Dokument: Physiologie eines industriellen Produktionsstammes: Proteinsekretion, Regulation und Produktion von Biotensiden in Burkholderia glumae

Titel:Physiologie eines industriellen Produktionsstammes: Proteinsekretion, Regulation und Produktion von Biotensiden in Burkholderia glumae
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=16468
URN (NBN):urn:nbn:de:hbz:061-20101021-104140-1
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Knorr, Janina [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]2,91 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 13.10.2010 / geändert 13.10.2010
Beitragende:Prof. Dr. Jaeger, Karl-Erich [Gutachter]
Prof. Dr. Ernst, Joachim F. [Gutachter]
Stichwörter:Burkholderia, Proteinsekretion, Biotenside
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:Das Gram-negative Bakterium Burkholderia glumae besitzt hohe biotechnologische Relevanz durch die Sekretion einer Lipase (LipA), die bereits industriell Anwendung findet. Im Gegensatz zu dieser Lipase wurde das Bakterium bislang jedoch noch nicht eingehender charakterisiert. Somit konnte das volle biotechnologische Potential dieses vielseitigen Bakteriums noch nicht gezeigt werden. Da das Genom von B. glumae vollständig sequenziert und annotiert wurde, war ein Ziel dieser Arbeit neue biotechnologisch interessante Eigenschaften von Burkholderia glumae zu finden.
Wie andere Spezies der Burkholderia-Gattung besitzt B. glumae zwei Chromosomen. Der GC-Anteil der genomischen DNA beträgt in Chromosom 1 68,36 % bzw. 69,23 % in Chromosom 2. Bei näherer Betrachtung der open reading frames (ORFs) fällt die hohe Anzahl an ORFs auf, die für Transport- oder Sekretionsproteine kodieren. Der Transport der Lipase LipA vom Periplasma in das extrazelluläre Milieu wird über den Typ II Sekretionsmechanismus, auch main terminal branch des Gsp-Systems (general secretory pathway) genannt, postuliert. Dazu besitzt B. glumae ein vollständiges Typ II-Sekretionssystem auf Chromosom 1 und ein zweites rudimentäres System auf Chromosom 2. Durch die Untersuchung zweier Mutanten des Typ II-Systems konnte gezeigt werden, dass nur das Typ II-Sekretionssystem auf Chromosom 1 funktionsfähig ist und nicht durch das unvollständige System auf dem 2. Chromosom komplementiert wird.
Die planktonische Lebensweise ist bei Mikroorganismen in natürlichen Habitaten eher selten. Stattdessen werden Biofilme gebildet, die den Bakterien auch in außergewöhnlichen Lebensräumen konstante Lebensbedingungen bieten. Im Rahmen dieser Arbeit konnte gezeigt werden, dass B. glumae Biofilme bildet. Es wurde nachgewiesen, dass die aktive Lipase LipA für die Biofilmbildung von B. glumae essentiell ist. Die Lipase hydrolysiert Öl zu einem Diacylglycerol und einer Oberflächen-aktiven Fettsäure. Diese nutzt B. glumae als Adhäsionsfaktor, wodurch sich das Bakterium z. B. an hydrophobe Oberflächen anlagern kann. Durch diese Erkenntnisse kann man nun die Verunreinigung der Fermenter durch Bildung von Biofilmen bei der Produktion der Lipase vermeiden, indem man andere Kohlenstoffquellen als Olivenöl einsetzt. Biofilme zeigen aber auch biotechnologische Relevanz, da z. B. in sogenannten Biofilmreaktoren die Biofilmbildung genutzt werden kann. Durch die Adhäsion der Mikroorganismen kann die Zelldichte erhöht, die Abführung toxischer Nebenprodukte oder die Abtrennung eines biotechnologischen Endproduktes vereinfacht werden.
Biotenside sind durch Mikroorganismen hergestellte Moleküle, die nützliche Eigenschaften besitzen. Ihre einfache Herstellung und der biologische Abbau sind nur zwei der vielen Vorteile gegenüber chemisch hergestellten Komponenten. Rhamnolipide gehören zu den meistverbreiteten Biotensiden. Sie bestehen aus einem (Monorhamnolipid) oder zwei Rhamnosemolekülen (Dirhamnolipid), die mit zwei Fettsäuren verknüpft sind. Die Fettsäuren können in ihrer Kettenlänge variieren. Von einigen humanpathogenen Burkholderia-Spezies ist die Herstellung von Rhamnolipiden bekannt, während die Herstellung von Rhamnolipiden in B. glumae noch nicht beschrieben wurde. Innerhalb dieser Arbeit konnte gezeigt werden, dass B. glumae rhl-homologe Gene besitzt und Dirhamnolipide produziert. Das dominierende Dirhamnolipid besitzt zwei C14-Ketten. Nähere Untersuchungen der Rhamnolipide zeigten, dass diese eine bakterizide Wirkung gegen Gram-positive Bakterien besitzen, die bisher nur bei den Rhamnolipiden des humanpathogenen Bakteriums P. aeruginosa beschrieben wurde. Aus biotechnologischer Sicht und aufgrund des S1-Sicherheitsstatus können die Rhamnolipide von B. glumae als Alternative zu den Rhamnolipiden von P. aeruginosa dienen.

