Dokument: Aberrant expression of microRNA in gliomas: Molecular mechanisms, functional consequences and clinical significance

Titel:Aberrant expression of microRNA in gliomas: Molecular mechanisms, functional consequences and clinical significance
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=21736
URN (NBN):urn:nbn:de:hbz:061-20120628-081144-9
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor:Dr. Liesenberg, Franziska [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]13,79 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 26.06.2012 / geändert 26.06.2012
Beitragende:Prof. Dr. Guido Reifenberger [Gutachter]
Prof. Dr. Willbold, Dieter [Gutachter]
Stichwörter:microRNA
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:Zusammenfassung
MicroRNAs (miRNAs) sind kleine, nicht-kodierende RNAs, welche die Genexpression auf post-transkriptionaler Ebene regulieren. Die Genregulation erfolgt dabei durch die Bindung der miRNA an die 3’-untranslatierte Region (3’-UTR) der mRNA von Zielgenen, welche je nach Komplementarität der Bindesequenz und der beteiligten Proteine entweder an der Translation gehemmt oder vorzeitig abgebaut werden. Aktuelle Studien belegen die kritische Rolle von miRNAs für die Regulierung fundamentaler zellulärer Mechanismen wie Entwicklung, Zellwachstum, Proliferation, Differenzierung von Zell - oder Gewebetypen, Migration von Zellpopulationen und Stoffwechselprozessen. Dysfunktionen von miRNAs können verschiedene Krankheiten zur Folge haben, darunter Tumoren unterschiedlichen Ursprungs einschließlich der glialen Hirntumoren. Hinsichtlich der Tumorigenese können miRNAs entweder eine tumorhemmende (tumorsuppressive) oder tumorfördernde (onkogene) Wirkung zeigen. In der vorliegenden Arbeit wurde die Expression von 365 miRNAs mittels quantitativer PCR-Analysen in vier Glioblastomzelllinien (A172, U138MG, T98G, TP365MG) nach Behandlung der Zellen mit dem DNA-demethylierenden Agens 5-Aza-2'- Deoxycytidin (5-Aza) und dem Histondeacetylase-Inhibitor Trichostatin A (TSA) im Vergleich zu unbehandelten Zellen untersucht. Insgesamt wiesen 50 der untersuchten miRNAs ein signifikant erhöhtes Expressionsniveau in mindestens zwei von vier behandelten Zelllinien im Vergleich zu den zugehörigen nicht behandelten Zelllinien auf. Zwei dieser miRNAs, miR-132 und miR-126, zeigten ein signifikant reduziertes Expressionsniveau in astrozytären Tumoren im Vergleich zu nicht-neoplastischem Hirngewebe. Deshalb wurden diese beiden miRNAs für weitere Analysen ausgewählt und zunächst die verstärkte Expression von miR-132 und miR-126 in unabhängigen Validierungsgruppen 5-Aza/TSA-behandelter Glioblastomzellen bestätigt. Zur Identifizierung epigenetischer Veränderungen, die zu einer verminderten Expression dieser miRNAs in astrozytären Tumoren führen könnten, wurden die 5`genomischen Regionen der beiden miRNAs auf eine aberrante DNA-Methylierung sowie Veränderungen der Histonacetylierung hin untersucht. Mittels Chromatin-Immunopräzipitation (ChIP) und Natriumbisulfit-Sequenzierung konnte nachgewiesen werden, dass sowohl eine veränderte Acetylierung der Histone H3 und H4 sowie eine aberrante DNA Methylierung in der 5`genomischen Region beider untersuchten microRNAs zu einer transkriptionellen Herunterregulation von miR-132 und miR-126 in Glioblastomzellen führte. Funktionelle Analysen der beiden miRNAs in vitro erbrachten einen miRNA-spezifischen Einfluss auf die Apoptoserate von transient mit entsprechenden Vorläufer-miRNAs transfizierten A172 und T98G Gliomzelllen. Für miR-132 wurden JARID1A und SIRT1 als direkt durch miR-132 regulierte Zielgene identifiziert und mittels 3´UTR Luciferase-Reportergen-Assays validiert.
Darüber hinaus wurden Hypoxie-bedingte Veränderungen im Expressionsniveau von 365 miRNAs in vier verschiedenen Glioblastom-Stammzelllinien untersucht. Eine signifikant verstärkte Expression unter Hypoxie wurde für acht miRNAs nachgewiesen. Unabhängige Validierungsexperimente bestätigten einen Hypoxie-induzierten Expressionsanstieg von miR-210, welcher durch HIF-1α vermittelt wurde. GPD1L und COX10 wurden als unmittelbare Zielgene von miR-210 in Gliomzellen identifiziert und mit Hilfe von 3`UTR Luciferase-Reportergen-Assays bestätigt.
Zusammenfassend unterstützen die eigenen Ergebnisse eine wichtige Rolle von miRNAs in der Pathogenese von Gliomen. Es wurde gezeigt, dass eine aberrante DNA-Methylierung und Histonmodifikationen zu einer verminderten Expression von miR-132 und miR-126 in Gliomen führen. Zusätzlich konnten mit SIRT1 und JARID1A zwei interessante Zielgene von miR-132 in Gliomen charakterisiert werden. Des Weiteren wurde eine über HIF-1a vermittelte Hochregulation von miR-210 in Gliomen gefunden, die wiederum zu einer verminderten Expression der miR-210 Zielgene GPD1L und COX10 führt. Die immer offensichtlicher werdende Rolle von miRNAs in der Entstehung und Progression von Gliomen rechtfertigt weiterführende Untersuchungen, um ein besseres molekulares Verständnis, eine genauere Diagnostik und neue Therapieansätze für diese bislang unheilbaren Tumoren zu finden.

Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that are effective post-transcriptional regulators of gene expression. Binding of miRNAs to the 3`-untranslated region (3`-UTR) of messenger RNAs (mRNAs) results in translational inhibition or enhanced mRNA cleavage. MiRNAs play an important role in the regulation of fundamental cellular mechanisms, such as cell proliferation, differentiation, apoptosis, cell migration and metabolism. They are also involved in the pathogenesis of human diseases including cancer. In this study, the expression of 365 distinct human miRNAs was determined by stem-loop real-time reverse transcriptase PCR in four established glioblastoma cell lines (A172, U138MG, T98G, TP365MG) treated with the demethylating agent 5-aza-2`-deoxycytidine (5-Aza) and the histone deacetylase inhibitor trichostatin A (TSA), and compared to the miRNA expression profiles in the respective untreated control cell lines. Thereby, 50 miRNAs were identified that demonstrated an increased expression (fold change ≥ 2) in at least two of the four 5-Aza/TSA-treated glioma cell lines compared to the non-treated control cells. Two of these miRNAs, miR-132 and miR-126, were significantly down-regulated in astrocytic tumors relative to non-neoplastic brain tumors and were therefore selected for independent validation and further molecular characterization using sequencing of sodium bisulfite-modified DNA and chromatin immunoprecipitation analysis of the 5´-genomic regions of each miRNA. These studies revealed that modified acetylation of the core histones H3 and H4 might cause reduced expression of miR-132 and miR-126 in gliomas either alone or in conjunction with 5`CpG island hypermethylation of the miRNAs. Overexpression of miR-132 and miR-126 precursors in glioma cells increased apoptotic activity. Gene expression profiling was carried out to identify miR-132 and miR-126 regulated targets. Using Western-blot analysis and 3’-UTR luciferase assays, SIRT1 and JARID1A were identified as direct targets of miR-132.
The second part of this doctoral thesis addressed the identification of miRNAs induced by hypoxia that may have relevance in glioma pathogenesis. A total of eight miRNAs were found to be significantly up-regulated by hypoxia in a study of four glioblastoma stem cell lines grown under hypoxic versus normoxic conditions. Independent validation experiments revealed that hypoxia induced expression of miR-210 in glioblastoma cell lines via HIF-1α. MiR-210 down-regulated the expression of GPD1L and COX10 by directly binding to their 3`UTRs.
Taken together, the results summarized in this thesis provide new insights into the involvement of miRNAs in the pathogenesis of human gliomas. The epigenetic alterations leading to transcriptional downregulation of miR-132 and miR-126 in gliomas were clarified and SIRT1 was validated as a direct target of these miRNAs Moreover, hypoxia-mediated regulation of miR-210 via HIF-1α was characterized in glioma cells, and GPD1L and COX10 were identified as immediate targets of miR-210.
Quelle:References
(2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061-1068.

Abdollahi A (2007). LOT1 (ZAC1/PLAGL1) and its family members: mechanisms and functions. Journal of cellular physiology 210: 16-25.

Abounader R (2009). Interactions between PTEN and receptor tyrosine kinase pathways and their implications for glioma therapy. Expert Rev Anticancer Ther 9: 235-245.

Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L et al (2009). Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69: 4443-4453.

Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A et al (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33: 2697-2706.

Alvarez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C et al (2011). miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet 20: 731-751.

Audrito V, Vaisitti T, Rossi D, Gottardi D, D'Arena G, Laurenti L et al (2011). Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res 71: 4473-4483.

Baeza N, Weller M, Yonekawa Y, Kleihues P, Ohgaki H (2003). PTEN methylation and expression in glioblastomas. Acta Neuropathol 106: 479-485.

Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008). Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116: 597-602.

Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J et al (2009). Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 125: 2737-2743.

Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.

Bartel DP (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.

Baskerville S, Bartel DP (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11: 241-247.

Baxter EW, Milner J (2010). p53 Regulates LIF expression in human medulloblastoma cells. J Neurooncol 97: 373-382.

Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20: 1885-1898.

