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Introduction

For a commutative ring k, the category Mk of k-modules is monoidal: the tensor
product of two k-modules has again a natural k-module structure and for k-modules
V,M,N , the canonical map

aV,M,N : (V ⊗M) ⊗N −→ V ⊗ (M ⊗N), (v ⊗m) ⊗ n 7→ v ⊗ (m⊗ n),

is an isomorphism. This means in particular that the composition of the endofunctors
V ⊗k −,M ⊗k − : Mk → Mk is the same as the functor induced by the tensor product
of k-modules V and M , that is, (V ⊗k M) ⊗k −. It is known from linear algebra that
the endofunctors V ⊗k −,Homk(V,−) : Mk → Mk, form an adjoint pair of functors
with unit and counit

ηM : M −→ Homk(V, V ⊗kM), m 7−→ [v 7→ v ⊗m],

εM : V ⊗ Homk(V,M) −→M, v ⊗ f 7→ f(v).

A k-bialgebra (H,µ, ι,∆, ε) is a k-module H with k-linear maps

µ : H ⊗k H → H, ι : k → H, for an associative algebra structure and
∆ : H → H ⊗k H, ε : H → k, for a coassociative coalgebra structure,

such that ∆ and ε are algebra maps (equivalently µ and ι are coalgebra maps).
Denote the category of right H-modules by MH and the category of right H-

comodules by M
H . For two modules M,N ∈ MH , the tensor product M ⊗k N is

again a right H-module by the action (m⊗n) ·h = (m⊗n)∆h (componentwise action).
This turns MH into a monoidal category. To make this work, coassociativity of the
coproduct ∆ is needed, since it is to show that for V,M and N ∈ MH , the k-linear
isomorphism

aV,M,N : (V ⊗kM) ⊗k N → V ⊗k (M ⊗k N)

is also H-linear, that is - using the Sweedler notation -

((v ⊗m) ⊗ n) · h = (vh11 ⊗mh12) ⊗ nh2 = vh1 ⊗ (mh21 ⊗ nh22) = (v ⊗ (m⊗ n)) · h.

Here the middle identity is just the coassociativity condition. In this case, it is easy
to see that the composition of the functors H ⊗k (H ⊗k −) can be identified with the
functor induced by the the tensor product of the objects, namely (H ⊗kH)⊗k−. This
is an essential property in the theory of bialgebras and Hopf algebras.

A right Hopf module M is a right H-module ρM : M ⊗k H →M as well as a right
H-comodule ρM : M →M ⊗k H such that ρM (mh) = ρM (m)∆(h) for m ∈M , h ∈ H.

For a bialgebra H, the endomorphisms ring Endk(H) has a second k-algebra struc-
ture with the convolution product ∗ and an S ∈ Endk(H) is an antipode if it is an inverse
of the identity map with respect to the convolution product, that is, id∗S = ι◦ε = S∗id.
A Hopf algebra is a bialgebra which has an antipode and the latter condition is equiv-
alent to the fact that

−⊗k H : Mk → M
H
H , M 7→ (M ⊗k H, id⊗ µ, id⊗ ∆)

is an equivalence of categories (Fundamental Theorem for Hopf algebras) (see e.g. [7,
15.5]). The adjoint (inverse) to this functor was initially defined by coinvariants (see
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[20, Proposition 1]) and it is shown in [7, 14.8] that it can be seen as the functor
HomH

H(H,−).

The thesis is concerned with quasi-bialgebras as defined in Drinfeld [13] by requir-
ing the same axioms as for bialgebras except for the coassociativity condition of the
coproduct which is modified by a normalized 3-cocycle φ ∈ H ⊗ H ⊗ H. Thus the
map aV,M,N considered above is no longer H-linear and the subsequent theory of Hopf
algebras cannot be transferred to the new situation immediately. For example, the
convolution algebra (Endk(H), ∗) is no longer associative. However, the aV,M,N may be
replaced by non-trivial associativity constraints in the monoidal category MH and this
leads the way to the necessary modification of the classical notions. The notion of an
antipode was adapted to a quasi-antipode in Drinfeld [13]. The Fundamental Theorem
corresponds to the comparison functor

−⊗k H : HM → HM
H
H , N 7→ (N ⊗k H, ̺N⊗H , ̺

N⊗H)

being an equivalence (see 12.4, 13.3 and 15.10). This was first shown by Hausser and
Nill [17] by defining a projection E : M → M which leads to a coinvariant functor
(−)coH . Another projection Ē : M → M was defined by Bulacu and Caenepeel [8]

leading to a distinct (but isomorphic) coinvariant functor (−)coH .
The purpose of this thesis is to study various functors induced by the tensor product

− ⊗k V . They may go from HM → HM, MH → MH , HMH → HMH , HM → HM
H
H ,

HMH → HM
H
H , etc. depending on V being a left or right H-module, a bimodule

or a quasi-Hopf H-bimodule. In all these cases, we obtain the right adjoints as a
variation of the Hom-functor and we give the intrinsic units and counits explicitely.
Of particular interest is the observation that for any quasi-bialgebra H, the functor

HHomH
H(H ⊗k H,−) is right adjoint to the comparison functor mentioned above.

In the first chapter, we state some facts about modules and Hopf algebra theory.
In the second chapter, we recall notions from (monoidal) category theory needed to
understand the general background of (quasi-) Hopf algebra theory.

In the third chapter, we generalize the Hom-tensor adjunction from the Hopf alge-
bra case to the quasi-Hopf setting and describe the adjunctions between the functors
Homk(V,−) and −⊗k V (resp. V ⊗k −) as endofunctors of HM, MH and HMH . The
units and counits of these adjunctions are not the same as in the Hopf algebra case. We
have to modify the adjunctions in such a way that the units and counits are morphisms
in the corresponding categories.

For example, for a Hom-tensor adjunction on HM, the units and counits in HM,
come out as (see 9.2)

ηM : M −→ sHomk(V,M ⊗k V ), m 7−→ [v 7→ pR (m⊗ v)],

εM : sHomk(V,M) ⊗ V −→M, f ⊗ v 7→
∑

q1R [f(S(q2R) v)].

The corresponding results for MH and HMH are considered in 9.11, 9.13, 9.15 and 9.16.
As a special case, if V = A is a left H-module algebra, the functor A ⊗k − (resp.

− ⊗k A) is a monad on HM. In this case, we describe the isomorphism between the
Eilenberg-Moore module category over this monad (that is in fact isomorphic to the
module category over the associative algebra A#H), and the Eilenberg-Moore comodule
category (HM)Homk(A,−) (see 9.7 and 4.9).
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In [27], Schauenburg described the adjoint pair (−⊗k V,−⊗k V
∗) of endofunctors

of HM for a finite dimensional left H-module V over a base field. In 9.4 we give
explicitely a functorial isomorphism − ⊗k V

∗ → sHomk(V,−) for a finitely generated
and projective k-module V . This yields Schauenburg‘s adjunction as a particular case
of our adjunction in 9.2.

In section 11, we generalize the Hom-tensor relations from the module category over
a quasi-Hopf algebra H to the module category over an H-comodule algebra (in the
sense of Hausser and Nill [15]). The main idea that makes this generalization possible
is that the coaction of a quasi-Hopf algebra H on a comodule algebra B gives rise to
an action of the monoidal category HM on the module category over B. This yields
an endofunctor V ⊗k − : BM → BM, for any left H-module V , which is left adjoint to
some suitable Hom-functor.

In the fourth chapter, we show that with a suitable left H-module structure on
Hom, the functor HHomH

H(H ⊗H,−) : HM
H
H → HM is right adjoint to the comparison

functor −⊗k H : HM → HM
H
H (see 12.7).

For a quasi-Hopf algebra H, we consider the Hausser-Nill coinvariants functor
(−)coH : HM

H
H → HM and the Bulacu-Caenepeel coinvariants functor (−)coH : HM

H
H →

HM which both are right adjoints to the comparison functor − ⊗k H : HM → HM
H
H .

As one of the main results of this thesis, we obtain that these functors are isomor-
phic to the Hom-functor HHomH

H(H ⊗ H,−) : HM
H
H → HM (see 13.8). This gives a

new description of the concept of coinvariants in terms of a Hom-functor and provides
alternative techniques to handle modules over quasi-Hopf algebras.

These constructions are generalized to the category of left two-sided Hopf mod-
ules AM

H
H , where (A, ρ, φρ) is a right H-comodule algebra. This category can be

considered as the Eilenberg-Moore comodule category (AMH)−⊗H over the comonad
− ⊗ H : AMH → AMH (see 4.8). Adopting the arguments of Hausser-Nill [17] and
Bulacu-Caenepeel [8], we define two (isomorphic) types of coinvariants functors. Each
of them gives rise to a version of the Fundamental Theorem. In 15.11 we describe both
types of coinvariants in terms of the Hom-functor AHomH

H(A⊗H,−) : AM
H
H → AM.

In the fifth chapter, we consider the category of right two-sided Hopf modules HM
H
A

and define similar concepts in this category. In section 16, we introduce two versions of
coinvariants functors (−)coH and (−)coH for this category and describe them in terms
of the Hom-functor AHomH

H(A⊗H,−) (see 17.11). From the categorical point of view,
all computations seem to be similar to the left case AM

H
H but they can not be derived

from that results just by symmetry arguments.

ix



x



***Acknowledgment ***

Firstly, I would like to express my sincere thanks to my advisor, Prof. Dr. Robert Wis-
bauer, for all his help, support and encouragement during my stay in Düsseldorf. He is
an exceptionally caring advisor and a very nice teacher who helped me through many
difficulties I had during my stay at Düsseldorf University. It was Prof. Wisbauer who
introduced me into the theory of coalgebras, comodules and the (quasi)-Hopf algebra
theory. In the final stages of the preparation of my thesis, he was a patient reader of the
material and gave me many useful suggestions that improved the quality of the text.
Throughout my study, his advice, guidance, and understanding were irreplaceable for
my progress. I am truly grateful to him for everything.

I extend my thanks to Prof. Dr. Fritz Grunewald and Prof. Dr. Otto Kerner who
kindly helped me during my stay in Düsseldorf in various ways.

Prof. Viacheslav A. Artamonov from MGU Moskau has patiently followed the pre-
sentations of my thesis, read the draft version of it and made useful suggestions. I am
sincerely grateful to him for his discussions and advice.

I would like to thank Prof. Daniel Bulacu for reading a draft of my thesis and
kindly answering some of my questions. Also, I am very grateful to Dr. Adriana Balan
for helpful discussions and kind suggestions.

In my M. Sc. program, I was fortunate to have the chance to finish my work under
the supervision of Prof. A. Haghany in Isfahan University of Technology. I take this
opportunity to express my sincere thanks to him for many things that he taught me
and for his kind encouragemants.

I am grateful to my friends and colleagues at the University of Düsseldorf, Mr. Car-
los Preisser and Dr. Indah E. Wijayanti for helpful discussions. Specially I am grateful
to Mr. Saeid Hamzehzarghani for his continuous help in many situations. I drew great
profit from his knowledge in various branches of mathematics and computer science
and talking with him was always rewarding for me.

Many thanks to the “Iranian Ministery of Science, Research and Technology” and
also to the “universities of Malayer and Bu-Ali Sina” (Hamedan) for kind financial and
official support that made my stay in Germany for more than 4 years possible.
Also, I am grateful to “Geselschft von Freunden und Förderern“ and ”Mathematisches
Institut der HHU“ for their unbureaucratic financial support in the last months of my
program.

Without the help and understanding of my situation by my family, the completion
of this work and my studies was not possible at all. In particular, I am most indebted
to my wife Mozhdeh, who has come with me thousands of kilometers away from her
parents. Because of my concentration on Mathematics, she was most of the time alone
responsible for taking care of the family and our two children. I would like to express
my deepest thanks for her support, understanding and love.

xi



For our daughters Bahar and Robina living in Germany was a nice opportunity to
learn many new things and to grow up with two languages and cultures. However, my
engagements with the studies did not permit me to pay as much attention to them as
they needed. Hopefully, in future we will have more time to spend together.

Lastly and mostly, I thank my parents who provided me with so much love and
optimism during my childhood that I will have a supply for life time. They taught me
to face difficulties with humor and not to give up easily. Without learning that I would
not be completing this thesis today.

xii



Chapter 1

Preliminaries

Throughout this text, unless explicitely stated, we always suppose that k is a commu-
tative ring with identity. All (co)algebras, bialgebras, Hopf algebras etc. will be over k;
unadorned ⊗ and Hom mean ⊗k and Homk, respectively. For k-modules M,N , we de-
note by Homk(M,N) all k-module homomorphisms from M to N , M∗ := Homk(M,k)
and Endk(M) := Homk(M,M). By τM,N : M ⊗N → N ⊗M we denote the twist map
which carries m⊗ n to n⊗m.

In this chapter we present some definitions and lemmas to be referred to later in this
text. For more details about module theory we refer to [32] and about Hopf algebras,
to [1], [7], [18], [22] and [29].

1 Algebras and coalgebras

1.1. Algebras and modules. A k-algebra is a k-module A together with k-linear
maps µA : A⊗A→ A and ιA : k → A and commutative diagrams

A⊗A⊗A

µA⊗id

��

id⊗µA // A⊗A

µA

��
A⊗A µA

// A,

A

ιA⊗id

��

idA

%%JJJJJJJJJJJ

id⊗ιA // A⊗A

µA

��
A⊗A µA

// A.

Right A-modules are defined as k-modules M with an action ̺M : M ⊗k A → M

inducing the commutative diagrams

M ⊗A⊗A

̺M⊗idA

��

idM⊗µA // M ⊗A

̺M

��
M ⊗A ̺M

// M,

M

id ##HHHHHHHHH

id⊗ιA // M ⊗A

̺M

��
M.

For the category of right A-modules we write MA and denote the set of all A-
module morphisms between M,N ∈ MA by HomA(M,N). It is well known that A is a
projective generator in AM.

1.2. Hom-tensor relations in kM. For any k-module V , the functors

−⊗k V :kM −→kM and Homk(V,−) :kM −→kM,

1



form an adjoint pair of functors.
For any k-module M , we have the k-linear morphism

ψM : M ⊗ V ∗ −→ Homk(V,M), m⊗ f 7−→ [v 7→ f(v)m].

This induces a natural transformation ψ : −⊗ V ∗ → Homk(V,−).
If kV is finitely generated and projective, there is a dual basis {vi}

n
i=1 and {vi}ni=1 for

V with vi ∈ V and vi ∈ V ∗ such that for any x ∈ V we have x =
∑n

i=1v
i(x) vi. In this

case, for any k-module M , ψM is an isomorphism with inverse map g 7→
∑n

i=1g(vi)⊗v
i,

i.e. ψ is a natural isomorphism and the right adjoint of the tensor-functor − ⊗k V is
again a tensor functor, namely −⊗k V

∗ : kM → kM.

1.3. The category σ[M ]. Let A be a k-algebra. A left A-module N is called M-
generated if there exists an epimorphism M (Λ) → N for some set Λ. The class
of all M -generated modules is denoted by Gen(M). An A-module N is called M-
subgenerated if it is (isomorphic to) a submodule of an M -generated module. A
subcategory C of AM is subgenerated by M , or M is a subgenerator for C if every
object of C is subgenerated by M . By σ[M ] we denote the full subcategory of AM

whose objects are all M -subgenerated modules. This is the smallest full Grothendieck
subcategory of AM containing M . σ[M ] coincides with AM if and only if A embeds
into some (finite) coproduct of copies of M (see [32, 15.4]).

The trace functor τM : AM → σ[M ], which sends any X ∈ AM to

τM (X) :=
∑

{f(N)|N ∈ σ[M ], f ∈ AHom(N,X)},

is right adjoint to the inclusion functor σ[M ] → AM (e.g. [32, 45.11]).

By definition, σ[M ] is closed under direct sums, factor modules and submodules in

AM. Subcategories with these properties are said to be closed subcategories (of AM

or σ[M ]). It is straightforward to see that any closed subcategory of AM is of type
σ[N ] for some N in AM. N ∈ σ[M ] is said to be a generator in σ[M ] if it generates
all modules in σ[M ].

Reversing the arrows in the defining diagrams for algebras and their modules leads
to the concepts

1.4. Coalgebras and Comodules. A k-coalgebra is a k-module C together with
k-linear maps ∆ : C → C ⊗ C and ε : C → k with commutative diagrams

C

∆
��

∆ // C ⊗ C

idC⊗∆
��

C ⊗ C
∆⊗idC

// C ⊗ C ⊗ C,

C

∆
��

idC

%%KKKKKKKKKKK
∆ // C ⊗ C

ε⊗C

��
C ⊗ C

idC⊗ε
// C.

A right C-comodule is a k-module M with a coaction ̺M : M → M ⊗k C inducing
the commutative diagrams

M

̺M

��

̺M

// M ⊗ C

idM⊗∆
��

M ⊗ C
̺M⊗idC

// M ⊗ C ⊗ C,

M

idM $$IIIIIIIIII

̺M

// (M ⊗ C)

idM⊗ε

��
M.

2



A k-linear map f : M → N between right C-comodules M and N is called a C-
comodule morphism if it induces commutativity of the diagram

M

̺M

��

f // N

̺N

��
M ⊗ C

f⊗idC

// N ⊗ C.

The category of right C-comodules and C-comodule morphisms is denoted by M
C

and the set of all morphisms between M,N ∈ M
C is written as HomC(M,N).

As a right comodule, C is a subgenerator in M
C , that is, every right C-comodule is

a subcomodule of a C-generated comodule (see 1.3). Note that M
C need not have

projectives even if k is a field.
If C is a flat k-module, the category M

C is a Grothendieck category (see [7], 3.13).
For a coalgebra (C,∆, ε), the dual module C∗ = Homk(C, k) is an associative k-algebra
with unit element ε. The multiplication in C∗ is the convolution product

µ : C∗ ⊗ C∗ −→ (C ⊗ C)∗
∆∗

−→ C∗,

where ∆∗ = Homk(∆, k). Explicitely,

∀f, g ∈ C∗ f ∗ g = (f ⊗ g) ◦ ∆ : C → k ⊗ k ≃ k. (1.1)

On the other hand, if (A,µ, ι) is a k-algebra, the transpose map µ∗ : A∗ → (A ⊗ A)∗

does not in general carry A∗ into A∗ ⊗ A∗. This is the case if A is finitely generated
and projective as a k-module.

2 Bialgebras and Hopf algebras

2.1. Bialgebras. A k-module B that is a k-algebra (B,µ, ι) and a k-coalgebra (B,∆, ε)
is called a k-bialgebra if ∆ and ε are algebra-maps, equivalently, if µ and ι are
coalgebra maps. This means commutativity of the diagrams

B ⊗B

∆⊗∆
��

µ // B

∆

��

(B ⊗B) ⊗ (B ⊗B)

id⊗τB,B⊗id

��
(B ⊗B) ⊗ (B ⊗B)

µ⊗µ
// B ⊗B,

k

≈

��

ι // B

∆
��

k ⊗ k
ι⊗ι

// B ⊗B.

Over any bialgebra (B,µ, ι,∆, ε), the base ring k itself is a left and right B-module
through the algebra map ε : B → k and also a left and right B-comodule through the
coalgebra map ι : k → B. Also, (Endk(B), ∗) is an associative k-algebra with unit
element ι ◦ ε and the convolution product

∀f, g ∈ Endk(B) f ∗ g = µ ◦ (f ⊗ g) ◦ ∆. (2.1)

.

3



2.2. Antipodes and Hopf algebras. An element S ∈ Endk(B) is called left (resp.
right) antipode if it is left (resp. right) inverse to idB with respect to the convolution
product ∗ on Endk(B). In case S is a left and right antipode, it is called an antipode.
A bialgebra H with an antipode is called a Hopf algebra.
The antipode S satisfies

S ∗ idB = idB ∗ S = ι ◦ ε ,

which means explicitely

µ ◦ (S ⊗ idB) ◦ ∆ = µ ◦ (idB ⊗ S) ◦ ∆ = ι ◦ ε,

and, for c ∈ B and ∆(c) =
∑
c1 ⊗ c2,

∑

S(c1)c2 =
∑

c1S(c2) = ε(c)1B .

Notice that for any f ∈ Endk(B), being invertible with respect to ∗ does not mean that
f is a bijective map.
A map f : H1 → H2 of Hopf algebras with antipodes S1 and S2 is called a Hopf
algebra morphism if it is an algebra as well as a coalgebra morphism satisfying

f (S1(c)) = S2(f(c)) ∀c ∈ H.

2.3. Properties of the antipode. [7, 15.4]

(1) S is an anti-algebra-morphism, i.e.

i) S(ab) = S(b)S(a), for all a, b ∈ H.

ii) S ◦ ι = ι, which means S(1H) = 1H .

(2) S is an anti-coalgebra-morphism, i.e.

i) ε ◦ S = ε.

ii) τ ◦ (S ⊗ S) ◦ ∆ = ∆ ◦ S, i.e. for ∆(c) =
∑
c1 ⊗ c2,

∆S(c) =
∑

S(c2) ⊗ S(c1).

2.4. Group algebras and their duals. Let G be a group and k[G] its group algebra,
that is, k[G] is a free k-module with basis G, and the product given by the group
multiplication. Furthermore, k[G] is a k-coalgebra with coproduct induced by ∆(g) =
g⊗ g and counit ε(g) = 1k, for g ∈ G. With these structures, k[G] is a k-bialgebra and
even a Hopf algebra with antipode S induced by S(g) = g−1 for g ∈ G.
If G is a finite group of order n ∈ N with elements {g1, . . . , gn}, the k-dual k[G]∗ =

Homk(k[G], k) is also a Hopf algebra. The multiplication of f, g ∈ k[G]∗ is given by
(f ∗ g)(x) = f(x)g(x) for x ∈ G. To describe the coalgebra structure, let {g}g∈G and
{eg}g∈G ⊂ k[G]∗ be a dual basis for k[G]. The coproduct and counit are defined by

∆(eg) =
∑

kh=g

ek ⊗ eh, ε(eg) = δ1,g. (2.2)

The antipode S of k[G]∗ is induced by S(eg) = eg−1 for g ∈ G.
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2.5. Modules over bialgebras.

i) Given a k-bialgebra (H,µ, ι,∆, ε), for any pairM,N of leftH-modules the algebra
morphism ∆ : H → H ⊗ H enables us to equip M ⊗k N with an H-module
structure, given by

a · (m⊗ n) = ∆(a)(m⊗ n) =
∑

(a)

a1m⊗ a2n. (2.3)

Following [7, 13.4] we denote M ⊗k N with this diagonal H-module structure by
M ⊗b

k N .

ii) For any morphisms f : M → N , g : M ′ → N ′ in HM, the k-linear map f ⊗ g :
M ⊗bM ′ → N ⊗b N ′ is a morphism in HM.

iii) For left H-modules M,N and L, the k-linear isomorphisms

(M ⊗b N) ⊗b L ≃M ⊗b (N ⊗b L), k ⊗bM ≃M ≃M ⊗b k

are isomorphisms of H-modules. If H is a cocommutative k-bialgebra, then the
twist map τM,N : M ⊗ N → N ⊗M is also an isomorphism of H-modules (see
[18, III.5.1] ).

2.6. Module structure on Hom. For any algebra H and left H-modules M,N , we
have a left H ⊗Hop-module structure on Homk(M,N) by

((a⊗ a′) · f)(m) = (a f(a′m)),

for a, a′ ∈ H, f ∈ Homk(M,N) and m ∈M .
For a Hopf algebra with antipode S, the map

(idH ⊗ S) ◦ ∆ : H
∆ // H ⊗H

idH⊗S // H ⊗Hop

is an algebra morphism from H to H ⊗ Hop. Through this morphism, we get an
H-module structure on Homk(M,N) given by

(a · g)(m) =
∑

a1(g(S(a2)m)), (2.4)

for g ∈ Homk(M,N), a ∈ H, and m ∈M . In particular, for N = k, the above equality
induces an H-module structure on M∗ = Homk(M,k) which becomes

(a · f)(m) = f(S(a)m) (2.5)

for all a ∈ H, f ∈M∗ and m ∈M .
If the antipode S is bijective, another H-module structure can be defined on

Homk(M,N) by

(a · g)(m) =
∑

a2(g(S
−1(a1)m)), (2.6)

for g ∈ Homk(M,N), a ∈ H, and m ∈ M . In particular, for the trivial H-module
N = k,

(a · f)(m) = f(S−1(a)m) (2.7)

for all a ∈ H, f ∈M∗ and m ∈M .
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2.7. Comodules over bialgebras. Let H be a k-bialgebra and M,N and L left
H-comodules. Then M ⊗k N has a left H-comodule structure by the map

M⊗N̺ : M ⊗k N
M̺⊗N̺
−→ H ⊗M ⊗H ⊗N

id⊗τ⊗id
−→ H ⊗H ⊗M ⊗N

µ⊗id⊗id
−→ H ⊗M ⊗N

explicitly, for m ∈M and n ∈ N ,

M⊗N̺(m⊗ n) =
∑

m(−1)n(−1) ⊗m0 ⊗ n0.

Following [7, 13.5], we denote M ⊗k N with this (diagonal) H-comodule structure by
M ⊗c

k N .
For any morphisms f : M → N , g : M ′ → N ′ in H

M, the tensor product map
f ⊗ g : M ⊗cM ′ → N ⊗c N ′, is a morphism in H

M. The canonical isomorphisms

(M ⊗c N) ⊗c L ≃M ⊗c (N ⊗c L), k ⊗cM ≃M ≃M ⊗c k

are isomorphisms of H-comodules.
If H is a cocommutative k-bialgebra, the twist map τM,N : M ⊗ N → N ⊗M is also
an isomorphism of H-comodules (see [18, III.6.2]).

Similar concepts for modules and comodules over a bialgebra or Hopf algebra can
be considered also on the right side. We denote these categories with MH and M

H

respectively.

2.8. Hopf modules. LetH be a k-bialgebra. A k-moduleM is called a right H-Hopf
module if M is

i) a right H-module by ̺M : M ⊗k H →M ,

ii) a right H-comodule by ̺M : M →M ⊗k H,

iii) for all m ∈M and h ∈ H, ̺M (mh) = ̺M (m)∆(h), for m ∈M,h ∈ H.

The last condition means that ̺M : M →M ⊗b
kH is H-linear and it is also equivalent

to require ̺M : M ⊗c
k H →M to be H-colinear.

2.9. Trivial Hopf modules. Let H be a k-bialgebra. For any k-module L,

i) L⊗k H is a right H-Hopf module with the canonical stuctures

̺L⊗H = idL ⊗ ∆ : L⊗k H −→ L⊗k H ⊗k H, l ⊗ h 7→ l ⊗ ∆(h),
̺L⊗H = idL ⊗ µ : L⊗k H ⊗k H −→ L⊗k H, l ⊗ h⊗ a 7→ l ⊗ ha.

ii) For every k-module morphism f : L→ L′, the map

f ⊗ id : L⊗k H → L′ ⊗k H

is an H-Hopf module morphism.

In particular, H ⊗k H is a trivial right H-Hopf module.
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2.10. H-modules and Hopf modules. Let H be a k-bialgebra. For a right H-
module N , the right H-module N ⊗b

k H is a right H-Hopf module with the canonical
comodule stucture

̺N⊗H = idN ⊗ ∆ : N ⊗b
k H → N ⊗b

k H ⊗k H, n⊗ h 7→ n⊗ ∆h.

For every H-module morphism f : N → N ′, the map

f ⊗ id : N ⊗b
k H → N ′ ⊗b

k H

is an H-Hopf module morphism.
In particular, H⊗b

kH is a right H-Hopf modules. For any right H-module N , there
is a Hopf module map

γN : N ⊗k H → N ⊗b
k H, n⊗ h 7→ (n⊗ 1H)∆(h). (2.8)

γN is an isomorphism for all N ∈ MH if and only if H is a Hopf algebra (see [7, 14.2,
14.3 and 15.8]).

2.11. The category M
H
H . Let H be a k-bialgebra. The right H-Hopf modules,

together with the maps which are both right H-comodule and right H-module mor-
phisms, form a category that is denoted by M

H
H . For objects M,M ′ in M

H
H , we denote

by HomH
H(M,M ′) the set of morphisms from M to M ′. There is a faithful functor

M
H
H −→ Hop#H∗M,

from the category M
H
H to the module category over the smash product Hop#H∗. M

H
H

can be considered as a full subcategory of Hop#H∗M if kH is locally projective.

2.12. Properties of M
H
H . Let H be a k-bialgebra (see [7, 14.5, 14.6 and 14.15]).

i) M
H
H is closed under direct sums and factor modules.

ii) The right H-Hopf module H ⊗b
k H is a subgenerator in M

H
H .

iii) The right H-Hopf module H ⊗c
k H is a subgenerator in M

H
H .

iv) For any M ∈ M
H
H , N ∈ MH ,

HomH
H(M,N ⊗k H) −→ HomH(M,N), f 7→ (id⊗ ε) ◦ f,

is a k-module isomorphism with inverse map h 7→ (h⊗ id) ◦ ̺M .

v) For any K,L ∈ Mk,

HomH
H(K ⊗k H,L⊗k H) −→ Homk(K,L), f 7→ (idL ⊗ ε) ◦ f(−⊗ 1H),

is a k-module isomorphism with inverse map h 7→ (h⊗ idH).

vi) If kH is flat, then M
H
H is a Grothendieck category and for Hopf modules M,N ∈

M
H
H , the functors HomH

H(M,−) : M
H
H → Mk and HomH

H(−, N) : M
H
H → Mk are

both left exact.
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2.13. Coinvariants and Hopf modules. Let M be a right H-Hopf module. The
coinvariants of H in M are defined as

M coH = {m ∈M | ̺M (m) = m⊗k 1H} = Ke (̺M − (−⊗ 1H)).

(1) The map
νM : HomH

H(H,M) −→M coH , f 7→ f(1H),

is a k-module isomorphism with inverse map

ωM : M coH −→ HomH
H(H,M), m 7→ [h 7→ mh].

In particular, HomH
H(H,H) → HcoH = k 1H is a ring isomorphism.

We have the commutative diagram

HomH
H(H,M) ⊗k H

νM⊗idH

��

// M

idM

��
M coH ⊗k H

// M,

f ⊗ h

��

// f(h)

��
f(1H) ⊗ h // f(1H)h.

(2) For any right H-module N , there is a k-module isomorphism

ν ′N⊗H : HomH
H(H,N ⊗b

k H) −→ N, f 7→ (id⊗ ε) ◦ f(1H) ,

with inverse map n 7→ [h 7→
∑
nh1 ⊗ h2]. We have the commutative diagram

HomH
H(H,N ⊗b

k H) ⊗k H

ν′N⊗H⊗id

��

// N ⊗b
k H

id
��

N ⊗k H γN

// N ⊗b
k H,

g ⊗ h

��

// g(h)

��
(idN ⊗ ε)g(1) ⊗ h // g(1)∆(h),

where γN : N ⊗H → N ⊗bH is the H-Hopf module morphism described in (2.8)
(see also [7, 14.3]). In particular,

(H ⊗k H)coH ≃ HomH
H(H,H ⊗k H) ≃ H.

3 Co-chains and co-cycles

The (co)homology theory for Hopf algebras has been studied by Sweedler and others.
V. G. Drinfeld has obtained new examples of (quasi-triangular) Hopf algebras from the
old ones by “twisting” the structures by 2-cocycles. In Majid [22], the cochains and
cocycles are defined for bialgebras and Hopf algebras.
In this section we follow the approach in [22], with some weaker conditions. In fact we
have a unital multiplication and a counital comultiplication which are compatible, but
we do not assume the comultiplication to be coassociative. This is done in view of the
application of this theory to the quasi-Hopf algebra setting.

3.1. Cochains and cocycles without coassociativity condition. Let H be an
associative algebra with a comultiplication ∆ : H → H ⊗ H and a counit ε : H → k

which both are algebra maps. For any n ∈ N and i = 1, 2, · · · , n, we set

∆i : H⊗n → H⊗n+1, ∆i = id⊗ id⊗ · · · ⊗ ∆
︸︷︷︸

i−th

⊗ · · · ⊗ id,
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and
∆0 = 1 ⊗ (−), ∆n+1 = (−) ⊗ 1.

We define an n-cochain ω as an invertible element in H⊗n, and its coboundary as
the (n+ 1)-cochain

∂nω = (
i even∏

i=0

∆iω)(
i odd∏

i=1

∆iω
−1) 0 ≤ i ≤ n+ 1. (3.1)

(The products are taken in increasing order).
An n-cocycle for H is an invertible element ω ∈ H⊗n, such that ∂nω = 1.
A cochain or cocycle ω is said to be counital or normalized if εi(ω) = 1 for all
i = 1, 2, · · · , n, where εi = id⊗ · · · ⊗ ε

︸︷︷︸

i−th

⊗ · · · ⊗ id.

Case n = 1. For n = 1, ∆i : H → H ⊗H, i = 0, 1, 2,

∆0(h) = 1 ⊗ h, ∆1(h
−1) = ∆(h−1), and ∆2(h) = h⊗ 1,

then an element h ∈ H is a 1-cocycle if and only if

1 = ∂1h = ∆0(h)∆2(h)∆1(h
−1) = (1 ⊗ h)(h⊗ 1)∆(h)−1 ⇔ ∆(h) = h⊗ h.

i.e. h is a semi-grouplike element. h ∈ H is a counital 1-cocycle if and only if it is
an invertible grouplike element.

Case n = 2. For n = 2, ∆i : H ⊗ H → H⊗3, i = 0, 1, 2, 3, for an invertible
element R =

∑
R1 ⊗R2,

∆0(R) = 1 ⊗R, ∆1(R
−1) = (∆ ⊗ id)(R−1),

∆2(R) = (id⊗ ∆)(R), and ∆3(R
−1) = R−1 ⊗ 1,

Thus, R is a 2-cocycle if and only if

1 = ∂2R = (1 ⊗R)(id⊗ ∆)(R)(∆ ⊗ id)(R−1)(R−1 ⊗ 1)

This corresponds to the equality

(1 ⊗R)(id⊗ ∆)(R) = (R⊗ 1)(∆ ⊗ id)(R). (3.2)

R is counital (normalized) if and only if

(ε⊗ id)(R) = 1 = (id⊗ ε)(R).

For example, let H be a braided bialgebra with universal R-matrix R. Then the
universal R-matrix R satisfies the equalities

(∆ ⊗ idH)(R) = R13R23 =
∑

(R1 ⊗ 1 ⊗ R
2)(1 ⊗ R), (3.3)

(idH ⊗ ∆)(R) = R13R12 =
∑

(R1 ⊗ 1 ⊗ R
2)(R ⊗ 1), (3.4)

and R12R13R23 = R23R13R12, (3.5)
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in other words

∑

(R ⊗ 1)(R1 ⊗ 1 ⊗ R
2)(1 ⊗ R) =

∑

(1 ⊗ R)(R1 ⊗ 1 ⊗ R
2)(R ⊗ 1).

and
(ε⊗ id)(R) = 1 = (id⊗ ε)(R), (3.6)

(see [18, pp. 173-175]). Thus, R is a normalized 2-cocycle.

Case n = 3. For n = 3, ∆i : H⊗3 → H⊗4, i = 0, 1, 2, 3, 4, an invertible element
φ ∈ H⊗3 is a 3-cocycle if and only if

1 = ∂3φ = ∆0(φ)∆2(φ)∆4(φ)∆1(φ
−1)∆3(φ

−1)

= (1 ⊗ φ)(id⊗ ∆ ⊗ id)(φ)(φ⊗ 1)(∆ ⊗ id⊗ id)(φ−1)(id⊗ id⊗ ∆)(φ−1)

so φ is a 3-cocycle if and only if

(1 ⊗ φ)(id⊗ ∆ ⊗ id)(φ)(φ⊗ 1) = (id⊗ id⊗ ∆)(φ)(∆ ⊗ id⊗ id)(φ) (3.7)

φ is counital (normalized ) if and only if

(ε⊗ id⊗ id)(φ) = 1 ⊗ 1 = (id⊗ ε⊗ id)(φ) = (id⊗ id⊗ ε)(φ).

We will use the concept of normalized 3-cocycles in the definition of quasi-bialgebras
(see (7.3) and (7.4)).
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Chapter 2

Tools from category theory

In this chapter we present some ingredients from category theory to be referred to later
in this text. More details can be found in [3], [4], [5], [21], [24] and [28].

4 Monads and comonads

4.1. Adjoint Functors. A pair (L,R) of functors L : A → B and R : B → A between
categories A and B is called an adjoint pair if there exists a natural isomorphism

Ω : B(L(−),−) −→ A(−, R(−)),

which can be described by natural transformations

the unit η : idA → RL, and the counit ε : LR −→ idB,

satisfying the triangular identities

L

1L
''OOOOOOOOOOOOOO

Lη // LRL

εL
��
L,

R

1R ''OOOOOOOOOOOOOO
ηR // RLR

Rε
��
R.

For any object A in A and B in B,

εB = Ω−1
A,B(idR(B)) and ηA = ΩA,B(idL(A)).

Conversely, having a unit η : idA → RL and a counit ε : LR→ idB satisfying the trian-
gular identities, for any object A in A and B in B, we obtain the natural isomorphism

ΩA,B : B(L(A), B) −→ A(A,R(B)),

given by
ΩA,B(f) = R(f) ◦ ηA, for f : L(A) −→ B, (4.1)

with inverse map

Ω−1
A,B(g) = εB ◦ L(g), for g : A −→ R(B). (4.2)

Let (L,R) be an adjoint pair of functors, then (e.g. [6])
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i) R is full and faithful if and only if ε : LR→ idB is an isomorphism.

ii) L is full and faithful if and only if η : idA → RL is an isomorphism.

iii) L is an equivalence if and only if η and ε are isomorphisms.

4.2. Natural transformations for adjoint pairs. Let A
L // B

R // A be an

adjoint pair of functors with unit η and counit ε and A
L′

// B
R′

// A be another
adjoint pair with unit η′ and counit ε′ between categories A and B. Then there is a
bijection between natural transformations

Nat(L′, L) −→ Nat(R,R′), ϕ 7→ ϕ̄ := R′ε ◦R′ϕR ◦ η′R,

with inverse

Nat(R,R′) −→ Nat(L′, L), ϕ̄ 7→ ϕ := ε′R ◦ L′ϕ̄L ◦ L′η.