The Gram-negative bacterium Burkholderia glumae has biotechnological relevance because it secrets of a lipase (LipA) which has industrial applications. Therefore, the lipase was already characterized in contrary to the bacterium. The full biotechnological potential of B. glumae was not shown until now.
Because the complete genome was sequenced and annotated, the aim of the work was to investigate new biotechnological characteristics of B. glumae should.
Like other species of the genus Burkholderia, B. glumae has two chromosomes. The GC-part of genomic DNA is 68,36 % in chromosome 1 and 69,23 % in chromosome 2. Analysis of open reading frames (orfs) showed a high quantity of orfs coding for transport or secretion proteins. The transport of the lipase LipA from periplasm to the extracellular media is postulated to occur via the type II secretion mechanism of the Gsp-System (general secretory pathway). B. glumae has a complete typ II secretion system encoded on chromosome 1 and an incomplete system on chromosome 2. After construction of two gsp-mutants, it was shown that only the system of chromosome 1 is functional and it cannot be complemented by the second system on chromosome 2.
The planktonic life of microorganisms is really unusual in natural life. Microorganisms prefer to live in biofilms which offer a constant environment to organisms also in extremely habitats. Within this work, it was shown that B. glumae is able to form biofilms. The ability to form biofilms is dependent of the active lipase LipA. The lipase hydrolyses oil to a yield of fatty acids and a diacylglycerol. Fatty acids are surface-active compounds. B. glumae uses the produced fatty acids as an adhesion factor which allows the cells to attach to hydrophobic surfaces. This information is valuable to avoid contaminating biofilms at the production of lipase by using another carbon source than olive oil. Biofilms also have biotechnological relevance e. g. in biofilm reactors. A biofilm reactor has the advantage that the cell density can be increased or toxic components and end products can be isolated in an easy way.
Biotensides are surface-active molecules which are produced by microorganisms. The inartificial synthesis and the lightened biodegradation of pesticides are only two of the many advantages of biotensides compared to chemical compounds. Rhamnolipids belongs to common biotensides. They consist of one (mono-rhamnolipid) or two rhamnose molecules (di-Rhamnolipid), which are linked to two fatty acids. The fatty acids can vary in length. Some humanpathogenic Burkholderia-species are able to produce rhamnolipids, whereas the synthesis of rhamnolipids by B. glumae was not described yet. It was shown that B. glumae has rhl-homologous genes and it produces a mixture of di-Rhamnolipids. The significant rhamnolipid has two fatty acids with C14-chains. Analysis of characteristics of rhamnolipids showed that the rhamnolipids exhibit an anti-microbial effect on Gram-positive bacteria. This effect was described for rhamnolipids of the humanpathogenic bacterium P. aeruginosa. Because of the S1-security level of B. glumae, the rhamnolipids of B. glumae can be used as an alternative to rhamnolipids of P. aeruginosa.
Quelle:Abalos, A., Pinazo, A., Infante, M. R., Casals, M., Garcia, F. & Manresa, A. (2001). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17, 1367-1371.

Aendekerk, S., Diggle, S. P., Song, Z., Hoiby, N., Cornelis, P., Williams, P. & Camara, M. (2005). The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151, 1113-1125.

Aguilar, C., Bertani, I. & Venturi, V. (2003a). Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Applied and Environmental Microbiology 69, 1739-1747.

Aguilar, C., Friscina, A., Devescovi, G., Kojic, M. & Venturi, V. (2003b). Identification of quorum-sensing-regulated genes of Burkholderia cepacia. Journal of Bacteriology 185, 6456-6462.

Akrim, M., Bally, M., Ball, G., Tommassen, J., Teerink, H., Filloux, A. & Lazdunski, A. (1993). Xcp-mediated protein secretion in Pseudomonas aeruginosa: Identification of two additional genes and evidence for regulation of xcp gene expression. Molecular Microbiology 10, 431-443.

Alexeyev, M. F. (1995a). Three kanamycin resistance gene cassettes with different polylinkers. Biotechniques 18, 52-&.

Alhede, M., Bjarnsholt, T., Jensen, P. O., Phipps, R. K., Moser, C., Christophersen, L., Christensen, L. D., van Gennip, M., Parsek, M., Hoiby, N., Rasmussen, T. B. & Givskov, M. (2009). Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology-Sgm 155, 3500-3508.

Allenza, P. & Lessie, T. G. (1982). Pseudomonas cepacia mutants blocked in the Entner-Doudoroff pathway. Journal of Bacteriology 150, 1340-1347.

Andra, J., Rademann, J., Howe, J., Koch, M. H. J., Heine, H., Zahringer, U. & Brandenburg, K. (2006). Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biological Chemistry 387, 301-310.

Aragon, V., Kurtz, S., Flieger, A., Neumeister, B. & Cianciotto, N. P. (2000). Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila. Infection and Immunity 68, 1855-1863.

Arevalo-Ferro, C., Hentzer, M., Reil, G., Gorg, A., Kjelleberg, S., Givskov, M., Riedel, K. & Eberl, L. (2003). Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environmental Microbiology 5, 1350-1369.

Arrigo, A. P. (2005). Heat shock proteins as molecular chaperones. M/S-Médecine Sciences 21, 619-625.

Arts, J., de Groot, A., Ball, G., Durand, E., Khattabi, M. E., Filloux, A., Tommassen, J. & Koster, M. (2007). Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF). Microbiology 153, 1582-1592.

Ball, G., Durand, É., Lazdunski, A. & Filloux, A. (2002). A novel type II secretion system in Pseudomonas aeruginosa. Molecular Microbiology 43, 475-485.

Bally, M., Filloux, A., Akrim, M., Ball, G., Lazdunski, A. & Tommassen, J. (1992). Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase. Molecular Microbiology 6, 1121-1131.

Banat, I. M., Makkar, R. S. & Cameotra, S. S. (2000a). Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology 53, 495-508.

Banat, I. M. (2000b). Potentials for use of biosurfactants in oil spills cleanup and oil bioremediation. In Oil and Hydrocarbon Spills, Modelling, Analysis and Control Ii, pp. 177-185. Edited by G. R. Rodriguez & C. A. Brebbia. Southampton: Wit Press.

Barbe, S., Lafaquiere, V., Guieysse, D., Monsan, P., Remaud-Simeon, M. & Andre, I. (2009). Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Proteins-Structure Function and Bioinformatics 77, 509-523.

Barber, C. E., Tang, J. L., Feng, J. X., Pan, M. Q., Wilson, T. J. G., Slater, H., Dow, J. M., Williams, P. & Daniels, M. J. (1997). A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Molecular Microbiology 24, 555-566.

Benincasa, M., Abalos, A., Oliveira, I. & Manresa, A. (2004). Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 85, 1-8.

Birnboim, H. C. & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 1513-1523.

Bissonnette, S. A., Rivera-Rivera, I., Sauer, R. T. & Baker, T. A. (2010). The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease. Molecular Microbiology 75, 1539-1549.