Bello MJ, Rey JA (2006). The p53/Mdm2/p14ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer Genet Cytogenet 164: 172-173.

Bertout JA, Patel SA, Simon MC (2008). The impact of O2 availability on human cancer. Nat Rev Cancer 8: 967-975.

Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, Foreman NK (2011). Survey of MicroRNA expression in pediatric brain tumors. Pediatric blood & cancer 56: 211-216.

Bohnsack MT, Czaplinski K, Gorlich D (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10: 185-191.

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 248-254.

Breving K, Esquela-Kerscher A (2010). The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 42: 1316-1329.

Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M et al (2007). The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67: 1419-1423.

Burnette WN (1981). "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112: 195-203.

Cai X, Hagedorn CH, Cullen BR (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10: 1957-1966.

Cai Y, Yu X, Hu S, Yu J (2009). A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 7: 147-154.

Calin G (1994). Oncogenes and tumor-suppressor genes - 2 different looks of the same gene. Oncology reports 1: 987-991.

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99: 15524-15529.

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101: 2999-3004.

Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. The New England journal of medicine 353: 1793-1801.

Calin GA, Croce CM (2006a). MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66: 7390-7394.

Calin GA, Croce CM (2006b). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857-866.

Calzolari F, Appolloni I, Tutucci E, Caviglia S, Terrile M, Corte G et al (2008). Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia 10: 1373-1382, following 1382.

Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H et al (2008). hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14: 1340-1348.

Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006). Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29: 77-103.

Chan JA, Krichevsky AM, Kosik KS (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029-6033.

Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P et al (2010a). MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncology reports 23: 997-1003.

Chen Y, Meltzer PS (2005). Gene expression analysis via multidimensional scaling. Curr Protoc Bioinformatics Chapter 7: Unit 7 11.

Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y et al (2008). MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer letters 272: 197-205.

Chen Z, Li Y, Zhang H, Huang P, Luthra R (2010b). Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29: 4362-4368.

Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L et al (2007). RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128: 1063-1076.

Christenson LK, Stouffer RL, Strauss JF, 3rd (2001). Quantitative analysis of the hormone-induced hyperacetylation of histone H3 associated with the steroidogenic acute regulatory protein gene promoter. J Biol Chem 276: 27392-27399.

Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351-1358.

Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102: 13944-13949.

Conrad ME, Barton JC (1978). Factors affecting the absorption and excretion of lead in the rat. Gastroenterology 74: 731-740.

Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF et al (2009). miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol 93: 325-332.

Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK et al (2010). Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 16: 1119-1128.

Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007). MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67: 8994-9000.

Crocetti E, Trama A, Stiller C, Caldarella A, Soffietti R, Jaal J et al (2012). Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer.

Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69: 1221-1229.

Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S et al (2008). Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68: 5049-5058.

Defeo-Jones D, Huang PS, Jones RE, Haskell KM, Vuocolo GA, Hanobik MG et al (1991). Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 352: 251-254.

Deng S, Calin GA, Croce CM, Coukos G, Zhang L (2008). Mechanisms of microRNA deregulation in human cancer. Cell Cycle 7: 2643-2646.

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231-235.

Diaz F, Fukui H, Garcia S, Moraes CT (2006). Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26: 4872-4881.

Dong JT, Boyd JC, Frierson HF, Jr. (2001). Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. The Prostate 49: 166-171.

Donnem T, Fenton CG, Lonvik K, Berg T, Eklo K, Andersen S et al (2012). MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer. PLoS One 7: e29671.

Dynan WS, Tjian R (1983). The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35: 79-87.

Egger G, Liang G, Aparicio A, Jones PA (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457-463.

Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6: 259-269.

Eulalio A, Behm-Ansmant I, Izaurralde E (2007). P bodies: at the crossroads of post-transcriptional pathways. Nature reviews Molecular cell biology 8: 9-22.

Fabbri M, Ivan M, Cimmino A, Negrini M, Calin GA (2007). Regulatory mechanisms of microRNAs involvement in cancer. Expert opinion on biological therapy 7: 1009-1019.

Farioli-Vecchioli S, Tanori M, Micheli L, Mancuso M, Leonardi L, Saran A et al (2007). Inhibition of medulloblastoma tumorigenesis by the antiproliferative and pro-differentiative gene PC3. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 21: 2215-2225.

Fasanaro P, Greco S, Lorenzi M, Pescatori M, Brioschi M, Kulshreshtha R et al (2009). An integrated approach for experimental target identification of hypoxia-induced miR-210. J Biol Chem 284: 35134-35143.

Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al (2007). Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12: 457-466.

Feinberg AP, Tycko B (2004). The history of cancer epigenetics. Nat Rev Cancer 4: 143-153.

Felsberg J, Rapp M, Loeser S, Fimmers R, Stummer W, Goeppert M et al (2009). Prognostic significance of molecular markers and extent of resection in primary glioblastoma patients. Clin Cancer Res 15: 6683-6693.

Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127: 2893-2917.

Filipowicz W (2005). RNAi: the nuts and bolts of the RISC machine. Cell 122: 17-20.

Filipowicz W, Bhattacharyya SN, Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102-114.

Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A et al (2012). DNA methylation silences miR-132 in prostate cancer. Oncogene.

Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391-400.

Fueyo J, Gomez-Manzano C, Yung WK, Kyritsis AP (1998). The functional role of tumor suppressor genes in gliomas: clues for future therapeutic strategies. Neurology 51: 1250-1255.

Furukawa T, Adachi Y, Fujisawa J, Kambe T, Yamaguchi-Iwai Y, Sasaki R et al (2001). Involvement of PLAGL2 in activation of iron deficient- and hypoxia-induced gene expression in mouse cell lines. Oncogene 20: 4718-4727.

Fusco S, Ripoli C, Podda MV, Ranieri SC, Leone L, Toietta G et al (2012). A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc Natl Acad Sci U S A 109: 621-626.

Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28: 5369-5380.

Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K et al (2008). miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer biology & therapy 7: 255-264.

Giatromanolaki A, Harris AL (2001). Tumour hypoxia, hypoxia signaling pathways and hypoxia inducible factor expression in human cancer. Anticancer research 21: 4317-4324.

Gilbertson RJ, Rich JN (2007). Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7: 733-736.

Gillies JK, Lorimer IA (2007). Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6: 2005-2009.

Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD et al (2008). Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27: 3880-3888.

Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 235-240.

Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I et al (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23-34.

Guan H, Cai J, Zhang N, Wu J, Yuan J, Li J et al (2012). Sp1 is upregulated in human glioma, promotes MMP-2-mediated cell invasion and predicts poor clinical outcome. Int J Cancer 130: 593-601.

Guardavaccaro D, Corrente G, Covone F, Micheli L, D'Agnano I, Starace G et al (2000). Arrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol Cell Biol 20: 1797-1815.

Guil S, Esteller M (2009). DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41: 87-95.

Hadziahmetovic M, Shirai K, Chakravarti A (2011). Recent advancements in multimodality treatment of gliomas. Future Oncol 7: 1169-1183.

Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK et al (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125: 887-901.

Hanahan D (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580.

Hanks TS, Gauss KA (2011). Pleomorphic adenoma gene-like 2 regulates expression of the p53 family member, p73, and induces cell cycle block and apoptosis in human promonocytic U937 cells. Apoptosis.

Harfe BD (2005). MicroRNAs in vertebrate development. Current opinion in genetics & development 15: 410-415.

Harris AL (2002). Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38-47.

Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A et al (2009). Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118: 469-474.

Hatziapostolou M, Iliopoulos D (2011). Epigenetic aberrations during oncogenesis. Cellular and molecular life sciences : CMLS 68: 1681-1702.

Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65: 9628-9632.

Hayatsu H, Shiragami M (1979). Reaction of bisulfite with the 5-hydroxymethyl group in pyrimidines and in phage DNAs. Biochemistry 18: 632-637.

He L, Hannon GJ (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5: 522-531.

He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828-833.

Hebbes TR, Thorne AW, Crane-Robinson C (1988). A direct link between core histone acetylation and transcriptionally active chromatin. The EMBO journal 7: 1395-1402.

Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ (2007). High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6: 5.

Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B et al (1992). Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52: 3213-3219.

Hermeking H, Eick D (1994). Mediation of c-Myc-induced apoptosis by p53. Science 265: 2091-2093.

Hiroi H, Christenson LK, Strauss JF, 3rd (2004). Regulation of transcription of the steroidogenic acute regulatory protein (StAR) gene: temporal and spatial changes in transcription factor binding and histone modification. Molecular and cellular endocrinology 215: 119-126.

Hirschey MD, Shimazu T, Capra JA, Pollard KS, Verdin E (2011). SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging (Albany NY) 3: 635-642.

Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le QT et al (2010). Circulating miR-210 as a Novel Hypoxia Marker in Pancreatic Cancer. Translational oncology 3: 109-113.

Holliday R, Pugh JE (1975). DNA modification mechanisms and gene activity during development. Science 187: 226-232.

Hu J, Kesari S (2012). The molecular basis for novel therapies. Cancer J 18: 32-39.

Hummel R, Maurer J, Haier J (2011). MicroRNAs in brain tumors : a new diagnostic and therapeutic perspective? Mol Neurobiol 44: 223-234.

Hursting SD, Berger NA (2010). Energy balance, host-related factors, and cancer progression. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28: 4058-4065.

Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH et al (2009). The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23: 1327-1337.

Ichimura K, Ohgaki H, Kleihues P, Collins VP (2004). Molecular pathogenesis of astrocytic tumours. J Neurooncol 70: 137-160.

Ichimura K (2012). Molecular pathogenesis of IDH mutations in gliomas. Brain tumor pathology.

