Crystal Engineering von Ammonioalkanoxochloromolybdaten

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Sara Bajorat

aus Tönisvorst

Juni 2008

Aus dem Institut für Anorganische Chemie und Strukturchemie der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. W. Frank

Koreferent: Prof. Dr. C. Ganter

Tag der mündlichen Prüfung:09.07.2008

Die experimentellen Untersuchungen zu der vorliegenden Arbeit wurden in der Zeit von Januar 2006 bis Mai 2008 am Institut für Anorganische Chemie und Strukturchemie II der Heinrich-Heine-Universität Düsseldorf unter Leitung von Prof. Dr. Frank durchgeführt.

Ich danke Herrn Prof. Dr. Frank für die interessante Aufgabenstellung und den mir gewährten Freiraum bei der Erstellung dieser Arbeit.

Inhaltsverzeichnis

1.	Einleitung	1
1.1	Supramolekulare Chemie und Crystal Engineering	1
1.2	Wasserstoffbrückenbindungen	3
1.3	Molybdänhalogenide	5
1.4	Oligoammonioalkane in anorganischen-organischen Hybridmaterialien	6
2.	Problemstellung	8
3.	Eigene Ergebnisse	9
3.1	Synthese und Kristallstruktur von Tetrakis(1,3-diammoniopropan)-	
	bis[aquatetrachlorooxomolybdat(V)]-hexachlorid,	
	[H ₃ N(CH ₂) ₃ NH ₃] ₄ [H ₂ OMo(O)Cl ₄] ₂ Cl ₆ (1)	10
3.1.1	Synthese und Kristallstrukturbestimmung von 1	10
3.1.2	Diskussion der Kristallstruktur von 1	13
3.2	Synthese und Kristallstruktur von 1,4-Diammoniobutan-	
	aquatetrachlorooxomolybdat(V)-chlorid-monohydrat,	
	$[H_3N(CH_2)_4NH_3][H_2OMo(O)Cl_4]Cl^+H_2O(2)$	19
3.2.1	Synthese und Kristallstrukturbestimmung von 2	19
3.2.2	Diskussion der Kristallstruktur von 2	21
3.3	Synthese und Kristallstruktur von 1,6-Diammoniohexan-	
	aquatetrachlorooxomolybdat(V)-chlorid,	
	[H ₃ N(CH ₂) ₆ NH ₃][H ₂ OMo(O)Cl ₄]Cl (3)	26
3.3.1	Synthese und Kristallstrukturbestimmung von 3	26
3.3.2	Diskussion der Kristallstruktur von 3	28
3.4	Synthese und Kristallstruktur von Tris(1,7-diammonioheptan)-	
	bis[pentachlorooxomolybdat(V)]-dichlorid,	
	$[H_3N(CH_2)_7NH_3]_3[Mo(O)Cl_5]_2Cl_2$ (4)	32
3.4.1	Synthese und Kristallstrukturbestimmung von 4	32
3.4.2	Diskussion der Kristallstruktur von 4	35
3.5	Synthese und Kristallstruktur von Tris(1,8-diammoniooktan)-	
	bis[pentachlorooxomolybdat(V)]-dichlorid,	
	$[H_3N(CH_2)_8NH_3]_3[Mo(O)Cl_5]_2Cl_2$ (5)	39
3.5.1	Darstellung und Kristallstrukturbestimmung von 5	39
3.5.2	Diskussion der Kristallstruktur von 5	41

3.6	Synthese und Kristallstruktur von Tris(1,9-diammoniononan)-	
	bis[aquatetrachlorooxomolybdat(V)]-tetrachlorid,	
	$[H_3N(CH_2)_9NH_3]_3[H_2OMo(O)Cl_4]_2Cl_4$ (6)	45
3.6.1	Darstellung und Kristallstrukturbestimmung von 6	45
3.6.2	Diskussion der Kristallstruktur von 6	47
3.7	Synthese und Kristallstruktur von Piperazinium-pentachlorooxomolybdat(V),	
	$[H_2N(C_2H_4)_2NH_2][Mo(O)Cl_5]$ (7)	53
3.7.1	Darstellung und Kristallstrukturbestimmung von 7	53
3.7.2	Diskussion der Kristallstruktur von 7	55
3.8	Synthese und Kristallstruktur von Bis(1-(2-ammonioethyl)-piperazinium)-	
	aquatetrachlorooxomolybdat(V)-pentachlorid,	
	[(H ₃ NC ₂ H ₄)HN(C ₂ H ₄) ₂ NH ₂] ₂ [H ₂ OMo(O)Cl ₄]Cl ₅ (8)	58
3.8.1	Darstellung und Kristallstrukturbestimmung von 8	58
3.8.2	Diskussion der Kristallstruktur von 8	61
3.9	Synthese und Kristallstruktur von Triethylentetraammonium-	
	aquatetrachlorooxomolybdat(V)-trichlorid-monohydrat,	
	[H ₃ N(CH ₂) ₂ NH ₂ (CH ₂) ₂ NH ₂ (CH ₂) ₂ NH ₂][H ₂ OMo(O)Cl ₄]Cl ₃ ⁺ H ₂ O (9)	66
3.9.1	Synthese und Kristallstrukturbestimmung von 9	66
3.9.2	Diskussion der Kristallstruktur von 9	69
3.10	Synthese und Kristallstruktur von Hexakis(bis-(3-ammonio-propyl)-ammonio)-	
	tris[pentachlorooxomolybdat(V)]-chlorid,	
	[H ₃ N(CH ₂) ₃ NH ₂ (CH ₂) ₃ NH ₃] ₆ [Mo(O)Cl ₅] ₃ Cl ₁₂ (10)	74
3.10.1	Synthese und Kristallstrukturbestimmung von 10	74
3.10.2	Diskussion der Kristallstruktur von 10	76
4.	Vergleichende Betrachtung	80
5.	Experimenteller Teil	84
5.1	Allgemeine Arbeitstechniken	84
5.2	Gerätebeschreibungen	84
5.2.1	Einkristallstrukturanalysen	84
5.2.2	Elementaranalysen	85
5.2.3	Spektroskopische Untersuchungen	85
5.2.4	Thermische Analysen	85
5.3	Ausgangsverbindungen	85
5.4	Synthesevorschriften	86

5.4.1	Herstellung von [H ₃ N(CH ₂) ₃ NH ₃] ₄ [H ₂ OMo(O)Cl ₄] ₂ Cl ₆	86
5.4.2	Herstellung von [H ₃ N(CH ₂) ₄ NH ₃][H ₂ OMo(O)Cl ₄]Cl ⁺ H ₂ O	87
5.4.3	Herstellung von [H ₃ N(CH ₂) ₆ NH ₃][H ₂ OMo(O)Cl ₄]Cl	88
5.4.4	Herstellung von [H ₃ N(CH ₂) ₇ NH ₃] ₃ [Mo(O)Cl ₅]2Cl ₂	89
5.4.5	Herstellung von [H ₃ N(CH ₂) ₈ NH ₃] ₃ [Mo(O)Cl ₅] ₂ Cl ₂	90
5.4.6	Herstellung von [H ₃ N(CH ₂) ₉ NH ₃] ₃ [H ₂ OMo(O)Cl ₄] ₂ Cl ₄	91
5.4.7	Herstellung von [H ₂ N(C ₂ H ₄) ₂ NH ₂][Mo(O)Cl ₅]	92
5.4.8	Herstellung von [(H ₃ NC ₂ H ₄)HN(C ₂ H ₄) ₂ NH ₂] ₂ [H ₂ OMo(O)Cl ₄]Cl ₅	93
5.4.9	$Herstellung \ von \ [H_3N(CH_2)_2NH_2(CH_2)_2NH_2(CH_2)_2NH_2] [H_2OMo(O)Cl_4]Cl_3 \ \ H_2OMo(O)Cl_4]Cl_3 \ \ H_2OMo(O)Cl_4 \ $	94
5.4.10	Herstellung von [H ₃ N(CH ₂) ₃ NH ₂ (CH ₂) ₃ NH ₃] ₆ [Mo(O)Cl ₅] ₃ Cl ₁₂	95
6.	Zusammenfassung	97
7.	Literaturverzeichnis	99
8.	Anhang	102