In this case, following Kelly and Street [19], we say that ϕ and ϕ̄ are mates under the
given adjunctions (see also [23] and [6]).

4.3. F -modules. Given an endofunctor F : A → A, an F -module (A, ̺A) consists of
an object A ∈ A together with a morphism ̺A : F (A) → A in A.
A morphism f : A→ A′ in A between F -modules is an F -module morphism provided
it induces a commutative diagram

F (A)

ρA

��

F (f) // F (A′)

ρA′

��
A

f
// A′.

With these morphisms, the F -modules form a category which is denoted by AF . There
is the faithful forgetful functor

UF : AF −→ A, (A, ̺A) 7→ A.

The relations between AF and A are even stronger if additional conditions are
imposed on the endofunctor F (see e.g. [31, 2.5.]).

4.4. Monads. A monad F = (F, µ, η) on a category A consists of an endofunctor
F : A → A and two natural transformations, the multiplication µ : F 2 → F and the
unit η : idA → F , and commutative diagrams

F 3

µF

��

Fµ // F 2

µ

��
F 2

µ
// F,

F

idF
&&NNNNNNNNNNNNN

ηF // F 2

µ

��

F.
Fηoo

idF
xxppppppppppppp

F
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Given monads F = (F, µ, η) and F
′ = (F ′, µ′, η′), a natural transformation α : F →

F ′ is called a monad morphism from F to F
′, if it induces commutativity of the

diagrams

F 2

µ

��

Fα // FF ′ αF ′
//
F ′2

µ′

��
F α

// F ′,

idA

η

��

η′

''NNNNNNNNNNNNN

F α
// F ′.

4.5. Monads and their modules. Given a monad F = (F, µ, η) on a category A, an
F-module (A, ρA) consists of an object A ∈ A and an arrow ρA : F (A) → A in A,
with commutative diagrams

F 2(A)

µA

��

F (ρA) // F (A)

ρA

��
F (A) ρA

// A,

A

idA
''OOOOOOOOOOOOOO

ηA // F (A)

ρA

��
A.

F-module morphisms are defined as in 4.3. The class all F-modules together with
F-module morphisms form a category which is called the Eilenberg-Moore module
category over the monad F and denoted by AF.
As shown in Eilenberg-Moore [14], for a monad F, the forgetful functor UF : AF → A

is right adjoint to the (free) functor

φF : A −→ AF, A 7−→ [(F (A), FF (A)
µA // F (A)) ],

[ A
f // A′ ] 7→ [ F (A)

F (f) // F (A′) ],

by the isomorphism

AF(F (A), B)) −→ A(A,UF(B)), f 7→ f ◦ ηA,

for any A ∈ A and B ∈ AF. Notice that UF ◦ φF = F .

Dual to the preceding notions there is a theory of comodules which we sketch in the
next paragraphs.

4.6. G-comodules. For a functor G : A → A, a G-comodule (A, ̺A) is an A ∈ A

with a morphism ̺A : A −→ G(A) in A.
A G-comodule morphism is a morphism f : A → A′ in A between G-comodules A
and A′ inducing a commutative diagram

A

ρA

��

f // A′

ρA′

��
G(A)

G(f)
// G(A′).

The G-comodules together with G-comodule morphisms form a category which we
denote by A

G. The forgetful functor is faithful,

UG : A
G −→ A, (A, ̺A) 7→ A.
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4.7. Comonads. A comonad G = (G, δ, ε) on a category A consists of an endofunctor
G : A → A and two natural transformations, the comultiplication δ : G → G2 and the
counit ε : G→ idA, such that the following diagrams commute

G

δ

��

δ // G2

δG
��

G2
Gδ

// G3,

G

δ
�� idG &&NNNNNNNNNNNNN

δ // G2

εG

��
G2

Gε
// G.

Comonad morphisms are defined in the same way as monad morphisms (see 4.6).

Given two comonads G = (G, δ, ε) and G
′ = (G′, δ′, ε′), a natural transformation β :

G→ G′ is called a morphism of comonads if the following diagrams commute

G

δ

��

β // G′

δ′

��
GG

β⋆β
// G′G′,

G

β

��

ε // idA

G′.

ε′

77ppppppppppppp

4.8. Comonads and their comodules. Given a comonad G = (G, δ, ε) on a category
A, a G-comodule (A, ρA) consists of an object A ∈ A and an arrow ρA : A → G(A)
in A, with commutative diagrams

A

ρA

��

ρA

// G(A)

δA
��

G(A)
G(ρA)

// GG(A),

A

idA
''OOOOOOOOOOOOOO

ρA

// G(A)

εA

��
A.

The class all G-comodules together with G-comodule maps form a category which
is called the Eilenberg-Moore comodule category over comonad G and denoted
by A

G. The forgetful functor UG : A
G → A is left adjoint to the (free) functor

φG : A −→ A
G, A 7−→ [(G(A), G(A)

δA // GG(A)) ],

[ A
f // A′ ] 7→ [ G(A)

G(f) // G(A′) ],

by the isomorphism

A
G(B,G(A)) −→ A(UG(B), A), f 7→ εA ◦ f,

for any A ∈ A and B ∈ A
G. Notice that UG ◦ φG = G.

Monads and comonads are closely related to adjoint pairs of functors.

4.9. (Co)monads related to adjoints. Let L : A → B and R : B → A be an adjoint
pair of functors with unit η : idA → RL and counit ε : LR→ idB. Then

F := (RL,RεL, η), RLRL
RεL
−→ RL, η : idA −→ RL,
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is a monad on A. Similarly, a comonad on B is defined by

G := (LR,LηR, ε), LR
LηR
−→ LRLR, ε : LR −→ idB.

As observed by Eilenberg and Moore in [14], the monad structure of an endofunctor
induces a comonad structure on its adjoint endofunctor. More precisely, as outlined in
[6], for an adjoint pair L : A → B and R : B → A of functors:

(1) The following are equivalent:

(a) L is a monad,

(b) R is a comonad.

In this case, the Eilenberg-Moore categories AL and A
R are equivalent.

(2) The following are equivalent:

(a) L is a comonad,

(b) R is a monad.

In this case, the Kleisli categories ÃR and Ã
L are equivalent, where the Kleisli

category ÃR (resp. Ã
L) is a subcategory of the Eilenberg-Moore category AR

(resp. A
L) with objects R(A) (resp. L(A)) for all A ∈ A.

5 Monoidal categories

5.1. Monoidal categories. A category A is called a monoidal (or tensor) cate-
gory if there exist a bifunctor − ⊗ − : A × A → A, a distinguished neutral object E,
and natural isomorphisms

a : (−⊗−) ⊗− −→ −⊗ (−⊗−) ( associativity constraint )

λ : E ⊗− −→ idA and ρ : −⊗ E −→ idA

(left and right unit constraints ) such that for all objects W,X, Y, Z in A the following
two diagrams commute

[(W ⊗X) ⊗ Y ] ⊗ Z

aW⊗X,Y,Z

��

aW,X,Y ⊗idZ // [W ⊗ (X ⊗ Y )] ⊗ Z
aW,(X⊗Y ),Z

**UUUUUUUUUUUUUUUU

W ⊗ [(X ⊗ Y ) ⊗ Z]

idW⊗aX,Y,Zttiiiiiiiiiiiiiiii

(W ⊗X) ⊗ (Y ⊗ Z) aW,X,Y ⊗Z

// W ⊗ [X ⊗ (Y ⊗ Z)],

(X ⊗ E) ⊗ Y

ρX⊗idY **UUUUUUUUUUUUUUUUU

aA,E,Y // X ⊗ (E ⊗ Y )

idX⊗λY

��
X ⊗ Y.

A monoidal category (A,⊗, E, a, λ, ρ) is said to be strict if the isomorphisms a, λ, and
ρ are the identity morphisms. For a monoidal category (A,⊗, E, a, λ, ρ), we shortly
write (A,⊗, E) or just A if no confusion arises.
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5.2. Monoidal functors and natural transformations. Let A and A
′ be two

monoidal categories. A monoidal functor from A to A
′ is a triple (F,ϕ0, ϕ

′) where
F : A → A

′ is a functor, ϕ0 : E′ → F (E) is an isomorphism and

ϕ′ : F (−) ⊗′ F (−) −→ F (−⊗−)

is a natural isomorphism such that for all objects U, V,W ∈ A, the diagrams

E′ ⊗′ F (U)

ϕ0⊗
′idF (U)

��

λ′
F (U) // F (U)

F (E) ⊗′ F (U)
ϕ′

E,U

// F (E ⊗ U),

F (λU )

OO
F (U) ⊗′ E′

idF (U)⊗
′ϕ0

��

ρ′
F (U) // F (U)

F (U) ⊗′ F (E)
ϕ′

U,E

// F (U ⊗ E),

F (ρU )

OO

commute and also the following coherence diagram is commutative.

(F (U) ⊗′ F (V )) ⊗′ F (W )

ϕ′
U,V ⊗′id

��

a′ // F (U) ⊗′ (F (V ) ⊗′ F (W ))

id⊗′ϕ′
V,W

��
F (U ⊗ V ) ⊗′ F (W )

ϕ′
U⊗V,W

��

F (U) ⊗′ F (V ⊗W )

ϕ′
U,V ⊗W

��
F ((U ⊗ V ) ⊗W )

F (a)
// F (U ⊗ (V ⊗W )).

A monoidal functor (F,ϕ0, ϕ
′) is said to be strict if ϕ0 and ϕ′ are the identity

morphisms.

A natural monoidal transformation

γ : (F,ϕ0, ϕ
′) −→ (G,ψ0, ψ

′)

between monoidal functors F,G : A → A
′ is a natural transformation γ : F → G such

that for each pair (U, V ) of objects in A, we get the commutative diagrams

F (U) ⊗′ F (V )

γU⊗′γV

��

ϕ′
U,V // F (U ⊗ V )

γ(U⊗V )

��
G(U) ⊗′ G(V )

ψ′
U,V

// G(U ⊗ V ),

F (E)

γE

��
E′

ϕ0

<<yyyyyyyyy

ψ0

// G(E).

A natural monoidal isomorphism is a natural monoidal transformation that is also
a natural isomorphism. A monoidal equivalence between two monoidal categories
is a monoidal functor F : A → A

′ such that there exists a monoidal functor G : A
′ → A

and natural isomorphisms γ : idA′ → FG and θ : GF → idA. For more details see [18].

5.3. Duality in a monoidal category. The concepts of evaluation and coevaluation
morphisms, introduced for module categories over bialgebras and Hopf algebras, (see
5.4 below), can be generalized to monoidal categories in order to find left (and right)
dual objects. We will encounter these concepts again in module categories over quasi-
Hopf algebras (see 7.3).
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A monoidal category A is called a monoidal category with left duality if, for each
object V in A, there exist an object V ∗ and morphisms

bV : E −→ V ⊗ V ∗ and dV : V ∗ ⊗ V −→ E

in the category A such that

(idV ⊗ dV ) ◦ aV,V ∗,V ◦ (bV ⊗ idV ) = idV (dV ⊗ idV ∗) ◦ a−1
V ∗,V,V ∗ ◦ (idV ∗ ⊗ bV ) = idV ∗ .

Similarly, a monoidal category A has right duality if, for each object V in A, there
exist an object ∗V and morphisms

b′V : E −→ ∗V ⊗ V and d′V : V ⊗ ∗V −→ E

in the category A such that

(d′V ⊗ idV ) ◦ a−1
V, ∗V,V ◦ (idV ⊗ b′V ) = idV , (id ∗V ⊗ d′V ) ◦ a∗V,V, ∗V ◦ (b′V ⊗ id ∗V ) = id ∗V .

A category A is called rigid (or autonomous) if it has left and right duality.

5.4. Duality in module categories over a Hopf algebra.

i) Let H be a bialgebra over a commutative ring k. Then the category HM of left
H-modules is a monoidal category (see 2.5).

ii) IfH is a Hopf algebra with an antipode S, the category (HM)fgp of leftH-modules
that are finitely generated and projective over k, is a monoidal full subcategory
of HM. As seen in 2.6, for any left H-module M , we can endow the dual module
M∗ = Homk(M,k) with the left H-action (h · f)(m) = f(S(h)m) and we have
the evaluation map

dM : M∗ ⊗M −→ k, f ⊗m 7→ f(m),

for all m ∈ M and f ∈ M∗. Now, if M is finitely generated and projective as a
k-module, with dual basis {mi}

n
i=1 and {mi}ni=1, we have the coevaluation map

bM : k −→M ⊗M∗, 1 7→
∑

i
mi ⊗mi.

Both dM and bM are H-linear and satisfy

(idM ⊗ dM ) ◦ (bM ⊗ idM ) = idM and (dM ⊗ idM∗) ◦ (idM∗ ⊗ bM ) = idM∗ ,

endowing (HM)fgp with the structure of a monoidal category with left duality.

iii) If the antipode S is invertible, then for any left H-module M denote by ∗M

the dual k-module Homk(M,k) equipped with the left H-action (h · f)(m) =
f(S−1(h)m) (see 2.6).
For any finitely generated projective k-module M , define

b′M : k −→ ∗M ⊗M, 1 7→
∑

i
mi ⊗mi, (5.1)

d′M : M ⊗ ∗M −→ k, m⊗ f 7→ f(m), (5.2)

using the same conventions as above. Then b′M and d′M are H-linear satisfying

(d′M ⊗ idM ) ◦ (idM ⊗ b′M ) = idM and (id∗M ⊗ d′M ) ◦ (b′M ⊗ id∗M ) = id∗M .

That is, (HM)fgp has right duality, i.e. (HM)fgp is autonomous (rigid).
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6 Monoidal categories acting on categories

In the following, we present some necessary information about action of monoidal cat-
egories on categories to be refered to in this text. One can find more details in [24],
[25] and [28].

6.1. Action of a monoidal category. Let (A,⊗, E, a, λ, ρ) be a monoidal category.
A right A-category is a four-tuple (D, ⋄,Ψ, r), where D is a category, ⋄ : D×A → D
is a functor, and

Ψ : (− ⋄ −) ⋄ − −→ − ⋄ (−⊗−) and r : − ⋄ E −→ id

are natural isomorphisms such that for all objects M ∈ D and X,Y, Z ∈ A,

(id ⋄ aX,Y,Z) ◦ ΨM,X⊗Y,Z ◦ (ΨM,X,Y ⋄ id) = ΨM,X,Y⊗Z ◦ ΨM⋄X,Y,Z , (6.1)

(id ⋄ λX) ◦ ΨM,E,X = rM ⋄ id. (6.2)

This means commutativity of the diagrams

[(M ⋄X) ⋄ Y ] ⋄ Z

ΨM,X,Y ⋄id

��

ΨM⋄X,Y,Z // (M ⋄X) ⋄ (Y ⊗ Z)
ΨM,X,Y ⊗Z

**TTTTTTTTTTTTTTTT

M ⋄ [X ⊗ (Y ⊗ Z)]

[M ⋄ (X ⊗ Y )] ⋄ Z
ΨM,(X⊗Y ),Z

// M ⋄ [(X ⊗ Y ) ⊗ Z],

id⋄aX,Y,Z

44jjjjjjjjjjjjjjjj

(M ⋄ E) ⋄X]

rM⋄id

��

ΨM,E,X // M ⋄ (E ⊗X)

id⋄λX

��
M ⋄X

idM⋄X

// M ⋄X.

The natural isomorphism Ψ can be considered as a “mixed associativity constraint” of
D.
For any right A-category (D, ⋄,Ψ, r) and X ∈ A, we obtain an endofunctor

− ⋄X : D −→ D.

A left A-category (D, ⋄′,Ψ′, l) consists of a category D together with natural
isomorphisms

Ψ′ : (−⊗−) ⋄′ − −→ − ⋄′ (− ⋄′ −) and l : E ⋄′ − −→ id,

with commutative diagrams

[(X ⊗ Y ) ⊗ Z] ⋄′ M

Ψ(X⊗Y ),Z,M

��

aX,Y,Z⋄′idM // [X ⊗ (Y ⊗ Z)] ⋄′ M
ΨX,(Y ⊗Z),M

**TTTTTTTTTTTTTTTT

X ⋄′ [(Y ⊗ Z) ⋄′ M ]

idX⋄′ψttjjjjjjjjjjjjjjjj

(X ⊗ Y ) ⋄′ (Z ⋄′ M)
ΨX,Y,(Z⋄′M)

// X ⋄′ [Y ⋄′ (Z ⋄′ M)],
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(X ⊗ E) ⋄′ M

ρX⋄′id

��

ΨX,E,M // X ⋄′ (E ⋄′ M)

id⋄′lM
��

X ⋄′ M
idX⋄′M

// X ⋄′ M.

For any left A-category (D, ⋄,Ψ, l) and X ∈ A, we obtain an endofunctor

X ⋄ − : D −→ D.

Let (A,⊗, E, a, λ, ρ) be a monoidal category. Then we have a second monoidal
structure Ā := (A, ⊗̄ := ⊗ ◦ τ, E, ā, ρ, λ), where τ : A × A → A × A is defined by
τ(X,Y ) = (Y,X), and ā is defined by āX,Y,Z := a−1

Z,Y,X . Now, if (D, ⋄′,Ψ′, l) is a left

A-category, then it becomes a right Ā-category, with ⋄ defined by M ⋄X = X ⋄′ M ,
Ψ is defined by ΨM,X,Y := Ψ−1

Y,X,M , and with r = l. In this way, we have a bijective
correspondence between left and right A-category structures on a category D, (and
results on left (resp. right) A-categories can be translated into results about right (resp.
left) A-categories).

6.2. A monoidal category acting on itself. As the first example, we can see
that any monoidal category (A,⊗, E, a, λ, ρ) is itself a left and right A-category with
⋄ = ⋄′ = ⊗, Ψ = Ψ′ = a and r = ρ and l = λ. Therefore, it can be considered as a left
A × Ā-category.

6.3. Modules over an algebra in A. Let A be a monoidal category and (A,µ, ι)
be an algebra in this monoidal category. Then D = AA, the category of all right A-
modules in A, is a left A-category since for all X ∈ A and (M,̺M ) ∈ D, X ⊗M carries
the structure of a right A-module by

(X ⊗M) ⊗A ≃ X ⊗ (M ⊗A)
id⊗̺M−→ X ⊗M.

In this way, for any object X ∈ A, we have an endofunctor

X ⋄ − : AA −→ AA.

In the special case A = M
H , for a bialgebra H, let A be an algebra in A (a right

H-comodule algebra). Then the category B = (MH)A of all right (H,A)-Hopf modules
is a left M

H -category. So for any right H-comodule M , we have the endofunctor
M ⊗k − : (MH)A → (MH)A. In particular, the endofunctor A ⊗ − is a monad on the
category (MH)A of right (H,A)-Hopf modules.

Now let A = HM, and A be an algebra in HM (a left H-module algebra). Then the
category D = A(HM) ≃ A#HM is a right HM-category. Furthermore, if A = MH and
A is an algebra in A (a right H-module algebra), then the category B

′ = (MH)A of all
right A-modules in MH , is a left MH -category.

6.4. Comodules over a coalgebra in A. Let again A be a monoidal category and
(C,∆, ε) be a coalgebra in this monoidal category. Then D = A

C , the category of all
right C-comodules in A, is a left A-category: for all X ∈ A and (M,̺M ) ∈ D, X ⊗M

carries the structure of a right C-comodule by

X ⊗M
id⊗̺M

−→ X ⊗ (M ⊗ C) ≃ (X ⊗M) ⊗ C.
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In the case A = M
H , for a k-bialgebra H, if C is a coalgebra in A (a right H-comodule

coalgebra), let B = (MH)C . Then a k-module M is in B = (MH)C if and only if M is
a right H-comodule and a right C-comodule with commutative diagram

M

ρM
C

��

ρM
H // M ⊗H

ρM
C ⊗idH

��
M ⊗ C

id⊗ρC
H

// M ⊗ (C ⊗H) ∼=
// (M ⊗ C) ⊗H.

In this case, the category D = (MH)C is a left M
H -category.

If A = MH and C is a coalgebra in A (a right H-module coalgebra), then a k-module
M is in D′ = (MH)C if and only if M is a right H-module and a right C-comodule
such that

ρMC (mh) =
∑

m(0) h1 ⊗m(1)C h2 = ρMC (m) ∆(h).

In this case, the category D′ = (MH)C is a left MH -category.

6.5. A-functors and natural transformations. Let A be a monoidal category,
(D, ⋄,Ψ, l) and (D′, ⋄′,Ψ′, l′) be two left A-categories. A (left) A-functor (F, ξ) consists
of a functor F : D → D′ and a natural isomorphism

ξ : − ⋄′ F (−) −→ F (− ⋄ −)

satisfying ξE,M = idF (M), for all M ∈ D, and the coherence condition (for all X,Y ∈
A,M ∈ D)

ξX,Y ⋄M ◦ (X ⋄′ ξY,M ) ◦ Ψ′
X,Y,F (M) = F (ΨX,Y,M ) ◦ ξX⊗Y,M ,

this means commutativity of the diagram

(X ⊗ Y ) ⋄′ F (M)

Ψ′
X,Y,F (M)

��

ξX⊗Y,M // F ((X ⊗ Y ) ⋄M)
F (ΨX,Y,M )

))SSSSSSSSSSSSSS

F (X ⋄ (Y ⋄M))

X ⋄′ (Y ⋄′ F (M))
idX⋄′ξY,M

// X ⋄′ F (Y ⋄M).

ξX,Y ⋄M

55kkkkkkkkkkkkkk

Let (F, ξ) and (F ′, ξ′) : D → D′ be two A-functors between A-categories D and D′.
An A-natural transformation between (F, ξ) and (F ′, ξ′) is a natural transformation
ϕ : F → F ′ such that for all X ∈ A,M ∈ D

ϕX⋄M ◦ ξX,M = ξ′X,M ◦ (id ⋄′ ϕM ),

this means commutativity of the diagram

X ⋄′ F (M)

idX⋄′ϕM

��

ξX,M // F (X ⋄M)

ϕX⋄M

��
X ⋄′ F ′(M)

ξ′X,M

// F ′(X ⋄M).
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6.6. (Co)modules over (co)algebras in A-categories. Let A be a monoidal cate-
gory and A an algebra in this category. If (D, ⋄′,Ψ′, l) is a right A-category, then we can
define right modules in D over A as follows. A right module in D over A or right
A-module in D is an object M of D together with a morphism ̺M : M ⋄ A → M

and the commutative diagrams

(M ⋄A) ⋄A

ΨM,A,A

��

̺M⋄id // M ⋄A

̺M

��
M ⋄ (A⊗A)

id⋄µA

// M ⋄A ̺M

// M,

M ⋄ E

id⋄ιA %%LLLLLLLLLL

rM // M

M ⋄A.

̺M

::vvvvvvvvv

We denote the category of right A-modules in D by DA.

Similarly, for a left A-category D one can define left modules in D over A.

Furthermore, one can also define a right (resp. left) comodule in a right (resp. left)
A-category D over a coalgebra C in the monoidal category A as follows:

Let (C,∆, ε) be a coalgebra in the monoidal category (A,⊗, E, a, λ, ρ) and D be a
right A-category. A right comodule (M,̺M ) in D over C is an object M ∈ D with
a morphism ̺M : M →M ⋄ C which is coassociative in the sense that

ΨM,C,C ◦ (̺M ⋄ idC) ◦ ̺M = (id ⋄ ∆) ◦ ̺M , and (id ⋄ ε) ◦ ̺M = rM .

i.e. the following diagrams are commutative.

M

̺M

��

̺M

// M ⋄ C

̺M⋄idC

��
(M ⋄ C) ⋄ C

ΨM,C,C

��
M ⋄ C

idM⋄∆
// M ⋄ (C ⊗ C),

M

rM

""EE
EE

EE
EE

EE
EE

EE
EE

EE

̺M

// M ⋄ C

idM⋄ε

��
M ⋄ C.

In short, a comodule in D over a coalgebra C in A, is a module over an algebra C in
A
op.
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Chapter 3

Hom-tensor relations for

quasi-Hopf algebras

7 Quasi-bialgebras and quasi-Hopf algebras

Quasi-bialgebras and quasi-Hopf algebras were defined by Drinfeld in [13]. These are
generalizations of the concepts of bialgebras and Hopf algebras in such a way that their
module categories are still monoidal (even rigid monoidal, in the finite case).
The most important aspect of this generalization comes from the non-coassociativity
of the comultiplication. However, this non-coassociativity is controlled by a 3-cocycle
φ. In this way, we have a monoidal structure on the module category similar to the
Hopf algebra case but with non-trivial associativity constraints of the tensor product.
Thus, the forgetful functor will not be (coherent) monoidal. But it still preserves the
tensor product.

Quasi-bialgebras and quasi-Hopf algebras were mainly considered over fields and in
the finite dimensional case. However, many parts of the formalism still work over a
commutative base ring. In this chapter, we outline these notions without any finite-
ness conditions. We recall some Hom-tensor relations in module categories over Hopf
algebras and generalize them for modules over quasi-Hopf algebras and their comodule
algebras. Our results imply the results for the finite dimensional (finitely generated
and projective) cases.

7.1. Quasi-bialgebras. A four tuple (H,∆, ε, φ) is called a quasi-bialgebra if H
is an associative k-algebra with unit, φ an invertible element in H ⊗ H ⊗ H, the
comultiplication ∆ : H → H ⊗ H and the counit ε : H → k are algebra maps,
satisfying the identities for h ∈ H

(id⊗ ε) ◦ ∆(h) = h⊗ 1, (id⊗ ε) ◦ ∆(h) = 1 ⊗ h, (7.1)

(id⊗ ∆) ◦ ∆(h) = φ · (∆ ⊗ id) ◦ ∆(h) · φ−1, (7.2)

(id⊗ id⊗ ∆)(φ)(∆ ⊗ id⊗ id)(φ) = (1 ⊗ φ)(id⊗ ∆ ⊗ id)(φ)(φ⊗ 1), (7.3)

(id⊗ ε⊗ id)(φ) = 1 ⊗ 1. (7.4)

The identities (7.1), (7.3) and (7.4) imply also,

(ε⊗ id⊗ id)(φ) = (id⊗ id⊗ ε)(φ) = 1 ⊗ 1. (7.5)
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φ is called the Drinfeld reassociator. The equation (7.3) is a 3-cocycle condition
on φ (see section 3.1). We use the Sweedler type notations ∆(h) =

∑
h1 ⊗ h2, and

(∆ ⊗ id) ◦ ∆(h) =
∑

h11 ⊗ h12 ⊗ h2, (id⊗ ∆) ◦ ∆(h) =
∑

h1 ⊗ h21 ⊗ h22.

We denote the tensor components of φ by capital letters and those of φ−1 by small
letters, namely

φ =
∑

X1 ⊗X2 ⊗X3 =
∑

Y 1 ⊗ Y 2 ⊗ Y 3 =
∑

T 1 ⊗ T 2 ⊗ T 3 = ....etc.

φ−1 =
∑

x1 ⊗ x2 ⊗ x3 =
∑

y1 ⊗ y2 ⊗ y3 =
∑

t1 ⊗ t2 ⊗ t3 = ....etc.

As in the Hopf algebra case, (c.f. 2.5, see also section 5), we have:

For a quasi-bialgebra (H,∆, ε, φ), the categories HM, MH and HMH , with the tensor
product ⊗k, are monoidal categories.

Proof. We sketch a proof of this basic facts just for left H-modules. The proofs
for right and bi-modules are similar (see remark below).

The associativity constraint for objects M,N,L ∈ HM is given by

aM,N,L : (M ⊗k N) ⊗k L −→M ⊗k (N ⊗k L),

aM,N,L((m⊗ n) ⊗ l) = φ · (m⊗ (n⊗ l)).

For this, first we have to show that this is an H-linear map, i.e. for any h ∈ H,

aM,N,L(h · ((m⊗ n) ⊗ l)) = h · aM,N,L((m⊗ n) ⊗ l).

L.H.S = aM,N,L(h1 · (m⊗ n) ⊗ h2l))

= aM,N,L(((∆ ⊗ id) ◦ ∆(h)) · (m⊗ n⊗ l))

= aM,N,L((φ−1 · (id⊗ ∆) ◦ ∆(h) · φ) · (m⊗ n⊗ l))

= φφ−1 · ((id⊗ ∆) ◦ ∆(h)) · φ) · (m⊗ (n⊗ l))

= h · aM,N,L((m⊗ n) ⊗ l) = R.H.S.

Next, the associativity constraint a has to satisfy the pentagon diagram

[V ⊗ (M ⊗N)] ⊗ L
aV,(M⊗N),L // V ⊗ [(M ⊗N) ⊗ L]

idV ⊗aM,N,L

��

[(V ⊗M) ⊗N ] ⊗ L

a(V ⊗M),N,L

��

aV,M,N⊗idL

OO

(V ⊗M) ⊗ (N ⊗ L) aV,M,(N⊗L)

// V ⊗ [M ⊗ (N ⊗ L)],

suppressing the symbol
∑

, this means the commutativity of the diagram

[X1v ⊗ (X2m⊗X3n)] ⊗ l
aV,(M⊗N),L // Y 1X1v ⊗ [(Y 2

1 X
2m⊗ Y 2

2 X
3n) ⊗ Y 3l]

idV ⊗aM,N,L

��
[(v ⊗m) ⊗ n] ⊗ l

a(V ⊗M),N,L

��

aV,M,N⊗idL

OO

Y 1X1v ⊗ T 1Y 2
1 X

2m⊗ T 2Y 2
2 X

3n⊗ T 3Y 3l

id
��

(X1
1v ⊗X1

2m) ⊗ (X2n⊗X3l) aV,M,(N⊗L)

// Y 1X1
1v ⊗ [Y 2X1

2m⊗ (Y 3
1 X

2n⊗ Y 3
2 X

3l)],
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that is,

aV,M,(N⊗L)◦a(V⊗M),N,L(v⊗m⊗n⊗l) = (idV⊗aM,N,L)◦(aV,M⊗N,L)◦(aV,M,N⊗idL)(v⊗m⊗n⊗l).

L.H.S = Y 1X1
1v ⊗ [Y 2X1

2m⊗ (Y 3
1 X

2n⊗ Y 3
2 X

3l)]

= (id⊗ id⊗ ∆)(φ) · (∆ ⊗ id⊗ id)(φ) · (v ⊗m⊗ n⊗ l),

R.H.S = (Y 1X1v ⊗ T 1Y 2
1 X

2m⊗ T 2Y 2
2 X

3n⊗ T 3Y 3l)

= (1 ⊗ φ) · (id⊗ ∆ ⊗ id)(φ) · (φ⊗ 1) · (v ⊗m⊗ n⊗ l),

and these expressions are equal by the axiom (7.3). Considering the trivial isomor-

phisms M ⊗ k
ρM
≃ M

λM
≃ k ⊗M , the commutativity of the triangular diagram

(M ⊗ k) ⊗N

ρM⊗idN ((QQQQQQQQQQQQQ

aM,k,N// M ⊗ (k ⊗N)

idM⊗λN

��
M ⊗N,

follows from the axiom (7.4). ⊔⊓

Remark. For the category MH , the associativity constraint, for M,N,L ∈ MH , is

a′M,N,L : (M ⊗k N) ⊗k L −→M ⊗k (N ⊗k L),

a′M,N,L((m⊗ n) ⊗ l) = (m⊗ (n⊗ l)) · φ−1,

Combining the left and right cases, we obtain the associativity constraint for (H,H)-
bimodules as

a′′M,N,L : (M ⊗k N) ⊗k L −→M ⊗k (N ⊗k L),

a′′M,N,L((m⊗ n) ⊗ l) = φ · (m⊗ (n⊗ l)) · φ−1.

If (H,∆, ε, φ) and (H ′,∆′, ε′, φ′) are quasi-bialgebras, then the tensor product
(H ⊗H ′, (I ⊗ τH,H ⊗ I) ◦ (∆⊗∆′), ε⊗ ε′,

∑
X1 ⊗X ′1 ⊗X2 ⊗X ′2 ⊗X3 ⊗X ′3) is also

a quasi-bialgebra.

7.2. Quasi-Hopf algebras. ([13] and [18]) A quasi-antipode (S, α, β) for a quasi-
bialgebra H consists of an invertible algebra anti-automorphism S : H → H and
elements α, β ∈ H with the identities, for h ∈ H,

∑

h
S(h1)αh2 = ε(h)α,

∑

h
h1βS(h2) = ε(h)β (7.6)

∑

X1βS(X2)αX3 = 1,
∑

S(x1)αx2βx3 = 1. (7.7)

A quasi-Hopf algebra is a quasi-bialgebra H together with a quasi-antipode (S, α, β).
The axioms for a quasi-Hopf algebra imply that ε(α)ε(β) = 1, and ε ◦ S = ε.
(H,∆, ε, φ, S, α, β) expresses the complete data of a quasi-Hopf algebra.
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Together with a quasi-Hopf algebra H = (H,∆, ε, φ, S, α, β), we also have Hop,
Hcop, and Hop,cop as quasi-Hopf algebras, where ”op” means opposite multiplication
and ”cop” means opposite comultiplication. The quasi-Hopf structures are obtained by
putting φop = φ−1, φcop = (φ−1)321 =

∑
x3⊗x2⊗x1, φop,cop = φ321 =

∑
X3⊗X2⊗X1,

Sop = Scop = (Sop,cop)
−1 = S−1, αop = S−1(β), αcop = S−1(α), αop,cop = β, βop =

S−1(α), βcop = S−1(β) and βop,cop = α.
This means that if H = (H,∆, ε, φ, S, α, β) is a quasi-Hopf algebra, then we have new
quasi-Hopf algebras given by

Hop := (H,µop, ι,∆, ε, φ−1, S−1, S−1(β), S−1(α)),

Hcop := (H,µ, ι,∆op, ε, (φ−1)
321
, S−1, S−1(α), S−1(β)),

Hop,cop := (H,µop, ι,∆op, ε, φ321, S, β, α).

7.3. Rigidity of (HM)fgp. Let H be a quasi-Hopf algebra. We consider the category
(HM)fgp of leftH-modules which are finitely generated and projective as k-modules, and
equip it with the monoidal structure induced by ∆ and φ. Now for any object V in this
category, with a dual basis {vi}

n
i=1 and {vi}ni=1, consider the k-module V ∗ = Homk(V, k)

with the left H-action (h · f)(v) = f(S(h) v) (see (2.5)), and define the maps

bV : k −→ V ⊗ V ∗, 1 7→
∑

βvi ⊗ vi, (7.8)

dV : V ∗ ⊗ V −→ k, f ⊗ v 7→ f(α v). (7.9)

Furthermore, we consider ∗V to be the same dual k-module, equipped with the left
H-action given for all h ∈ H and f ∈ ∗V by (h · f)(v) = f(S−1(h) v) (see (2.7)) and
define the maps

b′V : k −→ ∗V ⊗ V, 1 7→
∑

vi ⊗ S−1(β) vi, (7.10)

d′V : V ⊗ ∗V −→ k, v ⊗ g 7→ g(S−1(α) v). (7.11)

The maps bV , dV , b
′
V and d′V (defined above) are H-linear and all the following com-

posites are identity maps:

(1) V ∼= k ⊗ V
b⊗id// (V ⊗ V ∗) ⊗ V

aV,V ∗,V// V ⊗ (V ∗ ⊗ V )
id⊗d // V ⊗ k ∼= V ,

(2) V ∗ ∼= V ∗ ⊗ k
id⊗b // V ∗ ⊗ (V ⊗ V ∗)

a−1
V ∗,V,V ∗

// (V ∗ ⊗ V ) ⊗ V ∗)
d⊗id // k ⊗ V ∗ ∼= V ∗ ,

(3) V ∼= V ⊗ k
id⊗b′// V ⊗ ( ∗V ⊗ V )

a−1
V,∗V ,V// (V ⊗ ∗V ) ⊗ V

d′⊗id // k ⊗ V ∼= V ,

(4) ∗V ∼= k ⊗ ∗V
b′⊗id// ( ∗V ⊗ V ) ⊗ ∗V

a∗V,V,∗V// ∗V ⊗ (V ⊗ ∗V )
id⊗d′ // ∗V ⊗ k ∼= ∗V .

This shows that the category (HM)fgp of left H-modules that are finitely generated and
projective as k-modules, is a rigid category.
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7.4. Rigidity of (MH)fgp. Proceding in a similar way as above, we get that the
category (MH)fgp of right H-modules, that are finitely generated and projective as k-
modules, is also a rigid category. In this case, the left dual of an object V is again
V ∗ = Homk(V, k) as a k-module with the right H-module structure

(f · h)(v) = f(v S−1(h)) for h ∈ H, v ∈ V and f ∈ V ∗,

and we have the evaluation and coevaluation

dV : V ∗ ⊗ V −→ k, f ⊗ v 7→ f(v S−1(β)).

bV : k −→ V ⊗ V ∗, 1 7→
∑

vi S
−1(α) ⊗ vi.

The right dual ∗V will be the same dual k-module Homk(V, k), equipped with the
right H-action given for all h ∈ H and f ∈ ∗V by

(f · h)(v) = f(v S(h)),

and the evaluation and the coevaluation defined as

d′V : V ⊗ ∗V −→ k, v ⊗ g 7→ g(v β),

b′V : k −→ ∗V ⊗ V, 1 7→
∑

vi ⊗ vi α,

where {vi}
n
i=1 and {vi}ni=1 form a dual basis for the finitely generated projective k-

modules V (see 1.2). Again, the maps bV , dV , b
′
V and d′V are H-linear and the corre-

sponding compositions of maps (similar to the left H-module case) are identity maps,
that is, the category (MH)fgp is a rigid category.

7.5. Rigidity of (HMH)fgp. Combining the results about the rigidity of left and right
H-modules, we can see with a similar argument, that the category (HMH)fgp of (H,H)-
bimodules which are finitely generated and projective as k-modules, is a rigid category.
In this case, the left dual of an object V ∈ (HMH)fgp is again V ∗ = Homk(V, k) as a
k-module with the (H,H)-bimodule structure

(h · f · h′)(v) = f(S(h) v S−1(h′)) for h, h′ ∈ H, v ∈ V and f ∈ V ∗,

and the evaluation and coevaluation come out as

dV : V ∗ ⊗ V −→ k, f ⊗ v 7→ f(α v S−1(β)),

bV : k −→ V ⊗ V ∗, 1 7→
∑

β vi S
−1(α) ⊗ vi.

