Dokument: The Dual Function of the Chlamydia pneumoniae Cpn0572 Protein in Modulating the Host Actin Cytoskeleton

Titel:The Dual Function of the Chlamydia pneumoniae Cpn0572 Protein in Modulating the Host Actin Cytoskeleton
Weiterer Titel:The Dual Function of the Chlamydia pneumoniae Cpn0572 Protein in Modulating the Host Actin Cytoskeleton
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=12160
URN (NBN):urn:nbn:de:hbz:061-20090721-092445-2
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Zrieq, Rafat [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]17,13 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 17.07.2009 / geändert 17.07.2009
Beitragende:Prof. Dr. Hegemann, J. H. [Gutachter]
PD Dr. Bossinger, Olaf [Gutachter]
Stichwörter:Chlamydia Secretion Effector Actin
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:Chlamydiae are gram-negative obligate intracellular bacterial pathogens of humans and animals. C. pneumoniae is a common respiratory pathogen that has been associated with a variety of chronic diseases including asthma and atherosclerosis.
Chlamydiae display a biphasic developmental cycle with an infectious, but metabolically inactive elementary body (EB) and a non-infectious metabolically active reticulate body (RB). Uptake of EBs is a crucial step for infection. Like other pathogenic bacteria, it is believed that Chlamydiae species deliver their effector proteins to trigger their own entry and survival within the host cell. Among the few chlamydial effector proteins identified, the C. trachomatis Tarp is the only identified protein translocated into the host cell where it colocalizes with actin pedestals underneath the attached EB (Clifton, Fields et al. 2004). In a follow up study, it has been shown that Tarp nucleates actin polymerization in vitro (Jewett, Fischer et al. 2006). Several studies analyzing Tarp investigated the biochemical properties of the protein in vitro, however the molecular mechanism of how Tarp interacts and modulates the host actin in vivo has not been shown.
In this study, we analyzed the C. pneumoniae homologous protein Cpn0572. Both proteins share high homology in the central region but are markedly different in the N-terminal and the C-terminal regions. To investigate the role of Cpn0572 in modulating host cell processes, we used the yeast Saccharomyces cerevisiae as an eukaryotic model system. Therefore, we expressed Cpn0572 in yeast and performed a phenotypic analysis. Cpn0572-expressing yeast cells exhibited irreversible reduced growth and increased sensitivity against the actin destabilizing drug Latrunculin-A (Lat-A). Further studies revealed that cpn0572 interacts genetically with actin mutant alleles. Cpn0572 transformed the yeast wild type actin into clumps and the GFP-Cpn0572 fusion protein exclusively colocalized with these actin clumps and stabilized them against Lat-A. The actin phenotype induced by Cpn0572 and the colocalization between GFP-Cpn0572 and actin clumps were also observed in the transfected human HEK-239 cells.
A deletion analysis identified a central domain of Cpn0572 (DUF) which is conserved in all homologues proteins of Cpn0572 from different Chlamydia species. We could show that this conserved domain is crucial for colocalization with and stabilization of filamentous actin (F-actin) structures. DUF alone could bind in vitro pre-assembled mammalian F-actin and pulled down actin from HEp-2 cells lysates. Using in vivo and in vitro experiments, mutations introduced in the conserved amino acids within DUF resulted in loss of Cpn0572 capability in actin clumping, colocalization with actin structures and binding F-actin.
The combination of DUF with other domains of Cpn0572 protein yielded different actin and yeast growth phenotypes. The C-terminal region of the Cpn0572 protein increased the actin stabilization activity of DUF (which on its own is not lethal for yeast growth) and caused yeast lethality. On the other hand, the N-terminal region containing DUF induced actin clumping and lethality in yeast cells.
Using the advantages of yeast, we showed that Cpn0572 stabilizes actin by competing with and/or displacing of the actin-depolymerizing factor cofilin from binding F-actin. These results have been extended and verified in vitro using mammalian actin and cofilin proteins. Competition with cofilin in binding F-actin has also been shown for DUF and the C-terminus of Cpn0572.
Like Tarp, Cpn0572 induced actin nucleation in vitro independent from other cellular proteins and DUF required a region of 110 amino acid residues upstream of DUF to achieve this activity. Mutations within this fragment identified a crucial stretch of proline amino acids surrounding a central glutamic acid that is crucial for Cpn0572 actin clumping activity in yeast and human cells expressing Cpn0572, however this proline stretch is not required for Cpn0572-induced actin nucleation activity in vitro.
Using antibodies raised against the recombinant Cpn0572 protein, the expression of Cpn0572 was confirmed by western blot analysis in both infectious EBs and human cells infected with C. pneumoniae. Microscopical analysis showed that Cpn0572 is translocated 10 minutes after infection underneath the attached EBs into the human cells.
