Dokument: Untersuchung zu Struktur-Funktionsbeziehungen von Membranproteinen mittels Kraftspektroskopie

Titel:Untersuchung zu Struktur-Funktionsbeziehungen von Membranproteinen mittels Kraftspektroskopie
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=15849
URN (NBN):urn:nbn:de:hbz:061-20100830-103549-3
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Oberbarnscheidt, Leoni [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]3,52 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 17.08.2010 / geändert 17.08.2010
Beitragende:Prof. Dr. Oesterhelt, Filipp [Gutachter]
Prof. Dr. Schmitt, Lutz [Gutachter]
Prof. Dr. Wachtveitl, Josef [Gutachter]
Stichwörter:Kraftspektroskopie, Einzelmolekülspektroskopie, Sensorrhodopsin
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 540 Chemie
Beschreibungen:Membranproteine spielen eine wichtige Rolle zur Aufrechterhaltung vieler essentieller Bedingungen in der Zelle und ihre Struktur-Funktionsbeziehungen sind von großem Interesse um ihre Wirkungsweise zu verstehen. Mittels Rasterkraftspektroskopie lassen sich sowohl die inter- und intramolekularen Kräfte eines Proteins in der Membran, als auch die Bindungsraten von Rezeptor – Ligand Interaktionen bestimmen, so dass sie sich als geeignete Technik erweist, die gängigen strukturbiologischen Untersuchungen zu ergänzen.
Im ersten Teil dieser Arbeit wurde durch Entfaltungsexperimente an Sensorhodopsin II der Einfluss von Lichtaktivierung und Komplexbildung auf seine inter- und intramolekularen Kräfte untersucht. Hierzu wurde die Analysemethode zur Bestimmung der Stabilität einer Bindung oder Proteinregion weiter entwickelt. Ein Ansatz ist es, die Durchschnittskraft der Stabilität einer Proteinregion anzugeben, indem die Daten der Einzelmolekülmessung als Ensemble-Messung betrachtet werden. In einem anderen Ansatz wurde die Stabilität einer Proteinregion über die Abrisshäufigkeit einer Bindung in dieser Region bestimmt und die Auflösung der Histogramme erhöht. Beide Ansätze identifizieren Regionen, in denen sich die Stabilität in Abhängigkeit von Lichtaktivierung und Komplexbildung ändert, was dazu beiträgt, den Reaktionsmechanismus besser zu verstehen.
Um den Einfluss der Kraft auf das Energiepotential der Bindung zu berücksichtigen, wurde eine Analysemethode entwickelt, bei der die Dissoziationskonstante aus dem Verhältnis der Anzahl der Datenpunkte bei einer bestimmten Kraft zu der Anzahl der Abrisse bei dieser Kraft bestimmt werden kann.
Im zweiten Teil der Arbeit wurden Rezeptor – Ligand Interaktionen gemessen, für die die Interaktionspartner gezielt an die Oberfläche gebunden wurden, um eine kontrollierte Interaktion zu messen. Zum einen wurde der Einfluss der Multivalenz auf den Ni-NTA-Histag Komplex untersucht. Der Vergleich des Tris-NTA/His6 Systems mit dem Mono-NTA/His2 System zeigt, dass die Affinität mit zunehmender Multivalenz deutlich ansteigt, aber die mechanische Stabilität beider Systeme gleich bleibt. Dies lässt sich auf die Geometrie des Komplexes zurückführen und trägt damit zum Verständnis multivalenter Bindungen bei. Des Weiteren wurde die Interaktion des Präpeptids des Lantibiotikums Nisin mit dem ABC-Exporter NisT, der Bestandteil der Modifizierungsmaschinerie zur Produktion von Nisin ist, untersucht. Fluoreszenzmessungen sowie Kraftspektroskopie zeigen spezifisches Binden des Präpeptids und erlauben somit Einblicke in die Interaktion.