Similarly, the right dual is ∗V = Homk(V, k), equipped with the (H,H)-bimodule
structure given for h, h′ ∈ H and f ∈ ∗V by

(h · f · h′)(v) = f(S−1(h) v S(h′)),

with the evaluation and the coevaluation

d′V : V ⊗ ∗V −→ k, v ⊗ g 7→ g(S−1(α) v β),

b′V : k −→ ∗V ⊗ V, 1 7→
∑

vi ⊗ S−1(β) vi α.
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7.6. Gauge transformations. The definition of the quasi-bialgebras and quasi-Hopf
algebra is ”twist covariant” in the following sense.

Let H = (H,∆, ε, φ) be a quasi-bialgebra (resp. a quasi-Hopf algebra). A gauge
transformation on H is an invertible element F ∈ H ⊗H such that

(ε⊗ id)(F ) = (id⊗ ε)(F ) = 1. (7.12)

Using a gauge transformation F on H, one can build a new quasi-bialgebra (resp. a
quasi-Hopf algebra) HF by keeping the multiplication, unit and counit (and antipode
S) of H and replacing the comultiplication of H by

∆F : H −→ H ⊗H, h 7−→ F ∆(h)F−1, (7.13)

(for h ∈ H), and with a new Drinfeld reassociator φF given by

φF := (1 ⊗ F )(id⊗ ∆)(F )φ (∆ ⊗ id)(F−1)(F−1 ⊗ 1) ∈ H ⊗H ⊗H. (7.14)

In case of a quasi-Hopf algebra, α and β must be replaced by

αF :=
∑

S(G1)αG2, βF :=
∑

F 1βS(F 2), (7.15)

where we write by F−1 =
∑
G1 ⊗G2 ∈ H ⊗H (see [18, P. 373 ]).

Observe that if H happens to be a bialgebra, then HF in general is not a bialgebra.
This procedure provides non-trivial examples of quasi-bialgebras. Howewer, we get
again a bialgebra by twisting a bialgebra with a 2-cocycle F (see section 3.1).

In the Hopf algebra case, the antipode is an anti-coalgebra map, i.e.

(S ⊗ S) ◦ ∆cop = ∆ ◦ S.

In this case, we have the identities like

∑

h1 ⊗ h2S(h3) = h⊗ 1, for h ∈ H, (7.16)

7.7. Some properties of quasi-antipode. For the quasi-Hopf algebra H, Drinfeld
([13]) defined a gauge element as an f ∈ H ⊗H, satisfying for h ∈ H,

f∆(h)f−1 = (S ⊗ S)∆copS−1(h), (7.17)

(S ⊗ S ⊗ S)(φ321) = (1 ⊗ f)(id⊗ ∆)(f)φ(∆ ⊗ id)(f−1)(f−1 ⊗ 1), (7.18)

(id⊗ ε)(f) = (ε⊗ id)(f) = 1. (7.19)

Such an f can be computed explicitly as follows. First set

∑

A1 ⊗A2 ⊗A3 ⊗A4 = (1 ⊗ φ−1)(id⊗ id⊗ ∆)(φ), (7.20)

∑

B1 ⊗B2 ⊗B3 ⊗B4 = (∆ ⊗ id⊗ id)(φ)(φ−1 ⊗ 1), (7.21)

and then define γ and δ in H ⊗H by

γ =
∑

S(A2)αA3 ⊗ S(A1)αA4, (7.22)
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δ =
∑

B1βS(B4) ⊗B2βS(B3). (7.23)

f and f−1 are then given by the formula

f =
∑

(S ⊗ S)(∆op(x1))γ∆(x2βS(x3)), (7.24)

f−1 =
∑

∆(S(x1)αx2)δ(S ⊗ S)(∆op(x3)), (7.25)

and f satisfies the relations

f∆(α) = γ, ∆(β)f−1 = δ. (7.26)

Taking f =
∑
f1 ⊗ f2 and f−1 =

∑
g1 ⊗ g2 as in (7.24) and (7.25), it can be easily

seen that

∑

f1βS(f2) = S(α),
∑

S(βf1)f2 = α,
∑

g1S(g2α) = β. (7.27)

Formulas similar to (7.16) can be obtained for quasi-Hopf algebras. Following
Hausser and Nill [15], [16], [17], define the elements

pL=p1L⊗p2L
=

P

X2S−1(X1β)⊗X3=(µop⊗id)◦(S−1◦Rβ⊗id⊗id)(φ) (7.28)

qL = q1L ⊗ q2L =
∑

S(x1)αx2 ⊗ x3 = (µ⊗ id) ◦ (S ⊗ Lα ⊗ id)(φ−1) (7.29)

pR = p1
R ⊗ p2

R =
∑

x1 ⊗ x2βS(x3) = (id⊗ µ) ◦ (id⊗Rβ ⊗ S)(φ−1) (7.30)

qR=q1R⊗q2R
=

P

X1⊗S−1(αX3)X2=(id⊗µop)◦(id⊗id⊗S−1◦Lα)(φ) (7.31)

As showed in [15], for h ∈ H, they satisfy the equations

∑

∆(h2)pL(S−1(h1) ⊗ 1) = pL(1 ⊗ h) (7.32)
∑

(S(h1) ⊗ 1)qL∆(h2) = (1 ⊗ h)qL (7.33)
∑

∆(h1)pR(1 ⊗ S(h2)) = pR(h⊗ 1) (7.34)
∑

(1 ⊗ S−1(h2))qR∆(h1) = (h⊗ 1)qR (7.35)

and

∑

∆(q2L)pL(S−1(q1L) ⊗ 1) = 1 ⊗ 1 (7.36)
∑

(S(p1
L) ⊗ 1)qL∆(p2

L) = 1 ⊗ 1 (7.37)
∑

∆(q1R)pR(1 ⊗ S(q2R)) = 1 ⊗ 1 (7.38)
∑

(1 ⊗ S−1(p2
R))qR∆(p1

R) = 1 ⊗ 1 (7.39)

These identities will be used freely in the sequel. For example, the elements pL, pR, qL
and qR and their relating identities are essential for stating the Hom-tensor relations
in section 9 and defining the concept of coinvarints in section 13 and showing their
properties.
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8 Module algebras and smash products for quasi-bialgebras

Let (H,∆, ε, φ) be a quasi-bialgebra. Then the category of left (resp. right) H-modules
(HM,⊗k, a) [resp. (MH ,⊗k, a

′)] is a monoidal category, where

aM,N,L, bM,N,L : (M ⊗k N) ⊗k L −→M ⊗k (N ⊗k L),

aM,N,L((m⊗ n) ⊗ l) = φ · (m⊗ (n⊗ l)),

[resp. a′M,N,L((m⊗ n) ⊗ l) = (m⊗ (n⊗ l)) · φ−1],

are the corresponding associativity constraints, respectively (see 7.1).

8.1. Module algebras over quasi-bialgebras. Let (H,∆, ε, φ) be a quasi-bialgebra.
A k-module A is called a left H-module algebra if A is an algebra in the monoidal
category HM, i.e.

i) A has a multiplication µA : A⊗A −→ A and a unit 1A,

ii) (ab)c =
∑

(X1 a)[(X2 b)(X3 c)],

iii) h · (ab) =
∑

(h1 a)(h2 b),

iv) h · 1A = ε(h)1A,

for a, b, c ∈ A, and h ∈ H, where h⊗ a 7→ h a is the left H-module structure of A, and
φ =

∑
X1 ⊗X2 ⊗X3 is the Drinfeld reassociator of H.

Let H be a quasi-bialgebra and A be a left H-module with an associative algebra
structure defined by µA : A ⊗ A → A, and ι : k → A. Then (unlike to the bialgebra
case, even for A = H) A need not be an H-module algebra. However, if we have an
algebra map f : H → A, we can define the following multiplication on A making it an
algebra in HM which is denoted by Af (see [11, Proposition 2.2]),

a ∗ b =
∑

f(X1)af(S(x1X2)αx2X3
1 )bf(S(x3X3

2 )). (8.1)

Af is a left H-module algebra with unit f(β) and with the left adjoint action induced
by f , that is,

h⊲fa =
∑

f(h1)af(S(h2)),

for a ∈ A, and h ∈ H.
In particular, it induces an H-module algebra structure on the quasi-Hopf algebra H
by left adjoint action and the new multiplication

a ∗ b =
∑

X1aS(x1X2)αx2X3
1bS(x3X3

2 ). (8.2)

This H-module algebra is denoted by H0.

For a quasi-bialgebra (H,∆, ε, φ) and a left H-module algebra A, following Bulacu,
Panaite and Van Oystaeyen [11], an H-module M is called a left (A,H)-module if
it is an A-module in the monoidal category HM, i.e. if there exists a left weak action
⊲ : A⊗M →M , a⊗m 7→ a ⊲ m, such that for m ∈M , and a, b ∈ A,

(ab) ⊲ m =
∑

(X1 a) ⊲ [(X2 b) ⊲ (X3m)], (8.3)
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h · (a ⊲ m) =
∑

(h1 a) ⊲ (h2m), (8.4)

1A ⊲ m = m, (8.5)

where h⊗m 7→ hm is the left H-module structure of M . The category of left (A,H)-
modules with morphisms that are left H-linear and preserve the weak A-action will be
denoted by A(HM).

Symmetrically, for a left H-module algebra A, we define a right A-module M in the
monoidal category HM, as a left H-module M with a right (weak) action ⊳ : M ⊗A→
M , such that for m ∈M , and a, b ∈ A,

m ⊳ (ab) =
∑

[(X1m) ⊳ (X2 a)] ⊳ (X3 b),

h · (m ⊳ a) =
∑

(h1m) ⊳ (h2 a), and

m ⊳ 1A = m.

Moreover, an H-module M is an (A,A)-bimodule in HM, if M is a left and a
right A-module in HM, and

(a ⊲ m) ⊳ b =
∑

(X1 a) ⊲ [(X2m) ⊳ (X3 b)], (8.6)

for all m ∈M,a, b ∈ A, that is, we have a commutative diagram

(A⊗M) ⊗A

aA,M,A

��

⊲⊗id // M ⊗A

⊳

��

A⊗ (M ⊗A)

id⊗⊳

��
A⊗M ⊲

// M.

8.2. Smash products for bialgebras. For a bialgebraH and a leftH-module algebra
A, the smash product of A andH, denoted by A#H, is the k-module A⊗H, together
with the multiplication

(a#h)(b#g) =
∑

a(h1 b)#h2g, (8.7)

for a, b ∈ A and g, h ∈ H. In this case, a k-module M is a left A#H-module if and
only if M is a left A-module as well as a left H-module and the left A-module structure
map A⊗M −→M is an H-module morphism (see [29]).

Similar to the bialgebra case, one can define the concept of smash product for quasi-
bialgebras (see [11]).

8.3. Smash products for quasi-bialgebras. Let H be a quasi-bialgebra and A a
left H-module algebra. The smash product of A and H, denoted by A#H, is the
k-module A#H = A⊗H, together with the multiplication

(a#h)(b#g) =
∑

(x1 a)(x2h1 b)#x
3h2g, (8.8)

for a, b ∈ A and g, h ∈ H. With this multiplication, A#H is an associative algebra
with identity 1A#1H . The canonical map j : H −→ A#H is an algebra map (see [11,
Proposition 2.7]).
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8.4. Module categories over smash products for quasi-bialgebras. Let H be
a quasi-bialgebra and A a left H-module algebra. Then a k-module M is a left A#H-
module if and only if

(1) M has a left H-module stucture with left H-action h⊗m 7→ hm,

(2) A acts weakly on M , ⊲ : A⊗M →M , a⊗m 7→ a ⊲m, such that (8.3), (8.4), and
(8.5) are satisfied. (M must be a left A-module in HM).

This means that the categories A(HM) and A#HM are isomorphic. In fact, for any
M ∈ A(HM) with left (weak) A-action ⊲, there is an A#H-module structure given
by (a#h)m = a ⊲ (hm), thus M ∈ A#HM. Conversely, if M ∈ A#HM, then also
M ∈ A(HM) by a ⊲ m = (a#1)m and hm = (1A#h)m, where h ∈ H, a ∈ A and
m ∈M . Thus, A#HM ∼= A(HM) (see also [11, 2.15 and 2.16]).

9 Hom-tensor relations for quasi-Hopf algebras and their

module algebras

In this section we will prove that there are adjunctions between tensor-functors and
Hom-functors as endofunctors of the categories HM, MH and HMH over a quasi-Hopf
algebra H. First we recall that the classical Hom-tensor relation in the category kM can
be restricted to the category HM, where H is a Hopf algebra. After that we obtain some
similar adjunction isomorphisms in case H is a quasi-Hopf algebra. For an H-module
algebra A, we know that A ⊗k − (resp. − ⊗k A) defines a monad on the categories

HM, MH and HMH , with suitable structures on the tensor products. We can consider
the Eilenberg-Moore module categories over these monads, and they are precisely the
categories of A-modules in HM, MH and HMH respectively. On the other hand, we will
see that these categories are isomorphic to the Eilenberg-Moore comodule categories
over the corresponding comonads that are right adjoint to the monads A ⊗k − (resp.
−⊗k A).

For any k-bialgebra H, we know that (HM,⊗b
k, k) is a monoidal category and for

any M,N ∈ HM, we have M ⊗b
kN ∈HM (see 2.5). Furthermore, if H is a Hopf algebra

with antipode S, then Homk(M,N) is a left H-module by (h ·f)(m) =
∑
h1f(S(h2)m)

(see 2.6), which we denote by sHomk(M,N).
In case the antipode S is invertible, for any left H-modules M,N the k-module

Homk(M,N) is a left H-module with another H-module structure given by (h·f)(m) =
h2f(S−1(h1)m) (see 2.6), which is denoted by tHomk(M,N).

Using the above notations, we recall from [7, 15.9] the

9.1. Hom-tensor relations for Hopf algebras. Let H be a Hopf algebra, and
M,N, V ∈HM.

(1) There is a functorial isomorphism

HHom(M ⊗b
k V,N)

ψ
−→ HHom(M, sHomk(V,N)), f 7−→ [m 7→ f(m⊗k −)],

with inverse g 7−→ [m⊗ v 7→ g(m)(v)], i.e. the functors

−⊗b V : HM −→ HM, and sHom(V,−) : HM −→ HM,
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form an adjoint pair with unit and counit, in HM,

ηM : M −→ Homk(V,M ⊗k V ), m 7−→ [v 7→ m⊗ v],

εM : Homk(V,M) ⊗ V −→M, f ⊗ v 7→ f(v).

(2) If H has a bijective antipode S, then there is a functorial isomorphism

HHom(V ⊗b
kM,N)

ψ
−→ HHom(M, tHomk(V,N)), f 7−→ [m 7→ f(−⊗m)],

with inverse g 7→ [v ⊗m 7→ g(m)(v)], i.e. the functors

V ⊗b − : HM −→ HM, tHom(V,−) :HM →HM,

form an adjoint pair on HM with unit and counit

ηM : M −→ tHomk(V, V ⊗kM), m 7−→ [v 7→ v ⊗m],

εM : V ⊗ Homk(V,M) −→M v ⊗ f 7→ f(v).

Now we state similar Hom-tensor relations in the module category HM over a quasi-
Hopf algebra H. For any quasi-bialgebra H, we know that (HM,⊗b

k, k, a) is a monoidal
category (with non-trivial associativity constraint, see section 7).

If H is a quasi-Hopf algebra with quasi-antipode (S, α, β), then for any M,N ∈ HM

we have Homk(M,N) ∈HM with the same left H-action as in the Hopf algebra case.
Using the same notation as in the Hopf algebra case, we denote by sHomk(M,N) the
k-module Homk(M,N) with the leftH-module structure (h·f)(m) =

∑
h1f(S(h2)m).

9.2. Theorem. (Adjunction (−⊗b
kV,

sHomk(V,−)) on HM). Let H be a quasi-Hopf
algebra with quasi-antipode (S, α, β), and M,N, V ∈ HM. Then there is a functorial
isomorphism

ψ : HHom(M ⊗b
k V,N) −→ HHom(M, sHomk(V,N)),

f 7−→ {m 7→ [v 7→ f(pR (m⊗ v))]},

with inverse map ψ′ given by

g 7−→ {m⊗ v 7→
∑

q1R [g(m)(S(q2R) v)]},

where pR =
∑
p1
R⊗p

2
R and qR =

∑
q1R⊗q

2
R are defined in (7.30) and (7.31), respectively.

This means that the functors

−⊗b V :HM →HM, sHom(V,−) : HM → HM,

form an adjoint pair with unit and counit, in HM,

ηM : M −→ sHomk(V,M ⊗k V ), m 7−→ [v 7→ pR (m⊗ v)],

εM : sHomk(V,M) ⊗ V −→M, f ⊗ v 7→
∑

q1R [f(S(q2R) v)].
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Proof. First we show that for any f ∈ HHom(M ⊗b
k V,N), the image ψ(f) ∈

HHom(M, sHomk(V,N)), i.e. ψ(f) is H-linear. For any h ∈ H, m ∈M and v ∈ V we
have

[ψ(f)(hm)](v) = f(
∑

p1
Rhm⊗ p2

Rv)

= f(pR (h⊗ 1)(m⊗ v))

by (7.34) =
∑

f(∆(h1) pR (1 ⊗ S(h2))(m⊗ v))

by H-linearity of f =
∑

h1(f(p1
Rm⊗ p2

RS(h2) v).

On the other hand,

[h · (ψ(f)(m))](v) =
∑

h1[(ψ(f)(m))(S(h2) v)]

=
∑

h1f(p1
Rm⊗ p2

RS(h2) v).

This shows the H-linearity of ψ(f).
Conversely, for any h ∈ H, m ∈M , v ∈ V and g ∈ HHom(M, sHomk(V,N)),

[ψ′(g)](h · (m⊗ v)) = [ψ′(g)](
∑

h1m⊗ h2 v)

=
∑

q1R(g(h1m)(S(q2R)h2 v))

g is H-linear =
∑

q1R[(h1 · (g(m)))(S(q2R)h2 v))

=
∑

q1Rh11[g(m)(S(q2Rh12)h2 v)]

by (7.35) =
∑

hq1R[g(m)(S(q2R) v)] = h [ψ′(g)](m⊗ v).

So ψ′(g) is also left H-linear.
To show that ψ and ψ′ are inverse to each other, take m ∈ M, v ∈ V and f ∈

HHom(M ⊗ V,N). Then

[(ψ′ ◦ ψ)(f)](m⊗ v) =
∑

q1R[(ψ(f)(m))(S(q2R) v)]

=
∑

q1R[f(p1
Rm⊗ p2

RS(q2R) v)]

=
∑

q1R[f(pR (1 ⊗ S(q2R)) · (m⊗ v)]

f is H-linear =
∑

[f(∆(q1R) pR (1 ⊗ S(q2R)) · (m⊗ v)]

by (7.38) = f((1 ⊗ 1) (m⊗ v)) = f(m⊗ v).

On the other hand, for any m ∈M,v ∈ V and g ∈ HHom(M, sHomk(V,N)),

[(ψ ◦ ψ′)(g)](m)(v) = ψ′(g)(
∑

p1
Rm⊗ p2

R v)]

=
∑

q1R[g(p1
Rm)(S(q2R)p2

R v)]

g is H-linear =
∑

q1R[p1
R · (g(m))](S(q2R)p2

R v)

=
∑

q1R(p1
R)1 (g(m))(S((p1

R)2)S(q2R)p2
R v)

=
∑

q1R(p1
R)1 (g(m))(S(q2R(p1

R)2)p
2
R v)

by (7.39) = g(m)(v).

This shows that ψ and ψ′ are inverse to each other. ⊔⊓
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9.3. Proposition. (Adjunction (−⊗b
kA,

sHomk(A,−)) for a monad on HM). Let
H be a quasi-Hopf algebra and A be a left H-module algebra. Then the right adjoint
functor sHomk(A,−) : HM → HM of the tensor functor −⊗b

k A is a comonad on HM

with comultiplication given for any N ∈ HM by

δN : sHomk(A,N) −→ sHomk(A,
sHomk(A,N)),

f 7−→ {a 7→ [b 7→
∑

q1R {(X1(p1
R)1p

1
R · f)(S(q2R) · [(X2(p1

R)2p
2
R a)(X

3p2
R b)])}]},

and counit
ǫN : sHomk(A,N) −→ N, f 7→ f(1A).

The Eilenberg-Moore comodule category (HM)
sHomk(A,−) is isomorphic to the category

of right A-modules in HM, sending any right A-module ⊳ : N ⊗ A → N in HM to N

as a left H-module with the sHomk(A,−)-comodule structure

̺N : N −→ sHomk(A,N), n 7−→ [a 7→
∑

(p1
R n) ⊳ (p2

R a)].

Proof. Taking V = A, to be a left H-module algebra in 9.2 means that A is
an algebra in HM, i.e. the functor − ⊗k A : HM → HM is a monad (see 4.4 for the
definition). Thus, its right adjoint, sHomk(A,−) : HM → HM, is a comonad on HM

(by 4.9). The multiplication µA : A⊗A→ A yields the commutative diagram

HHom(M ⊗A,N)

[idM⊗µA,N ]

��

ψM,N

∼=
//
HHom(M, sHom(A,N))

δ̃N
��

HHom(M ⊗ (A⊗A), N)

[aM,A,A,N ]

��

HHom(M, sHom(A, sHom(A,N)))

HHom((M ⊗A) ⊗A,N)
ψM⊗A,N

//
HHom(M ⊗A, sHom(A,N)),

ψM,sHom(A,N)

OO

and for a, b ∈ A, m ∈M and g ∈ HHom(M, sHom(A,N)), the map

δ̃N : HHom(M, sHom(A,N)) −→ HHom(M, sHom(A, sHom(A,N))),

is given by

δ̃N (g)(m)(a)(b)

= ψM,sHom(A,N) ◦ ψM⊗A,N ◦ [aM,A,A, N ] ◦ [idM ⊗ µA, N ] ◦ ψ′
M,N (g)(m)(a)(b)

= {
∑

(ψM⊗A,N ◦ [aM,A,A, N ] ◦ [idM ⊗ µA, N ] ◦ ψ′
M,N (g))(p1

Rm⊗ p2
R a)}(b)

=
∑

{[aM,A,A, N ] ◦ [idM ⊗ µA, N ] ◦ ψ′
M,N (g)}([p1

R1 p
1
Rm⊗ p1

R2p
2
R a] ⊗ p2

R b)

=
∑

{[idM ⊗ µA, N ] ◦ ψ′
M,N (g)}(X1(p1

R)1 p
1
Rm⊗ [X2(p1

R)2p
2
R a⊗X3p2

R b])

=
∑

{ψ′
M,N (g) ◦ [idM ⊗ µA]}(X1(p1

R)1 p
1
Rm⊗ [X2(p1

R)2p
2
R a⊗X3p2

R b])

=
∑

ψ′
M,N (g)(X1(p1

R)1 p
1
Rm⊗ (X2(p1

R)2p
2
R a)(X

3p2
R b))

=
∑

q1R {g(X1(p1
R)1p

1
Rm))(S(q2R) · [(X2(p1

R)2p
2
R a)(X

3p2
R b)])}.
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By the left H-linearity of g, this yields the map δ̃N : HHom(M, sHom(A,N)) →

HHom(M, sHom(A, sHom(A,N))), explicitely given by

δ̃N (g)(m)(a)(b) =
∑

q1R {(X1(p1
R)1p

1
R · g(m))(S(q2R) · [(X2(p1

R)2p
2
R a)(X

3p2
R b)])}.

By the Yoneda Lemma, this yields the comultiplication δ of this comonad as stated in
the proposition.
The counit ǫ for δ of this comonad is obtained, by using the unit map ι : k → A and
the counit of adjunction, as the composition

ǫN : sHomk(A,N)
ιHomk(A,N)

−→ sHomk(A,N) ⊗A
εN−→ N,

f 7−→ f ⊗ 1A 7−→
∑

q1R f(S(q2R) 1A)

=
∑

q1R f(ε(S(q2R))1A) =
∑

q1Rε(q
2
R) f(1A)

= f(1A).

The Eilenberg-Moore module category (HM)−⊗A over the monad −⊗k A : HM →

HM is the category (HM)A of right A-modules in (HM). We know from 4.9 that this
category is isomorphic to the Eilenberg-Moore comodule category (HM)

sHomk(A,−) over
the comonad sHomk(A,−). We describe this isomorphism explicitly.
For any N ∈ (HM)A with the right (weak) A-action n⊗a 7→ n⊳a for a ∈ A and n ∈ N ,
the sHomk(A,−)-comodule structure of N is given by the composition

̺N : N
ηN−→ sHomk(A,N ⊗A)

[A,̺N ]
−→ sHomk(A,N).

Explicitly, for any n ∈ N , and a ∈ A,

̺N (n)(a) =
∑

(p1
R n) ⊳ (p2

R a).

In order to show that ǫN is a counit for ̺N , compute

ǫN ◦ ̺N (n) = ̺N (n)(1A) =
∑

(p1
R n) ⊳ (p2

R 1A) =
∑

p1
Rε(p

2
R)n = n.

In this way, we obtain a functor F : (HM)A → (HM)
sHom(A,−).

Conversely, given a sHomk(A,−)-comodule structure map

̺M : M −→ sHomk(A,M), m 7→ ̺M (m),

on a left H-module M , we define a right (weak) A-action on M as composition

⊳′ : M ⊗A
̺M⊗A
−→ sHomk(A,M) ⊗A

εM−→M.

Explicitly, for a ∈ A and m ∈M ,

m ⊳′ a =
∑

q1R [̺M (m)(S(q2R) a)].

This (weak) A-action is (by construction) a morphism in HM, and defines a right A-

module structure on M in HM. This yields a functor G : (HM)
sHom(A,−) → (HM)A,

which is inverse to F by 4.9 (see also [6, 2.6]). ⊔⊓
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9.4. Adjunction for f.g. projective V . From 9.2 we have the adjoint pair (L :=
−⊗b

k V,R := sHomk(V,−)) of endofunctors of HM with unit and counit

ηM : M −→ sHomk(V,M ⊗k V ), m 7−→ [v 7→ pR (m⊗ v)],

εM : sHomk(V,M) ⊗ V −→M, f ⊗ v 7→
∑

q1R [f(S(q2R) v)],

We know from 1.2 that there is a natural transformation ψ : −⊗kV
∗ → Homk(V,−)

between endofunctors of kM. For V,M ∈ HM, considering the diagonal left H-module
structure on M ⊗k V

∗ and taking sHomk(V,M) with the left H-structure given for
h ∈ H, v ∈ V and f ∈ sHomk(V,M) by (h · f)(v) = f(S(h) v), we show that the
k-linear morphism

ψM : M ⊗b
k V

∗ −→ sHomk(V,M), m⊗ f 7−→ [v 7→ f(v)m],

is left H-linear. To see this, for h ∈ H, m ∈M , v ∈ V and f ∈ V ∗, we compute

[ψM (h · (m⊗ f))](v) = [ψM (
∑

h1m⊗ h2 · f)](v)

=
∑

(h2 · f)(v)[h1m] =
∑

f(S(h2) v)h1m).

On the other hand,

[h · ψM (m⊗ f)](v) =
∑

h1 · [ψM (m⊗ f)(S(h2) v)]

=
∑

h1 [f(S(h2) v)m] =
∑

f(S(h2) v)h1m.

Over a base field, Schauenburg showed in [27] that for a quasi-Hopf algebra H and
any finite dimensional left H-module V , we have an adjoint pair (− ⊗ V,− ⊗ V ∗) of
endofunctors of HM . Referring to a dual basis for V ∈ HM, the computations of
Schauenburg can be transferred to a commutative base ring k. For this, let V ∈ HM

with kV finitely generated and projective with a dual basis {vi}
n
i=1 and {vi}ni=1. Then

we have an adjoint pair

L′ := −⊗b
k V : HM −→ HM, R′ := −⊗k V

∗ : HM −→ HM,

with unit

η′M : M
M⊗bV−→ M ⊗ (V ⊗ V ∗)

a−1

−→ (M ⊗ V ) ⊗ V ∗,

m 7→
∑

m⊗ (β vi ⊗ vi) 7→
∑

x1m⊗ x2β vi ⊗ x3 · vi,

and counit
ε′M : (M ⊗ V ∗) ⊗ V

a
−→M ⊗ (V ∗ ⊗ V )

M⊗dV−→ M,

m⊗ g ⊗ v 7→
∑

X1m⊗ (X2 · g ⊗X3 v) 7→
∑

g(S(q2R) v)q1Rm.

By 4.2, there is a bijection

Nat(−⊗k V,−⊗k V ) −→ Nat(sHomk(V,−),−⊗k V
∗).

Applying this bijection to the identity on the left side, we obtain the composition

ψ′
M : sHom(V,M)

η′R(M)
−→ (sHom(V,M) ⊗k V ) ⊗k V

∗ R
′(εM )
−→ M ⊗k V

∗,
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for f ∈ sHomk(V,M) as

ψ′
M (f) = R′(εM ) ◦ η′R(M)(f) = R′(εM )(

∑

x1 · f ⊗ x2β vi ⊗ x3 · vi)

=
∑

q1R [(x1 · f)(S(q2R)x2β vi)] ⊗ x3 · vi

=
∑

X1x1
1 [f(S(X2x1

2)αX
3x2β vi)] ⊗ x3 · vi.

It is straightforward to see directly that ψ′ is natural in M , i.e. we obtain a natural
transformation ψ′ : sHomk(V,−) → − ⊗k V

∗, given for any component M ∈ HM as
above. Now we show that ψM and ψ′

M are inverse to each other. For v ∈ V and
f ∈ sHomk(V,M) we compute

[ψM ◦ ψ′
M (f)](v) = [ψM (

∑

X1x1
1 [f(S(X2x1

2)αX
3x2β vi)] ⊗ x3 · vi)](v)

=
∑

(x3 · vi)(v)X1x1
1 [f(S(X2x1

2)αX
3x2β vi)]

=
∑

vi(S(x3) v)X1x1
1 [f(S(X2x1

2)αX
3x2β vi)]

=
∑

X1x1
1 [f(S(X2x1

2)αX
3x2βvi(S(x3) v)vi)]

=
∑

X1x1
1 [f(S(X2x1

2)αX
3x2βS(x3) v]

=
∑

X1x1
1 [f(S(x1

2)S(X2)αX3x2βS(x3) v]

=
∑

q1R(p1
R)1 [f(S(q2R(p1

R)2)p
2
R v]

by (7.39) = f(v).

Conversely,

[ψ′
M ◦ ψM ](m⊗ f) = ψ′

M (
∑

X1x1
1 [ψM (m⊗ f)(S(X2x1

2)αX
3x2β vi)] ⊗ x3 · vi)

=
∑

f(S(X2x1
2)αX

3x2β vi)X
1x1

1m⊗ x3 · vi

=
∑

f(S(q2R(p1
R)2)x

2β vi)q
1
R(p1

R)1m⊗ x3 · vi

=
∑

q1R(p1
R)1m⊗ f(S(q2R(p1

R)2)x
2β vi)x

3 · vi

by (7.39) = m⊗ f.

This means for V ∈ HM which is finitely generated projective as k-module, the natural
transformation ψ : −⊗k V

∗ → sHomk(V,−), defined above, is a functorial isomor-
phism.

Thus we have shown

9.5. Theorem. (Adjunction (− ⊗k V,− ⊗k V
∗) on HM). Let H be a quasi-Hopf

algebra, M,V ∈ HM. Then

(1) The map ψM : M ⊗k V
∗ → sHomk(V,M), m⊗ g 7−→ [v 7→ g(v)m],

is a natural homomorphism in HM.

(2) If kV is finitely generated and projective with dual basis {vi}
n
i=1 and {vi}ni=1, then

the map ψM give rise to a natural isomorphism with inverse map

ψ′
M : sHom(V,M) −→M ⊗k V

∗, f 7→
∑

X1x1
1 f(S(X2x1

2)αX
3x2βvi)⊗ x3 · vi,
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For a quasi-Hopf algebra H, we assume that the quasi-antipode S is bijective, thus
Homk(M,N) is also a left H-module by

(h · f)(m) =
∑

h2 f(S−1(h1)m)

which we denote by tHomk(M,N) (see 2.6 and the text before of 9.1).

9.6. Theorem. (Adjunction (V ⊗b−, tHomk(V,−)) on HM). Let H be a quasi-Hopf
algebra with quasi-antipode (S, α, β), and M,N, V ∈ HM. Then there is a functorial
isomorphism

HHom(V ⊗b
kM,N)

θ
−→ HHom(M, tHomk(V,N)),

f 7−→ {m 7→ [v 7→ f(pL (v ⊗m))]},

with inverse map θ′:

g 7−→ {v ⊗m 7→
∑

q2L(g(m)(S−1(q1L) v))},

where pL =
∑
p1
L⊗p

2
L and qL =

∑
q1L⊗q

2
L are defined in (7.28) and (7.29), respectively.

Thus we have an adjoint pair of functors

V ⊗b − :HM −→HM, tHom(V,−) :HM −→HM,

with unit and counit, in HM, given by

ηM : M −→ tHomk(V, V ⊗kM), m 7−→ {v 7→
∑

pL (v ⊗m)},

εM : V ⊗ tHomk(V,M) −→M, v ⊗ f 7→
∑

q2L[f(S−1(q1L) v)].

Proof. For any f ∈ HHom(V ⊗b
kM,N), we show that θ(f) is H-linear. For any

h ∈ H,m ∈M,v ∈ V we have

[θ(f)(hm)](v) = f(
∑

p1
L v ⊗ p2

Lhm)

= f(pL (1 ⊗ h)(v ⊗m))

by (7.32) = f(
∑

∆(h2) pL (S−1(h1) ⊗ 1)(v ⊗m))

f is H-linear =
∑

h2(f(
∑

p1
LS

−1(h1) v ⊗ p2
Lm).

On the other hand,

[h · (θ(f)(m))](v) =
∑

h2[(θ(f)(m))(S−1(h1) v)]

=
∑

h2f(p1
LS

−1(h1) v ⊗ p2
Lm),

showing H-linearity of θ(f).
Conversely, for any h ∈ H,m ∈M,v ∈ V and g ∈ HHom(M, tHomk(V,N)),

[θ′(g)](h · (v ⊗m)) = [θ′(g)](
∑

h1 v ⊗ h2m)

=
∑

q2L(g(h2m)(S−1(q1L)h1 v))

=
∑

q2L[(h2 (g(m)))(S−1(q1L)h1 v))

=
∑

q2Lh22[g(m)(S−1(q1Lh21)h1 v)]

by (7.33) =
∑

hq1L[g(m)(S(q2L) v)] = h · [ψ′(g)](m⊗ v).
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Thus, θ′(g) is also left H-linear. To show that θ and θ′ are inverse to each other, let
m ∈M, v ∈ V and f ∈ HHom(M ⊗ V,N). Then

[(θ′ ◦ θ)(f)](v ⊗m) =
∑

q2L[(θ(f)(m))(S−1(q1L) v)]

=
∑

q2L[f(p1
LS

−1(q1L) v ⊗ p2
Lm)]

f is H-linear. =
∑

[f(∆(q2L) pL (S−1(q1L) ⊗ 1) (v ⊗m)]

by (7.36) = f((1 ⊗ 1) (v ⊗m)) = f(v ⊗m).

On the other hand, for any m ∈M, v ∈ V and g ∈ HHom(M, tHomk(V,N)),

[(θ ◦ θ′)(g)](m)(v) = θ′(g)(
∑

p1
L v ⊗ p2

Lm)]

=
∑

q2L[g(p2
Lm)(S−1(q1L)p1

L v)]

=
∑

q2L[p2
L · (g(m))](S−1(q1L)p1

L v)

=
∑

q2L(p2
L)2 (g(m))(S−1((p2

L)1)S
−1(q1L)p1

L v)

=
∑

q2L(p2
L)2 (g(m))(S−1(q1L(p2

L)1)p
1
L v)

by(7.37) = g(m)(v).

This means that θ and θ′ are inverse to each other. ⊔⊓

9.7. Proposition. (Adjunction (A⊗k −,
tHomk(A,−)) for algebras in HM). Let

H be a quasi-Hopf algebra and A be a left H-module algebra. Then the right adjoint
functor tHomk(A,−) : HM → HM of the tensor functor A⊗b

k − is a comonad on HM

with comultiplication given, for any N ∈ HM, by

δN : tHomk(A,N) −→ tHomk(A,
tHomk(A,N)),

f 7−→ {a 7→ [b 7→
∑

q2L {(x
3(p2

L)2p
2
L · f)(S−1(q1L) · [(x1p1

L b)(x
2(p2

L)1 a)])}]},

and counit
ǫN : tHomk(A,N) −→ N, f 7→ f(1A).

The Eilenberg-Moore comodule category (HM)
tHomk(A,−) is isomorphic to the category

of left A-modules in HM, sending any left A-module ⊲ : A⊗kN → N in HM to N itself
with a tHomk(A,−)-comodule structure given by

̺N : N −→ tHomk(A,N), n 7→ [a 7→
∑

(p1
L a) ⊲ (p2

L n)].

Proof. Let V = A be a left H-module algebra, that is, the functor A⊗k− : HM →

HM is a monad. Thus, its right adjoint, tHomk(A,−) : HM → HM, is a comonad on

HM (see 4.9).
From the multiplication µA : A⊗A→ A we get the commutative diagram

HHom(A⊗M,N)

[µA⊗idM ,N ]

��

θM,N

∼=
//
HHom(M, tHom(A,N))

δ̃N
��

HHom((A⊗A) ⊗M,N)

[aA,A,M ,N ]

��

HHom(M, tHom(A, tHom(A,N)))

HHom((A⊗A) ⊗M,N)
θA⊗M,N

//
HHom(A⊗M, tHom(A,N)).

