Dokument: Biodiversity of marine-derived fungi and identification of their metabolites

Titel:Biodiversity of marine-derived fungi and identification of their metabolites
Weiterer Titel:Biodiversität von Pilzen mariner Herkunft und Identifizierung ihrer Sekundärstoffe
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=7333
URN (NBN):urn:nbn:de:hbz:061-20080331-102412-5
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Indriani, Ine Dewi [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]21,40 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 26.03.2008 / geändert 26.03.2008
Beitragende:Prof. Dr. Proksch Peter [Betreuer/Doktorvater]
Prof. Dr. Ebel, Rainer [Gutachter]
Stichwörter:Fungus, marine, secondary metabolites, molecular biology
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:Insgesamt wurden 31 Verbindungen aus Pilzen isoliert, die aus 12 verschiedenen marinen Organismen stammen, darunter Vertreter unterschiedlicher Substanzklassen wie Alkaloide, Polyketide und Terpene. Eine Verbindung, ein Pyranacetal, erwies sich dabei als neuer Naturstoff. Die Strukturen der Verbindungen wurden durch massenspektrometrische Verfahren sowie ein- und zweidimensionale NMR-Spektroskopie aufgeklärt.

1. Pilze aus der Klasse Eurotiomycetes
Sechs stickstoffhaltige Verbindungen wurden aus Penicillium polonicum, isoliert aus dem marinen Schwamm Tethya sp., erhalten. Fünf davon, Cyclopenin, Cyclopenol, Viridicatol, Viridicatin sowie 3-Methylviridicatin waren biogenetisch verwandt.
Meleagrin, Roquefortin, Citrinin, Citrininhydrat und die Diastereomere Quinolactacin A1 und A2 wurden aus Penicillium citrinum erhalten, welcher aus der marinen Alge Sargassum sp. isoliert wurde. Meleagrin, Roquefortin und Citrininhydrat zeigten eine beachtliche zytotoxische Wirkung gegen die murine Lymphomazelllinie L5178Y, wohingegen Citrinin nicht aktiv war.
Das Anthrachinon Skyrin und die Preanthrachinone Atrovirin B1 und B2 wurden aus einem Extrakt des aus dem Schwamm Aplysina aerophoba isolierten Talaromyces wortmanii erhalten.
Zwei bekannte Verbindungen, Tenuazonsäure und Alternariol, wurden aus dem Pilz Alternaria compacta erhalten, der aus dem marinen Schwamm Suberites domuncula isoliert wurde.

2. Pilze aus der Klasse Sordariomycetes
Drei verwandte Alkaloide, Chaetomin, Cochliodinol und Semicochliodinol wurden vom aus dem marinen Schwamm Tethya sp. isolierten Pilz Chaetomium sp. erhalten. Alle zeigten starke zytotoxische Aktivität gegenüber L5178Y-Zellen und zeigten inhibitorische Aktivität gegenüber Proteinkinasen.
Ein neues, mit der Familie der Cholesterolsynthesehemmstoffe Agistatine verwandtes Pyranacetal wurde vom Pilz Xylaria sp. erhalten, der aus der marinen Alge Padina australis isoliert wurde. Diese Verbindung wurde 3-Methyl-methoxyagistatin D genannt, basierend auf der Methylmethoxygruppe in Position C-3.
Daldinia escholzii aus der marinen Alge Halimeda berneoensis produzierte die bekannte Verbindung 4,4’,5,5’-tetrahydroxy-1,1’-binaphthyl. Diese Verbindung zeigte eine beträchtliche zytotoxische Aktivität gegenüber L5178Y-Zellen und erwies darüber hinaus als Inhibitor von Proteinkinasen auf; beide Eigenschaften wurden bisher noch nicht in der Literatur beschrieben.
Das Makrolid Zearalenon wurde von dem aus Sargassum sp. isolierten Pilz Fusarium equiseti erhalten.
Indol-3-carbonsäure und das Diterpen Myrocin A wurden aus Arthrinium sp. gewonnen, der aus Tethya sp. isoliert wurde. Myrocin A bewies zytotoxische Wirkung und Aktivität als Inhibitor von Proteinkinasen. Die chemotaxonomische Markersubstanz 5-Carboxymellein wurde aus dem Pilzstamm PV 1.1 erhalten. Aufgrund dieser chemischen Befunde ist anzunehmen, dass dieser Pilz aus der Familie der Xylariaceae stammt.

3. Pilze aus der Klasse Dothideomycetes
Die antimykotische Verbindung Griseofulvin wurde vom aus dem marinen Schwamm Suberites domuncula isolierten Pilz Botryosphaeria stevensii erhalten; damit erwies sich dieser Pilz als einer der wenigen bekannten Griseofulvin-Produzenten außerhalb der Gattung Penicillium. Der aus dem marinen Schwamm Petrosia ficiformis isolierte Pilz Paraphaeosphaera michotii produzierte die Substanzen Cyclopenin, Cyclopenol, Viridicatol, Viridicatin und 3,4,8-Trihydroxy-1-tetralon.
Die Bestimmung der Diversität der Pilze in marinen Organismen wurde mithilfe der Polymerasekettenreaktion (PCR) unter Verwendung von Primern, die auf konservierte, taxonomisch signifikante Gene gerichtet waren, durchgeführt, gefolgt von denaturierender Gradientengelelektrophorese (DGGE). Das universelle Pilzprimerpaar ITS1 und ITS4 erzeugte DNA-Amplifikate, die sich per DGGE trennen ließen und eine Identifizierung der zugrunde liegenden Pilzstämme auf breiter Basis erlaubten. Es konnte gezeigt werden, dass die DGGE unter Verwendung dieses Primerpaares eine zuverlässige und aussagekräftige Methode zur Erfassung der Diversität von Pilzen in komplexen biologischen Proben darstellt, insbesondere, was Mangrovenpflanzen betrifft.
Pilz-Sequenzen konnten aus den DGGE-Experimenten mit Mangrovenpflanzen erhalten werden, wobei zweifelsfrei nachgewiesen wurde, dass eine Bande jeweils auf einen Pilzstamm zurückzuführen ist. Zwei Banden mit vergleichbarer Laufstrecke in Proben der Rinde und Blätter von Avicennia marina wurden sequenziert und mittels BLAST-Suche jeweils dem Pilz Alternaria sp. zugeordnet. Eine weitere, aus den Blättern von Avicennia marina stammende Bande wurde nach Sequenzierung als Fusarium sp. identifiziert.
Im Rahmen dieser Arbeit wurde erstmalig der erfolgreiche Nachweis von Pilz-DNA im Gesamt-DNA-Extrakt von marinen Schwämmen auf der Basis von PCR und DGGE geführt. Dabei zeigte sich, dass neben den Banden, welche Pilze repräsentieren, auch solche auftraten, die auf DNA des Schwammes zurückgehen. Allerdings ließen sich Banden von Schwamm-DNA von denen der Pilze durch ihre unterschiedlichen Laufstrecken in den DGGE-Gelen sicher unterscheiden.
