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Introduction

For a commutative ring k, the category My of k-modules is monoidal: the tensor
product of two k-modules has again a natural k-module structure and for k-modules
V, M, N, the canonical map

avyuN:(VOM)@N —V@(M®N), (vdm)@n—v®(men),

is an isomorphism. This means in particular that the composition of the endofunctors
V ®r —, M ®, — : M — M, is the same as the functor induced by the tensor product
of k-modules V and M, that is, (V ®i M) ®; —. It is known from linear algebra that
the endofunctors V ®j —, Homy(V,—) : My — My, form an adjoint pair of functors
with unit and counit

Ny : M — Homy(V,V @, M), mr—— [v— v®m],

ey 2 V@Homg(V,M) — M, v® f— f(v).
A k-bialgebra (H, p,t, A, €) is a k-module H with k-linear maps

uw:H®,H— H,.:k— H, for an associative algebra structure and
A:H— H®,H,e: H— k, for a coassociative coalgebra structure,

such that A and e are algebra maps (equivalently p and ¢ are coalgebra maps).

Denote the category of right H-modules by My and the category of right H-
comodules by M. For two modules M, N € My, the tensor product M ®; N is
again a right H-module by the action (m®n)-h = (m®n)Ah (componentwise action).
This turns My into a monoidal category. To make this work, coassociativity of the
coproduct A is needed, since it is to show that for V., M and N € My, the k-linear
isomorphism

ayun: (VoL M)®y N —V @, (M®,N)

is also H-linear, that is - using the Sweedler notation -
((v@m)®@n)-h=(vhi1 ® mhi2) ® nhy = vhy ® (mhg1 @ nhay) = (V@ (M @n)) - h.

Here the middle identity is just the coassociativity condition. In this case, it is easy
to see that the composition of the functors H ® (H ®j —) can be identified with the
functor induced by the the tensor product of the objects, namely (H ®; H) ®j, —. This
is an essential property in the theory of bialgebras and Hopf algebras.

A right Hopf module M is a right H-module pp; : M @ H — M as well as a right
H-comodule pM : M — M ®;, H such that pM (mh) = p™(m)A(h) for m € M, h € H.

For a bialgebra H, the endomorphisms ring Endg(H) has a second k-algebra struc-
ture with the convolution product * and an S € Endy(H) is an antipode if it is an inverse
of the identity map with respect to the convolution product, that is, id*S = toe = Sxid.
A Hopf algebra is a bialgebra which has an antipode and the latter condition is equiv-
alent to the fact that

— @ H My, - ME, M — (M ®, H,id® p,id @ A)

is an equivalence of categories (Fundamental Theorem for Hopf algebras) (see e.g. [7,
15.5]). The adjoint (inverse) to this functor was initially defined by coinvariants (see
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[20, Proposition 1]) and it is shown in [7, 14.8] that it can be seen as the functor
Hom# (H, —).

The thesis is concerned with quasi-bialgebras as defined in Drinfeld [13] by requir-
ing the same axioms as for bialgebras except for the coassociativity condition of the
coproduct which is modified by a normalized 3-cocycle ¢ € H ® H ® H. Thus the
map ay,y,n considered above is no longer H-linear and the subsequent theory of Hopf
algebras cannot be transferred to the new situation immediately. For example, the
convolution algebra (Endy(H), *) is no longer associative. However, the ay, )7,y may be
replaced by non-trivial associativity constraints in the monoidal category My and this
leads the way to the necessary modification of the classical notions. The notion of an
antipode was adapted to a quasi-antipode in Drinfeld [13]. The Fundamental Theorem
corresponds to the comparison functor

—®kH : HM—> HMg7 N — (N®k' H7QN®H7QN®H)

being an equivalence (see 12.4, 13.3 and 15.10). This was first shown by Hausser and
Nill [17] by defining a projection E : M — M which leads to a coinvariant functor
()", Another projection E : M — M was defined by Bulacu and Caenepeel [8]
leading to a distinct (but isomorphic) coinvariant functor (—)®H.

The purpose of this thesis is to study various functors induced by the tensor product
— ®¢ V. They may go from yM — gM, My — My, gMyg — gMg, gM — HME,
gMypy — HMg, etc. depending on V being a left or right H-module, a bimodule
or a quasi-Hopf H-bimodule. In all these cases, we obtain the right adjoints as a
variation of the Hom-functor and we give the intrinsic units and counits explicitely.
Of particular interest is the observation that for any quasi-bialgebra H, the functor
gHomi (H ® H,—) is right adjoint to the comparison functor mentioned above.

In the first chapter, we state some facts about modules and Hopf algebra theory.
In the second chapter, we recall notions from (monoidal) category theory needed to
understand the general background of (quasi-) Hopf algebra theory.

In the third chapter, we generalize the Hom-tensor adjunction from the Hopf alge-
bra case to the quasi-Hopf setting and describe the adjunctions between the functors
Homy(V,—) and — ®; V (resp. V ®; —) as endofunctors of yM, My and gpMp. The
units and counits of these adjunctions are not the same as in the Hopf algebra case. We
have to modify the adjunctions in such a way that the units and counits are morphisms
in the corresponding categories.

For example, for a Hom-tensor adjunction on M, the units and counits in M,
come out as (see 9.2)

ny M — "Homy(V, M @5 V), mr— [v— pr(mev)],

ey “Homp(V,M)®@V — M, fove— Y qp[f(S(dh)v))-

The corresponding results for My and My are considered in 9.11, 9.13, 9.15 and 9.16.

As a special case, if V = A is a left H-module algebra, the functor A ®; — (resp.
— ®k A) is a monad on yM. In this case, we describe the isomorphism between the
Eilenberg-Moore module category over this monad (that is in fact isomorphic to the
module category over the associative algebra A4 H ), and the Eilenberg-Moore comodule
category (gM)Homx(A:=) (see 9.7 and 4.9).

viii



In [27], Schauenburg described the adjoint pair (— ®j V, — ®; V*) of endofunctors
of yM for a finite dimensional left H-module V over a base field. In 9.4 we give
explicitely a functorial isomorphism — ®j V* — “Homy(V, —) for a finitely generated
and projective k-module V. This yields Schauenburg's adjunction as a particular case
of our adjunction in 9.2.

In section 11, we generalize the Hom-tensor relations from the module category over
a quasi-Hopf algebra H to the module category over an H-comodule algebra (in the
sense of Hausser and Nill [15]). The main idea that makes this generalization possible
is that the coaction of a quasi-Hopf algebra H on a comodule algebra B gives rise to
an action of the monoidal category M on the module category over B. This yields
an endofunctor V ®; — : gM — gM, for any left H-module V', which is left adjoint to
some suitable Hom-functor.

In the fourth chapter, we show that with a suitable left H-module structure on
Hom, the functor yHomZ (H @ H, —) : aME — M is right adjoint to the comparison
functor — @y H : gM — g M (see 12.7).

For a quasi-Hopf algebra H, we consider the Hausser-Nill coinvariants functor
(=)o . yME — ;M and the Bulacu-Caenepeel coinvariants functor (—)°* : y M —
gM which both are right adjoints to the comparison functor — ®y H : gM — HME
As one of the main results of this thesis, we obtain that these functors are isomor-
phic to the Hom-functor yHom(H ® H,—) : gME — yM (see 13.8). This gives a
new description of the concept of coinvariants in terms of a Hom-functor and provides
alternative techniques to handle modules over quasi-Hopf algebras.

These constructions are generalized to the category of left two-sided Hopf mod-
ules AMZ, where (A, p, ¢p) is a right H-comodule algebra. This category can be
considered as the Eilenberg-Moore comodule category (4Mp)~®H# over the comonad
—®H : ;Mg — 4Mp (see 4.8). Adopting the arguments of Hausser-Nill [17] and
Bulacu-Caenepeel [8], we define two (isomorphic) types of coinvariants functors. Each
of them gives rise to a version of the Fundamental Theorem. In 15.11 we describe both
types of coinvariants in terms of the Hom-functor 42Hom (A ® H, —) : AME — 4M.

In the fifth chapter, we consider the category of right two-sided Hopf modules HMZ
and define similar concepts in this category. In section 16, we introduce two versions of
coinvariants functors (—)°°H and (—)<f for this category and describe them in terms
of the Hom-functor 4Hom! (A ® H, —) (see 17.11). From the categorical point of view,
all computations seem to be similar to the left case AMg but they can not be derived
from that results just by symmetry arguments.
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Chapter 1

Preliminaries

Throughout this text, unless explicitely stated, we always suppose that k is a commu-
tative ring with identity. All (co)algebras, bialgebras, Hopf algebras etc. will be over k;
unadorned ® and Hom mean ®; and Homy, respectively. For k-modules M, N, we de-
note by Homy (M, N) all k-module homomorphisms from M to N, M* := Homy (M, k)
and Endy (M) := Homy (M, M). By iy : M @ N — N ® M we denote the twist map
which carries m ® n to n @ m.

In this chapter we present some definitions and lemmas to be referred to later in this
text. For more details about module theory we refer to [32] and about Hopf algebras,
to [1], [7], [18], [22] and [29].

1 Algebras and coalgebras

1.1. Algebras and modules. A k-algebra is a k-module A together with k-linear
maps pa: AR A — Aand g : k— A and commutative diagrams

A9 Ao A— Ao A A A A
4 | (| S|
pARid HA LARid A
A® A - A, A@A——> A

Right A-modules are defined as k-modules M with an action gpr : M @ A — M
inducing the commutative diagrams

g .
MRARA—ME _are A M e A

QM@idAl J/QM \ \LQM
id

M®A M, M.

oM

For the category of right A-modules we write M4 and denote the set of all A-
module morphisms between M, N € My by Hom (M, N). It is well known that A is a
projective generator in 4M.

1.2. Hom-tensor relations in ;M. For any k-module V', the functors

— @V i yM — ;M and Homg(V,—) :xM — M|



form an adjoint pair of functors.
For any k-module M, we have the k-linear morphism

s s M ® V' — Homg(V, M), m® f s [v— f(v)m].

This induces a natural transformation ¢ : — ® V* — Homg(V, —).

If ;V is finitely generated and projective, there is a dual basis {v;}?; and {v'}", for
V with v; € V and v € V* such that for any x € V we have x = Y"1 v'(x) v;. In this
case, for any k-module M, 1/ is an isomorphism with inverse map g — > i g(v;) ®v°,
i.e. 1 is a natural isomorphism and the right adjoint of the tensor-functor — ®j V' is
again a tensor functor, namely — ®; V* : ;M — M.

1.3. The category o[M]. Let A be a k-algebra. A left A-module N is called M-
generated if there exists an epimorphism M®™ — N for some set A. The class
of all M-generated modules is denoted by Gen(M). An A-module N is called M-
subgenerated if it is (isomorphic to) a submodule of an M-generated module. A
subcategory C of 4M is subgenerated by M, or M is a subgenerator for C if every
object of C is subgenerated by M. By o[M] we denote the full subcategory of 4M
whose objects are all M-subgenerated modules. This is the smallest full Grothendieck
subcategory of 4M containing M. o[M] coincides with 4M if and only if A embeds
into some (finite) coproduct of copies of M (see [32, 15.4]).
The trace functor 7™ : ;M — ¢[M], which sends any X € M to

M (X) =Y {f(N)IN € o[M], f € sHom(N, X)},

is right adjoint to the inclusion functor o[M] — sM (e.g. [32, 45.11]).

By definition, o[M] is closed under direct sums, factor modules and submodules in
AM. Subcategories with these properties are said to be closed subcategories (of 4M
or o[M]). It is straightforward to see that any closed subcategory of 4M is of type
o[N] for some N in .M. N € ¢[M] is said to be a generator in o[M] if it generates
all modules in o[M].

Reversing the arrows in the defining diagrams for algebras and their modules leads
to the concepts

1.4. Coalgebras and Comodules. A k-coalgebra is a k-module C together with
k-linear maps A : C — C ® C' and ¢ : C — k with commutative diagrams

C CwcC c—2->CC
| | |
A ido®A A EQC
C®CMC®C®C, C®CWC.

A right C-comodule is a k-module M with a coaction o™ : M — M ®j, C inducing
the commutative diagrams

oM oM
M MeC M—2% (M®C)
QM\L \LidM@)A ) \LidM®s
idps
M&C———>MoCeC, M.
oV ®idc



A k-linear map f : M — N between right C-comodules M and N is called a C-
comodule morphism if it induces commutativity of the diagram

M N
QM\L l@N

The category of right C-comodules and C-comodule morphisms is denoted by M
and the set of all morphisms between M, N € MC is written as HomC(M ,IN).
As a right comodule, C' is a subgenerator in M, that is, every right C-comodule is
a subcomodule of a C-generated comodule (see 1.3). Note that M® need not have
projectives even if k is a field.

If C is a flat k-module, the category M is a Grothendieck category (see [7], 3.13).
For a coalgebra (C, A, €), the dual module C* = Homy(C, k) is an associative k-algebra
with unit element €. The multiplication in C* is the convolution product

p:C*eCt — (Co0) 25 0,
where A* = Homy (A, k). Explicitely,
Vi,geC* fxg=(f®g)ocA:C—-kQk~k. (1.1)

On the other hand, if (A, u,t) is a k-algebra, the transpose map p* : A* — (A® A)*
does not in general carry A* into A* ® A*. This is the case if A is finitely generated
and projective as a k-module.

2 Bialgebras and Hopf algebras

2.1. Bialgebras. A k-module B that is a k-algebra (B, p, ¢) and a k-coalgebra (B, A, ¢)
is called a k-bialgebra if A and ¢ are algebra-maps, equivalently, if y and ¢ are
coalgebra maps. This means commutativity of the diagrams

12 L

B®B B k B
A®Al zl J{A
(B® B)® (B® B) A k@k—>B®B.
’id®TB,B®id\L
(B&B)®(B®B)—_—>B&B,

Over any bialgebra (B, u, ¢, A, ¢), the base ring k itself is a left and right B-module
through the algebra map ¢ : B — k and also a left and right B-comodule through the
coalgebra map ¢ : k — B. Also, (Endg(B),*) is an associative k-algebra with unit
element ¢ o £ and the convolution product

Vf,g9 € Endg(B) frxg=po(f®g)oA. (2.1)



2.2. Antipodes and Hopf algebras. An element S € Endg(B) is called left (resp.
right) antipode if it is left (resp. right) inverse to idp with respect to the convolution
product * on Endg(B). In case S is a left and right antipode, it is called an antipode.
A bialgebra H with an antipode is called a Hopf algebra.
The antipode S satisfies

Sxidg =idgp*xS =10¢,

which means explicitely
po(S®idp)oA=po(idg®S)oA=1o0c¢,

and, for ¢ € B and A(c) = > 1 ® co,

D S(er)er =Y e1S(ca) =e(e)lp.

Notice that for any f € Endg(B), being invertible with respect to * does not mean that
f is a bijective map.

A map f : Hi — Hs of Hopf algebras with antipodes S; and S is called a Hopf
algebra morphism if it is an algebra as well as a coalgebra morphism satisfying

f(Si(c)) = S2(f(c)) Vee H.

2.3. Properties of the antipode. [7, 15.4]
(1) S is an anti-algebra-morphism, i.e.
i) S(ab) = S(b)S(a), for all a,b € H.
ii) S o¢ =1, which means S(1g) = 1.
(2) S is an anti-coalgebra-morphism, i.e.
i)eoS=ce.
i) To(S®S)oA=A0S,1ie. for A(c) => 1 ® ca,

AS(c) = S(ea) ® S(er).

2.4. Group algebras and their duals. Let G be a group and k[G] its group algebra,
that is, k[G] is a free k-module with basis G, and the product given by the group
multiplication. Furthermore, k[G] is a k-coalgebra with coproduct induced by A(g) =
g ® g and counit £(g) = 1, for g € G. With these structures, k[G] is a k-bialgebra and
even a Hopf algebra with antipode S induced by S(g) = g~! for g € G.

If G is a finite group of order n € N with elements {gi,...,g,}, the k-dual k[G]* =

Homy (k[G], k) is also a Hopf algebra. The multiplication of f,g € k[G]* is given by
(f*g)(x) = f(x)g(x) for x € G. To describe the coalgebra structure, let {g}g4ec and
{eg}gec C k[G]* be a dual basis for k[G]. The coproduct and counit are defined by

Aleg) = > er®en, eleg) =014 (2.2)
kh=g

The antipode S of k[G]* is induced by S(ey) = e,-1 for g € G.



2.5. Modules over bialgebras.

i) Given a k-bialgebra (H, u, ¢, A, €), for any pair M, N of left H-modules the algebra
morphism A : H — H ® H enables us to equip M ®; N with an H-module
structure, given by

a-(m®n)=A(a)(men)= Za1m®a2n. (2.3)

Following [7, 13.4] we denote M ®; N with this diagonal H-module structure by
M &% N.

ii) For any morphisms f : M — N, g : M’ — N’ in yM, the k-linear map f ® g :
M @ M’ — N ® N’ is a morphism in yM.

iii) For left H-modules M, N and L, the k-linear isomorphisms
(M*N)PL~M*(N&PL), k@M~M~Me'k

are isomorphisms of H-modules. If H is a cocommutative k-bialgebra, then the
twist map Ty v : M @ N — N ® M is also an isomorphism of H-modules (see
[18, II1.5.1] ).

2.6. Module structure on Hom. For any algebra H and left H-modules M, N, we
have a left H ® H°-module structure on Homy (M, N) by

((@a®d)- f)(m) = (a f(d'm)),

for a,a’ € H, f € Homy (M, N) and m € M.
For a Hopf algebra with antipode S, the map

(idg ® S) o A H 2> H @ H — %5

H® H?

is an algebra morphism from H to H ® H°. Through this morphism, we get an
H-module structure on Homy (M, N) given by

(a-g)(m) =) ai(g(S(az) m)), (2.4)

for g € Homy(M,N), a € H, and m € M. In particular, for N = k, the above equality
induces an H-module structure on M* = Homy (M, k) which becomes

(a- f)(m) = f(S(a)m) (2.5)

foralla € H, fe& M*andme M.
If the antipode S is bijective, another H-module structure can be defined on
Homy (M, N) by
(a-g)(m) =" as(g(S™ " (a1) m)), (2.6)
for g € Homy(M,N), a € H, and m € M. In particular, for the trivial H-module
N =k,
(a- f)(m) = f(S}(a)m) (2.7)
foralla € H, f € M* and m € M.



2.7. Comodules over bialgebras. Let H be a k-bialgebra and M, N and L left
H-comodules. Then M ®; N has a left H-comodule structure by the map

zd®7—®zd

MON, Mo N X oMo HeN HoHoMoN" S goMeN
explicitly, for m € M and n € N,
MoN o(m®mn) Zm 1) ® mo @ ng.

Following [7, 13.5], we denote M ®; N with this (diagonal) H-comodule structure by
M @} N.
For any morphisms f : M — N, g : M’ — N’ in #M], the tensor product map
f®g: M®“M — N ®°N', is a morphism in “M. The canonical isomorphisms
(M@°N)°L~M®°(N®°L), k°M~M~MQeFk

are isomorphisms of H-comodules.
If H is a cocommutative k-bialgebra, the twist map Ty v : M @ N — N ® M is also
an isomorphism of H-comodules (see [18, II1.6.2]).

Similar concepts for modules and comodules over a bialgebra or Hopf algebra can
be considered also on the right side. We denote these categories with My and M
respectively.

2.8. Hopf modules. Let H be a k-bialgebra. A k-module M is called a right H-Hopf
module if M is

i) a right H-module by oy : M @ H — M,
ii) a right H-comodule by o™ : M — M @y, H,
iii) for all m € M and h € H, o™ (mh) = oM (m)A(h), form € M,h e H.

The last condition means that o™ : M — M ®Z H is H-linear and it is also equivalent
to require gps : M ®% H — M to be H-colinear.

2.9. Trivial Hopf modules. Let H be a k-bialgebra. For any k-module L,

i) L ® H is a right H-Hopf module with the canonical stuctures

ol®H —jd; 9 A: Loy H — L@y H®rH, [®h—12A(h),
OrgH =tdr, @u: Ly Hey,H — L®iH, I®h®ar— 1R ha.

ii) For every k-module morphism f: L — L', the map

is an H-Hopf module morphism.

In particular, H ® H is a trivial right H-Hopf module.



2.10. H-modules and Hopf modules. Let H be a k-bialgebra. For a right H-
module N, the right H-module N ®i H is a right H-Hopf module with the canonical
comodule stucture

N =jdy oA N@tH — N HeyH, n®h—no Ah.
For every H-module morphism f: N — N’, the map
f®id: Ney H— N' @) H

is an H-Hopf module morphism.
In particular, H ®i H is aright H-Hopf modules. For any right H-module N, there
is a Hopf module map

W N@RH—->NLH, n®h— (n®lg)Ah). (2.8)

N is an isomorphism for all N € My if and only if H is a Hopf algebra (see [7, 14.2,
14.3 and 15.8]).

2.11. The category Mg. Let H be a k-bialgebra. The right H-Hopf modules,
together with the maps which are both right H-comodule and right H-module mor-
phisms, form a category that is denoted by Mg. For objects M, M’ in Mg, we denote
by Homg(M , M) the set of morphisms from M to M’. There is a faithful functor

H
My — gorpa+M,

from the category Mg to the module category over the smash product HP#H*. Mg
can be considered as a full subcategory of gop =M if  H is locally projective.

2.12. Properties of M. Let H be a k-bialgebra (see [7, 14.5, 14.6 and 14.15]).

i Mg is closed under direct sums and factor modules.

ii) The right H-Hopf module H ®Z H is a subgenerator in Mg.

)
)

iii) The right H-Hopf module H ®{ H is a subgenerator in ML
)

iv) For any M € M, N € My,

Hom (M, N ®;, H) — Hompy(M,N), f — (id®¢e)o f,
is a k-module isomorphism with inverse map h +— (h ® id) o o™,
v) For any K, L € My,
Hom (K @ H,L @, H) — Homy (K, L), f — (id, ®¢)o f(—® 1g),
is a k-module isomorphism with inverse map h — (h ® idp).

vi) If  H is flat, then Mg is a Grothendieck category and for Hopf modules M, N €
M the functors Hom# (M, —) : M# — M, and Hom#(—, N) : M — M, are
both left exact.



2.13. Coinvariants and Hopf modules. Let M be a right H-Hopf module. The
coinvariants of H in M are defined as

MeH ={me M|o™(m)=mae 15} =Ke (o™ — (- @ 1x)).

(1) The map
vy + Homfy (H, M) — M, f— f(1n),

is a k-module isomorphism with inverse map
wyr s M°" — Hom®(H, M), m — [h— mh)].

In particular, Homg (H,H) — H®°H = k 1y is a ring isomorphism.
We have the commutative diagram

Homg(H,M)@)kH M f®h——f(h)
VM Rid g \L iz’dM l l
Mt @, H M, f(lg) ® h——= f(1m)h.

(2) For any right H-module N, there is a k-module isomorphism
V;V@H:Homg(H7N®zH)—>N7 fH(Zd(X)E)Of(lH)?

with inverse map n — [h — Y nh; ® ha]. We have the commutative diagram

Hom (H,N @} H) @y H — N @% H g h g(h)
VEV®H®idi iid J{ i
N ey H — N &} H, (idy ©€)g(1) © h ——g(1)A(h),

where vy : N® H — N ®° H is the H-Hopf module morphism described in (2.8)
(see also [7, 14.3]). In particular,

(H @y H)*°" ~ Hom!}(H,H @, H) ~ H.

3 Co-chains and co-cycles

The (co)homology theory for Hopf algebras has been studied by Sweedler and others.
V. G. Drinfeld has obtained new examples of (quasi-triangular) Hopf algebras from the
old ones by “twisting” the structures by 2-cocycles. In Majid [22], the cochains and
cocycles are defined for bialgebras and Hopf algebras.

In this section we follow the approach in [22], with some weaker conditions. In fact we
have a unital multiplication and a counital comultiplication which are compatible, but
we do not assume the comultiplication to be coassociative. This is done in view of the
application of this theory to the quasi-Hopf algebra setting.

3.1. Cochains and cocycles without coassociativity condition. Let H be an
associative algebra with a comultiplication A : H — H ® H and a counit ¢ : H — k
which both are algebra maps. For any n € Nand ¢ =1,2,--- ,n, we set

A HO - HO" L A =id@id® - @ A @ ®id,
i—th



and
Bo=18(=), Ap1=()®L

We define an n-cochain w as an invertible element in H®", and its coboundary as
the (n 4 1)-cochain

i even i odd

O"w = ( 11) Aw)( 1:[1 Aw™ 0<i<n+1. (3.1)

(The products are taken in increasing order).
An n-cocycle for H is an invertible element w € H®", such that 0"w = 1.

A cochain or cocycle w is said to be counital or normalized if ¢;(w) = 1 for all
1=1,2,--- ,n, whereg; =id®---Q_¢ & --Qid.
i—th

Casen=1.Forn=1,A;: H—->H®H, i=0,1,2,
Ag(R)=1®h, AR =AY, and Ayh)=h®1,
then an element h € H is a 1-cocycle if and only if
1 =0 =A¢(h)As(R)A1 (R = (1@ h)(h@ 1)A(h) ' < A(h) = h® h.

i.e. h is a semi-grouplike element. h € H is a counital 1-cocycle if and only if it is
an invertible grouplike element.

Case n =2. Forn =2 A;: H® H — H®, {=0,1,2,3, for an invertible
element R =Y R!' ® R?

Ao(R)=1® R, A(R™)=(A®id)(R-1),

As(R) = (id® A)(R), and A3(R°H=R'®1,
Thus, R is a 2-cocycle if and only if

1=9’R=(10R)(id® A)(R)(A®id)(R"H)R 'o1)
This corresponds to the equality
(1® R)(id ® A)(R) = (R® 1)(A ®id)(R). (3.2)
R is counital (normalized) if and only if
(e®id)(R) =1= (id®¢)(R).

For example, let H be a braided bialgebra with universal R-matrix $R. Then the
universal R-matrix fR satisfies the equalities

(A ®idy)(R) = RizPas = Y _(R' @ 1K) (1@ R), (3.3)
(idg @ A)(R) = RizRhp = Y (R @1aR)(Rel), (3.4)
and  R12R13R23 = Ra3R13N 12, (3.5)



in other words
YRR @1eR)(1eR) =) 1R (R' 21R)(R1).

and
(e®id)(R) =1= (id®e)(R), (3.6)

(see [18, pp. 173-175]). Thus, R is a normalized 2-cocycle.

Case n=3. Forn =3, A, : H®® — H® §=0,1,2,3,4, an invertible element
¢ € H®3 is a 3-cocycle if and only if

1=0% = Ao()A2(d)As(d)A1(¢ ) As(67)
= (1®¢)(id® A®id)(¢)(¢® 1)(A®id@id)(¢ ") (id®id @ A)(¢~")

50 ¢ is a 3-cocycle if and only if
(12¢)(ido A®id)($)(¢®1) = (idid® A)(P)(A®ideid)($)  (3.7)
¢ is counital (normalized ) if and only if
(c@idid) () =101 = (id®e®id)(¢) = (id ® id © £)().

We will use the concept of normalized 3-cocycles in the definition of quasi-bialgebras
(see (7.3) and (7.4)).
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Chapter 2

Tools from category theory

In this chapter we present some ingredients from category theory to be referred to later
in this text. More details can be found in [3], [4], [5], [21], [24] and [28].
4 Monads and comonads

4.1. Adjoint Functors. A pair (L, R) of functors L : A — B and R : B — A between
categories A and B is called an adjoint pair if there exists a natural isomorphism

which can be described by natural transformations
the unit 7 :idy — RL, and the counit ¢: LR — idp,

satisfying the triangular identities

Ln nR
L LRL R RLR
X\ J/EL X\ le
L, R.

