Dokument: Genomische Analyse disseminierter Tumorzellen (DTCs) bei Ösophaguskarzinompatienten - Identifizierung einer prognostisch relevanten DTC-Subpopulation und Etablierung der aCGH zur hochaufgelösten genomischen Einzelzellanalyse von Chromosom 17

Titel:Genomische Analyse disseminierter Tumorzellen (DTCs) bei Ösophaguskarzinompatienten - Identifizierung einer prognostisch relevanten DTC-Subpopulation und Etablierung der aCGH zur hochaufgelösten genomischen Einzelzellanalyse von Chromosom 17
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=19936
URN (NBN):urn:nbn:de:hbz:061-20111129-100512-4
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Will, Daniel [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]15,65 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 23.11.2011 / geändert 24.11.2011
Beitragende:Prof. Dr. Knoefel, Wolfram Trudo [Betreuer/Doktorvater]
Prof. Dr. Schmitt, Lutz [Gutachter]
Stichwörter:Ösophaguskarzinom, DTCs, EpCAM, CK, aCGH, mCGH,
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 540 Chemie
Beschreibungen:Ösophaguskarzinompatienten, die nach vollständiger Entfernung des Tumors als potenziell geheilt beurteilt werden, entwickeln dennoch häufig Metastasen, welche meist zum Versterben führen. Die Ursache für die Metastasenbildung stellen dabei einzelne gestreute Vorläuferzellen dar, die durch derzeitig zur Verfügung stehende Therapien nicht entfernt werden können. Die Untersuchung von disseminierten Tumorzellen (DTCs) könnte dabei zur Identifizierung von therapeutisch relevanten Zielstrukturen beitragen.
Am häufigsten werden solche disseminierten Tumorzellen (DTCs) im Knochenmark anhand von Zytokeratinen (CK) und im Lymphknoten anhand des Epithelialen Zelladhäsionsmoleküls (EpCAM) detektiert. Stoecklein et al. beschrieb dabei unterschiedliche genomische Veränderungen zwischen CK+-DTCs aus dem Knochenmark und EpCAM+-DTCs aus dem Lymphknoten. Ob die beobachteten Unterschiede dadurch zustande kommen, dass die DTCs in verschiedenen Organen auftreten oder ob anhand EpCAM und CK generell unterschiedliche Subpopulationen von DTCs detektiert werden, sollte in der vorliegenden Arbeit zunächst aufgeklärt werden. Eine Doppelimmunfluoreszenzfärbung konnte alle drei denkbaren DTC-Populationen (CK+/EpCAM-; CK+/EpCAM+; CK-/EpCAM+) sowohl im Knochenmark als auch im Lymphknoten identifizieren, wobei DTCs jedoch seltener EpCAM als CK exprimieren. Durch CGH-Analysen wurden analog zu den publizierten Daten von Stoecklein et al. generell mehr genomische Aberrationen in DTCs aus Lymphknoten als in DTCs aus dem Knochenmark detektiert. Umfassende CGH-Analysen zeigten dabei, dass die beobachteten Unterschiede zwischen den DTC-Populationen mit dem Disseminierungsort assoziiert und unabhängig von der exprimierten Markerkombination sind. Weiterhin konnte in der vorliegenden Arbeit die Prävalenz von EpCAM+-DTCs als unabhängiger Faktor für eine verkürzte Überlebensdauer bei Ösophaguskarzinompatienten identifiziert werden.
Ferner gehörten Amplifikationen auf Chromosom 17 zu den häufigsten Veränderungen bei ösophagealen DTCs aus den Lymphknoten bzw. aus dem Knochenmark. Um nun potenzielle therapeutische Zielgene auf Chromosom 17 identifizieren zu können, sollte ein Hochdurchsatzverfahren zur hochauflösenden genomischen Analyse dieses Chromosoms mittels aCGH etabliert werden. Hierfür wurde zunächst die Isolation von BAC-DNA für die Herstellung von BAC-DNA-Microarrays semiautomatisiert. Durch den Einbau einer terminalen Aminogruppe in die BAC-DNA konnte diese durch eine kontrollierte kovalente Verknüpfung auf epoxidbeschichtete Chipoberflächen immobilisiert werden, was letztendlich die Reproduzierbarkeit des Array-Verfahrens enorm erhöhte. Nach Etablierung und Validierung eines Protokolls zur Hybridisierung von Einzelzell-DNA auf die hergestellten BAC-DNA-Testmicroarrays wurde ein BAC-DNA-Microarray zur hochaufgelösten Analyse des Chromosoms 17 von Einzelzell-DNA hergestellt. Im Zuge der Validierung wurde eine 1,37 Mbp große Amplifikation nachgewiesen, welche für Einzelzell-DNA bisher noch nicht gezeigt wurde. Zudem konnte auch reamplifizierte BAC-DNA verwendet werden, was die maximal herstellbare Menge an Microarrays mit einmalig aufgereinigter BAC-DNA in etwa um den Faktor 50 erhöht und somit Zeit und Kosten spart.