Anhand der Sequenzen aller im Rahmen dieser Arbeit untersuchten Pilzstämme, die auf Amplifikation mit dem Primerpaar ITS1 und ITS4 zurückgehen, wurde eine phylogenetische Analyse durchgeführt. Der aus diesen Sequenzen konstruierte phylogenetische Baum wurde mithilfe bioinformatischer Methoden validiert, und es konnte gezeigt werden, dass er die Evolutionsgeschichte und Verwandtschaft innerhalb des Reichs der Pilze bis herunter zur Gattungsebene wider gibt.

A total number of 31 compounds was isolated comprising diverse structural groups including alkaloids, polyketides and terpenes, from 12 marine organism-derived fungi; one of which was a new pyranacetal derivative. The structures of the compounds were elucidated by performing mass spectrometry as well as one- and two-dimensional nuclear magnetic resonance (NMR) experiments.
1. Fungi from class Eurotiomycetes
Six nitrogen containing compounds were isolated from Penicillium polonicum derived from the marine sponge Tethya sp. Five of which, cyclopenin, cyclopenol, viridicatol, viridicatin and 3-methyl viridicatin, were biogenetically related.
Meleagrin, roquefortine, citrinin, citrinin hydrate and the diastereomers quinolactacin A1 and A2 were isolated from Penicillium citrinum derived from the marine alga Sargassum sp. Meleagrine, roquefortine and citrinin hydrate showed relatively high cytotoxic activity against the mouse lymphoma cell line L5178Y, whereas citrinin was inactive.
The anthraquinone skyrin and the preanthraquinones atrovirin B1 and atrovirin B2 were obtained from the extract of Talaromyces wortmanii derived from the marine sponge Aplysina aerophoba.
Two known compounds, tenuazonic acid and alternariol, were isolated from Alternaria compacta derived from the marine sponge Suberites domuncula.
2. Fungi from class Sordariomycetes
Three related alkoloids, chaetomin, cochliodinol and semicochliodinol, were isolated from Chaetomium sp. derived from the marine sponge Tethya sp. All of them showed high cytotoxic activity against L5178Y cells and also displayed protein kinase inhibitory activity.
One new pyranacetal related to the family of cholesterol synthesis inhibitors agistatines was isolated from Xylaria sp. derived from the marine algaa Padina australis. This compound was named 3-methyl methoxy agistatine D based on the methyl methoxy moiety at position C-3.
Daldinia escholzii derived from the marine alga Halimeda borneoensis was found to produce the known compound 4,4’,5,5’-tetrahydroxy-1,1’-binaphthyl. This compound showed very high cytotoxic activity against L5178Y cells and also had protein kinase inhibitory activity, both of which had not been reported before.
The macrolide zearalenone was isolated from the fungus Fusarium equiseti derived from the alga Sargassum sp.
Indole-3-carboxylic acid and the diterpene myrocin A were obtained from Arthrinium sp. derived from Tethya sp. Myrocin A had cytotoxic activity and protein kinase inhibitory activity. A chemotaxonomic marker compound, 5-carboxymellein, was isolated from the fungus PV 1.1. Based on the results of the chemical analysis, it can be assumed that PV1.1 was a fungus that belonged to the family Xylariaceae.
3. Fungi from class Dothideomycetes
The antifungal compound griseofulvin was isolated from Botryosphaeria stevensii derived from the marine sponge Suberites domuncula and made this fungus one of the few griseofulvin producers outside the genus Penicillium. The fungus Paraphaeosphaera michotii derived from the marine sponge Petrosia ficiformis was found to produce cyclopenin, cyclopenol, viridicatol, viridicatin and 3,4,8-trihydroxy-1-tetralone.

Fungal diversity in marine organisms was assessed by performing polymerase chain reaction (PCR) using primers that target conserved, taxonomically significant genes, coupled with denaturing gradient gel electroforesis (DGGE). The universal fungal primer pair ITS 1 and ITS 4 generated fungal DNA products which were suitable for DGGE analysis allowing broad-based molecular identification. DGGE using this primer pair was proven a trustworthy and reliable tool for determining fungal diversity in complex biological samples, most notably mangrove plants.
Fungal sequences could be recovered from the DGGE experiment involving mangrove plants, clearly demonstrating the each band represented one fungal strain. Two bands with similar migration distance in a bark sample of Avicennia marina and a leaf sample of the same plant were sequenced, and upon BLAST search were revealed to belong to the same fungus, Alternaria sp. Another band was recovered from a DGGE experiment of a leaf sample of Avicennia marina, and after sequencing, it was identified as Fusarium sp.
Detection of fungal DNA in the total DNA extract of marine sponge was carried out for the first time by employing PCR and DGGE techniques. The results showed that in this case there were also other bands representing sponge DNA sequences, besides bands representing fungal DNA. However, sponge-derived bands and fungi-derived bands can be distinguished in the DGGE gel based on their migration distances.
A phylogenetic analysis was performed using the DNA sequences of all fungal strains under investigation, amplified by the primer pair ITS 1 and ITS 4. The phylogenetic tree hence constructed was validated by bioinformatical methods and was shown to represent the evolutionary history and relationship within the kingdom fungi down to the genus level.
Quelle:Abdel-Lateff, A., König, G.M., Fisch, K.M., Höller, U., Jones, P.G., and Wright, A.D. (2002). New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J. Nat. Prod., 65, 1605-1611.
Abd-Elsalam, K.A., Aly, I.N., Abdel-Satar, M.A., Khalil, M.S., and Vereet. J.A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. Africa J. Biotechnol., 2 (4), 82-85.
Afdnal, A.F., and Welsch, R.L. (1991). The rise of modern jamu. The Context of Medicine in Developing Country, Ed. by Van der Geest, S., and White, S.R. Het Spinhuis, Amsterdam, 149-172.
Aldrich Library of 13C and 1H FT NMR Spectra. (1992). Sigma-Aldrich 2, 1315B.
Alexopaulus, C.J. Mims, C.W., and Blackwell, M. (2004). Introductory mycology, 4th ed., John Willey and Sons, Inc. New York, US. P. 182, 363.
Anderson, J.R., Edwards, R.L., and Whalley, A.J.S. (1983). Metabolites of the higher fungi. Part 21. 3-methyl-3,4-dihydroisocoumarins and related compounds from the ascomycete family Xylariaceae. J. Chem. Soc. Perkin Trans. I, 2185-2192.
Antonowitz, A., Gill, M., Morgan, P.M. and Yu, J. (1994). Coupled anthraquinones from the toadstool dermocybe Icterinoides. Phytochemistry, 37 (6), 1679-1683.
Arai, K., Kimura, K., Mushiroda, T., and Yamamoto, M. (1989). Structures of fructigenines A and B, new alkaloids isolated from Penicillium fructigenum TAKEUCHI. Chem. Pharm. Bull., 37, 2937-2939.
Barber, J., Carter, R.H., Garson, M.J., and Staunton, J. (1981). The biosynthesis of citrinin by Penicillium citrinum. . J. Chem. Soc. Perkin Trans. I, 2577-2583.
Bardyshef, I.I., Tkachenko, O.T. and Cherches, Kh.A. (1962). Rosin acids. IV. Chemical composition of resin formed from the oleorosin of the common pine. Zhurnal Obshchei Khimii, 39, 999-1001.
