Dokument: Fluorescence Resonance Energy Transfer between multiple chromophores studied by single-molecule spectroscopy

Titel:Fluorescence Resonance Energy Transfer between multiple chromophores studied by single-molecule spectroscopy
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=11468
URN (NBN):urn:nbn:de:hbz:061-20090721-092613-4
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor:Dipll.-Chem. Valeri, Alessandro [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]4,98 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 10.07.2009 / geändert 10.07.2009
Stichwörter:Single Molecule, Fluorescence, FRET, Nucleosomes, Holiday Junctions
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 540 Chemie
Beschreibung:This thesis presents developments in fluorescence techniques that allow for the study of Fluorescence Resonance Energy Transfer between multiple chromophores in single molecules in solution. Multi-parameter Fluorescence Detection (MFD) is a single-molecule technique in which several fluorescence parameters are recorded simultaneously. In this work MFD is combined to other techniques, Fluorescence Correlation Spectroscopy and Probability Distribution Analysis, to enhance their capabilities:

- For FCS it is introduced a method to obtain the separate the correlation contributions of the different species in a multi-component system.
- For PDA correction for multi-molecular events and brightness heterogeneities are proposed. Moreover a mathematical model for the dynamic interconversion of a two state system is implemented.

The possibility to observe and characterize multiple-step FRET in single molecules was tested by investigating double stranded DNA labeled with three fluorophores, one donor (D) and two acceptors (A1 and A2). The sequence was designed so that the single FRET steps take place between D and A1 and between A1 and A2, even though D-A2 transfer was also observed. Fluorescence signal from each dye was detected, and good separation was achieved. These results suggested that, already as qualitative assay, it is possible to label multi-domain or multi-molecular systems and have information about proximity or simultaneous presence of the labeled positions. Exploiting the MFD capabilities donor quenching and A2 heterogeneity were detected. Quantitative analysis of the system was precluded due to the complex photophysics of A2.
The interconversion between the stacking conformers, A/B and A/D, of a Holiday junction was studied as a function of Mg2+ concentration. At least 3 equilibria, taking place at different timescales, were individuated. The equilibria were associated to the transitions between the conformer A/B and its Mg-bound form, A/B and A/D and A/D and its Mg-bound form. Comparison between different Holliday junctions suggested that the timescales of the different equilibria are sequence independent and only the interconversion equilibrium between A/B and A/D is characteristic of each junction. The open cruciform structure was not observed, even in the absence of Mg2+ where it is supposed to be the only populated conformer. These results led to a revision of the commonly accepted interconversion model. In the model proposed in this work it is hypothesized that in absence of metal ions the Holliday junction is oscillating between the two folded conformers and only when Mg2+ is coordinated the junction is fixed in the conformation it is at the moment.
The disassembly of mononucleosomes was studied by quantitative single-molecule FRET with high spatial resolution. Reversible dissociation was induced by increasing NaCl concentration. At least three species with different FRET efficiencies were identified: a high-FRET species corresponding to the intact nucleosome, a mid-FRET species that was attributed to a first intermediate with a partially unwrapped DNA, and a low-FRET species characterized by a very broad FRET distribution, representing a highly unwrapped structure. FCS analysis indicated that even in the low-FRET state, some histones are still bound to the DNA. The interdye distance of 54.0 Å measured for the high-FRET species is consistent with the known crystallographic structure. A geometric model of the nucleosome disassembly predicts exactly the presence of the observed FRET species and confirms their assignment to two populations in the unwrapping pathway.
Quelle:Antonik, M., S. Felekyan, et al. (2006). "Separating structural heterogeneities from stochastic
variations in fluorescence resonance energy transfer distributions via photon
distribution analysis." Journal of Physical Chemistry B 110(13): 6970-6978.
Böhmer, M. and J. Enderlein (2003). "Fluorescence spectroscopy of single molecules under
ambient conditions: Methodology and technology." ChemPhysChem 4(8): 793-808.
Böhmer, M., M. Wahl, et al. (2002). "Time-resolved fluorescence correlation spectroscopy."
Chemical Physics Letters 353(5-6): 439-445.
Brochon, J. C. (1994). Maximum Entropy Method of Data Analysis in Time-Resolved
Spectroscopy. Methods of Enzymology, Vol. 240. New York, Academic Press: 262-
311.
Broker, T. R. and I. R. Lehman (1971). "Branched DNA Molecules - Intermediates in T4
Recombination." Journal of Molecular Biology 60(1): 131-&.