For any object A in A and B in B,
EB = QX}B(Z‘dR(B)) and nyq = QAB(Z'CZL(A)).

Conversely, having a unit n : idy — RL and a counit € : LR — idp satisfying the trian-
gular identities, for any object A in A and B in B, we obtain the natural isomorphism

QA,B : B(L(A), B) — A(A, R(B)),

given by
QA,B(f) = R(f) °na, for f : L(A) - Bv (41)

with inverse map
Q4'5(9) =ep o L(g), for g:A— R(B). (4.2)

Let (L, R) be an adjoint pair of functors, then (e.g. [6])

11



i) R is full and faithful if and only if € : LR — idp is an isomorphism.
ii) L is full and faithful if and only if 7 : idy — RL is an isomorphism.
iii) L is an equivalence if and only if  and ¢ are isomorphisms.

4.2. Natural transformations for adjoint pairs. Let A—2-B-—-A bean

adjoint pair of functors with unit 1 and counit € and A L>IB§ R, A be another
adjoint pair with unit " and counit ¢’ between categories A and B. Then there is a
bijection between natural transformations

Nat(L', L) — Nat(R,R), ¢+ ¢ := R'eo R'pRon'R,
with inverse
Nat(R,R') — Nat(L',L), ¢+ p: =& RoL'@pLoL'n.

In this case, following Kelly and Street [19], we say that ¢ and ¢ are mates under the
given adjunctions (see also [23] and [6]).

4.3. F-modules. Given an endofunctor F': A — A, an F-module (A4, p4) consists of
an object A € A together with a morphism g4 : F(A) — A in A.

A morphism f : A — A’ in A between F-modules is an F-module morphism provided
it induces a commutative diagram

FA) —D g
PA\L lPA/
!
A 7 A

With these morphisms, the F-modules form a category which is denoted by Agr. There
is the faithful forgetful functor

Up:Ap — A, (A,04)— A

The relations between Ap and A are even stronger if additional conditions are
imposed on the endofunctor F' (see e.g. [31, 2.5.]).

4.4. Monads. A monad F = (F,u,n) on a category A consists of an endofunctor
F : A — A and two natural transformations, the multiplication p : F? — F and the
unit 9 : idy — F, and commutative diagrams

Pt g F—" g
e l l“ idp i“ idp
F? m F, F

12



Given monads F = (F, u,n) and F' = (F’, i/, 1), a natural transformation « : F' —
F' is called a monad morphism from F to F/, if it induces commutativity of the
diagrams

p2 e ppr o e idy
/| [
F o F ]

o

4.5. Monads and their modules. Given a monad F = (F, i, n) on a category A, an
F-module (A, pa) consists of an object A € A and an arrow py : FI(A) — Ain A,
with commutative diagrams

A P py A R

| b e i

F(A) A,

pa
F-module morphisms are defined as in 4.3. The class all F-modules together with

F-module morphisms form a category which is called the Eilenberg-Moore module

category over the monad F and denoted by Ap.

As shown in Eilenberg-Moore [14], for a monad F, the forgetful functor Up : Ap — A

is right adjoint to the (free) functor

dr: A — Ap, Ar— [(F(A), FF(A) 22~ F(A4))],

F(f) F

[A—Ls 4] [F(4) (A1,

by the isomorphism
AF<F(A>7B)) —>A(A7 U]F(B))7 f'—>f077A7
for any A € A and B € Ap. Notice that Ug o ¢p = F.

Dual to the preceding notions there is a theory of comodules which we sketch in the
next paragraphs.

4.6. G-comodules. For a functor G : A — A, a G-comodule (4, 0%) is an A € A
with a morphism ¢4 : A — G(A) in A.
A G-comodule morphism is a morphism f : A — A’ in A between G-comodules A
and A’ inducing a commutative diagram

A ! A
”) |~
G(A) — 5 G()

The G-comodules together with G-comodule morphisms form a category which we
denote by A®. The forgetful functor is faithful,

U%: A% — A, (A,QA) — A.

13



4.7. Comonads. A comonad G = (G, ,¢) on a category A consists of an endofunctor
G : A — A and two natural transformations, the comultiplication 6 : G — G? and the
counit € : G — idy, such that the following diagrams commute

e g o2 e g 9
6l i(SG lé ido iaG
GG, G G.

Comonad morphisms are defined in the same way as monad morphisms (see 4.6).

Given two comonads G = (G, d,¢) and G' = (G',¥',¢'), a natural transformation 3 :
G — @' is called a morphism of comonads if the following diagrams commute

G LR G —idy
6l l&/ ﬁl /
€
GG GIG/’ GI.

BB

4.8. Comonads and their comodules. Given a comonad G = (G, J, ¢) on a category
A, a G-comodule (A, p) consists of an object A € A and an arrow p? : A — G(A)
in A, with commutative diagrams

P G(A) A & G(A)
/ PN
G(A) e GG(A),

The class all G-comodules together with G-comodule maps form a category which
is called the Eilenberg-Moore comodule category over comonad G and denoted
by A®. The forgetful functor U : A® — A is left adjoint to the (free) functor

6% h — AS, A [(G(A), G(4) = GG(A)) ],

[A—Le 4] [6(a) 2 gan),

by the isomorphism
A®(B,G(A)) — A(U%(B),A), freacf,

for any A € A and B € A®. Notice that U® o0 ¢© = G.

Monads and comonads are closely related to adjoint pairs of functors.

4.9. (Co)monads related to adjoints. Let L : A — B and R : B — A be an adjoint
pair of functors with unit 7 : ¢dy — RL and counit € : LR — idg. Then

F:= (RL,ReL,n), RLRL™%RL, #:idy — RL,

14



is a monad on A. Similarly, a comonad on B is defined by

G:= (LR, InR,¢), LR™ZLRLR, ¢:LR— ids.

As observed by Eilenberg and Moore in [14], the monad structure of an endofunctor
induces a comonad structure on its adjoint endofunctor. More precisely, as outlined in
[6], for an adjoint pair L : A — B and R : B — A of functors:

(1) The following are equivalent:

(a) L is a monad,

(b) R is a comonad.
In this case, the Eilenberg-Moore categories A7, and A® are equivalent.
(2) The following are equivalent:

(a) L is a comonad,
(b) R is a monad.

In this case, the Kleisli categories Ap and AL are equivalent, where the Kleisli
category Ap (resp. Al) is a subcategory of the Eilenberg-Moore category Apg
(resp. A%) with objects R(A) (resp. L(A)) for all A € A.

5 Monoidal categories

5.1. Monoidal categories. A category A is called a monoidal (or tensor) cate-
gory if there exist a bifunctor — ® — : A x A — A, a distinguished neutral object F,
and natural isomorphisms

a:(—®—-)® - — —®(—®—) ( associativity constraint )
AMER——idy and p:—QFE — idy

(left and right unit constraints ) such that for all objects W, X, Y, Z in A the following
two diagrams commute

aw,x,y ®idz

(WeX)oY]|®Z WeXeY)eZ

W

AWRX,Y,Z Wel(X®Y)® Z]

dw ®ax. v,z

WeX)o(YeZ) WeXelY®Z),

aw, X,y ®Z
(X®E) Y —=2Y . X®(E®Y)
M lidx%
X®Y.

A monoidal category (A, ®, E,a, A, p) is said to be strict if the isomorphisms a, A, and
p are the identity morphisms. For a monoidal category (A, ®, E,a, A, p), we shortly
write (A, ®, E) or just A if no confusion arises.

15



5.2. Monoidal functors and natural transformations. Let A and A’ be two
monoidal categories. A monoidal functor from A to A’ is a triple (F, ¢p, ¢’) where
F:A — Ais a functor, g : E/ — F(F) is an isomorphism and

¢ F(-)® F(=) — F(-®-)

is a natural isomorphism such that for all objects U, V,W € A, the diagrams

N 0
B¢ FU)— < PU) FU) e B — ~ pU)
wo®"idp(u) i TF(AU) idF(U)®/SOOl TF(PU)
F(E)® F(U) ——F(E®U), F(U)® F(E) ——F(U® E),

PE,U YU,E

commute and also the following coherence diagram is commutative.

’

(FU)® ' F(V))® F(W) . FU)& (F(V)&' F(W))

@QJ’V@Ml lid@l@@,w
FU®V)® F(W) FU)® F(VaW)
SD/U(X)V,Wl lﬂ"b,\/@)w

F(UeV)W)

o FU®(VeoW).

A monoidal functor (F,pq,¢’) is said to be strict if ¢y and ¢’ are the identity
morphisms.

A natural monoidal transformation

v 1 (F,0,¢") — (G, tho, ¥)

between monoidal functors F, G : A — A’ is a natural transformation v : F — G such
that for each pair (U, V) of objects in A, we get the commutative diagrams

!
Pu,v

F(U)® F(V) FU®V) F(E)
vu®’7vi J{WU@V) y lw
GU) & G(V)———=GU V), B —=G(E).

A natural monoidal isomorphism is a natural monoidal transformation that is also
a natural isomorphism. A monoidal equivalence between two monoidal categories
is a monoidal functor F' : A — A’ such that there exists a monoidal functor G : A" — A
and natural isomorphisms 7 : idys — FG and 0 : GF — idy. For more details see [18].

5.3. Duality in a monoidal category. The concepts of evaluation and coevaluation
morphisms, introduced for module categories over bialgebras and Hopf algebras, (see
5.4 below), can be generalized to monoidal categories in order to find left (and right)
dual objects. We will encounter these concepts again in module categories over quasi-
Hopf algebras (see 7.3).
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A monoidal category A is called a monoidal category with left duality if, for each
object V in A, there exist an object V* and morphisms

by :E—VRV* and dy :V*®V — FE
in the category A such that
(idy @ dy)oayy«y o (by ®idy) =idy (dy ®idy+)o a(/lyy* o (idy+ @ by) = idy~.

Similarly, a monoidal category A has right duality if, for each object V in A, there
exist an object *V and morphisms

Vy:E— V@V and dy:V®*V-—EFE
in the category A such that
(dy @idy)oay'syy o (idy @by) = idy, (id-y @dy)oa-yy,»v o (by @idwy) = id-y.
A category A is called rigid (or autonomous) if it has left and right duality.
5.4. Duality in module categories over a Hopf algebra.

i) Let H be a bialgebra over a commutative ring k. Then the category yM of left
H-modules is a monoidal category (see 2.5).

ii) If H is a Hopf algebra with an antipode S, the category (M), of left H-modules
that are finitely generated and projective over k, is a monoidal full subcategory
of FM. As seen in 2.6, for any left H-module M, we can endow the dual module
M* = Homy (M, k) with the left H-action (h - f)(m) = f(S(h)m) and we have
the evaluation map

dy: M @M — k, f@m— f(m),

for all m € M and f € M*. Now, if M is finitely generated and projective as a
k-module, with dual basis {m;}"_; and {m‘}"_,, we have the coevaluation map

by ik — M @ M*, 1I—>Zimi®mi.
Both dj; and by; are H-linear and satisfy
(idpr @ dpyp) o (bar ®@idas) = idpyr  and  (das ® idpg+) o (idpas+ @ bay) = idpyy+,
endowing (gM)¢y, with the structure of a monoidal category with left duality.

iii) If the antipode S is invertible, then for any left H-module M denote by *M
the dual k-module Homy (M, k) equipped with the left H-action (h - f)(m) =
f(S7L(h)m) (see 2.6).

For any finitely generated projective k-module M, define

ik — MM, 1> m'em;, (5.1)

dy: M@*M—k, m® f+— f(m), (5.2)
using the same conventions as above. Then V), and d),; are H-linear satisfying
(dhyy @ idpr) o (idpy @)yy) = idyr  and  (idspr @ d)yp) o (B @ idspy) = idspg.

That is, (FM)¢gp has right duality, i.e. (gM)gp is autonomous (rigid).
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6 Monoidal categories acting on categories

In the following, we present some necessary information about action of monoidal cat-
egories on categories to be refered to in this text. One can find more details in [24],
[25] and [28].

6.1. Action of a monoidal category. Let (A, ®, E,a, A, p) be a monoidal category.
A right A-category is a four-tuple (D, o, ¥, r), where D is a category, ¢ : D x A — D
is a functor, and

UV:(-0o—)o—— —0o(—®—) and r:—oF —id
are natural isomorphisms such that for all objects M € D and X,Y, Z € A,
(idoaxyz)oVmxevzo (Yuxy oid) =V xyez o Ymex,y,z, (6.1)
(idoAx) oWy px =raoid. (6.2)
This means commutativity of the diagrams

YroX,y,z

(MoX)oY]oZ (MoX)o(Y®Z)
W\
War, x,yoid Mo [X X (Y X Z)]

Mo(X®Y)]oZ Mo[(X®Y)® Z],

M,(X®Y),Z
v
(MoE)oX] — 2% s Mo (E®X)
rMOidi J{id())\x
Mo X - Mo X.
idnrox

The natural isomorphism ¥ can be considered as a “mixed associativity constraint” of
D.
For any right A-category (D,o, ¥, r) and X € A, we obtain an endofunctor

—0oX:D—1D.

A left A-category (D,¢', ¥’ 1) consists of a category D together with natural
isomorphisms

V(@) - — -0 (=¢'=) and 1:Ed — —id,
with commutative diagrams

ax,y,zo'idy

X®Y®Z)]M

W

V(xev),z,M X o [(Y X Z) o M]

%

XY (Z M),

(X oY)® 2] M

(X ®Y)d (2 M)

VU v, (20! M)
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Vx.E

(X®E)o M—2M 0 X o/ (Eo' M)
pxolidl iid@llM
Xo M X o' M.

iy o g

For any left A-category (D,o, ¥,1) and X € A, we obtain an endofunctor
Xo—:D—D.

Let (A,®, E,a,\, p) be a monoidal category. Then we have a second monoidal
structure A := (A,® = ® o7, FE,a,p,\), where 7 : A x A — A x A is defined by
7(X,Y) = (Y, X), and a is defined by axy,z := azy x. Now, if (D,o/,¥,1) is a left
A-category, then it becomes a right A-category, with o defined by M o X = X o/ M,
VU is defined by Uy xy = ‘Il;lxM, and with r = 1. In this way, we have a bijective
correspondence between left and right A-category structures on a category D, (and
results on left (resp. right) A-categories can be translated into results about right (resp.
left) A-categories).

6.2. A monoidal category acting on itself. As the first example, we can see
that any monoidal category (A, ®, F,a,\, p) is itself a left and right A-category with
0=¢'=®, V=V =qgand r = pand 1=\ Therefore, it can be considered as a left
A x A-category.

6.3. Modules over an algebra in A. Let A be a monoidal category and (A, u,¢)
be an algebra in this monoidal category. Then D = A 4, the category of all right A-
modules in A, is a left A-category since for all X € A and (M, opr) € D, X @ M carries
the structure of a right A-module by

(XoM) @A~ X (Mo A) 2% X oM.

In this way, for any object X € A, we have an endofunctor
Xo—:A A — A A-

In the special case A = MY for a bialgebra H, let A be an algebra in A (a right
H-comodule algebra). Then the category B = (M) 4 of all right (H, A)-Hopf modules
is a left M"-category. So for any right H-comodule M, we have the endofunctor
M @ —: (MH) 4 — (M) 4. In particular, the endofunctor A ® — is a monad on the
category (M) 4 of right (H, A)-Hopf modules.

Now let A = gM, and A be an algebra in g M (a left H-module algebra). Then the
category D = A(gM) ~ 4xpyM is a right gM-category. Furthermore, if A = My and
A is an algebra in A (a right H-module algebra), then the category B’ = (M) of all
right A-modules in My, is a left Mg-category.

6.4. Comodules over a coalgebra in A. Let again A be a monoidal category and
(C,A,€) be a coalgebra in this monoidal category. Then D = A, the category of all
right C-comodules in A, is a left A-category: for all X € A and (M,oM) e D, X @ M
carries the structure of a right C-comodule by

X 'L'd®gM
QM — XMeC)~(XeM)C.
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In the case A = M for a k-bialgebra H, if C is a coalgebra in A (a right H-comodule
coalgebra), let B = (M)®. Then a k-module M is in B = (MH)® if and only if M is
a right H-comodule and a right C-comodule with commutative diagram

P
M MeH
Plgl iﬂg@idH
MeC——mr-f M@(C®H)— (M®C)® H.
1d@pg =

In this case, the category D = (M) is a left M -category.

If A = My and C'is a coalgebra in A (a right H-module coalgebra), then a k-module
M is in D' = (My)? if and only if M is a right H-module and a right C-comodule
such that

pM(mh) = Z moy h1 @ mepye hy = oM (m) A(h).
In this case, the category D' = (M) is a left Mp-category.

6.5. A-functors and natural transformations. Let A be a monoidal category,
(D, o, ¥,1) and (D', </, ¥ 1) be two left A-categories. A (left) A-functor (F, &) consists
of a functor F' : D — D’ and a natural isomorphism

§:=d F(=) — F(=0-)

satisfying g v = idp(ar), for all M € D, and the coherence condition (for all X,Y €
A, M € D)

Exyon o (X o Eyar) 0 Wy y pasy = F(Uxyar) © Exavin,
this means commutativity of the diagram

ExXeY,M

(X®Y)o F(M) F(X®Y)oM)
F(Ux,y,m)
Vs v r(an) F(Xo(YoM))
%7
XS (Y F(M)— X F(YoM).
idx o' &y, m

Let (F,€) and (F', &) : D — D' be two A-functors between A-categories D and D'.
An A-natural transformation between (F, &) and (F’,¢’) is a natural transformation
¢ : F — F’" such that for all X € A M € D

Oxom ©Ex.m = Ex pr 0 (id o onr),

this means commutativity of the diagram

X o F(M) —2X L p(X o M)

idXo’goM\L l@Xo]\l

X o F'(M) —— FI(X o M).
Ex M
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6.6. (Co)modules over (co)algebras in A-categories. Let A be a monoidal cate-
gory and A an algebra in this category. If (D, ', U’ 1) is a right A-category, then we can
define right modules in D over A as follows. A right module in D over A or right
A-module in D is an object M of D together with a morphism oy : Mo A — M
and the commutative diagrams

(MoA)o A Qe Mo A MoFE 2 M
\I/A/I,A,Ai lQM m %

- - Mo A.
Mo(A@A)idOMA MoA——M,

We denote the category of right A-modules in D by Dy.

Similarly, for a left A-category D one can define left modules in D over A.

Furthermore, one can also define a right (resp. left) comodule in a right (resp. left)
A-category D over a coalgebra C in the monoidal category A as follows:

Let (C,A,¢) be a coalgebra in the monoidal category (A, ®, E,a, A, p) and D be a
right A-category. A right comodule (M, ¢™) in D over C is an object M € D with
a morphism o™ : M — M o C which is coassociative in the sense that

Urroco (6™ oide)o o™ = (idoA) oo™, and (idog)o o™ =ry.

i.e. the following diagrams are commutative.

oM oM
M MoC M MoC
i@MOidC
oM (M O C) oC T\ idaroe
i‘l’]\LC,C
Mo C.

In short, a comodule in D over a coalgebra C in A, is a module over an algebra C' in
A°P,
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Chapter 3

Hom-tensor relations for
quasi-Hopf algebras

7 Quasi-bialgebras and quasi-Hopf algebras

Quasi-bialgebras and quasi-Hopf algebras were defined by Drinfeld in [13]. These are
generalizations of the concepts of bialgebras and Hopf algebras in such a way that their
module categories are still monoidal (even rigid monoidal, in the finite case).

The most important aspect of this generalization comes from the non-coassociativity
of the comultiplication. However, this non-coassociativity is controlled by a 3-cocycle
¢. In this way, we have a monoidal structure on the module category similar to the
Hopf algebra case but with non-trivial associativity constraints of the tensor product.
Thus, the forgetful functor will not be (coherent) monoidal. But it still preserves the
tensor product.

Quasi-bialgebras and quasi-Hopf algebras were mainly considered over fields and in
the finite dimensional case. However, many parts of the formalism still work over a
commutative base ring. In this chapter, we outline these notions without any finite-
ness conditions. We recall some Hom-tensor relations in module categories over Hopf
algebras and generalize them for modules over quasi-Hopf algebras and their comodule
algebras. Our results imply the results for the finite dimensional (finitely generated
and projective) cases.

7.1. Quasi-bialgebras. A four tuple (H,A,¢,¢) is called a quasi-bialgebra if H
is an associative k-algebra with unit, ¢ an invertible element in H ® H @ H, the
comultiplication A : H — H ® H and the counit ¢ : H — k are algebra maps,
satisfying the identities for h € H

(id@e)oA(h)=h®1, (id®ec)oA(h)=1® h, (7.1)
(id@ A)o A(h) = ¢ - (A®id) o A(h) - ¢ 1, (7.2)

(id @ id @ A) () (A @id ®id)(¢) = (1® ¢)(id @ A @ id)(¢) (¢ @ 1), (7.3)
(id®e®id)(¢) =1® 1. (7.4)

The identities (7.1), (7.3) and (7.4) imply also,

(e @id®id)(¢) = (id®id®e)(¢) =1® 1. (7.5)
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¢ is called the Drinfeld reassociator. The equation (7.3) is a 3-cocycle condition
on ¢ (see section 3.1). We use the Sweedler type notations A(h) = > h1 ® hg, and

(A®id)o A(h) =) hii ®hia®hy, (id®A)o A(h) =) h1 & hgy & haa.

We denote the tensor components of ¢ by capital letters and those of ¢~ by small
letters, namely

o= X'eX’eX*=) V'aV?eY’=) T'oT’eT® = ct.

- :Zaz Rz’ Q3 :Zy ®y ®y :Zt1®t2®t3:

As in the Hopf algebra case, (c.f. 2.5, see also section 5), we have:

For a quasi-bialgebra (H, A, e, ¢), the categories gM, My and gMpy, with the tensor
product ®y, are monoidal categories.

Proof. We sketch a proof of this basic facts just for left H-modules. The proofs
for right and bi-modules are similar (see remark below).

The associativity constraint for objects M, N, L € gM is given by

aM,N,L : (M R N) Qi L — M Q. (N Rk L),
amNL((m®n) @) =¢- (m® (n®1)).

For this, first we have to show that this is an H-linear map, i.e. for any h € H,

aM7N,L(h : ((m X n) ® l)) =h- aM7N7L((m & n) ® l)

LHS = ayn.rp(hi-(m®n)® hl))
= auwa (A id)o AR)) - (m e n )
— (@ (ild®A) o Ah) - ) - (m@n© 1)

¢~ ((id@ A) o A(h)) - ¢) - (m© (n©1))
= h-aM7N7L((m®n)®l):R.H.S.

Next, the associativity constraint a has to satisfy the pentagon diagram

AV, (M®N),L

Ve (MeN)]eL Ve[(MeN)®I)
ay,m,N®idr T
[(V & M) & N] ® L idy ®an, N, L

a(V®M),N,Ll

VeM)e(NeL)

VeMe(NeL),

ay,M,(NQL)
suppressing the symbol >, this means the commutativity of the diagram

aV,(M®N),L

(X1 ® (X2me X3n)] el YiXlo @ [(Y2X%m @ Y2X3n) @ Y3

aV,M,N®idLT lidv@)aM,N,L
[(ve@m)®n]®I YiXto @ TVYEX?m @ T?YEX3n @ T3Y 3]
a(V®]V1),N,Ll id

(Xiv® Xim) ® (X%n @ X30) YiXloe [Y2Xim e (YPX?%n @ Y3 X3)),

ay M, (NQL)
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that is,

avyM,(N®L)oa(V®M)7N,L(v®m®n®l) = (idv®aM7N7L)O(aV,M®N,L)O(aV7M,N®7LdL)(v®m®n®l).

LHS = Y'Xloa [V Xome (YPX*n @ Yy X3)]
= ([d®id®A)(¢) (A®id®id)(¢)- (vOmen®I),

RHS = (Y'XYWwoT'V2X*m e T?Y X3 @ T3Y3)
= (18¢) (id@AR)(E) ($81) vemanal),
and these expressions are equal by the axiom (7.3). Considering the trivial isomor-

A
phisms M ® k MY reMm , the commutativity of the triangular diagram

anM kN

Mek)@N—M®e (k® N)

) 1dp QAN
PMRidN

M ® N,

follows from the axiom (7.4). 0

Remark. For the category My, the associativity constraint, for M, N, L € My, is
ayng: (M@ N)®p L — M@ (N ey L),

dynp((men)@l)=(me@nel) ¢,

Combining the left and right cases, we obtain the associativity constraint for (H, H)-
bimodules as

ayng: (M@ N)®p L — M@ (N @y L),
dyni(m@n) @) =¢-(menel) "
If (H,A,e,¢) and (H', A’ &', ¢') are quasi-bialgebras, then the tensor product

(HoH ,(IomgupeI)o(A®A),e@e,Y . X1 @ X0 X?2@ X? @ X3 X"3) is also
a quasi-bialgebra.

7.2. Quasi-Hopf algebras. ([13] and [18]) A quasi-antipode (5, a, 3) for a quasi-
bialgebra H consists of an invertible algebra anti-automorphism S : H — H and
elements «, 8 € H with the identities, for h € H,

ZhS(hl)ahg = ¢(h)ay, ZhhlﬁS(hg) =¢(h)p (7.6)

Y X'BS(XMax? =1, ) S(a')ax?B® = 1. (7.7)

A quasi-Hopf algebra is a quasi-bialgebra H together with a quasi-antipode (S, «, 3).
The axioms for a quasi-Hopf algebra imply that e(a)e(8) =1, and e o S = &.
(H,A,e,0,5,a,) expresses the complete data of a quasi-Hopf algebra.
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Together with a quasi-Hopf algebra H = (H,A,e,¢,S,a, ), we also have HP,
HeP and H°PP as quasi-Hopf algebras, where ”op” means opposite multiplication
and ”cop” means opposite comultiplication. The quasi—Hopf structures are obtained by
putting o, = ¢, deop = (¢71) = Y22 @22 @, Pop.cop = ¢>321 Y XPeX?oX!,
Sop = Scop = (Sop,cop)_l = S_lv Qop = S~ (ﬂ)a Qcop = 5” ( )7 Qop,cop = B, ﬁf’p -

71(04); ﬁcop = Sil(ﬂ) and ﬁop,cop = Q.
This means that if H = (H,A, e, ¢, S, a, ) is a quasi-Hopf algebra, then we have new
quasi-Hopf algebras given by

H? = (Hp%.00e¢7",57",57(8), 57 (a)),
HP = (Hop o, A%, (67 571, 57 (), $7(8)),
Heopeor .= (H7MOP7L7AOP757¢3217S7/67 )

7.3. Rigidity of (zM)ggp. Let H be a quasi-Hopf algebra. We consider the category
(#M)ggp of left H-modules which are finitely generated and projective as k-modules, and
equip it with the monoidal structure induced by A and ¢. Now for any object V in this
category, with a dual basis {v;}"_; and {v*}_;, consider the k-module V* = Homy(V, k)
with the left H-action (h- f)(v) = f(S(h)v) (see (2.5)), and define the maps

by : k— VeV, 1H25vi®vi, (7.8)

dy V'@V —k [fouve flav). (7.9)

Furthermore, we consider *V to be the same dual k-module, equipped with the left
H-action given for all h € H and f € *V by (h- f)(v) = f(S71(h)v) (see (2.7)) and
define the maps

vik— VeV, 1o ) o eSTH(B)u, (7.10)

dy, VeV —k v®g— g(S ' (a)v). (7.11)

The maps by, dy, by, and di, (defined above) are H-linear and all the following com-
posites are identity maps:

1) VekeVv 24w evy e v veviev) Ch verxy,

a1
zd®b Ay y,v*

2) VeV or—2Ve VeV —> ) 42,

(V*eV)eV* EoV*=y*,

—1
3) Vever-Cyveven) XY ve V) evi¥h ey 2y,

v ®zd 1d®d
( ) —

4) "V *V—("VRV)® *V *V®(V®*V Veokx*V.