1. Einleitung

1.1 Supramolekulare Chemie und Crystal Engineering

In der Supramolekularen Chemie steht die Chemie der intermolekularen Bindungen im Mittelpunkt. Strukturen und Funktionen einzelner Atome und Bindungen werden zu Gunsten der Betrachtung von sekundären Wechselwirkungen untergeordnet.^[1] Das, was für Moleküle Atome und kovalente Bindungen sind, sind für supramolekulare Verbände Moleküle und zwischenmolekulare Kräfte. Der Terminus "Supramolekulare Chemie" wurde 1978 von J.-M. Lehn eingeführt.^[2] Die Tatsache, dass sich die Supramolekulare Chemie nicht wie die molekulare Chemie mit Atomen und deren intramolekularen, kovalenten Bindungen, sondern mit übergeordneten Systemen, die durch intermolekulare, nicht-kovalente Verknüpfungen einzelner chemischer Spezies entstehen, beschäftigt, bedeutet nicht, dass Strukturen und charakteristische Eigenschaften von Supramolekülen gleich der Summe der Eigenschaften der sie aufbauenden molekularen und ionischen Komponenten sind.^[3] Vielmehr können bei der supramolekularen Verknüpfung neuartige strukturelle Charakteristika entstehen, die unter anderem die gezielte Darstellung ungewöhnlicher Spezies ("Species Engineering") ermöglichen. Ziel der Supramolekularen Chemie ist die Suche nach Zusammenhängen, um systematische Aussagen über komplexe chemische Systeme auf der Basis zwischenmolekularer, nichtbindender Kräfte zu treffen. Braga entwirft ein Modell supramolekularer Systeme, dessen Eigenschaften auf der Periodizität eines Kristalls und gleichzeitig auf den nichtbindenden Wechselwirkungen eines supramolekularen Moleküls basieren.^[4] Typische supramolekulare Systeme sind Einschlussverbindungen (Klathrate), die wie eine Wirt-Gast-Verbindung aufgebaut sind.^[5] Dieses Forschungsgebiet hat seine Wurzeln in der Organischen Chemie, von der die Synthesemethoden stammen, in der Komplexchemie, von der die Methoden zum Studium der Metall-Ionen/Ligand-Wechselwirkung übernommen werden und in der Physikalischen Chemie, die das Rüstzeug liefert für experimentelle und theoretische Untersuchungen von Wechselwirkungen im Allgemeinen.^[6]

Durch Abstraktion gelingt es, komplizierte strukturelle Zusammenhänge supramolekularer Strukturen verständlicher zu machen und grundlegende Prinzipien der Packung im Festkörper systematisch einzuordnen. Der 1971 von G. M. J. Schmidt eingeführte Begriff des "Crystal Engineering"^[7] beschreibt das Verstehen intermolekularer Wechselbeziehungen und die Analyse der auf diesen Wechselbeziehungen basierenden Packungsarten mit dem Ziel, eine Synthese von definierten Festkörperstrukturen nach einer Art Baukastenprinzip zu ermöglichen, in dem physikalische und chemische Eigenschaften von vornherein definiert sind. Sinn und Zweck von Crystal Engineering ist die komplette Kontrolle der Eigenschaften des Kristalls durch das gezielte Einsetzen bestimmter "vormontierter" Blockeinheiten, um eine "Superstruktur" zu konstruieren.^[8] Im Vordergrund steht das Bestreben, bestimmte Muster wie zum Beispiel Bänder, Schichten, Kanäle, Röhren und Hohlräume herzustellen, um bestimmte Funktionalitäten (Template für chemische Umwandlungen: z.B. Katalysatoren) oder physikalische Eigenschaften (z.B. Protonen- oder Elektronenleitfähigkeit) zu erreichen. die Dabei ist primäre Methode zur Charakterisierung eines Kristalls die Kristallstrukturanalyse, da so die Lage der einzelnen Atome im Raum und darüber hinaus intermolekulare Verknüpfungsmuster erkannt werden können. Die Eigenschaften eines kristallinen Materials sind das Ergebnis der molekularen Ordnung im Kristallgitter, die von den intermolekularen Wechselwirkungen bestimmt ist.^[9] So gelangt man zu dem Begriff "Supramolekulare Synthone", der 1967 zunächst von Corey^[10] für die organische, präparative Chemie eingeführt wurde und "als strukturelle Einheit innerhalb eines Moleküls, die in Beziehung zu möglichen Syntheseschritten stehen" definiert wurde und dann von Desiraju^[11] zu Struktureinheiten in Supramolekülen erweitert wurde, die über bekannte oder entworfene Syntheseschritte intermolekulare Wechselwirkungen durch gebildet und/oder zusammengesetzt werden können. Ziel des Konzepts "Crystal Engineering" ist es, Synthone zu produzieren, die derart robust sind, dass sie vorhersehbar in unterschiedliche Netzstrukturen eingebaut werden können.

Durch das Erkennen der Prinzipien der molekularen Selbstorganisation können gezielt molekulare und/oder ionische Bausteine ausgewählt werden, die durch ihre strukturellen Eigenheiten zu einer gewünschten Funktionalität des kristallinen Materials führen. Eine gute Möglichkeit zum Erkennen und Vergleichen von Wechselwirkungsmustern und supramolekularen Synthonen bietet die Cambridge Structural Database (CSD), in der über 250 000 Kristallstrukturen organischer und metallorganischer Verbindungen abgelegt sind.^[12]

Das perfekte Supramolekül ist der Kristall einer Verbindung^[11], da hier molekulare Selbstorganisation in "unglaublicher Präzision"^[13] zu beobachten ist und der supramolekulare Verband seine höchste Ordnung aufweist. Damit ist die Kristallisation eine supramolekulare Reaktion. Ausgangspunkt dieses Vorgangs ist eine von Entropie bestimmte Lösung und der Endpunkt der Kristall, welcher den energetisch günstigsten Zustand darstellt. Dazwischen

liegt der Zustand des Kristallkeims, welcher als höchster energetischer Punkt angesehen wird.^[14] Es lagern sich wenige Kristallbausteine zu einer dreidimensional periodischen Anordnung - dem Keim - zusammen, der ebene Begrenzungsflächen besitzt. Die Kantenlänge eines Keims ist nur wenige Gittertranslationen groß. Plausibel erscheint die Vorstellung, dass die Keime ein Cluster, bestehend aus Solvens und Solvat, darstellen. Der Punkt der Keimbildung ist zu vergleichen mit einem Prozess der Bildung von kovalenten Bindungen, worauf unmittelbar der Ausschluss des Lösungsmittels folgt. Das System "Kristallisation", das zunächst noch ein ausgewogenes Gleichgewicht zwischen Lösung und Kristallisationskeim darstellt, stellt sich nach einer bestimmten Zeit zu Gunsten des Produktes Kristall ein. Das Weiterwachsen des Keims zum Makrokristall erfolgt über Anlagerung weiterer Bausteine entsprechend der dreidimensionalen Periodizität. Die Kristallstruktur einer Verbindung ist kein Einzelstück, aber sie ist abhängig von den Kristallisationsbedingungen.^[13]

1.2 Wasserstoffbrückenbindungen

Die intermolekularen Wechselwirkungen, die Grundbestandteile des Crystal Engineerings sind und eine entscheidende Rolle in der Supermolekularen Chemie spielen^[15, 16], sollen näher betrachtet werden. Die Wechselwirkungen, die zu einer supramolekularen Assoziation führen, können unterschiedlicher Natur sein (Anordnung nach abnehmenden Gitterenthalpiebeträgen): Coulombwechselwirkungen, Wasserstoffbrückenbindungen, π - und σ -Ladungstransfer oder van-der-Waals-Kräfte. Diese Wechselwirkungen unterscheiden sich in ihrer Stärke (und somit in ihrer resultierenden Bindungslänge) und in ihrer Gerichtetheit. Die Coulombwechselwirkungen und die van-der-Waals-Kräfte sind ungerichtet.

Eine besondere funktionelle Rolle nehmen hier die Wasserstoffbrückenbindungen ein, da sie eine definierte Ausrichtung im Raum annehmen können und mit durchschnittlichen Bindungsenergien von ca. 10-160 kJ/mol^[17] energetisch zwischen den van-der-Waals-Kräften (< 8kJ/mol) und kovalenten Bindungen (140-1080 kJ/mol) liegen und somit als relativ stark angesehen werden können.

In einer Wasserstoffbrückenbindung, allgemein als D-H^{\dots}A-Wechselwirkungen bezeichnet, werden die Atome, an denen die in die Brückenbindung eingehenden Wasserstoffatome kovalent gebunden (D) sind, als Protonendonoren bezeichnet. Die Akzeptoren (A), die auf Grund ihrer hohen Elektronegativitäten eine negative Teilladung (δ^{-}) besitzen, gehen über Wasserstoffatome Brückenbindungen zu den Protonendonoren ein. Man nennt sie ebenfalls Protonenakzeptoren. Bei einer Wasserstoffbrückenbindung, die ein Donor mit H-Atom enthält und einen Akzeptor mit freiem Elektronenpaar, handelt es sich um eine vier-Elektronen-drei-Zentren-Bindung.