Collectively, our study suggests a model showing the possible dual function of Cpn0572 in stabilizing and nucleating actin in vivo during infection. Further experiments which are currently being carried out in yeast and human cells will advance our understanding of the role of Cpn0572 in C. pneumoniae infection.

Chlamydiae are gram-negative obligate intracellular bacterial pathogens of humans and animals. C. pneumoniae is a common respiratory pathogen that has been associated with a variety of chronic diseases including asthma and atherosclerosis.
Chlamydiae display a biphasic developmental cycle with an infectious, but metabolically inactive elementary body (EB) and a non-infectious metabolically active reticulate body (RB). Uptake of EBs is a crucial step for infection. Like other pathogenic bacteria, it is believed that Chlamydiae species deliver their effector proteins to trigger their own entry and survival within the host cell. Among the few chlamydial effector proteins identified, the C. trachomatis Tarp is the only identified protein translocated into the host cell where it colocalizes with actin pedestals underneath the attached EB (Clifton, Fields et al. 2004). In a follow up study, it has been shown that Tarp nucleates actin polymerization in vitro (Jewett, Fischer et al. 2006). Several studies analyzing Tarp investigated the biochemical properties of the protein in vitro, however the molecular mechanism of how Tarp interacts and modulates the host actin in vivo has not been shown.
In this study, we analyzed the C. pneumoniae homologous protein Cpn0572. Both proteins share high homology in the central region but are markedly different in the N-terminal and the C-terminal regions. To investigate the role of Cpn0572 in modulating host cell processes, we used the yeast Saccharomyces cerevisiae as an eukaryotic model system. Therefore, we expressed Cpn0572 in yeast and performed a phenotypic analysis. Cpn0572-expressing yeast cells exhibited irreversible reduced growth and increased sensitivity against the actin destabilizing drug Latrunculin-A (Lat-A). Further studies revealed that cpn0572 interacts genetically with actin mutant alleles. Cpn0572 transformed the yeast wild type actin into clumps and the GFP-Cpn0572 fusion protein exclusively colocalized with these actin clumps and stabilized them against Lat-A. The actin phenotype induced by Cpn0572 and the colocalization between GFP-Cpn0572 and actin clumps were also observed in the transfected human HEK-239 cells.
A deletion analysis identified a central domain of Cpn0572 (DUF) which is conserved in all homologues proteins of Cpn0572 from different Chlamydia species. We could show that this conserved domain is crucial for colocalization with and stabilization of filamentous actin (F-actin) structures. DUF alone could bind in vitro pre-assembled mammalian F-actin and pulled down actin from HEp-2 cells lysates. Using in vivo and in vitro experiments, mutations introduced in the conserved amino acids within DUF resulted in loss of Cpn0572 capability in actin clumping, colocalization with actin structures and binding F-actin.
The combination of DUF with other domains of Cpn0572 protein yielded different actin and yeast growth phenotypes. The C-terminal region of the Cpn0572 protein increased the actin stabilization activity of DUF (which on its own is not lethal for yeast growth) and caused yeast lethality. On the other hand, the N-terminal region containing DUF induced actin clumping and lethality in yeast cells.
Using the advantages of yeast, we showed that Cpn0572 stabilizes actin by competing with and/or displacing of the actin-depolymerizing factor cofilin from binding F-actin. These results have been extended and verified in vitro using mammalian actin and cofilin proteins. Competition with cofilin in binding F-actin has also been shown for DUF and the C-terminus of Cpn0572.
Like Tarp, Cpn0572 induced actin nucleation in vitro independent from other cellular proteins and DUF required a region of 110 amino acid residues upstream of DUF to achieve this activity. Mutations within this fragment identified a crucial stretch of proline amino acids surrounding a central glutamic acid that is crucial for Cpn0572 actin clumping activity in yeast and human cells expressing Cpn0572, however this proline stretch is not required for Cpn0572-induced actin nucleation activity in vitro.
Using antibodies raised against the recombinant Cpn0572 protein, the expression of Cpn0572 was confirmed by western blot analysis in both infectious EBs and human cells infected with C. pneumoniae. Microscopical analysis showed that Cpn0572 is translocated 10 minutes after infection underneath the attached EBs into the human cells.
Collectively, our study suggests a model showing the possible dual function of Cpn0572 in stabilizing and nucleating actin in vivo during infection. Further experiments which are currently being carried out in yeast and human cells will advance our understanding of the role of Cpn0572 in C. pneumoniae infection.
Quelle:Abkevich, V. I., A. M. Gutin, et al. (1994). "Specific nucleus as the transition state for protein folding: evidence from the lattice model." Biochemistry 33(33): 10026-36.
Aktories, K. and J. T. Barbieri (2005). "Bacterial cytotoxins: targeting eukaryotic switches." Nat Rev Microbiol 3(5): 397-410.
