 391-403. 65. Haarmann-Stemmann T, Abel J. 2006. The arylhydrocarbon receptor repressor (AhRR): structure, expression, and function. Biol Chem 387 1195-1199. 66. Harada Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y. 2005. Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J Biol Chem 280 31714-31721. 67. Hardin PE. 2004. Transcription regulation within the circadian clock: the E-box and beyond. J Biol Rhythms 19 348-360. 68. Hatanaka F, Matsubara C, Myung J, Yoritaka T, Kamimura N, Tsutsumi S, Kanai A, Suzuki Y, Sassone-Corsi P, Aburatani H, Sugano S, Takumi T. 2010. Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol. Cell Biol 30 5636-5648. 69. Hennig S, Strauss H M, Vanselow K, Yildiz O, Schulze S, Arens J, Kramer A, Wolf E. 2009. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol 7 e94. 70. Hirayama J, Miyamura N, Uchida Y, Asaoka Y, Honda R, Sawanobori K, Todo T, Yamamoto T, Sassone-Corsi P, Nishina H. 2009. Common light signaling pathways controlling DNA repair and circadian clock entrainment in zebrafish. Cell Cycle 8 2794-2801. 71. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450 1086-1090. 72. Hirota T, Lee J W, Lewis W G, Zhang E E, Breton G, Liu X, Garcia M, Peters E C, Etchegaray J P, Traver D, Schultz P G, Kay S A. 2010. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIalpha as a clock regulatory kinase. PLoS Biol 8 e1000559. 73. Hoffman AE, Zheng T, Ba Y, Zhu Y. 2008. The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response. Mol. Cancer Res 6 1461-1468. 74. Hoffman EC, Reyes H, Chu F F, Sander F, Conley L H, Brooks B A, Hankinson O. 1991. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252 954-958. 75. Hogenesch JB, Chan W K, Jackiw V H, Brown R C, Gu Y Z, Pray-Grant M, Perdew G H, Bradfield C A. 1997. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272 8581-8593. 76. Hogenesch JB, Gu Y Z, Jain S, Bradfield C A. 1998. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. U. S. A 95 5474-5479. 77. Huang G, Chen S, Li S, Cha J, Long C, Li L, He Q, Liu Y. 2007. Protein kinase A and casein kinases mediate sequential phosphorylation events in the circadian negative feedback loop. Genes Dev. 21 3283-3295. 78. Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T. 2003. UV-induced skin damage. Toxicology 189 21-39. 79. Iitaka C, Miyazaki K, Akaike T, Ishida N. 2005. A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem 280 29397-29402. 80. Ikuta T, Kobayashi Y, Kawajiri K. 2004. Cell density regulates intracellular localization of aryl hydrocarbon receptor. J Biol Chem 279 19209-19216. 81. Izumo M, Sato T R, Straume M, Johnson C H. 2006. Quantitative analyses of circadian gene expression in mammalian cell cultures. PLoS Comput Biol 2 e136. 82. Jiang BH, Rue E, Wang G L, Roe R, Semenza G L. 1996. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271 17771-17778. 83. Jones MK, Weisenburger W P, Sipes I G, Russell D H. 1987. Circadian alterations in prolactin, corticosterone, and thyroid hormone levels and down-regulation of prolactin receptor activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 87 337-350. 84. Kang TH, Reardon J T, Kemp M, Sancar A. 2009. Circadian oscillation of nucleotide excision repair in mammalian brain. Proc. Natl. Acad. Sci. U. S. A 106 2864-2867. 85. Kang TH, Sancar A. 2009. Circadian regulation of DNA excision repair: implications for chrono-chemotherapy 14. Cell Cycle 8 1665-1667. 86. Kaplan DH. 2010a. In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 31 446-451. 87. Kaplan DH. 2010b. Langerhans cells: not your average dendritic cell. Trends Immunol. 31 437. 88. Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, Matsushima Y, Mimura J, Pettersson S, Pollenz R S, Sakaki T, Hirokawa T, Akiyama T, Kurosumi M, Poellinger L, Kato S, Fujii-Kuriyama Y. 2009. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc. Natl. Acad. Sci. U. S. A 106 13481-13486. 