Dokument: Untersuchung zu Struktur-Funktionsbeziehungen von Membranproteinen mittels Kraftspektroskopie
Titel: | Untersuchung zu Struktur-Funktionsbeziehungen von Membranproteinen mittels Kraftspektroskopie | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=15849 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20100830-103549-3 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Oberbarnscheidt, Leoni [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Oesterhelt, Filipp [Gutachter] Prof. Dr. Schmitt, Lutz [Gutachter] Prof. Dr. Wachtveitl, Josef [Gutachter] | |||||||
Stichwörter: | Kraftspektroskopie, Einzelmolekülspektroskopie, Sensorrhodopsin | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 540 Chemie | |||||||
Beschreibungen: | Membranproteine spielen eine wichtige Rolle zur Aufrechterhaltung vieler essentieller Bedingungen in der Zelle und ihre Struktur-Funktionsbeziehungen sind von großem Interesse um ihre Wirkungsweise zu verstehen. Mittels Rasterkraftspektroskopie lassen sich sowohl die inter- und intramolekularen Kräfte eines Proteins in der Membran, als auch die Bindungsraten von Rezeptor – Ligand Interaktionen bestimmen, so dass sie sich als geeignete Technik erweist, die gängigen strukturbiologischen Untersuchungen zu ergänzen.
Im ersten Teil dieser Arbeit wurde durch Entfaltungsexperimente an Sensorhodopsin II der Einfluss von Lichtaktivierung und Komplexbildung auf seine inter- und intramolekularen Kräfte untersucht. Hierzu wurde die Analysemethode zur Bestimmung der Stabilität einer Bindung oder Proteinregion weiter entwickelt. Ein Ansatz ist es, die Durchschnittskraft der Stabilität einer Proteinregion anzugeben, indem die Daten der Einzelmolekülmessung als Ensemble-Messung betrachtet werden. In einem anderen Ansatz wurde die Stabilität einer Proteinregion über die Abrisshäufigkeit einer Bindung in dieser Region bestimmt und die Auflösung der Histogramme erhöht. Beide Ansätze identifizieren Regionen, in denen sich die Stabilität in Abhängigkeit von Lichtaktivierung und Komplexbildung ändert, was dazu beiträgt, den Reaktionsmechanismus besser zu verstehen. Um den Einfluss der Kraft auf das Energiepotential der Bindung zu berücksichtigen, wurde eine Analysemethode entwickelt, bei der die Dissoziationskonstante aus dem Verhältnis der Anzahl der Datenpunkte bei einer bestimmten Kraft zu der Anzahl der Abrisse bei dieser Kraft bestimmt werden kann. Im zweiten Teil der Arbeit wurden Rezeptor – Ligand Interaktionen gemessen, für die die Interaktionspartner gezielt an die Oberfläche gebunden wurden, um eine kontrollierte Interaktion zu messen. Zum einen wurde der Einfluss der Multivalenz auf den Ni-NTA-Histag Komplex untersucht. Der Vergleich des Tris-NTA/His6 Systems mit dem Mono-NTA/His2 System zeigt, dass die Affinität mit zunehmender Multivalenz deutlich ansteigt, aber die mechanische Stabilität beider Systeme gleich bleibt. Dies lässt sich auf die Geometrie des Komplexes zurückführen und trägt damit zum Verständnis multivalenter Bindungen bei. Des Weiteren wurde die Interaktion des Präpeptids des Lantibiotikums Nisin mit dem ABC-Exporter NisT, der Bestandteil der Modifizierungsmaschinerie zur Produktion von Nisin ist, untersucht. Fluoreszenzmessungen sowie Kraftspektroskopie zeigen spezifisches Binden des Präpeptids und erlauben somit Einblicke in die Interaktion.Inside the cell membrane proteins play a crucial role to keep up many essential conditions and thus, the investigation of their structure-function relationship is of great interest to understand their mechanism. Atomic force spectroscopy proves to be a suitable technique to complement other established methods in structural biology, as it not only determines inter- and intramolecular forces of a protein but also binding kinetics of receptor – ligand interactions. In the first part of this work the influence of light activation and complex formation on the inter- and intramolecular forces of sensory rhodopsin II has been investigated by unfolding experiments and the analysis to determine