Dokument: Einfluss der Indolamin 2,3-Dioxygenase auf das Zellwachstum von T-Zellen, Tumorzellen und Staphylokokken
Titel: | Einfluss der Indolamin 2,3-Dioxygenase auf das Zellwachstum von T-Zellen, Tumorzellen und Staphylokokken | |||||||
Weiterer Titel: | Indolamine 2,3-Dioxygenase and its effect on the proliferation of T-Cells, Tumorcells and Staphylococcus | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=12347 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20091106-090950-1 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Siebel, Stephan [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Däubener, Walter [Gutachter] Prof. Dr. Dilloo, Dagmar [Gutachter] | |||||||
Stichwörter: | IDO, T Zellen, Tumorzellen, Kynurenin, Hydroxykynurenin | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Indolamin 2,3-Dioxygenase ist ein ubiquitär im Körper vorkommendes Enzym, das den ersten und mengenbestimmenden Schritt im sogenannten Kynurenin-Weg vermittelt. Hierbei verstoffwechselt die IDO, stimuliert durch IFN γ, die Aminosäure Tryptophan zu Kynurenin.
Im Folgenden entstehen dann, abhängig von anderen (in dieser Arbeit nicht untersuchten) Enzymen, weitere Tryptophanabbauprodukte, wie z.B. Hydroxykynurenin, Hydroxyanthranilsäure, Anthranilsäure und Quinolinsäure. Da Tryptophan eine essentielle Aminosäure ist, hat ihr Abbau einen wesentlichen Einfluss auf den Stoffwechsel tryptophanabhängiger Organismen. Diese Erkenntnisse stellten den Ausgangspunkt meinerer Arbeit dar, in der zuerst einmal das oben beschriebene praktisch nachvollzogen wurde. Die ersten Versuche zeigten eindrücklich die Stimulierbarkeit der IDO durch INF γ, den IDO vermittelten Tryptophanabbau und die Entstehung des Kynurenins als erstes Reaktionsprodukt im Kynurenin-Weg. Bei maximaler Stimulation der IDO mit IFN γ war die Menge des Kynurenins stets abhängig von der Konzentration des in der Kultur vorhandenen Tryptophans. Bereits veröffentliche Studien beschrieben, dass der Mangel an Tryptophan einen potenten inhibitorischen Effekt auf das Wachstum von Mykobakterien, Toxoplasmen. Chlamydien und Streptokokken darstellt. In meiner Arbeit wurde dieser antiproliferative Effekt vor allem auf Staphylococcus aureus, T-Zellen sowie den Tumorzellreihen A549, 86HG39 und HBMEC untersucht. Die Depletion von Tryptophan in den entsprechenden Ansätzen zeigte sich ebenfalls als effektiver Hemmmechanismus auf die Proliferation der hier getesteten Zellreihen. Was nebenbei bestätigte, dass die hier untersuchten T-Zellen, Tumorzellen und Staphylokokken zu den auxotrophen Organismen gehören, die auf die Zufuhr von Tryptophan für ihren Stoffwechsel angewiesen sind. Der antiproliferative Effekt des Tryptophanabbaus, war aber stets nur ein zytostatischer und kein zytotoxischer, der durch erneute Supplementation der tryptophanarmen Ansätze mit Tryptophan antagonisiert werden konnte. Mithilfe der sogenannten WRS (tryptophanyl-transfer RNA synthetase) war es den Zellen möglich einen intrazellulären Tryptophanspeicher zu schaffen und somit zumindest zeitweise in den tryptophanarmen Medien zu überleben. Nach Zufuhr supra-physiologischer Mengen an Tryptophan konnten die Zellen ihre Stoffwechselaktivität wieder aufnehmen und erneut proliferieren. Da aber in vivo nicht nur Tryptophan mithilfe der IDO abgebaut wird, sondern –wie bereits oben erläutert- Tryptophanmetabolite entstehen, wurde in folgenden Ansätzen untersucht, welche Rolle die Metabolite Kynurenin, Hydroxykynurenin, Hydroxyanthranilsäure, Anthranilsäure und Quinolinsäure auf das Wachstum der genannten Zellen haben. Hierbei zeigte sich deutlich, dass die Tumorzellen und Staphylokokken nur mässig bis gar nicht in ihrer Proliferation gehemmt werden, dass das T-Zellwachstum jedoch deutlich inhibiert wird. Die Metabolite Kynurenin, Hydroxykynurenin und