89. Kawara S, Mydlarski R, Mamelak A J, Freed I, Wang B, Watanabe H, Shivji G, Tavadia S K, Suzuki H, Bjarnason G A, Jordan R C, Sauder D N. 2002. Low-dose ultraviolet B rays alter the mRNA expression of the circadian clock genes in cultured human keratinocytes. J Invest Dermatol 119 1220-1223. 90. Kazlauskas A, Poellinger L, Pongratz I. 1999. Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (Aryl hydrocarbon) receptor. J Biol Chem 274 13519-13524. 91. Kazlauskas A, Poellinger L, Pongratz I. 2000. The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor. J Biol Chem 275 41317-41324. 92. Khapre RV, Samsa W E, Kondratov R V. 2010. Circadian regulation of cell cycle: Molecular connections between aging and the circadian clock. Ann. Med. 42 404-415. 93. Kirichevska T. Die Rolle des Arylhydrokarbon Rezeptors in der UV-B-induzierten Toxizität: Reparatur und Signaltransduktion. In Heinrich Heine Universität Düsseldorf. 94. Kitanishi K, Igarashi J, Hayasaka K, Hikage N, Saiful I, Yamauchi S, Uchida T, Ishimori K, Shimizu T. 2008. Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochemistry 47 6157-6168. 95. Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T. 2000. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells 5 725-738. 96. Kondratov RV. 2007. A role of the circadian system and circadian proteins in aging. Ageing Res Rev. 6 12-27. 97. Kondratov RV, Kondratova A A, Gorbacheva V Y, Vykhovanets O V, Antoch M P. 2006. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20 1868-1873. 98. Kondratov RV, Vykhovanets O, Kondratova A A, Antoch M P. 2009. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging (Albany. NY) 1 979-987. 99. Kwon I, Lee J, Chang S H, Jung N C, Lee B J, Son G H, Kim K, Lee K H. 2006. BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell Biol 26 7318-7330. 100. Lee HG, Yang J H. 2010. PKC-delta mediates TCDD-induced apoptosis of chondrocyte in ROS-dependent manner. Chemosphere 81 1039-1044. 101. Lee J, Lee Y, Lee M J, Park E, Kang S H, Chung C H, Lee K H, Kim K. 2008. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol. Cell Biol 28 6056-6065. 102. Lehman TA, Modali R, Boukamp P, Stanek J, Bennett W P, Welsh J A, Metcalf R A, Stampfer M R, Fusenig N, Rogan E M, . 1993. p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14 833-839. 103. Lewy AJ. 2007. Melatonin and human chronobiology. Cold Spring Harb. Symp. Quant. Biol 72 623-636. 104. Lin KK, Kumar V, Geyfman M, Chudova D, Ihler A T, Smyth P, Paus R, Takahashi J S, Andersen B. 2009. Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet. 5 e1000573. 105. Linden J, Pohjanvirta R, Rahko T, Tuomisto J. 1991. TCDD decreases rapidly and persistently serum melatonin concentration without morphologically affecting the pineal gland in TCDD-resistant Han/Wistar rats. Pharmacol. Toxicol 69 427-432. 106. Lindros KO, Oinonen T, Kettunen E, Sippel H, Muro-Lupori C, Koivusalo M. 1998. Aryl hydrocarbon receptor-associated genes in rat liver: regional coinduction of aldehyde dehydrogenase 3 and glutathione transferase Ya. Biochem Pharmacol. 55 413-421. 107. Long WP, Pray-Grant M, Tsai J C, Perdew G H. 1998. Protein kinase C activity is required for aryl hydrocarbon receptor pathway-mediated signal transduction. Mol. Pharmacol. 53 691-700. 108. LOWRY OH, ROSEBROUGH N J, FARR A L, RANDALL R J. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193 265-275. 109. Lu YF, Santostefano M, Cunningham B D, Threadgill M D, Safe S. 1995. Identification of 3'-methoxy-4'-nitroflavone as a pure aryl hydrocarbon (Ah) receptor antagonist and evidence for more than one form of the nuclear Ah receptor in MCF-7 human breast cancer cells. Arch Biochem Biophys. 316 470-477. 110. Machemer DE, Tukey R H. 2005. The role of protein kinase C in regulation of TCDD-mediated CYP1A1 gene expression. Toxicol Sci. 87 27-37. 111. Maier B, Wendt S, Vanselow J T, Wallach T, Reischl S, Oehmke S, Schlosser A, Kramer A. 2009. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 23 708-718. 112. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. 2003. Control mechanism of the circadian clock for timing of cell division in vivo. Science 302 255-259. 