θM,tHom(A,N)

OO
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Explicitely, for a, b ∈ A, m ∈M and g ∈ HHom(M, tHom(A,N)), the map

δ̃N : HHom(M, tHom(A,N)) −→ HHom(M, tHom(A, tHom(A,N))),

is computed as

δ̃N (g)(m)(a)(b)

= θM,tHom(A,N) ◦ θA⊗M,N ◦ [a−1
A,A,M , N ] ◦ [µA ⊗ idM , N ] ◦ θ′M,N (g)(m)(a)(b)

= {
∑

(θA⊗M,N ◦ [a−1
A,A,M , N ] ◦ [µA ⊗ idM , N ] ◦ θ′M,N (g))(p1

L a⊗ p2
Lm)}(b)

=
∑

{[a−1
A,A,M , N ] ◦ [µA ⊗ id,N ] ◦ θ′M,N (g)}(p1

L b⊗ [p2
L1 p

1
L a⊗ p2

L2p
2
Lm])

=
∑

{θ′M,N (g) ◦ (µA ⊗ id) ◦ a−1
A,A,M}(p1

L b⊗ [(p2
L)1 p

1
L a⊗ (p2

L)2p
2
Lm])

=
∑

{θ′M,N (g) ◦ (µA ⊗ idM )}([x1p1
L b⊗ x2(p2

L)1 p
1
L a] ⊗ x3(p2

L)2p
2
Lm)

=
∑

{θ′M,N (g)}((x1p1
L b)(x

2(p2
L)1 p

1
L a) ⊗ x3(p2

L)2p
2
Lm)

=
∑

q2L {[g(x
3(p2

L)2p
2
Lm)](S−1(q1L) · [(x1p1

L b)(x
2(p2

L)1 p
1
L a)])}

H-linearity of g =
∑

q2L {[x
3(p2

L)2p
2
L · g(m)](S−1(q1L) · [(x1p1

L b)(x
2(p2

L)1 p
1
L a)])}.

This yields the map

δ̃N : HHom(M, tHom(A,N)) −→ HHom(M, tHom(A, tHom(A,N))),

defined for a, b ∈ A and g ∈ HHom(M, tHomk(A,N)) by

δ̃N (g)(m)(a)(b) =
∑

q1R {(X1(p1
R)1p

1
R · g(m))(S(q2R) · [(X2(p1

R)2p
2
R a)(X

3p2
R b)])}.

By the Yoneda Lemma, this gives the comultiplication δ of this comonad as

δN : tHomk(A,N) −→ tHomk(A,
tHomk(A,N)),

[δN (f)(a)](b) =
∑

q2L {[x
3(p2

L)2p
2
L · f ](S−1(q1L) · [(x1p1

L b)(x
2(p2

L)1 p
1
L a)])},

for a, b ∈ A and f ∈ tHomk(A,N).
With a similar argument as in 9.3 and using the unit map ι : k → A and the counit

of adjunction, it can be shown that the counit ǫ for δ of this comonad is given by

ǫN : Homk(A,N) −→ N, f 7→ f(1A).

The Eilenberg-Moore module category (HM)A⊗− over the monad A⊗k − : HM →

HM, is the category of left (A,H)-modules A(HM). By 4.9, this is also isomorphic to the
Eilenberg-Moore comodule category (HM)

tHomk(A,−) over the comonad tHomk(A,−).
Explicitly, for any N ∈ A(HM) (with the left (weak) A-action a ⊗ n 7→ a ⊲ n), the
tHomk(A,−)-comodule structure of N is given by the composition

̺N : N
ηN−→ tHomk(A,A⊗N) −→ tHomk(A,N).

For any n ∈ N , and a ∈ A,

̺N (n)(a) =
∑

(p1
L a) ⊲ (p2

L n).
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In this way, we obtain a functor F : A(HM) → (HM)
tHom(A,−).

Conversely, given a tHomk(A,−)-comodule structure

̺M : M −→ tHomk(A,M), m 7→ ̺M (m),

on left H-module M , we define a left (weak) A-action ⊲′ on M as composition

A⊗M
A⊗̺M

−→ A⊗ tHomk(A,M)
εM−→M.

Explicitly, for a ∈ A and m ∈M ,

a ⊲′ m =
∑

q2L · [̺M (m)(S−1(q1L) a)].

This (weak) A-action is a morphism in HM, and defines a left A-module structure on
M in HM. ⊔⊓

9.8. Corollary. From 8.4 we know that the category A(HM) of left A-modules in HM

is isomorphic to the category of left modules over the associative algebra A#H. So the
composition

A#HM ∼= A(HM)
F

−→ (HM)
tHom(A,−),

of isomorphisms yields an isomorphism between A#HM and (HM)
tHom(A,−).

On the other hand, A#H is an associative algebra. Thus, A#H ⊗k − is a monad and
Homk(A#H,−) a comonad on Mk. The Eilenberg-Moore module category (Mk)A#H⊗k−

is nothing but the category A#HM and it is isomorphic to the Eilenberg-Moore comodule
category (Mk)

Homk(A#H⊗k−). So we have

(Mk)
Homk(A#H⊗k−) ∼= (Mk)A#H⊗k−

∼= A#HM ∼= A(HM)
F

−→ (HM)
tHom(A,−).

9.9. Adjunction (V ⊗b
k−,

∗V ⊗b
k−) on HM. Let V ∈ HM and kV be finitely generated

and projective with a dual basis {vi}
n
i=1 and {vi}ni=1. Then we have the adjoint pair of

functors
V ⊗k − : HM −→ HM, ∗V ⊗k − : HM −→ HM.

Computations similar to those of Schauenburg in [27] show that unit and counit of this
adjunction are

uM : M
b′V ⊗M
−→ (∗V ⊗ V ) ⊗M

a
−→ ∗V ⊗ (V ⊗M),

m 7→
∑

(vi ⊗ S−1(β) vi) ⊗m 7→
∑

X1 vi ⊗ (X2S−1(β) vi ⊗X3m),

cM : V ⊗ (∗V ⊗M)
a−1

−→ (V ⊗ ∗V ) ⊗M
d′V ⊗M
−→ M,

v ⊗ g ⊗m 7→
∑

(x1 v ⊗ x2 · g) ⊗ x3m) 7→
∑

g(S−1(q1L) v)q2Lm.

Now, compairing the above right adjoint ∗V ⊗k− with the right adjoint tHom(V,−)
for the tensor functor V ⊗k − : HM → HM, introduced in 9.6, and using 4.2, with
similar arguments as in 9.10, we obtain a functorial isomorphism between this two
right adjoints.
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9.10. Theorem. (Adjunction (− ⊗k V,− ⊗k V
∗) on HM). Let H be a quasi-Hopf

algebra, M,V ∈ HM. Then

(1) The map ψM : ∗V ⊗kM → tHomk(V,M), g ⊗m 7−→ [v 7→ g(v)m],
is a natural homomorphism in HM.

(2) If kV is finitely generated and projective with dual basis {vi}
n
i=1 and {vi}ni=1, then

the map ψM gives rise to a natural isomorphism with inverse map

ψ′
M : tHom(V,M) −→ ∗V ⊗kM,

f 7→
∑

X1 vi ⊗ x3X3
2 [f(S−1(αx2X3

1 )x1X2S−1(β) vi)].

By symmetry, similar adjunctions as 9.2 can be stated for right modules as well.
For any M,N ∈ MH we have that Homk(M,N) is a right H-module by

(f · h)(m) =
∑

f(mS(h1))h2,

which is denoted by Homs
k(M,N) (e.g. [7, 15.9]).

9.11. Theorem. (Adjunction (V ⊗b
k−,Homs

k(V,−)) on MH). Let H be a quasi-Hopf
algebra with quasi-antipode (S, α, β), and M,N, V ∈ MH . Then there is a functorial
isomorphism

Hom−H(V ⊗b
kM,N)

ψ
−→ Hom−H(M,Homs

k(V,N)),

f 7−→ {m 7→ [v 7→ f((v ⊗m) qL)]},

with inverse map ψ′:

g 7−→ {v ⊗m 7→
∑

[g(m)(v S(p1
L))] p2

L},

where pL =
∑
p1
L ⊗ p2

L and qL =
∑
q1L ⊗ q2L as introduced in (7.28) and (7.29).

Thus there is an adjunction between the functors

V ⊗b
k − : MH −→ MH , Homs

k(V,−) : MH −→ MH ,

with unit and counit given by

ηM : M −→ Homs
k(V, V ⊗kM), m 7−→ [v 7→ (v ⊗m) qL],

εM : V ⊗ Homs
k(V,M) −→M, v ⊗ f 7→

∑

[f(v S(p1
L))] p2

L.

The proof can be given with similar arguments as in 9.2.

9.12. Proposition. (Adjunction (A⊗b
k −,Homs

k(A,−)) for algebras in MH). Let
H be a quasi-Hopf algebra and A be a right H-module algebra. Then the right adjoint
functor Homs

k(A,−) : HM → HM of the tensor functor A ⊗b
k − is a comonad on HM

with comultiplication given for any N ∈ HM by

δN : Homs
k(A,N) −→ Homs

k(A,Homs
k(A,N)),
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f 7−→ {a 7→ [b 7→
∑

{[f · (q2L(q1L)2X
3)]([(b q2LX

1)(a q1L(q1L)1X
2)] · S(p1

L))} p2
L},

and counit
ǫN : tHomk(A,N) −→ N, f 7→ f(1A).

The Eilenberg-Moore comodule category (MH)Homs
k(A,−) is isomorphic to the category

of left A-modules in MH , sending any left A-module ⊲ : A⊗N → N in MH , to N itself
with a Homs

k(A,−)-comodule structure given by

̺N : N −→ Homs
k(A,N), n 7→ [a 7→

∑

(a q1L) ⊲ (n q2L)].

Proof. Let V = A be a right H-module algebra, i.e. the functor A⊗b
k − : MH →

MH is a monad. Thus, its right adjoint Homs
k(A,−) : MH → MH is a comonad (see

4.9). The multiplication µA : A⊗A→ A yields the commutative diagram

Hom−H(A⊗M,N)

[µA⊗idM ,N ]
��

ψM,N

∼=
// Hom−H(M,Homs(A,N))

δ̃N
��

Hom−H((A⊗A) ⊗M,N)

[aA,A,M ,N ]

��

Hom−H(M,Homs(A,Homs(A,N)))

Hom−H((A⊗A) ⊗M,N)
ψA⊗M,N

// Hom−H(A⊗M,Homs(A,N)).

ψM,Homs(A,N)

OO

With similar arguments as in 9.7, we can see that for a, b ∈ A, m ∈ M and g ∈
Hom−H(M, tHom(A,N)), the morphism

δ̃N : HHom(M,Homs(A,N)) −→ Hom−H(M,Homs(A,Homs(A,N))),

is given by

δ̃N (g)(m)(a)(b) =
∑

{[g(m) · (q2L(q1L)2X
3)]([(b q2LX

1)(a q1L(q1L)1X
2)] · S(p1

L))} p2
L,

and by the Yoneda Lemma, we obtain the comultiplication δ of this comonad as stated
above in the proposition.

With similar arguments as in 9.3, (see also 9.7), it can be shown that the counit ǫ
for δ of this comonad is given by

ǫN : Homk(A,N) −→ N, f 7→ f(1A).

The Eilenberg-Moore module category (MH)A⊗− over the monad A⊗k − : MH →
MH , is the category A(MH) of left A-modules in MH . By 4.9, it is isomorphic to the
Eilenberg-Moore comodule category (MH)Homs

k(A,−) over the comonad Homs
k(A,−). We

describe this isomorphism explicitly.

For any N ∈ A(MH) (with the left (weak) A-action a⊗n 7→ a⊲n), the Homs
k(A,−)-

comodule structure of N is given by the composition

̺N : N
ηN−→ Homs

k(A,A⊗N)
[A,N̺]
−→ Homs

k(A,N).
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Explicitly, for any n ∈ N , and a ∈ A,

̺N (n)(a) =
∑

(a q1L) ⊲ (n q2L).

In this way, we obtain a functor

F : A(MH) −→ (MH)Homs(A,−).

Conversely, given a Homs
k(A,−)-comodule structure

̺M : M −→ Homs
k(A,M), m 7→ ̺M (m),

on M ∈ MH , we define a left (weak) A-action ⊲′ on M as composition

⊲′ : A⊗M
A⊗̺M

−→ A⊗ Homs
k(A,M)

εM−→M,

explicitly, for a ∈ A and m ∈M ,

a ⊲′ m =
∑

[̺M (m)(aS(p1
L) p2

L)].

⊔⊓

Since the quasi-antipode S is bijective, Homk(M,N) is a right H-module by

(f · h)(m) =
∑

f(mS−1(h2))h1,

which we denote by Homt
k(M,N). With a similar proof as in 9.6, we obtain

9.13. Theorem. (Adjunction (−⊗b
kV,Homt

k(V,−)) on MH). Let H be a quasi-Hopf
algebra with quasi-antipode (S, α, β), and M,N, V ∈ MH . Then there is a functorial
isomorphism

Hom−H(M ⊗b
k V,N)

θ
−→ Hom−H(M,Homt

k(V,N)),

f 7−→ {m 7→ [v 7→ f((m⊗ v) qR)]},

with inverse map θ′:

g 7−→ {m⊗ v 7→
∑

[g(m)(v S−1(p2
R))] p1

R},

where pR =
∑
p1
R ⊗ p2

R and qR =
∑
q1R ⊗ q2R as introduced in (7.30) and (7.31).

Thus, there is an adjunction between the functors

−⊗b V : MH → MH , Homt(V,−) : MH → MH ,

with unit and counit given by

ηM : M −→ Homt
k(V,M ⊗b

k V ), m 7−→ [v 7→ (m⊗ v) qR],

εM : Homt
k(V,M) ⊗ V −→M, f ⊗ v 7→

∑

[f(v S−1(p2
R))] p1

R.
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9.14. Proposition. (Adjunction (−⊗b
k A,Homt

k(A,−) for algebras in MH). Let
H be a quasi-Hopf algebra and A be a right H-module algebra. Then the right adjoint
functor Homt

k(A,−) : MH → MH of the tensor functor − ⊗b
k A is a comonad on MH

with comultiplication given for any N ∈ HM by

δN : Homt
k(A,N) −→ Homt

k(A,Homt
k(A,N)),

f 7−→ {a 7→ [b 7→
∑

{[f · (q1R(q1R)1x
1)]([(a q2R(q1R)2x

2)(b q2Rx
3)] · S−1(p2

R))} p1
R},

and counit
ǫN : Homt

k(A,N) −→ N, f 7→ f(1A).

The Eilenberg-Moore comodule category (MH)Homt
k(A,−) is isomorphic to the category

of right A-modules in MH , corresponding with any right A-module ⊳ : N ⊗ A → N in
MH , the right H-module N itself with a Homt

k(A,−)-comodule structure given by

̺N : N −→ Homt
k(A,N), n 7→ [a 7→

∑

(n q1R) ⊳ (a q2R)].

Proof. Take V = A to be a right H-module algebra. The functor −⊗kA : MH →
MH is a monad. Thus, its right adjoint, Homt

k(A,−) : MH → MH , is comonad on MH

(see 4.9).

By adjunction 9.13, the multiplication µA : A ⊗ A → A yields the commutative
diagram

Hom−H(M ⊗A,N)

[idM⊗µA,N ]

��

θM,N

≃
// Hom−H(M,Homt(A,N))

δ̃N
��

Hom−H(M ⊗ (A⊗A), N)

[aM,A,A,N ]

��

Hom−H(M,Homt(A,Homt(A,N)))

Hom−H(M ⊗ (A⊗A), N)
θM⊗A,N

≃ // Hom−H(M ⊗A,Homt(A,N)).

θM,Homt(A,N)

OO

With similar arguments as in 9.3, we can see that for a, b ∈ A, m ∈ M and g ∈
Hom−H(M,Homt(A,N)), the map

δ̃N : Hom−H(M,Homt(A,N)) −→ Hom−H(M,Homt(A,Homt(A,N))),

is computed as

δ̃N (g)(m)(a)(b) =
∑

{[g(m) · (q1R(q1R)1x
1)]([(a q2R(q1R)2x

2)(b q2Rx
3)] · S−1(p2

R))} p1
R,

and using the Yoneda Lemma, we obtain the comultiplication δ of this comonad as
stated.

With similar arguments as in 9.3 and 9.7, it can be shown that the counit ǫ for δ
of this comonad is given by

ǫN : Homk(A,N) −→ N, f 7→ f(1A).
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The Eilenberg-Moore module category (MH)−⊗bA over the monad −⊗b
k A : MH →

MH is the category (MH)A of right A-modules in MH .
By 4.9, this category is isomorphic to the Eilenberg-Moore comodule category (MH)Homt

k(A,−)

over the comonad Homt
k(A,−):

For any N ∈ (MH)A with right (weak) A-action n ⊗ a 7→ n ⊳ a for a ∈ A and n ∈ N ,
the Homt

k(A,−)-comodule structure of N is given by the composition

̺N : N
ηN−→ Homt

k(A,N ⊗A)
[A,̺N ]
−→ Homt

k(A,N),

i.e. for any n ∈ N , and a ∈ A,

̺N (n)(a) =
∑

(n q1R) ⊳ (a q2R).

In this way, we obtain a functor F : (MH)A → (MH)Homt(A,−).
Conversely, given any Homt

k(A,−)-comodule structure

̺M : M −→ Homt
k(A,M), m 7→ ̺M (m),

on M ∈ MH , we define a right (weak) A-action on M as composition

⊳′ : M ⊗A
̺M⊗A
−→ Homt

k(A,M) ⊗A
εM−→M,

i.e. for a ∈ A and m ∈M ,

m ⊳′ a =
∑

[̺M (m)(aS−1(p2
R))] p1

R.

This (weak) A-action is (by construction) a morphism in MH , and defines a right A-
module structure on M in MH . ⊔⊓

Combining the Hom-tensor adjunctions in the categories HM and MH , we prove
Hom-tensor relations for the bimodule category HMH over a quasi-Hopf algebra H. For
any quasi-bialgebra H, we know that HMH is a monoidal category (see section 7) and
for any M,N ∈ HMH , M ⊗k N ∈ HMH (with the diagonal left and right H-module
structure).
If H is a quasi-Hopf algebra with quasi-antipode (S, α, β), then for any M,N ∈ HMH

we have an (H,H)-bimodule structure on Homk(M,N) given by

(h · f · h′)(m) =
∑

h1 [f(S(h2)mS−1(h′2))]h
′
1, (9.1)

which is denoted by sHomt
k(M,N).

9.15. Theorem. (Adjoint pair (− ⊗b
k V,

sHomt(V,−)) on HMH). Let H be a
quasi-Hopf algebra with quasi-antipode (S, α, β), and M,N, V ∈ HMH . Then there is a
functorial isomorphism

HHomH(M ⊗b
k V,N)

ψ
−→ HHomH(M, sHomt

k(V,N)),

f 7−→ {m 7→ [v 7→ f(pR (m⊗ v) qR]},
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with inverse map ψ′:

g 7−→ {m⊗ v 7→
∑

q1R[g(m)(S(q2R) v S−1(p2
R))] p1

R},

where pR =
∑
p1
R ⊗ p2

R and qR =
∑
q1R ⊗ q2R are defined in (7.30) and (7.31).

This means that the functors

−⊗b V :HMH −→HMH , and sHomt(V,−) :HMH −→HMH ,

form an adjoint pair with unit and counit, (in HMH),

ηM : M −→ sHomt
k(V,M ⊗k V ), m 7−→ [v 7→ pR (m⊗ v) qR],

εM : sHomt
k(V,M) ⊗ V −→M, f ⊗ v 7→

∑

q1R [f(S(q2R) v S−1(p2
R))] p1

R.

Proof. First we show that for any f ∈ HHomH(M ⊗b
k V,N), we have ψ(f) ∈

HHomH(M, sHomt
k(V,N)). i.e. ψ(f) is H-bilinear. for any h ∈ H,m ∈M,v ∈ V ,

[ψ(f)(hmh′)](v) = f(pR (hmh′ ⊗ v) qR)

= f(pR (h⊗ 1)(m⊗ v) (h′ ⊗ 1) qR)

by (7.34) and (7.35) =
∑

f(∆(h1) pR (1 ⊗ S(h2))(m⊗ v) (1 ⊗ S−1(h′2)) qR ∆(h′1))

f is H-bilinear =
∑

h1 [f(p1
Rmq1R ⊗ p2

RS(h2) v S
−1(h′2)q

2
R)]h′1.

On the other hand,

[h · (ψ(f)(m)) · h′](v) =
∑

h1[(ψ(f)(m))(S(h2) v S
−1(h′2))]h

′
1

=
∑

h1 [f(p1
Rmq1R ⊗ p2

RS(h2) v S
−1(h′2)q

2
R)]h′1,

showing the H-bilinearity of ψ(f).
Conversely, for any h, h′ ∈ H,m ∈M,v ∈ V and g ∈ HHomH(M, sHomt

k(V,N)),

[ψ′(g)](h · (m⊗ v) · h′) = [ψ′(g)](
∑

h1mh′1 ⊗ h2 v h
′
2)

=
∑

q1R [g(h1mh′1)(S(q2R)h2 v h
′
2S

−1(p2R))] p1
R

=
∑

q1R[(h1 · (g(m)) · h′1)(S(q2R)h2 v h
′
2S

−1(p2
R))] p1

R

=
∑

q1Rh11 {g(m)[S(q2Rh12)h2 v h
′
2S

−1(h′12p
2
R))]h′11p

1
R}

by (7.35) and (7.34) =
∑

hq1R[g(m)(S(q2R) v S−1(p2
R))] p1

Rh
′

= h [ψ′(g)(m⊗ v)]h′.

Thus, ψ′(g) is also H-bilinear.
Now we show that ψ and ψ′ are inverse to each other. For any m ∈ M,v ∈ V and
f ∈ HHomH(M ⊗ V,N),

[(ψ′ ◦ ψ)(f)](m⊗ v) =
∑

q1R[(ψ(f)(m))(S(q2R) v S−1(p2
R))] p1

R

=
∑

q1R[f(p1
Rmq1R ⊗ p2

RS(q2R) v S−1(p2
R)q2R)] p1

R

f is H-bilinear =
∑

[f(∆(q1R) pR (1 ⊗ S(q2R)) (m⊗ v) (1 ⊗ S−1(p2
R)) qR ∆(p1

R)]

by (7.38) and (7.39) = f((1 ⊗ 1) (m⊗ v) (1 ⊗ 1)) = f(m⊗ v).
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On the other hand, for any m ∈M, v ∈ V and g ∈ HHomH(M, sHomt
k(V,N)),

[(ψ ◦ ψ′)(g)](m)(v) = ψ′(g)(
∑

p1
Rmq1R ⊗ p2

R v q
2
R)]

=
∑

q1R[g(p1
Rmq1R)(S(q2)p2

R v q
2
RS

−1(p2
R))] p1

R

=
∑

q1R {[p1
R · (g(m)) · q1R](S(q2R)p2

R v q
2
RS

−1(p2
R))} p1

R

=
∑

q1R(p1
R)1 {(g(m))(S((p1

R)2)S(q2R)p2
R v q

2
RS

−1(p2
R))} p1

R

=
∑

q1R(p1
R)1 {(g(m))(S(q2R(p1

R2)p
2
R v q

2
RS

−1((q1R)2p
2
R))} (q1R)1p

1
R

by(7.38) and (7.39) = g(m)(v).

This shows that ψ and ψ′ are inverse to each other. ⊔⊓

As seen in the one-sided cases, for M,N ∈ HMH , there are two possibilities to con-
sider Homk(M,N) as a left (or right) H-module. (We denoted them by sHomk(M,N),
tHomk(M,N), Homs

k(M,N), or Homt
k(M,N) respectively.) This can also be done for

(H,H)-bimodules. Namely, for M,N ∈ HMH , we have an alternative (H,H)-bimodule
stucture on Homk(M,N)

(h · f · h′)(m) :=
∑

h2 [f(S−1(h1)mS(h′1))]h
′
2, (9.2)

for all h, h′ ∈ H, m ∈ M and f ∈ Homk(M,N). We denote by tHoms
k(M,N) the

k-module Homk(M,N) with the above left and right H-module structure. In this case,
we have

9.16. Theorem. ((V ⊗b −, tHoms(V,−)) as adjoint pair on HMH). Let H be a
quasi-Hopf algebra with quasi-antipode (S, α, β), and M,N, V ∈ HMH . Then there is a
functorial isomorphism

HHomH(V ⊗b
kM,N)

ψ
−→ HHomH(M, tHoms

k(V,N)),

f 7−→ {m 7→ [v 7→ f(pL (v ⊗m) qL)]},

with inverse map ψ′:

g 7−→ {v ⊗m 7→
∑

q2L[g(m)(S−1(q1L) v S(p1
L))] p2

L}

where pL =
∑
p1
L ⊗ p2

L and qL =
∑
q1L ⊗ q2L are defined in (7.28) and (7.29).

This means that the functors

V ⊗b − :HMH −→HMH ,
tHoms(V,−) :HMH −→HMH ,

form an adjoint pair with unit and counit, in HMH

ηM : M −→ tHoms
k(V, V ⊗kM), m 7−→ [v 7→ pL (v ⊗m) qL],

εM : V ⊗ tHoms
k(V,M) −→M, v ⊗ g 7→

∑

q2L [g(S−1(q1L) v S(p1
L))] p2

L.
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10 Comodule algebras and quasi-smash products

For a quasi-bialgebra H, the category HM is monoidal and an H-module (co)algebra
is (by definition) a (co)algebra in this category. Because of non-coassociativity of H,
this categorical definition cannot be used to introduce H-comodule (co)algebras.
Hausser and Nill [15] gave a formal definition of an H-comodule algebra as a general-
ization of the definition of quasi-bialgebra.

10.1. Comodule algebras. Let (H,∆, ε, φ) be a quasi-bialgebra. A unital associative
algebra A is called a right H-comodule algebra if there exist an algebra morphism
ρ : A → A⊗H and an invertible element φρ ∈ A⊗H ⊗H such that

(R1) φρ(ρ⊗ idH) ◦ ρ(a) = (idH ⊗ ∆) ◦ ρ(a) · φρ ∀a ∈ A.

(R2) (1A ⊗ φ)(id⊗ ∆ ⊗ id)(φρ)(φρ ⊗ 1H) = (id⊗ id⊗ ∆)(φρ)(ρ⊗ id⊗ id)(φρ)

(R3) (idA ⊗ ε) ◦ ρ = idA

(R4) (idA ⊗ ε⊗ idH)(φρ) = 1A ⊗ 1H

Similarly, a unital associative algebra B is called a left H-comodule algebra if
there exist an algebra morphism λ : B → H⊗B and an invertible element φλ ∈ H⊗H⊗B
such that

(L1) (id⊗ λ)(λ(b))φλ = φλ(∆ ⊗ id)(λ(b)) ∀b ∈ B

(L2) (1H ⊗ φλ)(id⊗ ∆ ⊗ id)(φλ)(φ⊗ 1B) = (id⊗ id⊗ λ)(φλ)(∆ ⊗ id⊗ id)(φλ)

(L3) (ε⊗ id) ◦ λ = idB

(L4) (id⊗ ε⊗ id)(φλ) = 1H ⊗ 1B

If (A, ρ, φρ) is a right H-comodule algebra, we also have

(id⊗ id⊗ ε)(φρ) = 1A ⊗ 1H .

If (B, λ, φλ) is a left H-comodule algebra, then

(ε⊗ id⊗ id)(φλ) = 1H ⊗ 1B.

Any quasi-bialgebra H is a particular example of a left and a right H-comodule algebra
for A = B = H, ρ = λ = ∆ and φρ = φλ = φ.
In analogy with the notation for the reassociator φ of a quasi-bialgebra H, we use
capital letters for showing the components of φρ and small letters for the components
of φ−1

ρ . Namely, we write

φρ =
∑

X̃1
ρ ⊗ X̃2

ρ ⊗ X̃3
ρ =

∑

Ỹ 1
ρ ⊗ Ỹ 2

ρ ⊗ Ỹ 3
ρ = · · ·

φ−1
ρ =

∑

x̃1
ρ ⊗ x̃2

ρ ⊗ x̃3
ρ =

∑

ỹ1
ρ ⊗ ỹ2

ρ ⊗ ỹ3
ρ = · · ·

A similar notation is used for the element φλ of a left H-comodule algebra B. If no
confusion is possible, we will omit the subscripts ρ or λ in the tensor components of
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φρ, φλ, φ
−1
ρ , φ−1

λ .

For a right H-comodule algebra A, following Hausser and Nill [15], we define ele-
ments p̃ρ, q̃ρ ∈ A⊗H,

p̃ρ = p̃1
ρ ⊗ p̃2

ρ =
∑

x̃1
ρ ⊗ x̃2

ρβS(x̃3
ρ) (10.1)

q̃ρ = q̃1ρ ⊗ q̃2ρ = X̃1
ρ ⊗ S−1(αX̃3

ρ)X̃
2
ρ (10.2)

By [15, Lemma 9.1], we have the relations, for all a ∈ A,

ρ(a(0))p̃ρ[1A ⊗ S(a(1))] = p̃ρ[a⊗ 1H ] (10.3)

[1A ⊗ S−1(a(1))]q̃ρρ(a(0)) = [a⊗ 1H ]q̃ρ (10.4)

ρ(q̃1ρ)p̃ρ[1A ⊗ S(q̃2ρ)] = 1A ⊗ 1H (10.5)

[1A ⊗ S−1(p̃2
ρ)]q̃ρρ(p̃

1
ρ) = 1A ⊗ 1H (10.6)

φρ(ρ⊗idH)(p̃ρ)(p̃ρ⊗1H)=
P

(idA⊗∆)(ρ(x̃1
ρ)p̃ρ)(1A⊗g1S(x̃3

ρ)⊗g2S(x̃2
ρ)) (10.7)

(q̃ρ⊗1H)(ρ⊗idH)(q̃ρ)φ−1
ρ =

P

[1A⊗S−1(f2X̃3
ρ)⊗S−1(f1X̃2

ρ)](idA⊗∆)(q̃ρρ(X̃1
ρ)) (10.8)

For a left H-comodule algebra B we define elements p̃λ, q̃λ ∈ H ⊗ B as

p̃λ = p̃1
λ ⊗ p̃2

λ =
∑

X̃2
λS

−1(X̃1
λβ) ⊗ X̃3

λ (10.9)

q̃λ = q̃1λ ⊗ q̃2λ =
∑

S(x̃1
λ)αx̃

2
λ ⊗ x̃3

λ (10.10)

As shown in [15], they satisfy the equations (for b ∈ B),

∑

λ(b(0))p̃λ(S
−1(b(−1)) ⊗ 1B) = p̃λ(1H ⊗ b) (10.11)

∑

(S(b(−1)) ⊗ 1B)q̃λλ(b(0)) = (1H ⊗ b)q̃λ (10.12)

∑

λ(q̃2λ)p̃λ(S
−1(q̃1λ) ⊗ 1B) = 1H ⊗ 1B (10.13)

∑

(S(p̃1
λ) ⊗ 1B)q̃λλ(p̃2

λ) = 1H ⊗ 1B (10.14)

φ−1
λ

(idH⊗λ)(p̃λ)(1H⊗p̃λ) =
P

(∆⊗idB)(λ(X3
λ
)p̃λ)[S−1(X2

λ
g2)⊗S−1(X̃1

λ
g1)⊗1B] (10.15)

(1H⊗q̃λ)(idH⊗λ)(q̃λ)φλ =
P

[S(x̃2
λ
)⊗S(x̃1

λ
)⊗1B][f⊗1B][∆⊗idB]([q̃λλ(x̃3

λ
)]). (10.16)

10.2. Quasi-Smash products. Recall that for any k-algebra H, H∗ = Homk(H, k)
is an (H,H)-bimodule with left and right actions given by

h ⇀ ϕ ↼ h′ : H −→ k, h′′ 7→ ϕ(h′h′′h) ∀h, h′, h′′ ∈ H ∀ϕ ∈ H∗.
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If H is a k-bialgebra and is finitely generated and projective as a k-module, then H∗ is
also a bialgebra. Now let A be a rightH-comodule algebra. A can be considered as a left
H∗-module algebra, and then the smash product A#H∗ is defined with multiplication

(a#ϕ)(a′#ψ) =
∑

aa′0#(ϕ ↼ a′1) ∗ ψ.

For a quasi-bialgebra H, the convolution product in H∗ is only associative up to con-
jugation with φ, namely,

[ϕ ∗ ψ] ∗ θ =
∑

(X1 ⇀ ϕ ↼ x1) ∗ [(X2 ⇀ ψ ↼ x2) ∗ (X3 ⇀ θ ↼ x3)],

for all ϕ,ψ, θ ∈ H∗. In addition, for all h ∈ H,ϕ, ψ ∈ H∗,

h ⇀ (ϕ ∗ ψ) =
∑

(h1 ⇀ ϕ) ∗ (h2 ⇀ ψ),

(ϕ ∗ ψ) ↼ h =
∑

(ϕ ↼ h1) ∗ (ψ ↼ h2).

This means that H∗ is an algebra in the monoidal category HMH .

Although H∗ is not associative, we still keep the notation of the Hopf case for the
action of the algebra H∗ (in HMH) on H

ϕ ⇁ h =
∑

ϕ(h2)h1, h ↽ ϕ =
∑

ϕ(h1)h2,

for all ϕ ∈ H∗, h ∈ H.

Let (A, ρ, φρ) be a right H-comodule algebra. Following Bulacu and Caenepeel [8],
we define a multiplication on the k-module A⊗H∗ by

(a#̄ϕ)(a′#̄ψ) =
∑

aa′0x̃ρ
1#̄(ϕ ↼ a′1x̃ρ

2) ∗ (ψ ↼ x̃ρ
3),

for all a, a′ ∈ A, and ϕ,ψ ∈ H∗, where we write a#̄ϕ for a⊗ ϕ and

ρ(a) =
∑

a(0) ⊗ a(1) and φ−1
ρ =

∑

x̃ρ
1 ⊗ x̃ρ

2 ⊗ x̃ρ
3,

and denote A⊗H∗ with this structure by A#̄H∗. In [9], it is proven that A#̄H∗ is an
algebra in the category HM with unit 1A#1H and the left H-action

h · (a#̄ϕ) = a#̄h ⇀ ϕ ∀h ∈ H, a ∈ A, ϕ ∈ H∗.

This is called the quasi-smash product of A and H∗.

11 Hom-tensor relations for comodule algebras

Let H be a quasi-Hopf algebra and A be an H-comodule algebra. We know that the
coaction of H on A induces an action of the category of H-modules on the category
of A-modules (see section 6). In this section we display Hom-tensor relations for the
module category over A. Although this module category is not monoidal, we still have
the tensor product ⊗k in it, and the action of MH (resp. HM) on it makes some versions
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of Hom-tensor relations possible.

Let H be a quasi-Hopf algebra with quasi-antipode (S, α, β) and (A, ρ, φρ) be a
right H-comodule algebra. Then the coaction

ρ : A −→ A⊗k H, ρ(a) =
∑

a(0) ⊗ a(1),

gives a right action of MH on the category MA of right A-modules,

− ⋄ − : MA × MH −→ MA, (N,V ) 7−→ N ⊗k V,

where the right A-module structure of N ⊗k V is given by

(n⊗ v) · a =
∑

na(0) ⊗ v a(1) = (n⊗ v) ρ(a),

for all a ∈ A, v ∈ V , and n ∈ N . We denote by N ⊗b′

k V the k-module N ⊗k V with the
above right A-module structure.

There is a natural isomorphism

ψ : (− ⋄ −) ⋄ − −→ − ⋄ (−⊗−),

given by

ψN,V,W : (N ⋄ V ) ⋄W −→ N ⋄ (V ⊗W ), (n⊗ v) ⊗ w 7→ [n⊗ (v ⊗ w)] · φ−1
ρ ,

for all V,W ∈ MH andN ∈ MA, and for v ∈ V,w ∈W , and n ∈ N . The commutativity
of the diagram

[(N ⋄ V ) ⋄W ] ⋄ Z

ΨN,V,W ⋄id

��

ΨN⋄V,W,Z // (N ⋄ V ) ⋄ (W ⊗ Z)
ΨN,V,W⊗Z

**TTTTTTTTTTTTTTT

N ⋄ [V ⊗ (W ⊗ Z)]

[N ⋄ (V ⊗W )] ⋄ Z
ΨN,(V ⊗W ),Z

// N ⋄ [(V ⊗W ) ⊗ Z]

id⋄aV,W,Z

44jjjjjjjjjjjjjjj

is a consequence of the pentagon identity in the definition of the comodule algebra.
In this way, for any right H-module V , we have an endofunctor

−⊗b′

k V : MA −→ MA, N 7→ N ⊗b′

k V,

with the right A-module structure on N ⊗b′

k V as given above. Generalizing the pre-
sentation in 9.13, we define a right A-module structure on Homk(V,N) by

(f · a)(v) =
∑

f(v S−1(a(1))) a(0),

for a ∈ A, v ∈ V and f ∈ Homk(V,N). We denote by Homt′

k (V,N) the k-module
Homk(V,N) with the above right A-module structure.
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11.1. Theorem. (Adjunction (− ⊗b′ V,Homt′(V,−)) on MA). Let H be a quasi-
Hopf algebra with quasi-antipode (S, α, β) and (A, ρ, φρ) be a right H-comodule algebra.
For V ∈ MH and M,N ∈ MA, there is a functorial isomorphism

HomA(M ⊗b′

k V,N)
ψ

−→ HomA(M, Homt′

k (V,N)),

f 7−→ {m 7→ [v 7→ f((m⊗ v) q̃ρ)]},

with inverse map ψ′ given by

g 7−→ {m⊗ v 7→
∑

[g(m)(v S−1(p̃2
ρ))] p̃

1
ρ},

where

p̃ρ =
∑

p̃1
ρ ⊗ p̃2

ρ =
∑

x̃1
ρ ⊗ x̃2

ρβS(x̃3
ρ), q̃ρ =

∑

q̃1ρ ⊗ q̃2ρ =
∑

X̃1
ρ ⊗ S−1(αX̃3

ρ)X̃
2
ρ .

This means that the functors

−⊗b′

k V : MA −→ MA, Homt′

k (V,−) : MA −→ MA,

form an adjoint pair with unit and counit (in MA)

ηM : M −→ Homt′

k (V,M ⊗k V ), m 7−→ [v 7→ (m⊗ v) q̃ρ],

εM : Homt′

k (V,M) ⊗ V −→M, f ⊗ v 7→
∑

[f(v S−1(p̃2
ρ))]p̃

1
ρ.

