Dokument: Biomolecular based nano-manipulation with a combined atomic force microscope and single molecule fluorescence setup
Titel: | Biomolecular based nano-manipulation with a combined atomic force microscope and single molecule fluorescence setup | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=11435 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20090612-094805-8 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Dipl.-Biol. Janissen, Richard [Autor] | |||||||
Dateien: |
| |||||||
Stichwörter: | AFM, Fluorescence, Single Molecule | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie | |||||||
Beschreibungen: | Im Rahmen dieser Arbeit wurden die apparativen und methodischen Voraussetzungen zu mechanischen Einzelmoleküluntersuchungen mit simultaner, optischer Kontrolle und kontrollierter Nanomanipulation zur Assemblierung einzelner biomolekularer Bausteine unter physiologischen Bedingungen geschaffen. Dafür wurde ein kombiniertes AFFM-Meßsystem (Atomic Force Fluorescence Microscope) entwickelt, welches optische Einzelmolekül-fluoreszenzmethoden mit simultaner, hochauflösender Rasterkraftmikroskopie und –spektroskopie ermöglicht. Durch die Kombination der komplementären Stärken beider Methoden ist es somit möglich, einzelne Moleküle und biologische Komplexe gleichzeitig optisch und mechanisch zu untersuchen. Dies ermöglicht Untersuchungen zu Strukturen, Dynamiken, Kinetiken und molekularer Wechselwirkungen einzelner Moleküle und Komplexe, welche genauere Aussagen über die individuellen Zustände ermöglichen als herkömmliche Methoden an Molekülensembles, die lediglich eine Auskunft über ein statistisches Mittel geben können.
Es wurden kraftspektroskopische Einzelmoleküluntersuchungen an dem Retinalproteinkomplex NpSRII:HtrII durchgeführt, welcher an der bakteriellen Phototaxis des Achaebakteriums Natronobacterium pharaonis als Initiator der intrazellulären Signaltransduktion beteiligt ist. Das transmembrane Retinalprotein ist strukturell eng verwandt mit Bakteriorhodopsin, welches in einer Vielzahl von Eubakterien anzutreffen ist und zu den eukaryotischen Rhodopsinen höherer Lebewesen eine hohe genetische Verwandtschaft aufweist. Die Untersuchung an dem Sensorhodopsin-Transducer-Komplex zeigen ergänzende intra- und intermolekulare Wechselwirkungen - insbesondere während des Initialzustands der Signaltransduktion durch die induzierte Lichtaktivierung des Retinals. Einige davon konnten in Kristallstrukturen und ESR-Messungen in der Literatur bisher nicht eindeutig aufgezeigt werden. Neben der Proteinentfaltung und Elastizitätsmessungen einzelner Moleküle durch die Kraftspektroskopie sind Untersuchungen an spezifischen Rezeptor-Ligand-Systemen auf Einzelmolekülbasis für das Verständnis bezüglich des Aufbaus und der Funktion einzelner Biomoleküle auf atomarer Ebene erforderlich. Die wesentliche Voraussetzung für solche Untersuchungen stellt die kovalente Anbindung von biologischen Molekülen an Festkörperoberflächen dar, welche innerhalb dieser Arbeit optimiert und weiterentwickelt wurde. Es wurde ein allgemein gültiger Funktionalisierungsprozeß entwickelt, wodurch es prinzipiell möglich wurde, einzelne Vertreter der drei Klassen an Biomolekülen (DNA, Peptide, Proteine) mit hoher Reproduzierbarkeit für Einzelmolekültechniken mit hoher Anbindungsdichte (bis zu einer dreifach höheren Dichte im Vergleich zu den Methoden in der Literatur) und hoher Passivität gegenüber unspezifischer Physisorbtion (ca. 3%) an Glas und Siliziumnitrid-Sonden anzubinden, ohne ihre native Struktur und Funktion durch den Vorgang zu beeinflussen. Anhand dieser Methodik wurden auch erste Versuche für die Herstellung sensitiver Biosensoren durchgeführt und dienten zugleich als Basis