113. Matthews J, Wihlen B, Thomsen J, Gustafsson J A. 2005. Aryl hydrocarbon receptor-mediated transcription: ligand-dependent recruitment of estrogen receptor alpha to 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol. Cell Biol 25 5317-5328. 114. McIntosh BE, Hogenesch J B, Bradfield C A. 2010. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol 72 625-645. 115. Mitchell DL. 1988. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem. Photobiol. 48 51-57. 116. Mitchell DL, Haipek C A, Clarkson J M. 1985. (6-4)Photoproducts are removed from the DNA of UV-irradiated mammalian cells more efficiently than cyclobutane pyrimidine dimers. Mutat. Res 143 109-112. 117. Motzkus D, Loumi S, Cadenas C, Vinson C, Forssmann W G, Maronde E. 2007. Activation of human period-1 by PKA or CLOCK/BMAL1 is conferred by separate signal transduction pathways. Chronobiol. Int. 24 783-792. 118. Motzkus D, Maronde E, Grunenberg U, Lee C C, Forssmann W, Albrecht U. 2000. The human PER1 gene is transcriptionally regulated by multiple signaling pathways. FEBS Lett. 486 315-319. 119. Mukai M, Lin T M, Peterson R E, Cooke P S, Tischkau S A. 2008. Behavioral rhythmicity of mice lacking AhR and attenuation of light-induced phase shift by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Rhythms 23 200-210. 120. Mukai M, Tischkau S A. 2007. Effects of tryptophan photoproducts in the circadian timing system: searching for a physiological role for aryl hydrocarbon receptor. Toxicol Sci. 95 172-181. 121. Mullenders J, Fabius A W, Madiredjo M, Bernards R, Beijersbergen R L. 2009. A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One. 4 e4798. 122. Murphy KA, Villano C M, Dorn R, White L A. 2004. Interaction between the aryl hydrocarbon receptor and retinoic acid pathways increases matrix metalloproteinase-1 expression in keratinocytes. J Biol Chem 279 25284-25293. 123. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente L P, Sassone-Corsi P. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134 329-340. 124. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324 654-657. 125. Neuberger M, Rappe C, Bergek S, Cai H, Hansson M, Jager R, Kundi M, Lim C K, Wingfors H, Smith A G. 1999. Persistent health effects of dioxin contamination in herbicide production. Environ. Res 81 206-214. 126. Nguyen LP, Bradfield C A. 2008. The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21 102-116. 127. Oberg M, Bergander L, Hakansson H, Rannug U, Rannug A. 2005. Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol Sci. 85 935-943. 128. Oesch-Bartlomowicz B, Oesch F. 2009. Role of cAMP in mediating AHR signaling. Biochem Pharmacol. 77 627-641. 129. Ogi T, Mimura J, Hikida M, Fujimoto H, Fujii-Kuriyama Y, Ohmori H. 2001. Expression of human and mouse genes encoding polkappa: testis-specific developmental regulation and AhR-dependent inducible transcription. Genes Cells 6 943-953. 130. Ohdo S, Koyanagi S, Matsunaga N. 2011. Chronopharmacology. Nippon Yakurigaku Zasshi 137 115-119. 131. Ohtake F, Baba A, Fujii-Kuriyama Y, Kato S. 2008. Intrinsic AhR function underlies cross-talk of dioxins with sex hormone signalings. Biochem Biophys. Res Commun. 370 541-546. 132. Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H, Takahashi S, Kouzmenko A, Nohara K, Chiba T, Fujii-Kuriyama Y, Kato S. 2007. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase 4. Nature 446 562-566. 133. Ohtake F, Fujii-Kuriyama Y, Kato S. 2009. AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol. 77 474-484. 134. Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, Yanagisawa J, Fujii-Kuriyama Y, Kato S. 2003. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423 545-550. 135. Pizzio GA, Hainich E C, Ferreyra G A, Coso O A, Golombek D A. 2003. Circadian and photic regulation of ERK, JNK and p38 in the hamster SCN. Neuroreport 14 1417-1419. 136. Pohjanvirta R, Tuomisto J, Linden J, Laitinen J. 1989. TCDD reduces serum melatonin levels in Long-Evans rats. Pharmacol. Toxicol 65 239-240. 137. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110 251-260. 138. Provencio I, Rodriguez I R, Jiang G, Hayes W P, Moreira E F, Rollag M D. 2000. A novel human opsin in the inner retina. J Neurosci. 20 600-605. 139. Qu X, Metz R P, Porter W W, Cassone V M, Earnest D J. 2007. Disruption of clock gene expression alters responses of the aryl hydrocarbon receptor signaling pathway in the mouse mammary gland. Mol. Pharmacol. 72 1349-1358. 140. Qu X, Metz R P, Porter W W, Cassone V M, Earnest D J. 2009. Disruption of period gene expression alters the inductive effects of dioxin on the AhR signaling pathway in the mouse liver. Toxicol Appl Pharmacol. 234 370-377. 141. Qu X, Metz R P, Porter W W, Neuendorff N, Earnest B J, Earnest D J. 2010. The clock genes period 1 and period 2 mediate diurnal rhythms in dioxin-induced Cyp1A1 expression in the mouse mammary gland and liver. Toxicol Lett. 196 28-32. 142. Quan T, Qin Z, Xia W, Shao Y, Voorhees J J, Fisher G J. 2009. Matrix-degrading metalloproteinases in photoaging. J Investig. Dermatol Symp. Proc. 14 20-24. 143. Quattrochi LC, Tukey R H. 1989. The human cytochrome Cyp1A2 gene contains regulatory elements responsive to 3-methylcholanthrene. Mol. Pharmacol. 36 66-71. 144. Quattrochi LC, Vu T, Tukey R H. 1994. The human CYP1A2 gene and induction by 3-methylcholanthrene. A region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem 269 6949-6954. 145. Raghuram S, Stayrook K R, Huang P, Rogers P M, Nosie A K, McClure D B, Burris L L, Khorasanizadeh S, Burris T P, Rastinejad F. 2007. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat. Struct. Mol. Biol 14 1207-1213. 146. Ralph MR, Foster R G, Davis F C, Menaker M. 1990. Transplanted suprachiasmatic nucleus determines circadian period. Science 247 975-978. 147. Ramakrishnan SN, Muscat G E. 2006. The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation? Nucl. Recept. Signal. 4 e009. 148. Rannug A, Rannug U, Rosenkranz H S, Winqvist L, Westerholm R, Agurell E, Grafstrom A K. 1987. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. J Biol Chem 262 15422-15427. 149. Reddy P, Zehring W A, Wheeler D A, Pirrotta V, Hadfield C, Hall J C, Rosbash M. 1984. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38 701-710. 150. Reick M, Garcia J A, Dudley C, McKnight S L. 2001. NPAS2: an analog of clock operative in the mammalian forebrain. Science 293 506-509. 151. Richardson VM, Santostefano M J, Birnbaum L S. 1998. Daily cycle of bHLH-PAS proteins, Ah receptor and Arnt, in multiple tissues of female Sprague-Dawley rats. Biochem Biophys. Res Commun. 252 225-231. 152. Roberts BJ, Whitelaw M L. 1999. Degradation of the basic helix-loop-helix/Per-ARNT-Sim homology domain dioxin receptor via the ubiquitin/proteasome pathway. J Biol Chem 274 36351-36356. 153. Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P. 2010. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One. 5 e8561. 154. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory USA.. 155. Sanada K, Harada Y, Sakai M, Todo T, Fukada Y. 2004. Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase. Genes Cells 9 697-708. 156. Sanada K, Okano T, Fukada Y. 2002. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J Biol Chem 277 267-271. 157. Sancar A. 2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev. 103 2203-2237. 158. Sancar A. 2004. Photolyase and cryptochrome blue-light photoreceptors. Adv. Protein Chem 69 73-100. 159. Sancar A, Lindsey-Boltz L A, Unsal-Kacmaz K, Linn S. 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem 73 39-85. 160. Sancar A, Thompson C, Thresher R J, Araujo F, Mo J, Ozgur S, Vagas E, Dawut L, Selby C P. 2000. Photolyase/cryptochrome family blue-light photoreceptors use light energy to repair DNA or set the circadian clock. Cold Spring Harb. Symp. Quant. Biol 65 157-171. 161. Schwarz A, Stander S, Berneburg M, Bohm M, Kulms D, van S H, Grosse-Heitmeyer K, Krutmann J, Schwarz T. 2002. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nat. Cell Biol 4 26-31. 