Aufgrund der unterschiedlichen Elektronegativitäten von Protonenakzeptoren sowie der Azidität der wasserstoffenthaltenden Verbindungen können sich Wasserstoffbrückenbindungen unterschiedlicher Stärke ausbilden. Es sind Wasserstoffbrücken bekannt, die so stark sind, dass sie wie kovalente Bindungen erscheinen, während andere so schwach sind, dass man sie kaum von der van-der-Waals-Wechselwirkung unterscheiden kann.^[17] Im Allgemeinen gibt der Abstand zwischen dem Wasserstoffbrückenbindungsdonoratom und dem -akzeptoratom Aufschluss über die Existenz und Stärke einer Wasserstoffbrückenbindung.

Eine Klassifizierung der intermolekularen Wechselwirkungen ist am sinnvollsten nach den Kriterien der Abstands- und Richtungsabhängigkeit durchzuführen. Jeffrey^[18] nahm eine Einteilung in starke, mäßig starke und schwache Wasserstoffbrückenbindungen vor, wobei die angegebenen Zahlenwerte immer nur als Richtwerte zu verstehen sind:

Parameter	starke	mäßig starke	schwache
	H-Brücke	H-Brücke	H-Brücke
Wechselwirkungstyp	stark	hauptsächlich	elektrostatisch/
	kovalent	elektrostatisch	dispersiv
Bindungslängen [Å]			
H A	1.2-1.5	1.5-2.2	> 2.2
Streckung von D-H	0.08-0.25	0.02-0.008	< 0.02
X-H gegenüber H A	X-H \approx H A	$X-H < H^{}A$	$X-H > H^{\dots}A$
X A	2.2-2.5	2.5-3.2	>3.2
Richtungspräferenz	stark	mäßig stark	schwach

Das Hauptstrukturmerkmal, in dem sich die Wasserstoffbrücke von der van-der-Waals-Wechselwirkung unterscheidet, ist die Richtungspräferenz. Der Grad der Richtungspräferenz hängt von der Polarität des Donors ab. Die hohe Polarität der Metall-Halogen-Bindung bewirkt, dass eine Wasserstoffbrückenbindung, die von einem Chloroliganden ausgeht, gerichtet ist.^[19] Berechnungen Coppens sind zu entnehmen, dass eine Verminderung der Ladung an dem an einer Wasserstoffbrückenbindung beteiligten Wasserstoffatom mit einer Verstärkung der Ladung in der kovalenten Bindung zu diesem Wasserstoffatom einhergeht.^[20] In der vorliegenden Arbeit bestimmen elektrostatisch unterstützte Wasserstoffbrückenbindungen zwischen Ammoniogruppen und Chloroliganden der Oxochloromolybdate bzw. "freien" kokristallisierten Chloridionen die Struktur der Festkörper. Dabei kann man zwei verschiedenen Typen von Wasserstoffbrücken ausmachen: Zum einen die Wasserstoffbrücke mit nur einem Akzeptor und zum anderen die gegabelte Wasserstoffbrücke, in der ein Donor zwei Akzeptoren bindet.

Die experimentelle Identifikation der Wasserstoffbrücke im Festkörper gelingt neben der Kristallstrukturbestimmung mit der Infrarot-Spektroskopie, da die Bildung einer Wasserstoffbrücke die Eigenschwingungsmoden der beteiligten Moleküle beeinflusst.^[21]

Die erste Methode zur deskriptiven Beschreibung von Wasserstoffbrücken-Motiven 1954^[22], Wells indem die räumliche entwickelte er Struktur von Wasserstoffbrückenbindungs-Netzwerken in organischen und anorganischen Feststoffen wie folgt darstellte: Moleküle waren wie Punkte und die Wasserstoffbrückenbindungen wie Linien, die aus den Punkten entspringen. Kuleshova und Zorky entwickelten 1980 diesen Denkansatz weiter und stellten systematische Zeichen für Wasserstoffbrückenmuster vor.^[23] Detaillierte theoretische Zeichen wurden schlussendlich von Etter entwickelt und eingeführt.^[24]

1.3 Molybdänhalogenide

Molybdän gehört zur Chromgruppe des Periodensystems und ist infolge von Passivierung ein an Luft sehr beständiges Metall. In Verbindungen tritt Molybdän in den Oxidationszahlen -II bis +VI auf, wobei die wichtigste und beständigste Verbindung die des Molybdäns(VI) ist. Das Molybdän, das Zentralatom der komplexen Anionen in den in dieser Arbeit beschriebenen Festkörperstrukturen ist, tritt stets in der Oxidationszahl +V auf. Aufgrund der d¹-Konfiguration von Mo^V liegen paramagnetische, oktaedrische Komplexe mit t¹_{2g}-Konfiguration vor. Diese Komplexe sind überaus hydrolyseempfindlich und die Oxophilie von Mo^V zeigt sich in der Neigung des MoCl₅ durch Oxidabstraktion aus geeigneten sauerstoffhaltigen Verbindungen grüne Oxomolybdän(V)-verbindungen zu bilden.

Auch aus wässriger Lösung erhält man Oxomolybdat(V)-verbindungen, darunter monomere Spezies wie $[MoOX_5]^{2-}$ (X = Cl, Br, NCS), aber auch dimere, oxoverbrückte Komplexe. Während die monomeren Verbindungen paramagnetisch sind und magnetische Momente aufweisen, die einem ungepaarten Elektron entsprechen, sind die zweikernigen Verbindungen diamagnetisch oder höchstens schwach paramagnetisch, was auf eine merkliche Metall-Metall-Wechselwirkung schließen lässt, die entweder auf direktem Wege oder über das brückenbildende Sauerstoffatom zustande kommt.^[25]

Die in dieser Arbeit beschriebenen Reaktionen finden alle in Salzsäure statt. Je nach Konzentration der Salzsäure liegen unterschiedliche Molybdänkomplexe in der Lösung vor, was an unterschiedlichen Farben der Lösung festzumachen ist. Das Farbenspektrum beginnt bei smaragd-grün für eine Lösung aus 10 M HCl und reicht über dunkel braun in 6 M Salzsäure bis zu gelb in 2 M HCl.^[26]

In der vorliegenden Arbeit tritt das Oxochloromolybdat als $[MoOCl_5]^{2^-}$ und $[(H_2O)MoOCl_4]^-$ Anion auf. Diese beiden Anionen liegen in konzentrierter Salzsäure stets nebeneinander vor^[27] und stellen im Hydrolyseweg des Hexachloromolybdats zu den dimeren Spezies Zwischenstufen dar. In Abhängigkeit vom eingesetzten Kation werden aus der Lösung Verbindungen eines dieser Anionen erhalten.

Crystal Engineering, mit dem Ziel Aquatetrachlorooxomolybdat(V)-Anionen mittels elektrostatisch unterstützter Wasserstoffbrückenbindungen mit Diammonioalkan-Kationen zu kombinieren, resultiert in der Bildung von Festkörpern mit definierten Strukturen. In der Vergangenheit wurden Salze mit Aquatetrachlorooxomolybdat(V)-Anionen sporadisch untersucht^[28-32], jedoch ist nur eine Verbindung bekannt^[33], die bestehend aus [H₂OMo(O)Cl₄]⁻ und protonierten organischen Aminen der Klasse der anorganisch-organischen Hybridmaterialien zugeordnet werden kann.

1.4 Oligoammonioalkane in anorganischen-organischen Hybridmaterialien

Amine sind organische Verbindungen, die sich vom Ammoniak ableiten lassen, indem eines oder mehrere der drei H-Atome durch Organylreste ersetzt werden. Dabei unterteilt man je nach Substitutionsgrad in primäre, sekundäre und tertiäre Amine. Amine verhalten sich in wässriger Lösung basisch. Wird die Aminogruppe am einsamen Elektronenpaar protoniert, gelangt man zu der Ammoniogruppe, die ein zentrales Element der Wasserstoffbrückenchemie dieser Arbeit darstellt.

Allgemein treten Oxochloromolybdate mit stickstoffhaltigen organischen Kationen in der Literatur erst seit 2001 auf.^[33-35] Verbindungen von Ammonioalkanen mit speziell dem Oxopentachloromolybdat-Anion sind noch nicht bekannt.

Durch die Synthese und strukturelle Charakterisierung von Oxochloromolybdaten mit Ammonioalkanen als Kationen können Ideen des Crystal Engineerings umgesetzt werden. Diese resultierenden Verbindungen können als anorganisch-organisches Hybridmaterial angesehen werden, da sie die Grundvorrausetzung erfüllen, aus organischen und anorganischen Molekülen aufgebaut zu sein. Ob bei der molekularen Selbstorganisation im Festkörper eine strikte Trennung in "organische" und "anorganische" Bereiche vorliegt, bleibt bei jeder Verbindung zu überprüfen.