This shows that the category (M) of left H-modules that are finitely generated and
projective as k-modules, is a rigid category.
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7.4. Rigidity of (Mpy)ggp. Proceding in a similar way as above, we get that the
category (Mp)gep of right H-modules, that are finitely generated and projective as k-
modules, is also a rigid category. In this case, the left dual of an object V is again
V* = Homy(V, k) as a k-module with the right H-module structure

(f-h)(v)=f(vSt(h)) forhe HveV and f eV
and we have the evaluation and coevaluation
dy :V*QV —k, fove flvSHB)).

by :k—VeV* 1 HZ’UZ'S_I(O[)®Ui.

The right dual *V will be the same dual k-module Homg(V, k), equipped with the
right H-action given for all h € H and f € *V by

(f-h)(v) = f(vS(h)),
and the evaluation and the coevaluation defined as
dy VeV —k vegw—gp),
vik— VRV, 1»—>Zvi®vi0z,

where {v;}"_; and {v'}?; form a dual basis for the finitely generated projective k-
modules V' (see 1.2). Again, the maps by,dy,b|, and dj, are H-linear and the corre-
sponding compositions of maps (similar to the left H-module case) are identity maps,
that is, the category (Mp)gp is a rigid category.

7.5. Rigidity of (yMp)ggp. Combining the results about the rigidity of left and right
H-modules, we can see with a similar argument, that the category (zMpg )sgp of (H, H)-
bimodules which are finitely generated and projective as k-modules, is a rigid category.
In this case, the left dual of an object V' € (#Mpy )¢y, is again V* = Homy(V, k) as a
k-module with the (H, H)-bimodule structure

(h-f-h)w) = f(S(h)vS~Y(R)) for h,h € Hiv eV and f € V*,
and the evaluation and coevaluation come out as
dy : V'@V —k fouve— flavs™(0)),
by 1 k— V@V IHZﬂviS_l(a)(X)vi.

Similarly, the right dual is *V = Homy(V, k), equipped with the (H, H)-bimodule
structure given for h,h’ € H and f € *V by

(h-f-h)(v) = (S (R)vS(R)),
with the evaluation and the coevaluation
dy VRV —k voge—g(S (a)vp),

vik— VeV, 1H20i®5_1(ﬂ)via.
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7.6. Gauge transformations. The definition of the quasi-bialgebras and quasi-Hopf
algebra is ”twist covariant” in the following sense.

Let H = (H,A,e,¢) be a quasi-bialgebra (resp. a quasi-Hopf algebra). A gauge
transformation on H is an invertible element F' € H ® H such that

(e ®id)(F) = (id®e)(F) = 1. (7.12)

Using a gauge transformation F' on H, one can build a new quasi-bialgebra (resp. a
quasi-Hopf algebra) Hp by keeping the multiplication, unit and counit (and antipode
S) of H and replacing the comultiplication of H by

Ap:H—H®H, h+—— FAh)F!, (7.13)
(for h € H), and with a new Drinfeld reassociator ¢ given by
dpr =10 F)(id® A)(F)¢(A®id)(F ) F'®l)ec H® H® H. (7.14)
In case of a quasi-Hopf algebra, o and 8 must be replaced by
ap =Y S(GHYaG? Bp:=> F'BS(F?), (7.15)

where we write by F~1 =Y G' ® G? € H® H (see [18, P. 373 ]).
Observe that if H happens to be a bialgebra, then Hr in general is not a bialgebra.
This procedure provides non-trivial examples of quasi-bialgebras. Howewer, we get
again a bialgebra by twisting a bialgebra with a 2-cocycle F' (see section 3.1).
In the Hopf algebra case, the antipode is an anti-coalgebra map, i.e.
(S®S)o AP =AoS.
In this case, we have the identities like

> hi@hyS(hs) =h @1, for h € H, (7.16)

7.7. Some properties of quasi-antipode. For the quasi-Hopf algebra H, Drinfeld
([13]) defined a gauge element as an f € H ® H, satisfying for h € H,

AR = (S®8)A“PS~H(h), (7.17)
(S®se8)@™) = (1o flded)(fleAsid)(f)(fel), (7.18)
(ldee)(f) = (e®id)(f)=1. (7.19)

Such an f can be computed explicitly as follows. First set
YA A =(10¢ ") (ideide A)(¢), (7.20)
Y B'eB*®B*@B'=(Awidwid)(¢)(¢ ' ®1), (7.21)

and then define v and § in H ® H by

v=Y S(A%ad® @ S(A)ad?, (7.22)
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§ =Y B'BS(B*)® B’3S(B%). (7.23)

f and f~! are then given by the formula

f= Z(S ® S)(A%(xh))yA(?BS (), (7.24)
=> A(S )3(S & S)(A(2%)), (7.25)

and f satisfies the relations
fA(@) =7, AW =4 (7.26)

Taking f = > f' ® f2 and f~! = ¢' ® ¢% as in (7.24) and (7.25), it can be easily
seen that

STBS(A) =S@), D SBMfF=a Y g'S(g%a) =B (7.27)

Formulas similar to (7.16) can be obtained for quasi-Hopf algebras. Following
Hausser and Nill [15], [16], [17], define the elements

pr=plep? = ¥ X25-1(X8)@X3=(uraid)o(S—loRs@idid)(s) (7.28)
w=qoq = » Sehar’®r®=(u®id)o(S®Ly®id)(¢"") (7.29)
PrR=pR®p% = Y &' @a?BS(2") = (idop)o(ide Ry@ S)(¢~") (7.30)
Gr=ah®, = ¥ X195-1(aX?)X2=(idouor)o(ididoS—1oLa)(9) (7.31)

As showed in [15], for h € H, they satisfy the equations
> Alho)pL(STH(h)®1) = pr(1®h) (7.32)
> (S(h) @ DarAhe) = (1@h)qr (7.33)
> A(h)pr(1@ S(h)) = pr(h®1) (7.34)
Y (@S (ha))arA(ln) = (h@1)gr (7.35)

and

> Algi)pr @)l = 191 (7.36)
> (S(pi )® 1)qLA(p ) = 1®1 (7.37)
> Algr)pr(1® S(qR) = 1®1 (7.38)
Y (1@ S (ph))arApE) = 1©1 (7.39)

These identities will be used freely in the sequel. For example, the elements pr, pr, qr,
and gr and their relating identities are essential for stating the Hom-tensor relations
in section 9 and defining the concept of coinvarints in section 13 and showing their
properties.
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8 Module algebras and smash products for quasi-bialgebras

Let (H,A, e, ¢) be a quasi-bialgebra. Then the category of left (resp. right) H-modules
(uM, ®g,a) [resp. (Mp, ®p,a’)] is a monoidal category, where

am.N,L, bunr: (M@, N)®p L — M @ (N @y L),
apuNL(men)@1) =¢- (M (n®1l)),
[resp. aynp((men)@1) =(me (nel) ¢,
are the corresponding associativity constraints, respectively (see 7.1).

8.1. Module algebras over quasi-bialgebras. Let (H, A, ¢, ¢) be a quasi-bialgebra.
A k-module A is called a left H-module algebra if A is an algebra in the monoidal
category gM, i.e.

i) A has a multiplication gy : A® A — A and a unit 14,
) (ab)e = DX a)[(X2B)(X3 ),

iii) h-(ab) = > (h1a)(h2b),

iv) h-14 =¢(h)la,

ii

for a,b,c € A, and h € H, where h ® a — ha is the left H-module structure of A, and
¢=> X!'® X% ® X3 is the Drinfeld reassociator of H.

Let H be a quasi-bialgebra and A be a left H-module with an associative algebra
structure defined by ps : A® A — A, and + : Kk — A. Then (unlike to the bialgebra
case, even for A = H) A need not be an H-module algebra. However, if we have an
algebra map f : H — A, we can define the following multiplication on A making it an
algebra in g M which is denoted by Af (see [11, Proposition 2.2]),

axb= Z F(XYaf(S(z' XHax? XHof(S(2>X3)). (8.1)

A7 is a left H-module algebra with unit f(3) and with the left adjoint action induced
by f, that is,

h>a = Z f(h1)af(S(h2)),

forae A, and h € H.
In particular, it induces an H-module algebra structure on the quasi-Hopf algebra H
by left adjoint action and the new multiplication

axb= Z XtaS(x' X?)ax? X308 (23 X3). (8.2)
This H-module algebra is denoted by Hj.

For a quasi-bialgebra (H, A, ¢, ¢) and a left H-module algebra A, following Bulacu,
Panaite and Van Oystaeyen [11], an H-module M is called a left (A, H)-module if
it is an A-module in the monoidal category yM, i.e. if there exists a left weak action
>:ARQM — M, a®m — ab>m, such that for m € M, and a,b € A,

(ab)pm =) (X'a)> [(X°D) > (X*m)), (8.3)
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h-(a>m)= Z(hl a) > (ham), (8.4)
labpm=m, (8.5)

where h ® m — hm is the left H-module structure of M. The category of left (A, H)-
modules with morphisms that are left H-linear and preserve the weak A-action will be
denoted by 4(gM).

Symmetrically, for a left H-module algebra A, we define a right A-module M in the
monoidal category gM, as a left H-module M with a right (weak) action <: M ® A —
M, such that for m € M, and a,b € A,

ma(ab) =Y [(X'm)<(X?a)]a(X?D),
h-(m<a) :Z(hl m) < (hga), and

m<ly =m.

Moreover, an H-module M is an (A, A)-bimodule in gM, if M is a left and a
right A-module in gM, and

(a>m)<b=> (X'a)>[(X*m)<(XD)], (8.6)
for all m € M,a,b € A, that is, we have a commutative diagram
A M) A2~ oA
U«A,A{,Ai
AR (M ® A) <
id®<1i
A M M.

>

8.2. Smash products for bialgebras. For a bialgebra H and a left H-module algebra
A, the smash product of A and H, denoted by A# H, is the k-module A® H, together
with the multiplication

(a#h)(b#g) = > a(hn b)#hag, (8.7)

for a,b € A and g,h € H. In this case, a k-module M is a left A# H-module if and
only if M is a left A-module as well as a left H-module and the left A-module structure
map A® M — M is an H-module morphism (see [29]).

Similar to the bialgebra case, one can define the concept of smash product for quasi-
bialgebras (see [11]).

8.3. Smash products for quasi-bialgebras. Let H be a quasi-bialgebra and A a
left H-module algebra. The smash product of A and H, denoted by A#H, is the
k-module A#H = A ® H, together with the multiplication

(a#th)(b#g) = Y (" a)(a®hy b)#a hag, (8.8)

for a,b € A and g,h € H. With this multiplication, A#H is an associative algebra
with identity 14#1py. The canonical map j : H — A#H is an algebra map (see [11,
Proposition 2.7]).
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8.4. Module categories over smash products for quasi-bialgebras. Let H be
a quasi-bialgebra and A a left H-module algebra. Then a k-module M is a left A# H-
module if and only if

(1) M has a left H-module stucture with left H-action h ® m — hm,

(2) A acts weakly on M, >: A®Q M — M, a®m — ar>m, such that (8.3), (8.4), and
(8.5) are satisfied. (M must be a left A-module in ;7 M).

This means that the categories 4(gM) and 4xgM are isomorphic. In fact, for any
M € A(gM) with left (weak) A-action >, there is an A#H-module structure given
by (a#h)m = a> (hm), thus M € 2upgM. Conversely, if M € 4xyM, then also
M € A(gM) by a>m = (a#1)m and hm = (14#h)m, where h € H, a € A and
m € M. Thus, 4xgM = 4(gM) (see also [11, 2.15 and 2.16]).

9 Hom-tensor relations for quasi-Hopf algebras and their
module algebras

In this section we will prove that there are adjunctions between tensor-functors and
Hom-functors as endofunctors of the categories gyM, My and yMp over a quasi-Hopf
algebra H. First we recall that the classical Hom-tensor relation in the category ;M can
be restricted to the category yM, where H is a Hopf algebra. After that we obtain some
similar adjunction isomorphisms in case H is a quasi-Hopf algebra. For an H-module
algebra A, we know that A ®; — (resp. — ®j A) defines a monad on the categories
M, Mg and gMp, with suitable structures on the tensor products. We can consider
the Eilenberg-Moore module categories over these monads, and they are precisely the
categories of A-modules in M, My and My respectively. On the other hand, we will
see that these categories are isomorphic to the Eilenberg-Moore comodule categories
over the corresponding comonads that are right adjoint to the monads A ®j — (resp.
— @i A).

For any k-bialgebra H, we know that (gM, ®i, k) is a monoidal category and for
any M, N € gM, we have M®Z N € gM (see 2.5). Furthermore, if H is a Hopf algebra
with antipode S, then Homy (M, N) is a left H-module by (h- f)(m) = >_ h1 f(S(h2) m)
(see 2.6), which we denote by *Homy (M, N).

In case the antipode S is invertible, for any left H-modules M, N the k-module
Homy (M, N) is a left H-module with another H-module structure given by (h-f)(m) =
haof(S~1(h1)m) (see 2.6), which is denoted by *Homy (M, N).

Using the above notations, we recall from [7, 15.9] the

9.1. Hom-tensor relations for Hopf algebras. Let H be a Hopf algebra, and
M,N,V € gM.

(1) There is a functorial isomorphism
sHom(M @}, V. N) < yHom(M, “Homy(V,N)), f — [m — f(m @y -],
with inverse g — [m ® v — g(m)(v)], i.e. the functors

— @'V :gM — yM, and *Hom(V,—): yM — gM,
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form an adjoint pair with unit and counit, in M,
nar: M — Homg (V.M @, V), mr— [v—m®u],
€M:H0mk(V7M)®V—>M7 f®’l)'—>f(’l))

(2) If H has a bijective antipode S, then there is a functorial isomorphism

pHom(V @8 M, N) Y, gHom (M, "Homy(V, N)), f+— [m— f(—@m)],
with inverse g — [v ® m +— g(m)(v)], i.e. the functors
V&b —:gM— gM, ‘Hom(V,—):gM — M,
form an adjoint pair on yM with unit and counit
nav : M — "Homy (V,V @, M), m+—— [v—v®m],
ey V@Homp(V,M) — M v® f— f(v).
Now we state similar Hom-tensor relations in the module category yM over a quasi-

Hopf algebra H. For any quasi-bialgebra H, we know that (gM, ®i, k,a) is a monoidal
category (with non-trivial associativity constraint, see section 7).

If H is a quasi-Hopf algebra with quasi-antipode (S, a, 3), then for any M, N € yM
we have Homy (M, N) € ygM with the same left H-action as in the Hopf algebra case.
Using the same notation as in the Hopf algebra case, we denote by *Homy (M, N) the
k-module Homy (M, N') with the left H-module structure (h-f)(m) = > hy f(S(h2) m).

9.2. Theorem. (Adjunction (—®%V,*Hom(V,—)) on gM). Let H be a quasi-Hopf
algebra with quasi-antipode (S, a, 3), and M,N,V € gM. Then there is a functorial
isomorphism

¢ : gHom(M ®% V, N) — gHom(M, *Homy(V, N)),

fr—=Am e [ve flpr(m @)},

with inverse map 1)’ given by
gr—{m@v—=Y qplg(m)(S(gR)v)]},

where pr =Y pL®p% and qr = Y qh®q% are defined in (7.30) and (7.31), respectively.
This means that the functors

—®°V :gM — M, *Hom(V,—): gM — yM,
form an adjoint pair with unit and counit, in M,
na: M — *Homg(V,M @ V), m+—— [v+— pr(m ),

ey *Homy(V,M)®@V — M, fove— Y qp[f(S(gR)v)].
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Proof. First we show that for any f € yHom(M ®°V,N), the image ¥(f) €
gHom (M, *Homy(V, N)), i.e. ¥(f) is H-linear. For any h € H, m € M and v € V we
have

(M) = fQ_pkhm @ phv)
= flpr(h®@1)(m©v))
by (7.34) = Zf (h1)pr (1 ® S(h2))(m @v))
by H-linearity of f = Z hi(f(prm ® pRS(hs) v).
On the other hand,

[h- ((f) (m))](v)

Zhl (S(h2)v)]
= Zhlf PRm®PRS(h2)”)~

This shows the H-linearity of ¥(f).
Conversely, for any h € H, m € M, v € V and g € gHom(M, *Homy(V, N)),

[W(@I(h-(mewv) = (@I mmehyv)
= > arlg(him)(S(gk)hav))
gis Himear = Y qgl(h1- (9(m)))(S(gR)hav))
= > arhulg(m)(S(ghhiz)ha v)]
by (735) = Y harlg(m)(S(ak) v)] = h [/ (g)](m @ v).

So ¢'(g) is also left H-linear.
To show that 1 and 1’ are inverse to each other, take m € M,v € V and f €
gHom(M ® V|, N). Then

(W o) (Mm@ v) = Y aqrl(W(f)(m))(S(aR) v)]

(Prm ® pRS (k) v)]
flor (1® S(qR)) - (M ®v)]
fis H-linear = Z[f(A(Q}z)pR (1®S(¢R)) - (m @ )]
by (r3s) = f((A®1)(m@wv))=flmewv).
On the other hand, for any m € M,v € V and g € gHom(M, *Homg(V, N)),
(o) (@(m)(v) = ¢'(9)(D_prm @ piv)]
= ZQR[Q prm)(S(qR)pR V)]
gis H-linear = Z arlpR - (9(m)))(S(aR)pF v)
= ZQR(p}z (m))(S((PR)2)S (aR)PF v)
= > qk(pR); (9(m))(S(gh(PR)2)PR V)
by (7.39) = g(m)(v).

This shows that ¢ and v’ are inverse to each other. O
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9.3. Proposition. (Adjunction (—®% A, *Homy (A, —)) for a monad on yM). Let
H be a quasi-Hopf algebra and A be a left H-module algebra. Then the right adjoint
functor SHomy (A, —) : gM — gM of the tensor functor — ®i A is a comonad on gM
with comultiplication given for any N € gM by

On : *Homy (A, N) — *Homy (A, *Homy (A, N)),

fr—Aa— b= ap (X (pk)ipk - 1)(S(aR) - [(X*(pR)opF a) (X Pk O},

and counit
en : *“Homg(A,N) — N, f+ f(14).

The Filenberg-Moore comodule category ( HM)SHom’“(A’_) 18 isomorphic to the category
of right A-modules in gM, sending any right A-module <: N @ A — N in gM to N
as a left H-module with the "Homy (A, —)-comodule structure

NN — *Homy(A,N), n+— [a— Z(p}z n) < (pka)].

Proof. Taking V = A, to be a left H-module algebra in 9.2 means that A is
an algebra in gM, i.e. the functor — ®; A : gM — gM is a monad (see 4.4 for the
definition). Thus, its right adjoint, *"Homg (A, —) : gM — gM] is a comonad on yM
(by 4.9). The multiplication g : A® A — A yields the commutative diagram

sHom(M ® A, N) MY,y Hom(M, *Hom(A, N))
[idM®uA,N}l lSN
pHom(M ® (A® A),N) gHom (M, *Hom(A, *Hom(A, N)))
[“M,A,AaN}l/ TwM,SHom(A,N)
pHom((M ® A)® A,N) —— gHom(M ® A,*Hom(A, N)),

and for a,b € A, m € M and g € yHom(M, *Hom(A, N)), the map
on : yHom(M, *Hom(A, N)) — gHom(M, *Hom(A, *Hom(A, N))),
is given by
on(g)(m)(a)(b)
= YMHom(A,N) © YMwAN © [arra,4, N]o [idy @ pa, N] oy v(g)(m)(a)(b)
= {D (Wusano [aM,A,A, NJo [idy ® pa, NJ o ¢y n(9)) (0 m ® pha)}(b)
= Y {larraa Nolidy ® pa, NY oy n(9)H[phy Phm ® phobh a] @ phb)
= Y {lidy ® pa, NJ o Py n(9)HX (pR)1 pRm @ [X2(pR)2ph a @ X*pk b])
= > {Yunlg ) o [idu @ pal} (X (pR)1 PR M © [X2(DR)20F @ © X ph b))
= Zl/JMN X' (pp)1prm ® (X*(pR)2pk a)(X°p} b))
= Z qr{9(X PR 1PR m))(S(QR) : [(XQ(pR)QpR a)(X?’PZR b))}
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By the left H-linearity of g, this yields the map oy : yHom(M,*Hom(A, N)) —
gHom (M, *Hom(A, *Hom(A, N))), explicitely given by

o (9)( = arp {(X (PR) 1Pk - 9(m))(S(qR) - [(X*(pR)oph ) (XPpR b))}

By the Yoneda Lemma, this yields the comultiplication § of this comonad as stated in
the proposition.

The counit € for § of this comonad is obtained, by using the unit map ¢ : k — A and
the counit of adjunction, as the composition

en : *Homy (A4, N) Homk () *Homg (A, N) @ A = N,

frefe®lar— Y qrf(Sdh)1a)

= D qh f(e(S(ah)1a) =D ahelah) F(14)

= f(la).

The Eilenberg-Moore module category (gzM)_g4 over the monad — ®; A : gM —
gM is the category (M) of right A-modules in (yM). We know from 4.9 that this
category is isomorphic to the Eilenberg-Moore comodule category (;M) Homs(4.=) oyer
the comonad *Homy (A, —). We describe this isomorphism explicitly.

For any N € (yM) 4 with the right (weak) A-action n®a — n<a fora € Aandn € N,
the *Homy (A, —)-comodule structure of N is given by the composition

NN 2 SHomy (A, N @ A) [4.ex] *Homy (A, N).
Explicitly, for any n € N, and a € A,
oV(n)(a) =Y (pkn) < (PR a).
In order to show that ep is a counit for gy, compute
evoo™(n)=o"(n)(1a) =) (pkn) < (pR1la) = > pre(pR)n =n.

In this way, we obtain a functor F : (zM)4 — (gM) HomA=),
Conversely, given a *Homy (A, —)-comodule structure map

MM — *Homy(A, M), m— oM(m),
on a left H-module M, we define a right (weak) A-action on M as composition
M
4 M@ A~ Homy, (A, M) ® A =4 M.
Explicitly, for a € A and m € M,

md G—ZQR QR) a)l.

This (weak) A-action is (by construction) a morphism in yM, and defines a right A-
module structure on M in gM. This yields a functor G : (zM) HomA=) (gM) 4,
which is inverse to F' by 4.9 (see also [6, 2.6]). 0
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9.4. Adjunction for f.g. projective V. From 9.2 we have the adjoint pair (L :=
— ®% V, R := *Homy(V, —)) of endofunctors of zM with unit and counit

v : M — *Homy(V,M @, V), m+— [v+— pr(m o),

ey *Homy(V,M)®@V — M,  f@v— Y qp[f(S(gr)v)],

We know from 1.2 that there is a natural transformation ¢ : —®; V* — Homy(V, —)
between endofunctors of (M. For V, M € gM, considering the diagonal left H-module
structure on M ®j V* and taking *Homy(V, M) with the left H-structure given for
h e H veVand f € *Homg(V,M) by (h- f)(v) = f(S(h)v), we show that the
k-linear morphism

U M @8V — SHomy(V, M), m® f+— [v— f(v)m],
is left H-linear. To see this, for h€e H,m € M, v €V and f € V*, we compute

War(h-(m@ )W) = [Wu(d himehy- f)l(v)
= Y (ha- NH@)him) = 3" F(S(h2) v)hym).
On the other hand,

- ¥p(m @ f)l(v) = Zhl'[wm@f)(S(h)v)]
= > hi[f(S(ha) = F(S(ha) v)hym.

Over a base field, Schauenburg showed in [27] that for a quasi-Hopf algebra H and
any finite dimensional left H-module V', we have an adjoint pair (— ® V,— ® V*) of
endofunctors of M . Referring to a dual basis for V € yM, the computations of
Schauenburg can be transferred to a commutative base ring k. For this, let V € gM
with ;V finitely generated and projective with a dual basis {v;}"_; and {v*}"_;. Then
we have an adjoint pair

L'i=—@V:gM— gM, R :=—-@,V*:gM — yM,
with unit
MM Mo e vt S (MeV)e Vv,
mHZm@(ﬁvi(@vz)HZx me r2fu @ vt
and counit

MV V % Me (V' eV) M@YM
mogev— Y X'me (X2 geX%0)— Y g(S(qh)v)gpm.
By 4.2, there is a bijection
Nat(— ®% V, — ® V) — Nat(*Homyg (V, —), — @ V7).
Applying this bijection to the identity on the left side, we obtain the composition

fll)f]w . SHOHI(V M) ( ) ( (51VI)

Hom(V, M) @ V) @ V* M @, V*,
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for f € *Homy(V, M) as

W(f) = R(ea) o ROM)(f) = R(ea)(Y_a' - f@2?Bui @ a® o)
= > arl@ - N)(S(gR)2*Bv)] @a® - o'
= Z Xzl [f(S(X2zd)aX32?Bv;)] @ 23 - o'
It is straightforward to see directly that ¢’ is natural in M, i.e. we obtain a natural
transformation ¢’ : *Homy(V, —) — — ®; V*, given for any component M € yM as

above. Now we show that ¢y, and ¢}, are inverse to each other. For v € V and
f € *Homy(V, M) we compute

[Waro Whr(HIw) = [Wn(d X e [f(S(szl)O‘XstQﬁvi)]®x3'vi)](v)
= ) (@ o) ()X 2] [f(S(X*x3)aX 2B ;)]
= > v(S@®) )X 2] [f(S(X?zh)aX 2’ Bv;)]
= > X'ag [f(S(X*x3)aX?®Bu* (S (2%) v)v;)]
= > X'2{[f(S(X?zp)aX 23S () o]
= > X'@{[f(S(x3)S(X?)aX’s?BS(2%) o]
= ZQR(pR)l f(S(QR(PR) )PR v

by (7.39) = f(w).

Conversely,
[Whrovml(m® f) = w’mz wi [bar(m @ f)(S(X*a3)aX’a Qﬂvz)] z* -0

= Y f(S(X*x)aX 2 Bu) X aim @ a? -

= Zf PR) 25%)(11%(291%)17”@95

= > ak(Pk)im ® f(S(ah(ph)2)e* B vi)a®

by (7.39) = M® f.

This means for V' € gM which is finitely generated projective as k-module, the natural
transformation ¢ : — ® V* — *Homy(V,—), defined above, is a functorial isomor-
phism.

Thus we have shown

9.5. Theorem. (Adjunction (— ®;V,— ®; V*) on gM). Let H be a quasi-Hopf
algebra, M,V € gM. Then

(1) The map ¥y : M @ V* — SHomg(V, M), m ®@ g — [v — g(v) m],
s a natural homomorphism in M.

(2) If vV is finitely generated and projective with dual basis {v;}"_; and {v'}_,, then
the map Yyr give rise to a natural isomorphism with inverse map

Py *Hom(V, M) — M @, V¥, ZXI Zedya X322 Bu) @ 23 - ot
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For a quasi-Hopf algebra H, we assume that the quasi-antipode S is bijective, thus
Homy (M, N) is also a left H-module by

= ha f(S7 () m)
which we denote by "Homy (M, N) (see 2.6 and the text before of 9.1).