162. Selby CP, Sancar A. 2006. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. U. S. A 103 17696-17700. 163. Shi S, Hida A, McGuinness O P, Wasserman D H, Yamazaki S, Johnson C H. 2010. Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr. Biol 20 316-321. 164. Shim HS, Kim H, Lee J, Son G H, Cho S, Oh T H, Kang S H, Seen D S, Lee K H, Kim K. 2007. Rapid activation of CLOCK by Ca2+-dependent protein kinase C mediates resetting of the mammalian circadian clock. EMBO Rep. 8 366-371. 165. Siepka SM, Yoo S H, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi J S. 2007. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129 1011-1023. 166. Singh NP, Danner D B, Tice R R, Brant L, Schneider E L. 1990. DNA damage and repair with age in individual human lymphocytes. Mutat. Res 237 123-130. 167. Singh NP, McCoy M T, Tice R R, Schneider E L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res 175 184-191. 168. Singh NP, Tice R R, Stephens R E, Schneider E L. 1991. A microgel electrophoresis technique for the direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope slides. Mutat. Res 252 289-296. 169. Slominski A, Fischer T W, Zmijewski M A, Wortsman J, Semak I, Zbytek B, Slominski R M, Tobin D J. 2005. On the role of melatonin in skin physiology and pathology. Endocrine 27 137-148. 170. Southern EM. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol. Biol 98 503-517. 171. Spengler ML, Kuropatwinski K K, Schumer M, Antoch M P. 2009. A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle 8 4138-4146. 172. Sporl F, Schellenberg K, Blatt T, Wenck H, Wittern K P, Schrader A, Kramer A. 2011. A circadian clock in HaCaT keratinocytes. J Invest Dermatol 131 338-348. 173. Sutter CH, Yin H, Li Y, Mammen J S, Bodreddigari S, Stevens G, Cole J A, Sutter T R. 2009. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes. Proc. Natl. Acad. Sci. U. S. A 106 4266-4271. 174. Swedenborg E, Pongratz I. 2010. AhR and ARNT modulate ER signaling. Toxicology 268 132-138. 175. Takano A, Isojima Y, Nagai K. 2004. Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J Biol Chem 279 32578-32585. 176. Tamai TK, Young L C, Whitmore D. 2007. Light signaling to the zebrafish circadian clock by Cryptochrome 1a. Proc. Natl. Acad. Sci. U. S. A 104 14712-14717. 177. Tamaru T, Hirayama J, Isojima Y, Nagai K, Norioka S, Takamatsu K, Sassone-Corsi P. 2009. CK2alpha phosphorylates BMAL1 to regulate the mammalian clock. Nat. Struct. Mol. Biol 16 446-448. 178. Tischkau SA, Jaeger C D, Krager S L. 2011. Circadian clock disruption in the mouse ovary in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Lett. 201 116-122. 179. Tischkau SA, Mitchell J W, Pace L A, Barnes J W, Barnes J A, Gillette M U. 2004. Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock. Neuron 43 539-549. 180. Tischkau SA, Mitchell J W, Tyan S H, Buchanan G F, Gillette M U. 2003. Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem 278 718-723. 181. Tolleson WH. 2005. Human melanocyte biology, toxicology, and pathology. J Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 23 105-161. 182. Tsuchiya Y, Akashi M, Matsuda M, Goto K, Miyata Y, Node K, Nishida E. 2009. Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms. Sci. Signal. 2 ra26. 183. Tzung TY, Runger T M. 1998. Assessment of DNA damage induced by broadband and narrowband UVB in cultured lymphoblasts and keratinocytes using the comet assay. Photochem. Photobiol. 67 647-650. 184. Vielhaber E, Eide E, Rivers A, Gao Z H, Virshup D M. 2000. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol. Cell Biol 20 4888-4899. 185. Viluksela M, Raasmaja A, Lebofsky M, Stahl B U, Rozman K K. 2004. Tissue-specific effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the activity of 5'-deiodinases I and II in rats. Toxicol Lett. 147 133-142. 186. Vitaterna MH, Selby C P, Todo T, Niwa H, Thompson C, Fruechte E M, Hitomi K, Thresher R J, Ishikawa T, Miyazaki J, Takahashi J S, Sancar A. 1999. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. U. S. A 96 12114-12119. 