Inside the cell membrane proteins play a crucial role to keep up many essential conditions and thus, the investigation of their structure-function relationship is of great interest to understand their mechanism. Atomic force spectroscopy proves to be a suitable technique to complement other established methods in structural biology, as it not only determines inter- and intramolecular forces of a protein but also binding kinetics of receptor – ligand interactions.
In the first part of this work the influence of light activation and complex formation on the inter- and intramolecular forces of sensory rhodopsin II has been investigated by unfolding experiments and the analysis to determine the stability of a protein region has been improved. In one approach, the stability is given as average fore derived by treating the data form single molecule measurements as if they were derived from ensemble measurements. In another approach the stability of a protein region was determined by the frequency of rupture events in the respective region. Also, the resolution of the histograms was increased.
In both approaches regions are identified, in which light activation and complex formation induce changes in stability, which leads to a better understanding of the reaction mechanism.
Furthermore, an analysis which considers the influence of the forces was developed. Here, the dissociation constant is derived from the relation of the number of data points at a specific given force and the number of rupture events at this force.
In the second part of this work receptor – ligand interactions were investigated, which requires the controlled and specific binding of two interaction partners towards the surface. First, the influence of the multivalency on the Ni-NTA-histag complex was probed. Comparison of the behaviour of the tris-NTA/His6 system and the mono-NTA/His2 system reveals that affinity increases with increasing multivalency, but mechanical stability does not change. This might be explained by the geometry of the complex and thus leads to a deeper understanding of multivalent binding. Another application of force spectroscopic measurements of a receptor – ligand interaction was the investigation of the interaction between the prepeptid of the lantibiotic nisin and the ABC-exporter NisT. NisT is part of the modification machinery in the production of nisin. Fluorescent measurements as well as force spectroscopic data show a specific binding of prenisin, which allows deeper insights in this interaction.
Quelle:G.I. Bell, 1978
Models for the specific adhesion of cells to cells
Science, 200, 618–627

J.M. Berg, J.L Tymoczko, L. Stryer, 2002
Biochemie
Spektrum Verlag, 5. Auflage

E. Biemans-Oldehinkel, M.K. Doeven, B. Poolman, B., 2006
ABC transporter architecture and regulatory roles of accessory domains.
FEBS Lett. 580, 1023–1035.

G. Binnig, C.F. Quate, C. Gerber, 1986
Atomic force microscope
Phys. Rev. Letter, 56, 930

J. Buchner, 2002
Introduction: the cellular protein folding machinery
Cell Mol. Life Science, 59,1587-1588

C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, 1994
Entropic elasticity of λ-phage DNA
Science, 265, 1995

C. Chatterjee, M.Paul, L. Xie, W.A. van der Donk, 2005
Biosynthesis and Mode of Action of Lantibiotics
Chem. Rev. 105, 633-683

D.A. Cisneros, L. Oberbarnscheidt, A. Pannier, J.P. Klare, J. Helenius, M. Engelhard, F. Oesterhelt, D.J. Müller, 2008
Transducer binding establishes localized interactions to tune sensory rhodopsin II
Structure, 16(8), 1206-1213

D.A. Cisneros, D. Oesterhelt, D.J. Müller, 2005
Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin
Structure, 13, 235–242

H. Clausen-Schaumann, M. Rief, C. Tolksdorf, H.E. Gaub, 2000
Mechanical stability of single DNA molecules
Biophys J. 2000, 78(4), 1997-2007

M. Conti, G. Falini, B. Saporì, 2000
How Strong Is the Coordination Bond between a Histidine Tag and Ni ± Nitrilotriacetate? An Experiment of Mechanochemistry on Single Molecules
Angew. Chem. Int. Ed., 39, 1

D.M. Czajkowsky, Z. Shao, 1998
Submolecular resolution of single macromolecules with atomic force microscopy
FEBS Lett., 430, 51–54

R.J. Dawson, K.P. Locher, 2006
Structure of a bacterial multidrug ABC transporter.
Nature 443, 180–185


C.M. Dobson, 1999
Protein misfolding, evolution and disease
Trends Biochem. Sci., 24, 329–332

C.M. Dobson, 2002
Getting out of shape
Nature, 418, 729–730

A. Engel, D.J. Müller, 2000
Observing single biomolecules at work with the atomic force microscope
Nat. Struct. Biol., 7, 715–718

E. Evans, K. Ritchie, 1997
Dynamic strength of molecular adhesion bonds
Biophys. J., 72, 1541–1555

E. Evans, 1998
Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy
Faraday Discuss 111, 1–16

E. Evans, 2001
Probing the relation between force lifetime and chemistry in single molecular bonds
Annu. Rev. Biophys. Biomol. Struct., 30, 105–128

A. Guiotto, M. Pozzobon, M. Canevari, R. Manganelli, M. Scarin, F.M. Veronese, 2003
PEGylation of the antimicrobial peptide nisin A: Problems and perspectives
Il Farmaco, 58, 45-50

V.I. Gordeliy, J. Labahn, R. Moukhametzianov, R. Efremov, J. Granzin, R. Schlesinge, 2002
Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex
Nature, 419, 484–487

U. Haupts, J. Tittor, E. Bamberg, D. Oesterhelt, 1997
General concept for ion translocation by halobacterial retinal proteins: The isomeriza-tion/Switch/Transfer (IST) model
Biochemistry, 7, 2–7