Hydroxyanthranilsäure übten vor allem in der frühen Proliferationsphase stimulierter T-Zellen einen starken antiproliferativen Effekt auf das T-Zellwachstum aus, der nicht durch Zufuhr von Tryptophan antagonisiert werden konnte. Somit konnte von einem zytotoxischen Effekt der Metabolite auf die T-Zellen ausgegangen werden. Die Metabolite Anthralinsäure und Quinolinsäure übten keinen antiproliferativen Effekt auf das T-Zellwachstum aus. Ebenfalls unbeeinflusst, jedoch von allen fünf verwendeten Metaboliten, blieben unstimulierte T-Zellen. Die Ergebnisse dieser Versuche zeigen, dass zwar alle in dieser Arbeit verwendeten Zellreihen auf die Zufuhr von Tryptophan als essentielle Aminosäure für ihren Stoffwechsel angewiesen sind, dass aber nur die T-Zellen durch die entstehenden Metabolite gehemmt werden. Diese in vitro Beobachtungen bieten eine Vielzahl von Möglichkeiten für zukünftige Forschung und darüber hinaus Erklärungansätze für immunologische Phänomene, wie z.B. der Ausbreitung von Tumorzellen in gesunden Geweben, die mithilfe der IDO und den toxischen Abbauprodukten die körpereigene intakte T-Zellvermittelte Immunabwehr hemmen und somit ungehindert proliferieren können.Indolamine 2,3-Dioxygenase is an enzyme that mediates the first step of the kynurenine pathway. Stimulated by IFN γ IDO metabolizes the essential aminoacid Tryptophane thus producing kynurenine. Then, mediated by other enzymes of the kynurenine pathway further byproducts are produced, such as Hydroxyanthralinic acid, Anthranilic acid and Quinolinic acid. Since Tryptophane is an essential aminoacid, its depletion mediated by IDO has an significant effect on the proliferation of tryptophan dependent organism. This conclusion forms the basis of this doctoral thesis. The first experiments show that IFN γ stimulates the IDO enzymes, which depletes Tryptophan and breaks it down into Kynurenin. The amount of Kynurenin produced by IDO Is dependent from concentration of tryptophan in the cell culture. Previously published studies showed that the deficit of tryptophan has a potent inhibitory effect on the proliferation of Mycobateria, Toxoplasma, Chlamydia and Streptococci. In this thesis its antiproliferative effect on Staphylococcus aureus, T-cells, Tumorcells such as A549, 86HG39 and HBMEC was examined. The depletion of tryptophan in the all of these cultures resulted in an inhibition of proliferation of all of the abovementioned cells. Because the antiproliferative effect of the tryptophan depletion could be antagonized by supplementing the cultures with Tryptophan again its antiproliferative effect was considered cytostatic and not cytotoxic. Due to the WRS (tryptophanyl-transfer RNA synthetase) cells can store tryptophan intracellularly and temporarily survive the tryptophan depletion and resume their metabolism again after supplementing supraphysiological concentrations of tryptophan. The second aspect of the doctoral thesis was the effect Tryptophanmetabolites such as Kynurenine, Hydroxykynurenine, Hydroxyanthranilic acid, Anthranilic acid and Quinolinic acid on the proliferation of Staphylococcus aureus, T-cells, Tumorcells such as A549, 86HG39 and HBMEC. The experiments showed that these metabolites have only a little or none antiproliferative effect on tumorcells and staphylococci. While Kynurenine, Hydroxykynurenine and Hydroxyanthranilic acid showed a strong antiproliferative effect on stimulated T-cells during their early proliferationphase. This inhibitory effect could not be antagonized by supplementing the cultures. This led to the conclusion that its effect is cytotoxic. Anthranilic acid and Quinolinic acid had no effect on the T-cellgrowth. | |||||||
Quelle: | Ahmed R, Gray D: Immunological memory and protective immunity: understanding their relation. Science 1996; 272: 54-60.