Bitter, W., Koster, M., Latijnhouwers, M., de Cock, H. & Tommassen, J. (1998). Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Molecular Microbiology 27, 209-219.

Bleves, S., Lazdunski, A. & Filloux, A. (1996). Membrane topology of three Xcp proteins involved in exoprotein transport by Pseudomonas aeruginosa. Journal of Bacteriology 178, 4297-4300.

Bleves, S., Voulhoux, R., Michel, G., Lazdunski, A., Tommassen, J. & Filloux, A. (1998). The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Molecular Microbiology 27, 31-40.

Boekema, B. K. H. L., Beselin, A., Breuer, M., Hauer, B., Koster, M., Rosenau, F., Jaeger, K.-E. & Tommassen, J. (2007). Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Applied and Environmental Microbiology 73, 3838-3844.

Boltz, J. P. & Daigger, G. T. (2010). Uncertainty in bulk-liquid hydrodynamics and biofilm dynamics creates uncertainties in biofilm reactor design. Water Science and Technology 61, 307-316.

Boon, C., Deng, Y. Y., Wang, L. H., He, Y. W., Xu, J. L., Fan, Y., Pan, S. Q. & Zhang, L. H. (2008). A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. Isme Journal 2, 27-36.

Brint, J. M. & Ohman, D. E. (1995). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. Journal of Bacteriology 177, 7155-7163.

Bruinsma, G. M., Rustema-Abbing, M., van der Mei, H. C. & Busscher, H. J. (2001). Effects of cell surface damage on surface properties and adhesion of Pseudomonas aeruginosa. Journal of Microbiological Methods 45, 95-101.

Brzozowski, A. M., Derewenda, U., Derewenda, Z. S., Dodson, G. G., Lawson, D. M., Turkenburg, J. P., Bjorkling, F., Hugejensen, B., Patkar, S. A. & Thim, L. (1991). A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351, 491-494.

Calfee, M. W., Coleman, J. P. & Pesci, E. C. (2001). Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 98, 11633-11637.

Calfee, M. W., Shelton, J. G., McCubrey, J. A. & Pesci, E. C. (2005). Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-produced surfactant. Infection and Immunity 73, 878-882.

Cao, H., Krishnan, G., Goumnerov, B., Tsongalis, J., Tompkins, R. & Rahme, L. G. (2001). A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proceedings of the National Academy of Sciences of the United States of America 98, 14613-14618.

Cao, T. B. & Saier, M. H. (2003). The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochimica et Biophysica Acta (BBA) - Biomembranes 1609, 115-125.

Cha, C., Gao, P., Chen, Y. C., Shaw, P. D. & Farrand, S. K. (1998). Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant-Microbe Interact 11, 1119-1129.

Chandrasekaran, E. V. & Bemiller, J. N. (1980). Constituent analyses of glycosaminoglycans. Methods in Carbohydrate chemistry VIII, 89-96.

Chapon-Herve, V., Akrim, M., Latifi, A., Williams, P., Lazdunski, A. & Bally, M. (1997). Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa. Molecular Microbiology 24, 1169-1178.

Chatterjee, S. & Sonti, R. V. (2002). rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Mol Plant-Microbe Interact 15, 463-471.

Chun, H., Choi, O., Goo, E., Kim, N., Kim, H., Kang, Y., Kim, J., Moon, J. S. & Hwang, I. (2009). The quorum sensing-dependent gene katG of Burkholderia glumae is important for protection from visible light. Journal of Bacteriology 191, 4152-4157.

Coenye, T. & Vandamme, P. (2003). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environmental Microbiology 5, 719-729.

Colnaghi Simionato, A. V., da Silva, D. S., Lambais, M. R. & Carrilho, E. (2007). Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. Journal of Mass Spectrometry 42, 1375-1381.

Cornelis, G. R., Boland, A., Boyd, A. P., Geuijen, C., Iriarte, M., Neyt, C., Sory, M. P. & Stainier, I. (1998). The virulence plasmid of Yersinia, an antihost genome. Microbiology and Molecular Biology Reviews 62, 1315-+.

Costerton, J. W., Stewart, P. S. & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science 284, 1318-1322.

Crespi, B. J. (2001). The evolution of social behavior in microorganisms. Trends in Ecology & Evolution 16, 178-183.

Dance, D. A. B., Wuthiekanun, V., Chaowagul, W., Suputtamongkol, Y. & White, N. J. (1991). Development of resistance to ceftazidime ans co-amoxiclav in Pseudomonas pseudomallei. Journal of Antimicrobial Chemotherapy 28, 321-324.

Davey, M. E., Caiazza, N. C. & O'Toole, G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology 185, 1027-1036.

De Kievit, T. R. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology 11, 279-288.

Degrassi, G., Devescovi, G., Kim, J., Hwang, I. & Venturi, V. (2008). Identification, characterization and regulation of two secreted polygalacturonases of the emerging rice pathogen Burkholderia glumae. FEMS Microbiol Ecol 65, 251-262.

Deng, Y. Y., Boon, C., Eberl, L. & Zhang, L. H. (2009). Differential modulation of Burkholderia cenocepacia virulence and energy metabolism by the quorum sensing signal BDSF and its synthase. Journal of Bacteriology 191, 7270-7278.

Derewenda, U., Brzozowski, A. M., Lawson, D. M. & Derewenda, Z. S. (1992). Catalysis at the interface - The anatomy of a conformational change in a triglyceride lipase. Biochemistry 31, 1532-1541.

Devescovi, G., Bigirimana, J., Degrassi, G., Cabrio, L., LiPuma, J. J., Kim, J., Hwang, I. & Venturi, V. (2007). Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Applied and Environmental Microbiology 73, 4950-4958.

Deziel, E., Lépine, F., Dennie, D., Boismenu, D., Mamer, O. A. & Villemur, R. (1999). Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids 1440, 244-252.

Deziel, E., Lepine, F., Milot, S. & Villemur, R. (2003). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149, 2005-2013.

Deziel, E., Lepine, F., Milot, S., He, J. X., Mindrinos, M. N., Tompkins, R. G. & Rahme, L. G. (2004). Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proceedings of the National Academy of Sciences of the United States of America 101, 1339-1344.