U. Haupts, J. Tittor, D. Oesterhelt, 1999
Closing in on bacteriorhodopsin: Progress in understanding the molecule
Annu. Rev. Biophys. Biomol. Struct., 28, 367–399

J.B. Heymann, D.J. Müller, E. Landau, J. Rosenbusch, E. Pebay-Peroulla, G. Büldt, 1999
Charting the surfaces of the purple membrane
J. Struct Biol., 128, 243–249

C.F. Higgins, K.J. Linton, 2004
The ATP switch model for ABC trasnporters
Nat.Struct.Mol.Biol. 918-926


S. Hippler-Mreyen, J.P. Klare, A.A. Wegener, R. Seidel, C. Herrmann, G. Schmies, 2003
Probing the sensory rhodopsin II binding domain of its cognate transducer by calorimetry and
electrophysiology
J. Mol. Biol., 330, 1203–1213

S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, K. Schulten, 1997
Molecular dynamics study of unbinding of the Avidin-Biotin complex
Biophys. J., 72, 1568–1581

R. Janissen, L. Oberbarnscheidt, F. Oesterhelt., 2009
Optimized straight forward procedure for covalent surface immobilization of different biomolecules for single molecule applications.
Colloids Surf B Biointerfaces, 71(2), 200-207

H. Janovjak, A. Kedrov, D.A. Cisneros, K.T. Sapra, J. Struckmeier, D.J. Müller, 2006
Imaging and detecting molecular interactions of single transmembrane proteins
Neurobiology of Aging, 27, 546–561

H. Janovjak, M. Kessler, H. Gaub, D. Oesterhelt, D.J. Müller, 2003
Unfolding pathways of native bacteriorhodopsin depend on temperature
EMBO J., 22, 5220–5229

H. Janovjak, J. Struckmeier, M. Hubain, A. Kedrov, M. Kessler, D.J. Müller, 2004
Probing the energy landscape of the membrane protein bacteriorhodopsin
Structure, 12, 871–879

C. Jarzynski, 1997
Nonequilibrium Equality for Free Energy Differences
Phys. Rev. Lett., 78, 2690-2693

P.R. Jensen, K. Hammer, 1993
Minimal Requirements for Exponential Growth of Lactococcus lactis, 1993
Appl. Environ. Microbiol., 59(12), 4363-4366

C. Kaletta, K.D. Entian, 1989
Nisin, a peptide antibiotic: Cloning and sequencing of the nisA gene and posttranslational processing of its peptide product
J. Bacteriol., 171(3), 1597-1601

N. Kartner, J.R. Riordan, V. Ling, 1983
Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines.
Science, 221, 1285–1288.

A. Kedrov, C. Ziegler, H. Janovjak, W. Kühlbrandt, D.J. Müller, 2004
Controlled unfolding and refolding of a single sodium-proton antiporter using atomic force microscopy
J. Mol. Biol., 340, 1143–1152


S.K. McKeegan, M.I. Borges-Walmsley, A.R. Walmsley, 2003
The structure and function of drug pumps: An update
TRENDS in Microbiology, 11, 1

M.S. Kellermayer, S.B. Smith, H.L. Granzier, C. Bustamante, 1997
Folding unfolding transitions in single titin molecules characterized with laser tweezers
Science, 276, 1112–1116

F. Kienberger, G. Kada, H.J. Gruber, V.Ph. Pastushenko, C. Riener, M.Trieb, H.G. Knaus, H. Schindler, P. Hinterdorfer, 2000
Recognition Force Spectroscopy Studies of the NTA-His6 Bond
Single Mol. 1, 1, 59-65

J.P. Klare, I. Chizhov, M. Engelhard, 2008
Microbial rhodopsins: Scaffolds for ion pumps, channels, and sensors
Results Probl. Cell Differ., 45, 73–122

J.P. Klare, V.I. Gordeliy, J. Labahn, G. Büldt, H.-J. Steinhoff, M. Engelhard, 2004
The archaeal sensory rhodopsin II/Transducer complex: A model for transmembrane signal transfer
FEBS Lett., 564, 219–224

H. A. Kramers, 1940
Brownian motion in a field of force and the diffusion model of chemical reactions
Physica, 7, 284-304

A. Kuipers, E. de Boef, R. Rink, S. Fekken, L.D. Kluskens, A.J.M. Driessen, K. Leenhouts, O.P.Kuipers, G.N. Mol, 2004
NisT, the Transporter of the Lantibiotic Nisin, Can Transport Fully Modified, Dehydrated, and Unmodified Prenisin and Fusions of the Leader Peptide with Non- Iantibiotic Peptides
JBC Papers, 279(21), 22176-82