für nanomanipulatorische Methoden. In diesem Zusammenhang wurden neben dem präzisen Adressieren, Verschieben und Aufnehmen einzelner Gold-Nanopartikel und fluoreszierenden Polystyrol-Sphären auch einzelne DNA-Moleküle kontrolliert mechanisch transportiert. Dabei wurde die Eigenschaft des DNA-Moleküls, aus zwei komplementären Strängen selbstfindend eine Doppelhelix zu formen, verwendet, um ein Kraftsystem zu etablieren. Mit Hilfe kovalent gebundener DNA-Ankersequenzen an der Glas- und Siliziumnitrid-Sondenoberfläche wurde eine fluoreszenzmarkierte, einzelsträngige Transfer-DNA von einem Depotbereich in unterschiedliche Zielbereiche transferiert. Die Reversibilität des DNA-Systemkonstrukts ermöglicht eine kontinuierliche Wiederholung und somit können Strukturen molekülweise aufgebaut werden. Ein entscheidender Vorteil ergibt sich dadurch, daß die Transfer-DNA mit einer Vielzahl unterschiedlicher Gruppen bzw. Tags modifiziert werden kann und somit die Möglichkeit entsteht, durch das entkoppelte DNA-Transfersystem prinzipiell auch unterschiedliche molekulare Bausteine transportieren und plazieren zu können. Diese innerhalb dieser Arbeit entwickelten apparativen und methodischen Entwicklungen ermöglichen somit den prinzipiellen Aufbau molekularer Strukturen, welche insbesondere in den Bereichen der Life Sciences und molekularen Nanoelektronik zukünftig Verwendung finden werden, welche zu den Schlüsseltechnologien des 21. Jahrhunderts gehören.In this thesis, the technical and methodical requirements for single molecule force studies with simultaneous optical control were developed. In addition, controlled nano-manipulation for surface assembly of single molecular components under physiological conditions was performed. In this context an Atomic Force Fluorescence Microscopy (AFFM) setup was developed. This technique combines optical single molecular methodology with high resolution AFM-imaging and force spectroscopy. Due to the complementary strengths of both methods it is possible to investigate single molecules and molecular complexes optically and mechanically with single molecular resolution. This allows the study of dynamics, kinetics, structure and interactions of biomolecules, which are typically non-detectable by bulk measurements due to averaging. Protein unfolding experiments were performed on the retinal protein complex NpSRII:HtrII of the archaebacteria Natronobacteria pharaonis using force spectrocsopy. The sensory rhodopsin with its transducer is involved in the intracellular signal transduction pathway due to the photophobic behaviour of the bacteria. The structure shows a high degree of similarity with bacteriorhodospin. Both proteins show a strong sequence homology with rhodopsins from higher organisms. The investigation of the NpSRII:HtrII complex revealed further intra- and intermolecular interactions, which have not been observed in studies using other structural techniques, such as crystallography and electron spin resonance. The investigation of receptor-ligand interactions are essential for the understanding of the molecular composition and function of biomolecules at the atomic level. For such measurements the covalent immobilization of biomolecules to solid-state supports is essential. The functionalization process was optimized and further developed to immobilize a variety of biomolecules (DNA, peptides, proteins) reproducibly on glass and silicon nitride surfaces. The optimization of this immobilization procedure results in a high binding density (up to 3-fold higher density compared to the methods described in literature) as well as passive surface coating due to unspecific interactions (approx. 