Alto, N. M., F. Shao, et al. (2006). "Identification of a bacterial type III effector family with G protein mimicry functions." Cell 124(1): 133-45.
Amberg, D. C. (1998). "Three-dimensional imaging of the yeast actin cytoskeleton through the budding cell cycle." Mol Biol Cell 9(12): 3259-62.
Asakura, T., T. Sasaki, et al. (1998). "Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae." Oncogene 16(1): 121-30.
Ayscough, K. R. (2000). "Endocytosis and the development of cell polarity in yeast require a dynamic F-actin cytoskeleton." Curr Biol 10(24): 1587-90.
Ayscough, K. R., J. Stryker, et al. (1997). "High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A." J Cell Biol 137(2): 399-416.
Balin, B. J., H. C. Gerard, et al. (1998). "Identification and localization of Chlamydia pneumoniae in the Alzheimer's brain." Med Microbiol Immunol (Berl) 187(1): 23-42.
Bamburg, J. R., A. McGough, et al. (1999). "Putting a new twist on actin: ADF/cofilins modulate actin dynamics." Trends Cell Biol 9(9): 364-70.
Baum, B. and P. Kunda (2005). "Actin nucleation: spire - actin nucleator in a class of its own." Curr Biol 15(8): R305-8.
Belland, R. J., S. P. Ouellette, et al. (2004). "Chlamydia pneumoniae and atherosclerosis." Cell Microbiol 6(2): 117-27.
Belmont, L. D. and D. G. Drubin (1998). "The yeast V159N actin mutant reveals roles for actin dynamics in vivo." J Cell Biol 142(5): 1289-99.
Berka, K., P. Hobza, et al. (2009). "Analysis of energy stabilization inside the hydrophobic core of rubredoxin." Chemphyschem 10(3): 543-8.
Birkelund, S., A. G. Lundemose, et al. (1990). "The 75-kilodalton cytoplasmic Chlamydia trachomatis L2 polypeptide is a DnaK-like protein." Infect Immun 58(7): 2098-104.
Birkelund S. and C. G. (2005). Chlamydia proteomes. 15th European Congress of Clinical Microbiology and Infectious Diseases Copenhagen / Denmark, European Society of Clinical Microbiology and Infectious Diseases.
Bishop, A. L. and A. Hall (2000). "Rho GTPases and their effector proteins." Biochem J 348 Pt 2: 241-55.
Boleti, H., A. Benmerah, et al. (1999). "Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth." J Cell Sci 112(Pt 10): 1487-96.
Bretscher, A. (2003). "Polarized growth and organelle segregation in yeast: the tracks, motors, and receptors." J Cell Biol 160(6): 811-6.
Brieher, W. M., H. Y. Kueh, et al. (2006). "Rapid actin monomer-insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1." J Cell Biol 175(2): 315-24.
Bubb, M. R., A. M. Senderowicz, et al. (1994). "Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin." J Biol Chem 269(21): 14869-71.
Buttner, D. and U. Bonas (2002). "Getting across--bacterial type III effector proteins on their way to the plant cell." Embo J 21(20): 5313-22.
Byrne, G. I. (1978). "Kinetics of phagocytosis of Chlamydia psittaci by mouse fibroblasts (L cells): separation of the attachment and ingestion stages." Infect Immun 19(2): 607-12.
Cain, R. J., R. D. Hayward, et al. (2008). "Deciphering interplay between Salmonella invasion effectors." PLoS Pathog 4(4): e1000037.
Carabeo, R. A., S. S. Grieshaber, et al. (2002). "Chlamydia trachomatis induces remodeling of the actin cytoskeleton during attachment and entry into HeLa cells." Infect Immun 70(7): 3793-803.
Carabeo, R. A., S. S. Grieshaber, et al. (2004). "Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells." Traffic 5(6): 418-25.
Carabeo, R. A., D. J. Mead, et al. (2003). "Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion." Proc Natl Acad Sci U S A 100(11): 6771-6.
Carlier, M. F., F. Ressad, et al. (1999). "Control of actin dynamics in cell motility. Role of ADF/cofilin." J Biol Chem 274(48): 33827-30.
Castresana, J. and M. Saraste (1995). "Does Vav bind to F-actin through a CH domain?" FEBS Lett 374(2): 149-51.
CDC, C. f. D. C. a. P. (1993). "Recommendations for the prevention and management of Chlamydia trachomatis infections, 1993." MMWR 42(RR-12): 1-39.
Chen, H., B. W. Bernstein, et al. (2000). "Regulating actin-filament dynamics in vivo." Trends Biochem Sci 25(1): 19-23.
Chereau, D., F. Kerff, et al. (2005). "Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly." Proc Natl Acad Sci U S A 102(46): 16644-9.
Chhabra, E. S. and H. N. Higgs (2007). "The many faces of actin: matching assembly factors with cellular structures." Nat Cell Biol 9(10): 1110-21.