Bauer, A.W., Kirby, W.M.M., Sheriss, J.C., and Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am.. J. Clin. Pathol., 45 (4), 493-496.
Berry, V., and Bryant, D. 1999. Faster reliable phylogenetic analysis. Annual Conference on Research in Computational Molecular Biology.
Bick, I.R.C. (1985). Alkaloids. In The Chemistry of Natural Products, ed. by Thomson, R.H., Blackwel Scientific Publications, Oxford, 130-160.
Birch, A.J. (1967). Biosynthesis of polyketides and related compounds. Science, 156, 202-206.
Borgschulte, K., Rebuffat, S., Trowitzsch-Kienast, W., Schomburg, D, Pinon, J., and Bodo, B. (1991). Isolation and structure elucidation of Hymatoxins B – E and other phytotoxins from Hypoxylon mammatum, fungal pathogen of Leuce Poplars. Tetrahedron, 47(39), 8351-8360.
Boyes-Korkis, J.M., et al. (1993). Anacine, a new benzodiazepine metabolite of Penicillium aurantiogriseum produced with other alkaloids in submerged fermentation. J. Nat. Prod., 56, 1707-1717.
Bracker, A., Pocker, A. and Raistrick, H. (1954). Studies in the biochemistry of micro-organisms. 93. Cyclopenin, a nitrogen-containing metabolic product of Penicillium cyclopium Westling. Biochem. J., 57, 587-595.
Brauers, G. (2003). Isolierung und Strukturaufklärung von neuen Naturstoffen aus schwamm-assoziierten Pilzen. Dissertation. Heinrich-Heine-Universität Düsseldorf.
Brewer, D., Duncan, J.M., Jerram, W.A., Leach, C.K., Safe, S., Taylor, A. and Vining, L.C. (1972). Ovine ill-thrift in Nova Scotia. 5. The production and toxicology of chetomin, a metabolite of Chaetomium spp. Can. J. Microbiol., 18, 1129.
Brewer, D., McInnes, A.G., Smith, D.G., Taylor, A., Walter, J.A., Loosly, H.R., and Kis, Z.L. (1978). Sporidesmins. Part 16. The structure of chetomin, a toxic metabolites of Chaetomium cochliodes, by nitrogen-15 and carbon-13 nuclear magnetic resonance spectroscopy. J. Chem. Soc. Perkin I, 1248-1254.
Bringmann,G., Lang,G., Mühlbacher, J., Schaumann, K. Steffens, S., Rytik, P.G., Hentschel, U. Morschhauser, J. and Müller, W.E.G. (2003). Sorbicillactone A: a structurally unprecedented bioactive novel-type alkaloid from a sponge derived fungus. Progress in Mollecular and Subcellular Biology, 37, 231-253.
Bringmann, G., Mortimer, A.J.P., Keller, P.A., Gresser, M.J., Garner, J. and Breuning, M. (2005). Atroposelective synthesis of axially chiral biaryl compounds. Angewandte Chemie International Edition, 44 (34), 5384-5427.
Brockmann, H., Kluge, F., and Muxfeldt, H. (1957). Totalsynthese des Hypericins, Chem. Ber., 2302-2318.
Bugni, T.S and Ireland, C.M. (2004). Marine-derived fungi: a chemically and biologically diverse group of micro-organisms review. Nat. Prod. Rep., 21.143-163.
Butler, M.S. (2004). The role of natural products chemistry in drug discovery. J. Nat. Prod., 67, 2141-2153.
Choi, J.S., Chung, H.Y., Jung, H.A., and Yokozawa, T. (2000). Comparative evaluation of antioxidant potential of alternin (2-hydroxyemodine) and emodin. J. Agric. Food Chem., 48, 6347-6351.
Claverie, JM., and Notredame, C. (2003). Bioinformatics for dummies. Willey Publishing, Inc, NewYork, USA.
Colombo, L., Gennari, C., Potenza, D., Scolastico, C., Aragozzini, F., and Merendi, C. (1981). Biosynthesis of citrinin and synthesis of its biogenetic precursors. J. Chem. Soc. Perkin I, 2594-2597.
Cohen, P.A., and Towers, G.H.N. (1995). The Anthraquinones of Heteroderma obscurata. Phytochemistry, 40, 911-915.
Cole, R.J., and Cox, R.H. (1981). Alternaria toxins. In: Handbook of Toxic Fungal Metabolites. Academic Press, New York, 615-45.
Cunningham, K.G. and Freeman, G.G. (1952). The isolation and some chemical properties of viricatin, a metabolic product of Penicillium viridicatum Westling. Biotechnol. J., 53, 328-332.
Cushman, D.W., and Ondetti, M.A. (1999). Design of angiotensin converting enzyme inhibitors. Nature Medicine, 5(10), 1110-1112.
DeAlvarenga, M.A., Fo, R.B., Gottlieb, O.R., Dias, J.P.P., Magalhaes, A.F., Magalhaes, E.G., de Magalhaes, G.C., Magalhaes, M.T., Maia, J.G.S., Marques, R., Marsaioli, A.J., Mesquita, A.A.L., de Moraes, A.A., de Oliveira, A.B., de Oliveira, G.G., Pedreira, G., Pereira, S.K., Pinho, S.L.V., Santana, A.E.G., and Santos, C.S. (1978). Dihydroisocoumarins and phthalides from wood samples infected by fungi. Phytochemistry, 17, 511-516.
de Hoog, G.S., Guarro, J., Gene,Y., and Figuerres, M.J. (2000). Atlas of Clinical Fungi, 2nd edition, 14-18. CBS/ Universitat Rovira I Virgile.
Demain, A.L., and Fang, A. (2000). The natural function of secondary metabolites. Advances in Biochemical Engineering and Biotechnology, 69, 1-39.
Dewick, P.M. (2002). Medicinal natural products. A biosynthetic approach.. John Willey and Sons, Ltd, Baffins Lane, Chichester, England
Dreyfuss, M.M., and Chapela, I.H. (1994). Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. Biotechnology, 26, 49-80.
Ebel, R. (2006). Secondary metabolites from marine-derived fungi. In: Frontiers in Marine Biotechnology, ed. by Proksch, P., Müller, W. E.G. Horizon Scientific Press, Norwich, 73-143.
Effendi, H. (2004). Isolation and structure elucidation of bioactive secondary metabolites of sponge-derived fungi collected from the Mediterranean sea (Italy) and Bali sea (Indonesia). Dissertation. Heinrich-Heine-Universität Düsseldorf.
Endo, A. (1979). Monacolin K, a new hypercholesterolemic agent produced by Monascus species. J. Antibiot., 32, 852-854.
Elmi, A.A., and West, C.P. (1995). Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytologist, 131(1), 61-67.
Faeth, S.H. (2002). Are endophytic fungi defensive plant mutualists? Oikos 98, 25-36.
Fehler, M. and Schmidt, J.M. (2003). Property distributions: differences between drugs, natural products and molecules from combinatory chemistry. J. Chem. Inf. Comput. Sci. 43, 218-227.