3%) without changing the molecules native structure and function. With this process, studies were undertaken to develop sensitive biosensors which formed also the basis of nano-manipulating methods. In addition, this technique has been used for the precise addressing, moving and picking-up of single gold particles and fluorescent polystyrol beads. This principle method also has been utilized for the manipulation of single DNA molecules which can be mechanically translocated under optical control. For the studies using DNA, the properties of the two complementary single stranded DNA annealing to form a double helix in physiological conditions was utilized to establish a DNA force system. With covalently bound anchor DNA sequences on glass and silicon nitride supports it was possible to acquire and translocate a single stranded transport-DNA. Because of the reversibility of the designed DNA-system it is possible to repeat this procedure continuously, building structures one molecule after another. The important advantage herein is the fact, that the transport-DNA can be modified with functional groups or different tags. In principle it is thus possible to build structures with other molecular components decoupled from the DNA transfer-system. The technical and scientific developments within this work facilitate the procedure of building molecular structures. This has an important impact in the area of life sciences and molecular nano-electronics which are the key technologies for this century and beyond. | |||||||
Quelle: | [Alb03] C. Albrecht, K. Blank, M. Lalic-Multhaler, S. Hirler, T. Mai, I. Gilbert, S. Schaumann, T. Bayer, H. Clausen-Schaumann, and H. E. Gaub. DNA: A Programmable ForceSensor. Science 301(5631), 367-370, (2003)
[All07] C. D. Allis, T. Jenuwein, and D. Reinberg. Epigenetics. Cold Spring Harbor Laboratory Press, (2007) [Ash86] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters 11(5), 288, (1986) [Bal06] G. Balasundaram, T. J.Webster. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine 1(2), 169-176, (2006) [Bar05] F. W. Bartels. BINDUNGSSTUDIEN AN EINZELNEN PROTEIN-DNA-KOMPLEXEN. Dissertation, (2005) [Bin86] G. Binnig, C. F. Quate, C. Gerber. Atomic force microscope. Phys. Rev. Lett. 56, 930, (1986) [Bir02] A. Bird. DNA methylation patterns and epigenetic memory. Genes Development 16(1), 6-21, (2002) [Bla03] K. Blank, T. Mai, L. Gilbert, S. Schiffmann, J. Rankl, R. Zivin, C. Tackney, T. Nicolaus, K. Spinnler, F. Oesterhelt, M. Benoit, H. Clausen-Schaumann and H.E. Gaub. A force-based protein biochip. PNAS 100 (20), 11356, (2003) [Bog82] Bogomolni, R. A. & Spudich, J. L. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc. Natl. Acad. Sci. USA 79, 6250-6254, (1982) [Bor07] E. Bordignon, Johann P. Klare, J. Holterhues, S. Martell, A. Krasnaberski, M. Engelhard and H. J. Steinhoff. Analysis of Light-induced Conformational Changes of Natronomonas pharaonis Sensory Rhodopsin II by Time Resolved Electron Paramagnetic Resonance Spectroscopy. Photochem. Photobiol. 83(2) 263-72, (2007) [Bur99] Burnham N.A., Chen X., Hodges C.S., Matei G.A., Thoreson E.J., Roberts C.J., Davies M.C., Tendler S.J.B. Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14, 1-6, (2003) [Bus94] Bustamante, C., Marko, J.F., Siggia, E.D. & Smith, S. Entropic elasticity of lambdaphage DNA. Science 265, 1599-600, (1994). [Bus04] Bustamante, C., Chemla, Y.R., R., F.N. & D., I. Mechanical processes in biochemistry. Annu Rev Biochem 73, 705-48, (2004). [Cam97] N. A. Campbell. Biologie. Spektrum Akademischer Verlag, (1997) [Car06] Carolyn R Cho, Mark Labow, Mischa Reinhardt, Jan van Oostrum and Manuel Peitsch. The application of systems biology to drug discovery. Current Opinion in Chemical Biology 10, 