Dokument: Genetische Identifizierung von Regulatoren der Epithelentwicklung im Nematoden Caenorhabditis elegans
Titel: | Genetische Identifizierung von Regulatoren der Epithelentwicklung im Nematoden Caenorhabditis elegans | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=13959 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20100202-133619-6 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Pilipiuk, Jennifer [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | PD Dr. Bossinger, Olaf [Gutachter] Prof. Dr. Beye, Martin [Gutachter] | |||||||
Stichwörter: | Zellpolarität, Epithelien, Zell-Kontaktstruktur, Spermatheka, IP3, Ca2+, Ovulation, Caenorhabditis elegans | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie | |||||||
Beschreibungen: | Eine herausragende Eigenschaft von Epithelien ist die Ausbildung interzellulärer Kontaktstrukturen entlang der lateralen Membrandomäne der Epithelzellen. Im Nematoden Caenorhabditis elegans rekrutiert das LET-413 Protein den DLG-1–AJM-1 Komplex (DAC). Dieser ist letztendlich für die Ausbildung der elektronendichten Struktur der sog. „C. elegans apical junction“ verantwortlich. Diese formt einen kontinuierlichen Adhäsions-Gürtel um den Apex aller embryonalen Epithelzellen.
Im Rahmen dieser Arbeit wurde nun zunächst die Rolle des LET-413 Proteins und des DAC während der Postembryogenese von C. elegans und dabei besonders bei der Ausbildung des Spermatheka-Epithels analysiert. Dabei zeigte sich, dass die durch RNAi (RNA-vermittelte Interferenz) induzierte Herunterregulierung von LET-413 und des DAC offensichtlich nicht die Funktionen bereits während der Embryonalentwicklung etablierter Epithelien beeinträchtigt. Im Gegensatz dazu wird die Ausbildung „neuer Epithelien“ während der Postembryogenese massiv gestört und führt im Falle der Spermatheka zu einer fast kompletten Sterilität. Der DAC wird wie im Embryo, so auch in der Spermatheka durch LET-413 rekrutiert, was auf eine grundsätzliche Konservierung des Mechanismus der Ausbildung interzellulärer Kontaktstrukturen während der Embryogenese und der Postembryogenese hindeutet. Die molekularen Details dieses Mechanismus sind aber weitestgehend unbekannt. In dieser Doktorarbeit gelang es nun erstmalig die durch let-413 und dlg-1 RNAi induzierten Phänotypen, Sterilität und embryonale Letalität, durch Mutationen in anderen Genen zu supprimieren. Im Falle des ipp-5 und des itr-1 Gens handelt es sich dabei um eine Funktionsverlust-Mutation in einer Inositol Polyphosphat 5-Phosphatase beziehungsweise eine Funktionszugewinn-Mutation im Inositol Triphosphat(IP3) Rezeptor. Dies deutet auf eine wichtige Funktion des IP3/Ca2+ Signals bei der Rettung der let-413 und dlg-1 Phänotypen hin. Nach EMS-Mutagenese konnten dann in einem klassischen F2-Screen weitere Suppressor-Mutanten identifiziert werden, die den let-413(RNAi) Phänotyp unterdrücken. Die in dieser Arbeit vorgelegten Ergebnisse legen somit den Grundstein für einen neuen Ansatz, dessen Ziel es ist mit Hilfe weiterer Suppressor-Analysen den molekularen Wirkmechanismus der let-413 und dlg-1 Genfunktion endgültig aufzuklären.A hallmark of epithelial differentiation is the formation of highly elaborate cell-cell junctions along the lateral membrane domain of epithelial cells. In the nematode Caenorhabditis elegans, the LET-413 protein recruits the DLG-1–AJM-1 complex (DAC), which organizes the electron-dense structure of the so-called “C. elegans apical junction” and finally forms a circumferential junctional belt around the epithelial apex. In this thesis, the let-413 and dlg-1 gene functions were analysed by RNAi (RNA-mediated interference) during postembryonic development of C. elegans, mainly focusing on the spermatheca, a simple organ that receives and stores sperms. RNAi against let-413 and dlg-1 seems not to disrupt functions of epithelia that have been already formed during embryogenesis (e.g. the pharynx, the intestine