Clifton, D. R., C. A. Dooley, et al. (2005). "Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin." Infect Immun 73(7): 3860-8.
Clifton, D. R., K. A. Fields, et al. (2004). "A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin." Proc Natl Acad Sci U S A 101(27): 10166-71.
Cocchiaro, J. L., Y. Kumar, et al. (2008). "Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole." Proc Natl Acad Sci U S A 105(27): 9379-84.
Coombes, B. K., D. L. Johnson, et al. (2002). "Strategic targeting of essential host-pathogen interactions in chlamydial disease." Curr Drug Targets Infect Disord 2(3): 201-16.
Coombes, B. K. and J. B. Mahony (2002). "Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells." Cell Microbiol 4(7): 447-60.
Cooper, J. A. and T. D. Pollard (1982). "Methods to measure actin polymerization." Methods Enzymol 85 Pt B: 182-210.
Cortes, C., K. A. Rzomp, et al. (2007). "Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases." Infect Immun 75(12): 5586-96.
Cossart, P., J. Pizarro-Cerda, et al. (2003). "Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions." Trends Cell Biol 13(1): 23-31.
Coue, M., S. L. Brenner, et al. (1987). "Inhibition of actin polymerization by latrunculin A." FEBS Lett 213(2): 316-8.
D'Agostino, J. L. and B. L. Goode (2005). "Dissection of Arp2/3 complex actin nucleation mechanism and distinct roles for its nucleation-promoting factors in Saccharomyces cerevisiae." Genetics 171(1): 35-47.
Davis, C. H. and P. B. Wyrick (1997). "Differences in the association of Chlamydia trachomatis serovar E and serovar L2 with epithelial cells in vitro may reflect biological differences in vivo." Infect Immun 65(7): 2914-24.
Delevoye, C., M. Nilges, et al. (2008). "SNARE protein mimicry by an intracellular bacterium." PLoS Pathog 4(3): e1000022.
Dominguez, R. (2004). "Actin-binding proteins--a unifying hypothesis." Trends Biochem Sci 29(11): 572-8.
Elwell, C. A., A. Ceesay, et al. (2008). "RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry." PLoS Pathog 4(3): e1000021.
Entian, K. D. and P. Kötter (1998). Yeast mutant and plasmid collections. In: Yeast Gene Analysis, vol. 26, , ed. A.J.P. Brown and M.F. Tuite, London: Academic Press, United Kingdom, 431-449.
Escalante-Ochoa, C., R. Ducatelle, et al. (2000). "Optimal development of Chlamydophila psittaci in L929 fibroblast and BGM epithelial cells requires the participation of microfilaments and microtubule-motor proteins." Microb Pathog 28(6): 321-33.
Everett, K. D., R. M. Bush, et al. (1999). "Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms." Int J Syst Bacteriol 49 Pt 2: 415-40.
Fiedler, T. A., T. S. Karpova, et al. (2002). "The vesicular transport protein Cgp1p/Vps54p/Tcs3p/Luv1p is required for the integrity of the actin cytoskeleton." Mol Genet Genomics 268(2): 190-205.
Ford, P. J., E. Gemmell, et al. (2005). "Cross-reactivity of GroEL antibodies with human heat shock protein 60 and quantification of pathogens in atherosclerosis." Oral Microbiol Immunol 20(5): 296-302.
Gabel, B. R., C. Elwell, et al. (2004). "Lipid raft-mediated entry is not required for Chlamydia trachomatis infection of cultured epithelial cells." Infect Immun 72(12): 7367-73.
Geese, M., K. Schluter, et al. (2000). "Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed." J Cell Sci 113 ( Pt 8): 1415-26.
Ghosh, P. (2004). "Process of protein transport by the type III secretion system." Microbiol Mol Biol Rev 68(4): 771-95.
Goffeau, A. (1996). "1996: a vintage year for yeast and Yeast." Yeast 12(16): 1603-5.
Goley, E. D. and M. D. Welch (2006). "The ARP2/3 complex: an actin nucleator comes of age." Nat Rev Mol Cell Biol 7(10): 713-26.
Goode, B. L., J. J. Wong, et al. (1999). "Coronin promotes the rapid assembly and cross-linking of actin filaments and may link the actin and microtubule cytoskeletons in yeast." J Cell Biol 144(1): 83-98.
Gouin, E., M. D. Welch, et al. (2005). "Actin-based motility of intracellular pathogens." Curr Opin Microbiol 8(1): 35-45.
Grieshaber, S. S., N. A. Grieshaber, et al. (2003). "Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process." J Cell Sci 116(Pt 18): 3793-802.
Guldener, U., G. J. Koehler, et al. (2004). "Characterization of the Saccharomyces cerevisiae Fol1 protein: starvation for C1 carrier induces pseudohyphal growth." Mol Biol Cell 15(8): 3811-28.
