Dokument: Hochauflösende Array-CGH-Analysen zum Nachweis submikroskopischer Aberrationen bei Myelodysplastischen Syndromen (MDS)
Titel: | Hochauflösende Array-CGH-Analysen zum Nachweis submikroskopischer Aberrationen bei Myelodysplastischen Syndromen (MDS) | |||||||
Weiterer Titel: | Detection of submicroscopic aberrations in myelodysplastic syndromes (MDS) using high-resolution array CGH | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=16824 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20101208-112658-7 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Dr. rer. nat. Pölitz, Anne [Autor] | |||||||
Dateien: |
| |||||||
Stichwörter: | MDS, Array-CGH, Aberrationen | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie | |||||||
Beschreibungen: | Die Myelodysplastischen Syndrome (MDS) sind gekennzeichnet durch eine ineffektive Hämatopoese mit Zytopenien, Zelldysplasien sowie Blasten in Knochenmark und/oder Blut. Sie zählen zu den häufigsten Neoplasien im Alter und gehen zu 25% in die Akute Myeloische Leukämie über. 50% der Patienten weisen zytogenetisch sichtbare, klonale chromosomale Aberrationen (≥ ~5 Mb) auf. Häufigkeit und Loci dieser Veränderungen sind von großer Wichtigkeit und teilweise im Prognose- und Klassifikationssystem (IPSS und FAB/WHO) verankert.
In dieser Arbeit wurden MDS-Patienten mit zytogenetisch normalem Karyotyp analysiert. In über 30% dieser Patienten konnten submikroskopische Imbalancen (≥ ~30 kb) mittels hochauflösender Oligonukleotidarray-basierter vergleichender genomischer Hybridisierung (aCGH) nachgewiesen werden. Die wenigen, aber dennoch rekurrent gefundenen kleinen Deletionen betrafen zum einen die bekannten Kandidatenregionen 5q31 und 7q22. Die Detektion zytogenetisch sichtbarer 5q- und 7q-Deletionen hat Konsequenzen für die Prognose und Therapie. Die zum anderen rekurrent auf-getretenen Deletionen von RUNX1 (21q22) und TET2 (4q24) zeigen mögliche neue 'hot spots' für genomische Veränderungen auf. Während Mutationen in RUNX1 häufig bei MDS vorkommen, wurden Deletionen bisher nicht beschrieben. TET2-Deletionen als auch -Mutationen waren zu Beginn dieser Arbeit unbekannt, es konnten jedoch in zwei Patienten genomische Verluste und in vier Patienten Mutationen identifiziert werden. Nicht rekurrent erfasste Aberrationen beinhalteten u. a. wichtige Gene der Zellzyklusregulation (CCNB1, CDKL3) oder des hämatopoetischen Systems (MCFD7, EPB24). Neben Tumor-spezifischen Anomalien könnten einige dieser Aber-rationen auch auf Keimbahnveränderungen zurückzuführen sein und sollten durch Analysen mit DNA aus Normalzellen (z. B. T-Zellen, die nicht in die MDS-Pathogenese involviert sind) überprüft werden. Mit Hilfe von Bruchpunktbestimmungen und analysen konnten häufig Mikrohomologien und seltener auch Baseninsertionen an den Deletionsenden identifiziert werden. Dies weist auf die Entstehungsmechanismen MMEJ und/oder FoSTeS für chromosomale Rearrangements hin. Die beiden verglichenen aCGH-Auswertealgorithmen GLAD und ADM-2 detektierten Imbalancen ähnlich zuverlässig und exakt. Trotzdem sollten Arraydaten mit anderen Methoden wie FISH oder qPCR bestätigt werden. Vergleiche von aCGH-Experimenten mit DNA kultivierter und unkultivierter Zellen erbrachten keine unterschiedlichen Daten. Auf Grund der wenigen rekurrenten Aberrationen konnte keine signifikante Korrelation mit dem Gesamtüberleben oder der Häufung eines MDS-Subtyps gefunden werden. Allgemein wurden weniger submikroskopische Aberrationen detektiert als erwartet und es konnte keine generelle Chromosomeninstabilität festgestellt werden. Zusammenfassend wird die aCGH-Technik, inklusive spezifischer 'custom'-Arrays, in Ergänzung zur Routinediagnostik bei MDS empfohlen, um die Art und Frequenz kryptischer Aberrationen im Hinblick auf die MDS-Pathogenese erforschen zu können. Nur so kann überprüft werden, ob sie in Zukunft als molekulare Marker oder Therapieziele genutzt werden könnten.The myelodysplastic syndromes (MDS) are characterised by an ineffective haematopoiesis with cytopenia, dysplasia and blasts in bone marrow and/or peripheral blood. MDS is a common neoplasia of the elderly and 25% of the patients develop an acute myeloid leukaemia. Half of the patients show cytogenetic visible (≥ ~5 Mb), clonal chromosomal aberrations. Great afford is made to integrate the information on the frequency of anomalies and the involved genomic loci into the prognostic scoring and classification systems. In the present thesis high definition oligonucleotidearray-based comparative genomic hybridisation (aCGH) revealed submicroscopic imbalances (≥ ~30 kb) in over 30% of patients with cytogenetically normal karyotype. Only few recurrent aberrations were found, however, some of them targeted the known candidate regions 5q31 and 7q22. The detection of cytogenetically visible 5q- and 7q-deletions has consequences on prognosis and therapeutic handling. Other recurrent findings showed deletions of RUNX1 (21q22) and TET2 (4q24) making them potential new hot spots for genomic changes. While mutations of RUNX1 are common events in MDS, deletions were not described. Deletions and mutations of TET2 were unknown prior to this thesis. However, loss of TET2 could be revealed in two patients and mutations in this gene were identified in four patients. Non-recurrent aberrations harboured important genes involved in cell cycle regulation (CCNB1, CDKL3) or haematopoietic system (MCFD7, EPB24). Besides of tumour-specific aberrations, some of these imbalances could be germ line defects and should be monitored by using DNA from normal cells (e. g. T-cells are not part of the pathogeneses of MDS). The determination of breakpoints and breakpoint analyses frequently revealed microhomologies and/or nucleotide insertions at the deletion end points, supporting the MMEJ or FoSTeS mechanisms for the formation of chromosomal rearrangements. The used analysis algorithms GLAD and ADM-2 both worked comparably and accurately, nevertheless, FISH and qPCR verifications seemed to be essential. Short culturing of cells prior to aCGH did not affect array results. Because of the small number of recurrent aberrations significant correlations with the overall survival or the MDS subtype could not be observed. In general, fewer submicroscopic aberrations than expected were found and no common chromosome instability was measured. In conclusion, the aCGH-technique with the possible flexibility of using custom-arrays should complement the routine diagnostic of MDS in order to explore the nature and occurrence of cryptic aberrations in the pathogenesis of MDS. This is necessary to evaluate their benefit as molecular markers or therapeutic targets in future. | |||||||
Quelle: | Abdel-Wahab, O.; Mullally, A.; Hedvat, C.; Garcia-Manero, G.; Patel, J.; Wadleigh, M.; Malinge, S.; Yao, J.; Kilpivaara, O.; Bhat, R.; Huberman, K.; Thomas, S.; Dolgalev, I.; Heguy, A.; Paietta, E.; Le Beau, M.; Beran, M.; Tallman, M.; Ebert, B.; Kantarjian, H.; Stone, R.; Gilliland, D.; Crispino, J.; Levine, R. (2009): Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. In: Blood, Jg. 114, H. 1, S. 144–147.