Fieseler, L., Horn, M., Wagner, M., and Hentschel, U. (2004). Discovery of the novel candidate phylum Poribacteria in marine sponges. Appl. Env. Microbiol., 3724-3732.
Framm, J., Nover, L., El Azzouny, A., Richter, H., Winter, K., Wernert, S., and Luckner, M. (1973). Cyclopeptin und Dehydrocyclopeptin. Zwischenprodukte der Biosynthese von Alkaloiden der Cyclopenin-Viridicatin-Gruppe bei Penicillium cyclopium Westling. . Eur. J. Biochem., 37, 78-85.
Fredenhagen, A., Petersen, F., Tintelnot-Blomley, M., Rösel, J., Mett, H., and Hug, P. (1997). Semicochliodinol A and B: inhibitors of HIV-1 protease and EFG-R protein tyrosine kinase related to asterriquinones produced by the fungus Chrysosporium merdarium. J. Antibiot., 50., 395-401.
Frisvad, J.C., and Samson, R.A. (2000). Neopetromyces gen. nov. and an overview of teleomorph of Aspergillus subgenus Circumdati. Studies in Mycology (Utrecht), 45, 201-207.
Frisvad, J.C., Smedsgaard, J., Larsen, T.O. and Samson, R.A. (2004). Mycotoxins, drugs and other extrolites produced by species in the Penicillium subgenus Penicillium. Studies in Mycology, 49, 201–242.
Fry, J.C., Webster, G., Cragg,B.A., Weightman, A.J. and Parkes, R.J. (2006). Analysis of DGGE profiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. Federation of European Microbiological Societies, 58, 86-98.
Fujimoto, H., Sumino, M., Okuyama, E and Ishibashi, M. (2003). Immunomodulatory constituents from an ascomycete, Chaetomium seminudum. J. Nat. Prod., 67, 98-102.
Fujitake, N., Suzuki, T., Fukumoto, M., and Oji, Y. (1998). Predomination of Dimers over Naturally Occurring Anthraquinones in Soil. J. Nat. Prod., 61, 189-192.
Gardiner, D.M., Waring, P. and Howlett, B.J. (2005). The Epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology, 151, 1021-1032.
Geiser, D.M. (2004). Practical molecular taxonomy of fungi. In Advances in Fungal biotechnology for industry, agriculture and medicine, ed. by Tkacz and Lange.
Gernert, C, Glöckner, F.O., Krohne, G., and Hentschel, U. (2005). Microbial diversity of the freshwater sponge Spongilla lacustris. Microbial ecology, 50, 206-212.
Gill, M. and Morgan, P. (2004). Absolute stereochemistry of fungal metabolites icterinoidins A1 and B1, and atrovirin B1 and B2. ARKIVOC, 152-165.
Gill. M. (1999). Pigments of fungi (macromycetes). Nat. Prod. Rep., 16, 301-317.
Gill, M. and Gimenez, A. (1991). Astrovenetin, the principal pigments of the toadstool Dermocybe austroveneta. Phytochemistry, 30 (3), 951-955.
Gill, M. and Steglich, W. (1988). Pigments of fungi (Macromycetes). Prog. Chem. Org. Nat. Prod., 51,67-90.
Göhrt, A. Grabley, S., Thiericke, R. and Zeeck, A. (1996). Agistatines, novel pyranacetals from the fungus FH-A 6239. Liebigs Annalen, 627-633.
Grove, J.F., MacMilan, J., Mulholland, T.P.C., and Rogers, M. (1952). Griseofulvin. Part IV. The structures. J. Chem. Soc., 3977-3987.
Guarro, J., Gene, J. and Stchigel,A.M. (1999). Developments in fungal taxonomy. Clin. Microbiol. Rev., 12(3). 454-500.
Hall, T.A. (1999). BioEdit: a user friendly biological sequence alignment editor and analysis for Windows 95/98/NT. Nucl. Acids Symp. Ser 41, 95-98.
Hall, B.G. (2005). Phylogenetic trees made easy. Sinauer Associated, Inc. Publisher Sunderland, Massachussets, USA.
Hanika, C and Carlton, W.M. (1994). Toxicology and pathology of citrinin. Biodeterioration Research, 4, 41-63.
Hashimoto, T., Tahara, S., Takaoka, S., Tori, M., and Asakawa, Y. (1994). Structures of a novel binaphthyl and three novel benzophenone derivatives with plant-growth inhibitory activity from the fungus Daldinia concentrica. Chem. Pharm. Bull., 42(7), 1528-1530.
Hedges, S.B., Blair, J.E., Venturi, M.L., and Shoe, J.L. (2004). a molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology, 4(2), 1-9.
Hentschel, U., Hopke, J., Horn, M., Friedrich, A.B., Wagner, M., Hacker, J. Moore, B.S. (2002). Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Env. Microbiol., 68 (9), 4431-4440.
Herr, R.A., Ajello, L., Taylor, J.W., Arseculeratne, S.N., and Mendoza, L. (1999). Phylogenetic analysis of Rhinosporidium seeberi’s 18S small subunit ribosomal DNA groups this pathogen among the member of the protoctistan mesomycetozoa clade. J. Clin. Microbiol. , 37, 2750-2754.
Hibbet, D.S. (1992). Ribosomal RNA and fungal systematic. Trans. Mycol. Soc, 33, 533 – 556.
Hillis, D.M., and Dixon, M.T. (1991). Ribosomal DNA: molecular evolution and phylogenetic interfere. Q. Rev. Biol., 66, 411-453.
Hitchcock, S.A. and Pattenden, G. (1992). Total synthesis of the mycotoxin (-)-zearalenone based on macrocyclisation using a cinnamyl radical intermediate. J. Chem. Soc. Perkin Trans. I, 1323-1328
Hodge, R.P., and Harris, C.M. (1988). Verrucofortine, a major metabolites of Penicillium verrucosum Var. Cyclopium, the fungus that produces the mycotoxin verrucosidin. J. Nat. Prod., 51, 66 -73.
Hopwood, D.A. (2007). How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Molecular Microbiology, 63 (4), 937-940.
Hsu, Y.H., Nakagawa, M., Hirota, A., Shima, S., and Nakayama, M. (1988). Structure of myrocin B, a new diterpene antibiotic produced by Myrothecium verrucaria. Agric.Biol. Chem., 52, 1305-1307.
Iwasaki, S., Muro, H., Nozoe, S., and Okuda, S. (1972). Isolation of 3,4-dihydro-3,4,8-trihydroxy-1(2H)-naphthalenone and tenuazonic acid from Pyricularia oryzae Cavara. Tet. Lett., 1, 13-16.
Jadulco, R., Proksch, P., Wray, V., Berg, A. and Grafe, U. (2001). New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum J. Nat. Prod., 64, 527-530.
Jasalavich, C.A., Ostrofsky, A. And Jellison, J. (2000). Detection and identification of decay fungi in spruce wood by restriction fragmen length polymorphism analysis of amplified genes encoding RNA. Appl. Env.Microbiol., 66(11), 4725-4734.