S. Lata, A. Reichel, R. Brock, R. Tampé and J. Piehler, 2005
High-Affinity Adaptors for Switchable Recognition of Histidine-Tagged Proteins
J. Am. Chem. Soc., 127, 10205-10215

E.M. Leslie, R.G. Deeley, S.P. Cole, 2005
Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense
Toxicol. Appl. Pharmacol, 204, 216–237

C. Levinthal, 1968
Are there pathways for protein folding?
Journal de Chimie Physique et de Physico-Chimie Biologique 65, 44–45

J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco Jr., C. Bustamante, 2002
Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality
Science, 296, 5574, 1832–1835

G. Lu, J.M.Westbrooks, A.L. Davidson, J. Chen, 2005
ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state confor¬mation
Proc. Natl. Acad. Sci. USA 102, 17969–17974

J. Lubelski, R. Rink, R. Khusainov, G.N. Moll, O.P. Kuipers, 2008
Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin
Cell. Mol. Life Sci., 65, 455–476
J.F. Marko, E.D. Siggia, 1995
Stretching DNA
Macromolecules, 28, 8759

C. Möller, M. Allen, V. Elings, A. Engel, D.J. Müller, 1999
Tapping mode atomic force microscopy produces faithful high-resolution images of protein surfaces
Biophys J., 77, 1050–1058

R. Moukhametzianov, J.P. Klare, R. Efremov, C. Baeken, A. Göppner, J. Labahn, 2006
Development of the signal in sensory rhodopsin and its transfer to the cognate transducer
Nature, 440, 115–119

L. Oberbarnscheidt, R. Janissen, S. Martell, M. Engelhard, F. Oesterhelt, 2009
Single-molecule force spectroscopy measures structural changes induced by light activation and transducer binding in sensory rhodopsin II
J Mol Biol., 394(3), 383-90

L. Oberbarnscheidt, R. Janissen, F. Oesterhelt, 2009
Direct and model free calculation of force-dependent dissociation rates from force spectroscopic data.
Biophys J., 97(9), 19-21

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H.E. Gaub, D.J. Müller, 2000
Unfolding pathways of individual bacteriorhodopsins
Science, 288, 143–146

C. Oswald, I.B. Holland, L. Schmitt, 2006
The motor domains of ABC-transporters: What can structures tell us?
Naunyn-Schmiedeberg’s Arch Pharmacol, 372, 385–399

G.C. Patton, W.A. van der Donk, 2005
New developments in lantibiotic biosynthesis and mode of action.
Curr Opin Microbiol., 8(5), 543-51

J.L. Popot, D.M. Engelmann, 1990
Membrane protein folding and oligomerization: The two stage model
Biochemistrty, 29, 4031–4037

J.L. Popot, S.E. Gerchmann, D.M. Engelmann, 1987
Refolding of bacteriorhodopsin in lipid bilayers: A thermodynamically controlled two-stage process
J. Mol. Biol., 198, 655–676

S.E. Radford, 2000
Protein folding: Progress made and promises ahead
Trends Biochem. Sci., 25, 611–618




T.V. Ratto, R.E. Rudd, K.C. Langry, R.L. Balhorn, M.W. McElfresh, 2006
Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy
Langmuir, 22, 1749-1757

M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, 1997
Reversible unfolding of individual titin immunoglobulin domains by AFM
Science, 276, 1109–1112

M.J. Roberts, M.D. Bentley, J.M. Harris, 2002
Chemistry for peptide and protein PEGylation
Adv. Drug. Deliv. Rev., 17, 54(4), 459-476

J. Rudolph, D. Oesterhelt, 1995
Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium
EMBO J., 14, 667–673

J. Rudolph, D. Oesterhelt, 1996
Deletion analysis of the che operon in the archaeon Halobacterium salinarium
J. Mol. Biol., 258, 548–554

K.T. Sapra, H. Besir, D. Oesterhelt, D.J. Müller, 2006
Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy
J. Mol. Biol., 355(4), 640-650

S. Scheuring, J.L. Rigaud, J.N. Sturgis, 2004
Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum
EMBO J., 23, 4127–4133

S. Scheuring, J. Seguin, S. Marco, D. Levy, B. Robert, J.L. Rigaud, 2003
Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosyn-thetic core complex in native membranes by AFM
Proc. Natl. Acad. Sci., 100, 1690–1693

L. Schmitt, M. Ludwig, H.E. Gaub, Robert Tampé, 2000
A Metal-Chelating Microscopy Tip as a New Toolbox for Single-Molecule Experiments by Atomic Force Microscopy
Biophys. J., 78, 3275–3285