Acquaviva, C.; Gelsi-Boyer, V.; Birnbaum, D. (2010): Myelodysplastic syndromes: lost between two states? In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 24, H. 1, S. 1–5. Albertson, D.; Pinkel, D. (2003): Genomic microarrays in human genetic disease and cancer. In: Human molecular genetics, Jg. 12 Spec No 2, S. R145-52. Andersson, T.; Södersten, E.; Duckworth, J.; Cascante, A.; Fritz, N.; Sacchetti, P.; Cervenka, I.; Bryja, V.; Hermanson, O. (2009): CXXC5 is a novel BMP4-regulated modulator of Wnt signaling in neural stem cells. In: The Journal of biological chemistry, Jg. 284, H. 6, S. 3672–3681. Aul, C.; Bowen, D.; Yoshida, Y. (1998): Pathogenesis, etiology and epidemiology of myelodysplastic syndromes. In: Haematologica, Jg. 83, H. 1, S. 71–86. Bacher, U.; Haferlach, T.; Kern, W.; Weiss, T.; Schnittger, S.; Haferlach, C. (2009): The impact of cytomorphology, cytogenetics, molecular genetics, and immunophenotyping in a comprehensive diagnostic workup of myelodysplastic syndromes. In: Cancer, Jg. 115, H. 19, S. 4524–4532. Baldwin, E.; Lee, J.-Y.; Blake, D.; Bunke, B.; Alexander, C.; Kogan, A.; Ledbetter, D.; Martin, C. (2008): Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray. In: Genetics in medicine : official journal of the American College of Medical Genetics, Jg. 10, H. 6, S. 415–429. Bejjani, B.; Shaffer, L. (2006): Application of array-based comparative genomic hybridization to clinical diagnostics. In: The Journal of molecular diagnostics : JMD, Jg. 8, H. 5, S. 528–533. Bennett, J. (2000): World Health Organization classification of the acute leukemias and myelodysplastic syndrome. In: International journal of hematology, Jg. 72, H. 2, S. 131–133. Bennett, J.; Catovsky, D.; Daniel, M.; Flandrin, G.; Galton, D.; Gralnick, H.; Sultan, C. (1976): Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. In: British journal of haematology, Jg. 33, H. 4, S. 451–458. Bennett, J.; Catovsky, D.; Daniel, M.; Flandrin, G.; Galton, D.; Gralnick, H.; Sultan, C. (1982): Proposals for the classification of the myelodysplastic syndromes. In: British journal of haematology, Jg. 51, H. 2, S. 189–199. Bernasconi, P.; Cavigliano, P.; Boni, M.; Calatroni, S.; Klersy, C.; Giardini, I.; Rocca, B.; Crosetto, N.; Caresana, M.; Lazzarino, M.; Bernasconi, C. (2003): Is FISH a relevant prognostic tool in myelodysplastic syndromes with a normal chromosome pattern on conventional cytogenetics? A study on 57 patients. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 17, H. 11, S. 2107–2112. Boultwood, J.; Fidler, C.; Strickson, A.; Watkins, F.; Gama, S.; Kearney, L.; Tosi, S.; Kasprzyk, A.; Cheng, J.-F.; Jaju, R.; Wainscoat, J. (2002): Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. In: Blood, Jg. 99, H. 12, S. 4638–4641. Braekeleer, E. de; Férec, C.; Braekeleer, M. de (2009): RUNX1 translocations in malignant hemopathies. In: Anticancer research, Jg. 29, H. 4, S. 1031–1037. Brazma, D.; Grace, C.; Howard, J.; Melo, J.; Holyoke, T.; Apperley, J.; Nacheva, E. (2007): Genomic profile of chronic myelogenous leukemia: Imbalances associated with disease progression. In: Genes, chromosomes & cancer, Jg. 46, H. 11, S. 1039–1050. Carter, N. (2007): Methods and strategies for analyzing copy number variation using DNA microarrays. In: Nature genetics, Jg. 39, H. 7 Suppl, S. S16-21. Cetin, M.; Hiçsönmez, G.; Göğüş, S. (1998): Myelodysplastic syndrome associated with Griscelli syndrome. In: Leukemia research, Jg. 22, H. 9, S. 859–862. Challen, G.; Goodell, M. (2010): Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. In: Experimental hematology, Jg. 38, H. 5, S. 403–416. Chen, M.; Yokomizo, T.; Zeigler, B.; Dzierzak, E.; Speck, N. (2009a): Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. In: Nature, Jg. 457, H. 7231, S. 887–891. Chen, M.; Logan, T.; Hochberg, M.; Shelat, S.; Yu, X.; Wilding, G.; Tan, W.; Kujoth, G.; Prolla, T.; Selak, M.; Kundu, M.; Carroll, M.; Thompson, J. (2009b): Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. In: Blood, Jg. 114, H. 19, S. 4045–4053. Cross, N.; Reiter, A. (2002): Tyrosine kinase fusion genes in chronic myeloproliferative diseases. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 16, H. 7, S. 1207–1212. Curtiss, N.; Bonifas, J.; Lauchle, J.; Balkman, J.; Kratz, C.; Emerling, B.; Green, E.; Le Beau, M.; Shannon, K. (2005): Isolation and analysis of candidate myeloid tumor suppressor genes from a commonly deleted segment of 7q22. In: Genomics, Jg. 85, H. 5, S. 600–607. Cuscó, I.; Corominas, R.; Bayés, M.; Flores, R.; Rivera-Brugués, N.; Campuzano, V.; Pérez-Jurado, L. (2008): Copy number variation at the 7q11.23 segmental duplications is a susceptibility factor for the Williams-Beuren syndrome deletion. In: Genome research, Jg. 18, H. 5, S. 683–694. Davies, J.; Wilson, I.; Lam, W. (2005): Array CGH technologies and their applications to cancer genomes. In: Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, Jg. 13, H. 3, S. 237–248. Delhommeau; Francois; Dupont; Sabrina; James; Chloe; Masse; Aline; Le Couedic; Pierre, J.; Valle; Della Veronique; Alberdi; Antonio; Dessen; Philippe; Fontenay; Michaela; Casadevall; Nicole; Soulier; Jean; Bernard; Olivier; Vainchenker; William (2008): TET2 Is a Novel Tumor Suppressor Gene Inactivated in Myeloproliferative Neoplasms: Identification of a Pre-JAK2 V617F Event -- Delhommeau et al. 112 (11): lba-3 -- ASH Annual Meeting Abstracts. Delhommeau, F.; Dupont, S.; Della Valle, V.; James, C.; Trannoy, S.; Massé, A.; Kosmider, O.; Le Couedic, J.