Gunst, S. J. and W. Zhang (2008). "Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction." Am J Physiol Cell Physiol 295(3): C576-87.
Hayward, R. D. and V. Koronakis (1999). "Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella." Embo J 18(18): 4926-34.
Heise, T. and P. Dersch (2006). "Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake." Proc Natl Acad Sci U S A 103(9): 3375-80.
Henderson, I. R. and A. C. Lam (2001). "Polymorphic proteins of Chlamydia spp.--autotransporters beyond the Proteobacteria." Trends Microbiol 9(12): 573-8.
Higashide, W., S. Dai, et al. (2002). "Involvement of SipA in modulating actin dynamics during Salmonella invasion into cultured epithelial cells." Cell Microbiol 4(6): 357-65.
Higgs, H. N. (2005). "Formin proteins: a domain-based approach." Trends Biochem Sci 30(6): 342-53.
Hodinka, R. L., C. H. Davis, et al. (1988). "Ultrastructural study of endocytosis of Chlamydia trachomatis by McCoy cells." Infect Immun 56(6): 1456-63.
Hodinka, R. L. and P. B. Wyrick (1986). "Ultrastructural study of mode of entry of Chlamydia psittaci into L-929 cells." Infect Immun 54(3): 855-63.
Holmes, K. C., D. Popp, et al. (1990). "Atomic model of the actin filament." Nature 347(6288): 44-9.
Hsia, R. C., Y. Pannekoek, et al. (1997). "Type III secretion genes identify a putative virulence locus of Chlamydia." Mol Microbiol 25(2): 351-9.
Huang, J., C. F. Lesser, et al. (2008). "The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth." Nature 456(7218): 112-5.
Hueck, C. J. (1998). "Type III protein secretion systems in bacterial pathogens of animals and plants." Microbiol Mol Biol Rev 62(2): 379-433.
Humphries, C. L., H. I. Balcer, et al. (2002). "Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin." J Cell Biol 159(6): 993-1004.
Hybiske, K. and R. S. Stephens (2007). "Mechanisms of host cell exit by the intracellular bacterium Chlamydia." Proc Natl Acad Sci U S A 104(27): 11430-5.
Jewett, T. J., C. A. Dooley, et al. (2008). "Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases." Biochem Biophys Res Commun 371(2): 339-44.
Jewett, T. J., E. R. Fischer, et al. (2006). "Chlamydial TARP is a bacterial nucleator of actin." Proc Natl Acad Sci U S A 103(42): 15599-604.
Jutras, I., L. Abrami, et al. (2003). "Entry of the lymphogranuloma venereum strain of Chlamydia trachomatis into host cells involves cholesterol-rich membrane domains." Infect Immun 71(1): 260-6.
Kabsch, W. and K. C. Holmes (1995). "The actin fold." Faseb J 9(2): 167-74.
Kabsch, W., H. G. Mannherz, et al. (1990). "Atomic structure of the actin:DNase I complex." Nature 347(6288): 37-44.
Kang, F., R. O. Laine, et al. (1997). "Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator-stimulated phosphoprotein (VASP): implications for actin-based Listeria motility." Biochemistry 36(27): 8384-92.
Kovar, D. R. (2006). "Molecular details of formin-mediated actin assembly." Curr Opin Cell Biol 18(1): 11-7.
Kramer, R. W., N. L. Slagowski, et al. (2007). "Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation." PLoS Pathog 3(2): e21.
Kumar, Y., J. Cocchiaro, et al. (2006). "The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets." Curr Biol 16(16): 1646-51.
Kuo, C. C., J. T. Grayston, et al. (1995). "Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15-34 years old)." Proc Natl Acad Sci U S A 92(15): 6911-4.
Lad, S. P., J. Li, et al. (2007). "Cleavage of p65/RelA of the NF-kappaB pathway by Chlamydia." Proc Natl Acad Sci U S A 104(8): 2933-8.
Laemmli, U. K. (1970). "Cleavage of structural proteins during the assembly of the head of bacteriophage T4." Nature 227(5259): 680-5.
Land, J. A., A. P. Gijsen, et al. (2002). "Chlamydia trachomatis in subfertile women undergoing uterine instrumentation. Screen or treat?" Hum Reprod 17(3): 525-7.
Lane, B. J., C. Mutchler, et al. (2008). "Chlamydial entry involves TARP binding of guanine nucleotide exchange factors." PLoS Pathog 4(3): e1000014.
Lappalainen, P. and D. G. Drubin (1997). "Cofilin promotes rapid actin filament turnover in vivo." Nature 388(6637): 78-82.
Lappalainen, P., M. M. Kessels, et al. (1998). "The ADF homology (ADF-H) domain: a highly exploited actin-binding module." Mol Biol Cell 9(8): 1951-9.