Diggle, S. P., Winzer, K., Chhabra, S. R., Worrall, K. E., Camara, M. & Williams, P. (2003). The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Molecular Microbiology 50, 29-43.

Diggle, S. P., Lumjiaktase, P., Dipilato, F., Winzer, K., Kunakorn, M., Barrett, D. A., Chhabra, S. R., Camara, M. & Williams, P. (2006). Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chemistry & Biology 13, 701-710.

Dubeau, D., Deziel, E., Woods, D. & Lepine, F. (2009). Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiology 9, 263.

Eberhard, A., Burlingame, A. L., Eberhard, C., Kenyon, G. L., Nealson, K. H. & Oppenheimer, N. J. (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444-2449.

Eberl, L. & Tummler, B. (2004). Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. International Journal of Medical Microbiology 294, 123-131.

Eberl, L. (2006). Quorum sensing in the genus Burkholderia. International Journal of Medical Microbiology 296, 103-110.

El Khattabi, M., Ockhuijsen, C., Bitter, W., Jaeger, K. E. & Tommassen, J. (1999). Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor. Molecular and General Genetics 261, 770-776.

El Khattabi, M., Van Gelder, P., Bitter, W. & Tommassen, J. (2000). Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone. Journal of Biological Chemistry 275, 26885-26891.

El Khattabi, M., Van Gelder, P., Bitter, W. & Tommassen, J. (2003). Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase. Journal of Molecular Catalysis B-Enzymatic 22, 329-338.

Engebrecht, J., Nealson, K. & Silverman, M. (1983). Bacterial bioluminescence - isolation and genetic analysis of functions from Vibrio fischeri. Cell 32, 773-781.

Espinosa-Urgel, M. (2003). Resident parking only: rhamnolipids maintain fluid channels in biofilms. Journal of Bacteriology 185, 699-700.

Fekkes, P. & Driessen, A. J. M. (1999). Protein targeting to the bacterial cytoplasmic membrane. Microbiology and Molecular Biology Reviews 63, 161-173.

Fernandez-Lafuente, R. (2010). Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B-Enzymatic 62, 197-212.

Fernandez-Lorente, G., Palomo, J. M., Fuentes, M., Mateo, C., Guisan, J. M. & Fernandez-Lafuente, R. (2003). Self-assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties. Biotechnology and Bioengineering 82, 232-237.

Filloux, A., Bally, M., Ball, G., Akrim, M., Tommassen, J. & Lazdunski, A. (1990). Protein secretion in Gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria. Embo J 9, 4323-4329.

Filloux, A., Michel, G. & Bally, M. (1998). GSP-dependent protein secretion in Gram-negative bacteria: The Xcp system of Pseudomonas aeruginosa. Fems Microbiology Reviews 22, 177-198.

Frenken, L. G. J., Egmond, M. R., Batenburg, A. M., Bos, J. W., Visser, C. & Verrips, C. T. (1992). Cloning of the Pseudomonas glumae lipase gene and determination of the active site residues. Applied and Environmental Microbiology 58, 3787-3791.

Frenken, L. G. J., Egmond, M. R., Batenburg, A. M. & Verrips, C. T. (1993). Pseudomonas glumae lipase: increased proteolytic stabifity by protein engineering. Protein Eng 6, 637-642.

Frenken, L. G. J., Bos, J. W., Visser, C., Muller, W., Tommassen, J. & Verrips, C. T. (1993a). An accessory gene, LipB, required for the production of active Pseudomonas glumae lipase. Molecular Microbiology 9, 579-589.

Frenken, L. G. J., Degroot, A., Tommassen, J. & Verrips, C. T. (1993b). Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae. Molecular Microbiology 9, 591-599.

Gallagher, L. A., McKnight, S. L., Kuznetsova, M. S., Pesci, E. C. & Manoil, C. (2002). Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. Journal of Bacteriology 184, 6472-6480.

Gambello, M. J., Kaye, S. & Iglewski, B. H. (1993). LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of Exotoxin A expression. Infection and Immunity 61, 1180-1184.

Gianotti, A., Serrazarietti, D., Kamderri, S. S. & Guerzoni, M. E. (2008). Involvement of cell fatty acid composition and lipid metabolism in adhesion mechanism of Listeria monocytogenes. International Journal of Food Microbiology 123, 9-17.

Govan, J. R. W., Hughes, J. E. & Vandamme, P. (1996). Burkholderia cepacia: Medical, taxonomic and ecological issues. Journal of Medical Microbiology 45, 395-407.

Grochulski, P., Li, Y. G., Schrag, J. D., Bouthillier, F., Smith, P., Harrison, D., Rubin, B. & Cygler, M. (1993). Insights into interfacial activation from an open structure of Candida rugosa lipase. Journal of Biological Chemistry 268, 12843-12847.

Haba, E., Pinazo, A., Jauregui, O., Espuny, M. J., Infante, M. R. & Manresa, A. (2003). Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnology and Bioengineering 81, 316-322.

Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology 2, 95-108.

Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166, 557-580.

Hauser, A. R., Kang, P. J. & Engel, J. N. (1998). PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Molecular Microbiology 27, 807-818.

Hauser, A. R., Cobb, E., Bodi, M., Mariscal, D., Valles, J., Engel, J. N. & Rello, J. (2002). Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Critical Care Medicine 30, 521-528.

Haussler, S., Nimtz, M., Domke, T., Wray, V. & Steinmetz, I. (1998). Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infection and Immunity 66, 1588-1593.

Haussler, S., Rohde, M., von Neuhoff, N., Nimtz, M. & Steinmetz, I. (2003). Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infection and Immunity 71, 2970-2975.

He, Y. W., Xu, M., Lin, K., Ng, Y. J. A., Wen, C. M., Wang, L. H., Liu, Z. D., Zhang, H. B., Dong, Y. H., Dow, J. M. & Zhang, L. H. (2006). Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Molecular Microbiology 59, 610-622.

Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala'Aldeen, D. (2004). Type V protein secretion pathway: the autotransporter story. Microbiology and Molecular Biology Reviews 68, 692-+.

Herman, D. C., Zhang, Y. M. & Miller, R. M. (1997). Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Applied and Environmental Microbiology 63, 3622-3627.