Adams O, Besken K, Oberdörfer C, MacKenzie CR, Takikawa O, Däubener W: Role of indoleamine-2,3-dioxygenase in α/β and γ-interferon-mediated antiviral effects against herpes simplex virus infections. J. Virol. 2004; 78: 2632–2636. Alberati-Giani D, Ricciardi-Castagnoli P, Kohler C, Cesura AM: Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells. J Neurochem. 1996; 66: 996-1004. Anthony TG, McDaniel BJ, Byerley RL, McGrath BC, Cavener DR, McNurlan MA, Wek RC: Preservation of liver protein synthesis occurs during dietary leucine deprivation at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J. Biol. Chem. 2004; 279: 36553–36561. Asnaghi L, Bruno P, Priulla M, Nicolin A: mTOR: a protein kinase switching between life and death. Pharmacol Res. 2004; 50: 545-549. Babcock TA, Carlin JM: Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine 2000; 12: 588-594. Bach EA, Aguet M, Schreiber RD: The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol 1997; 15: 563-591. Baglioni C: Interferon-induced enzymatic activities and their role in the antriviral state. Cell 1979; 17: 255-264. Balachandran S, Kim CN, Yeh WC, Mak TW, Bhalla K, Barber GN: Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J. 1998; 17: 6888-6902. Bandyopadhyay SK, Leonard GT Jr, Bandyopadhyay T, Stark GR, Sen GC: Transcriptional induction by double-stranded RNA is mediated by interferon stimulated response elements without activation of interferon-stimulated gene factor 3.J Biol Chem. 1995; 270: 19624-19629. Barcelo-Battlori S, Andre M, Servis C, Levy N, Takikawa O, Michetti P, Reymond M, Felley-Bosco E: Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases. Proteomics. 2002; 2: 551-560 Beretta L: Translational control in T lymphocytes. Int. Rev. Immunol. 2004; 23: 347–363. Bertazzo A, Ragazzi E, Biasiolo M, Costa CV, Allegri G: Enzyme activities involved in tryptophan metabolism along the kynurenine pathway in rabbits. Biochim Biophys Acta. 2001; 1527: 167-175. Bender DA: The kynurenine pathway of tryptophan metabolism. In: Stone TW, ed. Quinolinic Acid and the Kynurenines. CRC Press. 1989; 4–38. Benassi CA, Perissinotto B, Allergri G: The Metabolism of Tryptophan in Patients with Bladder Cancer and Other Urological Diseases. Clin. Chim. Acta, 1963; 8: 822-831. Benassi CA, Perissinotto B: Aspects of the metabolism of tryptophan in patients with vesical tumors and other urinary diseases. Farmaco Sci. 1960 May; 15: 323-336. Beutelspacher SC, Pillai R, Watson MP, Tan PH, Tsang J, McClure MO, George AJ, Larkin DF: Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by overexpression. Eur. J. Immunol. 2006; 36: 690–700. Bianchi M, Bestini R, Grezzi P: Induction of indoleamine dioxygenase by interferon in mice: a study with different recombinant interferons and various cytokines. Biochem. Biophys. Res. Commun. 1988; 152:237–242. Bluestone JA, Khattri R, Sciammas R, Sperling AI: TCR gamma delta cells: a specialized T-cell subset in the immune system. Annu Rev Cell Dev Biol. 1995; 11: 307-353. Biron CA, Sen GC: Interferons and other cytokines, p. 321-351. In D. M. Knipe, P. M. Howley, D. E. Griffin, M. Martin, B. Roizman, and S. E. Straus (ed.), Fields virology, 4th ed. Lippincott-Raven, Philadelphia, Pa. Biron CA, Brossay L: NK cells and NKT cells in innate defense against viral infections. Curr Opin Immunol. 2001; 13: 458-464. Bodaghi B, Goureau O, Zipeto D, Laurent L, Virelizier JL, Michelson S: Role of IFN-gamma-induced indoleamine 2,3 dioxygenase and inducible nitric oxide synthase in the replication of human cytomegalovirus in retinal pigment epithelial cells. J Immunol. 1999;162:957-64. Boehm U, Klamp T, Groot M, Howard JC: Cellular responses to interferon-gamma. Annu. Rev. Immunol. 1997; 15: 749-795 Boyland E, Williams DC: The metabolism of tryptophan. 2. The metabolism of tryptophan in patients suffering from cancer of the bladder. Biochem J. 1956; 64: 578-82. Brown RR, Ozaki Y, Datta SP, Borden EC, Sondel PM, Malone DG: Implications of interferon-induced tryptophan catabolism in cancer, auto-immune diseases and AIDS. Adv. Exp. Med. Biol. 1991; 294: 425–435. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Göbel G, Margreiter R, Königsrainer A, Fuchs D, Amberger A: Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin. Cancer Res. 2006; 12: 1144–1151. Burke F, Knowles RG, East N, Balkwill FR: The role of indoleamine 2,3-dioxygenase in the anti-tumour activity of human interferon-gamma in vivo. Int. J. Cancer 1995; 60: 115–122. Burudi EM, Marcondes MC, Watry DD, Zandonatti M, Taffe MA, Fox HS: Regulation of indoleamine 2,3-dioxygenase expression in simian immunodeficiency virus-infected monkey brains. J Virol. 