Jarvis, B.B., Zhou, Y., Jiang, J., Sorenson, W.G., Hintikka, E.L., Nikulin, M., Parikka, P., Etzel, R.A. and Dearborn, D.G. (1996). Toxigenic molds in water damaged buildings: dechlorogriseofulvins from Memnoniella echinata. J. Nat. Prod., 59 (6), 553-554.
Jerram, W.A., McInnes, A.G., Maass, W.S.G., Smith, D.G., Taylor, A., and Walter, J.A. (1975). The chemistry of cochliodinol, a metabolite of Chaetomium spp. Can. J. Chem., 53(5), 727-737.
Jobes, D.V and Thien, L.B. (1997). A conserved motif in the 5.8S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribes spacer (ITS) sequences. Plant Molecular Biology Reporter, 15, 326 – 334.
Kadam, S., Poddig, J., Humphrey, P., Karwowsky, J., Jackson, M., Tennent, S., Fung, L., Hochlowski, J., Rasmussen, R., and McAlpine, J. (1994). Citrinin hydrate and radinicin: human rhinovirus 3C-protease inhibitors discovered in a target-directed microbial screen. J. Antibiot., 47, 836-839.
Kakinuma, N. , Iwai, H., Takahashi, S., Hamano, K., Yanagisawa, T., Nagai, K., Tanaka, K., Suzuki, F., Kirikae, T. and Nakagawa, A. (2000). Quinolactacin A, B and C: novel quinolone compounds from Penicillium sp.EPF-6, taxonomy, production, isolation and biologicals properties. J. Antibiot., 53, 1247-1251.
Kanakam, C.C., Mani, N.S., and Subba Rao, G.S.R. (1990). Synthesis based on cyclohexadienes. Part 4. Novel synthesis of 6-aryl-2,4-dimethoxybenzoates . Alternariol and methyl trimethyl altenusin. J. Chem. Soc. Perkin Trans. I, 2233-2238.
Karp, G. (1999). Cell and Molecular Biology 5th edition New York, John Willey and Sons.
Kawai, K. , Kooehei, N., Shoichi, N., and Yoichi, I. (1984). Studies on fungal products. VII. The structures of meleagrin and 9-O-p-bromobenzoylmeleagrin. Chem. Pharm. Bull., 32, 94-98.
Keil, G. (1989). Das Lorscher Arzneibuch. Wiss. Verl.-Ges., Stuttgart.
Kelecom, A. (2002). Secondary metabolites from marine microorganisms. Anais da Academia Brasileira de Ciencias, 74 (1). 151-170.
Kim, W.G., Song, N.K. and Yoo, I.D. (2001). Quinolactacins A1 and A2, new acetylcholinesterase inhibitors from Penicillium citrinum. J. Antibiot., 54, 831-835.
Klemke, C., Kehraus, S., Wright, A.D. and König, G.M. (2003). New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J. Nat. Prod., 67, 1058-1063.
Kowalchuk, G.A. (1998). Fungal community analysis using denaturing gradient gel electrophoresis. Molecular Microbial Ecology Manual 3.4.6, ed. by Akkermans, A.D.L, van Elsas, J.D., and de Bruijn, F.J., Kluwer Academic Publishing, Dordrecht, 1–16.
Kohlmeyer, J., and Kohlmeyer, E. (1979) Marine Mycology – The Higher Fungi. Academic Press, New York, 690.
Konda, Y., Onda, M., Hirano, A., and Omura, S. (1980). Oxaline and neoxaline. Chem. Pharm. Bull, 28, 2987-2993.
Koschinsky, S., Peters, S., Schwieger, F., and Tebbe, C.C. (1999). Applying molecular techniques to monitor microbial communities in composting process. Eight International Symposium on Microbial Process during Composting, The Society for Microbial Ecology. Halifax, Canada.
Krohn, K., Bahramsari, R., Flörke, U., Ludewig, K., Kliche-Spory, C., Michel, A., Aust, HJ., Draeger, S., Schulz, B. and Antus, S. (1997). Dihydroisocoumarin from fungi: isolation, structure Elucidation, circular dichroism and biological activity. Phytochemistry, 45, 313–320.
Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150-163.
Kusano, M., Koshino, H., Uzawa, J., Fujiola, S., Kawano, T. and Kimura, Y. (2000). Nematicidal alkoloids and related compounds produced by the fungus Penicillium cf. simplicissimum. Biosci. Biotechnol. Biochem., 64, 2559-2568.
Landeweert, R., Veenman, C., Kuyper, T.W., Fritze, H., Wernars, K., and Smit, E. (2003). Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol. Ecol., 45(3), 283-292.
Larsen, T.O., Smedsgaard, J., Nielsen, K.F., Hansen, M.E. and Frisvad, J.C. (2005). Phenotypic taxonomic and metabolite profiling in microbial drug discovery. Review. Nat. Prod. Rep., 22. 672-695.
Li, J.Y., Sidhu, R.S., Ford, E., Hess, W.M., and Strobel, G.A. (1998). The induction of taxol production in endophytic fungus- Periconia sp. from Torreya grandifolia. J. Ind. Microbiol. Biotechnol., 20, 259-264.
Lin, W., Brauers, G., Ebel, R., Wray, V., Berg, A., Sudarsono, and Proksch, P. (2001). Novel Chromone Derivatives from the Fungus Aspergillus versicolor Isolated from the Marine Sponge Xestospongia exigua. J. Nat. Prod., 66(1), 57-61.
Liu, K., Wu, W.K., He, W., and Liu, C.L. (2007). Ginkgo biloba extract (EGb761) attenuates lung injury induced by intestinal ischemia/reperfusion in rats: roles of oxidative stress and nitric oxide. World J. Gastroentrol., 13(2), 299-305.
Linde, J., and Mulrow, C.D. (1999). St. John’s wort for depression (Cochrane Review). In : The Cochrane Library, vol. 3, update software, Oxford.
http://ovid.sams.ch/ovidweb/ovidweb.cgi
Liu, K.X., Wu, W.K., He, W., and Liu, C.L. (2007). Ginkgo biloba extract (EGb 761) attenuates lung injury induced by intestinal ischemia/reperfusion in rats: Roles of oxidative stress and nitric oxide. World J Gastroenterol 3(2), 299-305.
Long, L.M., and Troutman, H.D. (1949). Chloramphenicol (chloromycetin) Vii. Synthesis through p-nitroacetophenol. J. Am. Chem. Soc., 71, 2473-2475.
Luckner, M. and Mohammed, Y.S. (1964). Metabolic products of Penicillium viridicatum Westling and Penicillium cyclopium Westling; synthesis of viridicatol, 3´-methylviridicatol and N-methyl-3’-O-methylviridicatol. Tet. Lett., 29, 1987-1989.
Luckner, M. and Winter, K. (1969). Zur Bildung von Chinolinalkaloiden in Pflanzen 4. Eur. J. Biochem., 7, 380-384.
Magnani, M., Fernandes, T., Egidio, C., Prete, C., Homechim, M., Yurie, E., Ono, S., Vilas-Boas, A., Sartori, D., Furlaneto, M.C. and Fungaro, M.H.P. (2005). Molecular identification of Aspergillus spp. isolated from coffee beans. Scientia Agricola (Piracicaba, Braz.), 62, 45-49.