9.6. Theorem. (Adjunction (V®"—,'Hom(V,—)) on yM). Let H be a quasi-Hopf
algebra with quasi-antipode (S, «, 3), and M, N,V € gM. Then there is a functorial
isomorphism

gHom(V ®z M,N) 2 mHom(M, "Homy,(V, N)),
fr=Am—[v— flpL (v@m))]},
with inverse map 0’ :
gr—{veme > qi(g(m)(S (q1)v))},

where pr, = > pr@p? and qr, = Y q1 ®q3 are defined in (7.28) and (7.29), respectively.
Thus we have an adjoint pair of functors

V@ —:gM — M, "Hom(V, =) : gM — M,
with unit and counit, in gM, given by

Wﬂﬁﬁ%wm%&mvwﬁwHZm@Wm>

ev :V@MHomg(V,M) — M, v® fr— ZQL Yqp) v)]-

Proof. For any f € yHom(V ®° M, N), we show that 6(f) is H-linear. For any
he Hme M,veV we have

() (hm)(v) = O _prvepihm)
flor M@ h)(v® m))
by (r32) = fO_Ah2)pr (S () @ 1)(v @ m))

fis H-linear — Z ZpLS hl U ®pL m)
On the other hand,
[ (O(H)m)I(w) = > hal(B(f)(m))(S™" (ha) )]
= > haf(ppS™ () v @ pi m),

showing H-linearity of (f).
Conversely, for any h € H,m € M,v € V and g € gHom(M, *Homy(V, N)),

0 (@I(h-(wem)) = [0(@IO_ hvehym)
= ZQL (h2m)(S™"(gr,)h1 v))
= > qil(ha (g(m)) (S (g1 )1 v))
= > qihaalg(m) (S (qrha1)h v))
by(r33) = D haplg(m)(S(a7)v)] = h-[¢/(9)|(m @ wv).
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Thus, ¢'(g) is also left H-linear. To show that 6 and 6’ are inverse to each other, let
m € M,veV and f € ygHom(M ® V, N). Then

(@ cO)(Alwem) = D gGlo(f)m)(S  (qr)v)]
= Y qilf(prS ar) v @ pim)
fis H-linear. = Z[f(A(CJ%)PL (57Hqz) © 1) (v @ m)]
by (7360 = f((A®1)(v@m))=flvem).
On the other hand, for any m € M,v € V and g € gHom(M, 'Homy(V, N)),
[(006)()(m)(v) = 6'(9)>_pLvep;m)
= > ailglpi m)(S (a1 )pLv)

= > qi(p}), (9(m))(S~ (ar(p7) )P V)
by(7.37) = g(m)(v).
This means that 6 and ' are inverse to each other. O

9.7. Proposition. (Adjunction (A ®; —,'Homg (A, —)) for algebras in yM). Let
H be a quasi-Hopf algebra and A be a left H-module algebra. Then the right adjoint
functor *Homy (A, —) : gM — gM of the tensor functor A ®Z — is a comonad on gM
with comultiplication given, for any N € gM, by

Sy : "Homy (A, N) — "Homy (A, ‘Homy (A, N)),
freAam b)Y g {@*0)sp1 - NS (ag) - [(@'py b) (2 (01), @)])}}

and counit
en : 'Homy(A, N) — N, [ f(1a).

The Filenberg-Moore comodule category (HM)tHomk(A’_) 18 1somorphic to the category
of left A-modules in gM, sending any left A-module>: AR N — N in gM to N itself
with a *Homy, (A, —)-comodule structure given by

oV : N — "Homy(A,N), n—la— Z(p};a)b(p%n)].

Proof. Let V = A be a left H-module algebra, that is, the functor A®y— : gM —
gM is a monad. Thus, its right adjoint, ‘Homy (A, —) : gM — gM, is a comonad on
aM (see 4.9).

From the multiplication g4 : A® A — A we get the commutative diagram

0

#Hom(A ® M, N) - pHom(M, "Hom(A4, N))
[MA®idM,N]l l&v
gHom((A® A) @ M, N) gHom (M, "Hom(A, 'Hom(A, N)))
- -
pHom((A® A) ® M, N) Traniw gHom(A @ M,"Hom(A, N)).
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Explicitely, for a,b € A, m € M and g € gHom(M,'Hom(A, N)), the map
on : gHom(M,"Hom(A, N)) — yHom(M, ‘Hom(A, Hom(A, N))),
is computed as
on(g)(m)(a)(b)
= O, tHom(A,N) © OazM N © [GZ}A,M7 NJo [pa ®idyr, N] o 0y n(g)(m)(a)(b)
= D (Oasmy olaxy a N o [ia ®idar, N] o 03y 5(9))(pL a ® pf m) H(b)
= > {laz s No[na ®id, N]o 0y n(9)}pL b ® [p, pLa ® piopi m])
= > {0un(9) o (pa®id)oay’, M}(pL b® [(p7)1p1a® (pF)api m))
= > {0un(g) o (na@idu)}([x'pr b @ 2°(p] )1 pr, o] @ 2 (p] )2pF m)
= > {0 n(9)}(&'pLb)(@* (PP pL @) @ 2°(p] )2pF m)
= Y ai {l9(=* 1 )api m)I(S ™ (ar) - [(="py b)(@* (P} )1 pE, @)])}
Himearity of g = ¥ 47 {[#* (01 )ap1 - g(m)](S™"(ar) - [(="pp, b)(=* ()1 pL, ))) }-

This yields the map
on : gHom(M,"Hom(A, N)) — gHom(M, *Hom(A, *Hom(A, N))),

defined for a,b € A and g € yHom (M, ‘Homy(A, N)) by

o (g)( =Y ap{(X (PR) 12k - 9(m)(S(aR) - [(X*(pR)opR @) (X PR b))}

By the Yoneda Lemma, this gives the comultiplication § of this comonad as

Sy : "Homy (A, N) — "Homy (A, "Homy (A, N)),

[On(f =Y at {lz*w1)2pf - SIS (ah) - [(2'pL b) (2 (W) 1 PL @)},

for a,b € A and f € tHomk(A,N).
With a similar argument as in 9.3 and using the unit map ¢ : k — A and the counit
of adjunction, it can be shown that the counit € for ¢ of this comonad is given by

en : Homi(A,N) — N, f— f(1a).

The Eilenberg-Moore module category (gM)ag— over the monad A ®j — : gM —
gM, is the category of left (A, H)-modules 4(gM). By 4.9, this is also isomorphic to the
Eilenberg-Moore comodule category (M) Homr(4.=) gver the comonad "Homy (A, —).
Explicitly, for any N € A(gM) (with the left (weak) A-action a ® n — a>n), the
‘Homy, (A, —)-comodule structure of N is given by the composition

NN ™ tHomy (A, A ® N) — *Homy (A4, N).

For any n € N, and a € A,



In this way, we obtain a functor F : 4(gM) — (HM)tHom(A’f).
Conversely, given a "Homy (A, —)-comodule structure

M. — "Homy (A, M), m — QM(m)>

on left H-module M, we define a left (weak) A-action >’ on M as composition

Aw M2 A®tHomk(A M) 24, M.

Explicitly, for a € A and m € M,

at/m="3"q} [ (m)(5"(a}) ).

This (weak) A-action is a morphism in yM, and defines a left A-module structure on
M in gM. a

9.8. Corollary. From 8.4 we know that the category o(gM) of left A-modules in M
is isomorphic to the category of left modules over the associative algebra A#H. So the
composition

F t _
apEM 2 4 (gM) — (M) HomAm),

of isomorphisms yields an isomorphism between aupM and (HM)tHom(A’_).

On the other hand, A#H is an associative algebra. Thus, A#H ®) — is a monad and
Homy,(A#H, —) a comonad on My,. The Eilenberg-Moore module category (My) ax e, —
is nothing but the category axgM and it is isomorphic to the Eilenberg-Moore comodule
category (M )Homs(A#HOE=) - Go we have

_ F t _
(M) Homs (A#HO) o (M) g g, — 2 a2 4(gM) — (M) oA,

9.9. Adjunction (V®b *V®k )on gM. Let V € gM and ;V be finitely generated
and projective with a dual basis {v;}_; and {v*}"_;. Then we have the adjoint pair of
functors

Vor—:gM— gM, *VQ,—: gM — gM.

Computations similar to those of Schauenburg in [27] show that unit and counit of this
adjunction are

b, QM a
up : M ves VeV)eM —*Ve (Ve M),
mi= Y (@SB v)em— Y X' e (X2 (B)vi® XPm),
QM
e Ve(tVeM) e (V®*V)®M el

v®g®m+—>2(:ﬁlv®x ®xm Zg qu

M,

Now, compairing the above right adjoint *V @, — with the right adjoint “Hom(V, —)
for the tensor functor V ®; — : gM — pM, introduced in 9.6, and using 4.2, with
similar arguments as in 9.10, we obtain a functorial isomorphism between this two
right adjoints.
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9.10. Theorem. (Adjunction (— ®;V,— ®; V*) on gM). Let H be a quasi-Hopf
algebra, M,V € gM. Then

(1) The map ¥pr : *V @ M — "Homy(V, M), g®@m — [v+— g(v)m)],
s a natural homomorphism in M.

(2) If 1V is finitely generated and projective with dual basis {v;}1"; and {v'}"_,, then
the map P gives rise to a matural isomorphism with inverse map

Yy tHom(V, M) — *V @, M,
fo) Xl @2t X3P (ST (aa? X )2 X257 (8) vi)].

By symmetry, similar adjunctions as 9.2 can be stated for right modules as well.
For any M, N € My we have that Homg (M, N) is a right H-module by

(7)) = 3 Fm S(h)) b,
which is denoted by Homj (M, N) (e.g. [7, 15.9]).

9.11. Theorem. (Adjunction (V®?—, Homj(V,—)) on My). Let H be a quasi-Hopf
algebra with quasi-antipode (S, «, 3), and M, N,V € Mpy. Then there is a functorial
isomorphism

Hom_p(V @2 M, N) -2 Hom_ 5 (M, Homs (V, N)),

fr=Am v f((v@m)qu)l},

with inverse map 1’ :

gr—{vam— > [gm)(vSpy)lp}

where pr, =Y pt @p? and qr, = q} ® q3 as introduced in (7.28) and (7.29).
Thus there is an adjunction between the functors

V@b —: My — My, Homi(V,-): My — My,
with unit and counit given by
v 2 M — Homp (V,V ®, M), m+— [v— (v®@m)qr],
ey i V@Homi(V,M) — M, vef— Y [f(vS(pp)]pi-
The proof can be given with similar arguments as in 9.2.

9.12. Proposition. (Adjunction (A ®% — Homj (A, —)) for algebras in My). Let
H be a quasi-Hopf algebra and A be a right H-module algebra. Then the right adjoint
functor Homj (A, —) : gM — gM of the tensor functor A ®Z — 18 a comonad on gM
with comultiplication given for any N € gM by

dn : Homf (A, N) — Homyj, (A, Homj (A, N)),
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fr—Aa— b= {[f (@) X)N((baF X ) (aar(ap)i X)) - S(pL)} i}
and counit
en : 'Homy(A, N) — N, [ f(14).
The Eilenberg-Moore comodule category (MH)HOI“Z(A’_) is isomorphic to the category
of left A-modules in My, sending any left A-module>: AQ N — N in My, to N itself
with a Homj (A, —)-comodule structure given by

NN — Hom{(A,N), nw— GHZCLQL (nqt)).
Proof. Let V = A be a right H-module algebra, i.e. the functor A ®2 —: My —

Mp is a monad. Thus, its right adjoint Homj (A, —) : Mg — Mpy is a comonad (see
4.9). The multiplication pg : A ® A — A yields the commutative diagram

Hom_z(A® M, N) Yar Hom_ (M, Hom*(A, N))
[NA@id]vbN]i iSN
Hom_g((A® A)®@ M,N) Hom_ (M, Hom*(A, Hom*(A, N)))
o] fonontam
Hom_g((A® A)®@ M,N) myw— Hom_p(A ® M,Hom?*(A, N)).

With similar arguments as in 9.7, we can see that for a,b € A, m € M and g €
Hom_ g (M, "Hom(A, N)), the morphism

dn : gHom(M,Hom*(A, N)) — Hom_y (M, Hom®(A, Hom®(4, N))),
is given by
N (9)( = {lg(m) - (7 (a1)2X*)([(bg7 X" )(aqi(q1)1X?)] - S(pL))} pis

and by the Yoneda Lemma, we obtain the comultiplication § of this comonad as stated
above in the proposition.

With similar arguments as in 9.3, (see also 9.7), it can be shown that the counit e
for 0 of this comonad is given by

~ i Homy(A,N) — N, f— f(1a).

The Eilenberg-Moore module category (Mg )ag— over the monad A ®j — : My —
My, is the category 4(Mp) of left A-modules in M. By 4.9, it is isomorphic to the
Eilenberg-Moore comodule category (M )1k (4:~) over the comonad Homj (A, —). We
describe this isomorphism explicitly.

For any N € 4(Mp) (with the left (weak) A-action a®@n — a>n), the Homj, (A, —)-
comodule structure of NV is given by the composition

C N, Homd (A, A ® N) ¥ Homg (4, N).
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Explicitly, for any n € N, and a € A,

oV (n)(a) = (agp)> (ngi).
In this way, we obtain a functor
F:a(Mpy) — (Mp)Hom (Ao,
Conversely, given a Homyj (A, —)-comodule structure
M. M — Homj (A, M), m— oM(m),

on M € My, we define a left (weak) A-action >’ on M as composition

o Ae M 2L A@Homk(AM)%M

explicitly, for a € A and m € M,

av/m=3"[o" (m)(aS(p}) p})]

Since the quasi-antipode S is bijective, Homy (M, N) is a right H-module by

= f(mS™ (ha)) I,

which we denote by Hom (M, N). With a similar proof as in 9.6, we obtain

9.13. Theorem. (Adjunction (—®?V,Hom}(V,—)) on My). Let H be a quasi-Hopf
algebra with quasi-antipode (S, a, 3), and M, N,V € Mpy. Then there is a functorial
1somorphism

Hom_H(M ®Z V,N) i’ Hom—H(M7 HOIIIZ(V,N)),
fr=Amw— v f((m&v)qr)l},

with inverse map 0’ :

g— {m®v =Y [g(m)(v S~ ()] Pk},

where pr =Y pL @ p% and qr = Y gk ® q% as introduced in (7.30) and (7.31).
Thus, there is an adjunction between the functors

—®"V :My — My, Hom'(V,—): My — My,
with unit and counit given by
na : M — Homl (V, M ®Z V), mr—lv— (m®wv)qgl,

ey Homb (VM)®@V — M, fRu Z[f(vs_l(p%))]p}g-
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9.14. Proposition. (Adjunction (— ®% A,Hom/ (A, —) for algebras in My). Let
H be a quasi-Hopf algebra and A be a right H-module algebra. Then the right adjoint
functor Hom} (A, —) : My — My of the tensor functor — ®2 A is a comonad on My
with comultiplication given for any N € gM by

Sy : Homk (A, N) — Homl.(A, Hom} (4, N)),

fr=Aam b Y Alf - (aklahha))((agh(ar)22?) (bara®)] - S~ (k) P},

and counit
en : Homk (A, N) — N, s f(1a).

The Eilenberg-Moore comodule category (MH)HomZ(A’*) is isomorphic to the category
of right A-modules in My, corresponding with any right A-module <: N ® A — N in
My, the right H-module N itself with a HomZ(A, —)-comodule structure given by

NN — Hom{(4,N), nw a3 (ngh)a(agd).

Proof. Take V = A to be a right H-module algebra. The functor —®; A : My —
My is a monad. Thus, its right adjoint, Hom} (A, —) : My — My, is comonad on My
(see 4.9).

By adjunction 9.13, the multiplication pgq : A ® A — A yields the commutative
diagram

Hom_ 5 (M ® A, N) o Hom_j; (M, Hom' (A, N))
[idM®MA7N]l J{SN
Hom_py(M ® (A® A),N) Hom_ ;7 (M, Hom®(A, Hom!(A, N)))
Hom_p(M ® (A® A),N) 0M®AN Hom_ (M ® A,Hom'(A, N)).

With similar arguments as in 9.3, we can see that for a,b € A, m € M and g €
Hom_ g7 (M, Hom'(A, N)), the map

on : Hom_ (M, Hom'(A, N)) — Hom_ (M, Hom'(A, Hom'(A, N))),
is computed as
on (9)( = {lg(m) - (ak(ah)ra)([(a ah(ar)22?) (baa™)] - S~ (0R))} Pk,

and using the Yoneda Lemma, we obtain the comultiplication § of this comonad as
stated.

With similar arguments as in 9.3 and 9.7, it can be shown that the counit € for ¢
of this comonad is given by

en : Homi(A,N) — N, f— f(1a).
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The Eilenberg-Moore module category (Mp)_gp4 over the monad — ®% A: My —
My is the category (M) 4 of right A-modules in M.
By 4.9, this category is isomorphic to the Eilenberg-Moore comodule category (Mp)
over the comonad Hom!, (4, —):
For any N € (Mpy)4 with right (weak) A-action n ® a — n<a for a € A and n € N,
the Hom!, (A, —)-comodule structure of N is given by the composition

Hom? (A4,-)

oV - N ™ Homt (A, N @ A) [4ey] Hom!, (A, N),

i.e. foranyn € N, and a € A,

oV(n)(a) =) (nak) < (aqh).

In this way, we obtain a functor F': (Mpg)4 — (MH)Homt(A’_).

Conversely, given any Hom!, (A, —)-comodule structure
oM M — Homt (A, M), mw— o™ (m),

on M € My, we define a right (weak) A-action on M as composition

M
4 Mo A% Homl (A, M) @ A 22 M,

i.e. fora € A and m € M,

mda=Y[o"(m)(aS ™ (p}))] k-

This (weak) A-action is (by construction) a morphism in My, and defines a right A-
module structure on M in Mg. O

Combining the Hom-tensor adjunctions in the categories yM and My, we prove
Hom-tensor relations for the bimodule category My over a quasi-Hopf algebra H. For
any quasi-bialgebra H, we know that yMp is a monoidal category (see section 7) and
for any M, N € gMpy, M ®; N € gMpy (with the diagonal left and right H-module
structure).

If H is a quasi-Hopf algebra with quasi-antipode (S, «, 3), then for any M, N € pMpy
we have an (H, H)-bimodule structure on Homy (M, N') given by

(h-f-1)(m) =" hi[f(S(ha)m S~ (h)))] b, (9.1)
which is denoted by *Hom?, (M, N).

9.15. Theorem. (Adjoint pair (— ®° V,*Hom'(V,-)) on gMpy). Let H be a
quasi-Hopf algebra with quasi-antipode (S, c, 3), and M, N,V € gMpg. Then there is a
functorial isomorphism

gHomp (M @}V, N) 2, gHomy (M, SHom (V, N)),

fr—=Am = [ve fpr(m®v)qrl},
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with inverse map 1’ :
gr—{m@uv > qrlg(m)(S(gr)v S~ (vR)] Pk}

where pr =Y. pr, @ p% and qr = Y qk ® q% are defined in (7.30) and (7.31).
This means that the functors

— @V :gMy — gMpy, and SHom!(V, —) : yMpy — pMp,
form an adjoint pair with unit and counit, (in gMp),
na M — SHom{(V, M @, V), m+— [v+s pr(m ®v)qg),
en *Homl(V, M) @V — M, f@ve— Y qhlf(S(gk)vS™ (vh)]pk.

Proof. First we show that for any f € gHompg(M ®} V,N), we have ¢(f) €
gHompy (M, *Hom (V, N)). i.e. 1(f) is H-bilinear. for any h € H,m € M,v €V,

[b(f)(hmh)](v) = f(pr(hmh @v)qr)
= flpr(h®@1)(m@v) (W' ®1)qr)
by (7.34) and (7.35) = Zf (h1) pr (1@ S(h2))(m @ v) (1@ S~'(hb)) qr A(R)))

fis Hbitnear = Y b1 [f(PRmak @ pRS(ha) v ST (hh)qR)] B
On the other hand,
b ((F)(m)) - B(0) = Y (@ (S(ha) v S~ (h3))] B
= Y mlf(prmag ®PR5(h2)US_ '(hy)qR)] B,

showing the H-bilinearity of ¥(f).
Conversely, for any h,h' € Hym € M,v € V and g € gHomp (M, *Hom(V, N)),

W (@I (m@v) 1) = WY hmhy®hyvh)
ZqR (himhy) S(Q%)hwh’zs_l(p?z«z))]p}z
= > qrl(h- ) h)(S(ak)he v hyS ™ (ph))] PR
> aphn {9 m) (thlz)hzvhés_l(hﬁgp?z))] hi1pR}
by (7.35) and (7.34) ZhQR S(az)v S~ (R)] pRH

= h[Y(g)m® v)} W

Thus, ¢'(g) is also H-bilinear.
Now we show that ¢) and v’ are inverse to each other. For any m € M,v € V and
f S HHOIHH(M ® VV, N)a

(W e)(Nm@v) = > apl(w(f)(m)(S(ak) v S~ (vk)] pk
= ) ak f(p map © pES(ak) v S (k)R] PR
f is H-bilinear = Z[ F(Alar) pr (1@ S(gR)) (m @ v) (1© S~ (h)) ar Alpg)]
by (7.38) and (7.39) = Jf(1®@1)(mev)(1®1))=f(mewv).
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On the other hand, for any m € M,v € V and g € gHomp (M, *Hom (V, N)),
(o) (M) (v) = ¥ (9)O prmak @ prvdR)]

= ZQR Prmar)(S(*)pkvanS~ (0%))] PR

= ZQR{[pR' m)) arl(S(aR)PE v RS~ (PR))} PR

= Y ar(PR)y {(9(m)(S((PR)2)S(aR)PR v 4RS ™ (PR))} P
= > arlpk) m))(S (ak(PRa)PR v 4S5~ ((ak)2PR))} (ak)1PR
by(7.38) and (7.39) — g(m)(v).
This shows that 1) and ¢’ are inverse to each other. O

As seen in the one-sided cases, for M, N € gMpy, there are two possibilities to con-
sider Homy (M, N) as a left (or right) H-module. (We denoted them by *Homy (M, N),
*Homy (M, N), Hom; (M, N), or Hom!,(M, N) respectively.) This can also be done for
(H, H)-bimodules. Namely, for M, N € ypMp, we have an alternative (H, H)-bimodule
stucture on Homy (M, N)

(h- f W) (m) = 3" ha [F(S™ () m S(h)))] B (9:2)

for all h,h/ € H, m € M and f € Homg(M,N). We denote by ‘Hom} (M, N) the
k-module Homy (M, N') with the above left and right H-module structure. In this case,
we have

9.16. Theorem. ((V ®” — 'Hom*(V,—)) as adjoint pair on yMpy). Let H be a
quasi-Hopf algebra with quasi-antipode (S, c, 3), and M, N,V € gMpg. Then there is a
functorial isomorphism

sHomy (V @8 M, N) -2 yHomp (M, Homi (V, N)),

fr—=Am = [v— flpr (v@m)qr)l},

with inverse map 1’ :
gr—{vem—>Y qlg(m)(S " (q1)vSpL)] P}

where pr, =Y pt @p? and qr, = qt ® ¢% are defined in (7.28) and (7.29).
This means that the functors

V& — :gMy — gMp, 'Hom*(V,-) :gMpy — Mgy,
form an adjoint pair with unit and counit, in gMp
v M — "Homi (V,V @ M), m+— [v pr(v®@m)qr],

en 2V @ Homi(V, M) — M, U®9'—>ZQL Y(qr) v S(pr))l v
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10 Comodule algebras and quasi-smash products

For a quasi-bialgebra H, the category gM is monoidal and an H-module (co)algebra
is (by definition) a (co)algebra in this category. Because of non-coassociativity of H,
this categorical definition cannot be used to introduce H-comodule (co)algebras.
Hausser and Nill [15] gave a formal definition of an H-comodule algebra as a general-
ization of the definition of quasi-bialgebra.

10.1. Comodule algebras. Let (H, A, ¢, ¢) be a quasi-bialgebra. A unital associative
algebra A is called a right H-comodule algebra if there exist an algebra morphism
p: A— A® H and an invertible element ¢, € A ® H ® H such that

(R1) ¢p(p@idy) o pla) = (idy ® A)op(a) ¢,  Vae A

(R2) (14 ® ¢)(id ® A®1id)(¢p)(dp ® 11) = (id ® id @ A)(¢,)(p @ id @ id)(¢))
(R3) (ida®e)op=ida

(R4) (ida®e®idy)(p,) =14 @ 1y

Similarly, a unital associative algebra B is called a left H-comodule algebra if
there exist an algebra morphism A : B — H®B and an invertible element ¢ € HQHRB
such that

L1) (id® A)(A(D))or = ¢A(A @ id)(A(b)) Vbe B

(L1) (
(L2) (1 ® ¢x)(id @ A ®id)(px)(¢ @ 1) = (id @ id @ N)(dx)(A @ id ® id)(Hy)
(L3) (e®id)o X =idp

(L4) (

L4) (id®@e®id)(¢r) =1g ® 15

If (A, p,¢,) is a right H-comodule algebra, we also have
(ld®@id®e)(¢p) =14 @ 1g.
If (B, A\, ¢,) is a left H-comodule algebra, then
(e ®id®id) (b)) = 1y ® 1.

Any quasi-bialgebra H is a particular example of a left and a right H-comodule algebra
for A=B=H,p=X=Aand ¢, = ¢\ = ¢.

In analogy with the notation for the reassociator ¢ of a quasi-bialgebra H, we use
capital letters for showing the components of ¢, and small letters for the components
of gzﬁp_l. Namely, we write

bp=> XXX =) VeV eY}=
=) 5 0505=3 5,97,00,=

A similar notation is used for the element ¢y of a left H-comodule algebra B. If no
confusion is possible, we will omit the subscripts p or A in the tensor components of
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¢p7 ¢)\7 ¢;17 (b)_\l

For a right H-comodule algebra A, following Hausser and Nill [15], we define ele-
ments p,, §, € A® H,

Pp =D, @0, = Y _ &) ®BS(2) (10.1)
=003 =X,®8 " (aX})X? (10.2)

By [15, Lemma 9.1], we have the relations, for all a € A,

pla))pplla® S(ap))] = ppla® 1h] (10.3)

[la® S~ am)ldoplae) = la®1klg, (10.4)
P(@)Bpla® S(G)] = 1la®1y (10.5)

4@ ST BDdop(By) = 1a© 1w (10.6)

D0 (pRidi) (50) (5oL 1) =S id ABA) (p(71)5,) (14Bg" S(33) 2% S(32)) (10.7)
(10.8)

(@@ 11)(p@idm)(Gp) ¢, ' =3 [1a®S—H(f2X @S~ (f1X2)](ida®A) (Gpp(X}))

For a left H-comodule algebra B we define elements py, Gy € H ® B as

Pr = B®P =Y X3SHX\B) ® X} (10.9)
o= GOR =) S@E )i 0 (10.10)

As shown in [15], they satisfy the equations (for b € B),

D Ab)PA(STH b)) ® 1) = Pally ®@D) (10.11)
Z(S(b(—l))®18)@\>\(b(o)) = (1g ®b)4x (10.12)

D MBS @) ®1s) = 1la®ls (10.13)

D (S @ 1e)AG) = 1lm®1s (10.14)

o5 (Gdr@N) (B )Lrehy) = T (ARid)(AMX3)PA)[S~HX2¢2)®S~1(X]gh)®1x] (10.15)
(1LH®I)(Idr @A) (@)ox = Y[S(33)0S(3})@1s][f@1s][Aids] ([N E)])- (10.16)

10.2. Quasi-Smash products. Recall that for any k-algebra H, H* = Homy(H, k)
is an (H, H)-bimodule with left and right actions given by

h—yp+~h:H—k, h"w— ohh"h) Vh,h' W' €¢ H Yy H*.
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If H is a k-bialgebra and is finitely generated and projective as a k-module, then H* is
also a bialgebra. Now let A be a right H-comodule algebra. A can be considered as a left
H*-module algebra, and then the smash product A#H™* is defined with multiplication

(agte)(a'#4) =Y aap#(p — ay) * ¢,

For a quasi-bialgebra H, the convolution product in H* is only associative up to con-
jugation with ¢, namely,

[ox ]+ 0= (X' = o)« [(X? =y = 2?) « (X = 0 2”)],

for all p,v,0 € H*. In addition, for all h € H, p,v € H*,
h=(px) = (b1 — @) x (ha = ¢),
(1) —h=> (¢ hy)* (¢ hy).