2002;76: 12233-12241. Byrne GI, Lehmann LK, Landry GJ: Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun. 1986; 53: 347-351. Cantin E, Tanamachi B, Openshaw H, Mann J, Clarke K: Gamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice. J Virol. 1999; 73: 5196-5200. Caplen HS, Guppla Sl: Differential regulation of a cellular gene by human interferon-gamma and interferon-alpha. J Biol Chem. 1988; 263: 332-339. Carlin JM, Borden EC, Sondel PM, Byrne GI: Biological-response-modifier-induced indoleamine 2,3- dioxygenase activity in human peripheral blood mononuclear cell cultures. J. Immunol. 1987; 139: 2414–2418. Chakraborty NG, Li L, Sporn JR, Kurtzman SH, Ergin MT, Mukherji B: Emergence of regulatory CD4+ T cell response to repetitive stimulation with antigen-presenting cells in vitro: implications in designing antigen-presenting cell-based tumor vaccines. J. Immunol 1999; 162: 5576-5583. Crosby JS, Chefalo PJ, Yeh I, Ying S, London IM, Leboulch P, Chen JJ: Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2alpha kinase. Blood 2000; 96: 3241–3248. Cuenca A, Cheng F, Wang H, Brayer J, Horna P, Gu L, Bien H, Borrello IM, Levitsky HI, Sotomayor EM : Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens. Cancer Res. 2003; 63: 9007–9015. Dai W, Gupta SL: Regulation of indoleamine 2,3-dioxygenase gene expression in human fibroblasts by interferon-γ. J. Biol. Chem. 1990; 265: 19871–19877. Darnell JE Jr, Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994; 264: 1415-1421. Däubener W, Wanagat N, Pilz K, Seghrouchni S, Fischer HG, Hadding U.A new, simple, bioassay for human IFN-gamma. J Immunol Methods. 1994; 12;168: 39-47. Däubener W, MacKenzie CR: IFN-gamma activated indoleamine 2,3-dioxygenase activity in human cells is an antiparasitic and an antibacterial effector mechanism. Adv Exp Med Biol. 1999; 467: 517-524. Däubener W, Remscheid C, Nockemann S, Pilz K, MacKenzie CR, Hadding U: Anti-parasitic effector mechanisms in human brain tumor cells: role of interferon-gamma and tumor necrosis factor-alpha. Eur J Immunol. 1996; 26: 487-92. Denkers EY, Gazzinelli RT:Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection.Clin Microbiol Rev. 1998; 11: 569-588. Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG: Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol.Cell. 6; 269–279. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD: Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 2002; 3: 991–998. Dunn GP, Koebel CM, Schreiber, RD: Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006; 6: 836–848. Dyer Morris: An effect of N-2-fluorenylacetamide on the metabolism of tryptophan in rats. J Natl Cancer Inst. 1961; 26: 315-329. Espey MG, Tang Y, Morse HC 3rd, Moffett JR, Namboodiri MA: Localization of quinolinic acid in the murine AIDS model of retrovirus-induced immunodeficiency: implications for neurotoxicity and dendritic cell immunopathogenesis.AIDS. 1996; 10: 151-158. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P: T cell apoptosis by tryptophan catabolism. Cell Death Differ.2002; 9: 1069–1077. Farrar MA, Schreiber RD: The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol. 1993; 11: 571-611. Fingar DC, Blenis J: Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of the cell growth and cell cycle progression. Oncogene. 2004; 23, 3151–3171. Finter NB: The naming of cats--and alpha-interferons. Lancet. 1996; 348: 348-349. Fleckner J, Martensen PM, Tolstrup AB, Kjeldgaard NO, Justesen J: Differential regulation of the human, interferon inducible tryptophanyl-tRNA synthetase by various cytokines in cell lines. Cytokine. 1995; 7: 70-77. Fleischer B, Schrezenmeier, H: T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. J Exp Med. 1988; 167:1697-1707. Flohr T, Bange FC, von Euch A, Kiekenbeck M, Bottger EC: Depletion of tryptophan is not involved in expression of tryptophanyl-tRNA synthetase mediated by interferon. Infect Immun. 1992; 60: 4418-4421. Fox C, Hammerman P, Thompson C: The Pim kinases control rapamycin-resistant T cell survival and activation. J. Exp. Med. 2005; 201: 259–266. Frolova LY, Grigorieva AY, Sudomoina MA, Kisselev LL: The human gene encoding tryptophanyl-tRNA synthetase: interferon-response elements and exon-intron organization. Gene. 1993 ; 128 :237-245. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB: Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002; 196: 459-468. Fu F, Li Y, Qian S, Lu L, Chambers FG, Starzl TE, Fung JJ, Thomson AW: Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, B7-1dim, B7-2-) prolong cardiac allograft survival in non-immunosuppressed recipients. Transplantation 1995; 62: 659–665. Fuchs D, Baier-Bitterlich G, Wachter H:Nitric oxide and AIDS dementia. N Engl J Med. 1995; 333: 521-522. Fuchs D, Forsman A, Hagberg L, Larsson M, Norkrans G, Reibnegger G, Werner ER, Wachter H: Immune activation and decreased tryptophan in patients with HIV-1 infection. J. Interferon Res. 1990; 10: 599–603. Fujigaki S, Saito K, Sekikawa K, Tone S, Takikawa O, Fujii H, Wada H, Noma A, Seishima M: Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-γ-independent mechanism. Eur. J. Immunol. 2001; 31: 2313–2318. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, Harlin H: Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. 2006; 213: 131–145. Grohmann U, Fallarino F, Puccetti P: Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 2003; 24: 242-248. Gurtner GJ, Newberry RD, Schloemann SR, McDonald KG, Stenson WF: Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology. 2003; 125: 1762–1773. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D: Regulated translation initiation controls. Mol. Cell 2000a; 6, 1099-1106 Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D: Perk is essential for translational regulation and cell sur during the unfolded protein Mol. Cell 2000b; 5, 897–904. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell. 2003; 11: 619–633. Hassanain HH, Chon SY, Gupta SL: Differential regulation of human indoleamine 2,3-dioxygenase gene-expression by interferons-γ and -α. Analysis of the regulatory region of the gene and identification of an interferon-γ-inducible DNA-binding factor. J. Biol. Chem. 1993; 268, 5077–5084. Hayashi T, Rao SP, Takabayashi K, Van Uden JH, Kornbluth RS, Baird SM, Taylor MW, Carson DA, Catanzaro A, Raz E: Enhancement of innate immunity against Mycobacterium avium infection by immunostimulatory DNA is mediated by indoleamine 2,3-dioxygenase. Infect. Immun. 2001; 69, 6156–6164. Hayashi T, Beck L, Rossetto C, Gong X, Takikawa O, Takabayashi K, Broide DH, Carson DA, Raz E: Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J. Clin. Invest. 2004; 114: 270–279. Heim MH: The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J. Receptor Signal Transduction Res. 1999; 19:75-120. Heyes MP, Rubinow D, Lane C, Markey SP: Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann. Neurol. 1989; 26: 275–277. Heyes MP, Brew BJ, Martin A: Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann. Neurol. 1991; 29: 202–209. Heyes MP, Saito K, Jacobowitz D, Markey SP, Takikawa O, Vickers JH: Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brain. FASEB J. 1992; 6: 2977–2989. Heyes MP, Saito K, Major EO, Milstien S, Markey SP, Vickers JH: A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from 1-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxy anthrani -late. Brain 1993; 116: 1425–1450. Heyes MP Saito K, Lackner A, Wiley CA, Achim CL, Markey SP: Sources of the neurotoxin quinolinic acid in the brain of HIV-1-infected patients and retrovirus-infected macaques. FASEB J. 1998; 12: 881–896. Hinnebusch AG: The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression (Broach, J. R., Jones, E. W., and Pringle, J. R. eds) 1992; pp. 319–414. Hinnebusch AG: The eIF-2 alpha kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 1994; 5, 417–426. Hinnebusch AG: Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome. J. Biol. Chem. 1997; 272: 21661-21664. Hinnebusch AG: Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. In: Translational control of gene expression. N. Sonenberg, ed., Cold Spring Harbor: CSHL 2000. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek R, Zinkernagel RM, Aguet M: Immune response in mice that lack the interferon-gamma receptor. Science 1993; 259: 1742-1745. HWU P, Du MX, Lapointe R, Do M, Taylor MW, Young H: Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol. 2000; 164: 3596-3599. Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, Nawa A, Nomura S, Nagasaka T, Takikawa O, Kikkawa F: Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br. J. Cancer 2006; 95: 1555–1561. Jäger, Lothar: Allergien. Ursachen, Therapien, Vorbeugung. München: Beck 2000 Janeway, Charles A., Travers, Paul, Mark Walport: Immunolgy, 6th Edition, 2006, Garland Science. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC: Phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol. Cell. Biol. 2003; 23, 5651–5663. Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, Nitsch R, Bechmann I., : Indolamine 2,3-dioxygenase is expressed in the CNS and downregulates autoimmune inflammation. FASEB J. 2005; 19: 1347–1349. Kerr SJ, Armati PJ, Pemberton LA, Smythe G, Tattam B, Brew BJ: Kynurenine pathway inhibition reduces neurotoxicity of HIV-1-infected macrophages. Neurology. 1997; 49: 1671-1681. Knipe DM, Howley PM, Griffin DE, Martin M, Roizman B, Straus SE: Interferons and other cytokines Fields virology 2001, 4th ed. Lippincott-Raven, Philadelphia, Pa. p. 321-351. Knippers R: Molekulare Genetik, 7. Aufl., 1997. Thieme Verlag Lai L, Alaverdi N, Maltais L, Morse HC: Mouse cell surface antigens: nomenclature and immunophenotyping, J Immunol. 1998; 160:3861-8 Laura A, Bruno P, Priulla M , Nicolin A: mTOR: a protein kinase switching between life and death. Pharmacol Res. 2004; 50: 545-549. Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL: Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 2002; 107: 452-460. Lee JR, Dalton RR, Messina JL, Sharma MD, Smith DM, Burgess RE, Mazzella F, Antonia SJ, Mellor AL, Munn DH: Pattern of recruitment of immunoregulatory antigen presenting cells in malignant melanoma. Lab. Invest. 2003; 83: 1457–1466. Lee JH, Torisu-Itakara H, Cochran AJ, Kadison A, Huynh Y, Morton DL, Essner R: Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin. Cancer Res. 2005; 11: 107–112. Liu H, Liu L, Fletcher BS, Visner GA: Sleeping Beauty-based gene therapy with indoleamine 2,3-dioxygenase inhibits lung allograft fibrosis. FASEB J. 2006; 20: 2384–2386. Logan GJ, Smyth CMF, Earl JW, Zaikina I, Rowe PB, Smythe JA, Alexander IE: HeLa cells cocultured with peripheral blood lymphocytes acquire an immuno-inhibitory phenotype through up-regulation of indoleamine 2,3-dioxygenase activity. Immunology. 2002;105: 478-487. MacKenzie CR, Hadding U, Däubener W: Interferon-γ-induced activation of indoleamine 2,3-dioxygenase in cord blood monocyte-derived macrophages inhibits the growth of group B streptococci. J. Infect. Dis. 1998; 178: 875–878. MacKenzie CR, Langen R, Takikawa O, Däubener W: Inhibition of indoleamine 2,3-dioxygenase in human macrophages inhibits interferon-gamma-induced bacteriostasis but does not abrogate toxoplasmastasis. Eur. J. Immunol. 1999; 29: 3254–3261. Mason D, Powrie F: Control of immune pathology by regulatory T cells. Curr. Opin. Immunol. 1998; 10: 649-655. Meisel R: Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenasemediated tryptophan degradation. Blood. 2004; 103: 4619–4621. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999; 189: 1363-1372. Mellor AL, Munn DH: Tryptophan catabolism and T-cell tolerance: Immunosuppression by starvation? Immunol Today. 1999; 20: 469-473. Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol. 2002; 168: 3771-3776. Mellor AL: Indoleamine 2,3 dioxygenase and regulation of T cell immunity. Biochem Biophys Res Commun. 2005; 338: 20-24. Muller AJ, Duhadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC: Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 2005; 11: 312–319. Moffett JR, Espey MG, Gaudet SJ, Namboodiri MA. Antibodies to quinolinic acid reveal localization in select immune cells rather than neurons or astroglia. Brain Res. 1993; 623: 337–340. Moffett JR, Espey MG, Namboodiri MA. Antibodies to quinolinicacid and the determination of its cellular distribution within the rat immune system. Cell Tissue. Res. 1994; 278: 461–469. Moffett JR, Blinder KL, Venkateshan CN, Namboodiri MA. Differential effects of kynurenine and tryptophan treatment on quinolinate imunoreactivity in rat lymphoid and non-lymphoid organs. Cell Tissue Res. 1998; 293: 525–534. Moffett JR, Namboodiri MA: Tryptophan and the immune response. Immunol Cell Biology 2003; 81: 247-265. Mogensen KE, Lewerenz M, Reboul J, Lutfalla G, Uzé G: The type I interferon receptor: structure, function, and evolution of a family business. J. Interferon Cytokine Res. 1999; 19: 1069-1098. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL: Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999; 189: 1363-1372. Munn DH Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R, Slingluff CL Jr, Mellor AL: Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297: 1867–1870. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL: Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 2004; 114: 280–290. Munn DH, Sharma MD, Mellor AL: Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 2004; 172: 4100–4110. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL: GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22: 633-642. Munn DH, Mellor Al: Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007; 117: 1147-1154. Müller, Markus: Chirurgie. 