294-302, (2006) [Che02] Chen, X. & Spudich, J. L. Demonstration of 2:2 Stoichiometry in the Functional SRIHtrI Signaling Complex in Halobacterium Membranes by Gene Fusion Analysis. Biochemistry 41, 3891-3896, (2002) [Che91] J. Chen and N. C. Seeman. Synthesis from DNA of a molecule with the connectivityof a cube. Nature 350, 631-633, (1991) [Col84] Colton R.J., Engel A., Frommer J., Gaub H.E., Gewirth A.A., Guckenberger R., Heckl W., Parkinson B., Rabe J. Procedures in scanning probe microscopes. Wiley-VCH, (1998) [Die04] H. Dietz and M. Rief. Exploring the energy landscape of GFP by singlemolecule mechanical experiments. Proceedings of the National Academy of Sciences 101(46), 16192-16197, (2004) [Die06] H. Dietz and M. Rief. Protein structure by mechanical triangulation. Proceedings of the National Academy of Sciences, 103(5):1244-1247, (2006) [Dos07] C. Dose, D. Ho, H. E. Gaub, P. B. Dervan, and C. H. Albrecht. Recognition of Mirror-Image DNA by Small Molecules. Angewandte Chemie International Edition 46(44), 8384-8387, (2007) [Duf04] Yves F. Dufrêne. Using nanotechniques to explore microbial surfaces. Nature Reviews Microbiology 2, 451-460 (2004) [Ebn07] A. Ebner, P. Hinterdorfer and H.J. Gruber. Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 107, 922, (2007) [Eng82] Engelmann, T.W. Über Licht- und Farbenperception niedrigster Organismen. Plügers Arch. 29, 387–400, (1882) [Eng00] Engel, A., & Müller, D. J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718, (2000) [Ess97] B. Essevaz-Roulet, U. Bockelmann, and F. Heslot. Mechanical separation of the complementary strands of DNA. Proceedings of the National Academy of Sciences of the United States of America 94(22), 11935-11949, (1997) [Flo94] E. L. Florin, V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligandreceptorpairs. Science 264(5157), 415-417, (1994) [För48] T. Förster. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 6(2), 55-75, (1948) [Ges99] R. F. Gesteland, T. R. Cech, and J. F. Atkins. The RNA World. Cold Spring HarborLaboratory Press, (1999) [Gie95] F. J. Giessibl. Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy. Science 267, 68, (1995) [Gor02] Gordeliy, V. I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Büldt, G., Savopol, T., Scheidig, A. J., Klare, J. P. & Engelhard, M. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419, 484-487, (2002) [Gri08] M. Grininger, G. Nöll, S. Trawöger, E.-K. Sinner, D. Oesterhelt. Redox Dependent Switching of the Flavoprotein Dodecin at Electrode Surfaces. Biointerphases 3, 51-58, (2008) [Ham90] N. Hampp, C. Bräuchle, D. Oesterhelt. Bacteriorhodopsin Wildtype and Variant Aspartate-96 → Asparagine as Reversible Holographic Media. Biophys. J. 58, 83-93, (1990) [Ham00] N. Hampp. Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories. Chemical Reviews 100, 1755-1776, (2000) [Hil75] Hildebrand, E. & Dencher, N. A. Two photosystems cnotrolling behavioural responsesin Halobacterium. Nature 257, 46-49, (1975) [Hin02] P. Hinterdorfer, H. J. Gruber, F. Kienberger, G. Kada, C. Riener, C. Borken and H. Schindler. Surface attachment of ligands and receptors for molecular recognition force microscopy. Colloids and Surfaces B: Biointerfaces 23(2), 115-123, (2002) [Hin06] P. Hinterdorfer, Y. F Dufrêne. Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods 3, 347 - 355, (2006) [Hoh99] I. P. Hohenfeld, A. A. Wegener, and M. Engelhard. Purication of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in escherichia coli. FEBS Lett. 442, 198-202, (1999) [Ish78] H. Ishida and J.L. Koenig. Evaluation of surface treatments for glass fibers in composite materials. Polymer Engineering and Science 18, 128, (1978) [Jun05] L. Jun-Hong; L. Hai-Kuo; A. Hong-Jie; W. Guo-Hua; W. Ying; L. Min-Qian; Z. Yi; L. Bin; H. Jun. Nano-manipulation of single DNA molecules based on atomic force microscopy. Engineering in Medicine and Biology Society 27, 7478 - 7481, (2005) [Kla04] Klare,J.P., Bordignon,E., Engelhard,M., & Steinhoff,H.