Creasey, D. J., P. A. Halford-Maw, et al. (1998). "Fast photomultiplier tube gating system for
photon counting applications." Review of Scientific Instruments 69(12): 4068-4073.
Davey, C. A., D. F. Sargent, et al. (2002). "Solvent mediated interactions in the structure of
the nucleosome core particle at 1.9 a resolution." J Mol Biol 319(5): 1097-113.
Duckett, D. R., A. I. H. Murchie, et al. (1988). "The structure of the Holliday junction and its
resolution." Cell 55: 79-89.
Dyson, H. J. and P. E. Wright (2005). "Intrinsically unstructured proteins and their functions."
Nature Reviews Molecular Cell Biology 6(3): 197-208.
Eggeling, C., S. Berger, et al. (2001). "Data registration and selective single-molecule
analysis using multi-parameter fluorescence detection." Journal of Biotechnology
86(3): 163-180.
Eichman, B. F., J. M. Vargason, et al. (2000). "The Holliday junction in an inverted repeat
DNA sequence: Sequence effects on the structure of four-way junctions."
Proc.Natl.Acad.Sci.USA. 97(8): 3971-3976.
Eisenmesser, E. Z., O. Millet, et al. (2005). "Intrinsic dynamics of an enzyme underlies
catalysis." Nature 438(7064): 117-121.
Elson, E. L. and D. Magde (1974). "Fluorescence Correlation Spectroscopy. I. Conceptual
Basis and Theory." Biopolymers 13: 1-27.
Enderlein, J. and I. Gregor (2005). "Using fluorescence lifetime for discriminating detector
afterpulsing in fluorescence-correlation spectroscopy." Review of Scientific
Instruments 76(3).
Fenley, M. O., G. S. Manning, et al. (1998). "Excess counterion binding and ionic stability of
kinked and branched DNA." Biophysical Chemistry 74(2): 135-152.
Förster, T. (1948). "Zwischenmolekulare Energiewanderung und Fluoreszenz." Annalen der
Physik 2: 55-75.
Fries, J. R., L. Brand, et al. (1998). "Quantitative identification of different single-molecules
by selective time-resolved confocal fluorescence spectroscopy." Journal of Physical
Chemistry A 102: 6601-6613.
Gopich, I. and A. Szabo (2005). "Theory of photon statistics in single-molecule Förster
resonance energy transfer." Journal of Chemical Physics(122): 014707.
Gregor, I. and J. Enderlein (2007). "Time-resolved methods in biophysics. 3. Fluorescence
lifetime correlation spectroscopy." Photochem. Photobiol. Sci. 6(1): 13-18.
Henzler-Wildman, K. and D. Kern (2007). "Dynamic personalities of proteins." Nature
450(7172): 964-972.
Herman, J. R., T. R. Londo, et al. (1992). "Normally on Photomultiplier Gating Circuit with
Reduced Post-gate Artifacts for Use in Transient Luminescence Measurements."
Review of Scientific Instruments 63(11): 5454-5458.
Hirschfeld, T. (1976). "Quantum efficiency independence of the time integrated emission
from a fluorescent molecule." Applied Optics 15(12): 3135-3139.
Hohng, S., R. B. Zhou, et al. (2007). "Fluorescence-force spectroscopy maps two-dimensional
reaction landscape of the Holliday junction." Science 318(5848): 279-283.
Holliday, R. (1964). "A new mechanism of gene conversion in fungi." Genetical Research 5:
282-304.
Joo, C., S. A. McKinney, et al. (2004). "Exploring Rare Conformational Species and Ionic
Effects in DNA Holliday Junctions Using Single-molecule Spectroscopy." Journal of
Molecular Biology 341: 739-751.
Kalinin, S., S. Felekyan, et al. (2007). "Probability distribution analysis of single-molecule
fluorescence anisotropy and resonance energy transfer." Journal of Physical Chemistry
B 111(34): 10253-10262.
Kalinin, S., S. Felekyan, et al. (2008). "Characterizing Multiple Molecular States in Single-
Molecule Multiparameter Fluorescence Detection by Probability Distribution
Analysis." Journal of Physical Chemistry B 112(28): 8361-8374.
Kapanidis, A. N., N. K. Lee, et al. (2004). "Fluorescence-aided molecule sorting: Analysis of
structure and interactions by alternating-laser excitation of single molecules."