Proof. First we show that for any f ∈ HomA(M⊗b′

k V,N), ψ(f) ∈ HomA(M, Homt′

k (V,N)),
i.e. ψ(f) is right A-linear. For any a ∈ A,m ∈M,v ∈ V ,

[ψ(f)(ma)](v) = f(
∑

maq̃1ρ ⊗ v q̃2ρ)

= f(
∑

(m⊗ v) (a⊗ 1H) q̃ρ)

by (10.4) =
∑

f((m⊗ v) (1A ⊗ S−1(a(1))) q̃ρ ρ(a(0)))

f is right A-linear =
∑

[f((m⊗ v) (1A ⊗ S−1(a(1))) q̃ρ)] a(0)

=
∑

[f(m q̃1ρ ⊗ v S−1(a(1))q̃
2
ρ)] a(0).

On the other hand,

[(ψ(f)(m)) · a](v) =
∑

[(ψ(f)(m))(v S−1(a(1)))] a(0)

=
∑

[f(m q̃1ρ ⊗ v S−1(a(1))q̃
2
ρ)] a(0),

showing the right A-linearity of ψ(f).
Conversely, for any a ∈ A,m ∈M,v ∈ V and g ∈ HomA(M, Homt′

k (V,N)),

[ψ′(g)]((m⊗ v) · a) = [ψ′(g)](
∑

ma(0) ⊗ v a(1))

=
∑

{g(ma(0))(v a(1)S
−1(p̃2

ρ))} p̃
1
ρ

g is right A-linear =
∑

{(g(m) · a(0))(v a(1)S
−1(p̃2

ρ))} p̃
1
ρ

=
∑

{g(m)(v a(1)S
−1(a(0,1)p̃

2
ρ))} a(0,0)p̃

1
ρ

by (10.3) =
∑

{g(m)(v S−1(p̃2
ρ))} p̃

1
ρa

= [ψ′(g)(m⊗ v)] a.
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So, ψ′(g) is also right A-linear. Now we show that ψ and ψ′ are inverse to each other.
For any m ∈M, v ∈ V and f ∈ HomA(M ⊗ V,N),

[(ψ′ ◦ ψ)(f)](m⊗ v) =
∑

[(ψ(f)(m))(v S−1(p̃2
ρ))] p̃

1
ρ

=
∑

[f(m q̃1ρ ⊗ v S−1(p̃2
ρ)q̃

2
ρ)] p̃

1
ρ

f is right A-linear =
∑

[f((m⊗ v) (1A ⊗ S−1(p̃2
ρ)) q̃ρ ρ(p̃

1
ρ)]

by(10.6) = f(m⊗ v).

On the other hand, for any m ∈M, v ∈ V and g ∈ HomA(M, Homt′

k (V,N)),

[(ψ ◦ ψ′)(g)](m)(v) = ψ′(g)(
∑

m q̃1ρ ⊗ v q̃2ρ)

=
∑

[g(m q̃1ρ)(v q̃
2
ρS

−1(p̃2
ρ))] p̃

1
ρ

g is right A-linear =
∑

{[g(m) · q̃1ρ](v q̃
2
ρS

−1(p̃2
ρ))} p̃

1
ρ

=
∑

{(g(m))(v q̃2ρS
−1(p̃2

ρ)S
−1((q̃1ρ)(1)))} (q̃1ρ)(0)p̃

1
ρ

=
∑

{(g(m))(v q̃2ρS
−1((q̃1ρ)(1)p̃

2
ρ))} (q̃1ρ)(0)p̃

1
ρ

by (10.5) = g(m)(v).

This means that ψ and ψ′ are inverse to each other. ⊔⊓

Now let (B, λ, φλ) be a left H-comodule algebra. The coaction λ : B → H ⊗ B
induces a left action of HM on the category BM of left B-modules,

− ⋄ − : HM × BM −→ BM, (V,N) 7−→ V ⊗N,

for all N ∈ BM and V ∈ HM, where the left B-module structure of V ⊗N is given by

b · (v ⊗ n) =
∑

b(−1) v ⊗ b(0) n = λ(b)(v ⊗ n),

for all b ∈ B, v ∈ V , and n ∈ N . We denote by V ⊗b′

k N the k-module V ⊗k N with the
above left B-module structure.
There is a natural isomorphism ψ : (−⊗−) ⋄ − → − ⋄ (− ⋄ −) given by

ψV,W,N (v ⊗ w ⊗ n) = φλ · (v ⊗ w ⊗ n)

for all V,W ∈ HM N ∈ BM, v ∈ V,w ∈ W and n ∈ N . The commutativity of the
diagram

[(V ⊗W ) ⊗ Z] ⋄N

Ψ(V ⊗W ),Z,N

��

aV,W,Z⋄idN // [V ⊗ (W ⊗ Z)] ⋄N
ΨV,(W⊗Z),N

**TTTTTTTTTTTTTTT

V ⋄ [(W ⊗ Z) ⋄N ]

idV ⋄ψuujjjjjjjjjjjjjjj

(V ⊗W ) ⋄ (Z ⋄N)
ΨV,W,(Z⋄N)

// V ⋄ [W ⋄ (Z ⋄N)]
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is a consequence of the pentagon identity in the definition of the comodule algebra.
In this way, for any left H-module V , we have an endofunctor

V ⊗b′

k − : BM −→ BM, N 7→ V ⊗b′

k N,

with the left B-module structure on V ⊗k N given above. Generalizing the process
defined for modules over quasi-Hopf algebras, we define a left B-module structure on
Homk(V,N) by

(b · f)(v) =
∑

b(0) f(S−1(b(−1)) v),

for all b ∈ B, and v ∈ V and f ∈ Homk(V,N). We denote by t′Homk(V,N) the
k-module Homk(V,N) with the above left B-module structure.

11.2. Theorem. (Adjunction (V ⊗b′

k −, t
′

Hom(V,−)) on BM). Let H be a quasi-
Hopf algebra with quasi-antipode (S, α, β), (B, λ) a left H-comodule algebra, V ∈HM,
and M,N ∈BM. Then there is a functorial isomorphism

BHom(V ⊗b′

k M,N)
θ

−→ BHom(M, t
′

Homk(V,N)),

f 7−→ {m 7→ [v 7→ f(p̃λ (v ⊗m))]},

with inverse map θ′:

g 7−→ {v ⊗m 7→
∑

q̃2λ[g(m)(S−1(q̃1λ) v)]},

where

p̃λ =
∑

p̃1
λ ⊗ p̃2

λ =
∑

X̃2
λS

−1(X̃1
λβ) ⊗ X̃3

λ, q̃λ =
∑

q̃1λ ⊗ q̃2λ =
∑

S(x̃1
λ)αx̃

2
λ ⊗ x̃3

λ.

This yields an adjunction between the functors

V ⊗b′ − :BM →BM, t′Homk(V,−) :BM −→BM,

with unit and counit given by

η′M : M −→ t′Homk(V, V ⊗kM), m 7−→ [v 7→ p̃λ (v ⊗m)],

ε′M : V ⊗ t′Homk(V,M) −→M, v ⊗ f 7→
∑

q̃2λ[f(S−1(q̃1λ) v)].

Proof. For any f ∈ BHom(V ⊗b
kM,N), we show that θ(f) is left B-linear. For

any b ∈ B, m ∈M and v ∈ V ,

[θ(f)(bm)](v) = f(
∑

p̃1
λ v ⊗ p̃2

λbm)

= f(p̃λ (1H ⊗ b)(v ⊗m))

by (10.11) = f(
∑

λ(b(0)) p̃λ (S−1(b(−1)) ⊗ 1B)(v ⊗m))

f is left B-linear =
∑

b(0) [f(p̃1
λS

−1(b(−1)) v ⊗ p̃2
λm)].

On the other hand,

[b · (θ(f)(m))](v) =
∑

b(0) [(θ(f)(m))(S−1(b(−1)) v)]

=
∑

b(0) f(p̃1
λS

−1(b(−1)) v ⊗ p̃2
λm).
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This shows the left B-linearity of θ(f).
Conversely, for any b ∈ B,m ∈M,v ∈ V and g ∈ BHom(M, t

′

Homk(V,N)),

[θ′(g)](b · (v ⊗m)) = [θ′(g)](
∑

b(−1) v ⊗ b(0)m)

=
∑

q̃2λ [g(b(0)m)(S−1(q̃1λ)b(−1) v)]

g is left B-linear =
∑

q̃2λ [(b(0) · (g(m)))(S−1(q̃1λ)b(−1) v)]

=
∑

q̃2λb(0,0) [g(m)(S−1(q̃1λb(0,−1))b(−1) v)]

by (10.12) =
∑

bq̃2λ[g(m)(S−1(q̃1λ) v)] = b {[ψ′(g)](m⊗ v)}.

So, θ′(g) is also left B-linear.
Now we show that θ and θ′ are inverse to each other. For any m ∈ M,v ∈ V and
f ∈ BHom(M ⊗ V,N),

[(θ′ ◦ θ)(f)](v ⊗m) =
∑

q̃2λ[(θ(f)(m))(S−1(q̃1λ) v)]

=
∑

q̃2λ [f(p̃1
λS

−1(q̃1λ) v ⊗ p̃2
λm)]

f is left B-linear =
∑

[f(λ(q̃2λ) p̃λ (S−1(q̃1λ) ⊗ 1B) (v ⊗m)]

by (10.13) = f((1H ⊗ 1B) (v ⊗m)) = f(v ⊗m).

On the other hand, for any m ∈M, v ∈ V and g ∈ BHom(M, t
′

Homk(V,N)),

[(θ ◦ θ′)(g)](m)(v) = θ′(g)(
∑

p̃1
λ v ⊗ p̃2

λm)]

=
∑

q̃2λ[g(p̃
2
λm)(S−1(q̃1λ)p̃

1
λ v)]

g is left B-linear =
∑

q̃2λ[p̃
2
λ · (g(m))](S−1(q̃1λ)p̃

1
λ v)

=
∑

q̃λ
2p̃λ

2
1 {(g(m))(S−1(p̃2

1)S
−1(q̃1λ)p̃

1
λ v)}

=
∑

q̃λ
2p̃2

1 {(g(m))(S−1(q̃λ
1p̃2

1)p̃λ
1 v)}

by (10.14) = g(m)(v).

This shows that θ and θ′ are inverse to each other. ⊔⊓
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Chapter 4

Hom-tensor relations for

quasi-Hopf bimodules

12 Quasi-Hopf bimodules

Although a quasi-bialgebra H is not a coassociative coalgebra, it can be considered
as a coalgebra in the bimodule category HMH , so it makes sense to define comodules
over this coalgebra in the monoidal category HMH . This notion has been considered by
Hausser and Nill in [17] under the name quasi-Hopf H-bimodules as a generalization
of the concept of Hopf bimodules over Hopf algebras.

12.1. The Category HM
H
H . Let (H,∆, ε, φ) be a quasi-bialgebra, M an (H,H)-

bimodule and
̺M : M −→M ⊗H, ̺M (m) =

∑

m0 ⊗m1,

an (H,H)-bimodule homomorphism. Then (M,̺M ) is called a right quasi-Hopf H-
bimodule if for all m ∈M ,

(idM ⊗ ε) ◦ ̺M = idM , (12.1)

φ · (̺M ⊗ idH)(̺M (m)) = (idM ⊗ ∆)(̺M (m)) · φ, (12.2)

where we consider the diagonal left and right H-module structure on M ⊗H.

A morphism of right quasi-Hopf H-bimodules is an (H,H)-bimodule mor-
phism f : M → L satisfying ̺L ◦ f = (f ⊗ id) ◦ ̺M . The category of right quasi-Hopf
H-bimodules with the above morphisms is denoted by HM

H
H .

By definition of a quasi-bialgebra, taking M = H and ̺M = ∆ gives an example of a

quasi-Hopf H-bimodule.

12.2. (H,H)-bimodules and quasi-Hopf bimodules. Let H be a quasi-bialgebra
and N an (H,H)-bimodule. With the following structures, N ⊗k H becomes a right
quasi-Hopf H-bimodule. For all a, b, h ∈ H,n ∈ N , define

a · (n⊗ h) · b :=
∑

a1nb1 ⊗ a2hb2 = ∆(a)(n⊗ h)∆(b) (12.3)

and a coaction ̺N⊗H : N ⊗H → (N ⊗H) ⊗H is defined by

̺N⊗H(n⊗ h) := φ−1 · (id⊗ ∆)(n⊗ h) · φ =
∑

x1 nX1 ⊗ x2h1X
2 ⊗ x3h2X

3. (12.4)
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For any (epi-)morphism g : N1 → N2 in HMH ,

g ⊗ idH : N1 ⊗H −→ N2 ⊗H

is an (epi-)morphism in HM
H
H . This gives rise to a covariant functor

−⊗k H : HMH −→ HM
H
H , N 7−→ (N ⊗H, ̺N⊗H , ̺

N⊗H),

where, ̺N⊗H is our notation for the diagonal (H,H)-bimodule structure map given in
(12.3) and ̺N⊗H is the coaction of N ⊗H defined in (12.4).
In particular, H ⊗H ∈HM

H
H with the structure for all h, a, b ∈ H,

h · (a⊗ b) = ∆(h)(a⊗ b) =
∑

h1a⊗ h2b,

(a⊗ b) · h = (a⊗ b)∆(h) =
∑

ah1 ⊗ bh2,

̺H⊗H(a⊗ b) =
∑

x1aX1 ⊗ x2b1X
2 ⊗ x3b2X

3 = φ−1 · (id⊗ ∆)(a⊗ b) · φ.

Next, we consider a special case of 12.2 taking the right H-module structure of N
as the trivial one.

12.3. Left H-modules and quasi-Hopf bimodules. Let H be a quasi-bialgebra
and N be a left H-module.

(1) N ⊗H becomes a right quasi-Hopf H-bimodule with the bimodule structure, for
all a, b, h ∈ H, and n ∈ N ,

a · (n⊗ h) · b :=
∑

a1n⊗ a2hb = ∆(a)(n⊗ hb), (12.5)

and the coaction ̺N⊗H : N ⊗H → (N ⊗H) ⊗H given by

̺N⊗H(n⊗ h) := φ−1 · (id⊗ ∆)(n⊗ h) =
∑

x1n⊗ x2h1 ⊗ x3h2. (12.6)

(2) If g : N1 → N2 is an (epi-)morphism in HM, then

g ⊗ idH : N1 ⊗H −→ N2 ⊗H,

is an (epi-)morphism in HM
H
H .

12.4. Comparison functor. Let H be a quasi-bialgebra. We have seen that for any
N ∈ HM, N ⊗ H ∈ HM

H
H with (H,H)-bimodule structure given in (12.5) and H-

comodule structure map given in (12.6). This gives rise to the comparison functor

−⊗k H : HM −→ HM
H
H , N 7−→ (N ⊗H, ̺N⊗H , ̺

N⊗H),

where, ̺N⊗H denotes the (H,H)-bimodule structure map given in (12.5) and ̺N⊗H is
the right H-comodule structure of N ⊗H defined in (12.6).

In [26, Proposition 3.6], Schauenburg showed that considering a convenient monoidal
structure on HM

H
H , the comparison functor −⊗k H : HM → HM

H
H is monoidal.
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12.5. Subgenerator in HM
H
H . Let H be a quasi-bialgebra. Using a similar approach

as in [7, 3.5 and 3.7], it can be shown that the category HM
H
H is closed under direct

sums and quotients. In the following we find a subgenerator for this category.
Since the algebra H is a generator in HM, for any quasi-Hopf H-bimodule M ∈ HM

H
H ,

the left H-module M can be considered as a homomorphic image of H(Λ), for some
cardinal number Λ. Therefore M ⊗H is a homomorphic image of

H(Λ) ⊗H ∼= (H ⊗H)(Λ),

in HM
H
H . By definition, for any quasi-Hopf H-bimodule M ∈ HM

H
H , the coaction

̺M : M →M ⊗H is a morphism in the category HM
H
H . Then by 12.3, we can consider

M as a subobject of M ⊗ H and this is generated by H ⊗ H ∈ HM
H
H . Here, the

structures of H ⊗H given for h, a, b ∈ H by

h · (a⊗ b) · h′ = ∆(h)(a⊗ b)(1 ⊗ h′) =
∑

h1a⊗ h2bh
′ (12.7)

̺H⊗H(a⊗ b) =
∑

x1a⊗ x2b1 ⊗ x3b2 = φ−1 · (id⊗ ∆)(a⊗ b). (12.8)

This means
Proposition. For any quasi-bialgebra H, with the structures given above, H ⊗H is
a subgenerator for the category HM

H
H of quasi-Hopf H-bimodules.

The following Lemma helps us to find a right adjoint to the comparison functor
−⊗k H given in 12.4.

12.6. Lemma. (The functor HHomH
H(V ⊗kH,−)). Let H be a quasi-bialgebra and

V ∈HMH .

(1) For M ∈HMH , HHomH(V ⊗H,M) ∈ HM with the left H-module structure given
for h, h′ ∈ H and v ∈ V , by

(h′ · f)(v ⊗ h) = f(v h′ ⊗ h).

In this way, we get a functor HHomH(V ⊗H,−) : HMH → HM.
In particular, if M ∈HM

H
H , then HHomH

H(V ⊗H,M) ∈ HM with left H-module
structure given above, and we obtain the Hom-functor

HHomH
H(V ⊗H,−) : HM

H
H → HM.

(2) Let V ∈ HMH and N ∈HM. Consider N as an (H,H)-bimodule with the trivial
right H-module structure. Then

(i) ψ : HHomH
H(V ⊗H,N ⊗H) −→ HHomH(V ⊗H,N), f 7→ (id⊗ ε) ◦ f ,

is an isomorphism in HM with inverse map ψ′ given by

g 7→ (g ⊗ idH) ◦ ̺V⊗H .

(ii) θ : HHomH(V ⊗H,N) −→ HHom(V,N), f 7→ f(−⊗ 1H),
is an isomorphism in HM with inverse map θ′ given by

g 7→ [v ⊗ h 7→ ε(h)g(v)],
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(iii) We have the left H-module isomorphism

HHom(V,N) −→ HHomH
H(V ⊗H,N ⊗H), g 7−→ g ⊗ idH ,

with the inverse map given, for f ∈ HHomH
H(V ⊗H,N ⊗H), by

f 7→ (id⊗ ε) ◦ f(−⊗ 1H).

This means that the comparison functor − ⊗k H : HM →HM
H
H is full and

faithful.

Proof. (1) For all h ∈ H and f ∈ HHomH(V ⊗H,M), it is easy to see that h ·f is
an (H,H)-bilinear map. In this way, we have HHomH(V ⊗H,M) ∈HM and we obtain
a functor

HHomH(V ⊗H,−) :HMH −→HM.

In the particular case M ∈ HM
H
H and f ∈ HHomH

H(V ⊗H,M), the H-colinearity of
h · f follows from the H-colinearity of f itself. Thus, HHomH

H(V ⊗ H,M) ∈HM and
we obtain a functor

HHomH
H(V ⊗H,−) :HM

H
H −→HM.

(2) (i) The quasi-bialgebra H is (by definition), a coalgebra in HMH , i.e. the
endofunctor

G := −⊗k H : HMH −→ HMH , N 7→ N ⊗k H,

is a comonad. Here, the (H,H)-bimodule structure onN⊗kH is given for all a, b, h ∈ H,
and n ∈ N by

a · (n⊗ h) · b =
∑

a1 n b1 ⊗ a2 h b2 = ∆(a) (n⊗ h) ∆(b).

The comultiplication δ of this comonad defined for N ∈ HMH by

δN : N ⊗H −→ (N ⊗H) ⊗H,

n⊗ h 7→
∑

x1 nX1 ⊗ x2 h1X
2 ⊗ x3 h2X

3 = φ−1 · (id⊗ ∆)(n⊗ h) · φ,

and the counit ǫ of this δ is defined by ǫN = idN ⊗ ε : N ⊗H → N .
Furthermore, the category of two-sided Hopf modules HM

H
H is isomorphic to the Eilenberg-

Moore comodule category (HMH)−⊗H . Now, considering the comparison functor − ⊗
H : HMH → HM

H
H as the free functor which is right adjoint to the forgetful functor,

by 4.8, we obtain the isomorphism of part (i).
(ii) First we note that for f ∈ HHomH(V ⊗H,N), h ∈ H and v ∈ V

h [θ(f)(v)] = h [f(v ⊗ 1H)]

f is left H-linear = f(
∑

h1 v ⊗ h2)

f is right H-linear =
∑

f(h1 v ⊗ 1H)h2

=
∑

f(h1 v ⊗ 1H) ε(h2)

= f(h v ⊗ 1H) = θ(f)(h v).

This means that θ(f) ∈ HHom(V,N). Also, it is straightforward to show that for f ∈

HHom(V,N), we have θ′(g) ∈ HHomH(V ⊗H,N). The H-linearity and the bijectivity
of θ can be seen by direct computations.
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(iii) Follows by combining the isomorphisms in parts (i) and (ii). ⊔⊓

Taking V = H and considering the trivial right H-module structure on N , for M ∈

HM
H
H we have a left H-module structure on HHomH

H(H ⊗H,M) given for h, a, b ∈ H

and f ∈ HHomH
H(H ⊗H,M) by

(h · f)(a⊗ b) = f(a h⊗ b).

(The structures on H ⊗k H are given in (12.7) and (12.8)). Considering the left H-
module structure on HHomH

H(H ⊗H,M) given above, we show that the functor

HHomH
H(H ⊗H,−) :HM

H
H −→HM,

is right adjoint to the comparison functor − ⊗k H : HM → HM
H
H defined in 12.4 (see

also [7, 18.10]).

12.7. Theorem. (HHomH
H(H ⊗ H,−) as right adjoint to the comparison-

functor).
Let H be a quasi-bialgebra, M ∈ HM

H
H and N ∈ HM. Then there is a functorial

isomorphism

HHomH
H(N ⊗H,M)

Ω
−→HHom(N,HHomH

H(H ⊗H,M)),

f 7−→ {n 7→ [a⊗ b 7→ f(an⊗ b)]},

with inverse map Ω′:
g 7−→ [n⊗ h 7→ g(n)(1H ⊗ h)].

This means that the comparison functor

−⊗k H : HM −→HM
H
H , N 7→ (N ⊗H, ̺N⊗H , ̺

N⊗H),

is left adjoint to the Hom-functor

HHomH
H(H ⊗H,−) :HM

H
H −→HM,

with unit and counit

ηN : N −→ HHomH
H(H ⊗H,N ⊗H), n 7→ [a⊗ b 7→ an⊗ b],

εM :HHomH
H(H ⊗H,M) ⊗H −→M, f ⊗ h 7→ f(1 ⊗ h).

Furthermore, the comparison functor −⊗k H : HM →HM
H
H is full and faithful.

Proof. First we show that for any f ∈HHomH
H(N ⊗H,M), Ω(f) is left H-linear.

For h, a, b ∈ H and n ∈ N we compute

[h · (Ω(f)(n))](a⊗ b) = Ω(f)(n)(ah⊗ b) = f(ahn⊗ b) = [Ω(f)(hn))](a⊗ b).

Thus, we have Ω(f) ∈HHom(N,HHomH
H(H ⊗H,M)).

For g ∈HHom(N,HHomH
H(H ⊗H,M)), we show Ω′(g) ∈HHomH

H(N ⊗H,M).
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i) Ω′(g) is left H-linear. For h, h′ ∈ H and n ∈ N ,

Ω′(g)(h′ · (n⊗ h)) = Ω′(g)(h′1 n⊗ h′2h) = g(h′1 n)(1H ⊗ h′2h)

= (h′1 · g(n))(1H ⊗ h′2h) = g(n)(h′1 ⊗ h′2h)

= g(n)(∆(h′) (1 ⊗ h)) = h′ [g(n)(1 ⊗ h)]

= h′ [Ω′(g)(n⊗ h)]

ii) It can be easily seen that Ω′(g) is also right H-linear. For h, h′ ∈ H and n ∈ N ,

Ω′(g)((n⊗ h)h′) = Ω′(g)(n⊗ hh′) = g(n)(1H ⊗ hh′)

= g(n)((1 ⊗ h)h′) = [g(n)(1 ⊗ h)]h′

= [Ω′(g)(n⊗ h)]h′

iii) For the right H-colinearity of Ω′(g), we have to show that

(̺M ◦ Ω′(g))(n⊗ h) = (Ω′(g) ⊗ id)(x1 n⊗ x2h1 ⊗ x3h2).

By the colinearity of g(n),

(̺M ◦ Ω′(g))(n⊗ h) = ̺M (g(n)(1 ⊗ h)) = g(n)(x1 ⊗ x2h1) ⊗ x3h2.

On the other hand,

(Ω′(g) ⊗ id)(x1 n⊗ x2h1 ⊗ x3h2) = g(x1 n)(1 ⊗ x2h1) ⊗ x3h2

= [x1 · g(n)](1 ⊗ x2h1) ⊗ x3h2

= g(n)(x1 ⊗ x2h1) ⊗ x3h2.

This shows the H-colinearity of Ω′(g).

Now we show that Ω and Ω′ are inverse to each other. For all n ∈ N,h ∈ H and
f ∈HHomH

H(H ⊗H,M),

(Ω′ ◦ Ω(f))(n⊗ h) = (Ω(f))(n)(1 ⊗ h)

= f(1H n⊗ h) = f(n⊗ h).

Conversely, for all a, b ∈ H, n ∈ N and g ∈HHom(N,HHomH
H(H ⊗H,M)),

{[(Ω ◦ Ω′)(g)](n)}(a⊗ b) = (Ω′(g))(an⊗ b) = g(an)(1 ⊗ b)

= [a · g(n)](1H ⊗ b) = g(n)(a⊗ b).

It is straightforward to see that Ω is functorial in both components M and N .
The fully faithfulness of the comparison functor follows from Lemma 12.6. ⊔⊓

13 Fundamental Theorem for quasi-Hopf H-bimodules

Throughout this section, we consider H to be a quasi-Hopf algebra with a quasi-
antipode (S, α, β). We have seen in 12.2 that for any left H-module N , the tensor
product N ⊗ H is a right quasi-Hopf H-bimodule. Following Hausser and Nill [17],
we observe that any quasi-Hopf H-bimodule M is isomorphic to such a tensor product
N⊗H, where N is a left H-module (the coinvariants of M). This is a generalization of
the Fundamental Theorem of Hopf modules over a Hopf algebra by Larson and Sweedler
[20], to quasi-Hopf algebras.
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13.1. Hausser-Nill coinvariants in HM
H
H . For M ∈ HM

H
H , define a projection

E : M →M , for m ∈M,a ∈ H, by

E(m) :=
∑

q1Rm0 βS(q2Rm1), (13.1)

and put
a ◮ m := E(am) (13.2)

where qR =
∑
q1R ⊗ q2R is defined as in (7.31).

For M ∈ HM
H
H , define the HN-coinvariants of M as M coH := E(M).

We have the following properties for a, b ∈ H, m ∈M (see [17, Proposition 3.4]).

(i) E(ma) = ε(a)E(m),

(ii) E2 = E,

(iii) a ◮ E(m) = E(am) = a ◮ m,

(iv) (ab) ◮ m = a ◮ (b ◮ m),

(v) aE(m) =
∑

[a1 ◮ E(m)] a2,

(vi)
∑
E(m0)m1 = m,

(vii)
∑
E(E(m)0) ⊗ E(m)1 = E(m) ⊗ 1.

Due to (ii), (vi) and (vii), the following characterizations of Hausser-Nill coinvari-
ants are equivalent:

M coH := E(M) = {n ∈M |E(n) = n}

= {n ∈M |
∑

E(n0) ⊗ n1 = E(n) ⊗ 1}

= Ke((E ⊗ id) ◦ [̺M − (−⊗ 1H)]).

M coH with the left H-action ◮ is a left H-module and for any morphism f : M → L

in HM
H
H , it is not hard to show that

f(M coH) ⊆ LcoH .

This gives rise to a functor (−)coH : HM
H
H → HM which - as we will see - is right

adjoint to the comparison functor −⊗k H : HM → HM
H
H .

13.2. Proposition. The adjoint pair (− ⊗k H, (−)coH) for HN-coinvariants.
Let H be a quasi-Hopf algebra, N ∈ HM and M ∈ HM

H
H . Then there is a functorial

isomorphism

ψN,M : HHomH
H(N ⊗k H,M) −→ HHom(N,M coH), f 7−→ [n 7→ f(n⊗ 1)],

with inverse map ψ′
N,M given by

g 7−→ [n⊗ h 7→ g(n)h)].
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Thus, the functors

−⊗k H : HM → HM
H
H , (−)coH : HM

H
H → HM

form an adjoint pair with unit and counit

ηN : N −→ (N ⊗H)coH , n 7→ n⊗ 1,

εM : M coH ⊗k H −→M, m⊗ h 7→ mh.

Proof. First, we show that f(n⊗ 1) ∈M coH : Since f is H-colinear,

̺M (f(n⊗ 1)) = f(x1 n⊗ x2) ⊗ x3,

so we have

E(f(n⊗ 1)) =
∑

q1R f(x1 n⊗ x2)βS(q2Rx
3)

f is H-linear =
∑

f(∆(q1R)(x1 n⊗ x2βS(x3)S(q2R)))

= f(
∑

∆(q1R)pR(1 ⊗ S(q2R)) (n⊗ 1))

by (7.38) = f(n⊗ 1).

Now, we show that ψ := ψN,M and ψ′ := ψ′
N,M are inverse to each other. For n ∈

N,h ∈ H and f ∈H HomH
H(N ⊗k H,M),

[(ψ′ ◦ ψ)(f)](n⊗ h) = ψ(f)(n)h = f(n⊗ 1)h = f(n⊗ h).

Conversely, for n ∈ N and g ∈ HHom(N,M coH),

[(ψ ◦ ψ′)(g)](n) = ψ′(g)(n⊗ 1) = g(n) 1 = g(n).

⊔⊓

It is shown in [17, Lemma 3.6] that, for N ∈ HM, the coinvariants of the quasi-Hopf
H-bimodule N ⊗H, come out as

(N ⊗H)coH ≃ N,

and for n ∈ N,h ∈ H,
E(n⊗ h) = n⊗ ε(h)1H .

This means that the unit ηN : N −→ (N ⊗ H)coH of the adjunction in 13.2 is an
isomorphism. This gives another proof for the fully faithfulness of the comparison
functor −⊗k H : HM → HM

H
H in the quasi-Hopf case (see 4.1, 12.6 and 12.7).

13.3. Fundamental Theorem of quasi-Hopf bimodules (I). (see [17, Theorem
3.8]) Let H be a quasi-Hopf algebra and M ∈HM

H
H . Consider M coH as a left H-module

with left H-action ◮ defined above. Then the map

εM : M coH ⊗H −→M, m⊗ h 7→ mh,

is an isomorphism of quasi-Hopf H-bimodules with inverse map

ε−1
M (m) =

∑

E(m0) ⊗m1 = (E ⊗ id) ◦ ̺M (m).
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This yields an additional characterization of coinvariants for any quasi-Hopf H-
bimodule M (see [17, Corollary 3.9]),

M coH = {n ∈M |̺M (n) =
∑

(x1
◮ n)x2 ⊗ x3}

= Ke(̺M − [(̺M ⊗ id) ◦ (E ⊗ id⊗ id)(φ−1 · (−⊗ 1H ⊗ 1H))]).

13.4. Bulacu-Caenepeel coinvariants. For a right quasi-HopfH-bimodule (M,̺M ),
Bulacu and Caenepeel in [8], gave an alternative definition for the coinvariants, denoted

by M coH . For this, they used a different projection map

Ē : M −→M, Ē(m) =
∑

m0βS(m1).

This version of coinvariants is defined as M coH = Ē(M). We call them shortly as
BC-coinvariants. They can be characterized as

M coH = {m ∈M |Ē(m) = m}

= {m ∈M |̺M (m) =
∑

x1mS(x3
2X

3)f1 ⊗ x2X1βS(x3
1X

2)f2},

= Ke({̺M − [(x1 ⊗ x2) (−⊗ 1H) (S(x3
2p

2
L)f1 ⊗ S(x3

1p
1
L)f2)]})

where f =
∑
f1⊗f2 ∈ H⊗H is the gauge element, given in (7.24) (see the text before

Lemma 3.6 in [8]).

M coH = Ē(M) forms a left H-module with respect to the left adjoint action of
h ∈ H on m ∈M (see [8, Lemma 3.6]),

h ⊲ m =
∑

h1mS(h2).

For any morphism f : M →M ′ in HM
H
H , it is straightforward to see that

f(M coH) ⊆M ′coH .

This gives rise to a functor (−)coH : HM
H
H → HM which is also right adjoint to the

comparison functor (see 13.6).

13.5. The relation between the projections E and Ē. Let M ∈ HM
H
H and

E, Ē : M →M be defined by

E(m) =
∑

q1Rm0 βS(q2Rm1), Ē(m) =
∑

m0 βS(m1),

for all m ∈M . Then it is shown in [8] that

i) Ē(m) =
∑
E(p1

Rm) p2
R,

ii) E(m) =
∑
q1R Ē(m)S(q2R),

iii) Ē : M coH →M coH and E : M coH →M coH are inverse to each other, where
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pR =
∑
p1
R ⊗ p2

R is defined in (7.30), and qR =
∑
q1R ⊗ q2R is defined in (7.31). In fact

M coH and M coH are isomorphic as left H-modules. To see the H-linearity of E, take
h ∈ H,m ∈M coH and compute

E(h ⊲ m) =
∑

E(h1m0 βS(h2m1))

=
∑

q1Rh11m00 β1S(h2m1)1βS(q2Rh12m01β2S(h2m1)2)

=
∑

q1Rh11m00 β1S(h2m1)1βS(β2S(h2m1)2)S(q2Rh12m01)

=
∑

q1Rh11m00 ε(β)ε(S(h2m1))βS(q2Rh12m01)

=
∑

ε(h2m1)q
1
Rh11m00 βS(h12m01)S(q2R)

=
∑

ε(h2m1)q
1
R Ē(h1m0)S(q2R) = E(hm)

= h ◮ E(m).

13.6. Proposition. (The adjoint pair (− ⊗k H, (−)coH) for BC-coinvariants).
Let H be a quasi-Hopf algebra, N ∈ HM and M ∈ HM

H
H . Then there is a functorial

isomorphism

HHomH
H(N ⊗k H,M)

ψN,M
−→ HHom(N,M coH), f 7−→ [n 7→ Ē(f(n⊗ 1))],

with inverse map ψ′
N,M given by

g 7−→ [n⊗ h 7→
∑

q1R g(n)S(q2R)h].

This means that the functors

HM
−⊗kH−→ HM

H
H

(−)coH

−→ HM,

form an adjoint pair with unit and counit

ηN : N −→ (N ⊗H)coH , n 7→ pR (n⊗ 1),

εM : M coH ⊗k H −→M, m⊗ h 7→
∑

q1RmS(q2R)h.

Proof. We show that ψ and ψ′ are inverse to each other. For n ∈ N,h ∈ H and
f ∈ HHomH

H(N ⊗k H,M),

[(ψ′ ◦ ψ)(f)](n⊗ h) =
∑

q1R ψ(f)(n)S(q2R)h

=
∑

q1R Ē(f(n⊗ 1))S(q2R)h

=
∑

q1R f(x1 n⊗ x2)βS(q2Rx
3)h

=
∑

f((q1R)1x
1 n⊗ (q1R)2x

2βS(x3)S(q2R)h)

=
∑

f((q1R)1p
1
R n⊗ (q1R)2p

2
RS(q2R)h)

by (7.38) = f(n⊗ h).
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Conversely, for n ∈ N and g ∈ HHom(N,M coH),

[(ψ ◦ ψ′)(g)](n) = Ē(ψ′(g)(n⊗ 1) = Ē(q1R g(n)S(q2R))

=
∑

(q1R)1 g(n)0 (S(q2R))1βS((q1R)2 g(n)1 (S(q2R))2)

=
∑

(q1R)1 g(n)0 ε(S(q2R))βS((q1R)2g(n)1)

=
∑

(q1R)1 g(n)0 βS(g(n)1)S((q1R)2)ε(q
2
R)

=
∑

(q1R)1 Ē(g(n))S((q1R)2)ε(q
2
R)

=
∑

ε(q2R)q1R ⊲ Ē(g(n))

g(n)∈McoH = g(n).

⊔⊓

By the left H-module isomorphism between M coH and M coH (see 13.5), we have

that M coH ⊗H ∼= M coH ⊗H as quasi-Hopf H-bimodules. Thus, using (−)coH , we can
restate:

13.7. The Fundamental Theorem of quasi-Hopf bimodules (II). Let H be a

quasi-Hopf algebra and M a right quasi-Hopf H-bimodule. Consider M coH ⊗ H as a
right quasi-Hopf H-bimodule with the structures

a · (n⊗ h) · b =
∑

a1 ⊲ n⊗ a2hb, ̺′(n⊗ h) =
∑

x1 ⊲ n⊗ x2h1 ⊗ x3h2,

for h, a, b ∈ H and n ∈M coH . Then the map

ν̄ : M coH ⊗H −→M, ν̄(n⊗ h) =
∑

q1R nS(q2R)h

is an isomorphism of quasi-Hopf H-bimodules with the inverse map given by

ν̄−1(m) =
∑

Ē(m0) ⊗m1.

The isomorphism M coH ∼= M coH (see 13.5), implies (N ⊗H)coH ∼= (N ⊗H)coH as
left H-modules. The two versions of the Fundamental Theorem of quasi-Hopf bimod-
ules show that both (−)coH and (−)coH are right adjoints to the comparison functor
−⊗k H : HM → HM

H
H which is an equivalence of categories.

Remark. In case H is a Hopf algebra,

E(m) = Ē(m) =
∑

m0 S(m1),

and both projections are equal to the identity map on M coH = M coH . In this case,
M coH is invariant under the left adjoint action h ⊲ m =

∑
h1mS(h2) in the sense that

for all h ∈ H, m ∈M ,
E(h ⊲ m) = h ⊲ E(m)

and the fundamental theorem of quasi-Hopf bimodules reduces to the fundamental
theorem of Hopf modules, stated by Larson and Sweedler. In this case, we haveM coH ∼=
HomH

H(H,M) (in kM).