7. Auflage. 2004/05 Medizinische Verlags- und Informationsdienste. Namboodiri MA,Venkateshan CN. Narayanan R: Incresed quinolate immunoreactivity in the peripheral blodd monocytes/macrophages from SIV-infected monkeys. J. Neurovirol. 1996; 2: 433-438. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tanne SR: DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A. 1992; 89: 3030–3034. Niwa M, Walter P: Pausing to decide. Proc. Natl. Acad. Sci. USA 2000; 97, 12396–12397. Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, Ishii N, Yanaihara N, Yamada K, Takikawa O, Kawaguchi R, Isonishi S, Tanaka T, Urashima M: Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res. 2005;11: 6030-6039. Pardoll D: Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 2003; 21, 807–839. Peavy DL, Adler WH, Smith RT:The mitogenic effects of endotoxin and staphylococcal enterotoxin B on mouse spleen cells and human peripheral lymphocytes. J Immunol. 1970; 105: 1453-1458. Perissinotto B, Benassi CA, Allegri G:Urinary excretion of tryptophan metabolites in patients with renal pelvis and parenchyma tumors. Urol Int. 1964; 17: 175-182. Pfefferkorn ER: Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc. Natl Acad. Sci. USA 1984; 81: 908–912. Pfefferkorn ER, Eckel M, Rebhun S: Interferon-gamma suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophan. Mol. Biochem. Parasitol. 1986; 20: 215–224. Quagliariello E, Papa S, Saccone C, Alifano A : Effect of 3-Hydroxyanthranilic Acid on Mitochondrial Respiratory System. Biochem. J. 1964; 91: 137. Rao RV, Ellerby HM, Bredesen DE: Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ.J. Exp. Med. 2004; 191: 372–380. Rastellini C, Lu L, Ricordi C, Starzl TE, Rao AS, Thomson AW: GM-CSF stimulated hepatic dendritic cell progenitors prolong pancreatic islet allograft survival. Transplantation 1995; 60: 1366–1370. Robinson CM, Shirey KA, Carlin JM: Synergistic transcriptional activation of indoleamine dioxygenase by IFN-γ and tumor necrosis factor-α. J. Interferon Cytokine Res. 2003; 23: 413–421. Rose DP: Aspects of tryptophan metabolism in health and disease. J Clin Pathol. 1972; 25: 17–25. Saito K, Markey SP, Heyes MP: Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neurosci. 1992; 51: 25–39. Saito K, Crowley JS, Markey SP, Heyes MP: A mechanism for increased quinolinic acid formation following acute systemic immune stimulation. J. Biol. Chem. 1993; 268: 496–503. Salter M, Pogson CI: The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem. J. 1985; 229: 499–504. Schwarcz R, Foster AC, French ED, Whetsell WO Jr, Köhler C:Excitotoxic models for neurodegenerative disorders. Life Sci.1984; 35: 19–32. Silva NM, Rodrigues CV, Santoro MM, Reis LF, Alvarez-Leite JI, Gazzinelli RT: Expression of indoleamine 2,3-dioxygenase, tryptophan degradation, and kynurenine formation during in vivo infection with Toxoplasma gondii: induction by endogenous γ interferon and requirement of interferon regulatory factor 1. Infect. Immun. 2002; 70: 859–868. Smith, J. A., Tso, J. Y., Clark, M. R., Cole, M. S. & Bluestone, J. A. (1997) J. Exp. Med. 185, 1413–1422. Sood R, Porter AC, Olsen DA, Cavener DR, Wek RC: A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha. Genetics 2000; 154: 787–801. Sotomayor EM, Borrello I, Rattis FM, Cuenca AG, Abrams J, Staveley-O'Carroll K, Levitsky HI : Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 2001; 98: 1070–1077. Staveley-O’Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H: Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 1178–1183. Stins MF, Gilles F, Kim KSSelective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol. 1997; 76: 81-90. Stone TW, Darlington LG: Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov. 2002; 1: 609–620. Sullivan WJ Jr, Narasimhan J, Bhatti MM, Wek RC: Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control. Biochem J. 2004; 380: 523-31. Swain SL: Helper T cell differentiation. Curr Opin Immunol. 