Dokument: Molekulare und funktionelle Untersuchungen zur Rolle von miR-16-5p und miR-15a-5p in der Pathogenese maligner Gliome

Titel:Molekulare und funktionelle Untersuchungen zur Rolle von miR-16-5p und miR-15a-5p in der Pathogenese maligner Gliome
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=38813
URN (NBN):urn:nbn:de:hbz:061-20160627-113533-1
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Forchmann, Anneliese [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]3,59 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 27.06.2016 / geändert 27.06.2016
Stichwörter:MiR-16-5p, miR-15a-5p, Glimme, miRNAs
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:MicroRNAs (miRNAs) are short, single stranded, non-coding RNA molecules which regulate gene expression by destabilization of the mRNA and/or inhibition of translation. Aberrant expression of miRNAs has been implicated in the pathogenesis of various types of cancer including gliomas. In former work during my master thesis, I detected decreased miR‑16‑5p expression levels relative to non-neoplastic brain tissue in diffuse and anaplastic astrocytomas as well as secondary glioblastomas and a subset of primary glioblastomas. Following up on this finding, I found that expression of miR‑16‑5p and its family member miR‑15a‑5p, which map together at chromosome band 13q14.2, was lower in isocitrate dehydrogenase 1 or 2 (IDH1/2) mutant as compared to IDH1/2 wildtype gliomas, and consistently down-regulated in established glioma cell lines. Functional studies revealed that overexpression of miR‑16‑5p or miR‑15a‑5p precursors inhibited viability and proliferation and increased apoptosis of glioma cells. In silico analysis showed binding sites for miR‑16‑5p and miR‑15a‑5p in the 3'-untranslated region of transcripts encoding CDK6, CDC25A, CCND3, CCNE1, WEE1, CHK1, BCL2 and MCL1. Overexpression of miR‑16‑5p or miR‑15a‑5p precursor molecules in glioma cells resulted in down-regulation of CDK6, CDC25A, Cyclin D3, Cyclin E1, WEE1, CHK1, BCL2 and MCL1. While CDK6, CDC25A, Cyclin D3, Cyclin E1 and BCL2 are already experimentally validated miR‑16‑5p targets, I could additionally prove that both miR‑16‑5p and miR‑15a‑5p directly bind to the 3'-untranslated region of transcripts encoding WEE1, CHK1 and MCL1. In line with the in vitro data, CDK6, WEE1, CHK1 and MCL1 mRNA levels were significantly increased in malignant glioma tissues when compared to non-neoplastic brain tissue. To investigate potential mechanisms leading to down-regulation of miR‑16‑5p and miR‑15a‑5p in glioma cells, siRNA knock-down experiments for MYCC and HDAC3 were performed. Furthermore, glioma cells were treated with the histondeacetylase (HDAC)-inhibitor Trichostain A (TSA). These experiments revealed that trichostatin A treatment as well as MYCC and HDAC3 knockdown significantly increased expression of miR‑16‑5p, miR‑15a‑5p and their host gene DLEU2 in glioma cells. Taken together, the experimental results summarized in this thesis suggest an important role of miR‑16‑5p and miR‑15a‑5p down-regulation in the pathogenesis of astrocytic gliomas by facilitating up-regulation of several pro-proliferative and anti-apoptotic proteins. Similar to findings reported in lymphatic tumors, the own data suggest that the observed transcriptional repression of miR‑16‑5p in astrocytic gliomas is related to increased MYCC and HDAC3 expression as well as histone modifications.