or the hypodermis). However, the establishment of the spermatheca epithelium is severely disturbed, which in the end causes sterility in C. elegans. The recruitment of the DAC by the LET-413 protein suggests a common underlying but so far unknown mechanism that is conserved in postembryonic and embryonic development of C. elegans. This thesis for the first time demonstrates rescue of both embryonic and postembryonic let-413 and dlg-1 RNAi-induced phenotypes by a loss-of-function mutation in ipp-5 and a gain-of-function mutation in itr-1 encoding for a type I 5-phosphatase and the inositol 1,4,5(IP3)-triphosphate receptor, respectively. These results suggest that IP3/Ca2+ signals somehow trigger a so far unknown rescue pathway that nevertheless requires a minimal amount of LET-413 protein function. To further elucidate this pathway, a classical F2 EMS mutagenesis pilot screen identified 4 putative suppressors (dus8-dus11) of the let-413(RNAi) phenotype in the spermatheca. In addition, dus8-dus11 also suppress embryonic let-413 and dlg-1 RNAi phenotypes, further supporting the idea of a common basic mechanism operating during epithelial development in the embryo and during postembryogenesis. | |||||||
Quelle: | Ahringer, J. (2006). Reverse genetics. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.47.1, http://www.wormbook.org.
Akhtar, N., Hotchin, N. A. (2001). RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol Biol Cell 12, 847-62. Albertson, D. G. (1984). Formation of the first cleavage spindle in nematode embryos. Dev Biol 101, 61-72. Albertson, D. G.und Thomson J. N. (1993). Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1, 15-26. Anastasiadis, P. Z.und Reynolds, A. B. (2001). Regulation of Rho GTPases by p120-catenin. Curr Opin Cell Biol 13, 604-10. Aoki, K., Moriguchi, H., Yoshioka, T., Okawa, K.und Tabara, H. (2007). In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J 26, 5007-5019. Aono, S., Legouis, R., Hoose, W. A.und Kemphues, K.J. (2004). PAR-3 is required for epithelial cell polarity in the distal spermatheca of C. elegans. Development 131, 2865-74. Aroian, R. V., Koga, M., Mendel, J. E., Ohshima, Y.und Sternberg P. W. (1990). The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348, 693-9. Asano, A., Asano, K., Sasaki, H., Furuse, M.und Tsukita, S. (2003) Claudins in Caenorhabditis elegans: their distribution and barrier function in the epithelium. Curr Biol 13, 1042-6. Assémat, E., Bazellières, E., Pallesi-Pocachard, E., Le Bivic, A.und Massey-Harroche, D. (2008). Polarity complex proteins. Biochim Biophys Acta 1778, 614-30. Austin, J.und Kimble, J. (1987). glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 20, 589-99. Balklava, Z., Pant, S., Fares, H.und Grant, B. D. (2007). Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol 9, 1066-73. Balla, T., Szentpetery, Z.und Kim, Y. J. (2009). Phosphoinositide signaling: new tools and insights. Physiology (Bethesda) 24, 231-44. Bazellieres, E., Assemat, E., Arsanto, J. P., Le Bivic, A.und Massey-Harroche, D. (2009). Crumbs proteins in epithelial morphogenesis. Front Biosci 14, 2149-69. Bednarek, E. M., Schaheen, L., Gaubatz, J., Jorgensen, E. M.und Fares, H. (2007). The plasma membrane calcium ATPase MCA-3 is required for clathrin-mediated endocytosis in scavenger cells of Caenorhabditis elegans. Traffic 8, 543-53. Berger, S., Bulgakova, N. A., Grawe, F., Johnson, K.und Knust, E. (2007). Unraveling the genetic complexity of Drosophila stardust during photoreceptor morphogenesis and prevention of light-induced degeneration. Genetics 176, 2189-200. Berridge, M. J., Bootman, M. D.und Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517-529. Bossinger, O., Klebes, A., Segbert, C., Theres, C.und Knust, E. (2001). Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev Biol 230, 29-42. Bossinger, O., Fukushige, T., Claeys, M., Borgonie, G.und McGhee, J. D. (2004). The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Dev Biol 268, 448-56. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Bui, Y. K.und Sternberg, P. W. (2002). Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. Mol Biol Cell 13, 1641-51. Bulgakova, N. A.und Knust, E. (2009). The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci 122, 2587-96. Chen, L., Ong, B., Bennett, V. (2001). LAD-1, the Caenorhabditis elegans L1CAM homologue, participates in embryonic and gonadal morphogenesis and is a substrate for fibroblast growth factor receptor pathway-dependent phosphotyrosine-based signaling. J Cell Biol 154, 841-55. Chen, X., Kojima, S., Borisy, G. G., Green, K. J. (2003). p120 catenin associates with kinesin and facilitates the transport of cadherin-catenin complexes to intercellular junctions. J Cell Biol 163, 547-57. Clandinin, T. R., DeModena, J. A.und Sternberg, P.W. (1998). Inositol triphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans. Cell 92, 523-533. Colosetti, P., Tunwell, R. E., Cruttwell, C., Arsanto, J. P., Mauger, J. P.und Cassio, D., (2003). The type 3 inositol 1,4,5-trisphosphate receptor is concentrated at the tight junction level in polarized MDCK cells. J Cell Sci 116, 2791-2803. Costa, M., Raich, W., Agbunag, C., Leung, B., Hardin, J.und Priess, J. R. (1998). A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 141, 297-308. Cox, R. T., Kirkpatrick, C.und Peifer, M. (1996). Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J Cell Biol 134, 133-48. Dal Santo, P., Logan, M. A., Chisholm, A. D.und Jorgensen, E. M., (1999). The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98, 757-767. Deppe, U., Schierenberg, E., Cole, T., Krieg, C., Schmitt, D., Yoder, B.und von Ehrenstein, G. (1978). Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U.S.A. 75, 376-380. Dickson, B., Sprenger, F., Morrison, D.und Hafen, E. (1992). Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360, 600-3. Drubin, D. G.und Nelson, W. J. (1996). Origins of cell polarity. Cell 84, 335-44. Eaton, S.und Simons, K. (1995). Apical, basal, and lateral cues for epithelial polarization. Cell 82, 5-8. Espelt, M. V., Estevez, A. Y., Yin, X.und Strange, K. (2005). Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma. J Gen Physiol 126, 379-92. Estevez, A. Y., Roberts, R. K.und Strange, K. (2003). Identification of store-independent and store-operated Ca2+ conductances in Caenorhabditis elegans intestinal epithelial cells. J Gen Physiol 122, 207-23. Favello, A., Hillier, L.und Wilson, R. K. (1995). Genomic DNA sequencing methods. Methods In Cell Biology 48, 551-69. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E.und Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-11. Firestein, B. L.und Rongo, C. (2001). DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol Biol Cell 12, 3465-3475. Fraser, A., Kamath, R., Zipperlen, P., Martinez-Campos, M., Sohrmann, M.und Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325-330. Fukushige, T., Hawkins, M. G.und McGhee, J. D. (1998). The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev Biol 198, 286-302. Georgiou, M., Marinari, E., Burden, J.und Baum, B. (2008). Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr Biol 18, 1631-8. Gil, E. B., Malone Link, E., Liu, L. X., Johnson, C. D.und Lees, J. A. (1999). Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc Natl Acad Sci U.S.A. 96, 2925-2930. Göbel, V., Barrett, P. L., Hall, D. H.und Fleming, J. T. (2004). Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev Cell 6, 865-873. Gönczy, P., Echeverri, G., Oegema, K., Coulson, A., Jones, S. J., Copley, R. R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K., Goessen, A., Leidel, S., Alleaume, A. M., Martin, C., Ozlu, N., Bork, P.und Hyman, A. A. (2000). Functional genomic Literatur 76 analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331-336. Gönczy, P.und Rose, L. S. (2005). Asymmetric cell division and axis formation in the embryo. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.30.1, http://www.wormbook.org. Grawe, F., Wodarz, A., Lee, B., Knust, E.und Skaer, H. (1996). The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122, 951-9. Greenstein, D. (2005). Control of oocyte meiotic maturation and fertilization. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.53.1, http://www.wormbook.org. Grishok, A. (2005). RNAi mechanisms in Caenorhabditis elegans. FEBS Lett 579, 5932-9. Grosheva, I., Shtutman, M., Elbaum, M.und Bershadsky, A. D. (2001). p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell-cell contact formation and regulation of cell locomotion. J Cell Sci 114, 695-707. Habig, J. W., Aruscavage, P. J.und Bass, B. L. (2008). In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4. PLoS One 3, 4052. Hall, D. H., Winfrey, V. P., Blaeuer, G., Hoffman, L. H., Furuta, T., Rose, K. L., Hobert, O.und Greenstein D. (1999). Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol 212, 101-123. Hansen, D., Wilson-Berry, L., Dang, T.und Schedl, T. (2004). Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131, 93-104. Hardin, J.und Lockwood, C. (2004). Skin tight: cell adhesion in the epidermis of Caenorhabditis elegans. Curr Opin Cell Biol 16, 486-92. Harris, T. J.und Peifer, M., (2005). The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J Cell Biol 170, 813-823. Hirsh, D., Oppenheim, D., Klass, M. (1976). Development of the reproductive system of Caenorhabditis elegans. Dev Biol 49, 200-19. Hodgkin, J.und Brenner, S. (1977). Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics 86, 275-287. Hubbard, E. J. A.und Greenstein, D. (2000). The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Dev Dyn 218, 2-22. Hubbard, E. J. A.und Greenstein, D. (2005). Introduction to the germ line. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.18.1, http://www.wormbook.org. Iwasaki, K., McCarter, J., Francis, R.und Schedl, T. (1996). emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation. J Cell Biol 134, 699-714. Izumi, G., Sakisaka, T., Baba, T., Tanaka, S., Morimoto, K.und Takai, Y. (2004). Endocytosis of E-cadherin regulated by Rac and Cdc42 small G proteins through IQGAP1 and actin filaments. J Cell Biol 166, 237-48. Jenny, A.und Mlodzik, M. (2006). Planar cell polarity signaling: a common mechanism for cellular polarization. Mt Sinai J Med 73, 738-50. Jordens, I., Marsman, M., Kuijl, C.und Neefjes, J. (2005). Rab proteins, connecting transport and vesicle fusion. Traffic 6, 1070-7. Jorgensen, E. M.und Mango S. E. (2002). The art and design of genetic screens: caenorhabditis elegans. Nat Rev Genet 3, 356-69. Jose, A. M.und Hunter, C. P. (2007). Transport of Sequence-Specific RNA Interference Information Between Cells. Annu Rev Genet 41, 305-30. Kaech, S. M., Whitfield, C. W.und Kim, S. K. (1998). The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 94, 761-71. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G.und Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2, research0002.1-0002.10. Kamath, R. S.und Ahringer, J. (2003). Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313-321. Kariya, K., Kim Bui, Y., Gao, X., Sternberg, P. W.und Kataoka, T. (2004). Phospholipase Cepsilon regulates ovulation in Caenorhabditis elegans. Dev Biol 274, 201-210. Kasai, H.und Petersen, O. H. (1994). Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci 17, 95-101. Kimble, J.und Hirsh, D. (1979). The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70, 396-417. Kimble, J.und Ward, S. (1988). Germ-Line Development and Fertilization. In The Nematode Caenorhabditis elegans, W.B. Wood, ed. (Cold Spring Harbor, Cold Spring Harbor Laboratory Press), pp. 191-213. Kimble, J.und Crittenden, S. L. (2005). Germline proliferation and its control. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.13.1, http://www.wormbook.org. Knust, E.und Bossinger, O. (2002). Composition and formation of intercellular junctions in epithelial cells. Science 298, 1955-9. Köppen, M., Simske, J. S., Sims, P. A., Firestein, B. L., Hall, D. H., Radice, A. D., Rongo, C.und Hardin, J. D. (2001). Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat Cell Biol 3, 983-91. Labouesse M. (1997). Deficiency screen based on the monoclonal antibody MH27 to identify genetic loci required for morphogenesis of the Caenorhabditis elegans embryo. Dev Dyn 210, 19-32. Labouesse, M. (2006). Epithelial junctions and attachments. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.56.1, http://www.wormbook.org. Lecuit, T.und Wieschaus, E. (2000). Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J Cell Biol 150, 849-60. Lee, M.und Vasioukhin, V. (2008). Cell polarity and cancer--cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 121, 1141-50. Legouis, R., Gansmuller, A., Sookhareea, S., Bosher, J. M., Baillie, D. L.und Labouesse, M. (2000). LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nat Cell Biol 2, 415-422. Legouis, R., Jaulin-Bastard, F., Schott, S., Navarro, C., Borg, J. P.und Labouesse, M. (2003). Basolateral targeting by leucine-rich repeat domains in epithelial cells. EMBO Rep 4, 1096-102. Leibfried, A., Fricke, R., Morgan, M. J., Bogdan, S.und Bellaiche, Y. (2008). Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Curr Biol 18, 1639-48. Leung, B., Hermann, G. J.und Priess, J. R. (1999). Organogenesis of the Caenorhabditis elegans intestine. Dev Biol 216, 114-34. Levental, I., Christian, D. A., Wang, Y. H., Madara, J. J, Discher, D. E.und Janmey, P. A. (2009). Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (PIP2)- and cholesterol-containing monolayers. Biochemistry 48, 8241-8. Lockwood, C. A., Lynch, A. M.und Hardin, J. (2008). Dynamic analysis identifies novel roles for DLG-1 subdomains in AJM-1 recruitment and LET-413-dependent apical focusing. J Cell Sci 121, 1477-1487. Lynch, A. M.und Hardin, J. (2009). The assembly and maintenance of epithelial junctions in C. elegans. Front Biosci 14, 1414-32. Macara, I. G. (2004). Parsing the polarity code. Nat Rev Mol Cell Biol 5, 220-31. Martin-Belmonte, F.und Mostov, K. (2007). Phosphoinositides control epithelial development. Cell Cycle 6, 1957-61. Martin-Belmonte, F., Gassama, A., Datta, A., Yu, W., Rescher, U., Gerke, V.und Mostov, K. (2007). PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383-97. McCarter, J., Bartlett, B., Dang, T.und Schedl, T. (1997). Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol 181, 121-43. McCarter, J., Bartlett, B., Dang, T.und Schedl, T. (1999). On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205, 111-28. McGhee, J. D. (2007). The C. elegans intestine. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.133.1, http://www.wormbook.org. McGhee, J. D., Fukushige, T., Krause, M. W., Minnema, S. E., Goszczynski, B., Gaudet, J., Kohara, Y., Bossinger, O., Zhao, Y., Khattra, J., Hirst, M., Jones, S. J., Marra, M. A., Ruzanov, P., Warner, A., Zapf, R., Moerman, D. G.und Kalb, J. M. (2009). ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Dev Biol 327, 551-65. McMahon, L., Legouis, R., Vonesch, J. L.und Labouesse, M. (2001). Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J Cell Sci 114, 2265-77. Mello, C. C.und Conte, D. (2004). Revealing the world of RNA interference. Nature 431, 338-342. Mihaylova, V. T., Borland, C. Z., Manjarrez, L., Stern, M. J.und Sun, H. (1999). The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc Natl Acad Sci 96, 7427-7432. Miller, M. A., Nguyen, V. Q., Lee, M. H., Kosinski, M., Schedl, T., Caprioli, R. M.und Greenstein, D. (2001). A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291, 2144-2147. Miller, M. A., Ruest, P. J., Kosinski, M., Hanks, S. K.und Greenstein, D. (2003). An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans. Genes Dev 17, 187-200. Mizuno, K., Suzuki A., Hirose T., Kitamura K., Kutsuzawa