Da zwei der sechs HER2-positiven DTCs (HER2-Status durch qPCR bestimmt) durch die aCGH fälschlicherweise als HER2-negativ befunden wurden, eignet sich der hergestellte Microarray bislang noch nicht zur Bestimmung von spezifischen Aberrationen für den individuellen Patienten, um darauf basierend Therapieentscheidungen zu treffen. Allerdings kann die etablierte Methode zur Untersuchung von DTC-Kollektiven verwendete werden, um häufige Aberrationen in disseminierten Tumorzellen zu detektieren, da durch die aCGH-Analysen erfolgreich zwischen prognostisch relevanten (HER2+) und prognostisch irrelevanten (HER2-) DTC-Populationen unterschieden werden konnte. Da sich unter den DTCs die Vorläuferzellen der Metastasen befinden, kann somit durch die Identifikation häufiger Aberrationen in DTCs ein Beitrag zur Aufklärung des Prozesses der Metastasierung geleistet werden. Des Weiteren können möglicherweise die durch aCGH identifizierten häufigen Aberrationen therapeutische Zielstrukturen für systemische Therapien darstellen, mit deren Hilfe die prognostisch relevanten DTCs eliminiert werden können.

Esophageal cancer is often completely resected during surgery in order to cure the patient. Although many patients are diagnosed afterwards as tumor free, they frequently develop metastases to which they often succumb. Single disseminated tumor cells (DTCs), which can not be eradicated by the available therapies, account for the formation of metastasis. The analysis of these DTCs could help to identify therapeutically relevant target molecules.
DTCs of the bone marrow are mostly detected via cytokeratins (CK) while DTCs from the lymph node are usually detected via the epithelial cell adhesion molecule (EpCAM). Stoecklein et al. have described different genomic aberrations for CK+-DTCs of the bone marrow and EpCAM+-DTCs of the lymph node. This thesis aimed to find out whether the detected differences are due to the ocurrence of the DTCs in different organs or due to the fact that EpCAM and CK characterize different DTC subpopulations. A double immunofluorescence staining was able to detect all three possible DTC populations (CK+/EpCAM-; CK+/EpCAM+; CK-/EpCAM+) in the bone marrow as well as in the lymph node. However, DTCs express CK more often than EpCAM. CGH analysis elicited more genomic abarrations in DTCs of lymph nodes than in DTCs of the bone marrow. Detailed CGH analysis indicated that the detected differences between the DTC populations are associated with the organ to which they have disseminated and are independent of the expressed marker combination. Furthermore, the prevalence of EpCAM+-DTCs was demonstrated to be an independent prognostic factor for overall survival of patients with esophageal cancer.
Moreover, amplifications on chromosome 17 were among the most frequent aberrations in esophageal DTCs of the lymph node as well as the bone marrow. To identify potential therapeutic target genes on chromosome 17, a high throughput method for highly resolved genomic analysis of this chromosome via aCGH was required. Therefore the isolation of BAC-DNA for BAC-DNA microarrays was semiautomatized prior to any other steps. The modification of the BAC-DNA with terminal aminogroups enabled the immobilization of the BAC-DNA onto epoxycoated chip surfaces and an increased reproducibility of the arrays. After establishment and validation of a protocol for hybridization of single cell DNA on the generated BAC-DNA-test-microarrays, a BAC-DNA microarray for high resolution analysis of chromosome 17 of single cell DNA was generated. In the course of validation an amplification of 1.37 Mbp was detected which has not been visualized in single cells so far. Furthermore it was demonstrated that reamplified BAC-DNA is also suitable for aCGH. Consequently, approximately 50 times more microarrays can be produced with one batch of BAC-DNA which saves time and funds.