Aus der Sicht des Crystal Engineerings stellen gerade die α , ω -Diammonioalkan-Kationen flexible und "intelligente" Bausteine dar, weil ihre variable Konformation es ihnen ermöglicht, Kavitäten auszubilden und Gastionen/-moleküle (Cl⁻ oder H₂O) in das Kristallgitter einzubauen.

Aber auch andere kettenförmige Ammonioalkan-Ionen oder cyclische Azoniaalkan-Ionen können interessante Bausteine in Verbindung mit Oxochloromolybdaten sein. Die Besonderheit ist bei diesen Spezies, dass sie nicht wie die α , ω -Diammonioalkan-Kationen regelmäßig drei Wasserstoffbrückenbindung pro Ammoniogruppe ausbilden, sondern die Ammoniumgruppen entsprechend ihrer Fähigkeit über Wasserstoffatome Wasserstoffbrückenbindungen auszubilden, in eine Prioritätenliste eingeteilt werden können. Ein weiterer interessanter Aspekt ist die Symmetrie, die die organischen Ammoniumkationen selbst aufweisen und wie sich diese Symmetrie auf die Symmetrie im Festkörper auswirkt bzw. in wie weit die Kristallstruktur von der Symmetrie der Kationen bestimmt wird.

2. Problemstellung

Im Zuge dieser Arbeit sollen Mehrkomponentenverbindungen, die aus der Substanzklasse der Oxochloromolybdate(V) und aus der Substanzklasse der Organylammonium-Salze generiert werden können, hergestellt und ihre Strukturchemie anhand von Einkristall-Beugungsexperimenten charakterisiert werden. Besonderes Augenmerk liegt hier auf den sekundären Wechselwirkungen und dem daraus resultierenden supramolekularen Verband.

Es soll weiterhin überprüft werden, in wie weit der Übergang von homoleptischen Hexachlorometallat-Ionen zu heteroleptischen Spezies als Bausteine für Hybridmaterialien mit einem Funktionalitätsgewinn im Rahmen des Crystal Engineerings verbunden ist. Verglichen mit Hexachlorometallaten werden die im Rahmen dieser Forschungsarbeit synthetisierten Komplexe in zwei Schritten durch Ligandensubstitution gestört: Erstens durch den Einbau eines Oxoliganden und in einer zweiten Stufe durch Substitution eines weiteren Chloroliganden durch einen Aqualiganden, d. h. es soll untersucht werden, ob sich die Strukturen verändern, wenn Liganden stufenweise substituiert werden. Schließlich bleibt zu untersuchen, in wie weit die Strukturen der Materialien, die unter Verwendung der heteroleptischen Spezies entstehen, einen gerichteten Charakter aufweisen.

Aus der Sicht des Konzeptes des Crystal Engineerings soll ferner der Beitrag der Organylammonium-Ionen zum Aufbau der Festkörperstrukturen in Abhängigkeit von der Wahl unterschiedlicher Anionen ermittelt werden. Dafür werden die Strukturen der verwendeten komplexen Anionen mit anderen negativ geladenen Anionen hinsichtlich topologischer Funktionalität und Ladung verglichen.

3. Eigene Ergebnisse

Beim Crystal Engineering von Ammonioalkan-oxochloromolybdaten können durch Kombination der komplexen Anionen mit ihren beinahe orthogonalen Bindungsrichtungen und den Organylammonium-Kationen wasserstoffbrückenbestimmte Gerüststrukturen mit interessanten Strukturmerkmalen aufgebaut werden. Zu diesem Zweck werden verschiedenste Oligoamine als Edukte zur Synthese der im Folgenden beschriebenen Verbindungen eingesetzt. Als erste Klasse von Aminen sind die konformativ flexiblen α , ω -Diamine zu nennen. Im Sinne des Crystal Engineerings wird dieser "Baustein" Schritt für Schritt vom 1,3-Diaminopropan bis zum 1,9-Diaminononan um Methylengruppen verlängert.

Um ein anderes supramolekulares Synthon in Verbindung mit komplexen Anionen zu untersuchen, werden weiterhin Piperazin und 1-(2-Aminoethyl)piperazin eingesetzt. Hierbei handelt es sich um konformativ semiflexible Bausteine.

Neben den Strukturen der α , ω -Aminabkömmlinge sollen auch Festkörperstrukturen mit höher funktionellen, kettenförmigen Bausteinen untersucht werden und deshalb werden Triethylentetraamin sowie Bis(3-aminopropyl)amin als Quelle für höher vernetzbare flexible Bausteine eingesetzt. 3.1 Synthese und Kristallstruktur von Tetrakis(1,3-diammoniopropan)bis[aquatetrachlorooxomolybdat(V)]-hexachlorid,
 [H₃N(CH₂)₃NH₃]₄[H₂OMo(O)Cl₄]₂Cl₆ (1)

3.1.1 Synthese und Kristallstrukturbestimmung von 1

Aus Lösungen von Molybdän(V)-chlorid in konzentrierter Salzsäure wachsen auf Zugabe von 1,3-Diaminopropan in ebenfalls salzsaurer Lösung innerhalb mehrerer Tage grüne, rautenförmge Einkristalle von 1. Ein geeignet erscheinender Kristall wird in eine dünnwandige Glaskapillare eingeschmolzen. Angaben zur Datensammlung und Strukturbestimmung sind in Tabelle 3.1.1.1 aufgeführt.

Bei der Analyse der Kristallstruktur von 1 erweist sich die Bestimmung der Kristallssymmetrie als nicht trivial. Die Metrik der Verbindung suggeriert im Zusammenhang mit der E-Werte-Statistik eine monokline centrosymmetrische Raumgruppe. Verfeinert man die Kristallstruktur zunächst in der monoklinen Raumgruppe C2/m bzw. in den maximalen translationengleichen Untergruppen C2 und Cm, so führt dies zu relativ schlechten Gütefaktoren R₁ und wR₂ mit Werten zwischen 0.059 und 0.089 bzw. 0.183 und 0.302. In der maximalen translationengleichen Untergruppe $C \overline{1}$ sind dagegen signifikant niedrigere Gütefaktoren von $R_1 = 0.052$ und $wR_2 = 0.154$ erreichbar. Bei dieser Raumgruppe handelt es sich um eine unkonventionell aufgestellte Variante der triklinen Raumgruppe P 1. Es ist anzunehmen, dass im konkreten Fall eine Verzwillingung vorliegt, die eine Pseudospiegelebene erzeugt. Die Pseudosymmetrie wird jedoch durch die Anordnung eines der kristallographisch unabhängigen 1,3-Diammoniopropan-Ionen massiv durchbrochen. Eine Verfeinerung unter Berücksichtigung des entsprechenden Zwillingsgesetzes und der Annahme der Additivität der Reflexintensitäten der Zwillingsindividuen erweist sich von hohen Parameterkorrelationen jedoch als nicht stabil. Somit ist die Verfeinerung der

Kristallstruktur in der unkonventionell aufgestellten Raumgruppe C 1 unter Berücksichtigung eines Fehlordnungsmodells zu rechtfertigen.

Es gelingt die Verfeinerung anisotroper Auslenkungsparameter für alle "Nichtwasserstoffatome" inklusive der Split-Atome. Alle Wasserstoffatome der 1,3-Diammoniopropan-Ionen werden mittels eines "Reiter-Modells" mit gemeinsamem isotropen U_{iso} -Wert für jede Gruppe in die abschließende Verfeinerungsrechnung einbezogen.

Empirische Formel	$C_6H_{26}N_4O_2Cl_7Mo$
Molmasse [g/mol]	530.40
Kristalldimensionen [mm ³]	0.05 x 0.73 x 0.51
Farbe, Habitus	grün, transparent, tafelig
Raumgruppe	C $\overline{1}$ (unkonventionelle Aufstellung von P $\overline{1}$)
Gitterkonstanten	a = 18.707(6) Å
	b = 10.102(2) Å
	c = 23.446(7) Å
	$\alpha = 90.00$ °
	$\beta = 105.38(4)$ °
	$\gamma = 90.00$ °
Volumen / Z	4272(2) Å ³ / 1
Röntg. Dichte [g/cm ³]	2.06
Temperatur [K]	293
CCD Diffraktometer	$\lambda = 0.71073 \text{ Å}$
Absorptionskoeffizient [1/mm]	0.187
F(000)	267
2θ-Bereich	2.31-25.00 °
Indexgrenzen	$-22 \le h \ge 22$
	$-12 \le k \ge 12$
	$-27 \le l \ge 27$
Zahl der gemessenen Reflexe	24129
Zahl der unabhängigen Reflexe	7481 (R _{int} =0.0602)
Zahl der beobachteten Reflexe	6343 (I≥2.0σ(I))
Zahl der Reflexe / Parameter / Restraints	7481 / 423 / 13
GOOF	1.081
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0517, \ wR_2 = 0.1398^{11}$
R-Werte (sämtlicher Daten)	$R_1 = 0.0610, wR_2 = 0.1540$
$\Delta \rho_{max.} / \Delta \rho_{min.} [e \text{\AA}^{-3}]$	1.419 / -1.301
Vollständigkeit [%]	99.4
¹⁾ $R_1 = \Sigma F_o F_c \Sigma F_o ; wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [(w w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] mit P = (F_o^2 + 2 F_c^2) / 3$	$[F_o^2)^2]]^{1/2};$

3.1.2 Diskussion der Kristallstruktur von 1

Die asymmetrische Einheit der Kristallstruktur von Verbindung 1 wird so gewählt, dass zwei Aquatetrachlorooxomolybdat(V)-Anionen, vier 1,3-Diammoniumpropan-Kationen und sechs Chloridionen enthalten sind.