-P.; Robert, F.; Alberdi, A.; Lécluse, Y.; Plo, I.; Dreyfus, F.; Marzac, C.; Casadevall, N.; Lacombe, C.; Romana, S.; Dessen, P.; Soulier, J.; Viguié, F.; Fontenay, M.; Vainchenker, W.; Bernard, O. (2009): Mutation in TET2 in myeloid cancers. In: The New England journal of medicine, Jg. 360, H. 22, S. 2289–2301. Dolman, K.; Révész, T.; Niemeyer, C.; van Wering, E.; Saint Basile, G. de; Canninga, M.; Bierings, M.; Wulffraat, N. (2004): Myelodysplastic features in Griscelli syndrome. In: Journal of pediatric hematology/oncology : official journal of the American Society of Pediatric Hematology/Oncology, Jg. 26, H. 5, S. 275–276. Du Manoir, S.; Speicher, M.; Joos, S.; Schröck, E.; Popp, S.; Döhner, H.; Kovacs, G.; Robert-Nicoud, M.; Lichter, P.; Cremer, T. (1993): Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. In: Human genetics, Jg. 90, H. 6, S. 590–610. Dunø, M.; Hove, H.; Kirchhoff, M.; Devriendt, K.; Schwartz, M. (2004): Mapping genomic deletions down to the base: a quantitative copy number scanning approach used to characterise and clone the breakpoints of a recurrent 7p14.2p15.3 deletion. In: Human genetics, Jg. 115, H. 6, S. 459–467. Ebert, B.; Pretz, J.; Bosco, J.; Chang, C.; Tamayo, P.; Galili, N.; Raza, A.; Root, D.; Attar, E.; Ellis, S.; Golub, T. (2008): Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. In: Nature, Jg. 451, H. 7176, S. 335–339. Eisenmann, K.; Dykema, K.; Matheson, S.; Kent, N.; DeWard, A.; West, R.; Tibes, R.; Furge, K.; Alberts, A. (2009): 5q- myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics. In: Oncogene, Jg. 28, H. 39, S. 3429–3441. Evers, C.; Beier, M.; Poelitz, A.; Hildebrandt, B.; Servan, K.; Drechsler, M.; Germing, U.; Royer, H.-D.; Royer-Pokora, B. (2007): Molecular definition of chromosome arm 5q deletion end points and detection of hidden aberrations in patients with myelodysplastic syndromes and isolated del(5q) using oligonucleotide array CGH. In: Genes, chromosomes & cancer, Jg. 46, H. 12, S. 1119–1128. Fairman, J.; Chumakov, I.; Chinault, A.; Nowell, P.; Nagarajan, L. (1995): Physical mapping of the minimal region of loss in 5q- chromosome. In: Proceedings of the National Academy of Sciences of the United States of America, Jg. 92, H. 16, S. 7406–7410. Fenaux, P. (2001): Chromosome and molecular abnormalities in myelodysplastic syndromes. In: International journal of hematology, Jg. 73, H. 4, S. 429–437. Fischer, K.; Fröhling, S.; Scherer, S.; McAllister Brown, J.; Scholl, C.; Stilgenbauer, S.; Tsui, L.; Lichter, P.; Döhner, H. (1997): Molecular cytogenetic delineation of deletions and translocations involving chromosome band 7q22 in myeloid leukemias. In: Blood, Jg. 89, H. 6, S. 2036–2041. Galili, N.; Mehdi, M.; Mumtaz, M.; Miron, P.; Woda, B.; Al-Homsi, S.; Westervelt, P.; Raza, A. (2006): Can molecular profiling of cytogenetic subgroups draw a roadmap for individualizing therapy in myelodysplastic syndromes? In: Future oncology (London, England), Jg. 2, H. 3, S. 407–415. Germing, U. (2006): Deutsches MDS-Forum - Dresden 2006: Vom Nihilismus zum Algorithmus. Online verfügbar unter http://mds-forum.onkodin.de/mds2006/content/index_ger.html. Germing, U.; Haas, R. (2009): Myelodysplastische Syndrome. Bilanz des aktuellen Wissens. Düsseldorf: Dup. Germing, U.; Strupp, C.; Kündgen, A.; Bowen, D.; Aul, C.; Haas, R.; Gattermann, N. (2004): No increase in age-specific incidence of myelodysplastic syndromes. In: Haematologica, Jg. 89, H. 8, S. 905–910. Giagounidis, A.; Germing, U.; Wainscoat, J.; Boultwood, J.; Aul, C. (2004): The 5q- syndrome. In: Hematology (Amsterdam, Netherlands), Jg. 9, H. 4, S. 271–277. Gondek, L.; Tiu, R.; Haddad, A.; O'Keefe, C.; Sekeres, M.; Theil, K.; Maciejewski, J. (2007a): Single nucleotide polymorphism arrays complement metaphase cytogenetics in detection of new chromosomal lesions in MDS. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 21, H. 9, S. 2058–2061. Gondek, L.; Haddad, A.; O'Keefe, C.; Tiu, R.; Wlodarski, M.; Sekeres, M.; Theil, K.; Maciejewski, J. (2007b): Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. In: Experimental hematology, Jg. 35, H. 11, S. 1728–1738. Gondek, L.; Tiu, R.; O'Keefe, C.; Sekeres, M.; Theil, K.; Maciejewski, J. (2008): Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. In: Blood, Jg. 111, H. 3, S. 1534–1542. Graubert, T.; Payton, M.; Shao, J.; Walgren, R.; Monahan, R.; Frater, J.; Walshauser, M.; Martin, M.; Kasai, Y.; Walter, M. (2009): Integrated genomic analysis implicates haploinsufficiency of multiple chromosome 5q31.2 genes in de novo myelodysplastic syndromes pathogenesis. In: PloS one, Jg. 4, H. 2, S. e4583. Greenberg, P.; Cox, C.; LeBeau, M.; Fenaux, P.; Morel, P.; Sanz, G.; Sanz, M.; Vallespi, T.; Hamblin, T.; Oscier, D.; Ohyashiki, K.; Toyama, K.; Aul, C.; Mufti, G.; Bennett, J. (1997): International scoring system for evaluating prognosis in myelodysplastic syndromes. In: Blood, Jg. 89, H. 6, S. 2079–2088. Haase, D.; Germing, U.; Schanz, J.; Pfeilstöcker, M.; Nösslinger, T.; Hildebrandt, B.; Kundgen, A.; Lübbert, M.; Kunzmann, R.; Giagounidis, A.; Aul, C.; Trümper, L.; Krieger, O.; Stauder, R.; Müller, T.; Wimazal, F.; Valent, P.; Fonatsch, C.; Steidl, C. (2007): New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. In: Blood, Jg. 110, H. 13, S. 4385–4395. Haferlach, C.; Rieder, H.; Lillington, D.; Dastugue, N.; Hagemeijer, A.; Harbott, J.; Stilgenbauer, S.; Knuutila, S.; Johansson, B.; Fonatsch, C. (2007): Proposals for standardized protocols for cytogenetic analyses of acute leukemias, chronic lymphocytic leukemia, chronic myeloid leukemia, chronic myeloproliferative disorders, and myelodysplastic syndromes. In: Genes, chromosomes & cancer, Jg. 46, H. 5, S. 494–499. Hagemeijer, A. (1987): Chromosome abnormalities in CML. In: Baillière's clinical haematology, Jg. 1, H. 4, S. 963–981. Hall, N. (2007): Advanced sequencing technologies and their wider impact in microbiology. In: The Journal of experimental biology, Jg. 210, H. Pt 9, S. 1518–1525. Harada, Y.; Harada, H. (2009): Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations. In: Journal of cellular physiology, Jg. 220, H. 1, S. 16–20. Heinrichs, S.; Kulkarni, R.; Bueso-Ramos, C.; Levine, R.; Loh, M.; Li, C.; Neuberg, D.; Kornblau, S.; Issa, J.-P.; Gilliland, D.; Garcia-Manero, G.; Kantarjian, H.; Estey, E.; Look, A. (2009): Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. Hellenbrecht, A.; Messerer, D.; Gökbuget, N. (2003): Leukämie Kompetenznetz: Akute und chronische Leukämien. Online verfügbar unter http://www.kompetenznetz-leukaemie.de/content/home/. Hoffman, M.; Janney, S.; Batanian, J. (2009): Cryptic deletion of EGR1 in association with a novel balanced t(5;22)(q31;q11.2) in a patient with myelodysplastic syndrome. In: Cancer genetics and cytogenetics, Jg. 191, H. 2, S. 106–108. Hollox, E.; Huffmeier, U.; Zeeuwen, P.; Palla, R.; Lascorz, J.; Rodijk-Olthuis, D.; van de Kerkhof, P.; Traupe, H.; Jongh, G. de; den Heijer, M.; Reis, A.; Armour, J.; Schalkwijk, J. (2008): Psoriasis is associated with increased beta-defensin genomic copy number. In: Nature genetics, Jg. 40, H. 1, S. 23–25. Holzapfel, B.; Wickert, L. (2007): Die quantitative Real-Time-PCR (qRT-PCR). Methoden und Anwendungsgebiete, H. DOI:10.1002/biuz.200610332. Horrigan, S.; Arbieva, Z.; Xie, H.; Kravarusic, J.; Fulton, N.; Naik, H.; Le, T.; Westbrook, C. (2000): Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. In: Blood, Jg. 95, H. 7, S. 2372–2377. Horrigan, S.; Westbrook, C.; Kim, A.; Banerjee, M.; Stock, W.; Larson, R. (1996): Polymerase chain reaction-based diagnosis of del (5q) in acute myeloid leukemia and myelodysplastic syndrome identifies a minimal deletion interval. In: Blood, Jg. 88, H. 7, S. 2665–2670. Horsley, S.; Mackay, A.; Iravani, M.; Fenwick, K.; Valgeirsson, H.; Dexter, T.; Ashworth, A.; Kearney, L. (2006): Array CGH of fusion gene-positive leukemia-derived cell lines reveals cryptic regions of genomic gain and loss. In: Genes, chromosomes & cancer, Jg. 45, H. 6, S. 554–564. Hostetter, G.; Kim, S.; Savage, S.; Gooden, G.; Barrett, M.; Zhang, J.; Alla, L.; Watanabe, A.; Einspahr, J.; Prasad, A.; Nickoloff, B.; Carpten, J.; Trent, J.; Alberts, D.; Bittner, M. (2010): Random DNA fragmentation allows detection of single-copy, single-exon alterations of copy number by oligonucleotide array CGH in clinical FFPE samples. In: Nucleic acids research, Jg. 38, H. 2, S. e9. Iafrate, A.; Feuk, L.; Rivera, M.; Listewnik, M.; Donahoe, P.; Qi, Y.; Scherer, S.; Lee, C. (2004): Detection of large-scale variation in the human genome. In: Nature genetics, Jg. 36, H. 9, S. 949–951. Imai, Y.; Kurokawa, M.; Izutsu, K.; Hangaishi, A.; Takeuchi, K.; Maki, K.; Ogawa, S.; Chiba, S.; Mitani, K.; Hirai, H. (2000): Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. In: Blood, Jg. 96, H. 9, S. 3154–3160. Jaffe, E.; Harris, N.; Stein, H.; Vardiman, J.; editors (2001): World Health Organization Classification of Tumours. Lyon: IARC