MicroRNAs (miRNAs) sind kurze, einzelsträngige, nicht-kodierende RNA-Moleküle, die die Genexpression durch die Destabilisierung der mRNA und/oder Inhibierung der Translation regulieren. Veränderungen der miRNA-Expression wurden in zahlreicher Tumorarten, darunter auch maligne Gliome gefunden. In eigenen Voruntersuchungen im Rahmen der Masterarbeit fand sich eine Herrunterregulierung der Expression von miR‑16‑5p in diffusen und anaplastischen Astrozytomen, sekundären Glioblastomen sowie einem Teil der primären Glioblastome im Vergleich zu nicht-neoplastischem Hirngewebe, die mittels Reverser stem-loop Trankriptions-PCR detektiert wurde. Des Weiteren war die Expression von miR‑16‑5p und der auf Chromosom 13q14.2 kolokalisierten miR‑15a‑5p geringer in den Gliomen, die eine Mutation im Isocitrate dehydrogenase 1 oder 2 (IDH1/2)-Gen hatten. Außerdem war die miR‑16‑5p und miR‑15a‑5p Expression in etablierten Gliomzelllinien signifikant herrunterreguliert. Eine transiente Überexpression von Vorläufermolekülen der miRNA miR‑16‑5p oder miR‑15a‑5p, welche die gleiche Bindungsspezifität aufweisen, reduzierte einerseits die Viabilität- und Proliferationsrate und induzierte andererseits die Apoptoseaktivität von Gliomzellen relativ zu Kontroll-transfizierten Zellen. In silico-Analysen sagten Bindestellen für miR‑16‑5p und miR‑15a‑5p in der 3´-UTR von mehreren Genen vorraus, deren Genprodukte in der Regulation des Zellzyklus und der Apoptose von entscheidender Bedeutung sind, darunter CDK6, CDC25A, CCND3, CCNE1, WEE1, CHK1, BCL2 und MCL1. Überexpression von miR‑16‑5p oder miR‑15a‑5p Vorläufermolekülen in Gliomzellen führte zu einer signifikant erniedrigten Expression von CDK6, CDC25A, Cyclin D3, Cyclin E1, WEE1, CHK1, BCL1 und MCL1. Während CDK6, CDC25A, CCND3, CCNE1, WEE1, CHK1 und BCL2 in der Literatur bereits als direkte Targets von miR‑16‑5p beziehungsweise miR‑15a‑5p beschrieben wurden, konnten in eigenen Experimenten zudem die direkte Bindung dieser miRNAs in der 3´-UTR von WEE1, CHK1 und MCL1 mittels Luciferase-Assays gezeigt beziehungsweise validiert werden. Konform mit den in vitro Daten zeigten die Gene CDK6, WEE1, CHK1 und MCL1 eine im Vergleich zu nicht-neoplastischem Hirngewebe erhöhte mRNA-Expression in astrozytären Gliomen. Um die Herrunterregulierung von miR‑16‑5p respektive miR‑15a‑5p in Gliomzellen zu untersuchen, wurden siRNA-mediierte Knock-down-Experimente für die Gene MYCC und HDAC3 durchgeführt. Des Weiteren wurden Gliomzellen mit dem Histondeazetylase (HDAC)-Inhibitor Trichostatin A (TSA) behandelt. Diese Experimente zeigten, dass sowohl der Knock-down von MYCC oder HDAC3 als auch eine TSA-Behandlung der Zellen zu einer signifikant erhöhten Expression von miR‑16‑5p und miR‑15a‑5p als auch deren Wirtsgen DLEU2 in Gliomzellen führten. Zusammenfassend sprechen die erzielten Ergebnisse dafür, dass miR‑16‑5p und miR‑15a‑5p eine wichtige Rolle in der Pathogenese von astrozytären Gliomen durch die direkte Regulation multipler Regulatoren von Zellzyklus und Apoptose spielen. Zusätzlich ergab sich analog zu Befunden in lymphatischen Tumoren Evidenz dafür, dass für die beobachtete transkriptionelle Repression von miR‑16‑5p in IDH1-mutierten astrozytären Gliomen inhibitorische Einflüsse von MYCC und HDAC3 sowie Histonmodifikationen von Bedeutung sind.
Quelle:miRBase. Online verfügbar unter http://www.mirbase.org/, zuletzt geprüft am 06.11.2014.
TargetScanHuman 6.2 (2014). Online verfügbar unter http://www.targetscan.org/, zuletzt aktualisiert am 16.09.2014, zuletzt geprüft am 06.11.2014.
Abbott, AL; Alvarez-Saavedra, E; Miska, EA; Lau, NC; Bartel, DP.; Horvitz, HR et al. (2015): The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9 (3), S. 403–414.
Aldape, K; Zadeh, G; Mansouri, S; Reifenberger, G; Deimling, A (2015): Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129 (6), S. 829–848.