Die komplexen Anionen bestehen neben den um das Molybdänzentralatom vier angeordneten äquatorial Chloroliganden aus einer Oxogruppe und einem zur Oxogruppe *trans*-stehenden Aqualiganden. Die Bindungslängen der vier Chloroliganden liegen bei beiden komplexen Anionen im Bereich von 2.3700(14) Å bis

2.3822(16) Å. Die Sauerstoffatome O11 bzw. O21 mit Mo-O-Abständen von 1.639(4) Å und 1.648(3) Å sind am stärksten an das Molybdän gebunden und können als doppelt gebundene Oxoliganden angesehen werden. Die Mo-OH₂-Bindungen liegen bei 2.284(4) Å und 2.313(3) Å. Alle Bindungslängen und Winkel sind in Tabelle 3.1.2.1 aufgeführt. Insgesamt ist das

Molybdän beinahe oktaedrisch umgeben. Der Komplex erfüllt, wenn die Wasserstoffatome der außer Acht Aquagruppen gelassen werden, beinahe eine $C_{4\nu}$ -Symmetrie. Die beiden kristallographisch unabhängigen Anionen werden in den Abbildungen 3.1.2.1 und 3.1.2.2 mit ihrer Wasserstoffbrückensituation dargestellt. Das eine der

beiden komplexen Anionen bildet über die zwei Wasserstoffatome des Aqualiganden zwei Wasserstoffbrückenbindungen zu zwei "freien" Chloridionen aus. Die zwei Chloroliganden Cl11 und Cl12 sind Akzeptoren von zwei weiteren sekundären Wechselwirkungen zu zwei Ammoniogruppen. Die Umgebung um das andere komplexe Anion unterscheidet sich in der Weise, dass zusätzlich auch die beiden anderen Chloroliganden als Akzeptoren Wasserstoffbrückenbindungen eingehen. So ist dieses komplexe Anion fest in das supramolekulare System eingebunden.

Weitere Bausteine der Verbindung **1** sind die vier kristallographisch unabhängigen Kationen (s. Abb. 3.1.2.3). Bis auf das fehlgeordnete Kation nehmen alle 1,3-Diammoniopropan-Kationen eine all-*trans* Konformation im Festkörper ein. N-C und C-C Bindungslängen liegen für diesen Bausteintyp im Bereich des üblichen und entsprechen den Erwartungen.^[36-41] Die Fähigkeit Wasserstoffbrückenbindungen auszubilden, wird von fast allen Ammoniogruppen intensiv genutzt. Als Besonderheit ist N7 zu nennen, das auf Grund einer gegabelten Wasserstoffbrücke über H71 Donor für vier Wasserstoffbrückenbindungen ist. Alle genauen Angaben zur Wasserstoffbrückensituation sind in Tabelle 3.1.2.2 zu finden.

Mo1-O11	1.648(3)	N1-C1	1.476(6)
Mo1-O12	2.313(3)	N2-C3	1.460(6)
Mo1-Cl13	2.3708(14)	N5-C7	1.477(10)
Mo1-Cl14	2.3718(14)	N'5-C7'	1.490(12)
Mo1-Cl11	2.3741(14)	N6'-C9'	1.471(9)
Mo2-O21	1.639(4)	N8-C12	1.490(7)
Mo2-O22	2.284(4)	C1-C2	1.500(7)
Mo2-Cl22	2.3700(14)	C4-C5	1.504(8)
Mo2-Cl21	2.3705(14)	C7'-C8'	1.532(8)
Mo2-Cl24	2.3822(16)	C10-C11	1.511(7)
O11-Mo1-O12	179.86(18)	N1-C1-C2	110.9(4)
O12-Mo1-Cl14	80.39(10)	C1-C2-C3	113.3(4)
Cl13-Mo1-Cl14	87.65(6)	N2-C3-C2	111.4(4)
Cl14-Mo1-Cl11	88.94(6)	N3-C4-C5	110.5(4)
Cl13-Mo1-Cl12	88.97(6)	C4-C5-C6	111.9(4)
Cl14-Mo1-Cl12	163.15(5)	N4-C6-C5	110.7(4)
Cl11-Mo1-Cl12	89.49(6)	N5-C7-C8	109.7(15)
O21-Mo2-O22	177.7(2)	N'5-C7'-C8'	109.8(12)
O21-Mo2-Cl22	98.00(19)	C9-C8-C7	113.9(14)
Cl22-Mo2-Cl21	86.89(5)	C9'-C8'-C7'	114.0(10)
O21-Mo2-Cl23	98.17(19)	N6-C9-C8	113.7(15)
O22-Mo2-Cl23	83.27(13)	N6'-C9'-C8'	112.4(15)
Cl22-Mo2-Cl23	89.61(6)	N7-C10-C11	110.9(4)
Cl21-Mo2-Cl23	163.61(6)	C12-C11-C10	112.0(4)
Cl21-Mo2-Cl24	89.64(6)	N8-C12-C11	108.8(4)
C1-C2-C3-N2	176.7(4)	N'5-C7'-C8'-C9'	172.1(14)
N3-C4-C5-C6	178.4(5)	C7'-C8'-C9'-N6'	72.9(17)

Tabelle 3.1.2.1 Ausgewählte Bindungslängen [Å], Bindungswinkel [°] und Torsionswinkel [°] (N-H = 0.89 Å, C-H = 0.97 Å) in **1**

Die Diskussion des supramolekularen Systems erfordert weiterhin die Betrachtung der Wasserstoffbrückensituation der einzelnen Chloridionen. Alle sechs Chloridionen sind als drei- bis vierfacher Akzeptor in das Wasserstoffbrückensystem eingebunden. In Abbildung 3.1.2.4 werden immer zwei Chloridionen in einer Einheit dargestellt. Im Hinblick auf die Packungssituation kann man hier bereits erkennen, dass jeweils zwei Chloridionen entlang einer kristallographischen Achse abwechselnd angeordnet sind. Cl1 und Cl5 sowie Cl4 und Cl5 entlang der a-Achse sowie Cl2 und Cl3 sind in Blickrichtung [001] abwechselnd positioniert. Durch die Funktion als Akzeptor wird ein zweidimensionales Netzwerk in der Ebene *a*/*b* aufgespannt.

In Abbildung 3.1.2.5 ist das Packungsbild der Verbindung 1 dargestellt. Es zeigt eine Struktur, die aus Schichten aufgebaut ist, die entlang der kristallographischen *a*-Achse gestapelt sind. Die eine Schichtenart enthält die komplexen Anionen und zwei der kristallographisch unabhängigen Kationen,

die sich entlang der *c*-Achse erstrecken. Die zweite Schichtenart enthält die anderen zwei kristallographisch unabhängigen Kationen, die sich jedoch entlang der Blickrichtung [010] erstrecken. Wie bei der Diskussion der Umgebung der "freien" Chloridionen bereits angedeutet wird, erkennt man eine Art gerade Anordnung bestimmter Chloridionen. Diese Anordnung entspricht den Symmetrieachsen der Raumgruppe C2/m (s. Abb. 3.1.2.6^[42]). Zum einen liegen entlang [100] Cl1 und Cl5 entlang der zweizähligen Schraubachse mit Inversionszentrum (2₁/m) und zum anderen liegen, um ein viertel der Elementarzelle in Richtung [001] verschoben, Cl4 und Cl6 in Richtung [100] entlang der zweizähligen Achse mit Inversionszentrum (2/m). Um die Hälfte der Elementarzelle in Richtung [100] verschoben liegen die beiden Chloridionen Cl2 und Cl3 entlang [001]. Die beschriebenen Zusammenhänge sind Ausdruck der monoklinen Symmetrie, bei der es sich um eine Pseudosymmetrie handelt, da diese durch das fehlgeordnete Kation durchbrochen wird.