Press. Jankowska, A.; Szpurka, H.; Tiu, R.; Makishima, H.; Afable, M.; Huh, J.; O'Keefe, C.; Ganetzky, R.; McDevitt, M.; Maciejewski, J. (2009): Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. In: Blood, Jg. 113, H. 25, S. 6403–6410. Jiang, Y.; Dunbar, A.; Gondek, L.; Mohan, S.; Rataul, M.; O'Keefe, C.; Sekeres, M.; Saunthararajah, Y.; Maciejewski, J. (2009): Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. In: Blood, Jg. 113, H. 6, S. 1315–1325. Jiang, Z.; Tang, H.; Ventura, M.; Cardone, M.; Marques-Bonet, T.; She, X.; Pevzner, P.; Eichler, E. (2007): Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. In: Nature genetics, Jg. 39, H. 11, S. 1361–1368. Joslin, J.; Fernald, A.; Tennant, T.; Davis, E.; Kogan, S.; Anastasi, J.; Crispino, J.; Le Beau, M. (2007): Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. In: Blood, Jg. 110, H. 2, S. 719–726. Kakazu, N.; Taniwaki, M.; Horiike, S.; Nishida, K.; Tatekawa, T.; Nagai, M.; Takahashi, T.; Akaogi, T.; Inazawa, J.; Ohki, M.; Abe, T. (1999): Combined spectral karyotyping and DAPI banding analysis of chromosome abnormalities in myelodysplastic syndrome. In: Genes, chromosomes & cancer, Jg. 26, H. 4, S. 336–345. Kallioniemi, A.; Kallioniemi, O.; Sudar, D.; Rutovitz, D.; Gray, J.; Waldman, F.; Pinkel, D. (1992): Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. In: Science (New York, N.Y.), Jg. 258, H. 5083, S. 818–821. Kerbauy, D.; Deeg, H. (2007): Apoptosis and antiapoptotic mechanisms in the progression of myelodysplastic syndrome. In: Experimental hematology, Jg. 35, H. 11, S. 1739–1746. Kere, J.; Donis-Keller, H.; Ruutu, T.; La Chapelle, A. de (1989): Chromosome 7 long-arm deletions in myeloid disorders: terminal DNA sequences are commonly conserved and breakpoints vary. In: Cytogenetics and cell genetics, Jg. 50, H. 4, S. 226–229. Kere, J.; Ruutu, T.; Lahtinen, R.; La Chapelle, A. de (1987): Molecular characterization of chromosome 7 long arm deletions in myeloid disorders. In: Blood, Jg. 70, H. 5, S. 1349–1353. Korbel, J.; Urban, A.; Grubert, F.; Du, J.; Royce, T.; Starr, P.; Zhong, G.; Emanuel, B.; Weissman, S.; Snyder, M.; Gerstein, M. (2007): Systematic prediction and validation of breakpoints associated with copy-number variants in the human genome. In: Proceedings of the National Academy of Sciences of the United States of America, Jg. 104, H. 24, S. 10110–10115. Kosmider, O.; Gelsi-Boyer, V.; Cheok, M.; Grabar, S.; Della-Valle, V.; Picard, F.; Viguié, F.; Quesnel, B.; Beyne-Rauzy, O.; Solary, E.; Vey, N.; Hunault-Berger, M.; Fenaux, P.; Mansat-De Mas, V.; Delabesse, E.; Guardiola, P.; Lacombe, C.; Vainchenker, W.; Preudhomme, C.; Dreyfus, F.; Bernard, O.; Birnbaum, D.; Fontenay, M. (2009a): TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). In: Blood, Jg. 114, H. 15, S. 3285–3291. Kosmider, O.; Gelsi-Boyer, V.; Ciudad, M.; Racoeur, C.; Jooste, V.; Vey, N.; Quesnel, B.; Fenaux, P.; Bastie, J.-N.; Beyne-Rauzy, O.; Stamatoulas, A.; Dreyfus, F.; Ifrah, N.; Botton, S. de; Vainchenker, W.; Bernard, O.; Birnbaum, D.; Fontenay, M.; Solary, E. (2009b): TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. In: Haematologica, Jg. 94, H. 12, S. 1676–1681. Lai, W.; Johnson, M.; Kucherlapati, R.; Park, P. (2005): Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. In: Bioinformatics (Oxford, England), Jg. 21, H. 19, S. 3763–3770. Langemeijer, S.; Kuiper, R.; Berends, M.; Knops, R.; Aslanyan, M.; Massop, M.; Stevens-Linders, E.; van Hoogen, P.; van Kessel, A.; Raymakers, R.; Kamping, E.; Verhoef, G.; Verburgh, E.; Hagemeijer, A.; Vandenberghe, P.; Witte, T. de; van der Reijden, B.; Jansen, J. (2009): Acquired mutations in TET2 are common in myelodysplastic syndromes. In: Nature genetics, Jg. 41, H. 7, S. 838–842. Lee, J.; Carvalho, C.; Lupski, J. (2007): A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. In: Cell, Jg. 131, H. 7, S. 1235–1247. List, A.; Dewald, G.; Bennett, J.; Giagounidis, A.; Raza, A.; Feldman, E.; Powell, B.; Greenberg, P.; Thomas, D.; Stone, R.; Reeder, C.; Wride, K.; Patin, J.; Schmidt, M.; Zeldis, J.; Knight, R. (2006): Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. In: The New England journal of medicine, Jg. 355, H. 14, S. 1456–1465. List, A.; Kurtin, S.; Roe, D.; Buresh, A.; Mahadevan, D.; Fuchs, D.; Rimsza, L.; Heaton, R.; Knight, R.; Zeldis, J. (2005): Efficacy of lenalidomide in myelodysplastic syndromes. In: The New England journal of medicine, Jg. 352, H. 6, S. 549–557. Lorsbach, R.; Moore, J.; Mathew, S.; Raimondi, S.; Mukatira, S.; Downing, J. (2003): TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 17, H. 3, S. 637–641. Macville, M.; Veldman, T.; Padilla-Nash, H.; Wangsa, D.; O'Brien, P.; Schröck, E.; Ried, T. (1997): Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. In: Histochemistry and cell biology, Jg. 108, H. 4-5, S. 