Al-Dimassi, S; Abou-Antoun, T; El-Sibai, M (2014): Cancer cell resistance mechanisms: a mini review. Clin Transl Oncol 16 (6), S. 511–516.
Ambros, V (2004): The functions of animal microRNAs. Nature 431 (7006), S. 350–355.
Aqeilan, RI; Calin, GA; Croce, CM (2010): MiR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death and Differ 17 (2), S. 215–220.
Aravin, AA.; Lagos-Quintana, M; Yalcin, A; Zavolan, M; Marks, D; Snyder, B et al. (2003): The Small RNA Profile during Drosophila melanogaster Development. Dev Cell 5 (2), S. 337–350.
Balss, J; Meyer, J; Mueller, W; Korshunov, A; Hartmann, C; Deimling, A (2008): Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116 (6), S. 597–602.
Bandi, N; Vassella, E (2011): MiR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer 10, S. 55.
Bandi, N; Zbinden, S; Gugger, M; Arnold, M; Kocher, V; Hasan, L et al. (2009): MiR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 69 (13), S. 5553–5559.
Bartel, DP. (2004): MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 (2), S. 281–297.
Bartkova, J; Horejsí, Z; Koed, K; Krämer, A; Tort, F; Zieger, K et al. (2005): DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434 (7035), S. 864–870.
Bernstein, E; Caudy, AA; Hammond, SM; Hannon, GJ (2001): Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409 (6818), S. 363–366.
Bernstein, E; Kim, SY; Carmell, MA.; Murchison, EP.; Alcorn, H; Li, MZ. et al. (2003): Dicer is essential for mouse development. Nat Genet 35 (3), S. 215–217.
Bigner, SH; Vogelstein, B (1990): Cytogenetics and molecular genetics of malignant gliomas and medulloblastoma. Brain Pathol 1 (1), S. 12–18.
Bonci, D; Coppola, V; Musumeci, M; Addario, A; D'Urso, L; Collura, D et al. (2008): The miR-15a/miR-16-1 cluster controls prostate cancer progression by targeting multiple oncogenic activities. Eur Urol Sup 7 (3), S. 271.
Bottoni, A; Piccin, D; Tagliati, F; Luchin, A; Zatelli, MC; Uberti, ECD (2005): MiR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204 (1), S. 280–285.
Brat, DJ; Verhaak, RGW; Aldape, Kenneth D; Yung, WKA; Salama, SR; Cooper, LAD et al. (2015): Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 372 (26), S. 2481–2498.
Brennecke, J; Stark, A; Russell, RB; Cohen, SM (2005): Principles of microRNA-target recognition. PLoS Biol 3 (3), S. e85.
Brower, JV; Clark, PA; Lyon, W; Kuo, JS (2014): MicroRNAs in cancer: Glioblastoma and glioblastoma cancer stem cells. Neurochem Int 77C, S. 68–77.
Calin, GA; Dumitru, CD; Shimizu, M; Bichi, R; Zupo, S; Noch, E et al. (2002): Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99 (24), S. 15524–15529.
Calin, GA; Croce, CM (2006): Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 33 (2), S. 167–173.
Calin, GA; Ferracin, M; Cimmino, A; Di Leva, G; Shimizu, M; Wojcik, SE et al. (2005): A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353 (17), S. 1793–1801.
Calin, GA; Sevignani, C; Dumitru, CD; Hyslop, T; Noch, E; Yendamuri, S et al. (2004): Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101 (9), S. 2999–3004.
Chan, JA; Krichevsky, AM; Kosik, KS (2005): MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65 (14), S. 6029–6033.
Chang, T; Yu, D; Lee, Y; Wentzel, EA; Arking, DE; West, M. et al. (2008): Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40 (1), S. 43–50.
Chen, S; Chen, H; Chen, S; Huang, C; Chen, P; Wu, TE et al. (2013): MicroRNA-495 inhibits proliferation of glioblastoma multiforme cells by downregulating cyclin-dependent kinase 6. World J Surg Oncol 11, S. 87.
Ciafrè, SA; Galardi, S; Mangiola, A; Ferracin, M; Liu, C; Sabatino, G et al. (2005): Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334 (4), S. 1351–1358.
Cimmino, A; Calin, GA; Fabbri, M; Iorio, MV; Ferracin, M; Shimizu, M et al. (2005): miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102 (39), S. 13944–13949.