This means that H* is an algebra in the monoidal category gMy.

Although H* is not associative, we still keep the notation of the Hopf case for the
action of the algebra H* (in yMpy) on H

p—h=> @h)hi, h—p=> @(h)hs,

for all p € H*, h € H.

Let (A, p, ¢,) be a right H-comodule algebra. Following Bulacu and Caenepeel [8],
we define a multiplication on the k-module A ® H* by

(aftQ) (@ #P) =Y aap@,' #(p — d17,%) * (Y — 2,%),
for all a,a’ € A, and o, € H*, where we write a#y for a ® ¢ and
pla) =D ap ®aq and ¢! =3 &) @7, &7,

and denote A® H* with this structure by A#H*. In [9], it is proven that A#H* is an
algebra in the category yM with unit 1 4#1g and the left H-action

h- (aftp) = afth — ¢ Vhe Hae A pe H.

This is called the quasi-smash product of A and H*.

11 Hom-tensor relations for comodule algebras

Let H be a quasi-Hopf algebra and A be an H-comodule algebra. We know that the
coaction of H on A induces an action of the category of H-modules on the category
of A-modules (see section 6). In this section we display Hom-tensor relations for the
module category over A. Although this module category is not monoidal, we still have
the tensor product ®y in it, and the action of My (resp. M) on it makes some versions
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of Hom-tensor relations possible.

Let H be a quasi-Hopf algebra with quasi-antipode (S, a, ) and (A, p,¢,) be a
right H-comodule algebra. Then the coaction

prA— AepH, pla)=) ag) ®aq),
gives a right action of My on the category M 4 of right A-modules,
—o—:MyxMy — My, (N,V)— NV,

where the right A-module structure of N ®; V is given by
(n@v)-a=>Y nag @vay = (n®wv) pla),

foralla € A,v € V,and n € N. We denote by N ®Z/ V the k-module N ®; V' with the
above right A-module structure.

There is a natural isomorphism
Yi(-om)o — —o(-w-)
given by
Ynyw i (NoV)oW — No(VaW), nev)@w—[ne(vew)) -qﬁ;l,
forall V;W € My and N € My, and forv € V,w € W, andn € N. The commutativity
of the diagram

(NoV)oW]oZ —2V™2_ (N oV (W e Z)
W)
VN, v, wotd N o [V &® (W X Z)]

W?

No[(VeW)® Z]

[No(VeW)oZ

YN, (vew),z

is a consequence of the pentagon identity in the definition of the comodule algebra.
In this way, for any right H-module V', we have an endofunctor

—@YV:My —My, N—NgUV,

with the right A-module structure on N ®2' V' as given above. Generalizing the pre-
sentation in 9.13, we define a right .A-module structure on Homy(V, N) by

(f-a)(w) =Y f(vS Haw))) a),

fora € A, v € V and f € Homg(V,N). We denote by Homi, (V,N) the k-module
Homy (V, N) with the above right .A-module structure.
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11.1. Theorem. (Adjunction (— ®" V,Hom" (V,—)) on My). Let H be a quasi-
Hopf algebra with quasi-antipode (S, o, B) and (A, p, $,) be a right H-comodule algebra.
For Ve My and M, N € My, there is a functorial isomorphism

Hom (M &% V, N) -2 Hom(M, Hom! (V, N)),
fr— {0 f(m @) g},
with inverse map 1)’ given by
gr—A{m@uv =Y [g(m)(v S~ ()] 5y},
where
ﬁp:zﬁ})(gpp Zx ® 1,05(3, qu@qp ZXl@S (a X)X
This means that the functors
— @ VM — My, Homf(V,—): Ma — My,
form an adjoint pair with unit and counit (in My)
myv s M — Homl (V, M @ V), m+— [v— (m®v)qj,),
ey Homj (V,M)®@V — M, fov— > [f0S(52)5).

Proof. First we show that for any f € Hom4(M &%V, N), 1(f) € Hom4(M, Homz (V,N)),
i.e. 9(f) is right A-linear. For any a € A,m € M,v €V,

W(Hma)(v) = [ mad,©vd)

= fQ_(m®v)(a®1n)q,)
by (10.4) = Z fllme@v)(la® 5_1(0(1))) dp p(aq))
f is right A-linear = Z[f((m ® U) (1A ® S_l(a(l))) q~p)] a(o)

= Y [f(m@©vS " (an)d)] a)-
On the other hand,
[((H)m)) -al(v) = D [@())m) (S aw))]ag)
= Y [f(md,®vS " (an)d)] a),

showing the right A-linearity of ¥(f).
Conversely, for any a € A,m € M,v € V and g € Hom4(M, Hom'Z(V, N)),

W (@(m@v)-a) = () mag ®vag))
= > {glmag)(vam)S~(52)} b,
g is right A-linear = Z{ m) - a))(van)y S~ (52))} b,
= Z{g(m Ua(l)S Ya ago,1) ]5,%))}@(0,0)252,

by (10.3) = Z{g(m v SN} Bha
= [¥'(9)(m®v)a.
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So, 9'(g) is also right A-linear. Now we show that 1 and 1’ are inverse to each other.
For any m € M,v € V and f € Homy(M ® V,N),

(@ o) (Nmev) = Y (W) m) (S (52))] b
= D [fmaovS (B 5
f is right A-linear = Z[f((m ®v) (14 ® S~ (52)) G p(P))]
by(10.6) = f(m®w).

On the other hand, for any m € M,v € V and g € Hom 4(M, Homg(V, N)),

(o) @Im)(v) = ¢(9)(d_mi,®vap)

= Y lgtm ) @s ™ @)) 5}

)
g is right A-linear = Z{ [g(m) qp Uq 1( ))}
= > {lgm) @S B)S ™ (@) m )} (@) 0P
= > {gm)(was™ (@) mP)} (@) o)P
by (10.5) = g(m)(v).
This means that ¢ and ¢’ are inverse to each other. 0

Now let (B, A, ¢5) be a left H-comodule algebra. The coaction A : B — H ® B
induces a left action of 7 M on the category sM of left B-modules,

—:gMx gM — gM, (V,N)— V ® N,

for all N € gpM and V € gM, where the left B-module structure of V ® N is given by
n) = Z b—1)v @ byn = A(b)(v ®n),

forallbe B,v e V,and n € N. We denote by V ®Z N the k-module V ®; N with the
above left B-module structure.
There is a natural isomorphism ¢ : (— ® —) ¢ — — — o (— ¢ —) given by

YywnNv@wen)= ¢y (vOwn)

forall VVIW € ygM N € gM, v € V,w € W and n € N. The commutativity of the
diagram

ay,w,zotdN

(VeoW)® ZloN ———— Vo (W®Z)]oN

W

Ywew),z,N Vol (W®Z)oN]

%

Vol[Wo(ZoN)

(VeW)o(ZoN)

Uy w,(zoN)
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is a consequence of the pentagon identity in the definition of the comodule algebra.
In this way, for any left H-module V', we have an endofunctor

Vel —:gM—gM, N+— V!N,

with the left B-module structure on V ®; N given above. Generalizing the process
defined for modules over quasi-Hopf algebras, we define a left B-module structure on

Homy(V, N) by
v) =3 by F(STH (b)) v),

for all b € B, and v € V and f € Homy(V,N). We denote by “Homy(V,N) the
k-module Homy(V, N) with the above left B-module structure.

11.2. Theorem. (Adjunction (V ®ZI —,"Hom(V, —)) on gM). Let H be a quasi-
Hopf algebra with quasi-antipode (S, «, 3), (B, ) a left H-comodule algebra, V € gM,
and M, N € gM. Then there is a functorial isomorphism

sHom(V & M, N) - gHom (M, ¥ Homy,(V, N)),
fr=Am = v f(r(v@m))]},
with inverse map 0’ :
gr—{veme Y @lgm)(S~(@) )]},

where
=Y BeR=> XSTHXBeX), h=> aeq=) S@)s e
This yields an adjunction between the functors

Ve —:gM —gM, Homy(V,—) :sM — gM,
with unit and counit given by

My M — YHomy(V,V @) M), m— [v— py (v @m)],
ehr 1V @ Homy(V,M) — M, v fre Y @IS (@) v).

Proof. For any f € gHom(V ®% M, N), we show that 6(f) is left B-linear. For
anybe B,me M and v € V,

B(HOEm)(w) = FO_prv®pibm)
= fr(1g® b)(v ®m))
by (10.11) = Z Aboy) Br (S (b—1)) ® 18) (v @ m))
f is left B-linear = Z bo p)\S b( 1)) v p/\ m)]

On the other hand,

[b- (O(f)(m))(v) = Zb [(O(F)(m) (S (b—1y) v)]
= Zb FBAS T (b—1)) v @ PR m).
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This shows the left B-linearity of 6(f).
Conversely, for any b € B,m € M,v € V and g € gHom(M, * Homy(V, N)),

[0 (9)](b- (v@m)) = (Zb ~1) U®b(0)m
= Z [g(b m (Q,\)b(—1) v)]
g is left B-linear — Z [ g )(S_l(~}\)b(—1) U)]

= Z%boo g(m)( (Cj,l\b(o 1))17( 1) v)]
by (10.12) = beh m)(S~H@) v)] = b{[¢'(9)](m @ v)}.

So, 0'(g) is also left B-linear.
Now we show that 6 and @' are inverse to each other. For any m € M,v € V and
f € gHom(M ® V,N),

(00 0)(N(wem) = > @GO (m)(S™(@) v)]
= Z [F(PAS™H (@A) v @ X m)]
£ is left B-linear = Z[f()\(Q,\)PA (S7H@) ® 1) (v & m)]
by 1013y = [((lg ®1g) (v@m)) = f(v@m).

On the other hand, for any m € M,v € V and g € gHom(M, ¥ Homy,(V, N)),

(000 (Im)(v) = 0()> prvepm)
= > @lgEim)(S (@) v)]

g is left B-linear — Z qg\[ﬁi ’ (g(m))](S‘l((j}\)ﬁ}\ ’U)
= Zq}%}%{ (m) (S~ S (@ )Py v)}
= D @B {lgm) (ST @ B)p! v)}
by (10.14) = g(m)(v).
This shows that 8 and ' are inverse to each other. O
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Chapter 4

Hom-tensor relations for
quasi-Hopf bimodules

12 Quasi-Hopf bimodules

Although a quasi-bialgebra H is not a coassociative coalgebra, it can be considered
as a coalgebra in the bimodule category yMpg, so it makes sense to define comodules
over this coalgebra in the monoidal category gyMp. This notion has been considered by
Hausser and Nill in [17] under the name quasi-Hopf H-bimodules as a generalization
of the concept of Hopf bimodules over Hopf algebras.

12.1. The Category yMH. Let (H,A,e,4) be a quasi-bialgebra, M an (H, H)-
bimodule and
M- M—MeH, o™Mim)= § mo @ my,

an (H, H)-bimodule homomorphism. Then (M, o) is called a right quasi-Hopf H-
bimodule if for all m € M,

(idy @) o o™ = idyy, (12.1)
¢- (oM @idy) (0™ (m)) = (idy ® A)(o" (m)) - ¢, (12.2)
where we consider the diagonal left and right H-module structure on M ® H.

A morphism of right quasi-Hopf H-bimodules is an (H, H)-bimodule mor-
phism f: M — L satisfying o” o f = (f ®id) o oM. The category of right quasi-Hopf
H-bimodules with the above morphisms is denoted by HME.

By definition of a quasi-bialgebra, taking M = H and o™ = A gives an example of a

quasi-Hopf H-bimodule.

12.2. (H, H)-bimodules and quasi-Hopf bimodules. Let H be a quasi-bialgebra
and N an (H, H)-bimodule. With the following structures, N ®; H becomes a right
quasi-Hopf H-bimodule. For all a,b,h € H,n € N, define

a-(n®h)-b:=Y_anby ® aghby = A(a)(n ® h)A(D) (12.3)
and a coaction oV®# : N@ H — (N ® H) ® H is defined by

N oh)=¢ - (id® A)(n®h)-¢ = ZZ‘ITLXI @ 221 X2 @ 23hey X3, (12.4)
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For any (epi-)morphism ¢ : Ny — Na in gMyp,
gRidg N1 QH — No® H
is an (epi-)morphism in HME. This gives rise to a covariant functor
—@p H: gMy — gpME N — (N ® H, onon, o™ 1),

where, ongp is our notation for the diagonal (H, H)-bimodule structure map given in
(12.3) and o™V®H is the coaction of N ® H defined in (12.4).
In particular, H @ H EHME with the structure for all h,a,b € H,

h-(a®b) = Ah)(a®b)=>_ hia® hsd,
(@a®@b)-h = (a®@bA(h) =) ahy ®bhy,
o1 (a0b) = Z$1aX1®x261X2®x3b2X3:¢_1-(id@A)(a@b)-qS.

Next, we consider a special case of 12.2 taking the right H-module structure of N
as the trivial one.

12.3. Left H-modules and quasi-Hopf bimodules. Let H be a quasi-bialgebra
and N be a left H-module.

(1) N ® H becomes a right quasi-Hopf H-bimodule with the bimodule structure, for
all a,b,h € H, and n € N,

a-(n®h)-b:= ain® aghb = Ala)(n ® hb), (12.5)
and the coaction oV®” : N® H — (N ® H) ® H given by

N (o h)=¢7 - (id® A)(n®h) = len ® 22hy @ 23hy. (12.6)

(2) If g : Ny — N3 is an (epi-)morphism in M, then
gRidg : N1 H — No® H,
is an (epi-)morphism in yME.

12.4. Comparison functor. Let H be a quasi-bialgebra. We have seen that for any
N € yM, N® H € ygMH with (H, H)-bimodule structure given in (12.5) and H-
comodule structure map given in (12.6). This gives rise to the comparison functor

—@p H: gM — gME, N+ (N ® H, oxem, V),

where, oygn denotes the (H, H)-bimodule structure map given in (12.5) and oV®# is
the right H-comodule structure of N ® H defined in (12.6).

In [26, Proposition 3.6], Schauenburg showed that considering a convenient monoidal
structure on HMg, the comparison functor — ®; H : gM — HME is monoidal.
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12.5. Subgenerator in HMg. Let H be a quasi-bialgebra. Using a similar approach
as in [7, 3.5 and 3.7, it can be shown that the category yME is closed under direct
sums and quotients. In the following we find a subgenerator for this category.

Since the algebra H is a generator in gM, for any quasi-Hopf H-bimodule M € y M.
the left H-module M can be considered as a homomorphic image of H®), for some
cardinal number A. Therefore M ® H is a homomorphic image of

HMN @ H=~ (H o H)W,

in HME By definition, for any quasi-Hopf H-bimodule M € HMZ, the coaction
oM : M — M ® H is a morphism in the category HM%. Then by 12.3, we can consider
M as a subobject of M ® H and this is generated by H ® H € HMZ. Here, the
structures of H ® H given for h,a,b € H by
he(a@b)-h' = AM)(a@b)(1®K)=> hia® hydh (12.7)
" a@b) = Y slawa’h @2’y =9 (id® A)a®b).  (12.8)
This means

Proposition. For any quasi-bialgebra H, with the structures given above, H ® H is
a subgenerator for the category HME of quasi-Hopf H-bimodules.

The following Lemma helps us to find a right adjoint to the comparison functor
— ® H given in 12.4.

12.6. Lemma. (The functor yHom%(V @, H,—)). Let H be a quasi-bialgebra and
V e gMpy.

(1) For M € gMp, gHompg(V ® H, M) € gM with the left H-module structure given
for h,h/ € H andv eV, by

(W - fllveh)= f(vh' @h).

In this way, we get a functor gHomyg(V @ H,—) : gMpy — M.
In particular, if M € gME | then gHom!L(V @ H, M) € gM with left H-module
structure given above, and we obtain the Hom-functor

gHomZ(V @ H,-) : yME — ;M.

(2) Let Ve ygMpy and N € gM. Consider N as an (H, H)-bimodule with the trivial
right H-module structure. Then

(i) ¥ : gHom(V @ H,N ® H) — gHomy(V ® H,N), f (id®¢)o f,
s an isomorphism in gM with inverse map 1’ given by

g (g®idy) o oV ®H.

(it) 0 : gHomp (V @ H,N) — gHom(V,N), f+— f(—®1g),

s an isomorphism in gM with inverse map 0’ given by

g = [v@h—e(h)g(v)],
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(i1i) We have the left H-module isomorphism
gHom(V,N) — gHom¥(V® H N ® H), g+ g®idy,
with the inverse map given, for f € gHom&2(V @ H,N @ H), by
fr(idee)o f(—®1g).

This means that the comparison functor — Qp H : gM —>HI\\/JI§ s full and
faithful.

Proof. (1) Forallh € H and f € yHompy(V ® H, M), it is easy to see that h- f is
an (H, H)-bilinear map. In this way, we have yHomgy(V ® H, M) € gM and we obtain

a functor

HHOHIH(V ® H, —) gMpyg — gM.
In the particular case M € yMI and f € gHomi(V ® H, M), the H-colinearity of
h - f follows from the H-colinearity of f itself. Thus, gHom(V ® H, M) € gM and
we obtain a functor

gHom®(V @ H, —) : ypME — M.

(2) (i) The quasi-bialgebra H is (by definition), a coalgebra in gMp, i.e. the
endofunctor
G:=—QrH:ygMy — ygMy, N~ N®H,

is a comonad. Here, the (H, H)-bimodule structure on N®y H is given for all a, b, h € H,
and n € N by

a-(n®h)-b= Zalnbl ® ag hby = Aa) (n @ h) A(b).
The comultiplication § of this comonad defined for N € gMpy by

ON:N®H — (N®H)®H,
n@h — Y e'nX'@’mX @1 hXP=¢""([deA)(nah)- ¢,

and the counit € of this ¢ is defined by ey =idy ®e: N ® H — N.
Furthermore, the category of two-sided Hopf modules HMg is isomorphic to the Eilenberg-
Moore comodule category (gM)~®H. Now, considering the comparison functor — ®
H: gMy — HI\\/JIE as the free functor which is right adjoint to the forgetful functor,
by 4.8, we obtain the isomorphism of part (i).

(ii) First we note that for f € yHompy(V® H,N),h€ Handv eV

h16(f)(w)] = h[flvelh)
fisteft Hooinear = f(O_ h1v® hy)
f is right H-linear = Z flhiv®1lpy)hy
= > f(hv®1p)e(ho)

= f(hv®ln)=0(f)(hv).

This means that 6(f) € gyHom(V, N). Also, it is straightforward to show that for f €
gHom(V, N), we have ¢/(g) € gHompy(V ® H, N). The H-linearity and the bijectivity
of 6 can be seen by direct computations.
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(iii) Follows by combining the isomorphisms in parts (i) and (ii). 0

Taking V = H and considering the trivial right H-module structure on N, for M €
HME we have a left H-module structure on HHomg(H ® H, M) given for h,a,b € H
and f € gHom (H ® H, M) by

(h-f)a®b) = flah®b).

(The structures on H ®) H are given in (12.7) and (12.8)). Considering the left H-
module structure on yHom(H @ H, M) given above, we show that the functor

gHomZ(H ® H, —) : ypMIE — yM,

is right adjoint to the comparison functor — ®; H : gM — HMg defined in 12.4 (see
also [7, 18.10]).

12.7. Theorem. (yHom%(H ® H,—) as right adjoint to the comparison-
functor).

Let H be a quasi-bialgebra, M € HMg and N € gM. Then there is a functorial
isomorphism

pHom (N @ H, M) —% yHom(N, yHom® (H © H, M)),

fr—{n—la®b— flan®Db)|},

with inverse map €V :
gr—[n®h—g(n)(1g @ h)].

This means that the comparison functor
— @ H: gM — gME N — (N® H, oneou, oV 1),
1s left adjoint to the Hom-functor
pHomi(H @ H,—) : pMIE — yM,
with unit and counit
ny: N — gHom(H@ HN® H), n—[a®b— an®0b|,
ey pHomE(H@ HM)® H— M, f®hw— f(1®h).
Furthermore, the comparison functor — ®y H : gM —>HI\\/JIE s full and faithful.

Proof. First we show that for any f € ygHomZ (N @ H, M), Q(f) is left H-linear.
For h,a,b € H and n € N we compute

[ (Q(f)(n)](@ @b) = Q(f)(n)(ah @ b) = flahn @ b) = [Q(f)(hn))](a©b).

Thus, we have Q(f) € gHom(N,zHomZ (H ® H, M)).
For g € ygHom(N,gHom& (H ® H, M)), we show '(g) € gHom(N @ H, M).
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i) ©/(g) is left H-linear. For h,h' € H and n € N,

V(g -(m@h)) = Q(g)(hyn®hyh) = g(hin)(1m @ hyh)

(P - g(n))(1m @ hoh) = g(n)(hy ® hhh)
g()(A(K) (L@ h)) =1 [g(n)(1 ® h)]
= W [Q2(g)(n®h)

ii) It can be easily seen that Q'(g) is also right H-linear. For h,h’ € H and n € N,
Y(g)((n@h)h) = Q(g)(n®hh)=gn) 1y @ hl)
= g(m)((A®@h) 1) = [g(n)(1 & h)] I
= [@(g)nen)]H
iii) For the right H-colinearity of '(g), we have to show that
(Mo (g)(n@h) = (V(9) ®id)(z' n @ 2?h1 @ 23hs).
By the colinearity of g(n),
(" o (9))(n @ h) = 0" (g(n)(1® h)) = g(n)(z" @ 2*h1) @ 2°ha.
On the other hand,
(Y (9) @id)(z' n @ 2*h1 @ 23hs) = g(z'n)(1 @ 22h1) @ 23hy
= o' gm)](1 @ 2°h1) ® 2°he
= g(n)(z' ® 2%hy) @ 23hs.
This shows the H-colinearity of €/(g).

Now we show that © and Q' are inverse to each other. For all n € N,h € H and
f €egHomi(H ® H, M),

(@ oQ(f))n@h) = (Qf))R)ADN)
= f(lgn®h)= f(n® h).

Conversely, for all a,b € H, n € N and g € ygHom(N, gHom(H @ H, M)),

{{(Qo ) (9l(n)}Ha®b) = ((g))(an®b)=glan)(1®Db)
= Ja-g(n)](1g ®b) = g(n)(a @ D).

It is straightforward to see that €2 is functorial in both components M and N.
The fully faithfulness of the comparison functor follows from Lemma 12.6. O

13 Fundamental Theorem for quasi-Hopf H-bimodules

Throughout this section, we consider H to be a quasi-Hopf algebra with a quasi-
antipode (S, «, ). We have seen in 12.2 that for any left H-module N, the tensor
product N ® H is a right quasi-Hopf H-bimodule. Following Hausser and Nill [17],
we observe that any quasi-Hopf H-bimodule M is isomorphic to such a tensor product
N ® H, where N is a left H-module (the coinvariants of M). This is a generalization of
the Fundamental Theorem of Hopf modules over a Hopf algebra by Larson and Sweedler
[20], to quasi-Hopf algebras.
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13.1. Hausser-Nill coinvariants in HMg For M € HMg, define a projection
E:M— M, formée M,a € H, by

= armoBS(qkm), (13.1)

and put
aw» m:= E(am) (13.2)

where qr = > gk ® ¢% is defined as in (7.31).
For M € yM# define the HN-coinvariants of M as M“H := E(M).

We have the following properties for a,b € H, m € M (see [17, Proposition 3.4]).
(i ( a) = e(a)E(m),
(ii

(iii) a» E(m) = E(am)=a» m,

(v) aE(m) =} a1 » E(m)]as,
(vi) > E(mgo)my =

)
) E
)
(iv) (ab) »m =aw (b» m),
) a
)
(vii) 32 E(E(m)o) ® E(m); = E(m) @ 1.

Due to (ii), (vi) and (vii), the following characterizations of Hausser-Nill coinvari-
ants are equivalent:

Mt .= B(M) = {ne€ M|E(n)=n}
= {neM]ZE(no)®n1 =E(n) ® 1}
= Ke((E®id)o o™ — (- ® 1p))).

MH with the left H-action » is a left H-module and for any morphism f : M — L
in HI\\/JIg, it is not hard to show that

f(MCOH) g LcoH'

This gives rise to a functor (—)°°H : yME — 5 M which - as we will see - is right
adjoint to the comparison functor — ®; H : gM — HMZ.

13.2. Proposition. The adjoint pair (— ®; H,(—)®) for HN-coinvariants.
Let H be a quasi-Hopf algebra, N € gM and M € HMg Then there is a functorial
1somorphism

Y gHomiH (N @y, H, M) — gHom(N, MH),  fr— [n— f(n®1)],
with inverse map 1/13, v given by

g— [n®@h—g(n)h).
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Thus, the functors
— @k H: yM— pMjj, (=) yMf — yM
form an adjoint pair with unit and counit
nv:N— (NoH)“H n-nol,
ev MO @, H— M, m®h— mh.
Proof. First, we show that f(n® 1) € M. Since f is H-colinear,
M fnel) = fa'nea®)
so we have

E(f(n®1) = Y qpflz'n®a?) pS(¢ha’)

fis H-linear Z F(A(gp) (@' n ® 25S(2°)S(qR)))
O Algp)pr(1 © S(gR)) (n@ 1))
by (7.38) = f(n®1).
Now, we show that ¢ := ¢y y and ¢’ := ¢}y, are inverse to each other. For n €

N,h € H and f €5 Hom¥(N @, H, M),

(W o) (Nn@h) =v(f)(n)h=fn®1)h = f(n®h).

Conversely, for n € N and g € gHom(N, M),

[(¥ o ") (9)l(n) =4’ (9)(n®1) = g(n) 1 = g(n).
O

It is shown in [17, Lemma 3.6] that, for N € M, the coinvariants of the quasi-Hopf
H-bimodule N ® H, come out as

(N @ H)°H ~ N,

and forn € N,h € H,
E(n®h) :n®€(h)1H.

This means that the unit ny : N — (N ® H)®H of the adjunction in 13.2 is an
isomorphism. This gives another proof for the fully faithfulness of the comparison
functor — @y H : gM — g M in the quasi-Hopf case (see 4.1, 12.6 and 12.7).

13.3. Fundamental Theorem of quasi-Hopf bimodules (I). (see [17, Theorem
3.8]) Let H be a quasi-Hopf algebra and M € gMZ. Consider MH as a left H-module
with left H-action » defined above. Then the map

ey MO 9 H— M, m®® h+— mh,

is an isomorphism of quasi-Hopf H-bimodules with inverse map

ext(m) =" E(mg) @ my = (E @id) o o™ (m).
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This yields an additional characterization of coinvariants for any quasi-Hopf H-
bimodule M (see [17, Corollary 3.9]),

Mt = {n€M|QM(n):Z(x1>n)x2®x3}
= Ke(o™ —[(oy ®id)o (E®id®id) (¢~ - (- @ 1y @ 1g))]).

13.4. Bulacu-Caenepeel coinvariants. For a right quasi-Hopf H-bimodule (M, o™),
Bulacu and Caenepeel in [8], gave an alternative definition for the coinvariants, denoted

by M<H . For this, they used a different projection map
E:M— M, E(m)= ngﬁS(ml).

