Dokument: Untersuchungen zur Stammzellregulation im Sprossapikalmeristem von Arabidopsis thaliana
Titel: | Untersuchungen zur Stammzellregulation im Sprossapikalmeristem von Arabidopsis thaliana | |||||||
Weiterer Titel: | Studies on stem cell regulation of the shoot apical meristem in Arabidopsis thaliana | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=19224 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20110920-105845-2 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Dr. Bleckmann, Andrea [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Simon, Rüdiger [Gutachter] Prof. Dr. Groth, Georg [Gutachter] | |||||||
Stichwörter: | stem cell; shoot apical meristem; CLAVATA | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie | |||||||
Beschreibungen: | Postembryonales Pflanzenwachstum basiert auf der Teilungsaktivität von Stammzellen, die in Meristemen an den apikalen Polen der Pflanze lokalisiert sind. Im Sprossapikalmeristem (SAM) von Arabidopsis wird der Stammzellerhalt durch eine negative Rückkopplungsschleife zwischen CLAVATA3 (CLV3) und WUSCHEL (WUS) reguliert. Die Stammzellen sekretieren CLV3, ein 13 Aminosäuren großes Peptid, das zur Aktivierung des CLV-Signalweges führt. Dieser bewirkt die Repression des Transkriptionsfaktor WUS in den Zellen des Organisierenden Zentrum (OZ). WUS ist essentiell für den Stammzellerhalt und damit indirekt für die CLV3-Expression. Die Perzeption von CLV3 in die Zelle erfolgt über drei integrale Membranproteine: die rezeptor-ähnliche Kinase CLV1, das rezeptor-ähnliche Protein CLV2 und die Membrankinase CORYNE (CRN).
Diese Arbeit konzentriert sich auf die Analyse der genetischen und molekularen Interaktion von Komponenten des CLV-Signalweges. Andere Signalwege innerhalb des SAM beeinflussen und stabilisieren den Stammzellerhalt ebenfalls. Für eine bessere Integration wurde eine potentielle Interaktion dieser Komponenten mit dem CLV-Signalweg auf genetischer, molekularer und expressioneller Ebene untersucht. Die Plasmamembran (PM)-Lokalisation von CLV2 und CRN ist abhängig von deren Interaktion. Nur in einem heteromeren Rezeptorkomplex erfolgt dessen Translokation an die PM. Proteine, die nicht Teil eines solchen Komplexes sind, über einen bisher unbekannten Mechanismus werden im ER zurückgehalten. Basierend auf der Proteininteraktionsstudie besteht der einfachste heteromere Rezeptorkomplex aus einem CRN-Homodimer, der zwei CLV2-Moleküle gebunden hat. Dieser heteromere und funktionell unabhängige Rezeptorkomplex kann, vermittelt durch CRN, mit einem homomeren CLV1-Komplex interagieren. Somit findet, trotz funktioneller Unabhängigkeit dieser Rezeptorkomplexe eine Interaktion und damit eine potentielle Kommunikation zwischen ihnen statt. Durch eine Proteininteraktionsstudie konnte gezeigt werden, dass die Kinasedomänen von CLV1 und CRN einer negativen Regulation durch die Proteinphosphatase POLTERGEIST (POL) unterliegen. Ferner konnte gezeigt werden, dass die positive Regulation des Stammzellerhalts durch die CLV1-Homologen BARELY ANY MERISTEM (BAM) 1-3 nicht auf einer direkten Proteininteraktion mit den Komponenten des CLV-Signalweges basiert.Post-embryonic plant growth is based on the proliferative activity of stem cells that are localized in meristems at the apical poles of plants. In the shoot apical meristem (SAM) of Arabidopsis, stem cell maintenance is regulated by a negative feedback loop between CLAVATA3 (CLV3) and WUSCHEL (WUS). The stem cells secret CLV3, a peptide that activated the CLV-signaling pathway which repressed the transcription factor WUS in the cells of the Organizing Center (OC). WUS is essential for stem cell maintenance, and thus indirectly for the expression of CLV3. In cells of the meristem the perception of CLV3 is mediated by the three integral membrane proteins CLV1, a receptor-like kinase, CLV2, a receptor-like protein and CORYNE (CRN), a membrane kinase protein. This work focuses on the analyses of the genetic and molecular interaction between components of the CLV-signaling pathway. Several other signaling pathways within the SAM influence and stabilize stem cell maintenance. For a better integration, a potential interaction of these components with the components