Malinowsky, D.P., and Belesky, D.P. (2000). Adaptation od endophyte-infected-cool-season grasses to environmental stresses: Mechanism of drought and mineral stress tolerance. Crop. Sci., 40(4), 923-940.
McInnes, A.G., Taylor, A., and Walter, J.A. (1976). The structure of chaetomin. J. Am. Chem. Soc., 98(21), 6741.
Michael, J.P. (2002). Quinoline, quinazoline and acridone Alkaloids. Nat. Prod. Rep., 19, 742-760.
Miller, J.D. (2000). Screening for secondary metabolites. Marine Mycology: a practical approach, ed. by Hyde, K.D and Pointing, S.B. Fungal Diversity Press, Hongkong. 158-172.
Moerman, K.L., Chai, C.L.L. and Waring, P. (2003). Evidence that the Lichen-derived scabrosin esters target mitochondrial ATP synthase in P388D1 cells. Toxicol. Appl. Pharmacol., 190, 232-240.
Moore-Landecker. (1996). Fundamental of the fungi, 4th edition. Prentice-Hall, Inc. 501 – 504.
Mullbacher, A., Waring, P., Tiwari-Palni, U. and Eichner, R.D. (1986). Structural relationship of epipolythiodioxopiperazines and their immunomodulatory activity Molecular Immunology, 23, 231-236.
Munday, R. (1982). Studies on the mechanism of toxicity of the mycotoxin sporidesmin. I. Generation of superoxide radical by sporidesmin. Chem Biol Interact, 41, 361–374.
Muyzer, G., de Waal and Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Env. Microbiol. 59(3): 695-700.
Muzychkina, R.A. (1998). Natural Anthraquinones, Biological and Physicochemical Properties. Publishing House Phasis, Moscow, 864.
Nakashima, R., and Slater, G.P. (1969). Configuration of echinulin II. Optical rotary dispersion of echinulin, hydroechinulin, and the stereoisomeric 3-methyl-6(indolyl-3-methyl)-piperazine-2,5-diones. Can. J. Chem., 47, 2069-2074.
Napryeyenko, O., and Borzenko, I. (2007). Ginkgo biloba special extract in dementia with neuropsychiatric features: a randomized, placebo-controlled. Double-blind clinical trial. Arzneimittel Forschung, 57(1), 4-11.
Nemec, K., and Schubert-Zsilavecz, M. (2003). Medizinische Chemie. From teprotide to captopril: Rational design of ACE inhibitors. Pharmazie in Unserer Zeit, 32 (1), 11-16.
Newman, D.J., Cragg, G.M, and Snader, K.M. (2000). The influence of natural products upon drug discovery. Nat. Prod. Rep., 17, 215-234.
Newton, C. and Graham, A. (1997). PCR, second edition. Bios Scientific Publishers and Springer, Singapore.
Newton, G.G.F, and Abraham, E.P. (1955). Cephalosporine C, a new antibiotic containing sulphur and D-a-aminoadipic acid. Nature (London) 175, 548.
Nolte, M.J., Steyn, P.S. and Wessels, P.L. (1980). Structural investigation of 3-acylpyrrolidine-2,4-diones by nuclear magnetic resonance spectroscopy and X-ray crystallography. J. Chem. Soc. Perkin I, 1057-1065.
Nover, L. and Luckner, M. (1969). On the biosynthesis of cyclopenin and cyclopenol, benzodiazepines alkaloids from Penicillium cyclopium Westling. Eur. J. Biochem., 10, 268 -273.
Nozawa, K., and Nakajima, S. (1979). Isolation of radicicol from Penicillium luteoaurantium and meleagrin, a new metabolite from Penicillium meleagrinum. J. Nat. Prod., 42, 374-377.
Numata, A., Takahashi, C., Ito, Y., Minoura, K., Yamada, T., Matsuda, C., and Nomoto, K. (1996). Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: structure determination and solution conformation. J. Chem. Soc., Perkin Trans. 1, 239 – 245.
O‘Callaghan, M., Gerard, E.M., Heilig, G.H.J., Zhang, H., Jackson, T.A. and Glare, T.R. (2003). Denaturing gradient gel electrophoresis-a tool for plant protection research. New Zealand Plant Protection 56, 143-150.
Ohmomo, S., Sato, T., Utagawa, T., and Abe, M. (1975). Isolation of festuclavine and three new indol alkaloids roquefortine A, B, and C from the culture of Penicillium roquefortii. Agric. Biol. Chem., 39, 1333-1334.
Onocha, P., Okorie, D., Conolly, J., and Roycroft, D. (1995). Monoterpene diol iridioid glycoside and dibenzo-a-pyrone from Anthocleista djalonensis. Phytochemistry, 40, 1183-1189.
Overy, D.P., Nielsen, K.F. and Smedsgaard, J. (2005). Roquefortine/oxaline biosynthesis pathway metabolites in Penicillium Ser Corymbifera: in plant production and implication for competitive fitness. J. Chem. Ecol., 31, 2373-2390.
Owen, N.L. and Hundley, N. (2004). Endophtes – the chemical synthesizers inside plants. Science Progress, 87(2), 79-99.
Pahl, H.L., Krauss, B., Schulze-Osthoff, K and 9 other authors. (1996). The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-B. J. Exp. Med., 183, 1829-1840.
Patwardhan, B., Vaidya, A.D.B., and Chorgade, M. (2004). Ayurveda and natural products drug discovery. Current Science 86 (6), 789-799.
Peterson, S.W. (2000). Phylogenetic analysis of Penicillium sp. based on ITS and lsu rDNA nucleotide sequences. In Integration of modern taxonomic methods for Penicillium and Aspergillus Classification, ed. by Samson, R.A and Pitt, J.I. Harwood Academic Publisher, Amsterdam, The Netherlands, 163-178.
Peterson, S.W. (2000). Phylogenetic relationships in Aspergillus based on rDNA sequence analysis. In Integration of modern taxonomic methods for Penicillium and Aspergillus Classification, ed. by Samson, R.A and Pitt, J.I. Harwood Academic Publisher, Amsterdam, The Netherlands, 323-356.
Pieper, R., Ebert-Khosla, S., Cane, D.E. and Khosla, C. (1996). Erythromycin biosynthesis: Kinetic studies on a fully active modular polyketide synthase using natural and unnatural substrates., Biochemistry, 35, 2054-2060.
Pirrung, M.C., Brown, W.L., Rege, S. and Laughton, P. (1991). Total synthesis of (+)-griseofulvin. J. Am. Chem. Soc., 113, 8561-8562.
Proksch, P. (1997). Jamu – traditionelle Heilkunde in Indonesiens. Z. Phytoter., 18, 232-240.
Proksch, P. , Edrada, R.A., and Ebel, R. (2002). Drugs from the seas – current status and microbiological implications. Appl. Microbiol. Biotechnol., 59, 125-134.
Proksch, P., Ebel, R., Edrada, R.A., Schupp, P. Lin, W.H., Sudarsono, Wray, V., Steube, K. (2003). Detection of pharmacologically active natural products using ecology. Selected example from Indopacific marine invertebrates and sponge-derived fungi. Pure Appl. Chem., 75, 343 – 352.