Cornago, M; Garcia-Alberich, C; Blasco-Angulo, N; Vall-Llaura, N; Nager, M; Herreros, J et al. (2014): Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe. Cell Death and Dis 5, S. e1435.
Davis, GM; Haas, MA; Pocock, R (2015): MicroRNAs: Not "Fine-Tuners" but Key Regulators of Neuronal Development and Function. Front neurol 6, S. 245.
Denli, AM; Tops, BBJ; Plasterk, RHA; Ketting, RF; Hannon, GJ (2004): Processing of primary microRNAs by the Microprocessor complex. Nature 432 (7014), S. 231–235.
Diederichs, S; Haber, DA (2007): Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131 (6), S. 1097–1108.
Dong, JT; Boyd, JC; Frierson, HF (2001): Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate 49 (3), S. 166–171.
Figueroa, ME; Abdel-Wahab, O; Lu, C; Ward, PS; Patel, J; Shih, A et al. (2010): Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer cell 18 (6), S. 553–567.
Finnerty, JR; Wang, W; Hébert, SS; Wilfred, BR; Mao, G; Nelson, PT (2010): The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 402 (3), S. 491–509.
Follert, P; Cremer, H; Beclin, C (2014): MicroRNAs in brain development and function: a matter of flexibility and stability. Front Mol Neurosci 7, S. 5.
Forchmann, A (2011): Molecular Analysis of WEE1 Kinase and its Regulation by MicroRNAs in Gliomas. Masterarbeit, S. 44-46.
Gardiner, AS; Twiss, JL; Perrone-Bizzozero, NI (2015): Competing Interactions of RNA-Binding Proteins, MicroRNAs, and Their Targets Control Neuronal Development and Function. Biomolecules 5 (4), S. 2903–2918.
Garzon, R; Calin, GA; Croce, CM (2009): MicroRNAs in Cancer. Annu Rev Med 60, S. 167–179.
Godlewski, J; Nowicki, MO; Bronisz, A; Williams, S; Otsuki, A; Nuovo, G et al. (2008): Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68 (22), S. 9125–9130.
Griffiths-Jones, S (2004): The microRNA Registry. Nucleic Acids Res 32, S. 109-111.
Ha, M; Kim, V (2014): Regulation of microRNA biogenesis. Nat Rev Moll Cell Bio 15 (8), S. 509–524.
Hammond, SM (2005): Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579 (26), S. 5822–5829.
Han, J. (2004): The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18 (24), S. 3016–3027.
Han, L; Witmer, PD; Casey, E; Valle, D; Sukumar, S (2007): DNA methylation regulates MicroRNA expression. Cancer Biol Ther 6 (8), S. 1284–1288.
Hanahan, D; Weinberg, RA (2011): Hallmarks of cancer: the next generation. Cell 144 (5), S. 646–674.
Hartmann, C; Hentschel, B; Wick, W; Capper, D; Felsberg, J; Simon, M et al. (2010): Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120 (6), S. 707–718.
Hedberg, Y; Roos, G; Ljungberg, B; Landberg, G (2002): Cyclin D3 protein content in human renal cell carcinoma in relation to cyclin D1 and clinico-pathological parameters. Acta Oncol 41 (2), S. 175–181.
Hegi, ME; Diserens, A; Gorlia, T; Hamou, M; Tribolet, N; Weller, M et al. (2005): MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352 (10), S. 997–1003.
Hermansen, SK; Kristensen, BW (2013): MicroRNA biomarkers in glioblastoma. J Neurooncol 114 (1), S. 13–23.
Hermanson, M; Funa, K; Hartman, M; Claesson-Welsh, L; Heldin, CH; Westermark, B; Nistér, M (1992): Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52 (11), S. 3213–3219.
Iyengar, BR.; Choudhary, A; Sarangdhar, MA; Venkatesh, KV; Gadgil, CJ; Pillai, B (2014): Non-coding RNA interact to regulate neuronal development and function. Front Cell Neurosci 8, S. 47.
Jiang, Q; Liu, B; Yuan, T (2013): MicroRNA-16 inhibits bladder cancer proliferation by targeting Cyclin D1. Asian Pac J Cancer Prev 14 (7), S. 4127–4130.