of the CLV-signaling pathway was carried out on a genetic, molecular and expressional level. The plasma membrane (PM) localization of CLV2 and CRN depends on their interaction. Only the heteromeric CLV2/CRN receptor complex is transported to the PM. Proteins that are not part of such a complex are retained in the ER, via an unknown mechanism. Based on the protein interaction study presented in this work, the simplest heteromeric receptor complex consists of a CRN homodimer that is bound to two CLV2 molecules. This functionally independent heteromeric complex can interact with a homomeric CLV1 complex mediated by CRN. In spite of the functional independence of these receptor complexes, they have the potential to interact which therefore allows communication of these complexes. In a protein interaction study a possible negative regulation of the kinase domains of CLV1 and CRN by the protein phosphatase POLTERGEIST (POL). Additionally it was shown that the positive regulation of stem cell maintenance through the CLV1 homologs BARELY ANY MERISTEM (BAM) 1-3 is not based on a direct protein interaction with the components of the CLV signaling pathway. | |||||||
Quelle: | Albertazzi, L., Arosio, D., Marchetti, L., Ricci, F., and Beltram, F. (2009). Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem Photobiol 85, 287-297.
Ausubel, F.M. (1996). Current protocols in molecular biology. (New York: Wiley). Benghezal, M., Wasteneys, G.O., and Jones, D.A. (2000). The C-terminal dilysine motif confers endoplasmic reticulum localization to type I membrane proteins in plants. Plant Cell 12, 1179-1201. Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591-602. Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39-44. Brady, S.M., Orlando, D.A., Lee, J.-Y., Wang, J.Y., Koch, J., Dinneny, J.R., Mace, D., Ohler, U., and Benfey, P.N. (2007). A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns. Science 318, 801-806. Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M., and Simon, R. (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617-619. Byrne, M.E. (2006). Shoot meristem function and leaf polarity: the role of class III HD-ZIP genes. PLoS Genet 2, e89. Casamitjana-Martinez, E., Hofhuis, H.F., Xu, J., Liu, C.M., Heidstra, R., and Scheres, B. (2003). Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol 13, 1435-1441. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500. Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119, 397-418. Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1995). CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121, 2057-2067. Clark, S.E., Williams, R.W., and Meyerowitz, E.M. (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89, 575-585. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743. Cock, J.M., and McCormick, S. (2001). A large family of genes that share homology with CLAVATA3. Plant Physiol 126, 939-942. Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133, 462-469. Däubner, T., Fink, A., Seitz, A., Tenzer, S., Muller, J., Strand, D., Seckert, C.K., Janssen, C., Renzaho, A., Grzimek, N.K., Simon, C.O., Ebert, S., Reddehase, M., Oehrlein-Karpi, S.A., and Lemmermann, N.A. (2010). Identification of a novel transmembrane domain mediating retention of a highly motile herpesviral glycoprotein in the endoplasmic reticulum. J Gen Virol. De Smet, I., Vassileva, V., De Rybel, B., Levesque, M.P., Grunewald, W., Van Damme, D., Van Noorden, G., Naudts, M., Van Isterdael, G., De Clercq, R., Wang, J.Y., Meuli, N., Vanneste, S., Friml, J., Hilson, P., Jurgens, G., Ingram, G.C., Inze, D., Benfey, P.N., and Beeckman, T. (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322, 594-597. Dellaporta, S.W., J; Hicks, JB (1983). A plant DNA minipreparation version II. Plant Molecular Biology Reporter 1, 19 - 21. DeYoung, B.J., and Clark, S.E. (2008). BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 180, 895-904. DeYoung, B.J., Bickle, K.L., Schrage, K.J., Muskett, P., Patel, K., and Clark, S.E. (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45, 1-16. Dievart, A., and Clark, S.E. (2003a). Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. Curr Opin Plant Biol 6, 507-516. Dievart, A., Dalal, M., Tax, F.E., Lacey, A.D., Huttly, A., Li, J., and Clark, S.E. (2003b). CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell 15, 1198-1211. Ding, Z., and Friml, J. (2010). Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci U S A Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K., and Scheres, B. (1993). Cellular organisation of the Arabidopsis thaliana root. Development 119, 71-84. Etchells, J.P., and Turner, S.R. (2010). The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137, 767-774. Fiers, M., Golemiec, E., Xu, J., van der Geest, L., Heidstra, R., Stiekema, W., and Liu, C.M. (2005). The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17, 2542-2553. Fisher, K., and Turner, S. (2007). PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17, 1061-1066. Fletcher, J.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911-1914. Förster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437, 55-75. Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and Jurgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147-153. Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jurgens, G., and Palme, K. (2002). AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661-673. Gagne, J.M., and Clark, S.E. (2010). The Arabidopsis Stem Cell Factor POLTERGEIST Is Membrane Localized and Phospholipid Stimulated. Plant Cell. Gallois, J.L., Nora, F.R., Mizukami, Y., and Sablowski, R. (2004). WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18, 375-380. Geier, F., Lohmann, J.U., Gerstung, M., Maier, A.T., Timmer, J., and Fleck, C. (2008). A quantitative and dynamic model for plant stem cell regulation. PLoS One 3, e3553. Geldner, N., Hyman, D.L., Wang, X., Schumacher, K., and Chory, J. (2007). Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21, 1598-1602. Goldshmidt, A., Alvarez, J.P., Bowman, J.L., and Eshed, Y. (2008). Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20, 1217-1230. Gordon, S.P., Chickarmane, V.S., Ohno, C., and Meyerowitz, E.M. (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106, 16529-16534. Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P., and Meyerowitz, E.M. (2007). Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134, 3539-3548. Gou, X., He, K., Yang, H., Yuan, T., Lin, H., Clouse, S.D., and Li, J. (2010). Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics 11, 19. Guilfoyle, T.J., and Hagen, G. (2007). Auxin response factors. Curr Opin Plant Biol 10, 453-460. Heim, R., Cubitt, A.B., and Tsien, R.Y. (1995). Improved green fluorescence. Nature 373, 663-664. Hirakawa, Y., Shinohara, H., Kondo, Y., Inoue, A., Nakanomyo, I., Ogawa, M., Sawa, S., Ohashi-Ito, K., Matsubayashi, Y., and Fukuda, H. (2008). Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci U S A 105, 15208-15213. Hobe, M., Muller, R., Grunewald, M., Brand, U., and Simon, R. (2003). Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev Genes Evol 213, 371-381. Hwang, I., and Robinson, D.G. (2009). Transport vesicle formation in plant cells. Curr Opin Plant Biol 12, 660-669. Itin, C., Kappeler, F., Linstedt, A.D., and Hauri, H.P. (1995). A novel endocytosis signal related to the KKXX ER-retrieval signal. EMBO J 14, 2250-2256. Ito, Y., Nakanomyo, I., Motose, H., Iwamoto, K., Sawa, S., Dohmae, N., and Fukuda, H. (2006). Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313, 842-845. Iyer-Pascuzzi, A.S., and Benfey, P.N. (2009). Transcriptional networks in root cell fate specification. Biochim Biophys Acta 1789, 315-325. Izhaki, A., and Bowman, J.L. (2007). KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19, 495-508. Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., and Tsiantis, M. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15, 1560-1565. Jeong, S., and Clark, S.E. (2005). Photoperiod regulates flower meristem development in Arabidopsis thaliana. Genetics 169, 907-915. Jeong, S., Trotochaud, A.E., and Clark, S.E. (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11, 1925-1934. Jin, H., Yan, Z., Nam, K.H., and Li, J. (2007). Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol Cell 26, 821-830. Karpova, T.S., Baumann, C.T., He, L., Wu, X., Grammer, A., Lipsky, P., Hager, G.L., and McNally, J.G. (2003). Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Microsc 209, 56-70. Kayes, J.M., and Clark, S.E. (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125, 3843-3851. Kim, J., Jung, J.H., Reyes, J.L., Kim, Y.S., Kim, S.Y., Chung, K.S., Kim, J.A., Lee, M., Lee, Y., Narry Kim, V., Chua, N.H., and Park, C.M. (2005). microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42, 84-94. Kinoshita, A., Nakamura, Y., Sasaki, E., Kyozuka, J., Fukuda, H., and Sawa, S. (2007). Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48, 1821-1825. Kleizen, B., and Braakman, I. (2004). Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16, 343-349. Koncz, C.a.S., Jeff (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet., 383 - 396. Koornneef, M., van Eden, J., Hanhart, C.J., Stam, P., Braaksma, F.J., and Feenstra, W.J. (1983). Linkage map of Arabidopsis thaliana. J Hered 74, 265-272. Kudryavtsev, V., Felekyan, S., Wozniak, A.K., Konig, M., Sandhagen, C., Kuhnemuth, R., Seidel, C.A., and Oesterhelt, F. (2007). Monitoring dynamic systems with multiparameter fluorescence imaging. Anal Bioanal Chem 387, 71-82. Kumaran, M.K., Bowman, J.L., and Sundaresan, V. (2002). YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 14, 2761-2770. Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H., and Kyozuka, J. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652-655. Laufs, P., Grandjean, O., Jonak, C., Kieu, K., and Traas, J. (1998b). Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10, 1375-1390. Laux, T., Mayer, K.F., Berger, J., and Jurgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96. Leibfried, A., To, J.P., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J.J., and Lohmann, J.U. (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172-1175. Lindsay, D.L., Sawhney, V.K., and Bonham-Smith, P.C. (2006). Cytokinin-induced changes in CLAVATA1 and WUSCHEL expression temporally coincide with altered floral development in Arabidopsis. Plant Science 170, 1111-1117. Liu, Q., Yao, X., Pi, L., Wang, H., Cui, X., and Huang, H. (2008). The ARGONAUTE10 gene modulates shoot apical meristem maintenance and leaf polarity establishment by repressing miR165/166 in Arabidopsis. Plant J. Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66-69. Lynn, K., Fernandez, A., Aida, M., Sedbrook, J., Tasaka, M., Masson, P., and Barton, M.K. (1999). The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469-481. Mallory, A.C., Reinhart, B.J., Jones-Rhoades, M.W., Tang, G., Zamore, P.D., Barton, M.K., and Bartel, D.P. (2004). MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J 23, 3356-3364. Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805-815. McCracken, A.A., and Brodsky, J.L. (1996). Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 132, 291-298. Meng, L., Ruth, K.C., Fletcher, J.C., and Feldman, L. (2010). The Roles of Different CLE Domains in Arabidopsis CLE Polypeptide Activity and Functional Specificity. Mol Plant. Mikosch, M., and Homann, U. (2009). How do ER export motifs work on ion channel trafficking? Curr Opin Plant Biol 12, 685-689. Mizuno, S., Osakabe, Y., Maruyama, K., Ito, T., Osakabe, K., Sato, T., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J 50, 751-766. Moussian, B., Haecker, A., and Laux, T. (2003). ZWILLE buffers meristem stability in Arabidopsis thaliana. Dev Genes Evol 213, 534-540. Muller, B., and Sheen, J. (2007). Advances in cytokinin signaling. Science 318, 68-69. Müller, R., Bleckmann, A., and Simon, R. (2008). The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20, 934-946. Müller, R., Borghi, L., Kwiatkowska, D., Laufs, P., and Simon, R. (2006). Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18, 1188-1198. Nadeau, J.A., and Sack, F.D. (2002). Control of stomatal distribution on the Arabidopsis leaf surface. Science 296, 1697-1700. Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20, 87-90. Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51, 1126-1136. Nodine, M.D., and Tax, F.E. (2008). Two receptor-like kinases required together for the establishment of Arabidopsis cotyledon primordia. Dev Biol 314, 161-170. Nodine, M.D., Yadegari, R., and Tax, F.E. (2007). RPK1 and TOAD2 are two receptor-like kinases redundantly required for arabidopsis embryonic pattern formation. Dev Cell 12, 943-956. Ogawa, M., Shinohara, H., Sakagami, Y., and Matsubayashi, Y. (2008). Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319, 294. Ohyama, K., Shinohara, H., Ogawa-Ohnishi, M., and Matsubayashi, Y. (2009). A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5, 578-580. Pagano, A., Rovelli, G., Mosbacher, J., Lohmann, T., Duthey, B., Stauffer, D., Ristig, D., Schuler, V., Meigel, I., Lampert, C., Stein, T., Prezeau, L., Blahos, J., Pin, J., Froestl, W., Kuhn, R., Heid, J., Kaupmann, K., and Bettler, B. (2001). C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 21, 1189-1202. Pattison, R.J., and Amtmann, A. (2009). N-glycan production in the endoplasmic reticulum of plants. Trends Plant Sci 14, 92-99. Pelham, H.R. (1995). Sorting and retrieval between the endoplasmic reticulum and Golgi apparatus. Curr Opin Cell Biol 7, 530-535. Piedras, P., Rivas, S., Droge, S., Hillmer, S., and Jones, J.D. (2000). Functional, c-myc-tagged Cf-9 resistance gene products are plasma-membrane localized and glycosylated. Plant J 21, 529-536. Prigge, M.J., Otsuga, D., Alonso, J.M., Ecker, J.R., Drews, G.N., and Clark, S.E. (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17, 61-76. Rèdei, J.P. (1992). A note on Columbia wild typ and Landsberg erecta. In Methods in Arabidopsis Research, C. Koncz, N.H. Chua and J. Schell. (Singapore: World Scientific). Reinhardt, D., Frenz, M., Mandel, T., and Kuhlemeier, C. (2003). Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130, 4073-4083. Rinne, P.L., and van der Schoot, C. (1998). Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125, 1477-1485. Rizzo, M.A., Springer, G.H., Granada, B., and Piston, D.W. (2004). An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22, 445-449. Robatzek, S., Chinchilla, D., and Boller, T. (2006). Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20, 537-542. Ruzicka, K., Simaskova, M., Duclercq, J., Petrasek, J., Zazimalova, E., Simon, S., Friml, J., Van Montagu, M.C., and Benkova, E. (2009). Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci U S A 106, 4284-4289. Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., and Scheres, B. (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463-472. Sarkar, A.K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., and Laux, T. (2007). Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811-814. Schaffer, J., Volkmer, A., Eggeling, C., Subramaniam, V., Striker, G., and Seidel, C.A.M. (1998). Identification of Single Molecules in Aqueous Solution by Time-Resolved Fluorescence Anisotropy. The Journal of Physical Chemistry A 103, 331-336. Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jurgens, G., and Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-644. Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A., and Zambryski, P.C. (1997). ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124, 4481-4491. Seward, H.E., and Bagshaw, C.R. (2009). The photochemistry of fluorescent proteins: implications for their biological applications. Chem Soc Rev 38, 2842-2851. Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E., and Tsien, R.Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567-1572. Sharma, V.K., Ramirez, J., and Fletcher, J.C. (2003). The Arabidopsis CLV3-like (CLE) genes are expressed in diverse tissues and encode secreted proteins. Plant Mol Biol 51, 415-425. Shiu, S.H., and Bleecker, A.B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98, 10763-10768. Sieburth, L.E., and Meyerowitz, E.M. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9, 355-365. Skoog, F., and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 54, 118-130. Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early flower development in Arabidopsis. Plant Cell 2, 755-767. Song, S.K., and Clark, S.E. (2005). POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Dev Biol 285, 272-284. Song, S.K., Lee, M.M., and Clark, S.E. (2006). POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development 133, 4691-4698. Stahl, Y., Wink, R.H., Ingram, G.C., and Simon, R. (2009). A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19, 909-914. Steeves, T.A., and Sussex, I.M. (1989). Pattern in plant development. (Cambridge University Press). Stone, J.M., Trotochaud, A.E., Walker, J.C., and Clark, S.E. (1998). Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol 117, 1217-1225. Stornaiuolo, M., Lotti, L.V., Borgese, N., Torrisi, M.R., Mottola, G., Martire, G., and Bonatti, S. (2003). KDEL and KKXX retrieval signals appended to the same reporter protein determine different trafficking between endoplasmic reticulum, intermediate compartment, and Golgi complex. Mol Biol Cell 14, 889-902. Swedlow, J., Goldman, R., and Spector, D. (2009). Live Cell Imaging: A Laboratory Manual. (Cold Spring Harbor Laboratory Press). Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., and Zheng, N. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645. Till, B.J., Reynolds, S.H., Greene, E.A., Codomo, C.A., Enns, L.C., Johnson, J.E., Burtner, C., Odden, A.R., Young, K., Taylor, N.E., Henikoff, J.G., Comai, L., and Henikoff, S. (2003). Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13, 524-530. Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F., and Komeda, Y. (1996). The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8, 735-746. Townsley, F.M., and Pelham, H.R. (1994). The KKXX signal mediates retrieval of membrane proteins from the Golgi to the ER in yeast. Eur J Cell Biol 64, 211-216. Trotochaud, A.E., Hao, T., Wu, G., Yang, Z., and Clark, S.E. (1999). The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11, 393-406. Tucker, M.R., Hinze, A., Tucker, E.J., Takada, S., Jurgens, G., and Laux, T. (2008). Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135, 2839-2843. Vanneste, S., and Friml, J. (2009). Auxin: a trigger for change in plant development. Cell 136, 1005-1016. Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P., and Traas, J. (2000). PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127, 5157-5165. Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33, 949-956. Wang, G., Long, Y., Thomma, B.P., de Wit, P.J., Angenent, G.C., and Fiers, M. (2010). Functional analyses of the CLAVATA2-like proteins and their domains that contribute to CLAVATA2 specificity. Plant Physiol 152, 320-331. Wang, G., Ellendorff, U., Kemp, B., Mansfield, J.W., Forsyth, A., Mitchell, K., Bastas, K., Liu, C.M., Woods-Tor, A., Zipfel, C., de Wit, P.J., Jones, J.D., Tor, M., and Thomma, B.P. (2008). A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147, 503-517. Wang, Z.Y., Wang, Q., Chong, K., Wang, F., Wang, L., Bai, M., and Jia, C. (2006). The brassinosteroid signal transduction pathway. Cell Res 16, 427-434. Weidtkamp-Peters, S., Felekyan, S., Bleckmann, A., Simon, R., Becker, W., Kuhnemuth, R., and Seidel, C.A. (2009). Multiparameter fluorescence image spectroscopy to study molecular interactions. Photochem Photobiol Sci 8, 470-480. Williams, L., Grigg, S.P., Xie, M., Christensen, S., and Fletcher, J.C. (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132, 3657-3668. Williams, R.W., Wilson, J.M., and Meyerowitz, E.M. (1997). A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc Natl Acad Sci U S A 94, 10467-10472. Wu, X., Dabi, T., and Weigel, D. (2005). Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 15, 436-440. Yadav, R.K., Girke, T., Pasala, S., Xie, M., and Reddy, G.V. (2009). Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci U S A 106, 4941-4946. Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A., and Ori, N. (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15, 1566-1571. Yu, L.P., Miller, A.K., and Clark, S.E. (2003). POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr Biol 13, 179-188. Yu, L.P., Simon, E.J., Trotochaud, A.E., and Clark, S.E. (2000). POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci. Development 127, 1661-1670. Zerangue, N., Schwappach, B., Jan, Y.N., and Jan, L.Y. (1999). A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22, 537-548. Zuo, J., Niu, Q.W., and Chua, N.H. (2000). Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24, 265-273. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Genetik | |||||||
Dokument erstellt am: | 20.09.2011 | |||||||
Dateien geändert am: | 20.09.2011 | |||||||
Promotionsantrag am: | 20.08.2010 | |||||||
Datum der Promotion: | 05.10.2010 |