This version of coinvariants is defined as M<©H = E(M). We call them shortly as
BC-coinvariants. They can be characterized as

M@T = {me M|E(m)=m}
= {me M|g™(m) = le m S(x3X3) f! @ 22 X1 pS (3 X?) 21,
= Ke({o" - [(z' ®2%) (- @ 1u) (S(«3p) f' @ S(aipp) )]})

where f = f'® f? € H® H is the gauge element, given in (7.24) (see the text before
Lemma 3.6 in [8]).

Me@H = E(M) forms a left H-module with respect to the left adjoint action of
h € H onm € M (see [8, Lemma 3.6]),

hom =Y himS(hs).
For any morphism f: M — M’ in HMg, it is straightforward to see that
FOMETY € Aot

This gives rise to a functor (—)ﬁ : pMI — M which is also right adjoint to the
comparison functor (see 13.6).

13.5. The relation between the projections £ and E. Let M € HMg and
E,E: M — M be defined by

E(m) =) qrmoBS(ggm1),  E(m) =Y meBS(m1),
for all m € M. Then it is shown in [8] that
i) E(m) =3 E(ppm)pk,
ii) E(m) =3 q5 E(m) S(q3),

iii) B : M©H — M and E : M®H — MH are inverse to each other, where
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PR =Y. ph @ p% is defined in (7.30), and gr = Y gk @ ¢% is defined in (7.31). In fact
MeH and M<H are isomorphic as left H-modules. To see the H-linearity of E, take
h € Hym e M®H and compute

E(hem) = > E(himgBS(ham))
= > qrhi1 moo 515 (hama )18 (qkh12mo1 B2S (hama )2)
— Z qrh11 moo B1.5 (hami )13S(B2S (hamy)2)S (qhh1amor)
= Zq}%hn moo £(B)e(S(ham1))BS(qkhi1amor)
= Z€(h2m1)q1{zh11 moo B (hiamor) S (q7)
= Zs(hﬂnl)%ltz E(h1mo) S(qg) = E(hm)
= hw» E(m).

13.6. Proposition. (The adjoint pair (— ®j H, (_)ﬁ) for BC-coinvariants).
Let H be a quasi-Hopf algebra, N € gM and M € HMg. Then there is a functorial
1somorphism

pHomiH(N @, H, M) ety gHom(N, Mﬁ), fr—n— E(f(n®1))],

with tnverse map %V, M given by

gr—m®h— Y qrg(n)S(gr)hl.
This means that the functors

_\coH
M 2 o Oy

form an adjoint pair with unit and counit
N — (NoH)*, nprnel),
e MPH @ H— M, meh— Zq}zmS(q%)h.
Proof. We show that ¢) and ¢’ are inverse to each other. For n € N,h € H and
f € gHom!L(N @, H, M),
(W ow)(Nn@h) = Y apw(f)(n)S(gih
= Y qrE(f(n@1)) S(gR)h
= Y arfla' n@a?) BS(gha’)h
= Y fllgpha' n® (qp)22”BS(2)S(gR)h)

— Zf ((ar)1pR " © (q4R)2pRS (qR)h)
by (738) = f(n®@h).
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[(ow)(9)l(n) = E@(9)(n®1)=E(ggg(n)S(az))

€
g(n)eMeoH = g(n).
O

By the left H-module isomorphism between M coH and MeoH (see 13.5), we have

that M @ H = M ® H as quasi-Hopf H-bimodules. Thus, using (— )COH , We can
restate:

13.7. The Fundamental Theorem of quasi-Hopf bimodules (II). Let H be a

quasi-Hopf algebra and M a right quasi-Hopf H-bimodule. Consider M" @ H as a
right quasi-Hopf H-bimodule with the structures

a-(n®h)-b= Za1>n®a2hb, d(n®@h)= Zx1>n®x2h1 ® 23hs,
for h,a,b€e H and n € MH_ Then the map
v:MT o H— M, v(n®@h) = Zq}%nS(qé)h
is an isomorphism of quasi-Hopf H-bimodules with the inverse map given by
77 (m) = ZE(mo) ®my.

The isomorphism M®H = MoH (see 13.5), implies (N ® H)*H = (N @ H)®H as
left H-modules. The two versions of the Fundamental Theorem of quasi-Hopf bimod-
ules show that both (—)®H and (—)®H are right adjoints to the comparison functor
- H: gM — HI\\/JIE which is an equivalence of categories.

Remark. In case H is a Hopf algebra,
F ( = E Z mo S m1

and both projections are equal to the identity map on MH = MH 1In this case,
M<°H is invariant under the left adjoint action h>m = > hymS(hz) in the sense that
forallhe H,me M,

E(h>m)=h>E(m)

and the fundamental theorem of quasi-Hopf bimodules reduces to the fundamental
theorem of Hopf modules, stated by Larson and Sweedler. In this case, we have MH =~
Hom (H, M) (in ,M).
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For a quasi-Hopf algebra H, we have three different right adjoints for the comparison
functor — ®j H given in 12.4, namely, the HN-coinvarints (—)*H (see 13.1), the BC-
coinvarints (—)°, (see 13.4) and the Hom-functor gHomi (H @ H, —) : gMI — zM
(see 12.7). These three functors must be isomorphic and we describe these isomorphisms
explicitly.

13.8. Theorem. (Coinvariants as Hom-functor). Let H be a quasi-Hopf algebra
and M a right quasi-Hopf H-bimodule.

(1) There is a functorial isomorphism in M
Uar: gpHomi(H @, H M) — M@H | f— f1®1),
with inverse map 1%/[ given by
m+— [a®b— E(am)b],

for a,b € H and m € M®@H,

(2) There is a functorial isomorphism in M,
Oas - pHom{y (H @y H, M) — M“H [ f(pg),
with inverse map éM given by
m+— [a®b— E(am)b].
fora,be H and m € MeoH

Proof. (1) Using the isomorphism in 13.2 for N = H, we obtain the isomorphisms
Gor - rHomt (H @y H, M) % Hom(H, M) = ppeoH |
fre=la= fla®l)]— f1e1).

Here, 9 0 is the isomorphism in 13.2 for N = H. The inverse map 1%4 is obtained as

the composition

wH M

MeH =~ pHom(H, M?) 25 yHom (H ®, H, M),
m+—[a—aw»m=FE(am)]— [a®b— E(am)b],

for all a,b € H and m € M.
Sofar, we have shown that s is a k-module isomorphism. To show the left H-linearity
of 1pr, we compute for h € H and f EHHomg(H ® H, M),

hePu(f) = Ehfle1)=> E(f(h® h))
= Y qrfme h2)0 BS(qhf (1 ® ha)1)
f is H-colinear = Z Q}{ f mlhl & x2h21)ﬁS(Q%{x3h22)

fis H-linear = Z f (CIII% 1h1 ® $2h21)ﬁs(h22)5($3)5((h2%))
= <Z (gk) - ('h @ 2* 5(2*) S (a))
Algr)pr(1® S(gk)(h® 1))
1) =

by (7.38) = (h® (h- )1 ®1) = u(h- f).
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(2) For the isomorphism in 13.6, we set N = H to obtain the isomorphism

Y M

Onr : pHom(H @ H, M) 22 yHom(H, M) = preof

frola— E(fla®1))]— E(f1®1)).
This means that for f € gHomi(H @y H, M),

= f1®1)BS(f(1® 1))

Now, similar to the proof of 13.2 (for N = H and n = 1), using the H-colinearity of
f, we obtain

=> fla' => f@' ®2?BS(a*)) = f(pr).
The inverse map 534 is obtained as the composition

wH M

M =~ yHom(H, M@T) 2% Hom!(H ®), H, M),

mr— la—avm=E(am)]— {a®b — Zq}zE’(am)S(q%)b
— Blam)b,
for all a,b € H and m € MeoH .

In a similar way as in the part (1), for the H-linearity of 657, we compute for h € H
and f € yHom!(H ® H, M) we have:

hoOu(f) = E(hf(pr) =) E(f(hp' @ hap?))
= Y f(lpR ® hapR)o BS(f (hipk © hapip)1)
(f is H-colinear. ) — Z f(xlhlp}% ® x2h21(p%%>1)/35(x3h22(p%%)2)

= > f(z"hipk @ 2 ha1 (DR)18S (has(b)2) S (2°))
= O _2'h@2?89(27)) = f(pr(h® 1))
= fOQ_prh@ph) = (h-f)(pr) = 6(h- f).

Remark. Another way to prove part (2) is to combine the isomorphism

yHomll (H @, H, M) ™% M fs f(101),

in the part (1), with the isomorphism £ : M®“H — Mﬁ, to obtain the following
composed isomorphism

sHom! (H @), H, M) 224 ppeotl £, ppeol
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given for f € yHom& (H @, H, M) by

fr—fle1)— E(f(1o1)) Zfl@loﬁs ( 1)1)
by H-colinearity of f — Z f )
by H-linearity of f = Z f(xl ® x2ﬂ5($3)) - f(pR)'

The inverse map can be computed, for a,b € H and m € M ﬁ, as

m {a@ b BaEm)b = 3 E(lar » E(m)]as)b

= ZE ar » E(m))e(az)]b
— [Blaw Bm)b
= [E(E(am))]b= E(am)b}.

72



Chapter 5

Hom-tensor relations for
two-sided Hopf modules

14 The category  MZ

The fact that a quasi-bialgebra is not coassociative entails that there is no trivial
way to define a comodule category like in the bialgebra case. Nevertheless, we can
associate monoidal categories to quasi-bialgebras, in which we can consider coalgebras
and comodules over these coalgebras. This point of view has been used in [10], [17],
[26], and [8] in order to define relative Hopf modules, quasi-Hopf bimodules, and two-
sided two-cosided Hopf modules. For a quasi-bialgebra H, we know that the category
of (H, H)-bimodules is monoidal and H itself is a coalgebra in this category.

For a quasi-bialgebra H and a right H-comodule algebra (A, p, ¢,), we show that
the tensor functor — ®; H is a comonad on the category 4Mpy and we consider the
category of two-sided Hopf modules AMg as the Eilenberg-Moore comodule category
over this comonad. Furthermore, we show that the Hom-functor 4#Hom!(A® H, —) is
a right adjoint to the comparison functor — ®; H.

If H is a quasi-Hopf algebra, following Bulacu-Caenepeel [9, 8] and Bulacu-Torrecillas
[12], we study the category of two-sided Hopf modules and state a generalized version
of the Fundamental Theorem of Hopf modules by defining Hausser-Nill and Bulacu-
Caenepeel type coinvariants for this category. Finally, we describe these versions of
coinvariants in terms of a Hom-functor.

14.1. Category AMg of two-sided Hopf modules. Let H be a quasi-bialgebra
and (A, p, ¢,) a right H-comodule algebra. A left two-sided (A, H)-Hopf module is
an (A, H)-bimodule M, together with a k-linear map

QM:M—>M®H, QM(m)IZmO@)mL

satisfying the relations
(idy ®@e) oo™ = idy, (14.1)
(idy ® A) o oM (m) = ¢, (" @idy) oo™ (m)- 67", (14.2)
QM((I m) = Z a(g) Mo @ a(y)mi, (14.3)
) (14.4)

= Zmo h1®m1h27
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form e M, h € H and a € A, where p(a) =) a) ® a()-
The category of left two-sided (A, H)-Hopf modules and right H-linear, left A-linear,
and right H-colinear maps is denoted by AMg.

For the special case A = H, the category of two-sided (H, H)-Hopf modules is
nothing but the category of right quasi-Hopf H-bimodules (see section 12).

14.2. Proposition. (Subgenerator for AMZ). Let H be a quasi-bialgebra and
(A, p,¢p) a right H-comodule algebra. Then

(1) For any N € AM, we have N ® H € sME with structure maps
a-(n®h)= Za(o)n@)a(l)h, (n®@h)-h' =n®hh, (14.5)

N @h) =) En@Eh @ihy =¢," - (id®A)(n®h), (14.6)
for all h,h' € H, n € N and a € A.
(2) If g : N1 — Ny is an (epi-)morphism in 4M, then
gRidyg : N1 ® H— No® H
is an (epi-)morphism in AMH.
(3) Endowed with the structure maps given, for h,h' € H and a,a’ € A, by

a-(a®h) = Z a/(o)a ® aél)h, (a@h)h =a®hl,
0% (4 @ h) = Z i'/l)a ® ic,%fn ® i%hz,
AR H € AMg and it is a subgenerator for this category, where
vl o v2 o ¥3 -1 “1 o ~2 o <3
bp=> X)X @X3, ¢,'=) 3010
Proof. The parts (1) and (2) are straightforward to see.

(3) Using a similar approach as in section 12, we see that for any M € AMg, the
left A-module M is a homomorphic image of A for some cardinal A. Therefore
M ® H is a homomorphic image of

AN @ H = (A H)W.
For any M € AMg, the coaction o™ : M — M ® H is a (mono-)morphism in the

category 4M, so we can consider M as a subobject of M ® H, which is generated by
the object A® H € 4,MH. O

The parts (1) and (2) in the above proposition give rise to
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14.3. The comparison functor — ®; H : JM — AMg. Let H be a quasi-bialgebra
and (A, o, ¢,) a right H-comodule algebra. We have seen that for any N € 4M,
N ® H € 4ME with the (A, H)-bimodule structure given in 14.5 and the H-comodule
structure map given in 14.6. This gives rise to the comparison functor

—®kHAM —>AM§, N — (N®H)QN®H7QN®H)7

where ongpg denotes the (A, H)-bimodule and o™®# the right H-comodule structure
of N ®, H.

14.4. — ®; V as endofunctor of 4,Mpy. Let H be a quasi-bialgebra and (A, p, ¢,) be
a right H-comodule algebra, N € 4Mpy and V € gMpy. Then the coaction

p:A— Aer H, pla)= Za(o) ® aq),

induces an (A, H)-bimodule structure on N ®; V', given for h € H, a € A, v € V, and
n € N by

a-(n®v)-h= Za(o)nhl ® agyvhy = p(a) (n@v) A(h).
In this way, for any V' € yMp, we obtain an endofunctor
— @ V:aMpy — aMpy, N—= NV,
with the (A, H)-bimodule structure on N ®j V' given above.

Considering the special case that V = H, we obtain the endofunctor
G=—Qp,H: My — My, Nw+— N®QH,

with the (A, H)-bimodule structure on N ®; H given for h,h' € H,a € A, and n € N
by
a-(n@h)-h = Za(o) nhy ® apqyhhy = p(a) (n @ h) A(K).

In this case, we show that — ® H : sAMpg — 4Mp is a comonad.

14.5. Theorem. (— ®; H as a comonad on 4Mpy). Let (H,A e, ¢) be a quasi-
bialgebra and (A, p, ¢,) a right H-comodule algebra. Then

(1) The endofunctor — @y H : sAMpyg — 4Mpg is a comonad on sMp with the comul-
tiplication § defined, for N € 4JMp, by

oON:N®H — (N®H)®H,
n@h — Y @nX'®ih X3 h X
= ¢, (id® A)(n®h)- ¢,
and counit € defined by ey = idy ®e: N H — N.

(2) The category of two-sided Hopf modules AMg 18 isomorphic to the FEilenberg-
Moore comodule category (4Mp)~®H.
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Proof. (1) To show that (— ® H,J,¢€) is a comonad on g4My, first we show the
coassociativity of d, i.e. we show that for N € sMgy, n € N and h € H,

(5N®HO5N(TZ®h) = (5N®idH)06N(n®h). (14.7)
For this, using the definition of §x, we compute

LHS = (¢,'®1)-{(id® A®id)(¢," - [(id® A)(n@h)]-¢)}-(p®1)
= (¢,'®1) (idoA®id)($,") [(id® A®id)o (id® A)(n® h)]
(id® A®id)(¢) - (p®1)
by (r2) = (6, ®1)-(i[de®A®id)(s,") (1la®eé™") - [(id0id® A)o (id® A)(n® h))
(g ®e) - (id® A®id)(d)- (¢ 1).

On the other hand,

RHS = (p®id®id)(¢,") {(id® @idA)(¢," - [(idy @ A)(n@h)] - ¢)} - (A @ id @ id)(¢)
= (pRid®id)(¢,") - (idy ®idy @ A)(¢,")  [(id ®id ® A) o (id © A)(n & h)]
(id ®id @ A)(¢) - (A ® id ® id) ().

By (7.3) and (10.1) the both sides of (14.7) are equal to each other. Thus, ¢ is coassocia-
tive. It can be easily seen that €, defined by ey = idy®e : NQ H — N, is a counit for 4.

(2) To prove the isomorphism (4Mp)~® = M we take an object M € (4Mp) 4
and note that we have a G-comodule structure morphism o™ : M — M ® H = G(M)
in 4Mpyg making the following diagram commutative.

QJ\/I

M M® H = G(M)

W

oM dar M®(H®H)

%

S SO0 = (M e o B

M® H = G(M)

The commutativity of outer diagram is precisely the condition (14.2) on M to be a
two-sided Hopf module. It is easy to see that the condition (14.1) is equivalent to the
counitality of e. O

The following Lemma helps to find a right adjoint to the comparison functor (see
14.3).

14.6. Lemma. (4Hom¥(V ® H,~) as a functor into 4M). Let H be a quasi-
bialgebra, (A, p, ¢,) a right H-comodule algebra and V € ;M 4.

(1) If M € s,My, then \Homg(V ® H, M) € AM with the left A-module structure
given, forhe H,ae A andv €V, by

(@-f)lv@h)=flva®h).
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In this way, we get the Hom-functor sHompg(V @ H,—) : sAMpyg — 4M.
In particular, if M € AME then AHomg(V(@H, M) € 4M with left A-module
structure given above, and we obtain the Hom-functor

AHom2(V @ H,—) : ;M2 — M.

(2) Let Ve ;M4 and N € \M. Then
(i) ¥ : ;HomZ (Vo H N @ H) — 4Homy(V ® H,N), f+s (id®¢)o f,
is an isomorphism in gAM with inverse map ' given by

g (g®@idp) o 0" ®.

(ii) 0 : \Hompy(V ® H/N) — 4Hom(V,N), f f(—®1pg),
is an isomorphism in AM with inverse map 0" given by

g [v@h—e(h)g(v)],
(111) There is a left A-module isomorphism
AHom(V,N) — 4Hom (V@ H N ® H), g+ g®idy,
with inverse map given, for f € 4Hom(V @ H,N ® H), by
fr(idee)o f(—®1g).
Thus the comparison functor — @y H : 4M %AMZ is full and faithful.
Here, we consider the right H-module structure of N to be the trivial one.

Proof. (1) Foralla € A and f € 4Hompy(V ® H, M), it is easy to see that a- f is
an (A, H)-bilinear map. In this way, we have 4Hompg(V ® H, M) € AM and we obtain
a functor

AHOHI[{(V ® H, —) aAMpy — AM,

In case M € sME and f € AHom#(V ® H, M), the H-colinearity of of a - f follows
from the H-colinearity of f itself. Thus, 4HomZ(V @ H, M) € 4M and we obtain a
functor

AHomg(V ®H,-) :AMg — 4ML

(2) (i) As seen in 14.5, the functor — @ H : sMy — 4Mpy is a comonad and
the category AMg of two-sided Hopf modules is just the Eilenberg-Moore comodule
category (4M )~ ®H over this comonad. Now, considering the functor —® H : )My —
AMZ as the free functor which is right adjoint to the forgetful functor (by 4.8), we
obtain the isomorphism of part (i).

(ii) First we note that for f € qJHomyg(V® H,N),he Hya€ Aandv €V,
ald(f)(v)] = alf(v®ly)]

f is left A-linear = f(z Qo) v ® a(l))
f is right H-linear = Z f(a(O) v 1H) a()
N is trivial right H-module = Z f(a(O) vV 1H) (a(1)>

= flav®lg) =0(f)(av).
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This means that 0(f) € 4Hom(V,N). It is straightforward to show that, for g €
AHom(V, N), we have 0'(g) € sHompy(V ® H, N). Bijectivity and left A-linearity of ¢
follow from direct computations.

(iii) This follows from the composition of the isomorphisms in parts (i) and (ii). O

14.7. Corollary. Let H be a quasi-bialgebra and (A, p, ¢,) a right H-comodule algebra.

(1) For M € ;MY we have a left A-module structure on AHomg(A ® H,M) given,
forhe€ H, a,a’ € A and f € sJHom(A® H, M), by

(- f)la® h) = f(ad' @ h).
(2) For N € AM, the morphism
ny: N — qJHomB(A@ HN® H), nr—[a®h— an® hl,

is an isomorphism with inverse map 1)y, given for f € AHomg(A @ H,N®H),
by
I (f) = (id®e)o f(la® 1n).

Proof. (1) Follows directly from Lemma 14.6 by taking V' = A.

(2) Composition of the isomorphisms ¢’ and 6 gives rise to the isomorphism
N = 4Hom(A, N) = 4Hompy(A® H,N) = 4HomZ(A® H,N @ H).

Using the above Lemma, we see that this composition gives precisely the isomorphism
ny : N — 4Hom#(A® H, N ® H) given above with the given inverse map 7. O

Now we show that this Hom-functor is a right adjoint to the comparison functor
— ®p, H, described in 14.3.

14.8. Theorem. (Hom-tensor adjunction for AMg). Let H be a quasi-bialgebra,
(A, 0,0,) a right H-comodule algebra, M € 4M, and N € sM. Then there is a
functorial isomorphism

AHom® (N ® H, M) i>AHom(N,AHomg(.,4 ® H,M)),
frefnmla@he fane b)),
with inverse map Q) given by
gr—A{n®@h— g(n)(1a®h)}.
This means that the comparison functor
—®p H: aM — 4 My, N (N®H, onen,o™ ),
1s left adjoint to the Hom-functor
AHom#(A® H,—) : JM§F — 4M,
with unit and counit given by
ny: N — qHom#(A®@ HLN® H), n[a®@h an® hl,
eraHomB(A@ HA M) H — M, f@h— f(14®h).
Furthermore, the comparison functor — ® H : AMg — AM is full and faithful.
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Proof. First we show that for any f € 4JHom!(N @ H, M), Q(f) is left A-linear.
For h € Hya,a' € Aand n € N,

[a" - (Q(f)())(a @ h) = Q(f)(n)(ad’ @ h) = f(naa’ @ h) = [Q(f)(a'n))](a & h).

Thus, we have Q(f) € 4Hom(N, 4Hom (A ® H, M)).
For any g € 4Hom(N, s;Hom (A ® H, M)), we show that /(g) € 4Hom(N @ H, M).

i) Q'(g) is left A-linear. For a € A and n € N,

(g neh)-a) = Y A (gon@anh) = glaen)(la® aqh)
g is right A-linear = Z(G(O) ( ))(IA ® a’(l) = Z g TL a(g) ® a(l)h)
g9(n)(p(a) (1@ h)) = alg(n)(1® h)]
a [ (g)(n® h)].

ii) It can be easily seen that Q'(g) is right H-linear.

iii) For the right H-colinearity of {'(g) we show that
("o Q(g)(neh) =) (X(g) @ id)(Epn @ Fjh ® F3he).
By the colinearity of g(n),
(0" 0 Q(9))(n® h) = 0" (g(n)(1a @ h)) = g(n)(&, © Tyh1) @ Tpha.
On the other hand,
(Q(g) @id)()_Fpn@ithi @ Fhg) = > g(F)n)(1® Eph1) @ Foho
g is A-linear — Z[ ; g( )](1®$2h1)®[£3h2
= Z g(n)(x a??,hl) ® a:ihg.
This shows the H-colinearity of €'(g).

Now we show that  and Q' are inverse to each other. For all n € N,h € H and
f € sHomf(A® H, M),

(@ oQ(f))(n®@h) = (QN)(N)(1a® h)
= f(lgyn®h)=f(n®h)

Conversely, for all h € Hyn € N,a € A and g € q;Hom(N, sHom! (A ® H, M)),

{[(o)(@(m)}Ha®h) = (2(g9)(an®h)=glan)(la® h)
g is A-linear = [a ) g(n)](lA ® h) = g(n)(a ® h)

ie. QoQ(g) =g. It is straightforward to see that Q is functorial in both components
M and N.
The fully faithfulness of the comparison functor follows by Lemma 14.6. O
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15 Coinvariants for M4

15.1. Hausser-Nill-type coinvariants for AMg. Let H be a quasi-Hopf algebra
and (A, p, ¢,) a right H-comodule algebra. For M € AMg, define a projection E’ :
M — M, for m € M, by

=4y mo BS(Gom), (15.1)

and for m € M,a € A put
aw m:=FE'(am) (15.2)

where ¢, = 3 ¢}, ® ¢ is defined as in (10.2).
For M € )M, define the HN-type coinvariants of M as M“H .= E'(M).

Similar to 13.1 (see also [17, Proposition 3.4]), we have the following properties of
the projection map E' : M — M:

15.2. Proposition. (Properties of HN-type coinvariants). For M ¢ M,
a€ A, he Hand m € M and with above notations we have

(i) £'(m h) = e(h)E'(m),
(i) E”? =

(iii) a » E'(m ) E'(am) =aw» m,

(v) aB'(m) = 2[a<o>>E'<m>]a<1>,
(vi) X2 E'/(mo)my =
(i) 3 BB m)e) © B (m)y = Bm) & 1.
Proof. (i)
E'(mh) = qu (mh)o BS(q5(m b)) qumofhﬁs( m1hz)
= ¢(h qumoﬁs(qpml)ZE(h)E (m).

(ii) We use part (i) to compute

E%(m) = E'(Y_dqymofS(gm))

by (i) = ZE/ Gy mo)e(BS(gom)) ZE/ B)e(;)e(m1)

= > E'G,e(@) mos(m1)) = E'(m).

)
)
(iv) (ab) » m=aw» (b» m),
)
)
)

(i)  aw E'(m) = E'(aE'(m)=> E'(ag,moBS(Gm))
= ZE’(aq},mo £(8S(gym))
= > E'(agymo)e(B)e o S(mne 0 5(q})
— ZE(a 1£(m1 Ymo)e ZE aqp (qp)
= Y E'(agpe(qy)m) = ZE’am =a»m.
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(iv) follows immediately from part (iii).

(v) aE'(m) = GZQ}) mo 35(gom1)
by (104) = D dpa(0)0, M0 BS(m1)S(a0),,,)S(@))aq)
= ) a0, M0 BS(Ga )(1)m1)a(1)
= Yk (a@)y m)o BS(G2(a =Y E'(a

by (i) = Z[a(O) > E’(m)] a(1)-

(vi) E'(mg)my = qumooﬂs(qpmm my = ZleooﬂS(X mo1)aX my
= ZmoX BS(m11X?)amia X3
= > moX'BS(X?)S(m1)am X*
= > e(m)mg (X'BS(X?)aX?) =mly=m

(vi)
S CE(E(m)o) @ E'(m)1 = Y E'([(@)) mo BS((@3)m1)]o) @ [(d5) mo BS(32)ma)h
= > E'((@)0) moo B15((@2)m1)1) ® (@) 1ymor B2 (dpma))2
b = D E((@)0) moo) ®(B1)e(S(ama)1)(dh) 1ymor B2S(Gom )2
= > E'(d))0) moo) @ (d5)1ymo1BS(Gama)
by (142) = DB (@) mo X1) @ (d5) ) pmu X288 (Ga5min X?)
i) = O E (@) 0i,mo)e(X") @ (4))qFamn X2 BS(35mi X?)
= ZE’(( ))& m0) ® (43)(1)Zam11BS(GaEoma2)
by (7.6) = ZE/(( ))& m0) ® (43)(1)Z2e(m1) BS(GoE5)
= D E(@)0F,m) @ (@) 0TS0,
= Y E(@)opym) @ (@)0pS3)
by (10.6) = (B'®id)([(1la®1y)(m@1y)]) = E'(m) @ 15.