Lazaro-Dieguez, F., C. Aguado, et al. (2008). "Dynamics of an F-actin aggresome generated by the actin-stabilizing toxin jasplakinolide." J Cell Sci 121(Pt 9): 1415-25.
Lee, C. A. (1997). "Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells?" Trends Microbiol 5(4): 148-56.
Leinonen, M. and P. Saikku (2000). "Infections and atherosclerosis." Scand Cardiovasc J 34(1): 12-20.
Lesser, C. F. and S. I. Miller (2001). "Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection." Embo J 20(8): 1840-9.
Liepina, I., C. Czaplewski, et al. (2003). "Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bisphosphate." Biopolymers 71(1): 49-70.
Littlefield, R. and V. M. Fowler (2002). "A minor actin catastrophe." Nat Cell Biol 4(9): E209-11.
Liu, H. P. and A. Bretscher (1989). "Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton." Cell 57(2): 233-42.
Liverman, A. D., H. C. Cheng, et al. (2007). "Arp2/3-independent assembly of actin by Vibrio type III effector VopL." Proc Natl Acad Sci U S A 104(43): 17117-22.
Lu, H., W. M. Zhao, et al. (2005). "Analysis of synonymous codon usage bias in Chlamydia." Acta Biochim Biophys Sin (Shanghai) 37(1): 1-10.
Mahoney, N. M., D. A. Rozwarski, et al. (1999). "Profilin binds proline-rich ligands in two distinct amide backbone orientations." Nat Struct Biol 6(7): 666-71.
Majeed, M. and E. Kihlstrom (1991). "Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells." Infect Immun 59(12): 4465-72.
McGhie, E. J., R. D. Hayward, et al. (2004). "Control of actin turnover by a salmonella invasion protein." Mol Cell 13(4): 497-510.
Mehlitz, A., S. Banhart, et al. (2008). "Complex kinase requirements for Chlamydia trachomatis Tarp phosphorylation." FEMS Microbiol Lett 289(2): 233-40.
Michael, B. (2006 ). LGV in the UK: almost 350 cases reported and still predominantly affecting HIV-positive gay men. Aidsmap: 17 May 2006
Miller, W. C., C. A. Ford, et al. (2004). "Prevalence of chlamydial and gonococcal infections among young adults in the United States." Jama 291(18): 2229-36.
Moelleken, K. and J. H. Hegemann (2008). "The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding." Mol Microbiol 67(2): 403-19.
Moraczewska, J., B. Wawro, et al. (1999). "Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin." Biophys J 77(1): 373-85.
Morton, W. M., K. R. Ayscough, et al. (2000). "Latrunculin alters the actin-monomer subunit interface to prevent polymerization." Nat Cell Biol 2(6): 376-8.
Moseley, J. B. and B. L. Goode (2006). "The yeast actin cytoskeleton: from cellular function to biochemical mechanism." Microbiol Mol Biol Rev 70(3): 605-45.
Müller, N., F. Sattelmacher, et al. (2008). "Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins." Med Microbiol Immunol 197(4): 387-96.
Munshi, R., K. A. Kandl, et al. (2001). "Overexpression of translation elongation factor 1A affects the organization and function of the actin cytoskeleton in yeast." Genetics 157(4): 1425-36.
Nicholson-Dykstra, S., H. N. Higgs, et al. (2005). "Actin dynamics: growth from dendritic branches." Curr Biol 15(9): R346-57.
Niggli, V. (2005). "Regulation of protein activities by phosphoinositide phosphates." Annu Rev Cell Dev Biol 21: 57-79.
Oba, Y. and G. Salzman. (2007). "Chlamydial pneumonias. Overview of infection with the three main chlamydial species that cause respiratory disease in humans. eMedicine, February 2007." from http://www.emedicine.com/med/TOPIC341.HTM.
Ohkubo, S. and N. Nakahata (2007). "[Role of lipid rafts in trimeric G protein-mediated signal transduction]." Yakugaku Zasshi 127(1): 27-40.
Ojala, P. J., V. Paavilainen, et al. (2001). "Identification of yeast cofilin residues specific for actin monomer and PIP2 binding." Biochemistry 40(51): 15562-9.
Okada, K., H. Ravi, et al. (2006). "Aip1 and cofilin promote rapid turnover of yeast actin patches and cables: a coordinated mechanism for severing and capping filaments." Mol Biol Cell 17(7): 2855-68.
Ono, S. (2007). "Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics." Int Rev Cytol 258: 1-82.
Owen, C. H., D. J. DeRosier, et al. (1992). "Actin crosslinking protein EF-1a of Dictyostelium discoideum has a unique bonding rule that allows square-packed bundles." J Struct Biol 109(3): 248-54.
Parthasarathy, S. and M. R. Murthy (1997). "Analysis of temperature factor distribution in high-resolution protein structures." Protein Sci 6(12): 2561-7.