Holloway, B. W., Krishnapillai, V. & Morgan, A. F. (1979). Chromosomal genetics of Pseudomonas. Microbiology and Molecular Biology Reviews 43, 73-102.

Holmquist, M., Norin, M. & Hult, K. (1993). The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase. Lipids 28, 721-726.

Iiyama, K., Furuya, N., Takanami, Y. & Matsuyama, N. (1995). A role of phytotoxin in virulence of Pseudomonas glumae. Annals of the Phytopathological Society of Japan 61, 470-476.

Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., Vanheuvel, M. & Misset, O. (1994). Bacterial lipases. FEMS Microbiology Reviews 15, 29-63.

Jarvis, F. G. & Johnson, M. J. (1949). A glycolipide produced by Pseudomonas aeruginosa. Journal of the American Chemical Society 71, 4124-4126.

Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. & Hwang, I. (2003). Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Disease 87, 890-895.

Juhas, M., Eberl, L. & Tummler, B. (2005). Quorum sensing: the power of cooperation in the world of Pseudomonas. Environmental Microbiology 7, 459-471.

Katzke, N., Arvani, S., Bergmann, R., Circolone, F., Markert, A., Svensson, V., Jaeger, K.-E., Heck, A. & Drepper, T. (2010). A novel T7 RNA polymerase dependent expression system for high-level protein production in the phototrophic bacterium Rhodobacter capsulatus. Protein Expression and Purification 69, 137-146.

Kim, J., Kim, J., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T. & Hwang, I. (2004). Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Molecular Microbiology 54, 921-934.

Kim, J., Kang, Y., Choi, O., Jeong, Y., Jeong, J.-E., Lim, Y., Kim, M., Moon, J., Suga, H. & Hwang, I. (2007). Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Molecular Microbiology 64, 165-179.

Kim, J., Oh, J., Choi, O., Kang, Y., Kim, H., Goo, E., Ma, J., Nagamatsu, T., Moon, J. S. & Hwang, I. (2009). Biochemical evidence for ToxR and ToxJ binding to the tox operons of Burkholderia glumae and mutational analysis of ToxR. Journal of Bacteriology 191, 4870-4878.

Kim, K. K., Song, H. K., Shin, D. H., Hwang, K. Y. & Suh, S. W. (1997). The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5, 173-185.

Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology 48, 1511-1524.

Knorr, J., Voget, S., Hofmann, D., Santiago-Schübel, B., Wilhelm, S. & Rosenau, F. (2010). The plant pathogen Burkholderia glumae produces rhamnolipids with anti-bacterial properties. FEMS Microbiology Letters submitted.

Kok, R. G., Christoffels, V. M., Vosman, B. & Hellingwerf, K. J. (1993). Growth phase dependent expression of the lipolytic system of Acinetobacter calcoaceticus Bd413 - Cloning of a gene encoding one of the esterases. Journal of General Microbiology 139, 2329-2342.

Koster, M., Bitter, W. & Tommassen, J. (2000). Protein secretion mechanisms in Gram-negative bacteria. International Journal of Medical Microbiology 290, 325-331.

Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, R. M. & Peterson, K. M. (1994). pBBR1MCS - a broad-host-range cloning vector. Biotechniques 16, 800-&.

Krakauer, D. C. (2000). Stability and evolution of overlapping genes. Evolution 54, 731-739.

Kurita, T. & Tabei, H. (1967). On the pathogenic bacterium of bacterial grain rot of rice. Annals of the Phytopathologicial Society of Japan 33, 111.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-&.

Lang, S. & Wullbrandt, D. (1999). Rhamnose lipids – biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology 51, 22-32.

Latifi, A., Winson, M. K., Foglino, M., Bycroft, B. W., Stewart, G., Lazdunski, A. & Williams, P. (1995). Multiple Homologs of Luxr and Luxl Control Expression of Virulence Determinants and Secondary Metabolites through Quorum Sensing in Pseudomonas-Aeruginosa Pao1. Molecular Microbiology 17, 333-343.

Leitermann, F., Walter, V., Syldatk, C. & Hausmann, R. (2009). Rhamnolipids. In Handbook of Hydrocarbon and Lipid Microbiology, pp. 3037-3051.

Lewenza, S., Conway, B., Greenberg, E. P. & Sokol, P. A. (1999). Quorum sensing in Burkholderia cepacia: Identification of the LuxRI homologs CepRI. Journal of Bacteriology 181, 748-756.

Lewenza, S. & Sokol, P. A. (2001). Regulation of ornibactin biosynthesis and N-acyl-L-homoserine lactone production by CepR in Burkholderia cepacia. Journal of Bacteriology 183, 2212-2218.

Liang, Y., Medhekar, R., Brockman, H. L., Quinn, D. M. & Hui, D. Y. (2000). Importance of arginines 63 and 423 in modulating the bile salt-dependent and bile salt-independent hydrolytic activities of rat carboxyl ester lipase. Journal of Biological Chemistry 275, 24040-24046.

Lim, J., Lee, T. H., Nahm, B. H., Do Choi, Y., Kim, M. & Hwang, I. (2009). Complete genome sequence of Burkholderia glumae BGR1. Journal of Bacteriology 191, 3758-3759.

Lindum, P. W., Anthoni, U., Christophersen, C., Eberl, L., Molin, S. & Givskov, M. (1998). N-acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. Journal of Bacteriology 180, 6384-6388.

Liou, Y. C., Marangoni, A. G. & Yada, R. Y. (1998). Aggregation behavior of Candida rugosa lipase. Food Research International 31, 243-248.

Loeb, G. I. & Neihof, R. A. (1975). Marine conditioning films. Advances in Chemistry Series, 319-335.

Lory, S. & Strom, M. S. (1997). Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa - a review. Gene 192, 117-121.

Lory, S. (1998). Secretion of proteins and assembly of bacterial surface organelles: shared pathways of extracellular protein targeting. Current Opinion in Microbiology 1, 27-35.

Lourith, N. & Kanlayavattanakul, M. (2009). Natural surfactants used in cosmetics: glycolipids. International Journal of Cosmetic Science 31, 255-261.