Proceedings of the National Academy of Sciences of the United States of America
101(24): 8936-8941.
Kasha, M. (1950). "Characterization of electronic transitions in complex molecules."
Discussion of the Faraday Society 9: 14.
Kask, P., K. Palo, et al. (2000). "Two-Dimensional Fluorescence Intensity Distribution
Analysis: Theory and Application." Biophysical Journal 78(4): 1703-1713.
Kask, P., K. Palo, et al. (1999). "Fluorescence-intensity distribution analysis and its
application in biomolecular detection technology." Proc.Natl.Acad.Sci.USA. 96(24):
13756-13761.
Koppel, D. E. (1974). "Statistical accuracy in fluorescence correlation spectroscopy." Physical
Review A 10(6): 1938-1945.
Kornberg, R. D. (1974). "Chromatin structure: a repeating unit of histones and DNA."
Science 184(139): 868-71.
Koshioka, M., K. Saski, et al. (1995). "Time-Dependent Fluorescene Depolarization Analysis
in Three Dimensional Microscopy." Applied Spectroscopy 49(2): 224-228.
Kühnemuth, R. and C. A. M. Seidel (2001). "Principles of Single Molecule Multiparameter
Fluorescence Spectroscopy." Single Molecules 2(4): 251-254.
Kulic, I. M. and H. Schiessel (2003). "Nucleosome repositioning via loop formation."
Biophys J 84(5): 3197-211.
Lakowicz, J. R. (1999). Principles of Fluorescence Spectroscopy. New York, Kluwer
Academic/ Plenum Publishers.
Lee, N. K., A. N. Kapanidis, et al. (2007). "Three-color alternating-laser excitation of single
molecules: Monitoring multiple interactions and distances." Biophysical Journal
92(1): 303-312.
Li, L. Q. and L. M. Davis (1995). "Rapid and efficient detection of single chromophore
molecules in aqueous solution." Applied Optics 34(18): 3208-3217.
Lilley, D. M. J. (2000). "Structures of helical junctions in nucleic acids." Quarterly Reviews
of Biophysics 33(2): 109-159.
Livesey, A. K. and J. Skilling (1985). "Maximum-Entropy Theory." Acta Crystallographica
Section A 41(MAR): 113-122.
Luger, K., A. W. Mäder, et al. (1997). "Crystal structure of the nucleosome core particle at
2.8 Å resolution." Nature 389: 251-260.
Magde, D., E. L. Elson, et al. (1972). "Thermodynamic fluctuations in a reacting system -
measurement by fluorescence correlation spectroscopy." Physical Review Letters 29:
705-708.
Magde, D., E. L. Elson, et al. (1974). "Fluorescence Correlation Spectroscopy. II. An
Experimental Realization." Biopolymers 13: 29-61.
Maus, M., M. Cotlet, et al. (2001). "An Experimental Comparison of the Maximum
Likelihood Estimation and Nonlinear Least-Squares Fluorescence Lifetime Analysis
of Single Molecules." Analytical Chemistry 73: 2078-2086.
McKinney, S. A., A. C. Déclais, et al. (2003). "Structural dynamics of individual Holliday
junctions." Nature Structural & Molecular Biology 10: 93-97.
Mets, Ü. and R. Rigler (1994). "Submillisecond Detection of Single Rhodamine Molecules in
Water." Journal of Fluorescence 4(3): 259-264.
Moerner, W. E. and D. P. Fromm (2003). "Methods of single-molecule fluorescence
spectroscopy and microscopy." Review of Scientific Instruments 74(8): 3597-3619.
Moerner, W. E. and L. Kador (1989). "Optical Detection and Spectroscopy of Single
Molecules in a Solid." Physical Review Letters 62(21): 2535-2538.
Mollegaard, N. E., A. I. H. Murchie, et al. (1994). "Uranyl Photoprobing of a 4-way DNA
Junction - Evidence for Specific Metal-ion binding." EMBO Journal 13(7): 1508-
1513.
Murchie, A. I. H., R. M. Clegg, et al. (1989). "Fluorescence energy transfer shows that the
four-way DNA junction is a right-handed cross of antiparallel molecules." Nature 341:
763-766.
Nettels, D., I. V. Gopich, et al. (2007). "Ultrafast dynamics of protein collapse from singlemolecule
photon statistics." Proceedings of the National Academy of Sciences of the
United States of America 104(8): 2655-2660.