The generated microarray cannot be used for the detection of specific aberrations for individual patients to facilitate decisions upon treatent as two out of six HER2-positive DTC (DTC status determined by qPCR) were wrongly classified as HER2-negative. However, the established method can be utilized for the analysis of DTC collectives to identify frequent aberrations in disseminated tumor cells as distinguishment between prognostic relevant (HER2+) and pognostic irrelevant (HER2-) DTC populations was feasible with the aCGH analysis. As the progenitor cells of metastases are assumed to be among the DTCs, the identification of frequent aberrations within DTCs could contribute to the elucidation of the process of metastasis. Furthermore, frequent aberrations identified by aCGH analysis might represent targets for systemic therapy with which prognostic relevant DTC could be eliminated.
Quelle:1. Kuo, B. and D. Urma, Esophagus - anatomy and development. GI Motility online, 2006.
2. EPG_Health_Media. What causes GERD? 2010; Available from: http://www.epgpatientdirect.org.
3. Sobotta, Anatomie des Menschen. 2007.
4. RKI, Verbreitungen von Krebserkrankungen in Deutschland, in Entwicklung der Prävalenzen zwischen 1990 und 2010. 2010: Berlin.
5. Weinberg, R.A., The Biology of Cancer. 2007.
6. RKI, Krebs in Deutschland 2005/2006 Häufigkeiten und Trends. 7. Ausgabe ed. 2010.
7. Siewert, J.R. and K. Ott, Are squamous and adenocarcinomas of the esophagus the same disease? Semin Radiat Oncol, 2007. 17(1): p. 38-44.
8. Parkin, D.M., et al., Global cancer statistics, 2002. CA Cancer J Clin, 2005. 55(2): p. 74-108.
9. Ribeiro, U., Jr., et al., Risk factors for squamous cell carcinoma of the oesophagus. Br J Surg, 1996. 83(9): p. 1174-85.
10. Islami, F., et al., Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based case-control study. BMJ, 2009. 338: p. b929.
11. Devesa, S.S., W.J. Blot, and J.F. Fraumeni, Jr., Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer, 1998. 83(10): p. 2049-53.
12. Bollschweiler E. and H. AH., Deutliche Zunahme des Adenokarzinoms im Ösophagus. Dtsch Arztebl, 2000. 97: p. A1896–A1900.
13. Lagergren, J., R. Bergstrom, and O. Nyren, Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med, 1999. 130(11): p. 883-90.
14. Gammon, M.D., et al., Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst, 1997. 89(17): p. 1277-84.
15. Stein, H.J., M. Feith, and H. Feussner, The relationship between gastroesophageal reflux, intestinal metaplasia and adenocarcinoma of the esophagus. Langenbecks Arch Surg, 2000. 385(5): p. 309-16.
16. Werner, M., et al., The molecular pathology of Barrett's esophagus. Histol Histopathol, 1999. 14(2): p. 553-9.
17. Phillips, J. Normal vs pathologic reflux. 2010; Available from: http://www.tigeresearch.com.
18. Mariette, C., G. Piessen, and J.P. Triboulet, Therapeutic strategies in oesophageal carcinoma: role of surgery and other modalities. Lancet Oncol, 2007. 8(6): p. 545-53.
19. Izbicki, J.R., et al., Prognostic value of immunohistochemically identifiable tumor cells in lymph nodes of patients with completely resected esophageal cancer. N Engl J Med, 1997. 337(17): p. 1188-94.
20. Stoecklein, N.H. and C.A. Klein, Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer, 2010. 126(3): p. 589-98.
21. Stoecklein, N.H., et al., Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell, 2008. 13(5): p. 441-53.
22. Klein, C.A., Parallel progression of primary tumours and metastases. Nat Rev Cancer, 2009. 9(4): p. 302-12.
23. Pantel, K., R.H. Brakenhoff, and B. Brandt, Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer, 2008. 8(5): p. 329-40.
24. Vijayaraj, P., et al., Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J Cell Biol, 2009. 187(2): p. 175-84.
25. Oriolo, A.S., et al., Intermediate filaments: a role in epithelial polarity. Exp Cell Res, 2007. 313(10): p. 2255-64.
26. Kim, S., P. Wong, and P.A. Coulombe, A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature, 2006. 441(7091): p. 362-5.
27. Moll, R., M. Divo, and L. Langbein, The human keratins: biology and pathology. Histochem Cell Biol, 2008. 129(6): p. 705-33.
28. Winter, M.J., et al., The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am J Pathol, 2003. 163(6): p. 2139-48.
29. Winter, M.J., et al., Expression of Ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Exp Cell Res, 2003. 285(1): p. 50-8.