Ma, Q., Zhai, Y., Schneider, J. C., Ramseier, T. M. & Saier, M. H. (2003). Protein secretion systems of Pseudomonas aeruginosa and P. fluorescens. Biochimica et Biophysica Acta (BBA) - Biomembranes 1611, 223-233.

Macias-Flores, A., Tafoya-Garnica, A., Ruiz-Ordaz, N., Salmeron-Alcocer, A., Juarez-Ramirez, C., Ahuatzi-Chacon, D., Mondragon-Parada, M. E. & Galindez-Mayer, J. (2009). Atrazine biodegradation by a bacterial community immobilized in two types of packed-bed biofilm reactors. World Journal of Microbiology & Biotechnology 25, 2195-2204.

Maier, R. M. & Soberón-Chávez, G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology 54, 625-633.

Manting, E. H., van der Does, C., Remigy, H., Engel, A. & Driessen, A. J. M. (2000). SecYEG assembles into a tetramer to form the active protein translocation channel. Embo J 19, 852-861.

Martínez, A., Ostrovsky, P. & Nunn, D. N. (1998). Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion. Molecular Microbiology 28, 1235-1246.

Martínez, A., Ostrovsky, P. & Nunn, D. N. (1999). LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Molecular Microbiology 34, 317-326.

McClean, K. H., Winson, M. K., Fish, L., Taylor, A., C., S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. & Williams, P. (1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology-Sgm 143, 3703-3711.

McGrath, S., Wade, D. S. & Pesci, E. C. (2004). Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiology Letters 230, 27-34.

McKenney, D., Brown, K. E. & Allison, D. G. (1995). Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia - evidence of interspecies communication. Journal of Bacteriology 177, 6989-6992.

McKnight, S. L., Iglewski, B. H. & Pesci, E. C. (2000). The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 182, 2702-2708.

Missiakas, D. & Raina, S. (1997). Protein folding in the bacterial periplasm. Journal of Bacteriology 179, 2465-2471.

Nagamatsu, T. & Yamasaki, H. (2001). General syntheses of 1-alkyltoxoflavin and 8-alkylfervenulin derivatives of biological significance by the regioselective alkylation of reumycin derivatives and the rates of transalkylation from 1-alkyltoxoflavins into nucleophiles. Journal of the Chemical Society-Perkin Transactions 1, 130-137.

Nardini, M., Lang, D. A., Liebeton, K., Jaeger, K. E. & Dijkstra, B. M. (2000). Crystal structure of Pseudomonas aeruginosa lipase in the open conformation - The prototype for family I.1 of bacterial lipases. Journal of Biological Chemistry 275, 31219-31225.

Neu, T. R. (1996). Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological Reviews 60, 151-+.

Newman, K. L., Chatterjee, S., Ho, K. A. & Lindow, S. E. (2008). Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Moecular Plant-Microbe Interaction 21, 326-334.

Nguyen, L., Paulsen, I. T., Tchieu, J., Hueck, C. J. & Saier, M. H. (2000). Phylogenetic analyses of the constituents of type III protein secretion systems. Journal of Molecular Microbiology and Biotechnology 2, 125-144.

Noble, M. E. M., Cleasby, A., Johnson, L. N., Egmond, M. R. & Frenken, L. G. J. (1993). The crystal structure of the tracylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Letters 331, 123-128.

Noble, M. E. M., Cleasby, A., Johnson, L. N., Egmond, M. R. & Frenken, L. G. J. (1994). Analysis of the structure of Pseudomonas glumae lipase. Protein Engineering 7, 559-562.

Nunn, D. (1999). Bacterial Type II protein export and pilus biogenesis: more than just homologies? Trends in Cell Biology 9, 402-408.

O'Toole, G. A. & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology 30, 295-304.

Ochsner, U. A. (1993).Genetics and biochemistry of Pseudomonas aeruginosa rhamnolipid. Swiss Federal Institute of Technology Zurich. (Dissertation).

Ochsner, U. A., Fiechter, A. & Reiser, J. (1994). Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. Journal of Biological Chemistry 269, 19787-19795.

Ochsner, U. A. & Reiser, J. (1995a). Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 92, 6424-6428.

Ochsner, U. A., Snyder, A., Vasil, A. I. & Vasil, M. L. (2002). Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 99, 8312-8317.

Oomen, C. J., van Ulsen, P., Van Gelder, P., Feijen, M., Tommassen, J. & Gros, P. (2004). Structure of the translocator domain of a bacterial autotransporter. Embo J 23, 1257-1266.

Overhage, J., Lewenza, S., Marr, A. K. & Hancock, R. E. W. (2007). Identification of Genes Involved in Swarming Motility Using a Pseudomonas aeruginosa PAO1 Mini-Tn5-lux Mutant Library. Journal of Bacteriology 189, 2164-2169.

Paetzel, M., Strynadka, N. C. J., Tschantz, W. R., Casareno, R., Bullinger, P. R. & Dalbey, R. E. (1997). Use of site-directed chemical modification to study an essential lysine in Escherichia coli leader peptidase. Journal of Biological Chemistry 272, 9994-10003.

Palomo, J. M., Fuentes, M., Fernandez-Lorente, G., Mateo, C., Guisan, J. M. & Fernandez-Lafuente, R. (2003). General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality. Biomacromolecules 4, 1-6.

Parsek, M. R. & Greenberg, E. P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology 13, 27-33.

Pearson, J. P., Passador, L., Iglewski, B. H. & Greenberg, E. P. (1995). A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 92, 1490-1494.

Pearson, J. P., Pesci, E. C. & Iglewski, B. H. (1997). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology 179, 5756-5767.

Pearson, J. P., Van Delden, C. & Iglewski, B. H. (1999). Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. Journal of Bacteriology 181, 1203-1210.

Peeters, E., Nelis, H. J. & Coenye, T. (2008). Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. Journal of Microbiological Methods 72, 157-165.

Pernas, M., Lopez, C., Prada, A., Hermoso, J. & Rua, M. L. (2002). Structural basis for the kinetics of Candida rugosa Lip1 and Lip3 isoenzymes. Colloids and Surfaces B-Biointerfaces 26, 67-74.