K., Futaki M., Amano, Y.und Ohno, S. (2003). Self-association of PAR-3-mediated by the conserved N-terminal domain contributes to the development of epithelial tight junctions. J Biol Chem 278, 31240-31250. Müller, H. A.und Wieschaus, E. (1996). armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J Cell Biol 134, 149-63. Nance, J. (2005). PAR proteins and the establishment of cell polarity during C. elegans development. Bioessays 27, 126-35. Nance, J., Munro, E. M.und Priess, J. R. (2003). C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation. Development 130, 5339-50. Nelson, W. J. (2003). Adaptation of core mechanisms to generate cell polarity. Nature 422, 766-74. Nejsum, L. N.und Nelson, W. J. (2009). Epithelial cell surface polarity: the early steps. Front Biosci 14, 1088-98. Noren, N. K., Liu, B. P., Burridge, K.und Kreft, B. (2000). p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 150, 567-80. Ogg, S.und Ruvkun, G. (1998). The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2, 887-893. Papoulas, O., Hays, T. S., Sisson, J. C. (2005). The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat Cell Biol 7, 612-8. Peters, M. A., Teramoto, T., White, J. Q., Iwasaki, K.und Jorgensen, E. M. (2007). A calcium wave mediated by gap junctions coordinates a rhythmic behavior in C. elegans. Curr Biol 17, 1601-8. Pettitt, J., Cox, E. A., Broadbent, I. D., Flett, A.und Hardin, J. (2003). The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal morphogenesis. J Cell Biol 162, 15-22. Pilipiuk, J. (2006). Die Rolle epithelialer Gene während der Postembryogenese von Caenorhabditis elegans. In „Institut für Genetik". Heinrich-Heine-Universität, Düsseldorf. Pilipiuk, J., Lefebvre, C., Wiesenfahrt, T., Legouis, R., Bossinger, O. (2009). Increased IP3/Ca2+ signaling compensates depletion of LET-413/DLG-1 in C. elegans epithelial junction assembly. Dev Biol 327, 34-47. Pinal, N., Goberdhan, D. C., Collinson, L., Fujita, Y., Cox, I. M., Wilson, C.und Pichaud, F. (2006). Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr Biol 16, 140-9. Powers, J., Bossinger, O., Rose, D., Strome, S.und Saxton, W. (1998). A nematode kinesin required for cleavage furrow advancement. Curr Biol 8, 1133-1136. Raich, W. B., Agbunag, C.und Hardin, J. (1999). Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr Biol 9, 1139-46. Rogers, A., Antoshechkin, I., Bieri, T., Blasiar, D., Bastiani, C., Canaran, P., Chan, J., Chen, W. J., Davis, P., Fernandes, J., Fiedler, T. J., Han, M., Harris, T. W., Kishore, R., Lee, R., McKay, S., Müller, H. M., Nakamura, C., Ozersky, P., Petcherski, A., Schindelman, G., Schwarz, E. M., Spooner, W., Tuli, M. A., Van Auken, K., Wang, D., Wang, X., Williams, G., Yook, K., Durbin, R., Stein, L. D., Spieth, J.und Sternberg, P. W. (2008) WormBase 2007. Nucleic Acids Res 36, 612-7. Roh, M. H.und Margolis, B. (2003). Composition and function of PDZ protein complexes during cell polarization. Am J Physiol Renal Physiol 285, 377-87. Rose, K. L., Winfrey, V. P., Hoffman, L. H., Hall, D. H., Furuta, T.und Greenstein, D. (1997). The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 192, 59-77. Rossi, D. J.und Weissman, I. L. (2006). Pten, tumorigenesis, and stem cell self-renewal. Cell 125, 229-31. Rouault, J. P., Kuwabara, P. E., Sinilnikova, O. M., Duret, L., Thierry-Mieg, D.und Billaud, M. (1999). Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr Biol 9, 329-332. Ruknudin, A. M., Lakatta, E. G. (2007). The regulation of the Na/Ca exchanger and plasmalemmal Ca2+ ATPase by other proteins. Ann N Y Acad Sci 1099, 86-102. Schill, N. J.und Anderson, R. A. (2009). Out, in and back again: PtdIns(4,5)P(2) regulates cadherin trafficking in epithelial morphogenesis. Biochem J 418, 247-60. Schnabel, R., Hutter, H., Moerman, D.und Schnabel, H. (1997). Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev Biol 184, 234-65. Segbert, C., Johnson, K., Theres, C., van Fürden, D.und Bossinger, O. (2004). Molecular and functional analysis of apical junction formation in the gut epithelium of Caenorhabditis elegans. Dev Biol 266, 17-26. Sieburth, D. S., Sun, Q.und Han, M. (1998). SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94, 119-30. Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H.und Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465-76. Simmer, F., Tijsterman, M., Parrish, S., Koushika, S. P., Nonet, M. L., Fire, A., Ahringer, J.und Plasterk, R.H. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12, 1317-9. Simon, M. A., Bowtell, D. D., Dodson, G. S., Laverty, T. R.und Rubin, G. M. (1991). Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701-16. Simske, J. S., Köppen, M., Sims, P., Hodgkin, J., Yonkof, A.und Hardin, J. (2003). The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans. Nat Cell Biol 5, 619-25. Simske, J. S., Kaech, S. M., Harp, S. A.und Kim, S. K. (1996). LET-23 receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell 85, 195-204. Sternberg, P. W., Golden, A., Han, M. (1993). Role of a raf proto-oncogene during Caenorhabditis elegans vulval development. Philos Trans R Soc Lond B Biol Sci 340, 259-65 Strome, S. (1986). Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans. J Cell Biol 103, 2241-2252. Sulston, J. E., Schierenberg, E., White, J. G.und Thomson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100, 64-119. Suzuki, A., Ishiyama, C., Hashiba, K., Shimizu, M., Ebnet, K.und Ohno, S. (2002). aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J Cell Sci 115, 3565-73. Suzuki, A.und Ohno, S. (2006). The PAR-aPKC system: lessons in polarity. J Cell Sci 119, 979-87. Tabara, H., Sarkissian, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A.und Mello, C. C. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123-132. Tanentzapf, G.und Tepass, U. (2003). Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nat Cell Biol 5, 46-52. Tepass, U. (1996). Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev Biol 177, 217-25. Teramoto, T.und Iwasaki, K. (2006). Intestinal calcium waves coordinate a behavioral motor program in C. elegans. Cell Calcium 40, 319-27. The_C_elegans_Sequencing_Consortium. (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012-8. Thomas-Virnig, C. L., Sims, P. A., Simske, J. S.und Hardin, J. (2004). The inositol 1,4,5-trisphosphate receptor regulates epidermal cell migration in Caenorhabditis elegans. Curr Biol 14, 1882-1887. Totong, R., Achilleos, A.und Nance, J., (2007). PAR-6 is required for junction formation but not apicobasal polarization in C. elegans embryonic epithelial cells. Development 134, 1259-1268. van den Heuvel, S. (2005). The C. elegans cell cycle: overview of molecules and mechanisms. Methods Mol Biol 296, 51-67. van Fürden, D. (2005). Genetische und molekulare Analyse der Lumenbildung und Zell-Zelladhäsion im Darmepithel des Nematoden Caenorhabditis elegans. In „Institut für Genetik". Heinrich-Heine-Universität, Düsseldorf. van Fürden, D., Johnson, K., Segbert, C.und Bossinger, O. (2004). The C. elegans ezrin-radixin-moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Dev Biol 272, 262-276. Viktorinová, I., König, T., Schlichting, K.und Dahmann, C. (2009). The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary. Development 136, 4123-32. von Stein, W., Ramrath, A., Grimm, A., Müller-Borg, M.und Wodarz, A. (2005). Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132, 1675-86. Walker, D. S., Gower, N. J., Ly, S., Bradley, G. L.und Baylis, H. A. (2002). Regulated disruption of inositol 1,4,5-trisphosphate signaling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol Biol Cell 13, 1329-1337. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Genetik | |||||||
Dokument erstellt am: | 02.02.2010 | |||||||
Dateien geändert am: | 29.01.2010 | |||||||
Promotionsantrag am: | 01.12.2009 | |||||||
Datum der Promotion: | 25.01.2010 |