O

By (ii), (vi) and (vii), the following characterizations of HN-type coinvariants are
equivalent:

M@ .= E'(M) = {ne€M|E'(n)=n}
= {ne M| ZEl(no) ®m = E'(n)® 1}
= Ke((E'®id)o [o" — (- ® 1x))).

MeH with the left A-action » is a left .A-module and for any morphism f : M — L in
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AME it is not hard to show that f(M«H) C Lo,
This gives rise to a functor (—)°" : JME — 4M which we will show to be right adjoint
to the comparison functor.

15.3. Proposition. The adjoint pair (—®H, (—)°H) for HN-type coinvariants.
Let H be a quasi-Hopf algebra, (A, p, ¢,) be a right H-comodule algebra, N € AM and
M e AMg. Then there is a functorial isomorphism

YN aHomB (N @), H, M) — qHom(N, MH) fr— [n f(n®1)],
with tnverse map 1%\/7 M given by
gr— @ h s g(n) ).
Thus, the functors
— @ H : AM — qMf, (=) M — M,
form an adjoint pair with unit and counit
nv:N— (N@H)“H, n—nol,
ey MM @, H— M, m®h—mbh.
Proof. First, we show that f(n® 1) € MH: Since f is H-colinear,
Mfmen) = fEFn0i) e,
so we have
E'(fnel) = > 4 f(Fnei)sS(3T,)
fis Alinear = Zf p(d,) ”®$255(~’33) (@)
= O _n@) ,1; P (1® S(32) (n®1))
1).

by (10.6) = f(n®

We show that v := ¢y and ¢’ := by, are inverse to each other. For n € N,h € H
and f € sHom (N @, H, M),

(W o)(Nneh) = $(fin)h=flno1)h

by H-linearity of f = f(n ® h)
Conversely, for n € N and g € qHom(N, M«H)
(Yo y')(9)](n) =¥ (9)(n®@ 1) = g(n) 1 = g(n).
a

15.4. HN-type coinvariants of N ® H € AI\\/JIE. For any N € 4M, the HN-type
cotnvariants of the two-sided Hopf module N ® H, come out as

(N @ H)°" ~ N,

and forn € N and h € H, we have E'(n ® h) =n®e(h)ly
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Proof. The definition of the right H-module structure of N ® H implies that
(n®h)=(n®1)h. Now by part (i) of the above proposition, we have:

E'(n®h)=FE'((n®1)h) = E'(n®1)e(h),
thus we are left to show that
F'n®l)=n®1l.
LHS = E'nol)= Zq; (n®1)0 BS(a(n® 1))
= > 4 (@n® &) BS(GE)
= D (@) oFpn @ (3) )85 (@)
pll

= Y o@)ppll @ S@)] (ne1)
by (105) = (1®1)nel)=ne1,

where p, = Zﬁ; ®]5/2J and g, = Z(j; ® cjg are defined in (10.1) and (10.2). O

This means that that the unit ny : N — (N ® H)®H of the adjunction in 15.3 is
an isomorphism with inverse map n ® h + ne(h). This gives another proof for fully
faithfulness of the comparison functor — ®; H : ;\M — AMZ in this case (see 4.1, 14.6
and 14.8).

15.5. Fundamental Theorem for AMg with HN-type coinvariants. Let H be

a quasi-Hopf algebra, (A, p, ¢,) a right H-comodule algebra and M € AMg. Consider
M®@H = E'(M) as a left A-module with left A-action », defined by

aw m:=FE'(am) qu )y mo BS qpa(l)ml)

Then the map
e M @ H— M, m® h— mh,

s an isomorphism in AMg with inverse map €', given by
ehi(m) = E'(mg) @ my = (E' @id) o o™ (m).
Proof. For h € H andn € N,
ehoemn®@h) = &eyn ZE (ng h1) ® nihs
by (i) = ZE' no)e(h1) ® nihs

= ZE ng) ® nih = Z 0) @n1)(1® h)
by (viy) = (M@1)(1®h)=n® h.

Conversely, for m € M,
enroeh(m) =en(Y E'(mo) @m) = E'(mo)my =

Thus e) is indeed an isomorphism of k-modules.
We are left to show that £;; is a morphism in AMg. By definition of the (A, H)-
bimodule structure of M @ H, for h € H, a € A and n € MH,

a-(n@h)-h'=Y ag »n@aqyhh' => E'(agn)® an)hh’.
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Therefore, we have

EM(CL : (n & h) : h/) = Z E/(CL(O) n) a(l)hh'

by (i) = Z[a(o) > E'(n)] a(l)hh/
= aFE'(n)hh/ =anhh
= aey(n@h)K.

Finally, we show that €, (and therefore €)s ) is H-colinear: for m € M,
coH ~ ~ ~
oM ®H(€/M(m)) = Z E/(CU; mop) @ x%mu b2 xi’,mn
= ZE'(m00X1)®m01X2®m1X3
(moo)E(Xl) X m01X2 & le?’

= Z El(moo) ® mp1 ® m1
= (E' ®@id)oM(mg) = (e @ id)o™ (m).

O

The above form of the Fundamental Theorem yields an additional characterization
of coinvariants, for any M € AMg, as

Mt = {ne MM (n) = (@) » n) 32 @ &5}
= Ke(o" — [(on ®id) o (E' @ id ® id)(¢," (— @ 14 @ 1p))])

15.6. Bulacu-Caenepeel-type coinvariants for AMg. Let H be quasi-bialgebra
and A a right H-comodule algebra. With similar arguments as in (13.4) (see also
Bulacu-Caenepeel [8]), for any M € sMI we define a projection

E:M— M, m— Zmoﬁs(m1)7
and define BC-type coinvariants for M € AME as
M .= E'(M) = {m € M | E'(m) = m},
generalizing the concept of coinvariants of quasi-Hopf bimodules M € HMg.

15.7. HN versus BC-type projections. Let M € 4Mi and E',E' : M — M be
defined by

E'(m) =Y q,moBS(@m),  E'(m)=>) myBS(m),
for allm e M. Then
(i) E'(m) =3 E'(pym)py,  E'(m) =324, E'(m)S(q),
(ii) E': Mt — MH s an isomorphism in sM with inverse E' : M¢H — pjeoH

where p, = Zﬁ}, ®j5/2) and g, =) (fjfl, ® (jg are defined in (10.1) and (10.2) respectively.
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Proof. (i)

STE@m)PE = Y a5 o) mo BS(@EB) 1ym)p
= > G Bh)0) mo BS(m1)S(G(Bh)))Ps
by (10.5) = Z qp (0) E S(Qp(pp)(l))ﬁz = E(m).

The other equality is an easy substitution of E'(m).

(ii) For any m € M«H,
E'(E'(m)) = E'(Q_moBS(m))
= > d,moo B1(S(m1))18S(@5mo1B2S(ma)2)
= ) 4y moo B1S(ma)18S(m1)25(82) S (@5mar)
= (O apmoo BS(Gimon))e(m1)e(3)
= E'(mo)e(mi1)e(B) = E'(m) = m.
On the other hand, for any m € M<H
E'(E'(m)) = E'(Q_d,moBS(Gm))
= /(qumoﬁs (m1)5(43))
= E'(G,E'(m)S(q) = E'(Y_d,mS(d))
> (@ym S(@))o BS([d,m S(@)h)
= D (dm)oS(@)185(5(@;)2)S((@,m)n)
> el@(, )oﬁs«d; m)1)
= Y e @E(Gm)=FE(_ge(@)m

= E'(e(a)lpm) = E’( ) =m.
For left A-linearity of £ we compute
E'(a>m) = ZE’ 0) Mo BS(aymi))
= > G 0)0) M00 515 (agym)1 85 (@5a(0) ., mo1 B2 (agymi)2)
= > Gy, moo fiS(a m1)155(525(a(1)m1) )S(Gza0),,mo1)
= > aa 0)0 M00 £(B)e(S(aym))BS(d5a ), mor)
= Z (a(1)m1)qpa(0)<0) Mmoo ﬁS(a(0)<1)m01)S(d§)

= Za(a(l)ml)(j; E’(a(o) mo) S((ﬁ)
= FE'(am)=aw» E'(m).

With similar arguments as in [8, Lemma 3.6], we show
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15.8. Proposition. (Characterization of BC-type coinvariants in AM ) For
a quasi-Hopf algebra H, a right H-comodule algebra (A, p, ¢,) and m € M € AMH, we

have m € McH zf and only if
= 2,mS((#)X%) ' @ 2 X' BS((E3)1X7) f*}. (15.3)

Proof.

oM (m)
by (7.26)
by (7.17)
by (7.23)

by (7.6)

by (7.4)
by (14.2)

by (7.2)

by (7.6)

(meMeoH)

Conversely, if we have

then

by

Let m € MH . Then

Z moo B1.5(m1)1 ® mo1 P25 (m1)2

Eymwfsmmwmwafﬂmm

> moo 6" S(maa) f1 @ mo16°S(may) f2

> moo 'Y BS((magad X3Y?) f1 @ moy2® X'V BS ((munai X2Y5) f2
> moo 'Y BS(mapad XPVP) f1 @ mora® X'e(Y?)BS (mnaf X?) f2
Z moo ' BS((m12%)2 X3) f1 @ mo122 X3S ((myx®)1 X?) 2

(7.27)

Eomig)e X°) f1 @ Eom X' BS((F3mi2)1 X7)
£3)2X°mi2)) 1 © 35X 'min BS((F))1 X man2)) f2
22)2X%mi2)) f1 ® 35X e(m11)BS((#))1X3) f?

7)o XPma) f1 @ Z3X1BS((25)1X%) f

/\/\/-\/-\

"(m) (%)) X°) f1 @ T, X' BS((#5)1X7) f?
Zym S((2):X%) f1 @ B X BS((23)1X%) 2.

= @ mS((@2):X3) ' @ X' BS((73)1X?) £,

Z mo ﬁS ml)

(23)2X°

D2X%) [ BS(E X BS ()1 X%) 1)
Tp)2 X’

)f
) BS(F2)S(E2X 1 BS((23)1X7))
1S
x5S

(@)1 X?)a(i5)2X7)
XH)S((@))1)e(@))2X7)

(
(
>3, mS((E))2X7)S() (@ X B5((7)1X?))
(z
(z

)
BS(
BS(
(

Za: mS( 2X BS(X)e(E )aX3)
> mS(X'BY(X?)aX?) =

O

Similar to the BC-coinvariats in (13.4), the above proposition gives a characteriza-

tion of coinvariants MH for M € 4M% I as

M = {m e M|o™(

= a,mS((#):X%) f' @ B2 X'BS((#3)1X°)f°}, (15.4)
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These coinvariants can be also expressed as
M = Ke(oM — {} (3,0 5)) (- ©1m) [S(@)2X*) " © X BS((@)1X*) 1))
= Ke(@" —{> (#0&) (-®1m) [(S®S) oo (AE) pr) f1})

where p;, = Zp}: ® p% is defined in (7.28), f = >_ f'® f? is the Drinfeld gauge element
given in equation (7.24), and 7 is the twist map a ® b — b ® a.

One can define a new left A-module structure on M € AMg by
a>m = Za(o)mS(a(l)), (15.5)

for a € A, and m € M, where p(a) = > a(g) ® agy. With this left A-action, MH
can be considered as a left A-submodule of M. It is straightforward to see that for any
morphism g : M — L in 4MZ we have g(MH) C [,
In this way, we obtain an alternative coinvariants functor

(=) : AMIf; — AM,
which we will show to be right adjoint to the comparison functor (see 14.3)
— R H :AMﬁAMg, N — (N R H, QN®kH,QN®kH).
15.9. Proposition. (The adjoint pair (— ®; H, (—)ﬁ) for BC-type coinvari-

ants). Let H be quasi-Hopf algebra and A a right H-comodule algebra, N € 4,M and
M e AMg. Then there is a functorial isomorphism

VN, M

AHom ¥ (N @y, H, M) 23 yHom(N, M), f—[n— f(5,(n®1))],
with tnverse map QM\/, M given by
gr—[n@h— Y "¢ g(n)S@)h).
This means that the functors

o H _\eoH
L AMg()—> AM,

AM
form an adjoint pair with unit and counit
v N — (N@H)*T  nep,(nel),
En Mﬁ®kH — M, mehw— Z(};mS((jﬁ)h.

Proof. We show that v/ and 1)/ are inverse to each other. For n € N,h € H and
f € AHom (N @, H, M),

(W op)(NIn@h) = Y Gu(f)n)S@h=>_ a5 f(B,(n®1))S(@)h

fis (A, H)-bilinear = f(z P(Q;)ﬁp (n®1)) 5(@2)]1
= 1O p(@)p,(1a® 5(32)) (n® h))
by (106) = Jf(n®h).
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Conversely, for n € N and g € 4JHom(N, Mﬁ),

(W o) (@l(n) = ¥ (g)(B,( =Y a9l (@))P;
gis left Alincar = Zqﬁ( o 5(%)2?,,
= > g ,1) © 9(n) S((B)) 1)) S (@)
= > @B - 9(n) - S(@(5y) )P,
by (10.5) = g(n).
O
In order to state the Fundamental Theorem for the category AMg with BC-type

coinvariants, we first show that the unit map 7y is an isomorphism. For this, we show
that for any N € 4M,

(N ® H)*! = {pln @ p’ln € N}.
For n®h e (N @ H)®H,

MM nen) = Y F, (n@h)- S(@ X! @ 33X BS((#5)1X)
= > (@) oyn @ () mhS(#3)X%) f! @ 22X BS((£3)1X7) 2.
On the other hand, oV®# (n® h) =3 Iyn @ I3hy © Thho.

Comparing this two values for oV®# (n ® h) and applying id ® e ® id on both sides, we
obtain

n®h= Ze(h)(ﬁén ®}5§).
This shows that the unit map

v N — (N@H)*T, nep,(ne1),

is an isomorphism with inverse map n ® h — ne(h). This gives another proof fpr fully
faithfulness of the comparison functor — ®j H : 4M — 4M in this case (see 14.6).

15.10. Fundamental Theorem for AMg with BC-type coinvariants. Let H be
a quasi-Hopf algebra, (A, p,¢,) a right comodule algebra and M € AMg. Consider

M°H @ H as an object in AMg with the structures

a-(n@h) B =Y aen®ahh, Jmeh)=> ien®ilh®ihy,
for h,W! € H, a € A and n € M°H. Then the map
EM:MW@)H%M, Ev(n®h)= qunqu
s an isomorphism in AMg with inverse map £, given by

gy(m ZE (mo) @ my.
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Proof. By 15.7, we have the isomorphism £’ : MeoH s ppeot iy AM and tensoring
it with H, we obtain

E @idy: M®H @ H — M®H ¢ H,

as an isomorphism in AMg. By the Hausser-Nill version of the Fundamental Theorem
for AMg 13.3, there is an isomorphism

e MY @ H— M, m®h— mh.

in AMZ. Combining these two isomorphisms, we have the isomorphism

ev =emo(E ®id): M°T @ H — M“H @ H — M,

m®h— E'(m)®h — E'(m)h= Z(j}, mo ﬂS((}’gml)h
= > aymoBSm)S(@)h=>_q, E'(m) S(@)h
merim = ) dpymS(@)h.

The inverse map &), can be also computed directly as

Epr(m) (E'@id)(Y_ E'(mo) @ m1) =Y E'(E'(mg)) ® m
= > E'(Gymoo BS(@imor) ® my
= Z EI(QN; moo)&“(ﬂ)e’f((ﬁmm) ®Xmy1 = Z El(mo) ® mi.
0

As shown in the proceding sections, for any comodule algebra over a quasi-Hopf

algebra H, the comparison functor —®j H, given in 14.3 has three right adjoint functors,
namely

AHom{(H ® H,—), (=) and (=) : ;M — AM.
These have to be isomorphic and we describe the isomorphisms explicitly.

15.11. Theorem. (Coinvariants for sMZ as Hom-functor). Let H be a quasi-
Hopf algebra, (A, p,¢,) a right H-comodule algebra, and M € 4MH.

(1) There is a functorial isomorphism in gM,
$ar s aHom (A @y H, M) — M©H f— f14@ 1),
with tnverse map LZ_JM given by
m+— [a® h— E(am)h],

forae A h € H and m € M©H.
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(2) There is a functorial isomorphism in oM,
Oar : aHomf (A @y, H, M) — M®H f—s £(5,),
with inverse map éf\/[ given by
mr+— [a® h— E(am)h],
forae A,he H and m € M<H .

Proof. (1) If we substitute N = A in the isomorphism in 15.3, we obtain for
M e AMg the isomorphisms

D - aHom (A @y H, M) " Hom(A, MY = ppeot

fr—=la— fla® 1)) — f(la® 1),

for a € A. The inverse map 1%\4 is obtained as the composition

,¢A M

MeH = Hom(A, M©") 25 Hom¥ (A @y H, M),

m— [a—awm=FE(am)]— [a®h+— E'(am)h],
for a € A, h € H and m € MH. Here, Y.4,m is the isomorphism given in 15.3 and
Yy 18 its inverse.
It remains to show that 1 is right A-linear: For a € A and f € yHom!{ (A ® H, M),

a» pu(f) = Elaf(la®lm)=>_ E(f(aq) ®aw))
= >4 fla) ® a@y)o BS(G5f (a@) @ ag))
fis Heoolinear = Y dp f(@pag) ® Taaqy, BS(Gai5ac),))
Fis Admear = Y _ F(p(@)) (Fpag) @ Taaqy,)BS(a),)S(E)S(32))
by (7.6) = (Z p(3y) (Epa @ &23S(23)S(35))
= p(G)Pp (14 ® S(35))(a © 1))
by (10.6) = (a®1) (a-Ala® 1) =vu(a- f).

(2) If we set N = A in the isomorphism given in 15.9, we obtain the isomorphisms
Oar : aHom™ (A @y, H, M) "X 4 Hom(H, M) = preoll

frela— E(fla®1) = f(B,(a®1)] — E'(f(1a @ 18)) = f(5,),

for all a € A. The inverse map éf\/f is obtained as the composition

vy
0 M°H =~  Hom(A, M©T) 2%  Hom (A ®), H, M),

mr—lar—avm=Eam)]— {a®b Zd};E’(am)S(dﬁ)h
= E'(am)h},
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forae A, h € H and m € MeoH Here, 1 4 ps is the isomorphism given in 15.9 and
Yy ar 1s its inverse.

Similar to the part (1) and considering the left A-action > on MeH | we must show
that 0y is left A-linear: For a € A and f € 4Hom# (A ® H, M),

avOy(f) = Elf(la®1lu)) =Y E(flag) @aq)))
= Zf (a) ® aqy)o BS(f(a@) ® amy)1)
f is H-colinear  — Zf T p2(0) Rz a(1)165(5:3a(1 ))
SEDIETTE LOLIR) 3 A0

= (a f)(Bp) =Oumla 'f)‘

Remark. Part (2) can be proved also by composing the isomorphism

AHomP (A @y H, M) 2% M©H fo s f14® 1g),

in the part (1), with the isomorphism E' : M®H — M®H  This induces the isomor-
phism

AHom (A @y, H, M) 22 ppeol E, ppeoll
given by
fr—f1®1) — E(f(1®1)
= > f(le
by H-colincarity of f = Y _ (&
by H-linearity of f = Z f&

The inverse map can be computed as

oﬂS fA®1))
B, ® &) BS(T))
;®$2ﬁ5 )) f(Dp)-

mls{a®h — ElaE(m))h
= > E(ap) » E(m)]ag))h
= D E(a@) » E(m))e(aq))] h

foraEA,heHandmeMﬁ.

16 The category HMQI

By symmetry and following Bulacu-Caenepeel [8] and Bulacu-Torrecillas [12], we can
consider the category of two-sided Hopf modules from the right hand side.

As mentioned for the left hand version in section 14, for a quasi-bialgebra H and a
right H-comodule algebra (A, p, ¢,), the monoidal category pMpy acts from the right
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side on the category gM 4 of (H,.A)-bimodules. Thus we can consider the category of
right comodules in M 4 over the coalgebra H in gMg. This comodule category has
been defined by Bulacu and Caenepeel in [9] as follows.

16.1. (Right) Two-sided Hopf modules. Let H be a quasi-bialgebra and (A, p, ¢,)
aright H-comodule algebra. A two-sided (H,.A)-Hopf module is an (H, .A)-bimodule
M, together with a k-linear map

MM —MeH, QM(m):Zm()@ml,

satisfying the relations

(idy @) o o™ = idyy,
¢- (" @idp)(™(m)) = (idy @ A)(e"(m))- b,
Mhm) = Zhl mo ® hama,
oM(ima) = > moag) @miag),

forallm € M, h € H, and a € A. The category of two-sided (H, .A)-Hopf modules and
left H-linear, right A-linear, and right H-colinear maps is denoted by HMJIZ{.

As in 14.2, we find a subgenerator for HMQI .

16.2. Proposition. (Subgenerator for HMZ). Let H be a quasi-bialgebra and
(A, p,0,) a right H-comodule algebra. Then

(1) For any N € My, we have N ® H € HMZ with structure maps defined for
h,h €e H,ne N and a € A, by

h'-(n®h)=n®hh, (n®@Ah) a= Zna(o) ® hagy), (16.1)
and
N @ h) =) nX)@mX2®hX) = (id® A)(n@h)- ¢, (16.2)
(2) If g : N1 — Ny is an (epi-)morphism in M 4, then
g®idy : N1 @ H — No®@ H

is an (epi-)morphism in gpMH.

(3) Endowed with the structure given, for h,h' € H and a,a’ € A, by
h-(a@h’)y=a®hh', (a®h)-d = Zaal(o) ® hayy),

o (g @ h) = ZQX1 ® h1 X2 @ he X3,

A® H € HMZI and it is a subgenerator for the category HMJIZ{.
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Proof. The parts (1) and (2) are straightforward to see.
(3) Using a similar approach as in sections 12 and 14, we can see that for any M € HM,I;{ ,
the right A-module M can be considered as a homomorphic image of AW for some
cardinal number A. Therefore M ® H is a homomorphic image of

AN @ H= (Ao H)W.

For any M € HMQI , the coaction o™ : M — M ® H is a morphism in the category
HMﬁ{ , so we can consider M as a subobject of M ® H, which is generated by the object
AR H ¢ HMZ O

The above proposition give rise to

16.3. The comparison functor — ®; H : M4 — HM,IZ\I' Let H be a quasi-bialgebra
and (A, o, ¢,) a right H-comodule algebra. By 16.2, for any N € M4, N ® H € HMQI
with (H,.A)-bimodule structure given in (16.1) and H-comodule structure map given
in (16.2). This gives rise to the comparison functor

—®kHM_A —>HM§\I7 N’_)(N®H7@N®H7QN®H)

16.4. Two-sided Hopf modules as comodules over a comonad. Let H be a
quasi-bialgebra, (A, p, $,) a right H-comodule algebra, N € gM4, and V € gMpy.
Then the coaction

prA— AepH, pla)=> a@) @ag),

induces an (H, .A)-bimodule structure on N ®j V given, for h € H,a € A, v € V, and
n € N by

h-(n®@v) a= Zhnla(o) ® havagy = A(h) (n®v) p(a).
In this way, for any V' € yMpy, we get an endofunctor
-V igMy — My, N— NV,

with the (H,.A)-bimodule structure on N ®j V' given above. In particular, for V = H,
we obtain the endofunctor

G=—Qp,H: My — My, Nw+— N®,H,
with the (H, A)-bimodule structure on N ®; H given by
- (n®h) a= Zh’lna(o) ® hyvany = A(h) (n®@v) p(a).
for all h,h' € H, a € A, and n € N. Similar to the case 4MZ (see 14.5), we have

16.5. Theorem. (— ®; H as a comonad on yMy). Let (H,A,e,¢) be a quasi-
bialgebra, (A, p, ¢,) be a right H-comodule algebra. Then

(1) The endofunctor — @y H : gMy4 — gMy is a comonad on gM 4 with the comul-
tiplication § defined for N € gM 4 by

SN:NoH — (N®H)®H,
n®h — Zwln)zpl ®x2h1X§ ®x3h2X;’
= ¢ (idoA)(n®h)- b,

and counit € defined by ey =idy @e: N QH — N.
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(2) The category of two-sided Hopf modules HMQI s isomorphic to the Eilenberg-
Moore comodule category (M 4) =1,

The following lemma helps to find a right adjoint to the comparison functor.

16.6. Lemma. (The functor yHom(V ® H,-)). Let H be a quasi-bialgebra,
(A, p,¢p) a right H-comodule algebra, and V € 4M 4.

(1) If M € gM 4, then gHom(V ® H, M) € M4 with the right A-module structure
given, forh € H,a € A andv €V, by

(f-a)(v@h) = flav®h).

In this way, we get the Hom-functor gHom(V @ H,—) : gM 4 — My4.
In particular, if M € HMf}( then HHomi{(V@ H,M) € My with the right A-
module structure given above, and we obtain the Hom-functor

pHom{ (V@ H,—) : yM4 — M 4.

(2) Let Ve ;M4 and N € M 4. Then

(i) ¢ : gHom® (V @ H,N ® H) — gHomu(V ® H,N), f~ (id®¢)o f,

s an isomorphism in M 4 with inverse map v’ given by

g (g®idg) ooV ®.

(i) 0 : gHoma(V ® H,N) — Homu(V,N), f — f(—® lg), is an isomor-
phism in M 4 with inverse map 0’ given by

g = v@h—e(h)g(v)].
(iii) There is a right A-module isomorphism
Hom4(V,N) — gHomZ (V@ H N ® H), g+ g®id,
with inverse map given for f € HHomff(V @ H,N ® H) by
fr(idee)o f(—® 1)
This means that the comparison functor — Q@ H is full and faithful.

Here, we consider the left H-module structure of N to be the trivial one.

Proof. (1) For alla € A and f € ygHomy(V ® H, M), it is easy to see that f-a is
an (H, A)-bilinear map. In this way, we have yHom4(V ® H, M) € M4, and we obtain
a functor

HHOHIA(V@) H, —) Mg — My

In case M € HMQI and f € HHomﬁ (V. ® H, M), the H-colinearity of f - a follows
from the H-colinearity of f itself, and yHom% (V ® H, M) €M 4. Thus, we obtain the
functor

gHomZ (V@ H,—) : gMA — M 4.

94



(2) (i) As seen in 16.5, the functor — ®; H : gMy4 — gMy is a comonad and
the category HMQI of two-sided Hopf modules is just the Eilenberg-Moore comodule
category (gM4)~®H over this comonad. Now, considering the comparison functor
—®@ H:gMy — HMJI}{ as the free functor which is right adjoint to the forgetful func-
tor, by 4.8, we obtain the isomorphism of part (i).

(ii) For f € gHomy(V ® H,N), h,a € H and v € V,
[0(f)W)]a = [flv®ln)]a
f is right A-linear = f(z vV a(o) ® an ))
f is left H-linear — Z a1 f Va ® 1H)

= 260(1 fvaey @ 1m)
= flva®1ly)=0(f)(va).

This means that 6(f) € Homu(V,N). Also, it is straightforward to show that for
f € Hom(V, N), we have ¢'(g) € yHomy4(V ® H, N). Right A-linearity and bijectiv-
ity of 6 are easy to see.

(iii) This is just the composition of the isomorphisms ¢ and ¢’ given in (i) and (ii).
g

16.7. Corollary. Let H be a quasi-bialgebra, (A, p, ¢,) a right H-comodule algebra.

(1) For M € yMH we have a right A-module structure on yHom!} (A® H, M) given
forhe H, a,d’ € A and f € ygHomX (A® H, M) by

(f-ad)a®h)=f(da®h).
(2) For N € M 4 the morphism
ny: N — gHomZ(A® HN® H), n+—a®@h—na®h,

is an isomorphism with inverse map 1y given, for f € HHomﬂ(A @ H,N®H),
by
Mv(f) = (id®e) o f1a® 1n),
Proof. (1) Follows directly from the Lemma 16.6 by taking V = A.
(2) Composition of the isomorphisms ¢’ and 6" for V' = A gives rise to the isomor-
phism
N = Homy (A, N) = gHomg(A® H,N) = gHom (A® H,N @ H).