69



For a quasi-Hopf algebra H, we have three different right adjoints for the comparison
functor − ⊗k H given in 12.4, namely, the HN-coinvarints (−)coH (see 13.1), the BC-

coinvarints (−)coH , (see 13.4) and the Hom-functor HHomH
H(H ⊗H,−) : HM

H
H → HM

(see 12.7). These three functors must be isomorphic and we describe these isomorphisms
explicitly.

13.8. Theorem. (Coinvariants as Hom-functor). Let H be a quasi-Hopf algebra
and M a right quasi-Hopf H-bimodule.

(1) There is a functorial isomorphism in HM

ψ̄M : HHomH
H(H ⊗k H,M) −→M coH , f 7−→ f(1 ⊗ 1),

with inverse map ψ̄′
M given by

m 7−→ [a⊗ b 7→ E(am) b],

for a, b ∈ H and m ∈M coH .

(2) There is a functorial isomorphism in HM,

θ̄M : HHomH
H(H ⊗k H,M) −→M coH , f 7−→ f(pR),

with inverse map θ̄′M given by

m 7−→ [a⊗ b 7→ E(am) b].

for a, b ∈ H and m ∈M coH .

Proof. (1) Using the isomorphism in 13.2 for N = H, we obtain the isomorphisms

ψ̄M : HHomH
H(H ⊗k H,M)

ψH,M
−→ HHom(H,M coH) ∼= M coH ,

f 7−→ [a 7→ f(a⊗ 1)] 7→ f(1 ⊗ 1).

Here, ψH,M is the isomorphism in 13.2 for N = H. The inverse map ψ̄′
M is obtained as

the composition

M coH ∼= HHom(H,M coH)
ψ′

H,M
−→ HHomH

H(H ⊗k H,M),

m 7−→ [a 7→ a ◮ m = E(am)] 7−→ [a⊗ b 7→ E(am) b],

for all a, b ∈ H and m ∈M coH .
Sofar, we have shown that ψ̄M is a k-module isomorphism. To show the left H-linearity
of ψ̄M , we compute for h ∈ H and f ∈HHomH

H(H ⊗H,M),

h ◮ ψ̄M (f) = E(h f(1 ⊗ 1)) =
∑

E(f(h1 ⊗ h2))

=
∑

q1R f(h1 ⊗ h2)0 βS(q2Rf(h1 ⊗ h2)1)

f is H-colinear =
∑

q1R f(x1h1 ⊗ x2h21)βS(q2Rx
3h22)

f is H-linear =
∑

f(∆(q1R) · (x1h1 ⊗ x2h21)βS(h22)S(x3)S(q2R))

= f(
∑

∆(q1R) · (x1h⊗ x2βS(x3)S(q2R))

= f(
∑

∆(q1R)pR(1 ⊗ S(q2R))(h⊗ 1))

by (7.38) = f(h⊗ 1) = (h · f)(1 ⊗ 1) = ψ̄M (h · f).
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(2) For the isomorphism in 13.6, we set N = H to obtain the isomorphism

θ̄M : HHomH
H(H ⊗k H,M)

ψH,M
−→ HHom(H,M coH) ∼= M coH ,

f 7−→ [a 7→ Ē(f(a⊗ 1))] 7→ Ē(f(1 ⊗ 1)).

This means that for f ∈ HHomH
H(H ⊗k H,M),

θ̄M (f) =
∑

f(1 ⊗ 1)0 βS(f(1 ⊗ 1)1).

Now, similar to the proof of 13.2 (for N = H and n = 1H), using the H-colinearity of
f , we obtain

θ̄M (f) =
∑

f(x1 ⊗ x2)βS(x3) =
∑

f(x1 ⊗ x2 βS(x3)) = f(pR).

The inverse map θ̄′M is obtained as the composition

M coH ∼= HHom(H,M coH)
ψ′

H,M
−→ HHomH

H(H ⊗k H,M),

m 7−→ [a 7→ a ⊲ m = Ē(am)] 7−→ {a⊗ b 7→
∑

q1R Ē(am)S(q2R)b

= E(am) b},

for all a, b ∈ H and m ∈M coH .
In a similar way as in the part (1), for the H-linearity of θ̄M , we compute for h ∈ H

and f ∈HHomH
H(H ⊗H,M) we have:

h ⊲ θ̄M (f) = Ē(h f(pR)) =
∑

Ē(f(h1p
1 ⊗ h2p

2))

=
∑

f(h1p
1
R ⊗ h2p

2
R)0 βS(f(h1p

1
R ⊗ h2p

2
R)1)

(f is H-colinear. ) =
∑

f(x1h1p
1
R ⊗ x2h21(p

2
R)1)βS(x3h22(p

2
R)2)

=
∑

f(x1h1p
1
R ⊗ x2h21(p

2
R)1βS(h22(p

2
R)2)S(x3))

= f(
∑

x1h⊗ x2βS(x3)) = f(pR (h⊗ 1))

= f(
∑

p1
Rh⊗ p2

R) = (h · f)(pR) = θ(h · f).

⊔⊓

Remark. Another way to prove part (2) is to combine the isomorphism

HHomH
H(H ⊗k H,M)

ψ̄M−→M coH , f 7−→ f(1 ⊗ 1),

in the part (1), with the isomorphism Ē : M coH → M coH , to obtain the following
composed isomorphism

HHomH
H(H ⊗k H,M)

ψ̄M−→M coH Ē
−→M coH ,

71



given for f ∈ HHomH
H(H ⊗k H,M) by

f 7−→ f(1 ⊗ 1) 7−→ Ē(f(1 ⊗ 1)) =
∑

f(1 ⊗ 1)0 βS(f(1 ⊗ 1)1)

by H-colinearity of f =
∑

f(x1 ⊗ x2)βS(x3)

by H-linearity of f =
∑

f(x1 ⊗ x2βS(x3)) = f(pR).

The inverse map can be computed, for a, b ∈ H and m ∈M coH , as

m
θ̄′M7−→ {a⊗ b 7→ E(aE(m)) b =

∑

E([a1 ◮ E(m)] a2) b

= [
∑

E(a1 ◮ E(m))ε(a2)] b

= [E(a ◮ E(m))] b

= [E(E(am))] b = E(am) b}.
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Chapter 5

Hom-tensor relations for

two-sided Hopf modules

14 The category AM
H
H

The fact that a quasi-bialgebra is not coassociative entails that there is no trivial
way to define a comodule category like in the bialgebra case. Nevertheless, we can
associate monoidal categories to quasi-bialgebras, in which we can consider coalgebras
and comodules over these coalgebras. This point of view has been used in [10], [17],
[26], and [8] in order to define relative Hopf modules, quasi-Hopf bimodules, and two-
sided two-cosided Hopf modules. For a quasi-bialgebra H, we know that the category
of (H,H)-bimodules is monoidal and H itself is a coalgebra in this category.

For a quasi-bialgebra H and a right H-comodule algebra (A, ρ, φρ), we show that
the tensor functor − ⊗k H is a comonad on the category AMH and we consider the
category of two-sided Hopf modules AM

H
H as the Eilenberg-Moore comodule category

over this comonad. Furthermore, we show that the Hom-functor AHomH
H(A⊗H,−) is

a right adjoint to the comparison functor −⊗k H.
IfH is a quasi-Hopf algebra, following Bulacu-Caenepeel [9, 8] and Bulacu-Torrecillas

[12], we study the category of two-sided Hopf modules and state a generalized version
of the Fundamental Theorem of Hopf modules by defining Hausser-Nill and Bulacu-
Caenepeel type coinvariants for this category. Finally, we describe these versions of
coinvariants in terms of a Hom-functor.

14.1. Category AM
H
H of two-sided Hopf modules. Let H be a quasi-bialgebra

and (A, ρ, φρ) a right H-comodule algebra. A left two-sided (A, H)-Hopf module is
an (A, H)-bimodule M , together with a k-linear map

̺M : M −→M ⊗H, ̺M (m) =
∑

m0 ⊗m1,

satisfying the relations

(idM ⊗ ε) ◦ ̺M = idM , (14.1)

(idM ⊗ ∆) ◦ ̺M (m) = φρ · (̺
M ⊗ idH) ◦ ̺M (m) · φ−1, (14.2)

̺M (am) =
∑

a(0)m0 ⊗ a(1)m1, (14.3)

̺M (mh) =
∑

m0 h1 ⊗m1h2, (14.4)

73



for m ∈M , h ∈ H and a ∈ A, where ρ(a) =
∑
a(0) ⊗ a(1).

The category of left two-sided (A, H)-Hopf modules and right H-linear, left A-linear,
and right H-colinear maps is denoted by AM

H
H .

For the special case A = H, the category of two-sided (H,H)-Hopf modules is
nothing but the category of right quasi-Hopf H-bimodules (see section 12).

14.2. Proposition. (Subgenerator for AM
H
H). Let H be a quasi-bialgebra and

(A, ρ, φρ) a right H-comodule algebra. Then

(1) For any N ∈ AM, we have N ⊗H ∈ AM
H
H with structure maps

a · (n⊗ h) =
∑

a(0) n⊗ a(1)h, (n⊗ h) · h′ = n⊗ hh′, (14.5)

̺N⊗H(n⊗ h) =
∑

x̃1
ρ n⊗ x̃2

ρh1 ⊗ x̃3
ρh2 = φ−1

ρ · (id⊗ ∆)(n⊗ h), (14.6)

for all h, h′ ∈ H, n ∈ N and a ∈ A.

(2) If g : N1 → N2 is an (epi-)morphism in AM, then

g ⊗ idH : N1 ⊗H −→ N2 ⊗H

is an (epi-)morphism in AM
H
H .

(3) Endowed with the structure maps given, for h, h′ ∈ H and a, a′ ∈ A, by

a′ · (a⊗ h′) =
∑

a′(0)a⊗ a′(1)h, (a⊗ h)h′ = a⊗ hh′,

̺A⊗H(a⊗ h) =
∑

x̃1
ρa⊗ x̃2

ρh1 ⊗ x̃3
ρh2,

A⊗H ∈ AM
H
H and it is a subgenerator for this category, where

φρ =
∑

X̃1
ρ ⊗ X̃2

ρ ⊗ X̃3
ρ , φ−1

ρ =
∑

x̃1
ρ ⊗ x̃2

ρ ⊗ x̃3
ρ.

Proof. The parts (1) and (2) are straightforward to see.

(3) Using a similar approach as in section 12, we see that for any M ∈ AM
H
H , the

left A-module M is a homomorphic image of A(Λ), for some cardinal Λ. Therefore
M ⊗H is a homomorphic image of

A(Λ) ⊗H ∼= (A⊗H)(Λ).

For any M ∈ AM
H
H , the coaction ̺M : M → M ⊗ H is a (mono-)morphism in the

category AM
H
H , so we can consider M as a subobject of M ⊗H, which is generated by

the object A⊗H ∈ AM
H
H . ⊔⊓

The parts (1) and (2) in the above proposition give rise to
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14.3. The comparison functor −⊗k H : AM → AM
H
H . Let H be a quasi-bialgebra

and (A, ̺, φ̺) a right H-comodule algebra. We have seen that for any N ∈ AM,
N ⊗H ∈ AM

H
H with the (A, H)-bimodule structure given in 14.5 and the H-comodule

structure map given in 14.6. This gives rise to the comparison functor

−⊗k H : AM −→AM
H
H , N 7→ (N ⊗H, ̺N⊗H , ̺

N⊗H),

where ̺N⊗H denotes the (A, H)-bimodule and ̺N⊗H the right H-comodule structure
of N ⊗k H.

14.4. −⊗k V as endofunctor of AMH . Let H be a quasi-bialgebra and (A, ρ, φρ) be
a right H-comodule algebra, N ∈ AMH and V ∈ HMH . Then the coaction

ρ : A −→ A⊗k H, ρ(a) =
∑

a(0) ⊗ a(1),

induces an (A, H)-bimodule structure on N ⊗k V , given for h ∈ H, a ∈ A, v ∈ V , and
n ∈ N by

a · (n⊗ v) · h =
∑

a(0) nh1 ⊗ a(1) v h2 = ρ(a) (n⊗ v) ∆(h).

In this way, for any V ∈ HMH , we obtain an endofunctor

−⊗k V : AMH −→ AMH , N 7→ N ⊗k V,

with the (A, H)-bimodule structure on N ⊗k V given above.

Considering the special case that V = H, we obtain the endofunctor

G := −⊗k H : AMH −→ AMH , N 7→ N ⊗k H,

with the (A, H)-bimodule structure on N ⊗k H given for h, h′ ∈ H, a ∈ A, and n ∈ N

by

a · (n⊗ h) · h′ =
∑

a(0) nh
′
1 ⊗ a(1)hh

′
2 = ρ(a) (n⊗ h) ∆(h′).

In this case, we show that −⊗k H : AMH → AMH is a comonad.

14.5. Theorem. (− ⊗k H as a comonad on AMH). Let (H,∆, ε, φ) be a quasi-
bialgebra and (A, ρ, φρ) a right H-comodule algebra. Then

(1) The endofunctor −⊗k H : AMH → AMH is a comonad on AMH with the comul-
tiplication δ defined, for N ∈ AMH , by

δN : N ⊗H −→ (N ⊗H) ⊗H,

n⊗ h 7→
∑

x̃1
ρ nX

1 ⊗ x̃2
ρ h1X

2 ⊗ x̃3
ρ h2X

3

= φ−1
ρ · (id⊗ ∆)(n⊗ h) · φ,

and counit ǫ defined by ǫN = idN ⊗ ε : N ⊗H → N .

(2) The category of two-sided Hopf modules AM
H
H is isomorphic to the Eilenberg-

Moore comodule category (AMH)−⊗H .
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Proof. (1) To show that (− ⊗ H, δ, ǫ) is a comonad on AMH , first we show the
coassociativity of δ, i.e. we show that for N ∈ AMH , n ∈ N and h ∈ H,

δN⊗H ◦ δN (n⊗ h) = (δN ⊗ idH) ◦ δN (n⊗ h). (14.7)

For this, using the definition of δN , we compute

L.H.S = (φ−1
ρ ⊗ 1) · {(id⊗ ∆ ⊗ id)(φ−1

ρ · [(id⊗ ∆)(n⊗ h)] · φ)} · (φ⊗ 1)

= (φ−1
ρ ⊗ 1) · (id⊗ ∆ ⊗ id)(φ−1

ρ ) · [(id⊗ ∆ ⊗ id) ◦ (id⊗ ∆)(n⊗ h)]

·(id⊗ ∆ ⊗ id)(φ) · (φ⊗ 1)

by (7.2) = (φ−1
ρ ⊗ 1) · (id⊗ ∆ ⊗ id)(φ−1

ρ ) · (1A ⊗ φ−1) · [(id⊗ id⊗ ∆) ◦ (id⊗ ∆)(n⊗ h)]

·(1H ⊗ φ) · (id⊗ ∆ ⊗ id)(φ) · (φ⊗ 1).

On the other hand,

R.H.S = (ρ⊗ id⊗ id)(φ−1
ρ ) · {(id⊗⊗id∆)(φ−1

ρ · [(idN ⊗ ∆)(n⊗ h)] · φ)} · (∆ ⊗ id⊗ id)(φ)

= (ρ⊗ id⊗ id)(φ−1
ρ ) · (idN ⊗ idH ⊗ ∆)(φ−1

ρ ) · [(id⊗ id⊗ ∆) ◦ (id⊗ ∆)(n⊗ h)]

·(id⊗ id⊗ ∆)(φ) · (∆ ⊗ id⊗ id)(φ).

By (7.3) and (10.1) the both sides of (14.7) are equal to each other. Thus, δ is coassocia-
tive. It can be easily seen that ǫ, defined by ǫN = idN⊗ε : N⊗H → N , is a counit for δ.

(2) To prove the isomorphism (AMH)−⊗H ∼= AM
H
H , we take an objectM ∈ (AMH)−⊗H

and note that we have a G-comodule structure morphism ̺M : M → M ⊗H = G(M)
in AMH making the following diagram commutative.

M

̺M

��

̺M

// M ⊗H = G(M)

δM

��

id⊗∆

**TTTTTTTTTTTTTTTT

M ⊗ (H ⊗H)

φ−1
ρ ·−·φttjjjjjjjjjjjjjjjj

M ⊗H = G(M)
G(̺M )=̺M⊗id

// GG(M) = (M ⊗H) ⊗H.

The commutativity of outer diagram is precisely the condition (14.2) on M to be a
two-sided Hopf module. It is easy to see that the condition (14.1) is equivalent to the
counitality of ǫ. ⊔⊓

The following Lemma helps to find a right adjoint to the comparison functor (see
14.3).

14.6. Lemma. (AHomH
H(V ⊗ H,−) as a functor into AM). Let H be a quasi-

bialgebra, (A, ρ, φρ) a right H-comodule algebra and V ∈AMA.

(1) If M ∈ AMH , then AHomH(V ⊗H,M) ∈ AM with the left A-module structure
given, for h ∈ H, a ∈ A and v ∈ V , by

(a · f)(v ⊗ h) = f(v a⊗ h).
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In this way, we get the Hom-functor AHomH(V ⊗H,−) : AMH → AM.
In particular, if M ∈ AM

H
H then AHomH

H(V ⊗H,M) ∈ AM with left A-module
structure given above, and we obtain the Hom-functor

AHomH
H(V ⊗H,−) : AM

H
H → AM.

(2) Let V ∈ AMA and N ∈AM. Then

(i) ψ : AHomH
H(V ⊗H,N ⊗H) −→ AHomH(V ⊗H,N), f 7→ (id⊗ ε) ◦ f,

is an isomorphism in AM with inverse map ψ′ given by

g 7→ (g ⊗ idH) ◦ ̺V⊗H .

(ii) θ : AHomH(V ⊗H,N) −→ AHom(V,N), f 7→ f(−⊗ 1H),
is an isomorphism in AM with inverse map θ′ given by

g 7→ [v ⊗ h 7→ ε(h)g(v)],

(iii) There is a left A-module isomorphism

AHom(V,N) −→ AHomH
H(V ⊗H,N ⊗H), g 7−→ g ⊗ idH ,

with inverse map given, for f ∈ AHomH
H(V ⊗H,N ⊗H), by

f 7→ (id⊗ ε) ◦ f(−⊗ 1H).

Thus the comparison functor −⊗k H : AM →AM
H
H is full and faithful.

Here, we consider the right H-module structure of N to be the trivial one.

Proof. (1) For all a ∈ A and f ∈ AHomH(V ⊗H,M), it is easy to see that a · f is
an (A, H)-bilinear map. In this way, we have AHomH(V ⊗H,M) ∈AM and we obtain
a functor

AHomH(V ⊗H,−) :AMH −→AM,

In case M ∈ AM
H
H and f ∈ AHomH

H(V ⊗H,M), the H-colinearity of of a · f follows
from the H-colinearity of f itself. Thus, AHomH

H(V ⊗ H,M) ∈ AM and we obtain a
functor

AHomH
H(V ⊗H,−) :AM

H
H −→AM.

(2) (i) As seen in 14.5, the functor − ⊗k H : AMH → AMH is a comonad and
the category AM

H
H of two-sided Hopf modules is just the Eilenberg-Moore comodule

category (AMH)−⊗H over this comonad. Now, considering the functor −⊗H : AMH →

AM
H
H as the free functor which is right adjoint to the forgetful functor (by 4.8), we

obtain the isomorphism of part (i).

(ii) First we note that for f ∈ AHomH(V ⊗H,N), h ∈ H, a ∈ A and v ∈ V ,

a [θ(f)(v)] = a [f(v ⊗ 1H)]

f is left A-linear = f(
∑

a(0) v ⊗ a(1))

f is right H-linear =
∑

f(a(0) v ⊗ 1H) a(1)

N is trivial right H-module =
∑

f(a(0) v ⊗ 1H) ε(a(1))

= f(a v ⊗ 1H) = θ(f)(a v).
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This means that θ(f) ∈ AHom(V,N). It is straightforward to show that, for g ∈

AHom(V,N), we have θ′(g) ∈ AHomH(V ⊗H,N). Bijectivity and left A-linearity of θ
follow from direct computations.

(iii)This follows from the composition of the isomorphisms in parts (i) and (ii). ⊔⊓

14.7. Corollary. Let H be a quasi-bialgebra and (A, ρ, φρ) a right H-comodule algebra.

(1) For M ∈AM
H
H , we have a left A-module structure on AHomH

H(A⊗H,M) given,
for h ∈ H, a, a′ ∈ A and f ∈ AHomH

H(A⊗H,M), by

(a′ · f)(a⊗ h) = f(aa′ ⊗ h).

(2) For N ∈ AM, the morphism

ηN : N −→ AHomH
H(A⊗H,N ⊗H), n 7−→ [a⊗ h 7→ an⊗ h],

is an isomorphism with inverse map η′N , given for f ∈ AHomH
H(A⊗H,N ⊗H),

by
η′N (f) = (id⊗ ε) ◦ f(1A ⊗ 1H).

Proof. (1) Follows directly from Lemma 14.6 by taking V = A.

(2) Composition of the isomorphisms ψ′ and θ′ gives rise to the isomorphism

N ∼= AHom(A, N) ∼= AHomH(A⊗H,N) ∼= AHomH
H(A⊗H,N ⊗H).

Using the above Lemma, we see that this composition gives precisely the isomorphism
ηN : N → AHomH

H(A⊗H,N ⊗H) given above with the given inverse map η′N . ⊔⊓

Now we show that this Hom-functor is a right adjoint to the comparison functor
−⊗k H, described in 14.3.

14.8. Theorem. (Hom-tensor adjunction for AM
H
H). Let H be a quasi-bialgebra,

(A, ̺, φ̺) a right H-comodule algebra, M ∈ AM
H
H , and N ∈ AM. Then there is a

functorial isomorphism

AHomH
H(N ⊗H,M)

Ω
−→AHom(N,AHomH

H(A⊗H,M)),

f 7−→ {n 7→ [a⊗ h 7→ f(an⊗ h)]},

with inverse map Ω′ given by

g 7−→ {n⊗ h 7→ g(n)(1A ⊗ h)}.

This means that the comparison functor

−⊗k H : AM −→AM
H
H , N 7→ (N ⊗H, ̺N⊗H , ̺

N⊗H),

is left adjoint to the Hom-functor

AHomH
H(A⊗H,−) :AM

H
H −→AM,

with unit and counit given by

ηN : N −→ AHomH
H(A⊗H,N ⊗H), n 7→ [a⊗ h 7→ an⊗ h],

εM :AHomH
H(A⊗H,M) ⊗H −→M, f ⊗ h 7→ f(1A ⊗ h).

Furthermore, the comparison functor −⊗H : AM
H
H → AM is full and faithful.
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Proof. First we show that for any f ∈AHomH
H(N ⊗H,M), Ω(f) is left A-linear.

For h ∈ H, a, a′ ∈ A and n ∈ N ,

[a′ · (Ω(f)(n))](a⊗ h) = Ω(f)(n)(aa′ ⊗ h) = f(naa′ ⊗ h) = [Ω(f)(a′ n))](a⊗ h).

Thus, we have Ω(f) ∈AHom(N,AHomH
H(A⊗H,M)).

For any g ∈AHom(N,AHomH
H(A⊗H,M)), we show that Ω′(g) ∈AHomH

H(N ⊗H,M).

i) Ω′(g) is left A-linear. For a ∈ A and n ∈ N ,

Ω′(g)((n⊗ h) · a) =
∑

Ω′(g)(a(0) n⊗ a(1)h) =
∑

g(a(0) n)(1A ⊗ a(1)h)

g is right A-linear =
∑

(a(0) · g(n))(1A ⊗ a(1)h) =
∑

g(n)(a(0) ⊗ a(1)h)

= g(n)(ρ(a) (1 ⊗ h)) = a [g(n)(1 ⊗ h)]

= a [Ω′(g)(n⊗ h)].

ii) It can be easily seen that Ω′(g) is right H-linear.

iii) For the right H-colinearity of Ω′(g) we show that

(̺M ◦ Ω′(g))(n⊗ h) =
∑

(Ω′(g) ⊗ id)(x̃1
ρ n⊗ x̃2

ρh1 ⊗ x̃3
ρh2).

By the colinearity of g(n),

(̺M ◦ Ω′(g))(n⊗ h) = ̺M (g(n)(1A ⊗ h)) = g(n)(x̃1
ρ ⊗ x̃2

ρh1) ⊗ x̃3
ρh2.

On the other hand,

(Ω′(g) ⊗ id)(
∑

x̃1
ρ n⊗ x̃2

ρh1 ⊗ x̃3
ρh2) =

∑

g(x̃1
ρ n)(1 ⊗ x̃2

ρh1) ⊗ x̃3
ρh2

g is A-linear =
∑

[x̃1
ρ · g(n)](1 ⊗ x̃2

ρh1) ⊗ x̃3
ρh2

=
∑

g(n)(̃̃x1
ρ ⊗ x̃2

ρh1) ⊗ x̃3
ρh2.

This shows the H-colinearity of Ω′(g).

Now we show that Ω and Ω′ are inverse to each other. For all n ∈ N,h ∈ H and
f ∈AHomH

H(A⊗H,M),

(Ω′ ◦ Ω(f))(n⊗ h) = (Ω(f))(n)(1A ⊗ h)

= f(1A n⊗ h) = f(n⊗ h)

Conversely, for all h ∈ H,n ∈ N, a ∈ A and g ∈AHom(N,AHomH
H(A⊗H,M)),

{[(Ω ◦ Ω′)(g)](n)}(a⊗ h) = (Ω′(g))(an⊗ h) = g(an)(1A ⊗ h)

g is A-linear = [a · g(n)](1A ⊗ h) = g(n)(a⊗ h).

i.e. Ω ◦ Ω′(g) = g. It is straightforward to see that Ω is functorial in both components
M and N .
The fully faithfulness of the comparison functor follows by Lemma 14.6. ⊔⊓
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15 Coinvariants for AM
H
H

15.1. Hausser-Nill-type coinvariants for AM
H
H . Let H be a quasi-Hopf algebra

and (A, ρ, φρ) a right H-comodule algebra. For M ∈ AM
H
H , define a projection E′ :

M →M , for m ∈M , by

E′(m) :=
∑

q̃1ρm0 βS(q̃2ρm1), (15.1)

and for m ∈M,a ∈ A put
a ◮ m := E′(am) (15.2)

where q̃ρ =
∑
q̃1ρ ⊗ q̃2ρ is defined as in (10.2).

For M ∈ AM
H
H , define the HN-type coinvariants of M as M coH := E′(M).

Similar to 13.1 (see also [17, Proposition 3.4]), we have the following properties of
the projection map E′ : M →M :

15.2. Proposition. (Properties of HN-type coinvariants). For M ∈ AM
H
H ,

a ∈ A, h ∈ H and m ∈M and with above notations we have

(i) E′(mh) = ε(h)E′(m),

(ii) E′2 = E′,

(iii) a ◮ E′(m) = E′(am) = a ◮ m,

(iv) (ab) ◮ m = a ◮ (b ◮ m),

(v) aE′(m) =
∑

[a(0) ◮ E′(m)] a(1),

(vi)
∑
E′(m0)m1 = m,

(vii)
∑
E′(E′(m)0) ⊗ E′(m)1 = E′(m) ⊗ 1.

Proof. (i)

E′(mh) =
∑

q̃1ρ (mh)0 βS(q̃2ρ(mh)1) =
∑

q̃1ρm0 h1βS(q̃2ρm1h2)

= ε(h)
∑

q̃1ρm0 βS(q̃2ρm1) = ε(h)E′(m).

(ii) We use part (i) to compute

E′2(m) = E′(
∑

q̃1ρm0 βS(q̃2ρm1))

by (i) =
∑

E′(q̃1ρm0)ε(βS(q̃2ρm1)) =
∑

E′(q̃1ρm0)ε(β)ε(q̃2ρ)ε(m1)

=
∑

E′(q̃1ρε(q̃
2
ρ)m0ε(m1)) = E′(m).

(iii) a ◮ E′(m) = E′(aE′(m)) =
∑

E′(aq̃1ρm0 βS(q̃2ρm1))

=
∑

E′(aq̃1ρm0)ε(βS(q̃2ρm1))

=
∑

E′(aq̃1ρm0)ε(β)ε ◦ S(m1)ε ◦ S(q̃2ρ)

=
∑

E′(aq̃1ρε(m1)m0)ε(β)ε(q̃2ρ) =
∑

E′(aq̃1ρm)ε(β)ε(q̃2ρ)

=
∑

E′(aq̃1ρε(q̃
2
ρ)m) =

∑

E′(am) = a ◮ m.
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(iv) follows immediately from part (iii).

(v) aE′(m) = a
∑

q̃1ρm0 βS(q̃2ρm1)

by (10.4) =
∑

q̃1ρa(0)(0) m0 βS(m1)S(a(0)(1))S(q̃2ρ)a(1)

=
∑

q̃1ρa(0)(0) m0 βS(q̃2ρa(0)(1)m1)a(1)

=
∑

q̃1ρ (a(0)m)0 βS(q̃2ρ(a(0)m)1)a(1) =
∑

E′(a(0)m) a(1)

by (iii) =
∑

[a(0) ◮ E′(m)] a(1).

(vi) E′(m0)m1 =
∑

q̃1ρm00βS(q̃2ρm01)m1 =
∑

X̃1
ρm00βS(X̃2

ρm01)αX̃
3
ρm1

=
∑

m0X
1βS(m11X

2)αm12X
3

=
∑

m0X
1βS(X2)S(m11)αm12X

3

=
∑

ε(m1)m0 (X1βS(X2)αX3) = m 1H = m.

(vii)

∑

E′(E′(m)0) ⊗ E′(m)1 =
∑

E′([(q̃1ρ)m0 βS((q̃2ρ)m1)]0) ⊗ [(q̃1ρ)m0 βS((q̃2ρ)m1)]1

=
∑

E′((q̃1ρ)(0)m00 β1S((q̃2ρ)m1)1) ⊗ (q̃1ρ)(1)m01β2S(q̃2ρm1))2

by (i) =
∑

E′((q̃1ρ)(0)m00) ⊗ ε(β1)ε(S(q̃2ρm1)1)(q̃
1
ρ)(1)m01β2S(q̃2ρm1)2

=
∑

E′((q̃1ρ)(0)m00) ⊗ (q̃1ρ)(1)m01βS(q̃2ρm1)

by (14.2) =
∑

E′((q̃1ρ)(0)x̃
1
ρm0X

1) ⊗ (q̃1ρ)(1)x̃
2
ρm11X

2βS(q̃2ρx̃
3
ρm12X

3)

by (i) =
∑

E′((q̃1ρ)(0)x̃
1
ρm0)ε(X

1) ⊗ (q̃1ρ)(1)x̃
2
ρm11X

2βS(q̃2ρx̃
3
ρm12X

3)

=
∑

E′((q̃1ρ)(0)x̃
1
ρm0) ⊗ (q̃1ρ)(1)x̃

2
ρm11βS(q̃2ρx̃

3
ρm12)

by (7.6) =
∑

E′((q̃1ρ)(0)x̃
1
ρm0) ⊗ (q̃1ρ)(1)x̃

2
ρε(m1)βS(q̃2ρx̃

3
ρ)

=
∑

E′((q̃1ρ)(0)x̃
1
ρm) ⊗ (q̃1ρ)(1)x̃

2
ρβS(q̃2ρx̃

3
ρ)

=
∑

E′((q̃1ρ)(0)p̃
1
ρm) ⊗ (q̃1ρ)(1)p

2
ρS(q̃2ρ)

by (10.6) = (E′ ⊗ id)([(1A ⊗ 1H) (m⊗ 1H)]) = E′(m) ⊗ 1H .

⊔⊓

By (ii), (vi) and (vii), the following characterizations of HN-type coinvariants are
equivalent:

M coH := E′(M) = {n ∈M |E′(n) = n}

= {n ∈M |
∑

E′(n0) ⊗ n1 = E′(n) ⊗ 1}

= Ke((E′ ⊗ id) ◦ [̺M − (−⊗ 1H)]).

M coH with the left A-action ◮ is a left A-module and for any morphism f : M → L in
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AM
H
H , it is not hard to show that f(M coH) ⊆ LcoH .

This gives rise to a functor (−)coH : AM
H
H → AM which we will show to be right adjoint

to the comparison functor.

15.3. Proposition. The adjoint pair (−⊗kH, (−)coH) for HN-type coinvariants.
Let H be a quasi-Hopf algebra, (A, ρ, φρ) be a right H-comodule algebra, N ∈ AM and
M ∈ AM

H
H . Then there is a functorial isomorphism

ψN,M : AHomH
H(N ⊗k H,M) −→ AHom(N,M coH), f 7−→ [n 7→ f(n⊗ 1)],

with inverse map ψ′
N,M given by

g 7−→ [n⊗ h 7→ g(n)h)].

Thus, the functors

−⊗k H : AM → AM
H
H , (−)coH : AM

H
H → AM,

form an adjoint pair with unit and counit

ηN : N −→ (N ⊗H)coH , n 7→ n⊗ 1,

εM : M coH ⊗k H −→M, m⊗ h 7→ mh.

Proof. First, we show that f(n⊗ 1) ∈M coH : Since f is H-colinear,

̺M (f(n⊗ 1)) = f(x̃1
ρ n⊗ x̃2

ρ) ⊗ x̃3
ρ,

so we have

E′(f(n⊗ 1)) =
∑

q̃1ρ f(x̃1
ρ n⊗ x̃2

ρ)βS(q̃2ρx̃
3
ρ)

f is A-linear =
∑

f(ρ(q̃1ρ) (x̃1 n⊗ x̃2βS(x̃3)S(q̃2ρ)

= f(
∑

ρ(q̃1ρ) p̃ρ (1 ⊗ S(q̃2ρ)) (n⊗ 1))

by (10.6) = f(n⊗ 1).

We show that ψ := ψN,M and ψ′ := ψ′
N,M are inverse to each other. For n ∈ N,h ∈ H

and f ∈ AHomH
H(N ⊗k H,M),

[(ψ′ ◦ ψ)(f)](n⊗ h) = ψ(f)(n)h = f(n⊗ 1)h

by H-linearity of f = f(n⊗ h).

Conversely, for n ∈ N and g ∈ AHom(N,M coH),

[(ψ ◦ ψ′)(g)](n) = ψ′(g)(n⊗ 1) = g(n) 1 = g(n).

⊔⊓

15.4. HN-type coinvariants of N ⊗ H ∈ AM
H
H . For any N ∈ AM, the HN-type

coinvariants of the two-sided Hopf module N ⊗H, come out as

(N ⊗H)coH ≃ N,

and for n ∈ N and h ∈ H, we have E′(n⊗ h) = n⊗ ε(h)1H .
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Proof. The definition of the right H-module structure of N ⊗ H implies that
(n⊗ h) = (n⊗ 1)h. Now by part (i) of the above proposition, we have:

E′(n⊗ h) = E′((n⊗ 1)h) = E′(n⊗ 1)ε(h),

thus we are left to show that
E′(n⊗ 1) = n⊗ 1.

L.H.S = E′(n⊗ 1) =
∑

q̃1ρ (n⊗ 1)0 βS(q̃2ρ(n⊗ 1)1)

=
∑

q̃1ρ · (x̃
1
ρ n⊗ x̃2

ρ)βS(q̃2ρx̃
3
ρ)

=
∑

(q̃1ρ)(0)x̃
1
ρ n⊗ (q̃1ρ)(1)x̃

2
ρβS(q̃2ρx̃

3
ρ)

=
∑

̺(q̃1ρ)p̃ρ[1 ⊗ S(q̃2ρ)] (n⊗ 1)

by (10.5) = (1 ⊗ 1) (n⊗ 1) = n⊗ 1,

where p̃ρ =
∑
p̃1
ρ ⊗ p̃2

ρ and q̃ρ =
∑
q̃1ρ ⊗ q̃2ρ are defined in (10.1) and (10.2). ⊔⊓

This means that that the unit ηN : N −→ (N ⊗H)coH of the adjunction in 15.3 is
an isomorphism with inverse map n ⊗ h 7→ nε(h). This gives another proof for fully
faithfulness of the comparison functor −⊗k H : AM → AM

H
H in this case (see 4.1, 14.6

and 14.8).

15.5. Fundamental Theorem for AM
H
H with HN-type coinvariants. Let H be

a quasi-Hopf algebra, (A, ρ, φρ) a right H-comodule algebra and M ∈ AM
H
H . Consider

M coH = E′(M) as a left A-module with left A-action ◮, defined by

a ◮ m := E′(am) =
∑

q̃1ρa(0)m0 βS(q̃2ρa(1)m1).

Then the map
εM : M coH ⊗H −→M, m⊗ h 7→ mh,

is an isomorphism in AM
H
H with inverse map ε′M given by

ε′M (m) =
∑

E′(m0) ⊗m1 = (E′ ⊗ id) ◦ ̺M (m).

Proof. For h ∈ H and n ∈ N ,

ε′M ◦ εM (n⊗ h) = ε′M (nh) =
∑

E′(n0 h1) ⊗ n1h2

by (i) =
∑

E′(n0)ε(h1) ⊗ n1h2

=
∑

E′(n0) ⊗ n1h =
∑

(E′(n0) ⊗ n1)(1 ⊗ h)

by (vii) = (n⊗ 1)(1 ⊗ h) = n⊗ h.

Conversely, for m ∈M ,

εM ◦ ε′M (m) = εM (
∑

E′(m0) ⊗m1) =
∑

E′(m0)m1 = m.

Thus εM is indeed an isomorphism of k-modules.
We are left to show that εM is a morphism in AM

H
H . By definition of the (A, H)-

bimodule structure of M coH ⊗H, for h ∈ H, a ∈ A and n ∈M coH ,

a · (n⊗ h) · h′ =
∑

a(0) ◮ n⊗ a(1)hh
′ =

∑

E′(a(0) n) ⊗ a(1)hh
′.
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Therefore, we have

εM (a · (n⊗ h) · h′) =
∑

E′(a(0) n) a(1)hh
′

by (iii) =
∑

[a(0) ◮ E′(n)] a(1)hh
′

= aE′(n)hh′ = anhh′

= a εM (n⊗ h)h′.