-J. Sensory rhodopsin II and bacteriorhodopsin: Light activated helix F movement. Photochemical and Photobiological Sciences 3, 543-547, (2004) [Kra03] R. Krautbauer, M. Rief and H.E. Gaub. Unzipping DNA oligomers. Nano Letters 3, 493, (2003) [Lind01] K. Lindroos, U. Liljedahl, M. Raitio and A. Syvanen. Minisequencing on oligonucleotide microarrays: comparison of immobilisation chemistries. Nucleic Acids Research 29, e69, (2001) [Mar87] Y. Martin, H.K. Wickramasinghe. Atomic force microscope-force mapping and profiling on a sub 100-Å scale. Appl. Phys. Lett. 50 (20), 1455-1457, (1987) [Mar90] Marwan, W. & Oesterhelt, D. Signal transduction in Halobacterium halobium. Cambridge University Press 46, 219-239, (1990) [Mar99] W. Marwan and D. Oesterhelt. Biochemische Mechanismen einer einfachen Verhaltensreaktion. Chemie in unserer Zeit 33(3), 140-151, (1999) [May98] E. Mayr. Two empires or three? Proc. Natl. Acad. Sci USA 95, 9720-9723, (1998) [Met06] E. Metwalli, D. Haines, O. Becker, S. Conzone and C.G. Pantano. Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates. J. of Colloid and Interface Science 298, 825, (2006) [Mor07] J. Morfill, F. Kuhner, K. Blank, R. A. Lugmaier, J. Sedlmair, and H. E. Gaub. B-S Transition in Short Oligonucleotides. Biophysical Journal 93(7), 2400-2409, (2007) [Mor07b] J. Morfill, K. Blank, C. Zahnd, B. Luginbuhl, F. Kuhner, K. E. Gottschalk, A. Pluckthun, and H. E. Gaub. Affinity-Matured Recombinant Antibody Fragments Analyzed by Single-Molecule Force Spectroscopy. Biophysical Journal 93(10), 3583-3590, (2007) [Mou06] R. Moukhametzianov, J. P. Klare, R. Efremov, C. Baeken, A. Göppner, J. Labahn, M. Engelhard, G. Büldt and V. Gordeliy. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer Nature 440, 115-119, (2006) [Moy94] V. T. Moy, E. L. Florin, and H. E. Gaub. Intermolecular forces and energies between ligands and receptors. Science 266(5183), 257-259, (1994) [Oes00] Oesterhelt, F., Oesterhelt, D., Pfeiffer, M., Engel, A., Gaub, H.E. and Müller, D.J. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143-146, (2000) [Pfe83] Pfeffer, W. Locomotorische Richtungsbewegungen durch chemische Reize. Ber. Deut. Botan. Ges. 1, 524–53, (1883) [Rie97] M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub. Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM. Science 276(5315), 1109-1112, (1997) [Rie97b] M. Rief, F. Oesterhelt, B. Heymann, H. E. Gaub. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science 275, 1295-1297, (1997) [Rie99] M. Rief, H. Clausen-Schaumann, and H. E. Gaub. Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology 6(4), 346, (1999) [Rot06] P. W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297-302, (2006) [Rus88] M. J. Russell, A. J. Hall, A. G. Cairns-Smith, and P. S. Braterman. Submarine hot springs and the origin of life. Nature 336, 117, (1988) [Sal07] K. Salaita, Y. Wang, C. A. Mirkin. Applications of dip-pen nanolithography. Nature Nanotechnology 2(3), 145-155, (2007) [Sch00] Schmies, G., Luttenberg, B., Chizhov, I., Engelhard, M., Becker, A., and Bamberg, E. Sensory rhodopsin II from the haloalkaliphilic Natronobacterium pharaonis: light-activated proton transfer reactions. Biophys. J. 78, 967–976.(2000) [Sma01] R. E. Smalley. Of Chemistry, Love and Nanobots. Scientific American 285(3), 76-77, (2001) [Smi92] S. B. Smith, L. Finzi, and C. Bustamante. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258(5085), 1122-1126, (1992) [Spu84] Spudich, J. L. & Bogomolni, R. A. Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312, 509-513, (1984) [Spu88] Spudich, J. L. & Bogomolni, R. A. Sensory Rhodopsins of Halobacteria. Annu. Rev. Biophys. Biophys. Chem. 17, 193-215, (1988) [Spu98] Spudich, J.L. Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins. Mol. Microbiol. 28, 1051–105, (1998) [Sun04] D. Sundrani, S. B. Darling, S. J. Sibener. Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement. Langmuir 20 (12), 5091–5099, (2004) [Tic06] M. M. Tice and D. R. Lowe. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549-552, (2006) [Tur03] A. J. Turberfeld, J. C. Mitchell, B. Yurke, A. P. Mills, M. I. Blakey, and F. C. Simmel. DNA Fuel for Free-Running Nanomachines. Physical Review Letters 90(11), 118102, (2003) [Tur50] A. M. Turing. Computing machinery and intelligence. Mind 59, 433-460, (1950) [Van91] E.T. Vandenberg, L. Bertilsson, B. Liedberg, K. Uvdal, R. Erlandsson, H. Elwing and I. Lundström. Structure of 3-aminopropyl triethoxy silane on silicon oxide. Journal of Colloid and Interface Science 147, 103, (1991) [Vog08] J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld. A Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes. Angewandte Chemie International Edition 47(29), 5465 - 5469, (2008) [Wan92] D. Wang, F.R. Jones and P. Denison. Surface analytical study of the interaction between γ-amino propyl triethoxysilane and E-glass surface I. J. of Materials Science 27, 36, (1992) [Wan93] D. Wang and F.R. Jones. Surface analytical study of the interaction between γ-amino propyl triethoxysilane and E-glass surface II. J. of Materials Science 28, 2481, (1993) [Weg00] A. A. Wegener, I. Chizhov, M. Engelhard and H.J. Steinhoff. Time-resolved Detection of Transient Movement of Helix F in Spin-labelled Pharaonis Sensory Rhodopsin II J. Mol. Biol. 301, 881-891, (2000) [Weg01b] Wegener, A. A., Klare, J. P., Engelhard, M. & Steinhoff, H. J. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J. 20, 5312-5319, (2001) [Wei99] S. Weiss. Fluorescence Spectroscopy of Single Biomolecules. Science 283(5408), 1676-1683, (1999) [Whi98] W. B. Whitman, D. C. Coleman, and W. J. Wiebe. Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences 95(12), 6578-6583, (1998) [Win98] E. Winfree, F. Liu, L. A.Wenzler, and N. C. Seeman. Design and self-assembly oftwo-dimensional DNA crystals. Nature 394, 539-544, (1998) [Ye08] S. H. Ye, C. A. Johnson, J. R. Woolley, T. A. Snyder, L. J. Gamble, W. R. Wagner. Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices. Jornal of Biomed. Mater, Res A, in Print, (2008) [Yil04] A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin. Kinesin Walks Hand-Over-Hand. Science 303(5658), 676-678, (2004) [Yur00] B. Yurke, A. J. Turberfeld, A. P. Mills, F. C. Simmel, and J. L. Neumann. A DNAfuelled molecular machine made of DNA. Nature 406, 605-608, (2000) [Xon07] X. Yong-Mei, H. Zhi-Shan, S. Onnop, B. Ayse and G. Erdogan. Minimizing the surface effect of PDMS-glass microchip on polymerase chain reaction by dynamic polymer passivation. Journal of Chemical Technology & Biotechnology 82, 33, (2007) [Zam00] N. Zammatteo, L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi and J. Remacle. Comparison between Different Strategies of Covalent Attachment of DNA to Glass Surfaces to Build DNA Microarrays. Analytical Biochemistry 280, 143, (2000) | |||||||
Rechtliche Vermerke: | Aus patentrechtlichen Gründen bis 31.12.2009 zurückgestelltl | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Chemie » Physikalische Chemie und Elektrochemie | |||||||
Dokument erstellt am: | 04.01.2010 | |||||||
Dateien geändert am: | 05.06.2009 | |||||||
Promotionsantrag am: | 19.12.2008 | |||||||
Datum der Promotion: | 02.06.2009 |