G. Schmies, M. Engelhard, P.G. Wood, G. Nagel, E. Bamberg, 2001
Electrophysiological characterization of specific interactions between bacterial sensory rhodopsins and their transducers
Proc. Natl. Acad. Sci., 98, 1555–1559

A.K. Sharma, J.L. Spudich, W.F. Doolittle, 2006
Microbial rhodopsins: functional versatility and genetic mobility
Trends Microbiol., 14, 463–469

G.K. Schuurman- Wolters, B. Poolman, B., 2005
Substrate specificity and ionic regulation of GlnPQfrom Lactococcus lactis. An ATP-binding cassette transporter with four extracytoplasmic substrate-binding domains
J Biol. Chem. 280, 23785–23790

A.E. Senior, M.K. al-Shawi, I.L. Urbatsch, 1995
The catalytic cycle of P-glycoprotein
FEBS Lett 377, 285–289.

K. Siegers, S. Heinzmann, K.D. Entian, 1996
Biosynthesis of lantibiotic nisin. Posttranslational modification of its prepeptide occurs at a multimeric membrane-associated lanthionine synthetase complex
J. Biol. Chem., 271(21), 12294–12301

S.J. Singer, G.L. Nicolson, 1972
The fluid mosaic model of the structure of cell membranes.
Science, 175, 720–731

J.L. Spudich, 1998
Variations on a molecular switch: Transport and sensory signalling by archaeal rhodopsins
Mol. Microbiol., 28, 1051–1058

Y. Sudo, M. Iwamoto, K. Shimono, M. Sumi, N. Kamo, 2001
Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is
ceased by association with the transducer
Biophys. J., 80, 916–922

Y. Sudo, J.L. Spudich, 2006
Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor
Proc. Natl. Acad. Sci., 103, 16129–16134

T. Sulchek, R. W. Friddle, A. Noy, 2006
Strength of Multiple Parallel Biological Bonds
Biophysical Journal, 90, 4686–4691

I.L. Urbatsch, G.A. Tyndall, G. Tombline, A.E. Senior, 2003
P-glycoprotein catalytic mechanism: studies of the ADP-vanadate inhibited state.
J Biol. Chem. 278, 23171–23179

F. Valle, G. Zuccheri, A. Bergia, L. Ayres, A.E. Rowan, R.J.M. Nolte, B. Samorì, 2008
A polymeric molecular "handle" for multiple AFM-based single-molecule force measure-ments
Angew. Chem. Int. Ed., 47, 2431-2434
.
C. Verbelen, H.J. Gruber, Y.F. Dufrêne, 2007
The NTA-His6 bond is strong enough for AFM single-molecular recognition studies
J. Mol. Recognit., 20(6),490-4

H.W. van Veen, A. Margolles, M. Muller, C.F. Higgins, W.N. Konings, 2000
The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism.
EMBO J 19, 2503–2514


F.M. Veronese, 2001
Peptide and protein PEGylation: A review of problems and solutions
Biomaterials, 22(5), 405-417

M.B. Viani, L.I. Pietrasanta, J.B. Thompson, A. Chand, I.C. Gebeshuber, J.H. Kindt, 2000
Probing protein–protein interactions in real time
Nat. Struct. Biol., 7, 644–647

J.E. Walker, M. Saraste, M.J. Runswick, N.J. Gay, 1982
Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold
Embo J., 1, 945–951

A.A. Wegener, I. Chizhov, M. Engelhard, H.J. Steinhoff, 2000
Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sen-sory rhodopsin II
J. Mol. Biol., 301, 881–891

C.S. Yang, O. Sineshchekov, E.N. Spudich, J.L. Spudich, 2004
The cytoplasmic membraneproximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II
J. Biol. Chem., 279, 42970–42976

J. Zaitseva, S. Jenewein, T. Jumpertz, I.B. Holland, L. Schmitt, 2005
H662 is the linchpin of ATP hy¬drolysis in the nucleotide-binding domain of the ABC trans-porter HlyB.
Embo J., 25(14), 3432-43

J. Zaitseva, C. Oswald, T. Jumpertz, S. Jenewein, A .Wiedenmann, I.B. Holland, L. Schmitt, 2006
A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase do-main dimer. EMBO J 25, 3432– 3443.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:10/2006 - 07/2010
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Chemie » Physikalische Chemie und Elektrochemie
Dokument erstellt am:30.08.2010
Dateien geändert am:17.08.2010
Promotionsantrag am:07.05.2010
Datum der Promotion:13.07.2010
english
Benutzer
Status: Gast
Aktionen