D-H A	d(D-H)	d(H A)	$d(D^{\cdot\cdot}A)$	<(DHA)
O12-H121 C15 ^I	0.83(3)	2.23(2)	3.056(4)	172(6)
O12-H122 Cl1	0.83(3)	2.25(3)	3.049(4)	162(8)
O22-H221 Cl6	0.82(3)	2.25(2)	3.049(5)	164(6)
O22-H222 Cl4	0.83(3)	2.28(5)	3.047(5)	153(10)
N1-H11 Cl2	0.89	2.29	3.119(4)	154.1
N1-H12 Cl5 ^{II}	0.89	2.39	3.232(5)	157.3
N1-H13 Cl1 ^{III}	0.89	2.31	3.187(4)	169.9
N2-H21 Cl2 ^{IV}	0.89	2.30	3.123(4)	153.5
N2-H22 Cl5 ^V	0.89	2.30	3.183(5)	170.2
N2-H23 Cl1 ^{VI}	0.89	2.40	3.239(5)	157.2
N3-H31 Cl3	0.89	2.48	3.112(5)	155.8
N3-H32 Cl ^{II}	0.89	2.28	3.173(5)	179.1
N3-H33 Cl6 ^{VII}	0.89	2.39	3.198(5)	150.3
N4-H41 Cl3 ^I	0.89	2.28	3.108(5)	155.7
N4-H42 Cl4 ^{VIII}	0.89	2.40	3.202(5)	149.4
N4-H43 Cl6 ^{IX}	0.89	2.30	3.185(5)	178.7
N5-H52 Cl4 ^{VII}	0.89	2.31	3.20(2)	172.4
N5-H53 Cl6 ^X	0.89	2.32	3.21(2)	174.2
N6'-H6'3 Cl22 ^{VII}	0.89	2.73	3.347(10)	127.8
N7-H71 Cl24 ^{II}	0.89	2.74	3.432(5)	135.1
N7-H71 Cl23 ^{II}	0.89	2.74	3.429(5)	134.8
N7-H72 Cl11 ^{II}	0.89	2.70	3.499(6)	149.9
N7-H73 Cl12 ^{VI}	0.89	2.71	3.501(6)	148.8
N8-H82 C15 ^{II}	0.89	2.32	3.193(5)	167.7
N8-H83 Cl1 ^{II}	0.89	2.32	3.192(5)	167.9

Tabelle 3.1.2.2 Daten zum Wasserstoffbrücken-System von 1, Abstände [A], Winkel [°	Abstände [Å], Winkel [°]
--	--------------------------

Symmetrie-Codierung :

(I): x,y+1,z; (II): x-1/2,y+1/2,z; (III): -x+1/2,-y+1/2,-z; (IV): x,y-1,z; (V): -x+1/2,-y-1/2,-z; (VI): x-1/2,y-1/2,z; (VII): -x+1/2,-y+1/2,-z+1; (VIII): -x+1/2,-y+3/2,-z+1; (IX): x-1/2,y+3/2,z; (X): -x+1/2,-y-1/2,-z+1.

3.2 Synthese und Kristallstruktur von 1,4-Diammoniobutanaquatetrachlorooxomolybdat(V)-chlorid-monohydrat, [H₃N(CH₂)₄NH₃][H₂OMo(O)Cl₄]Cl⁻H₂O (2)

3.2.1 Synthese und Kristallstrukturbestimmung von 2

Wird eine salzsaure Lösung von 1,4-Diaminobutan mit einer salzsauren MoCl₅-Lösung versetzt, so bilden sich innerhalb weniger Tage grüne, rautenförmige Kristalle. Zur Vorbereitung der Einkristallstrukturanalyse wird ein geeignet erscheinender Einkristall mit zähflüssigem perfluorierten Ether^[43] imprägniert und gleich danach in eine dünnwandige Glaskapillare eingeschmolzen. Die röntgenographische Untersuchung wird auf einem Stoe Stadi CCD-Diffraktometer durchgeführt. Die erhaltenen Beugungsreflexe werden für eine monokline, primitive Elementarzelle integriert. Die Strukturlösung in der Raumgruppe $P2_1/n$ gelingt mit Direkten Methoden und liefert die Lage des Aquatetrachlorooxomolydat-Ions in der Elementarzelle. Ausgehend von dieser Strukturinformation können durch Δ F-Synthesen alle weiteren "Nichtwasserstoffatome" lokalisiert werden. Nach Verfeinerung der Ortskoordinaten sowie der zugehörigen anisotropen Auslenkungsparameter dieses Strukturmodells lässt sich die ungefähren Ortskoordinaten der meisten H-Atome ermitteln. Unter Berücksichtigung der gefundenen Positionen werden alle H-Atome der 1,4-Diammoniobutan-Kationen gestützt durch ein "Reiter-Modell" mit einem gemeinsamen isotropen U_{iso}-Wert für die H-Atome jeder Gruppe in die letzten Zyklen der Verfeinerung einbezogen. Die Wasserstoffatome am Wassermolekül werden mit fixiertem O-H-Abstand individuellen, isotropen U_{iso}-Werten verfeinert. Es wird eine numerische und Absorptionskorrektur vorgenommen, wonach sowohl der R_i-Wert als auch die Restelektronendichte deutlich sinken. Weitere Daten zum Diffraktionsexperiment und zur weiteren Kristallstrukturbestimmung können Tabelle 3.2.1.1 entnommen werden.

Tabelle 3.2.1.1 Daten zur Kristallstrukturbestimmung von **2**

Empirische Formel	$C_4H_{18}N_2O_3Cl_5Mo$
Molmasse [g/mol]	415.5
Kristalldimensionen [mm ³]	0.1 x 0.2 x 0.4
Farbe, Habitus	grün, transparent, tafelig
Raumgruppe	$P2_{1}/n$
Gitterkonstanten	a = 10.851(2) Å
	b = 9.6116(2) Å
	c = 14.977(3) Å
	$\alpha = 90.00$ °
	$\beta = 104.98(3)$ °
	$\gamma = 90.00$ °
Volumen / Z	1509.0(5) Å ³ / 4
Röntg. Dichte [g/cm ³]	1.828
Temperatur [K]	293
CCD-Diffraktometer	$\lambda=0.71073~\text{\AA}$
Absorptionskoeffizient [1/mm]	1.75
F(000)	828
20-Bereich	$2.54 - 25.00^{\circ}$
Indexgrenzen	$-12 \le h \ge 12$
	$-11 \le k \ge 11$
	$-17 \le l \ge 17$
Zahl der gemessenen Reflexe	16057
Zahl der unabhängigen Reflexe	2649 ($R_{int} = 0.0374$)
Zahl der beobachteten Reflexe	2402 (I≥2.0σ(I))
Zahl der Reflexe / Parameter / Restraints	2649 / 153 / 2
GOOF	0.986
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0304, \ wR_2 = 0.0873^{11}$
R-Werte (sämtlicher Daten)	$R_1 = 0.0364, wR_2 = 0.1000$
$\Delta \rho_{\text{max.}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	0.705 / -0.746
Vollständigkeit [%]	99.6
¹⁾ $\mathbf{R}_1 = \Sigma \mathbf{F}_o - \mathbf{F}_c / \Sigma \mathbf{F}_o ; \mathbf{w} \mathbf{R}_2 = [\Sigma [\mathbf{w} (\mathbf{F}_o^2 - \mathbf{F}_c^2)^2] / \Sigma [(\mathbf{w} \mathbf{w} = 1 / [\sigma^2 (\mathbf{F}_o^2) + (\mathbf{a} \mathbf{P})^2 + \mathbf{b} \mathbf{P}] \text{ mit } \mathbf{P} = (\mathbf{F}_o^2 + 2 \mathbf{F}_c^2) / 3$	$[F_o^2)^2]]^{1/2};$

3.2.2 Diskussion der Kristallstruktur von 2

Die asymmetrische Einheit der Kristallstruktur wird so gewählt, dass sie vier komplette Teilbausteine enthält: ein Aquatetrachlorooxomolybdat(V)-Anion, ein 1,4-Diammoniobutan-Kation, ein über Wasserstoffbrücken gebundenes Chlorid-Anion und ein Wassermolekül. Alle Bestandteile befinden sich auf allgemeinen Lagen.