Proksch, P, Edrada, R. and Lin, W.H. (2006). Implications of marine biotechnology on drug discovery. In Frontiers in Marine Biotechnology, ed. by Proksch, P. and Müller, W.E.G. Horizon Bioscience, Wymondham, England.
Quang, D.N., Stadler, M., Fournier, J., Asakawa, Y. (2006). Carneic acids A and B, chemotaxonomically significant antimicrobial agents from the xylariaceous ascomycete Hypoxylon carneum. J. Nat. Prod., 69 (8), 1198-1202.
Raistrick, H., Sticking, C., and Thomas, R. (1953). Alternariol, a new pyran from the fungus Alternaria sp. Biochem. J., 55, 421-423.
Reshetilova, T. A., Vinokurova, N. G., Khmelenina, V. N., and Kozlovsky, A. G. 1995. The role of roquefortine in the synthesis of alkaloids meleagrin, glandicolines A and B, and oxaline in fungi Penicillium glandicola and P. atramentosum. Microbiology, 64, 27-29.
Rote Liste (2007). Arzneimittelinformationen für Deutschland. http://www.roteliste.de.
Royles, B.J.L. (1995). Naturally occuring tetramic acids: structure, isolation and synthesis. Chem. Rev., 95, 1981-2001.
Rudgers, J.A., Koslow, J.M. and Clay, K. (2004). Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol. Lett., 7, 42-51.
Saito, T., Yasushi, S., Kiyotaka, K., Shinsaku, N., Yoichi, I. and Takeshi, K. (1988). Chetracin A and chetracin B and C, three new epipolythiodioxopiperazines from Chaetomium spp. Chem. Pharm. Bull., 36, 1942-1956.
Samuelsson, G. (1999). Drugs of Natural Origin. A text book of pharmacognosy, 4th ed., Apotekarasocieteten, Stockholm, 551.
Sanakawa, U. (1980). The biosynthesis of anthraquinonoid mycotoxins from Penicillium islandicum Sopp. and related fungi. Biosynthesis of Mycotoxins, ed. by Steyn, P., Academic Press, New York, 357-394.
Sankawa, U., Shimada, H., Sato, T., Kinoshita, T., and Yamasaki, K. (1981). Biosynthesis of scytalone. Chem. Pharm. Bull., 29(12), 3536-3542.
Sato, Y and Oda, T. (1976). Griseofulvin biosynthesis: new evidence of two acetate-dispositions in the ring A from 13C nuclear magnetic resonance studies. Tet. Lett., 44, 3971-3974.
Scheuermayer, M, Gulder, T.A.M, Bringmann, G. and Hentschel, U. (2006). Rubritalea marina gen.nov., sp.nov., a marine representative of the phylum ‚Verrucomicrobia’ isolated from a sponge (Porifera). Int. J. Syst. Evol Microbiol, 56, 2119-2124.
Scott, P.M., Merrien, M.A., and Polonsky, J. (1976). Roquefortine and isofumiglacavine A, metabolites from Penicillium Roqueforti. Experientia, 32, 140-142.
Scripnikov, A., Khomenko, A., and Napryeyenko, O (2007). Effects of Ginkgo biloba Extract EGb 761® on neuropsychiatric symptoms of dementia: findings from a randomised controlled trial. WMW Wiener Medizinische Wochenschrift 157, 295-300.
Seigler, D.S. (1998). Plant Secondary Metabolism. Kluwer Academic Publisher, London, 759.
Sekita, S. (1983). Isocochliodinol and Neocochliodinol, Bis(3-indolyl)-benzoquionones from Chaetomium sp. Chem. Pharm. Bull., 31, 2998-3001.
Sidik (1994). The current status of jamu and suggestions for further research and development. Indigenous Knowledge and Development Monitor (2), 13-15.
Sipos, P., Gyory, H., Hagymasi, K., Ondrejka, P., and Blazovics, A. (2004). Special wound healing methods used in ancient Egypt and the mythological background. World J. Surg., 28, 211-216.
Smedsgaard, J. and Frisvad, J.C. (1996). Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extract. J. Microbiol. Methods., 25(1), 5-17.
Smedsgaard, J., and Nielsen, J. (2005). Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. Journal of Experimental Botany, 56(410), 273-286.
Shibata, S., Tanaka, O., and Kitagawa, I. (1955). Metabolic products of fungi. V. The structure of skyrin. Pharm. Bull., 3(4), 278-283.
Skouboe, P., Taylor, J.W., Frisvad, D., Lauritsen, D., Larsen, L., Alboek, M.B. and Rossen, L. (2005). Molecular methods for differentiation of closely related Penicillium species. In Integration of modern taxonomic methods for Penicillium and Aspergillus Classification, ed. by Samson, R.A and Pitt, J.I. Harwood Academic Publisher, Amsterdam, The Netherlands, 179-188.
Smit, P., Leeflang, P., Glandorf, B., van Elsas, J.D., and Wernars, K. 1999. Analysis of fungal community in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Env. Microbiol., 65, 2614-2621
Soedigyo, M. (1990). Javanese traditional medicine. Paper presented at the International Congress on Traditional Medicine and Medicinal Plants. Denpasar, Bali, Indonesia
Solladie, G., Maestro, M.C., Rubio, A., Pedrega, C., Carreiio, M.C. and Ruana, J.L.G. (1990). Asymmetric synthesis of (S)-zearalenone dimethyl Ether, an orsellinic acid type macrolide. J. Org. Chem., 56, 2317-2322.
Steglich, W., and Oertel, B. (1984). Pigments of fungi. Sydowia, 37, 284.
Steyn,P.S and Wessels,P.L. (1978). Tautomerism in Tetramic Acids: 13C NMR determination of the structure and ratios of the tautomers in 3-Acetyl-5-isopropylpyrrolidine-2,4-dione. Tet. Lett., 47, 4707-4710.
Stinson, E., Wise, W., Moreau, R., Jurewicz, and Pfeffer, P. (1986). Alternariol: an evidence for biosynthesis via norlichexanthone. Can. J. Chem., 64, 1590-1594.
Stork G. and Tomasz, M. (1964). A new synthesis of cyclohexenones: the double michael addition of vinyl ethynyl ketones to active methylene compounds. application to the total synthesis of dl-griseofulvin. J. Am. Chem. Soc., 86, 471-478.
Strobel. G.A., Stierle,A., Stierle, D., and Hess, W.M. (1993). Taxomyces andreanae a proposed new taxon for bulbiliferous hypomycete associated with pasific yew. Mycotaxon, 47, 71-78.
Strobel, G.A., Yang, X. Sears, J. Kramer, R. Sidhu, R.S., and Hess, W.M. (1996).. Taxol from Pestaliopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142, 435-440.
Strobel, G.A. (2002). Rainforest endophytes and bioactive products. Critical Reviews in Biotechnology, 22 (4), 315-333.
Strobel, G.A., Daisy, B. Castillo, U. and Harper, J. (2004). Natural products from endophytic microorganisms. J. Nat. Prod., 67, 257-268.