30. Nubel, T., et al., Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res, 2009. 7(3): p. 285-99.
31. Maetzel, D., et al., Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol, 2009. 11(2): p. 162-71.
32. Went, P.T., et al., Frequent EpCam protein expression in human carcinomas. Hum Pathol, 2004. 35(1): p. 122-8.
33. Brunner, A., et al., EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. J Clin Pathol, 2008. 61(3): p. 307-10.
34. Fong, D., et al., Ep-CAM expression in pancreatic and ampullary carcinomas: frequency and prognostic relevance. J Clin Pathol, 2008. 61(1): p. 31-5.
35. Spizzo, G., et al., High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat, 2004. 86(3): p. 207-13.
36. Varga, M., et al., Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival. Clin Cancer Res, 2004. 10(9): p. 3131-6.
37. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008. 8(10): p. 755-68.
38. Klein, C.A., et al., Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet, 2002. 360(9334): p. 683-9.
39. Anselmetti, D., Single Cell Analysis. 2009: Wiley-Blackwell.
40. Scheunemann, P., J.R. Izbicki, and K. Pantel, Tumorigenic potential of apparently tumor-free lymph nodes. N Engl J Med, 1999. 340(21): p. 1687.
41. Klein, C.A., et al., Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol, 2002. 20(4): p. 387-92.
42. Schardt, J.A., et al., Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell, 2005. 8(3): p. 227-39.
43. Peng, W., H. Takabayashi, and K. Ikawa, Whole genome amplification from single cells in preimplantation genetic diagnosis and prenatal diagnosis. Eur J Obstet Gynecol Reprod Biol, 2007. 131(1): p. 13-20.
44. Telenius, H., et al., Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics, 1992. 13(3): p. 718-25.
45. Hellani, A., et al., Multiple displacement amplification on single cell and possible PGD applications. Mol Hum Reprod, 2004. 10(11): p. 847-52.
46. Spits, C., et al., Whole-genome multiple displacement amplification from single cells. Nat Protoc, 2006. 1(4): p. 1965-70.
47. Lee, Y.S., et al., Comparison of whole genome amplification methods for further quantitative analysis with microarray-based comparative genomic hybridization. Taiwan J Obstet Gynecol, 2008. 47(1): p. 32-41.
48. Schmidt-Kittler, O., Von einzelnen disseminierten Tumorzellen zur Metastase:
Genomische Analyse der minimalen Resterkrankung des
Mammakarzinoms. 2003, Ludwig-Maximilians-Universität in München.
49. Klein, C.A., et al., Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A, 1999. 96(8): p. 4494-9.
50. Kallioniemi, A., et al., Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 1992. 258(5083): p. 818-21.
51. John, M.E. and W. Knochel, [Do repetitive DNA sequences have a biological function?]. Naturwissenschaften, 1983. 70(5): p. 241-6.
52. Bentz, M., et al., Minimal sizes of deletions detected by comparative genomic hybridization. Genes Chromosomes Cancer, 1998. 21(2): p. 172-5.
53. Ishkanian, A.S., et al., A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet, 2004. 36(3): p. 299-303.
54. Dhami, P., et al., Exon array CGH: detection of copy-number changes at the resolution of individual exons in the human genome. Am J Hum Genet, 2005. 76(5): p. 750-62.
55. Carvalho, B., et al., High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J Clin Pathol, 2004. 57(6): p. 644-6.
56. Pinkel, D. and D.G. Albertson, Comparative genomic hybridization. Annu Rev Genomics Hum Genet, 2005. 6: p. 331-54.
57. Fuhrmann, C., Entwicklung der Array-CGH zur hochauflösenden, genomweiten Untersuchung von DNA-Veränderungen einzelner Tumorzellen (Dissertationsarbeit). 2008, LMU München, Fakultät für Biologie.
58. Schwartz, D.C. and C.R. Cantor, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell, 1984. 37(1): p. 67-75.
59. Foreman, P.K. and R.W. Davis, Real-time PCR-based method for assaying the purity of bacterial artificial chromosome preparations. Biotechniques, 2000. 29(3): p. 410-2.
60. Quackenbush, J., Microarray data normalization and transformation. Nat Genet, 2002. 32 Suppl: p. 496-501.
61. Fuhrmann, C., et al., High-resolution array comparative genomic hybridization of single micrometastatic tumor cells. Nucleic Acids Res, 2008. 36(7): p. e39.
62. Taylor, S., et al., Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res, 2003. 31(16): p. e87.
63. Shadeo, A. and W.L. Lam, Comprehensive copy number profiles of breast cancer cell model genomes. Breast Cancer Res, 2006. 8(1): p. R9.