Nowakowski, J., P. J. Shim, et al. (1999). "Crystal structure of an 82-nucleotide RNA-DNA
complex formed by the 10-23 DNA enzyme." Nature Structural Biology 6(2): 151-
156.
Olins, A. L. and D. E. Olins (1974). "Spheroid chromatin units (v bodies)." Science 183(122):
330-2.
Olmsted, M. C. and P. J. Hagerman (1994). "Excess Counterion Accumulation around
Branched Nucleic-Acids." Journal of Molecular Biology 243(5): 919-929.
Orrweaver, T. L., J. W. Szostak, et al. (1981). "Yeast Transformation - A Model System for
the Study of Recombination." Proceedings of the National Academy of Sciences of the
United States of America-Biological Sciences 78(10): 6354-6358.
Palmer III, A. G. and N. L. Thompson (1987). "Theory of sample translation in fluorescence
correlation spectroscopy." Biophysical Journal 51: 339-343.
Panyutin, I. G. and P. Hsieh (1994). "The kinetics of spontaneous DNA branch migration."
Proceedings of the National Academy of Sciences of the United States of America
91(6): 2021-2025.
Richmond, T. J., J. T. Finch, et al. (1984). "Structure of the nucleosome core particle at 7 A
resolution." Nature 311(5986): 532-537.
Rigler, R. and Ü. Mets (1992). "Diffusion of single molecules through a Gaussian laser
beam." SPIE 1921: 239-248.
Saffarian, S., Y. Li, et al. (2007). "Oligomerization of the EGF receptor investigated by live
cell fluorescence intensity distribution analysis." Biophysical Journal 93(3): 1021-
1031.
Schalch, T., S. Duda, et al. (2005). "X-ray structure of a tetranucleosome and its implications
for the chromatin fibre." Nature 436(7047): 138-41.
Schiessel, H., J. Widom, et al. (2001). "Polymer Reptation and Nucleosome Repositioning."
Phys Rev Lett 86(19): 4414-4417.
Schwacha, A. and N. Kleckner (1995). "Identification of double Holliday Junctions as
Intermediates in Meiotic Recombination." Cell 83(5): 783-791.
Schweinberger, E. (2002). Multidimensionale Einzelmolekül-Fluoreszenz-Spektroskopie von
fluoreszenzmarkierten Biomolekülen, Georg-August-Universität Göttingen.
Shera, E. B., N. K. Seitzinger, et al. (1990). "Detection of single fluorescent molecules."
Chemical Physics Letters 174(6): 553-557.
Sigal, N. and B. Alberts (1972). "Genetic Recombination - Nature of a Crossed Strandexchange
between two Homologous DNA Molecules." Journal of Molecular Biology
71(3): 789-&.
Stryer, L. and R. P. Haugland (1967). "Energy Transfer: A Spectroscopic Ruler."
Proc.Natl.Acad.Sci.USA. 58: 719-726.
Valeur, B. (2002). Molecular Fluorescence: Principles and Applications, Wiley-VCH Verlag
Weinheim.
van der Meer, B. W., G. Cooker, et al. (1994). Resonance Energy Transfer: Theory and Data.
New York, VCH Publishers.
Widengren, J., V. Kudryavtsev, et al. (2006). "Single-molecule detection and identification of
multiple species by multiparameter fluorescence detection." Analytical Chemistry
78(6): 2039-2050.
Widengren, J. and Ü. Mets (2002). Conceptual Basis of Fluorescence Correlation
Spectroscopy and Related Techniques as Tools in Bioscience Single Molecule
Detection in Solution: Methods and Applications. C. Zander, J. Enderlein and R. A.
Keller: 69-120.
Wozniak, A. K., G. Schröder, et al. (2008). "Single molecule FRET measures bends and kinks
in DNA " Proceedings of the National Academy of Sciences of the United States of
America 105: 18337-18342.
Xiao, M. and P. R. Selvin (1999). "An improved instrument for measuring time-resolved
lanthanide emission and resonance energy transfer." Review of Scientific Instruments
70(10): 3877-3881.
Rechtliche Vermerke:Aus patentrechtlichen Gründen bis 31.12.2009 gesperrt
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:August 2004-Mai 2009
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Chemie » Physikalische Chemie und Elektrochemie
Dokument erstellt am:04.01.2010
Dateien geändert am:10.07.2009
Promotionsantrag am:03.02.2009
Datum der Promotion:06.05.2009
english
Benutzer
Status: Gast
Aktionen