Killela, PJ; Pirozzi, CJ; Healy, P; Reitman, ZJ; Lipp, E; Rasheed, BA et al. (2014): Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5 (6), S. 1515–1525.
Killela, PJ; Reitman, ZJ; Jiao, Y; Bettegowda, C; Agrawal, N; Diaz, LA Jr et al. (2013): TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110 (15), S. 6021–6026.
Lages, E; Guttin, A; El Atifi, M; Ramus, C; Ipas, H; Dupré, I et al. (2011): MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS ONE 6 (5), S. e20600.
Landgraf, P; Rusu, M; Sheridan, R; Sewer, A; Iovino, N; Aravin, Aet al. (2007): A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129 (7), S. 1401–1414.
Lee, RC; Feinbaum, RL; Ambros, V (1993): The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75 (5), S. 843–854.
Lee, Y (2002): MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21 (17), S. 4663–4670.
Lee, Y; Kim, M; Han, J; Yeom, K; Lee, S; Baek, SH; Kim, VN (2004): MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23 (20), S. 4051–4060.
Lerner, M; Harada, M; Loven, J; Castro, J; Davis, Z; Oscier, D et al. (2009): DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res 315 (17), S. 2941–2952.
Lezina, L; Purmessur, N; Antonov, AV; Ivanova, T; Karpova, E; Krishan, K et al. (2013): MiR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Dis 4, e953.
Li, B; He, H; Tao, B; Zhao, Z; Hu, G; Luo, C et al. (2012): Knockdown of CDK6 enhances glioma sensitivity to chemotherapy. Oncol Rep 28 (3), S. 909–914.
Li, Y; Xu, J; Chen, H; Bai, J; Li, S; Zhao, Z et al. (2013): Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res 41 (22), e203.
Liesenberg, F (2012): Aberrant expression of micro RNA in gliomas: Molecular mechanisms, functional consequences and clinical significance. Inaugural-Disseration, S. 37-42.
Liu, J; Chen, G; Feng, L; Zhang, W; Pelicano, H; Wang, F et al. (2014): Loss of p53 and altered miR15-a/16-1 - MCL-1 pathway in CLL: insights from TCL1-Tg:p53(-/-) mouse model and primary human leukemia cells. Leukemia 28 (1), S. 118–128.
Liu, Q; Fu, H; Sun, F; Zhang, H; Tie, Y; Zhu, J et al. (2008): MiR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36 (16), S. 5391–5404.
Livak, KJ; Schmittgen, TD (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (4), S. 402–408.
Louis, DN; Ohgaki, H; Wiestler, OD; Cavenee, WK; Burger, PC; Jouvet, A et al. (2007): The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114 (2), S. 97–109.
Lu, J; Getz, G; Miska, EA; Alvarez-Saavedra, E; Lamb, J; Peck, D et al. (2005): MicroRNA expression profiles classify human cancers. Nature 435 (7043), S. 834–838.
Lujambio, A; Lowe, SW (2012): The microcosmos of cancer. Nature 482 (7385), S. 347–355.
Luo, Q; Li, Xiaoyu; Li, J; Kong, X; Zhang, J; Chen, L et al. (2013): MiR-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int J of Oncol 43 (4), S. 1212–1218.
Makeyev, EV; Zhang, J; Carrasco, MA; Maniatis, T (2007): The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27 (3), S. 435–448.
Malmstrom, A; Gronberg, BH; Marosi, C; Stupp, R; Frappaz, D; Schultz, H et al. (2012): Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 13 (9), S. 916–926.
Malzkorn, B; Wolter, M; Grzendowski, M; Stuehler, K; Reifenberger, G (2008): Identification and functional characterization of microRNAs involved in the malignant progression of astrocytic gliomas. Acta Neuropathol 116 (3), S. 350.
Meister, G; Landthaler, M; Patkaniowska, A; Dorsett, Y; Teng, G; Tuschl, T (2004): Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15 (2), S. 185–197.
Mir, SE; De Witt Hamer, PC; Krawczyk, PM; Balaj, L; Claes, A; Niers, JM. et al. (2010): In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 18 (3), S. 244–257.
Miska, EA; Alvarez-Saavedra, E; Townsend, M; Yoshii, A; Sestan, N; Rakic, P et al. (2004): Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5 (9), S. 68.