the stability of a protein region has been improved. In one approach, the stability is given as average fore derived by treating the data form single molecule measurements as if they were derived from ensemble measurements. In another approach the stability of a protein region was determined by the frequency of rupture events in the respective region. Also, the resolution of the histograms was increased. In both approaches regions are identified, in which light activation and complex formation induce changes in stability, which leads to a better understanding of the reaction mechanism. Furthermore, an analysis which considers the influence of the forces was developed. Here, the dissociation constant is derived from the relation of the number of data points at a specific given force and the number of rupture events at this force. In the second part of this work receptor – ligand interactions were investigated, which requires the controlled and specific binding of two interaction partners towards the surface. First, the influence of the multivalency on the Ni-NTA-histag complex was probed. Comparison of the behaviour of the tris-NTA/His6 system and the mono-NTA/His2 system reveals that affinity increases with increasing multivalency, but mechanical stability does not change. This might be explained by the geometry of the complex and thus leads to a deeper understanding of multivalent binding. Another application of force spectroscopic measurements of a receptor – ligand interaction was the investigation of the interaction between the prepeptid of the lantibiotic nisin and the ABC-exporter NisT. NisT is part of the modification machinery in the production of nisin. Fluorescent measurements as well as force spectroscopic data show a specific binding of prenisin, which allows deeper insights in this interaction. | |||||||
Quelle: | G.I. Bell, 1978
Models for the specific adhesion of cells to cells Science, 200, 618–627 J.M. Berg, J.L Tymoczko, L. Stryer, 2002 Biochemie Spektrum Verlag, 5. Auflage E. Biemans-Oldehinkel, M.K. Doeven, B. Poolman, B., 2006 ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett. 580, 1023–1035. G. Binnig, C.F. Quate, C. Gerber, 1986 Atomic force microscope Phys. Rev. Letter, 56, 930 J. Buchner, 2002 Introduction: the cellular protein folding machinery Cell Mol. Life Science, 59,1587-1588 C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, 1994 Entropic elasticity of λ-phage DNA Science, 265, 1995 C. Chatterjee, M.Paul, L. Xie, W.A. van der Donk, 2005 Biosynthesis and Mode of Action of Lantibiotics Chem. Rev. 105, 633-683 D.A. Cisneros, L. Oberbarnscheidt, A. Pannier, J.P. Klare, J. Helenius, M. Engelhard, F. Oesterhelt, D.J. Müller, 2008 Transducer binding establishes localized interactions to tune sensory rhodopsin II Structure, 16(8), 1206-1213 D.A. Cisneros, D. Oesterhelt, D.J. Müller, 2005 Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin Structure, 13, 235–242 H. Clausen-Schaumann, M. Rief, C. Tolksdorf, H.E. Gaub, 2000 Mechanical stability of single DNA molecules Biophys J. 2000, 78(4), 1997-2007 M. Conti, G. Falini, B. Saporì, 2000 How Strong Is the Coordination Bond between a Histidine Tag and Ni ± Nitrilotriacetate? An Experiment of Mechanochemistry on Single Molecules Angew. Chem. Int. Ed., 39, 1 D.M. Czajkowsky, Z. Shao, 1998 Submolecular resolution of single macromolecules with atomic force microscopy FEBS Lett., 430, 51–54 R.J. Dawson, K.P. Locher, 2006 Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 C.M. Dobson, 1999 Protein misfolding, evolution and disease Trends Biochem. Sci., 24, 329–332 C.M. Dobson, 2002 Getting out of shape Nature, 418, 729–730 A. Engel, D.J. Müller, 2000 Observing single biomolecules at work with the atomic force microscope Nat. Struct. Biol., 7, 715–718 E. Evans, K. Ritchie, 1997 Dynamic strength of molecular adhesion bonds Biophys. J., 72, 1541–1555 E. Evans, 1998 Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy Faraday Discuss 111, 1–16 E. Evans, 2001 Probing the relation between force