299–305. Magi, A.; Benelli, M.; Marseglia, G.; Nannetti, G.; Scordo, M.; Torricelli, F. (2009): A shifting level model algorithm that identifies aberrations in array-CGH data. In: Biostatistics (Oxford, England). Mamishi, S.; Modarressi, M.; Pourakbari, B.; Tamizifar, B.; Mahjoub, F.; Fahimzad, A.; Alyasin, S.; Bemanian, M.; Hamidiyeh, A.; Fazlollahi, M.; Ashrafi, M.; Isaeian, A.; Khotaei, G.; Yeganeh, M.; Parvaneh, N. (2008): Analysis of RAB27A gene in griscelli syndrome type 2: novel mutations including a deletion hotspot. In: Journal of clinical immunology, Jg. 28, H. 4, S. 384–389. Martínez-Ramírez, A.; Urioste, M.; Melchor, L.; Blesa, D.; Valle, L.; Andrés, S. de; Kok, K.; Calasanz, M.; Cigudosa, J.; Benítez, J. (2005): Analysis of myelodysplastic syndromes with complex karyotypes by high-resolution comparative genomic hybridization and subtelomeric CGH array. In: Genes, chromosomes & cancer, Jg. 42, H. 3, S. 287–298. Meschede, I.; Santos, T.; Izidoro-Toledo, T.; Gurgel-Gianetti, J.; Espreafico, E. (2008): Griscelli syndrome-type 2 in twin siblings: case report and update on RAB27A human mutations and gene structure. In: Brazilian journal of medical and biological research = Revista brasileira de pesquisas médicas e biológicas / Sociedade Brasileira de Biofísica … [et al.], Jg. 41, H. 10, S. 839–848. Miyoshi, H.; Ohira, M.; Shimizu, K.; Mitani, K.; Hirai, H.; Imai, T.; Yokoyama, K.; Soeda, E.; Ohki, M. (1995): Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. In: Nucleic acids research, Jg. 23, H. 14, S. 2762–2769. Mohamedali, A.; Gäken, J.; Twine, N.; Ingram, W.; Westwood, N.; Lea, N.; Hayden, J.; Donaldson, N.; Aul, C.; Gattermann, N.; Giagounidis, A.; Germing, U.; List, A.; Mufti, G. (2007): Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. In: Blood, Jg. 110, H. 9, S. 3365–3373. Mohamedali, A.; Smith, A.; Gaken, J.; Lea, N.; Mian, S.; Westwood, N.; Strupp, C.; Gattermann, N.; Germing, U.; Mufti, G. (2009): Novel TET2 Mutations Associated With UPD4q24 in Myelodysplastic Syndrome. In: Journal of clinical oncology : official journal of the American Society of Clinical Oncology. Mufti, G. (1992): Chromosomal deletions in the myelodysplastic syndrome. In: Leukemia research, Jg. 16, H. 1, S. 35–41. Neumann, F.; Poelitz, A.; Hildebrandt, B.; Fenk, R.; Haas, R.; Royer-Pokora, B.; Germing, U. (2007): The tyrosine-kinase inhibitor imatinib induces long-term remission in a patient with chronic myelogenous leukemia with translocation t(4;22). In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 21, H. 4, S. 836–837. O'Keefe, C.; Tiu, R.; Gondek, L.; Powers, J.; Theil, K.; Kalaycio, M.; Lichtin, A.; Sekeres, M.; Maciejewski, J. (2007): High-resolution genomic arrays facilitate detection of novel cryptic chromosomal lesions in myelodysplastic syndromes. In: Experimental hematology, Jg. 35, H. 2, S. 240–251. Osborne, L. (2008): Genomic rearrangements in the spotlight. In: Nature genetics, Jg. 40, H. 1, S. 6–7. Paulsson, K.; Heidenblad, M.; Strömbeck, B.; Staaf, J.; Jönsson, G.; Borg, A.; Fioretos, T.; Johansson, B. (2006): High-resolution genome-wide array-based comparative genome hybridization reveals cryptic chromosome changes in AML and MDS cases with trisomy 8 as the sole cytogenetic aberration. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 20, H. 5, S. 840–846. Pedersen-Bjergaard, J.; Philip, P.; Larsen, S.; Jensen, G.; Byrsting, K. (1990): Chromosome aberrations and prognostic factors in therapy-related myelodysplasia and acute nonlymphocytic leukemia. In: Blood, Jg. 76, H. 6, S. 1083–1091. Pfaffl, M. (2001): A new mathematical model for relative quantification in real-time RT-PCR. In: Nucleic acids research, Jg. 29, H. 9, S. e45. Pfaffl, M.; Horgan, G.; Dempfle, L. (2002): Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. In: Nucleic acids research, Jg. 30, H. 9, S. e36. Pollack, J.; Perou, C.; Alizadeh, A.; Eisen, M.; Pergamenschikov, A.; Williams, C.; Jeffrey, S.; Botstein, D.; Brown, P. (1999): Genome-wide analysis of DNA copy-number changes using cDNA microarrays. In: Nature genetics, Jg. 23, H. 1, S. 41–46. Redon, R.; Ishikawa, S.; Fitch, K.; Feuk, L.; Perry, G.; Andrews, T.; Fiegler, H.; Shapero, M.; Carson, A.; Chen, W.; Cho, E.; Dallaire, S.; Freeman, J.; González, J.; Gratacòs, M.; Huang, J.; Kalaitzopoulos, D.; Komura, D.; MacDonald, J.; Marshall, C.; Mei, R.; Montgomery, L.; Nishimura, K.; Okamura, K.; Shen, F.; Somerville, M.; Tchinda, J.; Valsesia, A.; Woodwark, C.; Yang, F.; Zhang, J.; Zerjal, T.; Zhang, J.; Armengol, L.; Conrad, D.; Estivill, X.; Tyler-Smith, C.; Carter, N.; Aburatani, H.; Lee, C.; Jones, K.; Scherer, S.; Hurles, M. (2006): Global variation in copy number in the human genome. In: Nature, Jg. 444, H. 7118, S. 444–454. Rigolin, G.; Bigoni, R.; Milani, R.; Cavazzini, F.; Roberti, M.; Bardi, A.; Agostini, P.; Della Porta, M.; Tieghi, A.; Piva, N.; Cuneo, A.; Castoldi, G. (2001): Clinical importance of interphase cytogenetics detecting occult chromosome lesions in myelodysplastic syndromes with normal karyotype. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 15, H. 12, S. 1841–1847. Rowley, J. (1973): Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. In: Nature, Jg. 243, H. 5405, S. 290–293. Schröck, E.; Du Manoir, S.; Veldman, T.; Schoell, B.; Wienberg, J.; Ferguson-Smith, M.; Ning, Y.; Ledbetter, D.; Bar-Am, I.; Soenksen, D.; Garini, Y.; Ried, T. (1996): Multicolor spectral karyotyping of human chromosomes. In: Science (New York, N.Y.), Jg. 273, H. 5274, S. 494–497. Sebat, J.; Lakshmi, B.; Troge, J.; Alexander, J.; Young, J.; Lundin, P.; Månér, S.; Massa, H.; Walker, M.; Chi, M.; Navin, N.; Lucito, R.; Healy, J.; Hicks, J.; Ye, K.; Reiner, A.; Gilliam, T.; Trask, B.; Patterson, N.; Zetterberg, A.; Wigler, M. (2004): Large-scale copy number polymorphism in the human genome. In: Science (New York, N.Y.), Jg. 305, H. 5683, S. 525–528. Shaffer, L.; Bejjani, B. (2006): Medical applications of array CGH and the transformation of clinical cytogenetics. In: Cytogenetic and genome research, Jg. 115, H. 3-4, S. 303–309. Shaffer, L. (2009): ISCN 2009. An international system for human cytogenetic nomenclature (2009) ; recommendations of the International Standing Committee on Human Cytogenetic Nomenclature. Basel: Karger [u.a.]. Shaffer, L.; Tommerup, N. (2005): ISCN 2005. An international system for human cytogenetic nomenclature (2005) ; recommendations of the International Standing Committee on Human Cytogenetic Nomenclature. Basel: Karger. Shinawi, M.; Erez, A.; Shardy, D.; Lee, B.; Naeem, R.; Weissenberger, G.; Chinault, A.; Cheung, S.; Plon, S. (2008): Syndromic thrombocytopenia and predisposition to acute myelogenous leukemia caused by constitutional microdeletions on chromosome 21q. In: Blood, Jg. 112, H. 4, S. 1042–1047. Smith, A. de; Tsalenko, A.; Sampas, N.; Scheffer, A.; Yamada, N.; Tsang, P.; Ben-Dor, A.; Yakhini, Z.; Ellis, R.; Bruhn, L.; Laderman, S.; Froguel, P.; Blakemore, A. (2007): Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males: implications for association studies of complex diseases. In: Human molecular genetics, Jg. 16, H. 23, S. 2783–2794. Smith, A. de; Walters, R.; Coin, L.; Steinfeld, I.; Yakhini, Z.; Sladek, R.; Froguel, P.; Blakemore, A. (2008): Small deletion variants have stable breakpoints commonly associated with alu elements. In: PloS one, Jg. 3, H. 8, S. e3104. Starczynowski, D.; Kuchenbauer, F.; Argiropoulos, B.; Sung, S.; Morin, R.; Muranyi, A.; Hirst, M.; Hogge, D.; Marra, M.; Wells, R.; Buckstein, R.; Lam, W.; Humphries, R.; Karsan, A. (2010): Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. In: Nature medicine, Jg. 16, H. 1, S. 49–58. Starczynowski, D.; Vercauteren, S.; Telenius, A.; Sung, S.; Tohyama, K.; Brooks-Wilson, A.; Spinelli, J.; Eaves, C.; Eaves, A.; Horsman, D.; Lam, W.; Karsan, A. (2008): High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. In: Blood, Jg. 112, H. 8, S. 3412–3424. Steensma, D.; List, A. (2005): Genetic testing in the myelodysplastic syndromes: molecular insights into hematologic diversity. In: Mayo Clinic proceedings. Mayo Clinic, Jg. 80, H. 5, S. 681–698. Stephenson, J.; Czepulkowski, B.; Hirst, W.; Mufti, G. (1996): Deletion of the acetylcholinesterase locus at 7q22 associated with myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). In: Leukemia research, Jg. 20, H. 3, S. 235–241. Suela, J.; Alvarez, S.; Cifuentes, F.; Largo, C.; Ferreira, B.; Blesa, D.; Ardanaz, M.; García, R.; Marquez, J.; Odero, M.; Calasanz, M.; Cigudosa, J. (2007): DNA profiling analysis of 100 consecutive de novo acute myeloid leukemia cases reveals patterns of genomic instability that affect all cytogenetic risk groups. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 21, H. 6, S. 1224–1231. Tefferi, A.; Levine, R.; Lim, K.-H.; Abdel-Wahab, O.; Lasho, T.; Patel, J.; Finke, C.; Mullally, A.; Li, C.-Y.; Pardanani, A.; Gilliland, D. (2009a): Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 23, H. 5, S. 900–904. Tefferi, A.; Pardanani, A.; Lim, K.-H.; Abdel-Wahab, O.; Lasho, T.; Patel, J.; Gangat, N.; Finke, C.; Schwager, S.; Mullally, A.; Li, C.