Noushmehr, H; Weisenberger, DJ; Diefes, K; Phillips, HS; Pujara, K; Berman, BP et al. (2010): Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer cell 17 (5), S. 510–522.
O'Donnell, KA; Wentzel, EA; Zeller, KI; Dang, CV; Mendell, JT (2005): c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435 (7043), S. 839–843.
Ofir, M; Hacohen, D; Ginsberg, D (2011): MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res 9 (4), S. 440–447.
Ohgaki, H; Kleihues, P (2007): Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170 (5), S. 1445–1453.
Orellana, EA; Kasinski, AL (2015): MicroRNAs in Cancer: A Historical Perspective on the Path from Discovery to Therapy. Cancers 7 (3), S. 1388–1405.
Orian, JM; Vasilopoulos, K; Yoshida, S; Kaye, AH; Chow, CW; Gonzales, MF (1992): Overexpression of multiple oncogenes related to histological grade of astrocytic glioma. Br J Canc 66 (1), S. 106–112.
Ørom, UA; Nielsen, FC; Lund, AH (2008): MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30 (4), S. 460–471.
Ostrom, QT; Gittleman, H; Fulop, J; Liu, M; Blanda, R; Kromer, C et al. (2015): CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. J Neuro-Oncol 17, S. iv1-iv62.
Panda, AC; Sahu, I; Kulkarni, SD; Martindale, JL; Abdelmohsen, K; Vindu, A et al. (2014): MiR-196b-mediated translation regulation of mouse insulin2 via the 5'UTR. PLoS 9 (7), S. e101084.
Papagiannakopoulos, T; Friedmann-Morvinski, D; Neveu, P; Dugas, JC; Gill, RM; Huillard, E et al. (2012): Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 31 (15), S. 1884–1895.
Parsons, DW; Jones, S; Zhang, X; Lin, JC; Leary, RJ; Angenendt, P et al. (2008): An integrated genomic analysis of human glioblastoma multiforme. Science 321 (5897), S. 1807–1812.
Pavlidis, N; Fizazi, K (2005): Cancer of unknown primary (CUP). Crit Rev Oncol Hematol 54 (3), S. 243–250.
Perry, A; Tonk, V; McIntire, DD; White, CL (1997): Interphase cytogenetic (in situ hybridization) analysis of astrocytomas using archival, formalin-fixed, paraffin-embedded tissue and nonfluorescent light microscopy. Am J Clin Pathol 108 (2), S. 166–174.
Pothof, J; Verkaik, NS; van IJcken, W; Wiemer, EAC; Ta, VTB; van der Horst, GTJ et al. (2009): MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28 (14), S. 2090–2099.
Qian, J; Jiang, B; Li, M; Chen, J; Fang, M (2013): Prognostic significance of microRNA-16 expression in human colorectal cancer. World J Surg 37 (12), S. 2944–2949.
Ramaswamy, S; Tamayo, P; Rifkin, R; Mukherjee, S; Yeang, CH; Angelo, M et al. (2001): Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98 (26), S. 15149–15154.
Rao, SAM; Santosh, V; Somasundaram, K (2010): Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol 23 (10), S. 1404–1417.
Reid, G; Pel, ME; Kirschner, MB; Cheng, YY; Mugridge, N; Weiss, J et al. (2013): Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol 24 (12), S. 3128–3135.
Reifenberger, G; Collins, VP (2004): Pathology and molecular genetics of astrocytic gliomas. J Mol Med 82 (10), S. 656–670.
Reifenberger, G; Hentschel, B; Felsberg, J; Schackert, G; Simon, M; Schnell, O et al. (2012): Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Caner 131 (6), S. 1342–1350.
Riemenschneider, MJ; Reifenberger, G (2010): Molecular neuropathology of low-grade gliomas and its clinical impact. Adv Tech Stand Neurosurg 35, S. 35–64.
Riemenschneider, MJ; Jeuken, JWM; Wesseling, P; Reifenberger, G (2010): Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120 (5), S. 567–584.
Riemenschneider, MJ; Reifenberger, G (2009): Molecular neuropathology of gliomas. Int J Mol Sci 10 (1), S. 184–212.