Takahashi, S., Kakinuma, N. Iwai, H., Yanagisawa, T., Nagai, K. Suzuki, K. Tokunaga, T., Nakagawa, A. (2000). Quinolactacin A,B and C: novel quinolone compounds from Penicillium sp.EPF-6, physico-chemical properties and structure elucidation. J. Antibiot., 53, 1252-1256.
Tamura, M., Kawahara, K., and Sugiyama, J. (2005). Molecular phylogeny of Aspergillus and associated teleopmorphs in the Trichocomaceae (Eurotiales). In Integration of modern taxonomic methods for Penicillium and Aspergillus Classification, ed. by Samson, R.A and Pitt, J.I.
Tan, R.X. and Zou, W.X. (2001). Endophytes: a rich source of functional metabolites. Nat. Prod. Rep., 18, 448-459.
Taylor, A., and Walter, J.A. (1978). Determination of low levels of incorporations of 13C-labelled precursors. Biosynthesis of the 2,5-dihydroxycyclohexadiene-1,4-dione system pf cochliodinol. Phytochemistry, 17(6), 1045-1048.
Taylor, A. (1981). Microbial toxins, a comprehensive treatise, Vol 7, Ed. By Rodick, J.V and Ciegler, A. Academic Press, NewYork, 337-376.
Taylor, C.C.W. (2001). Socrates: a Very Short Introduction. Oxford University Press.
Teuscher, F. (2005). Bioaktive Naturstoffe aus marinen endophytischen und scwammassoziierten Pilzen des Indischen und Pazifischen Ozeans. Dissertation. Heinrich-Heine-Universität Düsseldorf.
Thiel, V., Leininger, S., Schmaljohann, R., Brümmer, F. , and Imhoff, J.F. (2007). Sponge-specific bacterial associations of the mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microbial ecology, 54, 101-111.
Thoms, C., Horn, M., Wagner, M., Hentschel, U., and Proksch, P. (2003). Monitoring microbial diversity and natural products profiles of the sponge Aplysina cavernicola following transplantation. Marine Biology, 142, 685-692.
Townsend, C.A. and Minto, R.E. (1999). Biosynthesis of aflatoxins. Compr. Nat. Prod. Chem., vol. 1. Elsevier, Amsterdam, 443-471.
Traber, R., Hofmann, H., Kuhn, M., and von Wartburg, A. (1982). Isolierung und strukturermittlung der neuen cyclosporin E, F, G, H und I. Helv. Chim. Acta 65, 1655-1677.
Traber, R., Hofmann, H., Loosli, H.R., Ponelle, M., and von Wartburg, A. (1987). Neue cyclosporine aus Tolypocladium inflatum. Die cyclosporine K – Z. Helv. Chim. Acta 70, 13-36.
Urry, W.H., Wehrmeister, H.L., Hodge, E.B. and Hidy, P.H. (1966). The structure of zearalenone. Tet. Lett., 27, 3109-3114.
Vacelet, J. (1975). Etude en microscopie electronique de lassociation entre une cynophycee chroococcale et une eponge du genre Verongia. J. Microsc., 12, 363-380.
Vainio, E.J, and Hantula, J. (2000). Direct analysis of wood inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res., 104 (8), 927-930.
Van Dorp, E.L.A., Yassen, A., and Albert, D. (2007). Naloxone treatment in opioid addiction: the risks and benefits. Expert Opinion in Drug Safety, 6(2), 125-132.
Varoglu, M. and Crews, P. (2000) Biosynthetically diverse compounds from a saltwater culture of sponge-Derived Aspergillus niger. J. Nat. Prod., 63, 41-43.
Varoglu, M., Corbertt, T.H. and Valeriote, F.A. (1997). Asperazine, a selective cytotoxic alkaloid from a sponge-derived culture of Aspergillus niger. J. Org. Chem., 62, 7078-7079.
Viegas Jr., C., Bolzani, V.d.S., Eliezer, J., Fraga, M. and Carlos, A. (2005). New anti-alzheimer drug from biodiversity: The role of the natural scetylcholinesterase inhibitors. Mini-Reviews in Medicinal Chemistry, 5, 915-926.
Vigushi, D.M., Mirsaidi, N., Brooke, G., Sun, C., Pace, P., Inman, L., Moody, C.J. and Coombes, R.C. (2004). Gliotoxin is a dual inhibitor of farnesyl transferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med. Oncol., 21, 21-30.
Waksman, S., and Bugie, E. (1944). Chaetomin, a new antibiotic substance produced by Chaetomium cochliodes: I. Formation and properties. J. Bacteriol., 48, 527-530.
Walter, S.L. (2002). Acute penitrem A and roquefortine poisoning in a dog. Can. Veter. J., 43 (5), 372-374.
Wani, M. C., Taylor, H. L., Wall, M. E., Goggon, P., McPhail, A. T. (1971). Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 93, 2325-2327.
White, TJ., Bruns, T., Lee, S. and Taylor, J.W. (1990). 38. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols a guide for methods and application, 315-322.
William, D.H. and Fleming, I. (1995). Spectroscopic methods in organic chemistry, 5th Ed. McGraw-Hill Book Company.
Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective, Phytochemistry, 64, 3–19.
Wirz, A., Simmen, J., Heilmann, J., Calis, I., Meier, B., and Sticher, O. (1995). Bisanthraquinone glycosides of Hypericum perforatum with binding inhibition to CRH-1. Phytochemistry, 55, 941-947.
Woese, C.R., Balch, W.E., Magrum, L.J., Fox, G.E., and Wolfe, R.S. (1977). An ancient divergence among the bacteria. J. Mol. Evol., 9, 305-311.
Woese, C.R, and G.I Oelsen. (1986). Archaebacteria physiology perspectives in the kingdoms. System. Appl Microbiol., 7, 161-177.
Wyllie, T.D. and Morehouse, L. G. (1946). Introduction. Mycotoxic Fungi, Mycotoxins and Mycotoxicosis, vol. 3, Marcel Dekker Inc., New York.
Yosioka, I., Morimoto, K., Murata, K., Yamauchi, H., and Kitagawa, I. (1971). Skyrin from two lichen species. Chem. Pharm. Bull., 19(11), 2420-2422.
Zhang, X., Jiang, W. and Sui, Z. (2003). Concise enantioselective syntheses of quinolactacins A and B through alternative winterfeldt oxidation. J. Org. Chem., 68, 4523-4526.
Zhiyong, L., He, L., and Miao, X. (2007). Cultivable bacterial community from South China sea sponges as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55, 465-472.
Zeeck, et al., 1992. Agistatins, metabolites from Fusarium sp., process for their preparation and their use. Eur. Pat. Appl.
Zuccaro, A., Schulz, B., and Mitchell, J.I. (2003). Molecular detection of ascomycetes associated with Fucus serratus. Mycol. Res., 107, 1451-1466.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:11/2003 - 12/2007
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Pharmazie » Pharmazeutische Biologie und Biotechnologie
Dokument erstellt am:26.03.2008
Dateien geändert am:26.03.2008
Promotionsantrag am:30.10.2007
Datum der Promotion:11.12.2007
english
Benutzer
Status: Gast
Aktionen