Das [H₂OMo(O)Cl₄]⁻-Ion ist mit zwei NH₃-Gruppen verschiedener Diammonioalkane, zwei einzelnen Chloridionen und zwei Wassermolekülen durch Wasserstoffbrückenbindungen verbunden. Abbildung 3.2.2.1 zeigt das Aquatetrachlorooxomolybdat(V)-

Anion und seine Umgebung. Die Anordnung der Chloroliganden und die des Oxo- und Aqualiganden um das zentrale Mo^V-Atom weicht nur leicht von der oktaedrischen

Geometrie ab und erfüllt, wenn man die zwei Wasserstoffatome des Aqualiganden unbeachtet lässt, nahezu $C_{4\nu}$ -Symmetrie. Die Mo-Cl Bindungslängen liegen im Bereich von 2.3778(11) Å bis 2.3926 Å. Die Bindung Mo-O11 ist 1.660(2) Å lang und als starke Bindung einzustufen bzw. als Doppelbindung anzusehen. Die Bindungslänge zum O-Atom des koordinierten H₂O-Moleküls beträgt 2.261(2) Å (s. Tab. 3.2.2.1). Alle Bindungslängen sowie die Winkel im Komplex entsprechen den Erwartungen.^[44] Der Oxoligand und der Aqualigand stehen *trans* zueinander. Die vier Cl-Atome sind äquatorial angeordnet und werden auf Grund der hohen Elektronendichte der Oxogruppe von dieser abgestoßen. So werden die Cl-Atome aus der Ebene heraus in Richtung des Aqualiganden geneigt.

Das 1,4-Diammoniobutan-Kation befindet sich in kristallographisch allgemeiner Lage. Jede NH₃-Gruppe des Dikations bildet drei einfache Wasserstoffbrückenbindungen zu den umgebenen Cl-Atomen und Wassermolekülen. Eine Ausnahme bildet das H21, von dem eine gegabelte Wasserstoffbrückenbindung zu zwei Chloridionen ausgeht, so dass es von fünf Chloratomen und von zwei Wassermolekülen umgeben ist (s. Abb. 3.2.2.2). Diese Bindungen

sind mit einem H^{...}Akzeptorabstand von 2.634 Å bzw. 2.671 Å ebenfalls als ziemlich schwach zu

bezeichnen. Die Konformation des Dikations ist die einer gestreckten Zickzack-Kette. Die C-

Cbzw. C-N-Bindungslängen und -winkel entsprechen den Erwartungen^[45-50] (s. Tab. 3.2.2.1). Die Betrachtung des Wasserstoffbrückensystems um das in allgemeiner Lage befindliche Chloridion zeigt eine quasi pyramidale Umgebung, bestehend aus zwei NH₃-Gruppen, einem Wassermolekül und zwei Aqualiganden des komplexen Anions (Abb. 3.2.2.3). Mit einem kurzen H^{...}Cl-Abstand von 2.16 Å zu einem

H-Atom des Aqualiganden und vier etwas längeren Abständen zu den H-Atomen der Ammoniogruppen, des Wassermoleküls und des anderen Aqualiganden, ist das Chloridion als tragender Bestandteil des Wasserstoffbrücken-Systems des Festkörpers erkennbar.

Das in allgemeiner Lage befindliche Wassermolekül ist über einige nicht kovalente Wechselwirkungen in den Festkörper integriert. Das Wasserstoffatom H2 des Wasserbildet eine moleküls schwache, gegabelte Wasserstoffbrückenbindung zu den Oxogruppen zweier $[H_2OMo(O)Cl_4]$ -Ionen aus (s. Abb. 3.2.2.4). Auf diese Weise werden die zwei Anionen über ihre Oxogruppen und zwei freie Wassermoleküle zu einem Ring verknüpft. Das H-

Brücken-Motiv besteht aus zwei Protonendonatoren sowie vier Protonenakzeptoren, die vier Wasserstoffbrückenbindungen bilden. Die Etter Klassifizierung hierfür lautet $R^2_2(4)$.^[24]

Tabelle 3.2.2.1 Ausgewählte Bindungslängen [Å], Bindungswinkel [°] und Torsionswinkel [°] (N-H = 0.89 Å, C-H = 0.97 Å) in **2**

Mo1-O11	1.660(2)	N1-C1	1.484(4)
Mo1-O12	2.261(2)	N2-C4	1.479(4)
Mo1-Cl11	2.3862(10)	C1-C2	1.496(4)
Mo1-Cl13	2.3778(11)	C2-C3	1.514(4)
Mo1-Cl14	2.3883(9)	C3-C4	1.517(4)
O11-Mo1-O12	177.35(10)	N1-C1-C2	111.7(3)
Cl13-Mo1-Cl11	163.55(3)	C1-C2-C3	111.4(3)
Cl13-Mo1-Cl14	88.68(3)	C2-C3-C4	111.7(3)
Cl11-Mo1-Cl14	89.51(3)	N2-C4-C3	111.1(3)
N1-C1-C2-C3	178.3(3)	C2-C3-C4-N2	178.2(3)

In Abb. 3.2.2.5 ist die Packung von 2 mit Blick entlang [010] in vereinfachter Weise dargestellt. Der Festkörper besteht aus Ketten, in denen komplexe "anorganische" Anionen und "organische" Kationen abwechselnd entlang der kristallographischen Richtung [001] angeordnet sind. In der zweiten und dritten Richtung sind die Ketten mittels Wasserstoffbrückenbindungen direkt und über "freie" Chloridionen und Wassermoleküle miteinander vernetzt. Insgesamt gesehen ist jedes komplexe Anion von sechs Kationen umgeben.

In der Festkörperstruktur des 1,4-Diammoniobutan-dibromids^[51] sind die 1,4-Diammoniobutan-Kationen wie in einem Fischgrätenmuster als eindimensionales Netzwerk angeordnet und eindeutig von der anorganischen Schicht, den "freien" Bromidionen, zu trennen. Dieses Strukturmuster wird in der hier untersuchten Verbindung durch den Einbau des $[H_2OMo(O)Cl_4]^-$ - Ions und des Kristallwassers durchbrochen.

D-H A	d(D-H)	d(H A)	d(D A)	<(DHA)
O12-H121 Cl1 ^I	0.81(5)	2.39(5)	3.163(3)	159(4)
O12-H122 Cl1	0.94(5)	2.16(5)	3.077(3)	167(4)
O1-H1 Cl1 ^{II}	0.84(5)	2.36(5)	3.183(3)	168(5)
O1-H2 O11 ^{III}	0.84(5)	2.51(5)	3.123(4)	131(4)
N1-H11 O1 ^{IV}	0.89	2.41	2.966(4)	121.2
N1-H11 Cl14 ^{II}	0.89	2.65	3.357(3)	137.0
N1-H12 O1	0.89	2.22	3.005(5)	146.9
N1-H12 Cl11 ^{III}	0.89	2.88	3.339(3)	114.1
N1-H13 Cl14 ^I	0.89	2.70	3.557(3)	161.9
N2-H21 Cl1 ^V	0.89	2.63	3.263(3)	128.4
N2-H21 Cl12 ^{VI}	0.89	2.67	3.377(3)	137.1
N2-H22 Cl12 ^{VII}	0.89	2.52	3.351(3)	155.0
N2-H23 Cl1	0.89	2.40	3.213(3)	151.6

Tabelle 3 2 2 2 Daten zum Wasserstoffbrücken-System von 2 Abstände [Å1	Winkel [°	'n
Tuberie 5.2.2.2 Duteri Zuni Wusserstonordeken System von 2, Tublunde	· • • •	,, miner	

Symmetrie-Codierung :

(I): -x+1,-y+2,-z; (II): x-1/2,-y+3/2,z+1/2; (III): x-1,y,z; (IV): -x+1/2,y+1/2,-z+1/2; (V): -x+1/2,y-1/2,-z-1/2; (VI): x-1/2,-y+3/2,z-1/2; (VII): -x+1,-y+1,-z.

3.3 Synthese und Kristallstruktur von 1,6-Diammoniohexan-

aquatetrachlorooxomolybdat(V)-chlorid,

 $[H_3N(CH_2)_6NH_3][H_2OMo(O)Cl_4]Cl(3)$

3.3.1 Synthese und Kristallstrukturbestimmung von 3

Gibt man zu einer konzentrierten salzsauren Molybdänchloridlösung eine ebenfalls konzentriert saure Lösung von 1,6-Diaminohexan, so erhält man zunächst eine dunkelgrüne klare Lösung, in der nach wenigen Stunden Kristalle zu wachsen beginnen. Innerhalb mehrerer Tage vergrößern sich die Kristalle, so dass das Kristallwachstum durch Abdekantieren der überstehenden Lösung abgebrochen werden kann. Bei Kontakt mit Raumluft verwittern die Kristalle binnen weniger Stunden. In imprägnierendem Öl^[43] verändern sich die Kristalle nicht merklich, so dass in diesem Medium eine optische Untersuchung zur Kristallauswahl möglich ist. Ein relativ großer Kristall wird in einer dünnwandigen Glaskapillare eingeschmolzen. Für die Wahl eines großen Kristalls spricht, dass selbst bei oberflächlichen Verwitterungen genügend kristalliner Körper für ein Beugungsexperiment verbleibt.