187. Wang GL, Jiang B H, Rue E A, Semenza G L. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A 92 5510-5514. 188. Wei YD, Helleberg H, Rannug U, Rannug A. 1998. Rapid and transient induction of CYP1A1 gene expression in human cells by the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. Chem Biol Interact. 110 39-55. 189. Wei YD, Rannug U, Rannug A. 1999. UV-induced CYP1A1 gene expression in human cells is mediated by tryptophan. Chem Biol Interact. 118 127-140. 190. Welsh DK, Takahashi J S, Kay S A. 2010. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol 72 551-577. 191. Wilhelmsson A, Cuthill S, Denis M, Wikstrom A C, Gustafsson J A, Poellinger L. 1990. The specific DNA binding activity of the dioxin receptor is modulated by the 90 kd heat shock protein. EMBO J 9 69-76. 192. Xu CX, Krager S L, Liao D F, Tischkau S A. 2010. Disruption of CLOCK-BMAL1 transcriptional activity is responsible for aryl hydrocarbon receptor-mediated regulation of Period1 gene. Toxicol Sci. 115 98-108. 193. Yagita K, Okamura H. 2000. Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett. 465 79-82. 194. Yagita K, Tamanini F, van der Horst G T, Okamura H. 2001. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292 278-281. 195. Yi C, Mu L, de l L, I, Sochirca O, Arisio R, Yu H, Hoffman A E, Zhu Y, Katsaro D. 2010. The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer. Breast Cancer Res Treat. 120 663-669. 196. Yi CH, Zheng T, Leaderer D, Hoffman A, Zhu Y. 2009. Cancer-related transcriptional targets of the circadian gene NPAS2 identified by genome-wide ChIP-on-chip analysis. Cancer Lett. 284 149-156. 197. Yin L, Wang J, Klein P S, Lazar M A. 2006. Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311 1002-1005. 198. Yosipovitch G, Sackett-Lundeen L, Goon A, Yiong H C, Leok G C, Haus E. 2004. Circadian and ultradian (12 h) variations of skin blood flow and barrier function in non-irritated and irritated skin-effect of topical corticosteroids. J Invest Dermatol 122 824-829. 199. Yosipovitch G, Xiong G L, Haus E, Sackett-Lundeen L, Ashkenazi I, Maibach H I. 1998. Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J Invest Dermatol 110 20-23. 200. Yu W, Nomura M, Ikeda M. 2002. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem Biophys. Res Commun. 290 933-941. 201. Yueh MF, Huang Y H, Hiller A, Chen S, Nguyen N, Tukey R H. 2003. Involvement of the xenobiotic response element (XRE) in Ah receptor-mediated induction of human UDP-glucuronosyltransferase 1A1. J Biol Chem 278 15001-15006. 202. Zanello SB, Jackson D M, Holick M F. 2000. Expression of the circadian clock genes clock and period1 in human skin. J Invest Dermatol 115 757-760. 203. Zhang J, Zhu B, Liu Y, Jiang Z, Wang Y, Li Y, Hua H, Wang Z. 2008. High expression of circadian gene mPer2 diminishes radiosensitivity of tumor cells. Cancer Biother. Radiopharm. 23 561-570. 204. Zhang L, Savas U, Alexander D L, Jefcoate C R. 1998. Characterization of the mouse Cyp1B1 gene. Identification of an enhancer region that directs aryl hydrocarbon receptor-mediated constitutive and induced expression. J Biol Chem 273 5174-5183. 205. Zhu Y, Leaderer D, Guss C, Brown H N, Zhang Y, Boyle P, Stevens R G, Hoffman A, Qin Q, Han X, Zheng T. 2007. Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin's lymphoma. Int. J Cancer 120 432-435. 206. Zhu Y, Stevens R G, Leaderer D, Hoffman A, Holford T, Zhang Y, Brown H N, Zheng T. 2008. Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res Treat. 107 421-425. 207. Zhulin IB, Taylor B L, Dixon R. 1997. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci. 22 331-333.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:01.04.2007-21.06.2011
Fachbereich / Einrichtung:Sonstige Einrichtungen/Externe » An-Institute » Institut für Umweltmedizinische Forschung (IUF) an der HHU
Dokument erstellt am:04.07.2012
Dateien geändert am:04.07.2012
Promotionsantrag am:21.06.2011
Datum der Promotion:08.07.2011
english
Benutzer
Status: Gast
Aktionen