lifetime and chemistry in single molecular bonds Annu. Rev. Biophys. Biomol. Struct., 30, 105–128 A. Guiotto, M. Pozzobon, M. Canevari, R. Manganelli, M. Scarin, F.M. Veronese, 2003 PEGylation of the antimicrobial peptide nisin A: Problems and perspectives Il Farmaco, 58, 45-50 V.I. Gordeliy, J. Labahn, R. Moukhametzianov, R. Efremov, J. Granzin, R. Schlesinge, 2002 Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex Nature, 419, 484–487 U. Haupts, J. Tittor, E. Bamberg, D. Oesterhelt, 1997 General concept for ion translocation by halobacterial retinal proteins: The isomeriza-tion/Switch/Transfer (IST) model Biochemistry, 7, 2–7 U. Haupts, J. Tittor, D. Oesterhelt, 1999 Closing in on bacteriorhodopsin: Progress in understanding the molecule Annu. Rev. Biophys. Biomol. Struct., 28, 367–399 J.B. Heymann, D.J. Müller, E. Landau, J. Rosenbusch, E. Pebay-Peroulla, G. Büldt, 1999 Charting the surfaces of the purple membrane J. Struct Biol., 128, 243–249 C.F. Higgins, K.J. Linton, 2004 The ATP switch model for ABC trasnporters Nat.Struct.Mol.Biol. 918-926 S. Hippler-Mreyen, J.P. Klare, A.A. Wegener, R. Seidel, C. Herrmann, G. Schmies, 2003 Probing the sensory rhodopsin II binding domain of its cognate transducer by calorimetry and electrophysiology J. Mol. Biol., 330, 1203–1213 S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, K. Schulten, 1997 Molecular dynamics study of unbinding of the Avidin-Biotin complex Biophys. J., 72, 1568–1581 R. Janissen, L. Oberbarnscheidt, F. Oesterhelt., 2009 Optimized straight forward procedure for covalent surface immobilization of different biomolecules for single molecule applications. Colloids Surf B Biointerfaces, 71(2), 200-207 H. Janovjak, A. Kedrov, D.A. Cisneros, K.T. Sapra, J. Struckmeier, D.J. Müller, 2006 Imaging and detecting molecular interactions of single transmembrane proteins Neurobiology of Aging, 27, 546–561 H. Janovjak, M. Kessler, H. Gaub, D. Oesterhelt, D.J. Müller, 2003 Unfolding pathways of native bacteriorhodopsin depend on temperature EMBO J., 22, 5220–5229 H. Janovjak, J. Struckmeier, M. Hubain, A. Kedrov, M. Kessler, D.J. Müller, 2004 Probing the energy landscape of the membrane protein bacteriorhodopsin Structure, 12, 871–879 C. Jarzynski, 1997 Nonequilibrium Equality for Free Energy Differences Phys. Rev. Lett., 78, 2690-2693 P.R. Jensen, K. Hammer, 1993 Minimal Requirements for Exponential Growth of Lactococcus lactis, 1993 Appl. Environ. Microbiol., 59(12), 4363-4366 C. Kaletta, K.D. Entian, 1989 Nisin, a peptide antibiotic: Cloning and sequencing of the nisA gene and posttranslational processing of its peptide product J. Bacteriol., 171(3), 1597-1601 N. Kartner, J.R. Riordan, V. Ling, 1983 Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science, 221, 1285–1288. A. Kedrov, C. Ziegler, H. Janovjak, W. Kühlbrandt, D.J. Müller, 2004 Controlled unfolding and refolding of a single sodium-proton antiporter using atomic force microscopy J. Mol. Biol., 340, 1143–1152 S.K. McKeegan, M.I. Borges-Walmsley, A.R. Walmsley, 2003 The structure and function of drug pumps: An update TRENDS in Microbiology, 11, 1 M.S. Kellermayer, S.B. Smith, H.L. Granzier, C. Bustamante, 1997 Folding unfolding transitions in single titin molecules characterized with laser tweezers Science, 276, 1112–1116 F. Kienberger, G. Kada, H.J. Gruber, V.Ph. Pastushenko, C. Riener, M.Trieb, H.G. Knaus, H. Schindler, P. Hinterdorfer, 2000 Recognition Force Spectroscopy Studies of the NTA-His6 Bond Single Mol. 1, 1, 59-65 J.P. Klare, I. Chizhov, M. Engelhard, 2008 Microbial rhodopsins: Scaffolds for ion pumps, channels, and sensors Results Probl. Cell Differ., 45, 73–122 J.P. Klare, V.I. Gordeliy, J. Labahn, G. Büldt, H.