Iliou MS, Lujambio A, Portela A, Brustle O, Koch P, Andersson-Vincent PH et al (2011). Bivalent histone modifications in stem cells poise miRNA loci for CpG island hypermethylation in human cancer. Epigenetics : official journal of the DNA Methylation Society 6.

Inouchi A, Shinohara S, Inoue H, Kita K, Itakura M (2007). Identification of specific sequence motifs in the upstream region of 242 human miRNA genes. Comput Biol Chem 31: 207-214.

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065-7070.

Jane EP, Premkumar DR, Pollack IF (2007). AG490 influences UCN-01-induced cytotoxicity in glioma cells in a p53-dependent fashion, correlating with effects on BAX cleavage and BAD phosphorylation. Cancer letters 257: 36-46.

Jones PA, Baylin SB (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415-428.

Kaatsch P (2010). Epidemiology of childhood cancer. Cancer treatment reviews 36: 277-285.

Karius T, Schnekenburger M, Dicato M, Diederich M (2012). MicroRNAs in cancer management and their modulation by dietary agents. Biochemical pharmacology.

Kelly TJ, Souza AL, Clish CB, Puigserver P (2011). A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol 31: 2696-2706.

Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD (2010). Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A 107: 2183-2188.

Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH et al (2009). Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37: 1672-1681.

Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z et al (2004). A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18: 1165-1178.

Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P et al (2007). The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128: 889-900.

Kouzarides T (2007). Chromatin modifications and their function. Cell 128: 693-705.

Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J (2008). Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68: 2094-2105.

Kucinska M, Murias M (2010). [Sirtuins--way to longevity or just a fad?]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego 28: 158-161.

Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101: 59-68.

Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ et al (2007). A microRNA signature of hypoxia. Mol Cell Biol 27: 1859-1867.

Kwak PB, Iwasaki S, Tomari Y (2010). The microRNA pathway and cancer. Cancer science 101: 2309-2315.

Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Lages E, Guttin A, El Atifi M, Ramus C, Ipas H, Dupre I et al (2011). MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One 6: e20600.

Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). Identification of novel genes coding for small expressed RNAs. Science 294: 853-858.

Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401-1414.

Landthaler M, Yalcin A, Tuschl T (2004). The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Current biology : CB 14: 2162-2167.

Laurenti G, Benedetti E, D'Angelo B, Cristiano L, Cinque B, Raysi S et al (2011). Hypoxia induces peroxisome proliferator-activated receptor alpha (PPARalpha) and lipid metabolism peroxisomal enzymes in human glioblastoma cells. J Cell Biochem 112: 3891-3901.

Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854.

Lee RC, Ambros V (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862-864.

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-419.

Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F et al (2008). Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. The Journal of pathology 214: 17-24.

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003). Prediction of mammalian microRNA targets. Cell 115: 787-798.

Li W, Xie L, He X, Li J, Tu K, Wei L et al (2008). Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int J Cancer 123: 1616-1622.

Li Y, Guessous F, DiPierro C, Zhang Y, Mudrick T, Fuller L et al (2009). Interactions between PTEN and the c-Met pathway in glioblastoma and implications for therapy. Molecular cancer therapeutics 8: 376-385.

Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT et al (2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101: 7357-7362.

Lim IK (2006). TIS21 (/BTG2/PC3) as a link between ageing and cancer: cell cycle regulator and endogenous cell death molecule. J Cancer Res Clin Oncol 132: 417-426.

Lin W, Cao J, Liu J, Beshiri ML, Fujiwara Y, Francis J et al (2011). Loss of the retinoblastoma binding protein 2 (RBP2) histone demethylase suppresses tumorigenesis in mice lacking Rb1 or Men1. Proc Natl Acad Sci U S A 108: 13379-13386.

Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al (2011). The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17: 211-215.

Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ et al (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437-1441.

Liu M, Wu H, Liu T, Li Y, Wang F, Wan H et al (2009a). Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res 19: 828-837.

Liu T, Liu PY, Marshall GM (2009b). The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res 69: 1702-1705.

Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.

Lobo NA, Shimono Y, Qian D, Clarke MF (2007). The biology of cancer stem cells. Annual review of cell and developmental biology 23: 675-699.

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007a). WHO Classification of Tumours of the Central Nervous System, 4th edn. IARC Press: Lyon.

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007b). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97-109.

Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847-849.

Luan S, Sun L, Huang F (2010). MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res 41: 67-74.

Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67: 1424-1429.

Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004). Nuclear export of microRNA precursors. Science 303: 95-98.

Ma L, Teruya-Feldstein J, Weinberg RA (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449: 682-688.

Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ et al (2006). Structural basis for double-stranded RNA processing by Dicer. Science 311: 195-198.

Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stuhler K, Meyer HE et al (2010). Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20: 539-550.

Marks PA, Xu WS (2009). Histone deacetylase inhibitors: Potential in cancer therapy. J Cell Biochem 107: 600-608.

Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG (2007). miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35: D149-155.

Meister G, Tuschl T (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 431: 343-349.

Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular cancer research : MCR 1: 882-891.

Mizutani A, Furukawa T, Adachi Y, Ikehara S, Taketani S (2002). A zinc-finger protein, PLAGL2, induces the expression of a proapoptotic protein Nip3, leading to cellular apoptosis. J Biol Chem 277: 15851-15858.

Moorthy K, Mohamad MS (2011). Random forest for gene selection and microarray data classification. Bioinformation 7: 142-146.

Nagarajan RP, Costello JF (2009). Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol 19: 188-197.

Nakada C, Tsukamoto Y, Matsuura K, Nguyen TL, Hijiya N, Uchida T et al (2011). Overexpression of miR-210, a downstream target of HIF1alpha, causes centrosome amplification in renal carcinoma cells. The Journal of pathology 224: 280-288.

Nieder C, Andratschke N, Wiedenmann N, Busch R, Grosu AL, Molls M (2004). Radiotherapy for high-grade gliomas. Does altered fractionation improve the outcome? Strahlenther Onkol 180: 401-407.

Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010). Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17: 510-522.

O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839-843.

Ohgaki H, Kleihues P (2007). Genetic pathways to primary and secondary glioblastoma. The American journal of pathology 170: 1445-1453.

Ohler U, Yekta S, Lim LP, Bartel DP, Burge CB (2004). Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 10: 1309-1322.

Ohno M, Natsume A, Kondo Y, Iwamizu H, Motomura K, Toda H et al (2009). The modulation of microRNAs by type I IFN through the activation of signal transducers and activators of transcription 3 in human glioma. Molecular cancer research : MCR 7: 2022-2030.

Ostro MJ, Fondy TP (1977). Isolation and characterization of multiple molecular forms of cytosolic NAD-linked glycerol-3-phosphate dehydrogenase from normal and neoplastic rabbit tissues. J Biol Chem 252: 5575-5583.

Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64: 3087-3095.

Papagiannakopoulos T, Shapiro A, Kosik KS (2008). MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68: 8164-8172.

Parasramka MA, Ho E, Williams DE, Dashwood RH (2012). MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Molecular carcinogenesis 51: 213-230.

Park JK, Henry JC, Jiang J, Esau C, Gusev Y, Lerner MR et al (2011). miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun 406: 518-523.

Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807-1812.

Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al (2008). E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13: 272-286.

Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM et al (2010). Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Science signaling 3: ra29.

Pollo B (2011). Neuropathological diagnosis of brain tumours. Neurol Sci 32 Suppl 2: S209-211.

Porstmann T, Ternynck T, Avrameas S (1985). Quantitation of 5-bromo-2-deoxyuridine incorporation into DNA: an enzyme immunoassay for the assessment of the lymphoid cell proliferative response. Journal of immunological methods 82: 169-179.

Pruitt KD, Tatusova T, Maglott DR (2003). NCBI Reference Sequence project: update and current status. Nucleic Acids Res 31: 34-37.

Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K et al (2011). miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell death and differentiation 18: 465-478.

Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J et al (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104: 879-886.

Reisman D, Elkind NB, Roy B, Beamon J, Rotter V (1993). c-Myc trans-activates the p53 promoter through a required downstream CACGTG motif. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 4: 57-65.

Remenyi J, Hunter CJ, Cole C, Ando H, Impey S, Monk CE et al (2010). Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J 428: 281-291.

Riemenschneider MJ, Reifenberger G (2009). Molecular neuropathology of gliomas. Int J Mol Sci 10: 184-212.

Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G (2010). Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120: 567-584.

Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 1902-1910.

Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S et al (2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24: 4677-4684.

Roman-Gomez J, Agirre X, Jimenez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P et al (2009). Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27: 1316-1322.

Roy B, Beamon J, Balint E, Reisman D (1994). Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol 14: 7805-7815.

Ryazansky SS, Gvozdev VA (2008). Small RNAs and cancerogenesis. Biochemistry Biokhimiia 73: 514-527.

Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9: 435-443.

Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009). Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379: 726-731.

Salacz ME, Watson KR, Schomas DA (2011). Glioblastoma: Part I. Current state of affairs. Mo Med 108: 187-194.

Sanger F, Nicklen S, Coulson AR (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463-5467.

Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S et al (2010). miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2: 415-431.

Schagger H (2006). Tricine-SDS-PAGE. Nat Protoc 1: 16-22.

Schmidt N, Windmann S, Reifenberger G, Riemenschneider MJ (2012). DNA hypermethylation and histone modifications downregulate the candidate tumor suppressor gene RRP22 on 22q12 in human gliomas. Brain Pathol 22: 17-25.

Schmittgen TD, Jiang J, Liu Q, Yang L (2004). A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32: e43.

Schraivogel D, Weinmann L, Beier D, Tabatabai G, Eichner A, Zhu JY et al (2011). CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. The EMBO journal 30: 4309-4322.

Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66: 1277-1281.

Secombe J, Li L, Carlos L, Eisenman RN (2007). The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev 21: 537-551.

Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K et al (2010). A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133: 983-995.

Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J (2004). A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14: 1741-1748.

Sellers WR, Kaelin WG, Jr. (1997). Role of the retinoblastoma protein in the pathogenesis of human cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 15: 3301-3312.

Shen WF, Hu YL, Uttarwar L, Passegue E, Largman C (2008). MicroRNA-126 regulates HOXA9 by binding to the homeobox. Mol Cell Biol 28: 4609-4619.

Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z et al (2008). hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain research 1236: 185-193.

Shi L, Zhang S, Feng K, Wu F, Wan Y, Wang Z et al (2012). MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int J Oncol 40: 119-129.

Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al (2008). miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6: 14.

Silber J, James CD, Hodgson JG (2009). microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med 11: 208-222.

Slaby O, Lakomy R, Fadrus P, Hrstka R, Kren L, Lzicarova E et al (2010). MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 57: 264-269.

Standart N, Jackson RJ (2007). MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21: 1975-1982.

Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A et al (2009). MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23: 1876-1884.

Suzuki H, Yamamoto E, Nojima M, Kai M, Yamano HO, Yoshikawa K et al (2010). Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis 31: 2066-2073.

Tabatabai G, Weller M (2011). Glioblastoma stem cells. Cell and tissue research 343: 459-465.

Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H et al (2008). Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 68: 5540-5545.

Takahashi F, Chiba N, Tajima K, Hayashida T, Shimada T, Takahashi M et al (2011). Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib. Oncogene 30: 3084-3095.

Takai D, Jones PA (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99: 3740-3745.

Tanzer A, Stadler PF (2004). Molecular evolution of a microRNA cluster. J Mol Biol 339: 327-335.

Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451: 147-152.

Tepel M, Roerig P, Wolter M, Gutmann DH, Perry A, Reifenberger G et al (2008). Frequent promoter hypermethylation and transcriptional downregulation of the NDRG2 gene at 14q11.2 in primary glioblastoma. Int J Cancer 123: 2080-2086.

Tews B, Roerig P, Hartmann C, Hahn M, Felsberg J, Blaschke B et al (2007). Hypermethylation and transcriptional downregulation of the CITED4 gene at 1p34.2 in oligodendroglial tumours with allelic losses on 1p and 19q. Oncogene 26: 5010-5016.

Toedt G, Barbus S, Wolter M, Felsberg J, Tews B, Blond F et al (2011). Molecular signatures classify astrocytic gliomas by IDH1 mutation status. Int J Cancer 128: 1095-1103.

Tognini P, Putignano E, Coatti A, Pizzorusso T (2011). Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci 14: 1237-1239.

Towbin H, Staehelin T, Gordon J (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350-4354.

Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999). CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96: 8681-8686.

Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y et al (2008). Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68: 4123-4132.

Tusher VG, Tibshirani R, Chu G (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-5121.

Vaissiere T, Sawan C, Herceg Z (2008). Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659: 40-48.

Valera VA, Walter BA, Linehan WM, Merino MJ (2011). Regulatory Effects of microRNA-92 (miR-92) on VHL Gene Expression and the Hypoxic Activation of miR-210 in Clear Cell Renal Cell Carcinoma. J Cancer 2: 515-526.

Valeri N, Vannini I, Fanini F, Calore F, Adair B, Fabbri M (2009). Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mammalian genome : official journal of the International Mammalian Genome Society 20: 573-580.

van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS et al (2003). Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. The American journal of pathology 163: 1033-1043.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.

Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant methods 3: 12.

Varkonyi-Gasic E, Hellens RP (2011). Quantitative stem-loop RT-PCR for detection of microRNAs. Methods Mol Biol 744: 145-157.

Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149-159.

Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I et al (2001). Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7: 971-976.

Visvader JE, Lindeman GJ (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8: 755-768.

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103: 2257-2261.

Wanet A, Tacheny A, Arnould T, Renard P (2012). miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res.

Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C et al (2008). Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3: e2557.

Watanabe T, Yokoo H, Yokoo M, Yonekawa Y, Kleihues P, Ohgaki H (2001). Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 60: 1181-1189.

Weber B, Stresemann C, Brueckner B, Lyko F (2007). Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6: 1001-1005.

Wehming FM, Wiese B, Nakamura M, Bremer M, Karstens JH, Meyer A (2012). Malignant glioma grade 3 and 4: How relevant is timing of radiotherapy? Clin Neurol Neurosurg.

Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI (2008). Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 14: 2588-2592.

Woods DB, Vousden KH (2001). Regulation of p53 function. Experimental cell research 264: 56-66.

Wyllie AH, Kerr JF, Currie AR (1980). Cell death: the significance of apoptosis. Int Rev Cytol 68: 251-306.

Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009). IDH1 and IDH2 mutations in gliomas. The New England journal of medicine 360: 765-773.

Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189-198.

Yang CH, Yue J, Pfeffer SR, Handorf CR, Pfeffer LM (2011). MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem 286: 39172-39178.

Yi R, Qin Y, Macara IG, Cullen BR (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17: 3011-3016.

Yin D, Ong JM, Hu J, Desmond JC, Kawamata N, Konda BM et al (2007). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 13: 1045-1052.

Ying Q, Liang L, Guo W, Zha R, Tian Q, Huang S et al (2011). Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma. Hepatology 54: 2064-2075.

Yoshida M, Kijima M, Akita M, Beppu T (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265: 17174-17179.

Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: 1109-1123.

Zeng J, Ge Z, Wang L, Li Q, Wang N, Bjorkholm M et al (2010). The histone demethylase RBP2 Is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology 138: 981-992.

Zhang B, Pan X, Cobb GP, Anderson TA (2007). microRNAs as oncogenes and tumor suppressors. Dev Biol 302: 1-12.

Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P et al (2009a). Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 34: 1653-1660.

Zhang C, Han L, Zhang A, Yang W, Zhou X, Pu P et al (2010). Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol 36: 1503-1512.

Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118: 57-68.

Zhang S, Hao J, Xie F, Hu X, Liu C, Tong J et al (2011a). Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis.

Zhang S, Hao J, Xie F, Hu X, Liu C, Tong J et al (2011b). Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 32: 1183-1189.

Zhang Y, Dutta A, Abounader R (2012). The role of microRNAs in glioma initiation and progression. Front Biosci 17: 700-712.

Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J et al (2009b). MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8: 2756-2768.

Zheng H, Ying H, Wiedemeyer R, Yan H, Quayle SN, Ivanova EV et al (2010). PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell 17: 497-509.

Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al (1999). Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59: 5830-5835.

Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P et al (2010). Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Laboratory investigation; a journal of technical methods and pathology 90: 144-155.

References to web pages

3.1.2.2 Real-time PCR analysis using TaqMan® miRNA assays.
https://products.appliedbiosystems.com 02.02.2012

Table 17: SYBR® Green Dye assay chemistry.
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/real-
time-pcr/taqman-and-sybr-green-chemistries.html 22.03.2012

Figure 5: Conversion of unmethylated cytosine to uracil by sodium bisulfite treatment.
http://www.cmmt.ubc.ca/sites/default/files/pdf_methylseqr_protocol.pdf 29.03.2012

Figure 7: Schematic representation of the SDS-PAGE.
http://www.imb-jena.de/~rake/Bioinformatics_WEB/proteins_purification.html 01.04.2012

Figure 8: Schematic representation of a western blot transfer.
http://technologyinscience.blogspot.de/2011/12/
western-blot-protein-immunoblot.html 03.04.2012

Figure 9: Chemiluminescent detection of Western blot.
http://advansta.com/Chemiluminescent_Western_Detection.html 13.04.2012

Figure 10: Cleavage of the non - fluorescent caspase substrate Z-DEVD-R110.
http://www.promega.com
Apo-ONE® Homogeneous Caspase-3/7 Assay Technical Bulletin 14.04.2012

Figure 11: Reaction of Luciferin and ATP to Oxyluciferin, ADP and light.
http://www.promega.com
CellTiter-Glo® Luminescent Cell Viability Assay Technical Bulletin 14.04.2012




Figure 14: Schematic representation of the bioluminescent reaction catalyzed
by Firefly and Renilla luciferases
http://www.promega.com
Dual-Glo® Luciferase Assay System Technical Manual 14.04.2012

4.6 Identification and validation of putative miR-132/miR-212,
miR-126 and miR-210 targets
http://diana.pcbi.upenn.edu/miRGen/v3/miRGen.html (version v3) 01.05.2012
microRNA.org software (version: August 2010) 01.05.2012

4.1.2 Epigenetically regulated miRNAs in gliomas
4.1.3 MiRNAs induced by hypoxia in glioblastoma stem cell lines
http://genome.ucsc.edu/ (version: February 2009) 07.04.2012

3.5 3`- Luciferase reporter gene assay system
http://www.starseq.com 05.04.2012
Rechtliche Vermerke:Ehrenwörtliche Erklärung
Hiermit erkläre ich, dass ich die vorliegende Dissertation eigenständig und ohne unerlaubte Hilfe angefertigt und diese in der vorgelegten oder in ähnlicher Form noch bei keiner anderen Institution eingereicht habe.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:Institut für Neuropathologie Düsseldorf
Räumliche Erstreckung: 2008-2012
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » Institut für Neuropathologie
Dokument erstellt am:28.06.2012
Dateien geändert am:28.06.2012
Promotionsantrag am:09.05.2012
Datum der Promotion:19.06.2012
english
Benutzer
Status: Gast
Aktionen