Pernas, M. A., Lopez, C., Rua, M. L. & Hermoso, J. (2001). Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes. FEBS Letters 501, 87-91.

Pesci, E. C., Pearson, J. P., Seed, P. C. & Iglewski, B. H. (1997). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 179, 3127-3132.

Pesci, E. C., Milbank, J. B. J., Pearson, J. P., McKnight, S., Kende, A. S., Greenberg, E. P. & Iglewski, B. H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 96, 11229-11234.

Peters, G. H., Olsen, O. H., Svendsen, A. & Wade, R. C. (1996). Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophysical Journal 71, 119-129.

Poltorak, O. M., Chukhray, E. S. & Torshin, I. Y. (1998). Dissociative thermal inactivation, stability, and activity of oligomeric enzymes. Biochemistry-Moscow 63, 303-311.

Poremba, K., Gunkel, W., Lang, S. & Wagner, F. (1991). Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ Toxicol Water Quality 6, 157-163.

Pugsley, A. P. (1992). Translocation of a folded protein across the outer membrane in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 89, 12058-12062.

Pugsley, A. P. (1993). The complete general secretory pathway in gram-negative bacteria. Microbiology and Molecular Biology Reviews 57, 50-108.

Rahim, R., Ochsner, U. A., Olvera, C., Graninger, M., Messner, P., Lam, J. S. & Soberón-Chávez, G. (2001). Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Molecular Microbiology 40, 708-718.

Riedel, K., Hentzer, M., Geisenberger, O., Huber, B., Steidle, A., Wu, H., Hoiby, N., Givskov, M., Molin, S. & Eberl, L. (2001). N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology-Sgm 147, 3249-3262.

Rodrigues, L. R., Banat, I. M., Mei, H. C., Teixeira, J. A. & Oliveira, I. (2006). Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. Journal of Applied Microbiology 100, 470-480.

Rosenau, F. & Jaeger, K.-E. (2000). Bacterial lipases from Pseudomonas: Regulation of gene expression and mechanisms of secretion. Biochimie 82, 1023-1032.

Rosenau, F., Tommassen, J. & Jaeger, K. E. (2004). Lipase-specific foldases. ChemBioChem 5, 153-161.

Ryan, R. P., McCarthy, Y., Watt, S. A., Niehaus, K. & Dow, J. M. (2009). Intraspecies signaling involving the diffusible signal factor BDSF (cis-2-Dodecenoic Acid) influences virulence in Burkholderia cenocepacia. Journal of Bacteriology 191, 5013-5019.

Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with thermostable DNA-Polymerase. Science 239, 487-491.

Sambrook, J., Fritsch, E., F. & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York.

Sandrin, T. R., Chech, A. M. & Maier, R. M. (2000). A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Applied and Environmental Microbiology 66, 4585-4588.

Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. Journal of Bacteriology 184, 1140-1154.

Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M. & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature 409, 258-268.

Schmittgen, T. D. & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3, 1101-1108.

Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. (2003). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. Journal of Bacteriology 185, 2066-2079.

Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Rinehart, K. L. & Farrand, S. K. (1997). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proceedings of the National Academy of Sciences of the United States of America 94, 6036-6041.

Simon, R., Priefer, U. & Puhler, A. (1983). A broad host range mobiliziation system for invivo-genetic engineering-transposon mutagenesis in Gram-negative bacteria. Bio-Technology 1, 784-791.

Slater, H., Alvarez-Morales, A., Barber, C. E., Daniels, M. J. & Dow, J. M. (2000). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Molecular Microbiology 38, 986-1003.

Soberon-Chavez, G., Lepine, F. & Deziel, E. (2005). Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology 68, 718-725.

Sotirova, A., Spasova, D., Galabova, D., Karpenko, E. & Shulga, A. (2008). Rhamnolipid–biosurfactant permeabilizing effects on Gram-positive and Gram-negative bacterial strains. Current Microbiology 56, 639-644.

Sotirova, A., Spasova, D., Vasileva-Tonkova, E. & Galabova, D. (2009). Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiological Research 164, 297-303.

Sponza, D. T. & Gok, O. (2010). Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresource Technology 101, 914-924.

Stewart, P. S. & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet 358, 135-138.

Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology 56, 187-209.

Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K. S., Wu, Z., Paulsen, I. T., Reizer, J., Saier, M. H., Hancock, R. E. W., Lory, S. & Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959-964.

Stuer, W., Jaeger, K. E. & Winkler, U. K. (1986). Purification of extracellular lipase from Pseudomonas aeruginosa. Journal of Bacteriology 168, 1070-1074.

Suzuki, F., Sawada, H., Azegami, K. & Tsuchiya, K. (2004). Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae. Journal of General Plant Pathology 70, 97-107.

Swartzman, E., Kapoor, S., Graham, A. F. & Meighen, E. A. (1990). A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon. Journal of Bacteriology 172, 6797-6802.

Syldatk, C., Lang, S., Matulovic, U. & Wagner, F. (1985). Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Zeitschrift Für Naturforschung/Journal of Biosciences 40, 61-67.

Tecon, R. & van der Meer, J. R. (2010). Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037. Applied Microbiology and Biotechnology 85, 1131-1139.

Tian, X., Liao, Q., Zhu, X., Wang, Y. Z., Zhang, P., Li, J. & Wang, H. (2010). Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresource Technology 101, 977-983.

Tomlin, K. L., Coll, O. P. & Ceri, H. (2001). Interspecies biofilms of Pseudomonas aeruginosa and Burkholderia cepacia. Canadian Journal of Microbiology 47, 949-954.

Torres, P. S., Malamud, F., Rigano, L. A., Russo, D. M., Marano, M. R., Castagnaro, A. P., Zorreguieta, A., Bouarab, K., Dow, J. M. & Vojnov, A. A. (2007). Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environmental Microbiology 9, 2101-2109.

Trodler, P., Schmid, R. D. & Pleiss, J. (2009). Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase. Bmc Structural Biology 9.