-J. Steinhoff, M. Engelhard, 2004 The archaeal sensory rhodopsin II/Transducer complex: A model for transmembrane signal transfer FEBS Lett., 564, 219–224 H. A. Kramers, 1940 Brownian motion in a field of force and the diffusion model of chemical reactions Physica, 7, 284-304 A. Kuipers, E. de Boef, R. Rink, S. Fekken, L.D. Kluskens, A.J.M. Driessen, K. Leenhouts, O.P.Kuipers, G.N. Mol, 2004 NisT, the Transporter of the Lantibiotic Nisin, Can Transport Fully Modified, Dehydrated, and Unmodified Prenisin and Fusions of the Leader Peptide with Non- Iantibiotic Peptides JBC Papers, 279(21), 22176-82 S. Lata, A. Reichel, R. Brock, R. Tampé and J. Piehler, 2005 High-Affinity Adaptors for Switchable Recognition of Histidine-Tagged Proteins J. Am. Chem. Soc., 127, 10205-10215 E.M. Leslie, R.G. Deeley, S.P. Cole, 2005 Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense Toxicol. Appl. Pharmacol, 204, 216–237 C. Levinthal, 1968 Are there pathways for protein folding? Journal de Chimie Physique et de Physico-Chimie Biologique 65, 44–45 J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco Jr., C. Bustamante, 2002 Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality Science, 296, 5574, 1832–1835 G. Lu, J.M.Westbrooks, A.L. Davidson, J. Chen, 2005 ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state confor¬mation Proc. Natl. Acad. Sci. USA 102, 17969–17974 J. Lubelski, R. Rink, R. Khusainov, G.N. Moll, O.P. Kuipers, 2008 Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin Cell. Mol. Life Sci., 65, 455–476 J.F. Marko, E.D. Siggia, 1995 Stretching DNA Macromolecules, 28, 8759 C. Möller, M. Allen, V. Elings, A. Engel, D.J. Müller, 1999 Tapping mode atomic force microscopy produces faithful high-resolution images of protein surfaces Biophys J., 77, 1050–1058 R. Moukhametzianov, J.P. Klare, R. Efremov, C. Baeken, A. Göppner, J. Labahn, 2006 Development of the signal in sensory rhodopsin and its transfer to the cognate transducer Nature, 440, 115–119 L. Oberbarnscheidt, R. Janissen, S. Martell, M. Engelhard, F. Oesterhelt, 2009 Single-molecule force spectroscopy measures structural changes induced by light activation and transducer binding in sensory rhodopsin II J Mol Biol., 394(3), 383-90 L. Oberbarnscheidt, R. Janissen, F. Oesterhelt, 2009 Direct and model free calculation of force-dependent dissociation rates from force spectroscopic data. Biophys J., 97(9), 19-21 F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H.E. Gaub, D.J. Müller, 2000 Unfolding pathways of individual bacteriorhodopsins Science, 288, 143–146 C. Oswald, I.B. Holland, L. Schmitt, 2006 The motor domains of ABC-transporters: What can structures tell us? Naunyn-Schmiedeberg’s Arch Pharmacol, 372, 385–399 G.C. Patton, W.A. van der Donk, 2005 New developments in lantibiotic biosynthesis and mode of action. Curr Opin Microbiol., 8(5), 543-51 J.L. Popot, D.M. Engelmann, 1990 Membrane protein folding and oligomerization: The two stage model Biochemistrty, 29, 4031–4037 J.L. Popot, S.E. Gerchmann, D.M. Engelmann, 1987 Refolding of bacteriorhodopsin in lipid bilayers: A thermodynamically controlled two-stage process J. Mol. Biol., 198, 655–676 S.E. Radford, 2000 Protein folding: Progress made and promises ahead Trends Biochem. Sci., 25, 611–618 T.V. Ratto, R.E. Rudd, K.C. Langry, R.L. Balhorn, M.W. McElfresh, 2006 Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy Langmuir, 22, 1749-1757 M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, 1997 Reversible unfolding of individual titin immunoglobulin domains by AFM Science, 276, 1109–1112 M.J. Roberts, M.D. Bentley, J.M. Harris, 2002 Chemistry for peptide and protein PEGylation Adv. Drug. Deliv. Rev., 17, 54(4), 459-476 J. Rudolph, D. Oesterhelt, 1995 Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium EMBO J., 14, 667–673 J. Rudolph, D. Oesterhelt, 1996 Deletion analysis of the che operon in the archaeon Halobacterium salinarium J. Mol. Biol., 258, 548–554 K.T. Sapra, H. Besir, D. Oesterhelt, D.J. Müller, 2006 Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy J. Mol. Biol., 355(4), 640-650 S. Scheuring, J.L. Rigaud, J.N. Sturgis, 2004 Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum EMBO J., 23, 4127–4133 S. Scheuring, J. Seguin, S. Marco, D. Levy, B. Robert, J.L. Rigaud, 2003 Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosyn-thetic core complex in