Peters, J., D. P. Wilson, et al. (2007). "Type III secretion a la Chlamydia." Trends Microbiol 15(6): 241-51.
Pistor, S., T. Chakraborty, et al. (1995). "The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins." Curr Biol 5(5): 517-25.
Pollard, T. D. (2003). "The cytoskeleton, cellular motility and the reductionist agenda." Nature 422(6933): 741-5.
Prain, C. J. and J. H. Pearce (1989). "Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): modulation of intracellular events and relationship with endocytic mechanism." J Gen Microbiol 135 ( Pt 7): 2107-23.
Prebeck, S., C. Kirschning, et al. (2001). "Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells." J Immunol 167(6): 3316-23.
Rafelski, S. M. and J. A. Theriot (2004). "Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics." Annu Rev Biochem 73: 209-39.
Read, T. D., R. C. Brunham, et al. (2000). "Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39." Nucleic Acids Res 28(6): 1397-406.
Roca, B. (2007). "[Chlamydial infections]." An Med Interna 24(6): 292-9.
Rockey, D. D., M. A. Scidmore, et al. (2002). "Proteins in the chlamydial inclusion membrane." Microbes Infect 4(3): 333-40.
Rodal, A. A., J. W. Tetreault, et al. (1999). "Aip1p interacts with cofilin to disassemble actin filaments." J Cell Biol 145(6): 1251-64.
Rodriguez-Escudero, I., P. R. Hardwidge, et al. (2005). "Enteropathogenic Escherichia coli type III effectors alter cytoskeletal function and signalling in Saccharomyces cerevisiae." Microbiology 151(Pt 9): 2933-45.
Rosqvist, R., A. Forsberg, et al. (1991). "Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption." Infect Immun 59(12): 4562-9.
Rottner, K., T. E. Stradal, et al. (2005). "Bacteria-host-cell interactions at the plasma membrane: stories on actin cytoskeleton subversion." Dev Cell 9(1): 3-17.
Rupp, J., J. Gieffers, et al. (2007). "Chlamydia pneumoniae directly interferes with HIF-1alpha stabilization in human host cells." Cell Microbiol 9(9): 2181-91.
Rzomp, K. A., A. R. Moorhead, et al. (2006). "The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229." Infect Immun 74(9): 5362-73.
Rzomp, K. A., L. D. Scholtes, et al. (2003). "Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner." Infect Immun 71(10): 5855-70.
Sato, H., D. W. Frank, et al. (2003). "The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU." Embo J 22(12): 2959-69.
Schramm, N. and P. B. Wyrick (1995). "Cytoskeletal requirements in Chlamydia trachomatis infection of host cells." Infect Immun 63(1): 324-32.
Schuler, H. (2001). "ATPase activity and conformational changes in the regulation of actin." Biochim Biophys Acta 1549(2): 137-47.
Shaner, N. C., J. W. Sanger, et al. (2005). "Actin and alpha-actinin dynamics in the adhesion and motility of EPEC and EHEC on host cells." Cell Motil Cytoskeleton 60(2): 104-20.
Sisko, J. L., K. Spaeth, et al. (2006). "Multifunctional analysis of Chlamydia-specific genes in a yeast expression system." Mol Microbiol 60(1): 51-66.
Skrzypek, E., T. Myers-Morales, et al. (2003). "Application of a Saccharomyces cerevisiae model to study requirements for trafficking of Yersinia pestis YopM in eucaryotic cells." Infect Immun 71(2): 937-47.
Smith, G. A. and D. A. Portnoy (1997). "How the Listeria monocytogenes ActA protein converts actin polymerization into a motile force." Trends Microbiol 5(7): 272-6.
Sriram, S., W. Mitchell, et al. (1998). "Multiple sclerosis associated with Chlamydia pneumoniae infection of the CNS." Neurology 50(2): 571-2.
Stephens, R. S. (1999). Genomic Autobiographies of Chlamydiae. Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. R. S. Stephens. Washington, D.C., ASM Press: 9-28.
Stephens, R. S., S. Kalman, et al. (1998). "Genome sequence of an obligate intracellular pathogen of humans: chlamydia trachomatis." Science 282(5389): 754-9.
Stephens, R. S., G. Myers, et al. (2009). "Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved." FEMS Immunol Med Microbiol 55(2): 115-9.
Strachan T. and Read AP. (1999). Leptospira. In: Human Molecular Genetics, Wiley-Liss. (via NCBI Bookshelf) ISBN 0-471-33061-2.
Stradal, T. E. and G. Scita (2006). "Protein complexes regulating Arp2/3-mediated actin assembly." Curr Opin Cell Biol 18(1): 4-10.
Su, H., G. McClarty, et al. (2004). "Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids." J Biol Chem 279(10): 9409-16.