64. Thorban, S., et al., Immunocytochemical detection of disseminated tumor cells in the bone marrow of patients with esophageal carcinoma. J Natl Cancer Inst, 1996. 88(17): p. 1222-7.
65. Charames, G.S. and B. Bapat, Genomic instability and cancer. Curr Mol Med, 2003. 3(7): p. 589-96.
66. Kemp, C., Breast cancer, colorectal cancer, and esophageal cancer. Am J Hosp Palliat Care, 1999. 16(1): p. 403-11.
67. Swartz, M.A. and M. Skobe, Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc Res Tech, 2001. 55(2): p. 92-9.
68. Herishanu, Y., et al., The lymph node microenvironment promotes B-cell receptor signaling, NF-{kappa}B activation, and tumor proliferation in chronic lymphocytic leukemia. Blood, 2010.
69. LeBedis, C., et al., Peripheral lymph node stromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-I and EGF. Int J Cancer, 2002. 100(1): p. 2-8.
70. Osta, W.A., et al., EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res, 2004. 64(16): p. 5818-24.
71. Du, W., et al., EpCAM: a potential antimetastatic target for gastric cancer. Dig Dis Sci, 2010. 55(8): p. 2165-71.
72. Munz, M., et al., The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene, 2004. 23(34): p. 5748-58.
73. Schmidt, M., et al., An open-label, randomized phase II study of adecatumumab, a fully human anti-EpCAM antibody, as monotherapy in patients with metastatic breast cancer. Ann Oncol, 2010. 21(2): p. 275-82.
74. Baeuerle, P.A. and O. Gires, EpCAM (CD326) finding its role in cancer. Br J Cancer, 2007. 96(3): p. 417-23.
75. van der Gun, B.T., et al., Persistent downregulation of the pancarcinoma-associated epithelial cell adhesion molecule via active intranuclear methylation. Int J Cancer, 2008. 123(2): p. 484-9.
76. Yoon, H.H., et al., The prognostic value of clinical and pathologic factors in esophageal adenocarcinoma: a mayo cohort of 796 patients with extended follow-up after surgical resection. Mayo Clin Proc, 2010. 85(12): p. 1080-9.
77. Liu, W., Analysis of prognostic factors of esophageal and gastric cardiac carcinoma patients after radical surgery using cox proportional hazard model-a random sampling study from the fourth hospital of hebei medical university during the period of 1996-2004. Clin Oncol Cancer Res, 2009. 6: p. 290-295.
78. NCBI, Map Viewer. 2011, http://www.ncbi.nlm.nih.gov/mapview/.
79. Fadl-Elmula, I., et al., Chromosomal aberrations in benign and malignant bilharzia-associated bladder lesions analyzed by comparative genomic hybridization. BMC Cancer, 2002. 2: p. 5.
80. Dufva, M., Fabrication of high quality microarrays. Biomol Eng, 2005. 22(5-6): p. 173-84.
81. Pirrung, M.C., Die Herstellung von DNA-Chips. Angew. Chem., 2002. 114: p. 1326-1341.
82. Beatty, B., FISH: a practical approach. 2002.
83. Meinkoth, J. and G. Wahl, Hybridization of nucleic acids immobilized on solid supports. Anal Biochem, 1984. 138(2): p. 267-84.
84. Deegan, R.D., et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997. 389: p. 827-829.
85. Jonsson, G., et al., High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization. Genes Chromosomes Cancer, 2007. 46(6): p. 543-58.
86. Le Caignec, C., et al., Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res, 2006. 34(9): p. e68.
87. Fiegler, H., et al., High resolution array-CGH analysis of single cells. Nucleic Acids Res, 2007. 35(3): p. e15.
88. Geigl, J.B., et al., Identification of small gains and losses in single cells after whole genome amplification on tiling oligo arrays. Nucleic Acids Res, 2009. 37(15): p. e105.
89. Cancer Genome Project. 2011; Available from: http://www.sanger.ac.uk.
90. Schollmayer, E., et al., High resolution analysis and differential condensation in RBA-banded human chromosomes. Hum Genet, 1981. 59(3): p. 187-93.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:Düsseldorf/Regensburg 3/2006-11/2011
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Chemie » Biochemie
Dokument erstellt am:29.11.2011
Dateien geändert am:29.11.2011
Promotionsantrag am:16.08.2011
Datum der Promotion:08.11.2011
english
Benutzer
Status: Gast
Aktionen