native membranes by AFM Proc. Natl. Acad. Sci., 100, 1690–1693 L. Schmitt, M. Ludwig, H.E. Gaub, Robert Tampé, 2000 A Metal-Chelating Microscopy Tip as a New Toolbox for Single-Molecule Experiments by Atomic Force Microscopy Biophys. J., 78, 3275–3285 G. Schmies, M. Engelhard, P.G. Wood, G. Nagel, E. Bamberg, 2001 Electrophysiological characterization of specific interactions between bacterial sensory rhodopsins and their transducers Proc. Natl. Acad. Sci., 98, 1555–1559 A.K. Sharma, J.L. Spudich, W.F. Doolittle, 2006 Microbial rhodopsins: functional versatility and genetic mobility Trends Microbiol., 14, 463–469 G.K. Schuurman- Wolters, B. Poolman, B., 2005 Substrate specificity and ionic regulation of GlnPQfrom Lactococcus lactis. An ATP-binding cassette transporter with four extracytoplasmic substrate-binding domains J Biol. Chem. 280, 23785–23790 A.E. Senior, M.K. al-Shawi, I.L. Urbatsch, 1995 The catalytic cycle of P-glycoprotein FEBS Lett 377, 285–289. K. Siegers, S. Heinzmann, K.D. Entian, 1996 Biosynthesis of lantibiotic nisin. Posttranslational modification of its prepeptide occurs at a multimeric membrane-associated lanthionine synthetase complex J. Biol. Chem., 271(21), 12294–12301 S.J. Singer, G.L. Nicolson, 1972 The fluid mosaic model of the structure of cell membranes. Science, 175, 720–731 J.L. Spudich, 1998 Variations on a molecular switch: Transport and sensory signalling by archaeal rhodopsins Mol. Microbiol., 28, 1051–1058 Y. Sudo, M. Iwamoto, K. Shimono, M. Sumi, N. Kamo, 2001 Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer Biophys. J., 80, 916–922 Y. Sudo, J.L. Spudich, 2006 Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor Proc. Natl. Acad. Sci., 103, 16129–16134 T. Sulchek, R. W. Friddle, A. Noy, 2006 Strength of Multiple Parallel Biological Bonds Biophysical Journal, 90, 4686–4691 I.L. Urbatsch, G.A. Tyndall, G. Tombline, A.E. Senior, 2003 P-glycoprotein catalytic mechanism: studies of the ADP-vanadate inhibited state. J Biol. Chem. 278, 23171–23179 F. Valle, G. Zuccheri, A. Bergia, L. Ayres, A.E. Rowan, R.J.M. Nolte, B. Samorì, 2008 A polymeric molecular "handle" for multiple AFM-based single-molecule force measure-ments Angew. Chem. Int. Ed., 47, 2431-2434 . C. Verbelen, H.J. Gruber, Y.F. Dufrêne, 2007 The NTA-His6 bond is strong enough for AFM single-molecular recognition studies J. Mol. Recognit., 20(6),490-4 H.W. van Veen, A. Margolles, M. Muller, C.F. Higgins, W.N. Konings, 2000 The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J 19, 2503–2514 F.M. Veronese, 2001 Peptide and protein PEGylation: A review of problems and solutions Biomaterials, 22(5), 405-417 M.B. Viani, L.I. Pietrasanta, J.B. Thompson, A. Chand, I.C. Gebeshuber, J.H. Kindt, 2000 Probing protein–protein interactions in real time Nat. Struct. Biol., 7, 644–647 J.E. Walker, M. Saraste, M.J. Runswick, N.J. Gay, 1982 Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold Embo J., 1, 945–951 A.A. Wegener, I. Chizhov, M. Engelhard, H.J. Steinhoff, 2000 Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sen-sory rhodopsin II J. Mol. Biol., 301, 881–891 C.S. Yang, O. Sineshchekov, E.N. Spudich, J.L. Spudich, 2004 The cytoplasmic membraneproximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II J. Biol. Chem., 279, 42970–42976 J. Zaitseva, S. Jenewein, T. Jumpertz, I.B. Holland, L. Schmitt, 2005 H662 is the linchpin of ATP hy¬drolysis in the nucleotide-binding domain of the ABC trans-porter HlyB. Embo J., 25(14), 3432-43 J. Zaitseva, C. Oswald, T. Jumpertz, S. Jenewein, A .Wiedenmann, I.B. Holland, L. Schmitt, 2006 A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase do-main dimer. EMBO J 25, 3432– 3443. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Bezug: | 10/2006 - 07/2010 | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Chemie » Physikalische Chemie und Elektrochemie | |||||||
Dokument erstellt am: | 30.08.2010 | |||||||
Dateien geändert am: | 17.08.2010 | |||||||
Promotionsantrag am: | 07.05.2010 | |||||||
Datum der Promotion: | 13.07.2010 |