Finally, we show that ε′M (and therefore εM ) is H-colinear: for m ∈M ,

̺M
coH⊗H(ε′M (m)) =

∑

E′(x̃1
ρm0) ⊗ x̃2

ρm11 ⊗ x̃3
ρm12

=
∑

E′(m00X
1) ⊗m01X

2 ⊗m1X
3

=
∑

E′(m00)ε(X
1) ⊗m01X

2 ⊗m1X
3

=
∑

E′(m00) ⊗m01 ⊗m1

= (E′ ⊗ id)̺M (m0) = (ε′M ⊗ id)̺M (m).

⊔⊓

The above form of the Fundamental Theorem yields an additional characterization
of coinvariants, for any M ∈ AM

H
H , as

M coH = {n ∈M |̺M (n) =
∑

(x̃1
ρ ◮ n) x̃2

ρ ⊗ x̃3
ρ}

= Ke(̺M − [(̺M ⊗ id) ◦ (E′ ⊗ id⊗ id)(φ−1
ρ (−⊗ 1A ⊗ 1H))])

15.6. Bulacu-Caenepeel-type coinvariants for AM
H
H . Let H be quasi-bialgebra

and A a right H-comodule algebra. With similar arguments as in (13.4) (see also
Bulacu-Caenepeel [8]), for any M ∈ AM

H
H , we define a projection

Ē′ : M −→M, m 7→
∑

m0 βS(m1),

and define BC-type coinvariants for M ∈ AM
H
H as

M coH := Ē′(M) = {m ∈M | Ē′(m) = m},

generalizing the concept of coinvariants of quasi-Hopf bimodules M ∈ HM
H
H .

15.7. HN versus BC-type projections. Let M ∈ AM
H
H and E′, Ē′ : M → M be

defined by

E′(m) =
∑

q̃1ρm0 βS(q̃2ρm1), Ē′(m) =
∑

m0 βS(m1),

for all m ∈M . Then

(i) Ē′(m) =
∑
E′(p̃1

ρm) p̃2
ρ, E′(m) =

∑
q̃1ρ Ē

′(m)S(q̃2ρ),

(ii) Ē′ : M coH →M coH is an isomorphism in AM with inverse E′ : M coH →M coH ,

where p̃ρ =
∑
p̃1
ρ⊗ p̃2

ρ and q̃ρ =
∑
q̃1ρ ⊗ q̃2ρ are defined in (10.1) and (10.2) respectively.
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Proof. (i)
∑

E′(p̃1
ρm) p̃2 =

∑

q̃1ρ(p̃
1
ρ)(0)m0 βS(q̃2ρ(p̃

1
ρ)(1)m1)p̃

2
ρ

=
∑

q̃1ρ(p̃
1
ρ)(0)m0 βS(m1)S(q̃2ρ(p̃

1
ρ)(1))p̃

2
ρ

by (10.5) =
∑

q̃1ρ(p̃
1
ρ)(0) Ē(m)S(q̃2ρ(p̃

1
ρ)(1))p̃

2
ρ = Ē(m).

The other equality is an easy substitution of Ē′(m).

(ii) For any m ∈M coH ,

E′(Ē′(m)) = E′(
∑

m0 βS(m1))

=
∑

q̃1ρm00 β1(S(m1))1βS(q̃2ρm01β2S(m1)2)

=
∑

q̃1ρm00 β1S(m1)1βS(m1)2S(β2)S(q̃2ρm01)

= (
∑

q̃1ρm00 βS(q̃2ρm01))ε(m1)ε(β)

= E′(m0)ε(m1)ε(β) = E′(m) = m.

On the other hand, for any m ∈M coH ,

Ē′(E′(m)) = Ē′(
∑

q̃1ρm0 βS(q̃2ρm1))

= Ē′(
∑

q̃1ρm0 βS(m1)S(q̃2ρ))

= Ē′(q̃1ρ Ē
′(m)S(q̃2ρ)) = Ē′(

∑

q̃1ρmS(q̃2ρ))

=
∑

(q̃1ρmS(q̃2ρ))0 βS([q̃1ρmS(q̃2ρ)]1)

=
∑

(q̃1ρm)0 S(q̃2ρ)1βS(S(q̃2ρ)2)S((q̃1ρm)1)

=
∑

ε(q̃2ρ)(q̃
1
ρm)0 βS((q̃1ρm)1)

=
∑

ε(q̃2ρ)Ē
′(q̃1ρm) = Ē′(

∑

q̃1ρε(q̃
2
ρ)m)

= Ē′(ε(α)1H m) = Ē′(m) = m.

For left A-linearity of E′ we compute

E′(a ⊲ m) =
∑

E′(a(0)m0 βS(a(1)m1))

=
∑

q̃1ρa(0)(0) m00 β1S(a(1)m1)1βS(q̃2ρa(0)(1)m01β2S(a(1)m1)2)

=
∑

q̃1ρa(0)(0) m00 β1S(a(1)m1)1βS(β2S(a(1)m1)2)S(q̃2ρa(0)(1)m01)

=
∑

q̃1ρa(0)(0) m00 ε(β)ε(S(a(1)m1))βS(q̃2ρa(0)(1)m01)

=
∑

ε(a(1)m1)q̃
1
ρa(0)(0) m00 βS(a(0)(1)m01)S(q̃2ρ)

=
∑

ε(a(1)m1)q̃
1
ρ Ē

′(a(0)m0)S(q̃2ρ)

= E′(am) = a ◮ E′(m).

⊔⊓

With similar arguments as in [8, Lemma 3.6], we show
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15.8. Proposition. (Characterization of BC-type coinvariants in AM
H
H). For

a quasi-Hopf algebra H, a right H-comodule algebra (A, ρ, φρ) and m ∈M ∈ AM
H
H , we

have m ∈M coH if and only if

̺M (m) =
∑

x̃1
ρmS((x̃3

ρ)2X
3)f1 ⊗ x̃2

ρX
1βS((x̃3

ρ)1X
2)f2}. (15.3)

Proof. Let m ∈M coH . Then

̺M (m) = ̺M (Ē′(m)) =
∑

m00 β1S(m1)1 ⊗m01β2S(m1)2

by (7.26) =
∑

m00 δ
1f1S(m1)1 ⊗m01δ

2f2S(m1)2

by (7.17) =
∑

m00 δ
1S(m12)f

1 ⊗m01δ
2S(m11)f

2

by (7.23) =
∑

m00 x
1Y 1βS((m12x

3
2X

3Y 3)f1 ⊗m01x
2X1Y 2

1 βS((m11x
3
1X

2Y 2
2 )f2

by (7.6) =
∑

m00 x
1Y 1βS((m12x

3
2X

3Y 3)f1 ⊗m01x
2X1ε(Y 2)βS((m11x

3
1X

2)f2

by (7.4) =
∑

m00 x
1βS((m1x

3)2X
3)f1 ⊗m01x

2X1βS((m1x
3)1X

2)f2

by (14.2) =
∑

x̃1
ρm0 βS((x̃3

ρm12)2X
3)f1 ⊗ x̃2

ρm11X
1βS((x̃3

ρm12)1X
2)f2

by (7.2) =
∑

x̃1
ρm0 βS((x̃3

ρ)2X
3m12))f

1 ⊗ x̃2
ρX

1m111βS((x̃3
ρ)1X

2m112))f
2

by (7.6) =
∑

x̃1
ρm0 βS((x̃3

ρ)2X
3m12))f

1 ⊗ x̃2
ρX

1ε(m11)βS((x̃3
ρ)1X

2)f2

=
∑

x̃1
ρm0 βS((x̃3

ρ)2X
3m1)f

1 ⊗ x̃2
ρX

1βS((x̃3
ρ)1X

2)f2

=
∑

x̃1
ρ Ē

′(m)S((x̃3
ρ)2X

3)f1 ⊗ x̃2
ρX

1βS((x̃3
ρ)1X

2)f2

(m∈McoH)
=

∑

x̃1
ρmS((x̃3

ρ)2X
3)f1 ⊗ x̃2

ρX
1βS((x̃3

ρ)1X
2)f2.

Conversely, if we have

̺M (m) =
∑

x̃1
ρmS((x̃3

ρ)2X
3)f1 ⊗ x̃2X1βS((x̃3

ρ)1X
2)f2,

then

Ē′(m) =
∑

m0 βS(m1)

=
∑

x̃1
ρmS((x̃3

ρ)2X
3)f1βS(x̃2

ρX
1βS((x̃3

ρ)1X
2)f2)

=
∑

x̃1
ρmS((x̃3

ρ)2X
3)f1βS(f2)S(x̃2

ρX
1βS((x̃3

ρ)1X
2))

by (7.27) =
∑

x̃1
ρmS((x̃3

ρ)2X
3)S(α)S(x̃2

ρX
1βS((x̃3

ρ)1X
2))

=
∑

x̃1
ρmS(x̃2

ρX
1βS((x̃3

ρ)1X
2)α(x̃3

ρ)2X
3)

=
∑

x̃1
ρmS(x̃2

ρX
1βS(X2)S((x̃3

ρ)1)α(x̃3
ρ)2X

3)

=
∑

x̃1
ρmS(x̃2

ρX
1βS(X2)ε(x̃3

ρ)αX
3)

=
∑

mS(X1βS(X2)αX3) = m.

⊔⊓

Similar to the BC-coinvariats in (13.4), the above proposition gives a characteriza-

tion of coinvariants M coH for M ∈ AM
H
H as

M coH = {m ∈M |̺M (m) =
∑

x̃1
ρmS((x̃3

ρ)2X
3)f1 ⊗ x̃2

ρX
1βS((x̃3

ρ)1X
2)f2}, (15.4)
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These coinvariants can be also expressed as

M coH = Ke(̺M − {
∑

(x̃1
ρ ⊗ x̃2

ρ) (−⊗ 1H) [S((x̃3
ρ)2X

3)f1 ⊗X1βS((x̃3
ρ)1X

2)f2]})

= Ke(̺M − {
∑

(x̃1
ρ ⊗ x̃2

ρ) (−⊗ 1H) [(S ⊗ S) ◦ τ ◦ (∆(x̃3
ρ) pL) f ]})

where pL =
∑
p1
L⊗p

2
L is defined in (7.28), f =

∑
f1⊗f2 is the Drinfeld gauge element

given in equation (7.24), and τ is the twist map a⊗ b 7→ b⊗ a.

One can define a new left A-module structure on M ∈ AM
H
H by

a ⊲ m :=
∑

a(0)mS(a(1)), (15.5)

for a ∈ A, and m ∈ M , where ρ(a) =
∑
a(0) ⊗ a(1). With this left A-action, M coH

can be considered as a left A-submodule of M . It is straightforward to see that for any
morphism g : M → L in AM

H
H , we have g(M coH) ⊆ LcoH .

In this way, we obtain an alternative coinvariants functor

(−)coH : AM
H
H −→ AM,

which we will show to be right adjoint to the comparison functor (see 14.3)

−⊗k H : AM → AM
H
H , N 7→ (N ⊗k H, ̺N⊗kH , ̺

N⊗kH).

15.9. Proposition. (The adjoint pair (− ⊗k H, (−)coH) for BC-type coinvari-
ants). Let H be quasi-Hopf algebra and A a right H-comodule algebra, N ∈ AM and
M ∈ AM

H
H . Then there is a functorial isomorphism

AHomH
H(N ⊗k H,M)

ψN,M
−→ AHom(N,M coH), f 7−→ [n 7→ f(p̃ρ (n⊗ 1))],

with inverse map ψ′
N,M given by

g 7−→ [n⊗ h 7→
∑

q̃1ρ g(n)S(q̃2ρ)h)].

This means that the functors

AM
−⊗kH−→ AM

H
H

(−)coH

−→ AM,

form an adjoint pair with unit and counit

η̄N : N −→ (N ⊗H)coH , n 7→ p̃ρ (n⊗ 1),

ε̄M : M coH ⊗k H −→M, m⊗ h 7→
∑

q̃1ρmS(q̃2ρ)h.

Proof. We show that ψ and ψ′ are inverse to each other. For n ∈ N,h ∈ H and
f ∈ AHomH

H(N ⊗k H,M),

[(ψ′ ◦ ψ)(f)](n⊗ h) =
∑

q̃1ρ ψ(f)(n)S(q̃2ρ)h =
∑

q̃1ρ f(p̃ρ (n⊗ 1))S(q̃2ρ)h

f is (A, H)-bilinear = f(
∑

ρ(q̃1ρ)p̃ρ (n⊗ 1))S(q̃2ρ)h

= f(
∑

ρ(q̃1ρ)p̃ρ(1A ⊗ S(q̃2ρ)) (n⊗ h))

by (10.6) = f(n⊗ h).
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Conversely, for n ∈ N and g ∈ AHom(N,M coH),

[(ψ ◦ ψ′)(g)](n) = ψ′(g)(p̃ρ (n⊗ 1)) =
∑

q̃1ρ g(p̃
1
ρ n)S(q̃2ρ))p̃

2
ρ

g is left A-linear =
∑

q̃1ρ (p̃1
ρ ⊲ g(n))S(q̃2ρ)p̃

2
ρ

=
∑

q̃1ρ(p̃
1
ρ)(0) g(n)S((p̃1

ρ)(1))S(q̃2ρ)p̃
2
ρ

=
∑

q̃1ρ(p̃
1
ρ)(0) · g(n) · S(q̃2ρ(p̃

1
ρ)(1))p̃

2
ρ

by (10.5) = g(n).

⊔⊓

In order to state the Fundamental Theorem for the category AM
H
H with BC-type

coinvariants, we first show that the unit map η̄N is an isomorphism. For this, we show
that for any N ∈ AM,

(N ⊗H)coH = {p̃1
ρ n⊗ p̃2

ρ|n ∈ N}.

For n⊗ h ∈ (N ⊗H)coH ,

̺N⊗H(n⊗ h) =
∑

x̃1
ρ · (n⊗ h) · S((x̃3

ρ)2X
3)f1 ⊗ x̃2

ρX
1βS((x̃3

ρ)1X
2)f2

=
∑

(x̃1
ρ)(0) n⊗ (x̃1

ρ)(1)hS((x̃3
ρ)2X

3)f1 ⊗ x̃2
ρX

1βS((x̃3
ρ)1X

2)f2.

On the other hand, ̺N⊗H(n⊗ h) =
∑
x̃1
ρ n⊗ x̃2

ρh1 ⊗ x̃3
ρh2.

Comparing this two values for ̺N⊗H(n⊗ h) and applying id⊗ ε⊗ id on both sides, we
obtain

n⊗ h =
∑

ε(h)(p̃1
ρ n⊗ p̃2

ρ).

This shows that the unit map

η̄N : N −→ (N ⊗H)coH , n 7→ p̃ρ (n⊗ 1),

is an isomorphism with inverse map n⊗ h 7→ nε(h). This gives another proof fpr fully
faithfulness of the comparison functor −⊗k H : AM → AM

H
H in this case (see 14.6).

15.10. Fundamental Theorem for AM
H
H with BC-type coinvariants. Let H be

a quasi-Hopf algebra, (A, ρ, φρ) a right comodule algebra and M ∈ AM
H
H . Consider

M coH ⊗H as an object in AM
H
H with the structures

a · (n⊗ h) · h′ =
∑

a1 ⊲ n⊗ a2hh
′, ̺′(n⊗ h) =

∑

x̃1
ρ ⊲ n⊗ x̃2

ρh1 ⊗ x̃3
ρh2,

for h, h′ ∈ H, a ∈ A and n ∈M coH . Then the map

ε̄M : M coH ⊗H −→M, ε̄M (n⊗ h) =
∑

q̃1ρ nS(q̃2ρ)h

is an isomorphism in AM
H
H with inverse map ε̄′M given by

ε̄′M (m) =
∑

Ē(m0) ⊗m1.
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Proof. By 15.7, we have the isomorphism E′ : M coH →M coH in AM and tensoring
it with H, we obtain

E′ ⊗ idH : M coH ⊗H →M coH ⊗H,

as an isomorphism in AM
H
H . By the Hausser-Nill version of the Fundamental Theorem

for AM
H
H 13.3, there is an isomorphism

εM : M coH ⊗H →M, m⊗ h 7→ mh.

in AM
H
H . Combining these two isomorphisms, we have the isomorphism

ε̄M = εM ◦ (E′ ⊗ id) : M coH ⊗H −→M coH ⊗H −→M,

m⊗ h 7→ E′(m) ⊗ h 7→ E′(m)h =
∑

q̃1ρm0 βS(q̃2ρm1)h

=
∑

q̃1ρm0 βS(m1)S(q̃2ρ)h =
∑

q̃1ρ Ē
′(m)S(q̃2ρ)h

m∈McoH =
∑

q̃1ρmS(q̃2ρ)h.

The inverse map ε̄′M can be also computed directly as

ε̄′M (m) = (Ē′ ⊗ id)(
∑

E′(m0) ⊗m1) =
∑

Ē′(E′(m0)) ⊗m1

=
∑

Ē′(q̃1ρm00 βS(q̃2ρm01) ⊗m1

=
∑

Ē′(q̃1ρm00)ε(β)ε(q̃2ρm01) ⊗m1 =
∑

Ē′(m0) ⊗m1.

⊔⊓

As shown in the proceding sections, for any comodule algebra over a quasi-Hopf
algebraH, the comparison functor −⊗kH, given in 14.3 has three right adjoint functors,
namely

AHomH
H(H ⊗H,−), (−)coH and (−)coH :AM

H
H −→AM.

These have to be isomorphic and we describe the isomorphisms explicitly.

15.11. Theorem. (Coinvariants for AM
H
H as Hom-functor). Let H be a quasi-

Hopf algebra, (A, ρ, φρ) a right H-comodule algebra, and M ∈ AM
H
H .

(1) There is a functorial isomorphism in AM,

ψ̄M : AHomH
H(A⊗k H,M) −→M coH , f 7−→ f(1A ⊗ 1H),

with inverse map ψ̄′
M given by

m 7−→ [a⊗ h 7→ E(am)h],

for a ∈ A, h ∈ H and m ∈M coH .
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(2) There is a functorial isomorphism in AM,

θ̄M : AHomH
H(A⊗k H,M) −→M coH , f 7−→ f(p̃ρ),

with inverse map θ̄′M given by

m 7−→ [a⊗ h 7→ E(am)h],

for a ∈ A, h ∈ H and m ∈M coH .

Proof. (1) If we substitute N = A in the isomorphism in 15.3, we obtain for
M ∈ AM

H
H the isomorphisms

ψ̄M : AHomH
H(A⊗k H,M)

ψA,M
−→ AHom(A,M coH) ∼= M coH ,

f 7−→ [a 7→ f(a⊗ 1H)] 7→ f(1A ⊗ 1H),

for a ∈ A. The inverse map ψ̄′
M is obtained as the composition

M coH ∼= AHom(A,M coH)
ψ′
A,M
−→ AHomH

H(A⊗k H,M),

m 7→ [a 7→ a ◮ m = E′(am)] 7→ [a⊗ h 7→ E′(am)h],

for a ∈ A, h ∈ H and m ∈ M coH . Here, ψA,M is the isomorphism given in 15.3 and
ψ′
A,M is its inverse.

It remains to show that ψ̄M is right A-linear: For a ∈ A and f ∈HHomH
A (A⊗H,M),

a ◮ ψ̄M (f) = E(a f(1A ⊗ 1H)) =
∑

E(f(a(0) ⊗ a(1)))

=
∑

q̃1ρ f(a(0) ⊗ a(1))0 βS(q̃2ρf(a(0) ⊗ a(1))1)

f is H-colinear =
∑

q̃1ρ f(x̃1
ρa(0) ⊗ x̃2

ρa(1)1βS(q̃2ρx̃
3
ρa(1)2))

f is A-linear =
∑

f(ρ(q̃1ρ) (x̃1
ρa(0) ⊗ x̃2

ρa(1)1)βS(a(1)2)S(x̃3
ρ)S(q̃2ρ))

by (7.6) = f(
∑

ρ(q̃1ρ) (x̃1
ρa⊗ x̃2

ρβS(x̃3
ρ)S(q̃2ρ))

= f(
∑

ρ(q̃1ρ)p̃ρ(1A ⊗ S(q̃2ρ))(a⊗ 1))

by (10.6) = f(a⊗ 1) = (a · f)(1A ⊗ 1H) = ψ̄M (a · f).

(2) If we set N = A in the isomorphism given in 15.9, we obtain the isomorphisms

θ̄M : AHomH
H(A⊗k H,M)

ψA,M
−→ AHom(H,M coH) ∼= M coH ,

f 7−→ [a 7→ Ē′(f(a⊗ 1)) = f(p̃ρ (a⊗ 1))] 7→ Ē′(f(1A ⊗ 1H)) = f(p̃ρ),

for all a ∈ A. The inverse map θ̄′M is obtained as the composition

θ̄′M : M coH ∼= AHom(A,M coH)
ψ′
A,M
−→ AHomH

H(A⊗k H,M),

m 7−→ [a 7→ a ⊲ m = Ē(am)] 7−→ {a⊗ b 7→
∑

q̃1ρ Ē
′(am)S(q̃2ρ)h

= E′(am)h},
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for a ∈ A, h ∈ H and m ∈ M coH . Here, ψA,M is the isomorphism given in 15.9 and
ψ′
A,M is its inverse.

Similar to the part (1) and considering the left A-action ⊲ on M coH , we must show
that θ̄M is left A-linear: For a ∈ A and f ∈AHomH

H(A⊗H,M),

a ⊲ θ̄M (f) = Ē(a f(1A ⊗ 1H)) =
∑

Ē(f(a(0) ⊗ a(1)))

=
∑

f(a(0) ⊗ a(1))0 βS(f(a(0) ⊗ a(1))1)

f is H-colinear =
∑

f(x̃1
ρa(0) ⊗ x̃2

ρa(1)1βS(x̃3
ρa(1)2))

= f(
∑

x̃1
ρ a⊗ x̃2

ρβS(x̃3
ρ)) = f(

∑

p̃1
ρ a⊗ p̃2

ρ)

= (a · f)(p̃ρ) = θ̄M (a · f).

⊔⊓

Remark. Part (2) can be proved also by composing the isomorphism

AHomH
H(A⊗k H,M)

ψ̄M−→M coH , f 7−→ f(1A ⊗ 1H),

in the part (1), with the isomorphism Ē′ : M coH → M coH . This induces the isomor-
phism

AHomH
H(A⊗k H,M)

ψ̄M−→M coH Ē
−→M coH ,

given by

f 7−→ f(1 ⊗ 1) 7−→ Ē(f(1 ⊗ 1))

=
∑

f(1 ⊗ 1)0 βS(f(1 ⊗ 1)1)

by H-colinearity of f =
∑

f(x̃1
ρ ⊗ x̃2

ρ)βS(x̃3
ρ)

by H-linearity of f =
∑

f(x̃1
ρ ⊗ x̃2

ρβS(x̃3
ρ)) = f(p̃ρ).

The inverse map can be computed as

m
θ′
7−→ {a⊗ h 7→ E(aE(m))h

=
∑

E([a(0) ◮ E(m)] a(1))h

= [
∑

E(a(0) ◮ E(m))ε(a(1))]h

= [E(a ◮ E(m))]h

= [E(E(am))]h = E(am)h},

for a ∈ A, h ∈ H and m ∈M coH .

16 The category HM
H
A

By symmetry and following Bulacu-Caenepeel [8] and Bulacu-Torrecillas [12], we can
consider the category of two-sided Hopf modules from the right hand side.
As mentioned for the left hand version in section 14, for a quasi-bialgebra H and a
right H-comodule algebra (A, ρ, φρ), the monoidal category HMH acts from the right
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side on the category HMA of (H,A)-bimodules. Thus we can consider the category of
right comodules in HMA over the coalgebra H in HMH . This comodule category has
been defined by Bulacu and Caenepeel in [9] as follows.

16.1. (Right) Two-sided Hopf modules. Let H be a quasi-bialgebra and (A, ρ, φρ)
a rightH-comodule algebra. A two-sided (H,A)-Hopf module is an (H,A)-bimodule
M , together with a k-linear map

̺M : M −→M ⊗H, ̺M (m) =
∑

m0 ⊗m1,

satisfying the relations

(idM ⊗ ε) ◦ ̺M = idM ,

φ · (̺M ⊗ idH)(̺M (m)) = (idM ⊗ ∆)(̺M (m)) · φρ,

̺M (hm) =
∑

h1m0 ⊗ h2m1,

̺M (ma) =
∑

m0 a(0) ⊗m1a(1),

for all m ∈M, h ∈ H, and a ∈ A. The category of two-sided (H,A)-Hopf modules and
left H-linear, right A-linear, and right H-colinear maps is denoted by HM

H
A .

As in 14.2, we find a subgenerator for HM
H
A .

16.2. Proposition. (Subgenerator for HM
H
A). Let H be a quasi-bialgebra and

(A, ρ, φρ) a right H-comodule algebra. Then

(1) For any N ∈ MA, we have N ⊗ H ∈ HM
H
A with structure maps defined for

h, h′ ∈ H, n ∈ N and a ∈ A, by

h′ · (n⊗ h) = n⊗ h′h, (n⊗ h) · a =
∑

na(0) ⊗ ha(1), (16.1)

and

̺N⊗H(n⊗ h) =
∑

nX̃1
ρ ⊗ h1X̃

2
ρ ⊗ h2X̃

3
ρ = (id⊗ ∆)(n⊗ h) · φρ. (16.2)

(2) If g : N1 → N2 is an (epi-)morphism in MA, then

g ⊗ idH : N1 ⊗H −→ N2 ⊗H

is an (epi-)morphism in HM
H
A .

(3) Endowed with the structure given, for h, h′ ∈ H and a, a′ ∈ A, by

h · (a⊗ h′) = a⊗ hh′, (a⊗ h) · a′ =
∑

aa′(0) ⊗ ha′(1),

̺A⊗H(a⊗ h) =
∑

aX̃1 ⊗ h1X̃
2 ⊗ h2X̃

3,

A⊗H ∈ HM
H
A and it is a subgenerator for the category HM

H
A .
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Proof. The parts (1) and (2) are straightforward to see.
(3) Using a similar approach as in sections 12 and 14, we can see that for anyM ∈ HM

H
A ,

the right A-module M can be considered as a homomorphic image of A(Λ), for some
cardinal number Λ. Therefore M ⊗H is a homomorphic image of

A(Λ) ⊗H ∼= (A⊗H)(Λ).

For any M ∈ HM
H
A , the coaction ̺M : M → M ⊗ H is a morphism in the category

HM
H
A , so we can consider M as a subobject of M⊗H, which is generated by the object

A⊗H ∈ HM
H
A . ⊔⊓

The above proposition give rise to

16.3. The comparison functor −⊗k H : MA → HM
H
A . Let H be a quasi-bialgebra

and (A, ̺, φ̺) a right H-comodule algebra. By 16.2, for any N ∈ MA, N ⊗H ∈ HM
H
A

with (H,A)-bimodule structure given in (16.1) and H-comodule structure map given
in (16.2). This gives rise to the comparison functor

−⊗k H : MA −→HM
H
A , N 7→ (N ⊗H, ̺N⊗H , ̺

N⊗H).

16.4. Two-sided Hopf modules as comodules over a comonad. Let H be a
quasi-bialgebra, (A, ρ, φρ) a right H-comodule algebra, N ∈ HMA, and V ∈ HMH .
Then the coaction

ρ : A −→ A⊗k H, ρ(a) =
∑

a(0) ⊗ a(1),

induces an (H,A)-bimodule structure on N ⊗k V given, for h ∈ H, a ∈ A, v ∈ V , and
n ∈ N by

h · (n⊗ v) · a =
∑

h1 na(0) ⊗ h2 v a(1) = ∆(h) (n⊗ v) ρ(a).

In this way, for any V ∈ HMH , we get an endofunctor

−⊗k V : HMA −→ MA, N 7→ N ⊗k V,

with the (H,A)-bimodule structure on N ⊗k V given above. In particular, for V = H,
we obtain the endofunctor

G := −⊗k H : AMH −→ AMH , N 7→ N ⊗k H,

with the (H,A)-bimodule structure on N ⊗k H given by

h′ · (n⊗ h) · a =
∑

h′1 na(0) ⊗ h′2 v a(1) = ∆(h) (n⊗ v) ρ(a).

for all h, h′ ∈ H, a ∈ A, and n ∈ N . Similar to the case AM
H
H (see 14.5), we have

16.5. Theorem. (− ⊗k H as a comonad on HMA). Let (H,∆, ε, φ) be a quasi-
bialgebra, (A, ρ, φρ) be a right H-comodule algebra. Then

(1) The endofunctor −⊗k H : HMA → HMA is a comonad on HMA with the comul-
tiplication δ defined for N ∈ HMA by

δN : N ⊗H −→ (N ⊗H) ⊗H,

n⊗ h 7→
∑

x1 n X̃1
ρ ⊗ x2h1X̃

2
ρ ⊗ x3h2X̃

3
ρ

= φ−1 · (id⊗ ∆)(n⊗ h) · φρ,

and counit ǫ defined by ǫN = idN ⊗ ε : N ⊗H → N .
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(2) The category of two-sided Hopf modules HM
H
A is isomorphic to the Eilenberg-

Moore comodule category (HMA)−⊗H .

The following lemma helps to find a right adjoint to the comparison functor.

16.6. Lemma. (The functor HHomH
A (V ⊗ H,−)). Let H be a quasi-bialgebra,

(A, ρ, φρ) a right H-comodule algebra, and V ∈AMA.

(1) If M ∈HMA, then HHomA(V ⊗H,M) ∈ MA with the right A-module structure
given, for h ∈ H, a ∈ A and v ∈ V , by

(f · a)(v ⊗ h) = f(a v ⊗ h).

In this way, we get the Hom-functor HHomA(V ⊗H,−) : HMA → MA.
In particular, if M ∈ HM

H
A then HHomH

A (V ⊗H,M) ∈ MA with the right A-
module structure given above, and we obtain the Hom-functor

HHomH
A (V ⊗H,−) : HM

H
A → MA.

(2) Let V ∈ AMA and N ∈ MA. Then

(i) ψ : HHomH
A (V ⊗H,N ⊗H) −→ HHomA(V ⊗H,N), f 7→ (id⊗ ε) ◦ f,

is an isomorphism in MA with inverse map ψ′ given by

g 7→ (g ⊗ idH) ◦ ̺V⊗H .

(ii) θ : HHomA(V ⊗H,N) −→ HomA(V,N), f 7→ f(− ⊗ 1H), is an isomor-
phism in MA with inverse map θ′ given by

g 7→ [v ⊗ h 7→ ε(h)g(v)].

(iii) There is a right A-module isomorphism

HomA(V,N) −→ HHomH
A (V ⊗H,N ⊗H), g 7−→ g ⊗ id,

with inverse map given for f ∈ HHomH
A (V ⊗H,N ⊗H) by

f 7→ (id⊗ ε) ◦ f(−⊗ 1H).

This means that the comparison functor −⊗k H is full and faithful.

Here, we consider the left H-module structure of N to be the trivial one.

Proof. (1) For all a ∈ A and f ∈ HHomA(V ⊗H,M), it is easy to see that f ·a is
an (H,A)-bilinear map. In this way, we have HHomA(V ⊗H,M) ∈ MA, and we obtain
a functor

HHomA(V ⊗H,−) :HMA −→MA.

In case M ∈ HM
H
A and f ∈ HHomH

A (V ⊗H,M), the H-colinearity of f · a follows
from the H-colinearity of f itself, and HHomH

A (V ⊗H,M) ∈MA. Thus, we obtain the
functor

HHomH
A (V ⊗H,−) :HM

H
A −→ MA.
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(2) (i) As seen in 16.5, the functor − ⊗k H : HMA → HMA is a comonad and
the category HM

H
A of two-sided Hopf modules is just the Eilenberg-Moore comodule

category (HMA)−⊗H over this comonad. Now, considering the comparison functor
−⊗H : HMA → HM

H
A as the free functor which is right adjoint to the forgetful func-

tor, by 4.8, we obtain the isomorphism of part (i).

(ii) For f ∈ HHomA(V ⊗H,N), h, a ∈ H and v ∈ V ,

[θ(f)(v)] a = [f(v ⊗ 1H)] a

f is right A-linear = f(
∑

v a(0) ⊗ a(1))

f is left H-linear =
∑

a(1) f(v a(0) ⊗ 1H)

=
∑

ε(a(1))f(v a(0) ⊗ 1H)

= f(v a⊗ 1H) = θ(f)(v a).

This means that θ(f) ∈ HomA(V,N). Also, it is straightforward to show that for
f ∈ HomA(V,N), we have θ′(g) ∈ HHomA(V ⊗H,N). Right A-linearity and bijectiv-
ity of θ are easy to see.

(iii) This is just the composition of the isomorphisms ψ′ and θ′ given in (i) and (ii).
⊔⊓

16.7. Corollary. Let H be a quasi-bialgebra, (A, ρ, φρ) a right H-comodule algebra.

(1) For M ∈HM
H
A we have a right A-module structure on HHomH

A (A⊗H,M) given
for h ∈ H, a, a′ ∈ A and f ∈ HHomH

A (A⊗H,M) by

(f · a′)(a⊗ h) = f(a′ a⊗ h).

(2) For N ∈ MA the morphism

ηN : N −→ HHomH
A (A⊗H,N ⊗H), n 7−→ [a⊗ h 7→ na⊗ h],

is an isomorphism with inverse map η′N given, for f ∈ HHomH
A (A⊗H,N ⊗H),

by
η′N (f) = (id⊗ ε) ◦ f(1A ⊗ 1H).

Proof. (1) Follows directly from the Lemma 16.6 by taking V = A.

(2) Composition of the isomorphisms ψ′ and θ′ for V = A gives rise to the isomor-
phism

N ∼= HomA(A, N) ∼= HHomA(A⊗H,N) ∼= HHomH
A (A⊗H,N ⊗H).

Using part (1), this composition yields the isomorphism ηN with the given inverse map
η′N . ⊔⊓

Now we show that the Hom-functor HHomH
A (A ⊗H,−) :HM

H
A −→ MA is a right

adjoint to the comparison functor in 16.3.
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16.8. Theorem. (Hom-tensor adjunction for HM
H
A). Let H be a quasi-bialgebra,

M ∈HM
H
A , and N ∈MA. Then there is a functorial isomorphism

Ω := ΩN,M : HHomH
A (N ⊗H,M) −→HomA(N,HHomH

A (A⊗H,M)),

f 7−→ {n 7→ [a⊗ h 7→ f(na⊗ h)]},

with inverse map Ω′
N,M given by

g 7−→ {n⊗ h 7→ g(n)(1A ⊗ h)}.

This means that the comparison functor

−⊗k H : MA −→HM
H
A , N 7→ (N ⊗H, ̺N⊗H , ̺

N⊗H),

is left adjoint to the Hom-functor

HHomH
A (A⊗H,−) :HM

H
A −→MA,

with unit and counit given by

ηN : N −→ HHomH
A (A⊗H,N ⊗H) n 7→ [a⊗ h 7→ na⊗ h],

εM :HHomH
A (A⊗H,M) ⊗H −→M, f ⊗ h 7→ f(1A ⊗ h).

Furthermore, the comparison functor −⊗k H : MA →HM
H
A is full and faithful.

Proof. First we show that for any f ∈HHomH
A (N ⊗H,M), Ω(f) is right A-linear.

For h ∈ H, a, a′ ∈ A and n ∈ N ,

[(Ω(f)(n)) · a′](a⊗ h) = Ω(f)(n)(a′a⊗ h) = f(na′a⊗ h) = [Ω(f)(na′))](a⊗ h).

So we have Ω(f) ∈HomA(N,HHomH
A (A⊗H,M)).

For any g ∈HomA(N,HHomH
A (A⊗H,M)), we show that Ω′(g) ∈HHomH

A (N ⊗H,M).

i) Ω′(g) is right A-linear. For a ∈ A and n ∈ N ,

Ω′(g)((n⊗ h) a) =
∑

Ω′(g)(na(0) ⊗ ha(1)) =
∑

g(na(0))(1A ⊗ ha(1))

g is right A-linear =
∑

(g(n) · a(0))(1A ⊗ ha(1)) =
∑

g(n)(a(0) ⊗ ha(1))

= g(n)((1 ⊗ h) ρ(a)) = [g(n)(1 ⊗ h)] a

= [Ω′(g)(n⊗ h)] a.

ii) It can be easily seen that Ω′(g) is also left H-linear.

iii) For the right H-colinearity of Ω′(g) we show that

(̺M ◦ Ω′(g))(n⊗ h) =
∑

(Ω′(g) ⊗ id)(n X̃1
ρ ⊗ h1X̃

2
ρ ⊗ h2X̃

3
ρ).

By colinearity of g(n),

(̺M ◦ Ω′(g))(n⊗ h) = ̺M (g(n)(1 ⊗ h)) = g(n)(X̃1
ρ ⊗ h1X̃

2
ρ) ⊗ h2X̃

3
ρ .
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On the other hand,

(Ω′(g) ⊗ id)(
∑

n X̃1
ρ ⊗ h1X̃

2
ρ ⊗ h2X̃

3
ρ) =

∑

g(n X̃1
ρ)(1 ⊗ h1X̃

2
ρ) ⊗ h2X̃

3
ρ

g is A-linear =
∑

[g(n) · X̃1
ρ ](1 ⊗ h1X̃

2
ρ) ⊗ h2X̃

3
ρ

=
∑

g(n)(X̃1
ρ ⊗ h1X̃

2
ρ) ⊗ h2X̃

3
ρ .

This shows the H-colinearity of Ω′(g).

Now we show that Ω and Ω′ are inverse to each other. For all n ∈ N,h ∈ H and
f ∈HHomH

A (A⊗H,M),

(Ω′ ◦ Ω(f))(n⊗ h) = (Ω(f))(n)(1 ⊗ h) = f(1A n⊗ h) = f(n⊗ h).