Tsushima, S., Naito, H. & Koitabashi, M. (1996). Population dynamics of Pseudomonas glumae, the causal agent of bacterial grain rot of rice, on leaf sheaths of rice plants in relation to disease development in the field. Annals of the Phytopathological Society of Japan 62, 108-113.

Urakami, T., Itoyoshida, C., Araki, H., Kijima, T., Suzuki, K. I. & Komagata, K. (1994). Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and description of Burkholderia vandii sp. nov. International Journal of Systematic Bacteriology 44, 235-245.

Van Gennip, M., Christensen, L. D., Alhede, M., Phipps, R., Jensen, P. O., Christophersen, L., Pamp, S. J., Moser, C., Mikkelsen, P. J., Koh, A. Y., Tolker-Nielsen, T., Pier, G. B., Hoiby, N., Givskov, M. & Bjarnsholt, T. (2009). Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. Acta Pathologica, Microbiologica et Immunologica Scandinavica 117, 537-546.

Van, V. T., Berge, O., Ke, S. N., Balandreau, J. & Heulin, T. (2000). Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant and Soil 218, 273-284.

Vandamme, P., Holmes, B., Vancanneyt, M., Coenye, T., Hoste, B., Coopman, R., Revets, H., Lauwers, S., Gillis, M., Kersters, K. & Govan, J. R. W. (1997). Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. International Journal of Systematic Bacteriology 47, 1188-1200.

Vandyke, M. I., Gulley, S. L., Lee, H. & Trevors, J. T. (1993). Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. Journal of Industrial Microbiology 11, 163-170.

Vanlaere, E., van der Meer, J. R., Falsen, E., Salles, J. F., de Brandt, E. & Vandamme, P. (2008). Burkholderia sartisoli sp nov., isolated from a polycyclic aromatic hydrocarbon-contaminated soil. International Journal of Systematic and Evolutionary Microbiology 58, 420-423.

Vial, L., Lepine, F., Milot, S., Groleau, M. C., Dekimpe, V., Woods, D. E. & Déziel, E. (2008). Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. Journal of Bacteriology 190, 5339-5352.

Vogel, H. J. & Bonner, D. M. (1956). Acetylornithase of Escherichia coli: partial purification and some properties. The Journal of Biological Chemistry 218, 97-106.

Voget, S. (2009). personal communication.

Voget, S., Liesegang, H., Poehlein, A., Knorr, J., Hornung, C., Wilhelm, S., Rosenau, F., Streit, W. & Jaeger, K. E. (2010). The genome sequence of Burkholderia glumae PG1. In preperation.

Vojnov, A. A., Slater, H., Daniels, M. J. & Dow, J. M. (2001a). Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant-Microbe Interact 14, 768-774.

Vojnov, A. A., Slater, H., Newman, M. A., Daniels, M. J. & Dow, J. M. (2001b). Regulation of the synthesis of cyclic glucan in Xanthomonas campestris by a diffusible signal molecule. Archives of Microbiology 176, 415-420.

Voulhoux, R., Ball, G., Ize, B., Vasil, M. L., Lazdunski, A., Wu, L. F. & Filloux, A. (2001). Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. Embo J 20, 6735-6741.

Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. (2003). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: Effects of growth phase and environment. Journal of Bacteriology 185, 2080-2095.

Wang, L. H., He, Y. W., Gao, Y. F., Wu, J. E., Dong, Y. H., He, C. Z., Wang, S. X., Weng, L. X., Xu, J. L., Tay, L., Fang, R. X. & Zhang, L. H. (2004). A bacterial cell-cell communication signal with cross-kingdom structural analogues. Molecular Microbiology 51, 903-912.

Wang, Z. W. & Chen, S. L. (2009). Potential of biofilm-based biofuel production. Applied Microbiology and Biotechnology 83, 1-18.

Warren, S. M. & Young, G. M. (2005). An amino-terminal secretion signal is required for Yp1A export by the Ysa, Ysc, and flagellar type III secretion systems of Yersinia enterocolitica biovar 1B. Journal of Bacteriology 187, 6075-6083.

Watnick, P. & Kolter, R. (2000). Biofilm, city of microbes. Journal of Bacteriology 182, 2675-2679.

Weinberg, J. B., Alexander, B. D., Majure, J. M., Williams, L. W., Kim, J. Y., Vandamme, P. & LiPuma, J. J. (2007). Burkholderia glumae infection in an infant with chronic granulomatous disease. Journal of Clinical Microbiology 45, 662-665.

Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science 295, 1487-1487.

Whitehead, N. A., Barnard, A. M. L., Slater, H., Simpson, N. J. L. & Salmond, G. P. C. (2001). Quorum-sensing in gram-negative bacteria. FEMS Microbiology Reviews 25, 365-404.

Wilhelm, S., Gdynia, A., Tielen, P., Rosenau, F. & Jaeger, K. E. (2007). The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. Journal of Bacteriology 189, 6695-6703.

Winkler, U. K. & Stuckmann, M. (1979). Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology 138, 663-670.

Winzer, K., Falconer, C., Garber, N. C., Diggle, S. P., Camara, M. & Williams, P. (2000). The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. Journal of Bacteriology 182, 6401-6411.

Winzer, K. & Williams, P. (2001). Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. International Journal of Medical Microbiology 291, 131-143.

Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T. & Arakawa, M. (1992). Proposal of Burkholderia gen. nov. and transfer of 7 species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia comb. nov. Microbiol Immunol 36, 1251-1275.

Yabuuchi, E., Kawamura, Y., Ezaki, T., Ikedo, M., Dejsirilert, S., Fujiwara, N., Naka, T. & Kobayashi, K. (2000). Burkholderia uboniae sp. nov., L-arabinose-assimilating but different from Burkholderia thailandensis and Burkholderia vietnamiensis. Microbiol Immunol 44, 307-317.

Zhang, Y. M. & Miller, R. M. (1992). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environmental Microbiology 58, 3276-3282.

Zhang, Y. M. & Miller, R. M. (1994). Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Applied and Environmental Microbiology 60, 2101-2106.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät
Dokument erstellt am:21.10.2010
Dateien geändert am:13.10.2010
Promotionsantrag am:16.04.0010
Datum der Promotion:23.06.0010
english
Benutzer
Status: Gast
Aktionen