-Y.; Hanson, C.; Mesa, R.; Bernard, O.; Delhommeau, F.; Vainchenker, W.; Gilliland, D.; Levine, R. (2009b): TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 23, H. 5, S. 905–911. Thompson, C.; Gray, J. (1993): Cytogenetic profiling using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH). In: Journal of cellular biochemistry. Supplement, Jg. 17G, S. 139–143. Tosi, S.; Scherer, S.; Giudici, G.; Czepulkowski, B.; Biondi, A.; Kearney, L. (1999): Delineation of multiple deleted regions in 7q in myeloid disorders. In: Genes, chromosomes & cancer, Jg. 25, H. 4, S. 384–392. Trost, D.; Hildebrandt, B.; Beier, M.; Müller, N.; Germing, U.; Royer-Pokora, B. (2006): Molecular cytogenetic profiling of complex karyotypes in primary myelodysplastic syndromes and acute myeloid leukemia. In: Cancer genetics and cytogenetics, Jg. 165, H. 1, S. 51–63. Turner, D.; Miretti, M.; Rajan, D.; Fiegler, H.; Carter, N.; Blayney, M.; Beck, S.; Hurles, M. (2008): Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. In: Nature genetics, Jg. 40, H. 1, S. 90–95. Tyybäkinoja, A.; Elonen, E.; Piippo, K.; Porkka, K.; Knuutila, S. (2007): Oligonucleotide array-CGH reveals cryptic gene copy number alterations in karyotypically normal acute myeloid leukemia. In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 21, H. 3, S. 571–574. van der Crabben, S.; van Binsbergen, E.; Ausems, M.; Poot, M.; Bierings, M.; Buijs, A. (2009): Constitutional RUNX1 deletion presenting as non-syndromic thrombocytopenia with myelodysplasia: 21q22 ITSN1 as a candidate gene in mental retardation. In: Leukemia research. Vardiman, J.; Thiele, J.; Arber, D.; Brunning, R.; Borowitz, M.; Porwit, A.; Harris, N.; Le Beau, M.; Hellström-Lindberg, E.; Tefferi, A.; Bloomfield, C. (2009): The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. In: Blood, Jg. 114, H. 5, S. 937–951. Viguié, F.; Aboura, A.; Bouscary, D.; Ramond, S.; Delmer, A.; Tachdjian, G.; Marie, J.; Casadevall, N. (2005): Common 4q24 deletion in four cases of hematopoietic malignancy: early stem cell involvement? In: Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, Jg. 19, H. 8, S. 1411–1415. Vissers, L.; Bhatt, S.; Janssen, I.; Xia, Z.; Lalani, S.; Pfundt, R.; Derwinska, K.; Vries, B. de; Gilissen, C.; Hoischen, A.; Nesteruk, M.; Wisniowiecka-Kowalnik, B.; Smyk, M.; Brunner, H.; Cheung, S.; van Kessel, A.; Veltman, J.; Stankiewicz, P. (2009): Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture. In: Human molecular genetics, Jg. 18, H. 19, S. 3579–3593. Wang, L.; Fidler, C.; Nadig, N.; Giagounidis, A.; Della Porta, M.; Malcovati, L.; Killick, S.; Gattermann, N.; Aul, C.; Boultwood, J.; Wainscoat, J. (2008): Genome-wide analysis of copy number changes and loss of heterozygosity in myelodysplastic syndrome with del(5q) using high-density single nucleotide polymorphism arrays. In: Haematologica, Jg. 93, H. 7, S. 994–1000. Wei, S.; Chen, X.; Rocha, K.; Epling-Burnette, P.; Djeu, J.; Liu, Q.; Byrd, J.; Sokol, L.; Lawrence, N.; Pireddu, R.; Dewald, G.; Williams, A.; Maciejewski, J.; List, A. (2009): A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide. In: Proceedings of the National Academy of Sciences of the United States of America, Jg. 106, H. 31, S. 12974–12979. Weksberg, R.; Hughes, S.; Moldovan, L.; Bassett, A.; Chow, E.; Squire, J. (2005): A method for accurate detection of genomic microdeletions using real-time quantitative PCR. In: BMC genomics, Jg. 6, S. 180. Wilkens, L.; Tchinda, J.; Burkhardt, D.; Nolte, M.; Werner, M.; Georgii, A. (1998): Analysis of hematologic diseases using conventional karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). In: Human pathology, Jg. 29, H. 8, S. 833–839. Witte, A. de; Nair, M.; Mehta, K.; Ghosh, J.; Scheffer, A. (2006): 60-mer Oligo-Based Comparative Genomic Hybridization. Yang, T.-L.; Chen, X.-D.; Guo, Y.; Lei, S.-F.; Wang, J.-T.; Zhou, Q.; Pan, F.; Chen, Y.; Zhang, Z.-X.; Dong, S.-S.; Xu, X.-H.; Yan, H.; Liu, X.; Qiu, C.; Zhu, X.-Z.; Chen, T.; Li, M.; Zhang, H.; Zhang, L.; Drees, B.; Hamilton, J.; Papasian, C.; Recker, R.; Song, X.-P.; Cheng, J.; Deng, H.-W. (2008): Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. In: American journal of human genetics, Jg. 83, H. 6, S. 663–674. Yu, S.; Bittel, D.; Kibiryeva, N.; Zwick, D.; Cooley, L. (2009): Validation of the Agilent 244K oligonucleotide array-based comparative genomic hybridization platform for clinical cytogenetic diagnosis. In: American journal of clinical pathology, Jg. 132, H. 3, S. 349–360. Zhang, F.; Gu, W.; Hurles, M.; Lupski, J. (2009): Copy number variation in human health, disease, and evolution. In: Annual review of genomics and human genetics, Jg. 10, S. 451–481. Zhao, N.; Stoffel, A.; Wang, P.; Eisenbart, J.; Espinosa, R.; Larson, R.; Le Beau, M. (1997): Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1-1.5 Mb and preparation of a PAC-based physical map. In: Proceedings of the National Academy of Sciences of the United States of America, Jg. 94, H. 13, S. 6948–6953. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Bezug: | Mai 2006 bis Mai 2010 | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie Medizinische Fakultät » Institute » Institut für Humangenetik und Anthropologie | |||||||
Dokument erstellt am: | 08.12.2010 | |||||||
Dateien geändert am: | 02.12.2010 | |||||||
Promotionsantrag am: | 12.05.2010 | |||||||
Datum der Promotion: | 22.06.2010 |