Rivas, MA; Venturutti, L; Huang, Y-W; Schillaci, R; Huang, TH-M; Elizalde, PV (2012): Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development. Breast Cancer Res 14 (3), S. R77.
Sabha, N; Knobbe, CB; Maganti, M; Al Omar, S; Bernstein, M; Cairns, R et al. (2014): Analysis of IDH mutation, 1p/19q deletion, and PTEN loss delineates prognosis in clinical low-grade diffuse gliomas. J Neuro-Oncol 16 (7), S. 914–923.
Saito, Y; Liang, G; Egger, G; Friedman, JM; Chuang, JC; Coetzee, GA; Jones, PA (2006): Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9 (6), S. 435–443.
Sampath, D; Liu, C; Vasan, K; Sulda, M; Puduvalli, VK; Wierda, WG; Keating, MJ (2012): Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood 119 (5), S. 1162–1172.
Schwarz, DS; Hutvágner, G; Du, T; Xu, Z; Aronin, N; Zamore, PD (2003): Asymmetry in the Assembly of the RNAi Enzyme Complex. Cell 115 (2), S. 199–208.
Seol, HJ; Yoo, HY; Jin, J; Joo, KM; Kim, H-S; Yoon, SJ et al. (2011): The expression of DNA damage checkpoint proteins and prognostic implication in metastatic brain tumors. Oncol Res 19 (8-9), S. 381–390.
Shen, J; Wan, R; Hu, G; Yang, L; Xiong, J; Wang, F et al. (2012): MiR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology 12 (2), S. 91–99.
Shi, Z-M; Wang, J; Yan, Z; You, Y-P; Li, C; Qian, X et al. (2012): MiR-128 inhibits tumor growth and angiogenesis by targeting p70S6K1. PLoS 7 (3), S. e32709.
Silber, J; Lim, DA; Petritsch, C; Persson, AI; Maunakea, AK; Yu, M et al. (2008): miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6, S. 14.
Singh, NK (2016): MicroRNAs Databases: Developmental Methodologies, Structural and Functional Annotations. In: Interdiscipl Sci Comput Life Sci, 21 S.
Sorensen, CS; Syljuasen, RG (2012): Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 40 (2), S. 477–486.
Stupp, R; Hegi, ME; Mason, WP; van den Bent, MJ; Taphoorn, MJB; Janzer, RC et al. (2009): Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10 (5), S. 459–466.
Su, AI; Welsh, JB; Sapinoso, LM; Kern, SG; Dimitrov, P; Lapp, H et al. (2001): Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 61 (20), S. 7388–7393.
Suzuki, H; Aoki, K; Chiba, K; Sato, Y; Shiozawa, Y; Shiraishi, Y et al. (2015): Mutational landscape and clonal architecture in grade II and III gliomas. Nature Genet 47 (5), S. 458–468.
Takeshita, F; Patrawala, L; Osaki, M; Takahashi, R; Yamamoto, Y; Kosaka, N et al. (2010): Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18 (1), S. 181–187.
Tepel, M; Roerig, P; Wolter, M; Gutmann, DH; Perry, A; Reifenberger, G; Riemenschneider, MJ (2008): Frequent promoter hypermethylation and transcriptional downregulation of the NDRG2 gene at 14q11.2 in primary glioblastoma. Int J Cancer 123 (9), S. 2080–2086.
Toedt, G; Barbus, S; Wolter, M; Felsberg, J; Tews, B; Blond, F et al. (2011): Molecular signatures classify astrocytic gliomas by IDH1 mutation status. Int J Cancer 128 (5), S. 1095–1103.
Toyota, M; Suzuki, H; Sasaki, Y; Maruyama, R; Imai, K; Shinomura, Y; Tokino, T (2008): Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68 (11), S. 4123–4132.
Vasudevan, S; Tong, Y; Steitz, JA (2007): Switching from repression to activation: microRNAs can up-regulate translation. Science 318 (5858), S. 1931–1934.
Veronese, A; Pepe, F; Chiacchia, J; Pagotto, S; Lanuti, P; Veschi, S et al. (2014): Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia. Leukemia 29 (1), 86-95.
Wang, F; Fu, X-D; Zhou, Y; Zhang, Y (2009): Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells. BMB Reports 42 (11), S. 725–730.