Su, H., L. Raymond, et al. (1996). "A Recombinant Chlamydia Trachomatis Major Outer Membrane Protein Binds to Heparan Sulfate Receptors On Epithelial Cells." Proceedings of the National Academy of Sciences of the United States of America 93 (20): 11143-11148.
Subtil, A. and A. Dautry-Varsat (2004). "Chlamydia: five years A.G. (after genome)." Curr Opin Microbiol 7(1): 85-92.
Subtil, A., B. Wyplosz, et al. (2004). "Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity." J Cell Sci 117(Pt 17): 3923-33.
Suchland, R. J., D. D. Rockey, et al. (2000). "Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane." Infect Immun 68(1): 360-7.
Suetsugu, S., H. Miki, et al. (1998). "The essential role of profilin in the assembly of actin for microspike formation." Embo J 17(22): 6516-26.
Tapon, N. and A. Hall (1997). "Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton." Curr Opin Cell Biol 9(1): 86-92.
Tran Van Nhieu, G., R. Bourdet-Sicard, et al. (2000). "Bacterial signals and cell responses during Shigella entry into epithelial cells." Cell Microbiol 2(3): 187-93.
Valdivia, R. H. (2004). "Modeling the function of bacterial virulence factors in Saccharomyces cerevisiae." Eukaryot Cell 3(4): 827-34.
Vallotton, P., S. L. Gupton, et al. (2004). "Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy." Proc Natl Acad Sci U S A 101(26): 9660-5.
Van Troys, M., J. Vandekerckhove, et al. (1999). "Structural modules in actin-binding proteins: towards a new classification." Biochim Biophys Acta 1448(3): 323-48.
Vandahl, B. B., A. S. Pedersen, et al. (2002). "The expression, processing and localization of polymorphic membrane proteins in Chlamydia pneumoniae strain CWL029." BMC Microbiol 2(1): 36.
Ward, M. E. and A. Murray (1984). "Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis." J Gen Microbiol 130(7): 1765-80.
Wegner, A. (1976). "Head to tail polymerization of actin." J Mol Biol 108(1): 139-50.
Wolf, K., E. Fischer, et al. (2000). "Ultrastructural analysis of developmental events in Chlamydia pneumoniae-infected cells." Infect Immun 68(4): 2379-85.
Wuppermann, F. N., J. H. Hegemann, et al. (2001). "Heparan Sulfate-like Glycosaminoglycan Is a Cellular Receptor for Chlamydia pneumoniae." J Infect Dis 184(2): 181-7.
Wuppermann, F. N., K. Molleken, et al. (2008). "Chlamydia pneumoniae GroEL1 protein is cell surface associated and required for infection of HEp-2 cells." J Bacteriol 190(10): 3757-67.
Wyrick, P. B., J. Choong, et al. (1989). "Entry of genital Chlamydia trachomatis into polarized human epithelial cells." Infect Immun 57(8): 2378-89.
Yang, C., M. Huang, et al. (2000). "Profilin enhances Cdc42-induced nucleation of actin polymerization." J Cell Biol 150(5): 1001-12.
Yang, S., M. J. Cope, et al. (1999). "Sla2p is associated with the yeast cortical actin cytoskeleton via redundant localization signals." Mol Biol Cell 10(7): 2265-83.
Yarar, D., J. A. D'Alessio, et al. (2002). "Motility determinants in WASP family proteins." Mol Biol Cell 13(11): 4045-59.
Yarmola, E. G., T. Somasundaram, et al. (2000). "Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A." J Biol Chem 275(36): 28120-7.
Yoshida, S., E. Katayama, et al. (2002). "Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization." Embo J 21(12): 2923-35.
Young, M. E., J. A. Cooper, et al. (2004). "Yeast actin patches are networks of branched actin filaments." J Cell Biol 166(5): 629-35.
Zhang, J. P. and R. S. Stephens (1992). "Mechanism of C. trachomatis attachment to eukaryotic host cells." Cell 69(5): 861-9.
Zhong, G., P. Fan, et al. (2001). "Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors." J Exp Med 193(8): 935-42.
Zhou, D. and J. Galan (2001). "Salmonella entry into host cells: the work in concert of type III secreted effector proteins." Microbes Infect 3(14-15): 1293-8.
Zhou, D., M. S. Mooseker, et al. (1999). "Role of the S. typhimurium actin-binding protein SipA in bacterial internalization." Science 283(5410): 2092-5.
Rechtliche Vermerke:Aus patentrechtlichen Gründen bis 31.12.2009 gesperrt
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie » Funktionelle Genomforschung der Mikroorganismen
Dokument erstellt am:04.01.2010
Dateien geändert am:17.07.2009
Promotionsantrag am:20.05.2009
Datum der Promotion:19.06.2009
english
Benutzer
Status: Gast
Aktionen