Conversely, for all h ∈ H,n ∈ N, a ∈ A and g ∈HomA(N,HHomH
A (A⊗H,M)),

{[(Ω ◦ Ω′)(g)](n)}(a⊗ h) = (Ω′(g))(na⊗ h) = g(na)(1A ⊗ h)

g is A-linear = [g(n) a](1A ⊗ h) = g(n)(a⊗ h).

i.e. Ω ◦ Ω′(g) = g. It is also straightforward to see that Ω is functorial in both compo-
nents M and N .

The fully faithfulness of the comparison functor follows from Lemma 16.6. ⊔⊓

17 Coinvariants for HM
H
A

17.1. Hausser-Nill-type coinvariants for HM
H
A . Let H be a quasi-Hopf algebra,

(A, ρ, φρ) a right H-comodule algebra, and M ∈ HM
H
A . We define a projection E :

M →M for any m ∈M by

E(m) :=
∑

S−1(αm1p̃
2
ρ)m0 p̃

1
ρ, (17.1)

where p̃ρ =
∑
p1
ρ ⊗ p2

ρ is defined in (10.1). We define a new right action ◭ of A on M
given for elements a ∈ A and m ∈M by

m ◭ a := E(ma) =
∑

S−1(αm1a(1)p̃
2
ρ)m0 a(0)p̃

1
ρ. (17.2)

The projection E and the action ◭ have the following properties:
Proposition. For a quasi-Hopf algebra H and a right H-comodule algebra (A, ρ, φρ),
let M ∈ HM

H
A , m ∈M , a ∈ A and h ∈ H. Then with the above notations we have

(i) E(hm) = ε(h)E(m),

(ii) E2 = E,

(iii) E(m) ◭ a = E(ma) = m ◭ a,

(iv) m ◭ (ab) = (m ◭ a) ◭ b,

(v) E(m) a =
∑
a(1) [E(m) ◭ a(0)],
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(vi)
∑
m1E(m0) = m,

(vii)
∑
E(E(m)0) ⊗ E(m)1 = E(m) ⊗ 1.

Proof.

(i) E(hm) =
∑

S−1(α(hm)1p̃
2
ρ)(hm)0 p̃

1
ρ

=
∑

S−1(αh2m1p̃
2
ρ)h1m0 p̃

1
ρ

=
∑

S−1(m1p̃
2
ρ)S

−1(αh2)h1m0 p̃
1
ρ

=
∑

S−1(m1p̃
2
ρ)ε(h)S

−1(α)m0 p̃
1
ρ

= ε(h)
∑

S−1(αm1p̃
2
ρ)m0 p̃

1
ρ = ε(h)E(m).

(ii) We use part (i) to compute

E2(m) = E(
∑

S−1(αm1p̃
2
ρ)m0 p̃

1
ρ)

by (i) =
∑

ε(S−1(αm1p̃
2
ρ))E(m0 p̃

1
ρ)

=
∑

ε(α)ε(m1)ε(p̃
2
ρ)E(m0 p̃

1
ρ) = E(m).

(iii) E(m) ◭ a = E(E(m) a) =
∑

E(
∑

S−1(αm1p̃
2
ρ)m0 p̃

1
ρa)

=
∑

ε(S−1(αm1p̃
2
ρ))E(m0 p̃

1
ρa)

=
∑

ε(α)ε(m1)ε(p̃
2
ρ)E(m0 p̃

1
ρa) = E(ma) = m ◭ a.

(iv) m ◭ (ab) = E(m (ab)) = E((ma) b) = E(ma) ◭ b

= (m ◭ a) ◭ b.

(v) E(m) a =
∑

S−1(αm1p̃
2
ρ)m0 p̃

1
ρa

by (10.3) =
∑

S−1(αm1a(0)(1) p̃
2
ρS(a(1))m0 a(0)(0) p̃

1
ρ

=
∑

a(1)S
−1(α(ma(0))1p̃

2
ρ) (ma(0))(0)p̃

1
ρ

=
∑

a(1)E(ma(0))

by (iii) =
∑

a(1) [E(m) ◭ a(0)].

(vi) m1E(m0) =
∑

m1S
−1(αm01p̃

2
ρ)m00 p̃

1
ρ

=
∑

m1x̃
3
ρS

−1(x̃2
ρβ)S−1(αm01)m00 x̃

1
ρ

=
∑

m1x̃
3
ρS

−1(αm01x̃
2
ρβ)m00 x̃

1
ρ

=
∑

X3m12S
−1(αX2m11β)X1m0

=
∑

X3m12S
−1(m11β)S−1(αX2)X1m0

=
∑

X3ε(m1)S
−1(β)S−1(αX2)X1m0

=
∑

X3S−1(αX2β)X1m = m.
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(vii)
∑

E(E(m)0) ⊗ E(m)1 =
∑

E((S−1(αm1p̃
2
ρ)m0 p̃

1
ρ)0) ⊗ (S−1(αm1p̃

2
ρ)m0 p̃

1
ρ)1

=
∑

E(S−1(αm1p̃
2
ρ)1m00 (p̃1

ρ)(0)) ⊗ S−1(αm1p̃
2
ρ)2m01(p̃

1
ρ)(1)

by part (i) =
∑

ε(S−1(αm1p̃
2
ρ)1)E(m00 p̃

1
ρ)(0)) ⊗ S−1(αm1p̃

2
ρ)2m01(p̃

1
ρ)(1)

=
∑

E(m00 (p̃1
ρ)(0)) ⊗ S−1(αm1p̃

2
ρ)m01(p̃

1
ρ)(1)

=
∑

E(x1m0 X̃
1
ρ(p̃

1
ρ)(0)) ⊗ S−1(αx3m12X̃

3
ρ p̃

2
ρ)x

2m11X̃
2
ρ(p̃

1
ρ)(1)

by part (i) =
∑

ε(x1)E(m0 X̃
1
ρ(p̃

1
ρ)(0)) ⊗ S−1(αx3m12X̃

3
ρ p̃

2
ρ)x

2m11X̃
2
ρ(p̃

1
ρ)(1)

=
∑

E(m0 X̃
1
ρ(p̃

1
ρ)(0)) ⊗ S−1(αm12X̃

3
ρ p̃

2
ρ)m11X̃

2
ρ(p̃

1
ρ)(1)

=
∑

E(m0 X̃
1
ρ(p̃

1
ρ)(0)) ⊗ S−1(X̃3

ρ p̃
2
ρ)S

−1(αm12m11X̃
2
ρ(p̃

1
ρ)(1)

=
∑

E(m0 X̃
1
ρ(p̃

1
ρ)(0)) ⊗ S−1(X̃3

ρ p̃
2
ρ)S

−1(α)ε(m1)X̃
2
ρ(p̃

1
ρ)(1)

=
∑

E(mX̃1
ρ(p̃

1
ρ)(0)) ⊗ S−1(αX̃3

ρ p̃
2
ρ)X̃

2
ρ(p̃

1
ρ)(1)

=
∑

E(m q̃1ρ(p̃
1
ρ)(0)) ⊗ S−1(p̃2

ρ)q̃
2
ρ(p̃

1
ρ)(1)

by (10.5) = E(m) ⊗ 1H .

⊔⊓

Using (ii), (vi) and (vii), we obtain the following characterizations of HN-type coin-
variants as

M coH := E(M) = {n ∈M |E(n) = n}

= {n ∈M |
∑

E(n0) ⊗ n1 = E(n) ⊗ 1}

= Ke((E ⊗ id) ◦ [̺M − (−⊗ 1H)]).

M coH with the right A-action ◭ is a right A-module and for any morphism f : M → L

in HM
H
A , it is not hard to show that f(M coH) ⊆ LcoH .

This gives rise to a functor (−)coH : HM
H
A → MA which we show to be right adjoint to

the comparison functor −⊗k H : MA → HM
H
A .

17.2. Proposition. (The adjoint pair (−⊗H, (−)coH) for HN-type coinvariants
in HM

H
A). Let H be a quasi-Hopf algebra, (A, ρ, φρ) a right H-comodule algebra, N ∈

MA, and M ∈ HM
H
A . Then there is a functorial isomorphism

ψN,M : HHomH
A (N ⊗k H,M) −→ HomA(N,M coH), f 7−→ [n 7→ f(n⊗ 1)],

with inverse map ψ′
N,M given by

g 7−→ [n⊗ h 7→ h g(n))].

Thus, these functors

−⊗k H : MA → HM
H
A , (−)coH : HM

H
A → MA,

form an adjoint pair with unit and counit

ηN : N −→ (N ⊗H)coH , n 7→ n⊗ 1,

εM : M coH ⊗k H −→M, m⊗ h 7→ hm.
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Proof. Using the H-colinearity of f , it is easy to see that f(n⊗ 1) ∈M coH .
We show that ψ := ψN,M and ψ′ := ψ′

N,M are inverse to each other. For n ∈ N,h ∈ H

and f ∈ HHomH
A (N ⊗k H,M),

[(ψ′ ◦ ψ)(f)](n⊗ h) = hψ(f)(n) = h f(n⊗ 1)

by H-linearity of f = f(n⊗ h).

Conversely, for n ∈ N and g ∈ HomA(N,M coH),

[(ψ ◦ ψ′)(g)](n) = ψ′(g)(n⊗ 1) = 1 g(n) = g(n).

⊔⊓

17.3. Proposition. (HN-type coinvariants of N ⊗ H ∈ HM
H
A). Let H be a

quasi-Hopf algebra, (A, ρ, φρ) a right H-comodule algebra. Then for any N ∈ MA the
coinvariants of the two-sided Hopf module N ⊗H, comes out as

(N ⊗H)coH ≃ N,

and for n ∈ N and h ∈ H we have E(n⊗ h) = n⊗ ε(h)1H .

Proof. By definition of the left H-module structure of N⊗H, (n⊗h) = h ·(n⊗1).
Thus,

E(n⊗ h) = E(h · (n⊗ 1)) = ε(h)E(n⊗ 1),

thus, it is enough to show that E(n⊗ 1) = n⊗ 1. For this, we compute

E(n⊗ 1) =
∑

S−1(α(n⊗ 1)1p̃
2
ρ) · (n⊗ 1)0p̃

1
ρ

=
∑

S−1(αX̃3
ρ p̃

2
ρ) · (n X̃

1
ρ ⊗ X̃2

ρ) · p̃
1
ρ

=
∑

n X̃1
ρ(p̃

1
ρ)(0) ⊗ S−1(p̃2

ρ)S
−1(αX̃3

ρ)X̃
2
ρ)(p̃

1
ρ)(1)

=
∑

n q̃1ρ(p̃
1
ρ)(0) ⊗ S−1(p̃2

ρ)q̃
2
ρ(p̃

1
ρ)(1)

by (10.5) = n⊗ 1.

where p̃ρ =
∑
p̃1
ρ ⊗ p̃2

ρ and q̃ρ =
∑
q̃1ρ ⊗ q̃2ρ are defined in (10.1) and (10.2) respectively.

The above equality means that the unit map ηN : N −→ (N ⊗H)coH of adjunction in
17.2 is an isomorphism with inverse map n⊗h 7→ ε(h)n and this finishes the proof (see
also 4.1 and 16.6). ⊔⊓

17.4. Fundamental Theorem for HM
H
A with HN-coinvariants. Let H be a

quasi-Hopf algebra, (A, ρ, φρ) a right H-comodule algebra and M ∈ AM
H
H . Consider

M coH = E(M) as a right A-module with the A-action ◭, defined by

m ◭ a = E(ma) =
∑

S−1(αm1a(1)p̃
2
ρ)m0 a(0)p̃

1
ρ.

Then the map
εM : M coH ⊗H −→M, m⊗ h 7→ hm,

is an isomorphism in HM
H
A with inverse map

ε′M (m) =
∑

E(m0) ⊗m1 = (E ⊗ id) ◦ ̺M (m).
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Proof. For h ∈ H and n ∈ N ,

ε′M ◦ εM (n⊗ h) = ε′M (hn) =
∑

E(h1 n0) ⊗ h2n1

by (i) =
∑

ε(h1)E(n0) ⊗ h2n1 =
∑

E(n0) ⊗ hn1

=
∑

(1 ⊗ h) (E(n0) ⊗ n1)

by (vii) = (1 ⊗ h) (n⊗ 1) = n⊗ h.

Conversely, for m ∈M ,

εM ◦ ε′M (m) = εM (
∑

E(m0) ⊗m1) =
∑

m1E(m0) = m.

Thus εM is indeed an isomorphism of k-modules.
We show that εM is a morphism in HM

H
A . By definition of the (H,A)-bimodule struc-

ture of M coH ⊗H for h ∈ H, a ∈ A and n ∈M coH ,

h′ · (n⊗ h) · a =
∑

n ◭ a(0) ⊗ h′ha(1) =
∑

E(na(0)) ⊗ h′ha(1),

therefore, we have

εM (h′ · (n⊗ h) · a) =
∑

h′ha(1)E(na(0))

by (iii) =
∑

h′ha(1) [E(n) ◭ a(0)]

= h′hE(n) a = h′hna = h′ εM (n⊗ h) a.

Finally, we show that ε′M (and therefore εM ) is H-colinear: for m ∈M ,

̺M
coH⊗H(ε′M (m)) =

∑

E(m0) ◭ X̃1
ρ ⊗m11X̃

2
ρ ⊗m12X̃

3
ρ

=
∑

E(m0 X̃
1
ρ) ⊗m11X̃

2
ρ ⊗m12X̃

3
ρ

by (14.2) =
∑

E(x1m00) ⊗ x2m01 ⊗ x3m1

=
∑

ε(x1)E(m00) ⊗ x2m01 ⊗ x3m1

by (7.4) =
∑

E(m00) ⊗m01 ⊗m1

= (E ⊗ id)̺M (m0) ⊗m1 = (ε′M ⊗ id)̺M (m).

⊔⊓

The above Fundamental Theorem yields an additional characterization of coinvari-
ants for any M ∈ HM

H
A as

M coH = {n ∈M |̺M (n) =
∑

X̃2
ρ (n ◭ X̃1

ρ) ⊗ X̃3
ρ}

= Ke(̺M − [(M̺⊗ id) ◦ (E ⊗ id⊗ id)((−⊗ 1A ⊗ 1H) · φρ)]),

where M̺ is the left H-module structure of M .
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17.5. Bulacu-Torrecillas coinvariants (BT-coinvariants) in HM
H
A . Let H be

quasi-bialgebra and (A, ρ, φρ) a right H-comodule algebra. We have seen in section
16.3 that there is a comparison functor

−⊗k H : MA −→HM
H
A , N 7→ (N ⊗H, ̺N⊗H , ̺

N⊗H),

We have shown in 16.8 that this functor −⊗H is a left adjoint to the Hom-functor

HHomH
A (A⊗H,−) and a left adjoint to the Hausser-Nill coinvariants functor (−)coH .

Following Bulacu and Torrecillas [12], we consider another version of coinvariants in

HM
H
A . For any two-sided Hopf module M ∈ HM

H
A we define a projection map E :

M →M , by

E(m) =
∑

S−1(αm1)m0, for m ∈M, (17.3)

and for M ∈ HM
H
A we introduce BT-coinvariants M coH as

M coH := E(M) = {m ∈M |E(m) = m}.

17.6. Proposition. (HN versus BT-type projections). Let M ∈ HM
H
A and

E,E : M →M be defined by

E(m) =
∑

S−1(αm1p̃
2
ρ)m0 p̃

1
ρ, E(m) =

∑

S−1(αm1)m0,

for m ∈M . Then

(i) E(m) =
∑
q̃2ρ E(m q̃1ρ) p̃

2
ρ, E(m) =

∑
S−1(p̃2

ρ)E(m) p̃1
ρ),

(ii) E : M coH →M coH is an isomorphism in MA with inverse E : M coH →M coH ,

where p̃ρ =
∑
p̃1
ρ⊗ p̃2

ρ and q̃ρ =
∑
q̃1ρ ⊗ q̃2ρ are defined in (10.1) and (10.2) respectively.

Proof. (i)

∑

q̃2ρE(m q̃1ρ) =
∑

q̃2ρ [S−1(αm1(q̃
1
ρ)(1)p̃

2
ρ)m0 q̃

1
ρ)(0)p̃

1
ρ

=
∑

q̃2ρS
−1((q̃1ρ)(1)p̃

2
ρ)S

−1(S−1(αm1)m0 q̃
1
ρ)(0)p̃

1
ρ

by (10.6) = E(m).

The other equality is clear.

(ii) For any m ∈M coH ,

E(E(m)) = E(
∑

S−1(αm1)m0)

=
∑

S−1(αS−1(αm1)2m01p̃
2
ρ)S

−1(αm1)1m00 p̃
1
ρ

=
∑

S−1(m01p̃
2
ρ)S

−1(αS−1(αm1)2)S
−1(αm1)1m00 p̃

1
ρ

=
∑

S−1(m01p̃
2
ρ)ε(αm1)S

−1(α)m00 p̃
1
ρ

=
∑

ε(αm1)S
−1(αm01p̃

2
ρ)m00 p̃

1
ρ = ε(m1)E(m0) = E(m)

m∈McoH = m.

102



On the other hand, for any m ∈M coH ,

E(E(m)) = E(
∑

S−1(p̃2
ρ)E(m) p̃1

ρ)

m∈McoH = E(
∑

S−1(p̃2
ρ)mp̃1

ρ)

=
∑

S−1(αS−1(p̃2
ρ)2m1(p̃

1
ρ)(1))S

−1(p̃2
ρ)1m0 (p̃1

ρ)(0)

=
∑

S−1(m1(p̃
1
ρ)(1))ε(p̃

2
ρ)S

−1(α)m0 (p̃1
ρ)(0)

=
∑

ε(p̃2
ρ)S

−1(αm1(p̃
1
ρ)(1))m0 (p̃1

ρ)(0)

=
∑

ε(p̃2
ρ)E(mp̃1

ρ) = E(m)

m∈McoH = m.

For right A-linearity of E we compute

E(m ⊳ a) =
∑

E(E(ma)) =
∑

E(S−1(αm1a(1))m0 a(0))

=
∑

S−1(αS−1(αm1a(1))2m01a(0)(1) p̃
2
ρ)S

−1(αm1a(1))1m00 a(0)(0) p̃
1
ρ

=
∑

S−1(αS−1(m01a(0)(1) p̃
2
ρ)S

−1(αS−1(αm1a(1))2)S
−1(αm1a(1))1m00 a(0)(0) p̃

1
ρ

=
∑

S−1(αS−1(m01a(0)(1) p̃
2
ρ)ε(αm1a(1))S

−1(α)m00 a(0)(0) p̃
1
ρ

=
∑

ε(αm1a(1))(αm01a(0)(1) p̃
2
ρ)m00 a(0)(0) p̃

1
ρ

=
∑

ε(m1)ε(a(1))E(m0 a(0)) = E(ma) = E(m) ⊳ a.

⊔⊓

Similar to (15.3), we show

17.7. Proposition. (Characterization of M coH). For a quasi-Hopf algebra H, a
right H-comodule algebra (A, ρ, φρ) and M ∈ HM

H
A , we have

M coH = {m ∈M |̺M (m) =
∑

S−1(q2L(X̃3
ρ)2g

2)mX̃1
ρ ⊗ S−1(q1L(X̃3

ρ)1g
1)X̃2

ρ}, (17.4)

where qL =
∑
q1L ⊗ q2L ∈ H ⊗ H is given by equation (7.29) and f−1 =

∑
g1 ⊗ g2 is

given by equation (7.25).
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Proof. Let m ∈M coH , i.e. E(m) = m. Then

̺M (m) = ̺M (E(m)) = ̺M (
∑

S−1(αm1)m0)

=
∑

S−1(αm1)1m00 ⊗ S−1(αm1)2m01

by (7.17) =
∑

S−1(f2α2m12g
2)m00 ⊗ S−1(f1α1m11g

1)m01

=
∑

S−1(m12g
2)S−1(f2α2)m00 ⊗ S−1(m11g

1)S−1(f1α1)m01

=
∑

[S−1(m12g
2) ⊗ S−1(m11g

1)] [(S−1 ⊗ S−1) ◦ τ(f∆(α)) (m00 ⊗m01)

by (7.26) =
∑

S−1(m12g
2)S−1(γ2)m00 ⊗ S−1(m11g

1)S−1(γ1)m01

=
∑

S−1(γ2m12g
2)m00 ⊗ S−1(γ1m11g

1)m01

by (7.22) =
∑

S−1(S(X1)αx3X3
2m12g

2)m00 ⊗ S−1(S(x1X2)αx2X3
1m11g

1)m01

=
∑

S−1(αx3(X3m1)2g
2)X1m00 ⊗ S−1(αx2(X3m1)1g

1)x1X2m01

by (14.2) =
∑

S−1(αx3(m12X̃
3
ρ)2g

2)m0 X̃
1
ρ ⊗ S−1(αx2(m12X̃

3
ρ)1g

1)x1m01X̃
2
ρ

=
∑

S−1(αx3m122(X̃
3
ρ)2g

2)m0 X̃
1
ρ ⊗ S−1(αx2m121(X̃

3
ρ)1g

1)x1m11X̃
2
ρ

by (7.2) =
∑

S−1(αm12x
3(X̃3

ρ)2g
2)m0 X̃

1
ρ ⊗ S−1(αm112x

2(X̃3
ρ)1g

1)m111x
1X̃2

ρ

=
∑

S−1(αm12x
3(X̃3

ρ)2g
2)m0 X̃

1
ρ ⊗ S−1(x2(X̃3

ρ)1g
1)S−1(αm112)m111x

1X̃2
ρ

by (7.6) =
∑

S−1(αm12x
3(X̃3

ρ)2g
2)m0 X̃

1
ρ ⊗ S−1(x2(X̃3

ρ)1g
1)ε(m11)S

−1(α)x1X̃2
ρ

=
∑

S−1(αm1x
3(X̃3

ρ)2g
2)m0 X̃

1
ρ ⊗ S−1(αx2(X̃3

ρ)1g
1)x1X̃2

ρ

by (7.29) =
∑

S−1(q2L(X̃3
ρ)2g

2)E(m) X̃1
ρ ⊗ S−1(q1L(X̃3

ρ)1g
1)X̃2

ρ

m∈McoH =
∑

S−1(q2L(X̃3
ρ)2g

2)mX̃1
ρ ⊗ S−1(q1L(X̃3

ρ)1g
1)X̃2

ρ .

Conversely, if we have

̺M (m) =
∑

S−1(q2L(X̃3
ρ)2g

2)mX̃1
ρ ⊗ S−1(q1L(X̃3

ρ)1g
1)X̃2

ρ ,

then

E(m) =
∑

S−1(αm1)m0

=
∑

S−1(αS−1(q1L(X̃3
ρ)1g

1)X̃2
ρ)S

−1(q2L(X̃3
ρ)2g

2)mX̃1
ρ

=
∑

S−1(q2L(X̃3
ρ)2g

2αS−1(g1)S−1(q1L(X̃3
ρ)1)X̃

2
ρ)mX̃1

ρ

=
∑

S−1(q2L(X̃3
ρ)2S

−1(β)S−1(q1L(X̃3
ρ)1)X̃

2
ρ)mX̃1

ρ

=
∑

S−1(q2L(X̃3
ρ)2S

−1(q1L(X̃3
ρ)1β)X̃2

ρ)mX̃1
ρ

=
∑

S−1(q2Lε(X̃
3
ρ)S

−1(β)S−1(q1L(X̃2
ρ)mX̃1

ρ

=
∑

S−1(x3S−1(αx2β)x1)m

by (7.6) = m.

⊔⊓
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The above proposition gives a characterization of coinvariants M coH for two-sided
Hopf modules M ∈ HM

H
A as

M coH = {m ∈M |̺M (m) =
∑

S−1(q2L(X̃3
ρ)2g

2)mX̃1
ρ ⊗ S−1(q1L(X̃3

ρ)1g
1)X̃2

ρ , }

= Ke(̺M − [(S−1(q2L(X̃3
ρ)2g

2) ⊗ S−1(q1L(X̃3
ρ)1g

1)) (−⊗ 1H) (X̃1
ρ ⊗ X̃2

ρ)]

where qL =
∑
q1L ⊗ q2L is given by (7.29) and f =

∑
f1 ⊗ f2 and f−1 =

∑
g1 ⊗ g2 are

the Drinfeld gauge element and its inverse given in equations (7.24) and (7.25) and τ

is the twist map a⊗ b 7→ b⊗ a.

We consider the right A-module structure on M ∈ HM
H
A ,

m ⊳ a :=
∑

S−1(a(1))ma(0), (17.5)

for a ∈ A, and m ∈ M , where ρ(a) =
∑
a(0) ⊗ a(1). If we restrict this A-action to

M coH , it can be considered as a right A-submodule of M and it is straightforward to
see that for any morphism g : M → L in HM

H
A , we have g(M coH) ⊆ LcoH .

In this way, we obtain another coinvariants functor, called BT-coinvariants functor.

(−)coH : HM
H
A −→ MA,

which we will show to be right adjoint to the comparison functor from 16.3.

17.8. Proposition. (The adjoint pair (− ⊗k H, (−)coH) for Bulacu-Torrecillas
coinvariants in HM

H
A). Let H be quasi-Hopf algebra and A a right H-comodule

algebra, N ∈ MA and M ∈ HM
H
A . Then there is a functorial isomorphism

HHomH
A (N ⊗k H,M)

ψN,M
−→ HomA(N,M coH), f 7−→ [n 7→ f((n⊗ 1) q̃ρ)],

with inverse map ψ′
N,M given by

g 7−→ [n⊗ h 7→
∑

hS−1(p̃2
ρ) g(n) p̃1

ρ].

This means that the functors

MA

−⊗kH−→ HM
H
A

(−)coH

−→ MA,

form an adjoint pair with unit and counit

η
N

: N −→ (N ⊗H)coH , n 7→ (n⊗ 1) q̃ρ,

εM : M coH ⊗k H −→M, m⊗ h 7→
∑

hS−1(p̃2
ρ)mp̃1

ρ.

Proof. We show that ψ and ψ′ are inverse to each other. For n ∈ N,h ∈ H and
f ∈ HHomH

A (N ⊗k H,M),

[(ψ′ ◦ ψ)(f)](n⊗ h) =
∑

hS−1(p̃2
ρ)ψ(f)(n) p̃1

ρ

=
∑

hS−1(p̃2
ρ) f((n⊗ 1) q̃ρ) p̃

1
ρ

f is (H,A)-bilinear = f(
∑

hS−1(p̃2
ρ) (n⊗ 1) q̃ρ ρ(p̃

1
ρ))

= f(
∑

(n⊗ h) (1A ⊗ S−1(p̃2
ρ))q̃ρρ(p̃

1
ρ))

by (10.5) = f(n⊗ h).
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Conversely, for n ∈ N and g ∈ HomA(N,M coH),

[(ψ ◦ ψ′)(g)](n) = ψ′(g)((n⊗ 1) q̃ρ) =
∑

q̃2ρS
−1(p̃2

ρ) g(n q̃
1
ρ) p̃

1
ρ

g is right A-linear =
∑

q̃2ρS
−1(p̃2

ρ) (g(n) ⊳ q̃1ρ) p̃
1
ρ

=
∑

q̃2ρS
−1(p̃2

ρ)S
−1((q̃1ρ)(1)) g(n) (q̃1ρ)(0)p̃

1
ρ

by (10.6) = g(n).

⊔⊓

In order to state the Fundamental Theorem for the category HM
H
A in terms of

Bulacu-Torrecillas coinvariants (BT-coinvariants), we first show that the unit map η
N

is an isomorphism. For this, we show that for any N ∈ MA,

(N ⊗H)coH = {n q̃1ρ ⊗ q̃2ρ|n ∈ N}.

For element n⊗ h ∈ (N ⊗H)coH ,

̺N⊗H(n⊗ h) =
∑

S−1(q2L(X̃3
ρ)2g

2) · (n⊗ h) · X̃1
ρ ⊗ S−1(q1L(X̃3

ρ)1g
1)X̃2

ρ

=
∑

n (X̃1
ρ)(0) ⊗ S−1(q2L(X̃3

ρ)2g
2)h(X̃1

ρ)(0) ⊗ S−1(q1L(X̃3
ρ)1g

1)X̃2
ρ .

On the other hand, ̺N⊗H(n⊗ h) =
∑
n X̃1

ρ ⊗ h1X̃
2
ρ ⊗ h2X̃

3
ρ .

Comparing this two values for ̺N⊗H(n⊗ h) and applying id⊗ ε⊗ id on both sides, we
obtain

n⊗ h =
∑

ε(h)(n p̃1
ρ ⊗ q̃2ρ).

This shows that the unit map

η
N

: N −→ (N ⊗H)coH , n 7→ (n⊗ 1) q̃ρ,

is an isomorphism with inverse map n⊗ h 7→ ε(h)n.

17.9. Theorem. (The Fundamental Theorem for HM
H
A using BT-coinvariants).

Let H be a quasi-Hopf algebra, (A, ρ, φρ) a right comodule algebra and M ∈ AM
H
H . Con-

sider M coH ⊗H as an object in HM
H
A with the structures

h′ · (n⊗ h) · a =
∑

n ⊳ a(0) ⊗ h′ha(1), ̺N⊗H(n⊗ h) =
∑

n ⊳ X̃1
ρ ⊗ h1X̃

2
ρ ⊗ h2X̃

3
ρ ,

for h, h′ ∈ H, a ∈ A and n ∈M coH . Then the map

εM : M coH ⊗H −→M, εM (n⊗ h) =
∑

hS−1(p̃2
ρ)n p

1
ρ,

is an isomorphism in HM
H
A with inverse map ε′M given by

ε′M (m) =
∑

E(m0) ⊗m1,

where p̃ρ =
∑
p̃1
ρ ⊗ p̃2

ρ is the element defined in equation (10.1).
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Proof. By 17.6, we have the isomorphism E : M coH →M coH in MA and tensoring
it with H, we obtain

E ⊗ idH : M coH ⊗H −→M coH ⊗H,

as an isomorphism in HM
H
A . By the Hausser-Nill version of the Fundamental Theorem

for HM
H
A , there is an isomorphism

εM : M coH ⊗H −→M, m⊗ h 7→ hm.

in HM
H
A . Combining these two isomorphisms, we have the isomorphism

εM = εM ◦ (E ⊗ id) : M coH ⊗H −→M coH ⊗H −→M,

m⊗ h 7→ E(m) ⊗ h 7→
∑

hE(m) =
∑

hS−1(αm1p̃
2
ρ)m0 p̃

1
ρ

=
∑

hS−1(p̃2
ρ)S

−1(αm1)m0 p̃
1
ρ =

∑

hS−1(p̃2
ρ)E(m) p̃1

ρ

m∈McoH =
∑

hS−1(p̃2
ρ)mp̃1

ρ

The inverse map ε′M can be computed as

ε′M (m) = (E ⊗ id)(
∑

E(m0) ⊗m1) =
∑

E(E(m0)) ⊗m1

=
∑

E(S−1(αm01p̃
2
ρ)m00 p̃

1
ρ) ⊗m1

=
∑

ε(S−1(αm01p̃
2
ρ))E(m00 p̃

1
ρ) ⊗m1

=
∑

ε(α)ε(m01)ε(p̃
2
ρ)E(m00 p̃

1
ρ) ⊗m1 =

∑

E(m0) ⊗m1.

⊔⊓

17.10. Comparing the coinvariants for HM
H
A with Hom-functor. As seen in

16.3, we have the comparison functor −⊗k H : MA → HM
H
A .

We have seen in 16.8 that the functor HHomH
A (A⊗H,−) is right adjoint to the com-

parison functor and in 15.11 we observed that different definitions of coinvariants for
M ∈ AM

H
H lead to three different right adjoints for the comparison functor

−⊗k H : MA −→HM
H
A , N 7→ (N ⊗H, ̺N⊗H , ̺

N⊗H).

They are Hom-functor HHomH
A (A ⊗ H,−) : HM

H
A → MA, the HN-type coinvariants

functor (−)coH :HM
H
A →MA and BT-coinvariant functor (−)coH :HM

H
A →MA. Com-

paring these right adjoints, we can find a functorial isomorphisms between functors

HHomH
A (A⊗H,−), (−)coH and (−)coH :HM

H
A −→MA

We obtain this isomorphisms explicitly as follows:

17.11. Theorem. (M coH and M coH for HM
H
A as Hom-Functor). Let H be a

quasi-Hopf algebra, (A, ρ, φρ) a right H-comodule algebra and M a right two-sided
(H,A)-Hopf module. Then
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(1) There is a functorial isomorphism in MA

ψ̄M : HHomH
A (A⊗k H,M) −→M coH , f 7−→ f(1A ⊗ 1H),

with inverse map ψ̄M given by

m 7−→ [a⊗ h 7→
∑

hE(ma)],

for a ∈ A, h ∈ H, m ∈M and f ∈ HHomH
A (A⊗k H,M).

(2) There is a functorial isomorphism in MA

θ̄M : HHomH
A (A⊗k H,M) −→M coH , f 7−→ f(q̃ρ),

with inverse map θ̄′M given by

m 7−→ {a⊗ h 7→
∑

hS−1(p̃2
ρ)E(ma) p̃1

ρ = hE(ma)},

for a ∈ A, h ∈ H, m ∈M and f ∈ HHomH
A (A⊗k H,M).

Proof. (1) If we substitute N = A in the isomorphism in 17.2, we obtain for
M ∈ HM

H
A the isomorphisms

ψ̄M : HHomH
A (A⊗k H,M)

ψA,M
−→ HomA(A,M coH) ∼= M coH ,

f 7−→ [a 7→ f(a⊗ 1H)] 7→ f(1A ⊗ 1H),

for a ∈ A. The inverse map ψ̄′
M is obtained as the composition

M coH ∼= HomA(A,M coH)
ψ′
A,M
−→ HHomH

A (A⊗k H,M),

m 7→ [m 7→ m ◭ a = E(ma)] 7→ [a⊗ h 7→ hE(ma),

for a ∈ A, h ∈ H and m ∈ M coH . Here, ψA,M is the isomorphism given in 17.2 (for
N = A) and ψ′

A,M is its inverse.

Considering the right A-action ◭ on M coH , we must show that ψ̄M is right A-linear:
For a ∈ A and f ∈HHomH

A (A⊗H,M),

ψ̄M (f) ◭ a = E(f(1 ⊗ 1) a) =
∑

E(f(a(0) ⊗ a(1)))

=
∑

S−1(αf(a(0) ⊗ a(1))1p̃
2
ρ) f(a(0) ⊗ a(1))0 p̃

1
ρ

f is H-colinear =
∑

S−1(αa(1)2X̃
3
ρ p̃

2
ρ) f(a(0)X̃

1
ρ ⊗ a(1)1X̃

2
ρ) p̃

1
ρ

f is (H,A)-bilinear =
∑

f(a(0)X̃
1
ρ(p̃

1
ρ)(0) ⊗ S−1(αa(1)2X̃

3
ρ p̃

2
ρ)a(1)1X̃

2
ρ(p̃

1
ρ)(1))

by (7.6) = f(
∑

a(0)X̃
1
ρ(p̃

1
ρ)(0) ⊗ S−1(p̃2

ρ)ε(a(1))S
−1(αX̃3

ρ)X̃
2
ρ(p̃

1
ρ)(1))

= f(
∑

aq̃1ρ(p̃
1
ρ)(0) ⊗ S−1(p̃2

ρ)q̃
2
ρ(p̃

1
ρ)(1))

by (10.6) = f(a⊗ 1H) = (f · a)(1A ⊗ 1H) = ψ̄M (f · a).

(2) If we set N = A in the isomorphism in 17.8, we obtain the isomorphisms

θ̄M : HHomH
A (A⊗k H,M)

ψA,M
−→ HomA(A,M coH) ∼= M coH ,
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f 7−→ [a 7→ E(f(a⊗ 1)) = f((a⊗ 1) q̃ρ)] 7→ E(f((1A ⊗ 1H) q̃ρ)) = f(q̃ρ),

for all a ∈ A. The inverse map θ′ is obtained as the composition

θ̄′M : M coH ∼= HomA(A,M coH)
ψ′
A,M
−→ HHomH

A (A⊗k H,M),

m 7−→ [a 7→ m ⊳ a = E(ma)] 7−→ {a⊗ h 7→
∑

hS−1(p̃2
ρ)E(ma) p̃1

ρ)

= hE(ma)},

for a ∈ A, h ∈ H and m ∈ M coH . Here, ψA,M is the isomorphism given in 17.8 (for
N = A) and ψ′

A,M is its inverse.

θ̄M is right A-linear. For a ∈ A and f ∈HHomH
A (A⊗H,M),

θ̄M (f) ◭ a =
∑

S−1(a(1)) θ̄(f) a(0) =
∑

S−1(a(1)) f(q̃ρ) a(0)

f is (H,A)-bilinear =
∑

f(S−1(a(1)) · (q̃ρ) · a(0))

=
∑

f(q̃1a(0)(0) ⊗ S−1(a(1))q̃
2
ρa(0)(1))

= f(
∑

(1 ⊗ S−1(a(1))) q̃ρ ρ(a(0)))

by (10.4) = f((a⊗ 1H) q̃ρ) =
∑

f(aq̃1ρ ⊗ q̃2ρ)

= (f · a)(q̃ρ) = θ̄M (f · a).

⊔⊓

Remark. Part (2) can be proved also by composing the isomorphism

HHomH
A (A⊗k H,M)

ψ
−→M coH , f 7−→ f(1 ⊗ 1),

in part (1) with the isomorphism E : M coH →M coH . We obtain the isomorphism

HHomH
A (A⊗k H,M)

ψ
−→M coH E

−→M coH ,

given by

f 7−→ f(1 ⊗ 1) 7−→ E(f(1 ⊗ 1))

=
∑

S−1(αf(1 ⊗ 1)1) f(1 ⊗ 1)0

by H-colinearity of f =
∑

S−1(αX̃3
ρ) f(X̃1

ρ ⊗ X̃2
ρ)

by H-linearity of f =
∑

f(X̃1
ρ ⊗ S−1(αX̃3

ρ)X̃
2
ρ) = f(q̃).

The inverse map can be computed as

m
θ′
7−→ {a⊗ h 7→ hE(E(m)) a =

∑

hE(a(1) [E(m) ◭ a(0)])

=
∑

h ε(a(1))E(E(m) ◭ a(0))

= hE(E(m) ◭ a)

= hE(E(ma)) = hE(ma)},

for a ∈ A, h ∈ H and m ∈M coH .
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