Using part (1), this composition yields the isomorphism ny with the given inverse map

- O

Now we show that the Hom-functor yHom’ (A ® H, ) : yMZ — M is a right
adjoint to the comparison functor in 16.3.

95



16.8. Theorem. (Hom-tensor adjunction for HM%) Let H be a quasi-bialgebra,
M EHMﬂ, and N €M 4. Then there is a functorial isomorphism

Q:= Qnr : gHomA (N ® H, M) — Hom4(N,gHom% (A ® H, M)),

fre{n—la@he fna® )},

with inverse map QEV,M given by
g—{n®@hg(n)(1a®h)}.
This means that the comparison functor
~ @k H: Mg —pMJ, N (N@Hongm o),
1s left adjoint to the Hom-functor
pHom {(A® H,—) : pM{ — M4,
with unit and counit given by
ny: N — gHomZ(A@ HHN® H) n— [a®@h—na® h),

ey pHom (A HMY® H— M, f®hw— f(14®h).
Furthermore, the comparison functor — Qi H : M4 —>HMJIZ{ 1s full and faithful.

Proof. First we show that for any f € yHom!] (N ® H, M), Q(f) is right A-linear.
For he€ H,a,a’ € Aand n € N,

[(Q(f)(n)) - dl(a@h) = Q(f)(n)(da@h) = f(na'a® h) = [Qf)(nd))](a® h).
So we have Q(f) € Hom4(N,yHom!{ (A ® H, M)).
For any g € Hom 4(N,yHom!{ (A ® H, M)), we show that /(g) € yHom{(N ® H, M).

i) ©/(g) is right A-linear. For a € A and n € N,

Y(gnehia) = > Qg (nag @hay) =Y _ g(nag)(la® hag))
g is right A-linear = Z(g(n) ())(1A®ha Zg a(O ®ha( ))
= g(n)(1®h) p(a)) = [g(n)(1 ® h)]a

= [X(g)(n®h)]a.

ii) It can be easily seen that Q'(g) is also left H-linear.

iii) For the right H-colinearity of {'(g) we show that
(@ o (g)(n&h) =) (X(9) ®id)(nX) @ X, @ hoX}).
By colinearity of g(n),

(0" 0 (9))(n® h) = " (g(n)(1 ® h)) = g(n)(X; ® M X}) ® ha X},
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On the other hand,
(Q(g) @id) Y nX)@mX;@hX3) = Y gnX)(1®mhX})®h X}
g is A-linear = Z[.g( ) }(1 ® th ) ® hZXE;
= > g(n)(X) @ X2) ®ho X},
This shows the H-colinearity of €'(g).

Now we show that  and Q' are inverse to each other. For all n € N,h € H and
f e yHom% (A ® H, M),

(@ oQ(f)(n®h)= () ()1 @h) =flan®h)= f(n® h).
Conversely, for all h € H,n € N,a € A and g EHomA(N,HHomﬁ(AQQ H,M)),

{[(Qo ) (@]} a@h) = (X(g9)(na®h)=gna)(la®h)
)

g is A-linear = [ ( a](l.A@h)_g( )( ®h)

ie. Qo (g) =g. It is also straightforward to see that  is functorial in both compo-
nents M and N.

The fully faithfulness of the comparison functor follows from Lemma 16.6. O

17 Coinvariants for HMQI

17.1. Hausser-Nill-type coinvariants for HM% . Let H be a quasi-Hopf algebra,
(A, p,¢,) a right H-comodule algebra, and M € HMQI We define a projection FE :
M — M for any m € M by

ZS amlpp mopp, (17.1)

where p, = Zp}) ® p% is defined in (10.1). We define a new right action < of A on M
given for elements a € A and m € M by

mda:=FE Z st (amian pp) mo a(o)pp (17.2)

The projection E and the action <« have the following properties:
Proposition. For a quasi-Hopf algebra H and a right H-comodule algebra (A, p, ¢,),
let M € HM%, méeM,acAandh e H. Then with the above notations we have

(i) B(hm) = e(h)E(m),

(ii) E*=E,

(i1i)) E(m) 4a=FE(ma)=m «a,
(iv) m 4 (ab) = (m 4 a) 4b,

(v) E(m)a =3 aq)[E(m) 4aq),
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(vi) >2m1 E(mo) =m
(vii) 32 E(E(m)o) ® E(m)1 = E(m) ® 1.
Proof.
(hm)1p5)(hm)o
ahymipy)himo B,

“Ha
o

S~ (m1p2) S~ (aha) b1 mo
(

E*(m) = E()_S 'amip3) mopy)

by (i) = Zs (S~ ozmlpp E(moﬁ}))
= Zgg a)e E(moﬁ:}) = E(m)
(i) E(m) <a = E(E(m)a)=> E(_ S "(amip,)mopha)

= Ze (S~ amlpp E(moﬁ})a)
= Zea E(moﬁ})a):E(ma):m<a.

(tv) m 4 (ab) = E(m(ab)) = E((ma)b) = E(ma)4b
= (m <a)«b.

=
g
2
IS
I

ZS amlpp mopp
ZS amla (1)]3,,5(‘1(1))7”0@(0)(0)@1)

(on

—
i

o

S

N
Il

> amSHalmae)) (mag) o))
= Z a(l) E(
by (i) = Zau) [E(m) < G(o)]-

(vi)  mi E(mg) = Zm15_1(04m0115,2;)m0015,1;
= Zmlic;’S_l(:?:zﬁ)S_l(amm)mog@lj
= > mi# S (amo}B) meo 7
= ZX3m125_1(aX2m11ﬁ)X1 mo
= > X%mypSTH (miuB)S T (aX?) X myg
— ZX3 e(my)S S1 )Sfl(aXQ)leo
= > XS N aX?B)X'm=m.
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(vii) Y E(E(m)o) @ E(m)1 = > E((S™ (amip?) moph)o) @ (S~ (amap?) moph)1
= > E(SHamip2)imoo () o) ® S~ (amapl)amor () 1)
by part (i) = 25(5_1(0””125%) ) E(moo ) 0)) ® S~ (amapl)amor (5)) 1)
= ZE moo Pp ) ® S (Ozm1153))m01(15;;)(1)
= Y E(z'myg Xp(pp)w)) ® ™Y ax mp X p,)e mi X (5,) )

bypart () = @) E(mo X} (5))(0) ® S~ aaPmia X2p2)ama X5 (5)) 1y

= ZE(mo X (5h)0) @ S~ (am1a X3p2)m1 X2 (By) (1)
= Y Emo X} (b)) ® S5 (X352)S ™ (amaamai X2 (5)) 1)
= Y EmoX}(Bp)0) ® S (X3p2)S  (a)e(m1) X, (Bh) 1y
= Y EmX)(5) ) @ S (aXp55) X5 (6p) )
= Y EmaBho) @ S BBy

by (105) = E(m)®1g.

Using (ii), (vi) and (vii), we obtain the following characterizations of HN-type coin-
variants as

Mt .= E(M) = {ne M|E(n)=n}
= {neM|> E(ng) ®n = E(n)®1}
= Ke((E®id)o[o™ — (—®1x))).

MeH with the right A-action <« is a right A-module and for any morphism f : M — L

in yM# | it is not hard to show that f(MH) C LH,
This gives rise to a functor (—)®H : HI\\/JIQI — M 4 which we show to be right adjoint to
the comparison functor — @ H : M4 — HMJI}(.

17.2. Proposition. (The adjoint pair (—® H, (—)°?) for HN-type coinvariants
in HM%). Let H be a quasi-Hopf algebra, (A, p, ,) a right H-comodule algebra, N €
My, and M € HMf}(. Then there is a functorial isomorphism

Y gHomZ (N @y, H, M) — Hom (N, M®H),  fr— [n— f(n®1)],
with inverse map d}ﬁv, v given by
gr— [n®@h—hgn))].
Thus, these functors
—®@p H:My — gME, ()" gM4 — My,
form an adjoint pair with unit and counit
nv:N— (NoH)“H nonol,
EM:MCOH®kH—>M, m® h— hm.
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Proof. Using the H-colinearity of f, it is easy to see that f(n ® 1) € McH,
We show that ¢ := ¢y, and ¢’ := 3y, are inverse to each other. For n € N,h € H

and f € yHoml (N &y H, M),
(W o)(Hl(n®h) = hi(f)(n)=hflne1)
by H-linearity of f = f(n ® h)
Conversely, for n € N and g € Hom4 (N, M«@H),
(¥ o )(9)l(n) =¥ (9)(n@1) =1g(n) = g(n).
O
17.3. Proposition. (HN-type coinvariants of N ® H € yMf). Let H be a

quasi-Hopf algebra, (A, p, ¢,) a right H-comodule algebra. Then for any N € My the
coinvariants of the two-sided Hopf module N @ H, comes out as

(N @ H)°H ~ N,

and forn € N and h € H we have Elm® h) =n®e(h)ly

Proof. By definition of the left H-module structure of N@ H, (n®h) = h-(n®1).
Thus,
Emn®h)=FEMh-(n®1))=c(h)E(n®1),

thus, it is enough to show that E(n ® 1) = n ® 1. For this, we compute
Em®1) = > S an@1)) (n® 1),
= > 57K aX3 ) (nX)®X2)-p,
= > X))o © ST (B)S T (X)X (B, )
o))

= anp pp)(0)®57 (ﬁp)gp(
by (105 = n®L
where p, = Zﬁ}) ®ﬁ% and ¢, = (j}) ® q~/2] are defined in (10.1) and (10.2) respectively.
The above equality means that the unit map ny : N — (N ®@ H)H of adjunction in

17.2 is an isomorphism with inverse map n® h +— e(h)n and this finishes the proof (see
also 4.1 and 16.6). O

17.4. Fundamental Theorem for HM,IZ\I with HN-coinvariants. Let H be a
quasi-Hopf algebra, (A, p, ¢,) a right H-comodule algebra and M € AMg. Consider
MeH = E(M) as a right A-module with the A-action <, defined by

maa=E ZS (amyayps) mo ao)pp.

Then the map
ey MH 9 H— M, m®h— hm,

is an isomorphism in HMZ with inverse map

ehi(m) = E(mg) @ my = (E @ id) o ™ (m).
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Proof. For he H and n € N,
/ !/
eyoem(n®@h) = &y(hn) :ZE(h1n0)®h2n1
by () = Z €(h1)E(TLQ) ® hony = Z E(no) ® hnq

= > (1@h)(E(ng) ®m)
by (viy = (1®h)(n®1)=n®h.

Conversely, for m € M,
ey oy (m) = ey (D E(mo) @my) =Y my E(mg) = m.

Thus e); is indeed an isomorphism of k-modules.
We show that €/ is a morphism in M. By definition of the (H,.4)-bimodule struc-
ture of M" @ H for h € H, a € A and n € M

h-(n®h) a= Zn <) ® h/ha(l) = ZE(TL aq)) ® h/ha(l),
therefore, we have

EM(h/ . (n ® h) : CL) = Z h'ha(l) E(n CL(O))

by (i) = Z W hagyy [E(n) < ag)]
= WhEMn)a=hhna=heynoh)a.

Finally, we show that €, (and therefore €)s ) is H-colinear: for m € M,

M (m)) = Y E(mo) 4« X} @mn X2 @ mp X3
= ZE(mOX;) ®m11)~(§ ®m12)~(3
by (142) = Y B(z"moo) ® 2’mor @ amy
= Zs(xl)E(moo) ® x%mo1 ® z3my
by (7.4) = Z E(moo) ® mo1 @ my

= (E® id)QM(mo) ®@my = (ehy ® z'd)gM(m).
O

The above Fundamental Theorem yields an additional characterization of coinvari-
ants for any M € HMZ as

MeoH  — {n6M|QM(n):Z)~(3(n<X;)®XS}
= Ke(oM — [(mo®id) o (E®id®id)((— ®14® 1x) - ¢,)]),

where a0 is the left H-module structure of M.
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17.5. Bulacu-Torrecillas coinvariants (BT-coinvariants) in HM% Let H be
quasi-bialgebra and (A, p, ¢,) a right H-comodule algebra. We have seen in section
16.3 that there is a comparison functor

—®kHZMA —>HM§{, NH(N®H7QN®H1QN®H)a

We have shown in 16.8 that this functor — ® H is a left adjoint to the Hom-functor
gHom!l (A® H,—) and a left adjoint to the Hausser-Nill coinvariants functor (—)°*.
Following Bulacu and Torrecillas [12], we consider another version of coinvariants in
HM% . For any two-sided Hopf module M € HMZI we define a projection map E :
M — M, by

Z S~ (amy)mg, for m e M, (17.3)

and for M € HMf{ we introduce BT-coinvariants M ag
M@l .— E(M) = {m € M|E(m) =m}.

17.6. Proposition. (HN versus BT-type projections). Let M € HMQI and
E E: M — M be defined by

ZS amlpp mopp, ZS (amq) my,
form e M. Then
(i) E(m) =324, E(mad,)p,, E(m)=35"1(p) E(m)p,),
(i) E: MH — Mt js an isomorphism in M4 with inverse E : M@H — pfeoH

where p, = Zﬁz ®]5§ and G, =Y c]; ® cjg are defined in (10.1) and (10.2) respectively.

Proof. (i)
> $E(mg) = qu Yama(qy))pa) mo @) (0)P,
= Z dp) (1P S~ (ST (am1) mo @) 0)B)
by (10.6) = LE(m).

The other equality is clear.
(ii) For any m € M«H,
E(E(m)) = E()_S '(ami)mo)
= ZS_ aS~ (amy)amnp,) S~ (ama)r moo B,
= ZS m01pp (aS_l(aml)g)S_l(aml)l mooﬁ})
= ZS m01pp )e(am)S™ (a) mooﬁ})
= > e(amy)S™ (amnpl) moo by = e(ma)E(mo) = E(m)

’H’LGMCOH — m.
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On the other hand, for any m € ML

E(E(m)) = E(d_ S '(5;)E(m)p,)
memeenn = B ST pp mpy)
= ZS (
= ZS (ma( Pp 1))e(@ )Sil(a)mo(ﬁ;)(o)
= > e@)S  (ami(B)) ) mo (Bp) o)
= Y e()E(mp,) = E(m)

meMeeH = m.

aS~(p2)2ma(Bp) 1)) S~ (B2)1 mo () o)

For right A-linearity of F we compute

E(m<a) = ZE (ma) ZE amla(l))mga(o))

= ZS (S~ 1 amiag )2m01a( )(1)ﬁ%)571(am1a(1))1 moo a(o)w)ﬁ})

= ZS aS 1 m01a (1)pp) (a'mla(l))S_l(oa)mooa(o)(o)ﬁ},

= Z (amyian

= Zg(ml)e(a(l))E(mo ay) = E(ma) = E(m) <a.

) =
(
- ZS (@S~ (mora o) (1)pp)5_ YaS™Hamiagy)2) S (amiam) mooa(o)(o)ﬁ,ly
(
)

(@mora(g),,P5) M00 4(0) ) Bp

Similar to (15.3), we show

17.7. Proposition. (Characterization of M@) For a quasi-Hopf algebra H, a
right H-comodule algebra (A, p, ¢,) and M € ygM4, we have

Mt = {m e M[eM(m) =) ST qh(XD)20>) m X} ® S~ (g (X3)19") X7}, (17.4)

where ¢, = Y ¢} ® ¢ € H® H is given by equation (7.29) and f~1 =Y ¢! @ ¢* is
given by equation (7.25).
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Proof. Let m € M ie. E(m)=m. Then

oMm)y = oME MO S am)
= Z S~ (omzl 1 ™Moo & S~ (aml)gmm
by (7.17) = Z ST fPagmiag®) moo ® S”H(flarmiigh)mo

= > 87 (m12g?)S T (fPaz) moo © ST (margh)S T (f en)mon

= D 157 (miag ) ® S (mugH)] (ST @ S7) o 7(fA()) (Mmoo @ mon)
by (r26) = DS H(m1ag®)ST () moo @ ST (margh) ST (v ) mon

- Z S~
by (722) = 57

- Z S~
by (14.2) = Z S™

— Z S~

(
(727”129 moo ® S~ (v'mag!)mor
H(S(
Haz
4
i
by (r2) = DS Hamipa®(X3)ag®)mo X} @ S (aminea® (XD 19" )mina' X7
(
(
“am
(
(

S(X M ez X3miag®) moo @ S~ (S(2' X ax? Ximiig')mor
azx X3m1)gg )X1 Mmoo Q S~ (aa;Q(X?’ml)lgl)a;lXQmm
T mngS)gg )mo X1 ®8~ (a:c (m12X3)1g )x1m01X2

ax3myge(X )29 )mo X1 ® S~ Hax m121(X3)19 )zt mnX

am12x )29 )mo X1®S ( 2( g) 1) l(amllg)mlllxng

— ZS
by (16) = DS

ampaa®(X ) )moX;®S_( ( 2) 1)5(m11)5_1(a)x1Xp2
amiz®(X])ag?)mo X © S~ (ax?(X))1g")a" X

q1.(X7)29%) E(m) X, @ ™ (q(X))19") X)

by (7.29) = ZS
meMe = ZS

Conversely, if we have

(Xp)20)m X, © S™Hap(X)hg") X7,

=> SN q (X2)g®)m X} @ ST g (X2)19") X7,

then
E(m) = Y S ' (ami)m
= Y 5 'as" <qL<X§>1gl>X2>s (g} (X2)29%) m X,
= Y SR (X))2graS (g S g (X)) X)) m X
= > S Hqr (X287 B)S g (X)) X)) m X))
= > STNGH(X3)S M ap (X8 X)) m X
= > S Mgie(XD)STH(B)S Har (X)) m X))
= Y S aPS (aa?B)at)m

by (7.6) = M.
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The above proposition gives a characterization of coinvariants M<H for two-sided
Hopf modules M € HMi{ as

M@ = {me M|oM(m) = S (g7 (X})20") m X} ® S (g1 (X])1g") X}, }
= Ke(o™ —[(S~ (qL(X3)2g ) @5 Hqr(X)ig") (- @ 1m) (X, @ X})]

where g1, = Y q} ® q¢2 is given by (7.29) and f =Y fl ® f2and f~! =Y ¢! ® ¢* are
the Drinfeld gauge element and its inverse given in equations (7.24) and (7.25) and 7
is the twist map a ® b — b ® a.

We consider the right A-module structure on M € yM¥4,

mda := ZSil(a(l))ma(o), (17.5)

for a € A, and m € M, where p(a) = > aq) ® a(y). If we restrict this A-action to
MeH it can be considered as a right A-submodule of M and it is straightforward to
see that for any morphism g : M — L in yM, we have g(M<) C Lk,

In this way, we obtain another coinvariants functor, called BT-coinvariants functor.

( )coH M.A N be

which we will show to be right adjoint to the comparison functor from 16.3.

17.8. Proposition. (The adjoint pair (— @ H, (—)?2) for Bulacu-Torrecillas
coinvariants in HMZ). Let H be quasi-Hopf algebra and A a right H-comodule
algebra, N € M4 and M € HMﬂ. Then there is a functorial isomorphism

nHom!{ (N @ H, M) "™ Hom (N, M), f s [0 f((n®1),)],

with inverse map wﬁ\,’M given by

® ho Y hSTH(;) g(n) ).
This means that the functors

coH
M 4 %HHMA ()—> M 4,

form an adjoint pair with unit and counit

NN — (Ve H)® ne (n®1)§,

ey ML, H— M, meh— ZhSil(ﬁi)mﬁ}).

Proof. We show that ¢ and 1)/ are inverse to each other. For n € N,h € H and
f € gHom (N &y H, M),

(W ow)(Hln@h) = > hSHE)Y(f)(n)b)
= Y hSTHE) f((n®1)G,) b

fis (H, A)-bilinear = f(z hSH(p) (n© 1)y p(B)))
= fOQ_(n®@h)(1a® S (B2)dr(B)))
by (105 = [f(n®h).
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Conversely, for n € N and g € Hom4(N, M)

[(¥ o 4")(9)](n) V@) g) =Y @5 ' (3)9(ni,) b,

g is right A-linear = Z q~2S 1 ~2 n) 4 (j;) ]5;
= > @SS (@) 9(n) (@) )b,
by (10.6) = g(n).

O

In order to state the Fundamental Theorem for the category HMJ[}( in terms of
Bulacu-Torrecillas coinvariants (BT-coinvariants), we first show that the unit map 7 N
is an isomorphism. For this, we show that for any N € M 4,

(N @ H)eH — {nqp ®qp\n € N}.
For element n ® h € (N ® H)®L
N meh) = > SN G(X3)) - (n@h) X)® S Hqr(XD)g") X
= Zn<Xp)(O) ® S (g7 (X2)20P) X)) 0) ® S~ Har,(X3)19") X2,

On the other hand, oV®#(n® h) = nX; ® thg ® thS’.
Comparing this two values for ¢V® (n ® h) and applying id ® € ® id on both sides, we
obtain

n@h=> e(h)(np,®q).
This shows that the unit map
Ny N— (Ne H)“E ne (nol)g,
is an isomorphism with inverse map n ® h +— e(h)n.

17.9. Theorem. (The Fundamental Theorem for HMZ using BT-coinvariants).
Let H be a quasi-Hopf algebra, (A, p, ¢,) a right comodule algebra and M & AMZ. Con-
sider M2 @ H as an object in HMQI with the structures

W-(n@h)-a=Y naag ®h'hag, o"*Fneh) =) naX}e@mnX)ehX}],

for h,h' € H, a € A and n € ML Then the map

ey M@ H — M, gy(n@h)=> hS™'(p)np),
s an tsomorphism in HM% with inverse map £}, given by

hi(m) =" E(mo) @ my,

where p, = Zﬁ}, ®]5l2) is the element defined in equation (10.1).
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Proof. By 17.6, we have the isomorphism E : M — preefl in M 4 and tensoring
it with H, we obtain

E®idy: ML o H — M @ H,

as an isomorphism in HMQI . By the Hausser-Nill version of the Fundamental Theorem
for HMZ , there is an isomorphism

ev MO QH — M, m&hw hm.
in HMf;{ . Combining these two isomorphisms, we have the isomorphism

ey =cmo(Exid): ML o H — M © H — M,

m@h— E(m)@h +— ZhEm :Zhs_l amlﬁi)moﬁ},

= ZhS “amy) mgpp ZhS Pp )
meMecH = ZhS pP mpP

The inverse map €); can be computed as

ZE mo) @ mq) ZE ®m1

gu(m) = (E®id
E(S™ Y amip

)

2) Moo B,) @ ma
Oém01pp)) (moo Pp) ® My

7;)

e(mo1)e(B2) E(moo pp) ® my = Y E(mg) @ my.

I
MMM

O

17.10. Comparing the coinvariants for HMf{ with Hom-functor. As seen in
16.3, we have the comparison functor — ®; H : M4 — HMQI.

We have seen in 16.8 that the functor yHomX (A ® H,—) is right adjoint to the com-
parison functor and in 15.11 we observed that different definitions of coinvariants for
M e AMg lead to three different right adjoints for the comparison functor

— R H: My —>HM.IZ, N — (N®HaQN®HaQN®H)'

They are Hom-functor HHomf{ (A® H,—) : HMf;{ — My, the HN-type coinvariants
functor (—)H : yM% —M 4 and BT-coinvariant functor (—)<& : yM —M4. Com-
paring these right adjoints, we can find a functorial isomorphisms between functors

gHom (A @ H, ), (—)®" and (-)L . yMT — My
We obtain this isomorphisms explicitly as follows:

17.11. Theorem. (M®“H and M%< for yM! as Hom-Functor). Let H be a
quasi-Hopf algebra, (A,p,¢,) a right H-comodule algebra and M a right two-sided
(H, A)-Hopf module. Then
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(1) There is a functorial isomorphism in M4
Uar : pHomZ (A @y, H, M) — M@ fr— f(14®1p),
with inverse map Y given by
m+— [a® h+— Zhﬂ(ma)],
fora€ Alh€ Hyme M and f € gHom'] (A ®y H, M).
(2) There is a functorial isomorphism in M4
Or - pHomQ (A @ H, M) — ML f— f(q,),
with inverse map éM given by
m— {a@h— Y hS™Hp2) E(ma)p, = h E(ma)},

forac Ahe H me M and f € HHomf{(A®k H,M).
Proof. (1) If we substitute N = A in the isomorphism in 17.2, we obtain for
M e HMQI the isomorphisms

Pas : pHom™ (A @y H, M) “2Y Hom 4(A, MeH) = ppeofl
A

fr=la— fla® 1) — fa® 1),

for a € A. The inverse map 1%\/[ is obtained as the composition

w.A M

MH = Hom 4(A, M°H) 25 yHom{ (A @y H, M),

mi— [m—m<4a=E(ma)]— [a®h— hE(ma),

for a € A, h € H and m € MH . Here, Y, is the isomorphism given in 17.2 (for
N = A) and ¢/ 5, is its inverse.

Considering the right A-action € on MH we must show that v, is right A-linear:
For a € A and f € yHom% (A® H, M),

Vu(f) 4a = E(f(1®1)a ZE(fa(0)®a )

= ZS_ af(ap) ® a@y)1p) flap) ® aq)o b
f is H-colinear = ZS 2 )f( (O)X ®a()Xp)ﬁ;

(12X
fis (H, A)-bilinear = Zf CL(o ;( ; (04@( )Qprp)a(l)ng(ﬁ;)(l))
b (6) = FO_aoXyBp)0) @S (Be(an) S (aX)XE(5)) 1))
= O aqy(Bp)oy® S~ (pp)qp(pp)( )
by 106) = J@®1g)=(f-a)(1a®1n)=Yu(f-a)

(2) If we set N = A in the isomorphism in 17.8, we obtain the isomorphisms

Opr : pHom (A @y, H, M) vau Hom 4 (A, ML) = ppeol.
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fr=la= E(fla®1)) = f((a®1)§y)] = E(f(La® 1x) §p)) = (dp),

for all a € A. The inverse map ¢’ is obtained as the composition

coH wA M

0y : M =~ Hom 4 (A, M) 25 yHom!] (A @ H, M),

mr— [a—mda=Ema)]— {a®@h +— ZhS_l(ﬁf,)E(ma)ﬁﬁl,)
— hEma),

forae A, h € H and m € MeH Here, ¢4, is the isomorphism given in 17.8 (for
N = A) and ¢/ 5, is its inverse.
0y is right A-linear. For a € A and f EHHomiI(A ® H, M),

O (f) aa = Y 5 aq)) b =57 aw) f(@p) aq)
f is (H,A)-bilinear = Zf (S aq)) - )'a(o))
= qua<0)<o>®5 (1)) Z50(0),))
= fO_(1® S aw))dpprla))

by 104) = [((@a®1m)3p) Zf aqp®qp
= (f-a)(@) =0u(f-a)

Remark. Part (2) can be proved also by composing the isomorphism

sHom (A @y H, M) 5 MH fr— f181),

in part (1) with the isomorphism E : M — M We obtain the isomorphism

yHom (A @y, H, M) 2 MeoH £, pee,
given by
fr=fAel) — E(f1®1))
= > SNafl@h) f(1e 1)
by H-colinearity of f = Z S™HaXD) f(X) ® X7)
by H-linearity of f = Zf X, © S aX3)X2) = f(q)

The inverse map can be computed as
m {a@h = hE(E(m)a = Y hE(aq) [B(m) <ag)))

= > helaqy) E(E(m) <ag))
= hE(E(m) <a)
= hE(E(ma)) =hE(ma)},

fora € A, h € H and m € M,
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