1999; 2: 180-185. Swanson KA, Zheng Y, Heidler KM, Mizobuchi,T, Wilkes DS: CDIIc+ cells modulate pulmonary immune responses by production of indoleamine 2,3-dioxygenase. Am. J. Respir. Cell Mol. Biol. 2004; 30: 311–318. Taylor BS, Kim Y-M, Wang Q, Shapiro RA, Billiar TR, Geller DA: Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression. Arch. Surg. 1997; 132: 1177-1183. Taylor MW, Feng G: Relationship between interferon- , indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991; 5: 2516–2522. Terness P, Bauer TM, Rose L: Inhibition of Allogeneic T: Cell Proliferation by Indoleamine 2,3-Dioxygenase-expressing Dendritic Cells: Mediation of Suppression by Tryptophan Metabolites. J. Exp. Med. 2002; 196: 447–457. Uyttenhove C, Pilotte L, Theate I: Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003; 9: 1269-1274 Varga J, Yufit T, Hitraya E, Brown RR: Control of extracellular matrix degradation by interferon-γ. The tryptophan connection. Adv. Exp. Med. Biol. 1996; 398: 143–148. Van Wauwe JP, De Mey JR, Goossens JG: OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties. J Immunol. 1980; 124: 2708-2713. Varga J, Yufit T, Hitraya E, Brown RR: Control of extracellular matrix degradation by interferon-γ. The tryptophan connection. Adv. Exp. Med. Biol. 1996; 398: 143–148. Varga J, Yufit T, Brown RR: Inhibition of collagenase and stromelysin gene expression by interferon-γ in human dermal fibroblasts is mediated in part via induction of tryptophan degradation. J. Clin. Invest. 1995; 96: 475–481. Vilcek J, Henriksen-Destefano D, Siegel D, Klion A, Robb RJ, Le J: Regulation of IFN-gamma induction in human peripheral blood cells by exogenous and endogenously produced interleukin 2. JImmunol.1985; 135: 1851-1856. von Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS, Fiore F, Roth U, Beyer M, Debey S, Wickenhauser C, Hanisch FG, Schultze JL: CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood. 2006; 108: 228–237. von Wussow, Platsoucas CD, Wiranowska-Stewart M, Stewart WE 2nd: Human gamma interferon production by leukocytes induced with monoclonal antibodies recognizing T cells. J Immunol. 1981; 127: 1197-1200. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L: Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 2006; 281: 22021–22028. Wek RC, Jiang HY, Anthony TG: Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 2006; 34:7–11. Weiss LM, Kim K: The development and biology of bradyzoites of Toxoplasma gondii. Front. Biosci. 2000; 5: 391-405 Werner ER, Hirsch-Kauffmann M, Fuchs D, Hausen A, Reibnegger G, Schweiger M, Wachter H: Interferon-gamma-induced degradation of tryptophan by human cells in vitro. Biol Chem Hoppe Seyler. 1987; 368: 1407-1412. Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Wachter H: Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-gamma. Biochem. J. 1989; 262: 861–866. Werner-Feldmeyer G, Werner ER, Fuchs D, Hausen A, Reibnegger G,Wachter: Characteristics of interferon induced tryptophan metabolism in human cells in vitro. Biochim Biophys Acta. 1989; 1012: 140-147. Whithead KE, Webber GM, Engla RR: Accumulation of ppGpp in Streptococcus pyogenes and Streptococcus rattus following amino acid starvation. FEMS Microbiol Lett. 1998; 159: 21-26. Widner B, Fuchs D: Immune activation and degradation of tryptophan. Mod. Asp. Immunobiol. 2000; 1: 105–108. Yoshida R, Hayaishi O: Rhythms and physiological significance of indoleamine 2,3-dioxygenase. Tanpakushitsu Kakusan Koso. 1982; 27:143-151, Yoshida R, Oku T, Imanishi J, Kishida T, Hayaishi O: Interferon: a mediator of indoleamine 2,3-dioxygenase induction by lipopolysaccharide, poly (I), X poly (C), and pokeweed mitogen in mouse lung. Arch. Biochem. Biophys. 1986; 249: 596–604. Young HA: Regulation of interferon- gene expression. J. Interferon Cytokine Res. 1996; 16: 563-568. Yuan J Zhou L, Qin X :The relationship between LPS-induced apoptosis in hepatocyte, Kupffer cell and hepatocytic damage. 1998; 78: 423-425. Yuan J: Molecular control of life and death, Current opinion. Cell Biology 1995; 7: 211-214. Yuan W, Collado-Hidalgo A, Yufit T, Taylor M, Varga J: Modulation of cellular tryptophan metabolism in human fibroblasts by transforming growth factor-β: selective inhibition of indoleamine 2,3-dioxygenase and tryptophanyltRNA synthetase gene expression. J. Cell. Physiol. 1998; 177: 174–186. Zangerle R, Widner B, Quirchmair G, Neurauter G, Sarcletti M, Fuchs D: Effective antiretroviral therapy reduces degradation of tryptophan in patients with HIV-1 infection. Clin Immunol. 2002; 104: 242-247. Zhang P, McGrath BC, Reinert J, Olsen DS, Lei L, Gill S, Wek SA, Vattem KM, Wek RC, Kimball SR, Jefferson LS, Cavener DR: The GCN2 eIF2α kinase is required for adaptation to amino | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Bezug: | Oktober 2005-April 2007 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät » Institute » Institut für Medizinische Mikrobiologie | |||||||
Dokument erstellt am: | 06.11.2009 | |||||||
Dateien geändert am: | 05.11.2009 | |||||||
Promotionsantrag am: | 01.06.0009 | |||||||
Datum der Promotion: | 23.06.0009 |