Ward, PS; Patel, J; Wise, DR; Abdel-Wahab, O; Bennett, BD; Coller, HA et al. (2010): The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17 (3), S. 225–234.
Watanabe, T; Katayama, Y; Yoshino, A; Yachi, K; Ohta, T; Ogino, A et al. (2007): Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression. Brain Pathol 17 (1), S. 5–10.
Weller, M; Felsberg, J; Hartmann, C; Berger, H; Steinbach, JP; Schramm, J et al. (2009): Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27 (34), S. 5743–5750.
Weller, M; Wick, W; Aldape, K; Brada, M; Berger, M; Pfister, SM; Nishikawa, R; Rosenthal, M; Wen, PY; Stupp, R; Reifenberger, G (2015): Glioma. Nat Rev Dis Primer, 1 (15040), S. 1-18.
Wick, W; Platten, M; Meisner, C; Felsberg, J; Tabatabai, G; Simon, M et al. (2012): Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. The Lancet. Oncol 13 (7), S. 707–715.
Wick, W; Weller, M; van den Bent, M; Sanson, M; Weiler, M; Deimling, A et al. (2014): MGMT testing--the challenges for biomarker-based glioma treatment. Nat Rev Neurol 10 (7), S. 372–385.
Wightman, B; Ha, I; Ruvkun, G (1993): Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75 (5), S. 855–862.
Winter, J; Jung, S; Keller, S; Gregory, RI; Diederichs, S (2009): Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11 (3), S. 228–234.
Woldemichael, BT; Mansuy, IM (2016): Micro-RNAs in cognition and cognitive disorders: Potential for novel biomarkers and therapeutics. Biochem Pharmacol 104, S. 1–7.
Wuchty, S; Arjona, D; Li, A; Kotliarov, Y; Walling, J; Ahn, S et al. (2011): Prediction of Associations between microRNAs and Gene Expression in Glioma Biology. PLoS 6 (2), S. e14681.
Xie, T; Liu, P; Chen, L; Chen, Z; Luo, Y; Chen, X et al. (2015): MicroRNA-15a down-regulation is associated with adverse prognosis in human glioma. Clin Transl Oncol, 17(7), 504-10.
Xu, W; Yang, H; Liu, Y; Yang, Y; Wang, P; Kim, S-H et al. (2011): Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19 (1), S. 17–30.
Yamashita, Y; Kasugai, I; Sato, M; Tanuma, N; Sato, I; Nomura, M et al. (2010): CDC25A mRNA levels significantly correlate with Ki-67 expression in human glioma samples. J. Neurooncol 100 (1), S. 43–49.
Yan, H; Parsons, DW; Jin, G; Mclendon, R; Rasheed, BA; Yuan, W et al. (2009): IDH1 and IDH2 mutations in gliomas. N Engl J Med 360 (8), S. 765–773.
Yang, T-Q; Lu, X-J; Wu, T-F; Ding, D-D; Zhao, Z-H; Chen, G-L et al. (2014): MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor- kappa B1/MMP9 signaling pathway. Cancer Sci 105 (3), S. 265–271.
Yi, R; Qin, Y; Macara, IG; Cullen, BR (2003): Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17 (24), S. 3011–3016.
Zhang, X; Chen, X; Lin, J; Lwin, T; Wright, G; Moscinski, LC et al. (2012): Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 31 (24), S. 3002–3008.
Zhang, X; Zhao, M; Huang, A-Y; Fei, Z; Zhang, W; Wang, X-L (2005): The effect of cyclin D expression on cell proliferation in human gliomas. J Clin Neurosci 12 (2), S. 166–168.
Zhang, X; Wan, G; Mlotshwa, S; Vance, V; Berger, FG; Chen, H; Lu, X (2010): Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 70 (18), S. 7176–7186.
Zhou, X; Duan, X; Qian, J; Li, F (2009): Abundant conserved microRNA target sites in the 5'-untranslated region and coding sequence. Genetica 137 (2), S. 159–164.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie
Dokument erstellt am:27.06.2016
Dateien geändert am:27.06.2016
Promotionsantrag am:25.05.2016
Datum der Promotion:21.06.2016
english
Benutzer
Status: Gast
Aktionen