Die primäre Strukturlösung gelingt mit Direkten Methoden in der Raumgruppe P 1. Darauf aufbauende Δ F-Synthesen liefern das gesamte Strukturmodell inklusive aller Wasserstoffatompositionen. Die Wasserstoffatompositionen am 1,6-Diammoniohexan-Ion werden gestützt auf ein "Reiter-Modell" mit gemeinsamem isotropen Uiso-Wert für die H-Atome jeder Gruppe in die Verfeinerung des Strukturmodells einbezogen. Die H-Atome des Aqualiganden werden mit fixierten H-O-Abständen und geringer Standardabweichung verfeinert. Weiterhin wird der Winkel des Aqualiganden ebenfalls mit einer geringen Standardabweichung fixiert. Weitere Einzelheiten der Datensammlung und Strukturbestimmung sind in Tabelle 3.3.1.1 zusammengefasst.

Empirische Formel	$C_6H_{20}N_2O_2Cl_5Mo$			
Molmasse [g/mol]	425.43			
Kristalldimensionen [mm ³]	0.07 x 0.30 x 0.63			
Farbe, Habitus	grün, transparent, tafelig			
Raumgruppe	$P \overline{1}$			
Gitterkonstanten	a = 9.209(2) Å			
	b = 9.510(2) Å			
	c = 11.340(2) Å			
	$\alpha = 113.05(3)^{\circ}$			
	$\beta = 102.64(3)^{\circ}$			
	$\gamma = 104.42(3)^{\circ}$			
Volumen / Z	827.5(3) Å ³ / 2			
Röntg. Dichte [g/cm ³]	1.708			
Temperatur [K]	293			
CCD-Diffraktometer	$\lambda = 0.71073 \text{ Å}$			
Absorptionskoeffizient [1/mm]	1.59			
F(000)	426			
2θ-Bereich	4.10 – 25.00 °			
Indexgrenzen	$-10 \le h \ge 10$			
	$-11 \le k \ge 11$			
	- 13 ≤ 1 ≥13			
Zahl der gemessenen Reflexe	9988			
Zahl der unabhängigen Reflexe	2891 (R _{int} =0.0547)			
Zahl der beobachteten Reflexe	2374 (I≥2.0σ(I))			
Zahl der Reflexe / Parameter / Restraints	2891 / 156 / 3			
GOOF	1.145			
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0433, \ wR_2 = 0.0923^{1}$			
R-Werte (sämtlicher Daten)	$R_1 = 0.0587, wR_2 = 0.0995$			
$\Delta \rho_{max.} / \Delta \rho_{min.} [e \text{\AA}^{-3}]$	0.503 / -0.843			
Vollständigkeit [%]	99.2			
¹⁾ $R_1 = \Sigma F_o - F_c / \Sigma F_o ; wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [(wF_o^2)^2]]^{1/2};$ $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] mit P = (F_o^2 + 2F_c^2) / 3$				

Tabelle 3.3.1.1 Daten zur Datensammlung und Strukturbestimmung von 3

3.3.2 Diskussion der Kristallstruktur von 3

Der verzerrt oktaedrische Aquatetrachlorooxomolybdat-Komplex liegt in allgemeiner Lage der anorthischen Elementarzelle. Die Mo-Cl-Bindungslängen liegen zwischen 2.3527(14) Å und 2.4048 Å. Der Oxoligand ist gemessen an der Mo-O-Bindungslänge von 1.646(3) Å sehr stark Molybdän an das gebunden. Das komplexe Anion ist von zwei NH3-Gruppen, zwei Chloridionen und einem Aqualiganden des nächstgelegenen

Aquatetrachlorooxomolybdat-Ions umgeben (Abb. 3.3.2.1). Wie in Abbildung 3.3.2.1 angedeutet, sind jeweils zwei $[H_2OMo(O)Cl_4]^-$ Anionen über Wasserstoffbrückenbindungen zwischen ihren Aqualiganden und Chloroliganden miteinander verbunden. Diese Verbrückung zweier $[H_2OMo(O)Cl_4]^-$ Anionen ist aus der Literatur^[52] bekannt.

Die asymmetrische Einheit enthält zwei Hälften von kristallographisch unabhängigen centrosymmetrischen 1,6-Diammoniohexan-Kationen. Im Festkörper findet man zwei Konformere des 1,6-Diammoniohexan-Ions: Neben der gestreckten Zickzack-Kette, die als energetisch günstigste Konformation anzusehen ist, ist in diesem Festkörper noch ein weiteres Konformer enthalten, welches durch eine Drehung um die C3-C3'-Verbindungsachse um

112,6(5)° entsteht. Ein Vergleich der Bindungslängen dieses verdrehten 1,6-Diammoniohexan-Ions mit Werten aus der literaturbekannten Festkörperstruktur von 1,6-Diammoniohexan-dichlorids^[53] bzw. aus weiteren Verbindungen^[54-56] mit 1,6-Diammoniohexan-Kationen, in denen sie als gestreckte Zickzack-Ketten vorliegen, zeigt keine signifikanten Unterschiede der Atomabstände (Tab. 3.3.2.1).

Die ungewöhnliche Konformation des Dikations kann dahingehend gedeutet werden, dass es für die Stabilität des Festkörperverbandes wesentlich günstiger ist, ein so verknicktes Diammonium-Kation mit einzubauen.

Mo1-O11	1.646(3)	N1-C1	1.482(6)
Mo1-O12	2.332(3)	C1-C2	1.516(6)
Mo1-Cl14	2.3527(14)	C2-C3	1.517(7)
Mo1-Cl13	2.3752(14)	N2-C4	1.478(6)
Mo1-Cl12	2.3864(14)	C4-C5	1.516(6)
Mo1-Cl11	2.4048(13)	C5-C6	1.504(6)
O11-Mo1-O12	176.70(15)	N1-C1-C2	111.4(4)
Cl14-Mo1-Cl13	87.40(5)	C1-C2-C3	115.5(4)
Cl14-Mo1-Cl12	161.85(5)	C2-C3-C3 ^I	112.6(5)
Cl13-Mo1-Cl12	90.13(5)	N2-C4-C5	111.4(4)
Cl14-Mo1-Cl11	88.50(5)	C6-C5-C4	112.9(4)
Cl12-Mo1-Cl11	89.03(5)	C5-C6-C6 ^{II}	112.6(4)
N1-C1-C2-C3	-64.4(6)	N2-C4-C5-C6	177.1(4)
C1-C2-C3-C3 ^I	-175.4(5)	C4-C5-C6-C6 ^{II}	178.5(5)

Tabelle 3.3.2.1 Ausgewählte Bindungslängen [Å], Bindungswinkel [°] und Torsionswinkel [°] (N-H = 0.89 Å, C-H = 0.97 Å) in **3**

Symmetrie-Codierung : (I): -x,-y,-z; (II): -x,-y-1,-z.

Das nicht komplexgebundene Chloridion ist von vier Ammoniogruppen und einem

Aqualiganden umgeben. Dabei sind jeweils zwei der Ammoniogruppen Vertreter der all*trans*-Form und zwei der S-Form. Wenngleich die Abbildung 3.3.1.3 vermuten lässt, dass es sich um eine pyramidale Umgebung handelt, sprechen die von 90° stark abweichenden Winkel gegen diese Klassifizierung. Die überwiegend kurzen H^{...}Cl-Abstände (zwischen 2.23 und 2.40 Å) deuten auf eine starke Wechselwirkung des Chloridions mit den H-Donoren hin.

Tabelle 3.3.2.2	Daten zum	Wasserstoffbrücken-	-System von 3,	Abstände [A	Å], Winkel	[°]

D-H A	d(D-H)	d(H A)	d(D A)	<(DHA)
O12-H121 Cl11 ^{III}	0.83	2.42(5)	3.250(3)	174(3)
O12-H122 Cl1	0.83	2.31(4)	3.106(3)	161(5)
N1-H11 Cl1 ^{IV}	0.89	2.42	3.271(4)	159.4
N1-H12 Cl11 ^{IV}	0.89	2.49	3.341(4)	160.2
N1-H13 Cl1 ^V	0.89	2.30	3.171(4)	167.6
N2-H21 Cl1	0.89	2.28	3.147(4)	165.2
N2-H22 O12 ^{VI}	0.89	2.42	3.089(5)	131.7
N2-H22 Cl1 ^{VI}	0.89	2.65	3.450(4)	150.2
N2-H23 Cl13 ^{VII}	0.89	2.58	3.392(4)	151.8

Symmetrie-Codierung :

(I): -x,-y,-z; (II): -x,-y-1,-z; (III): -x+1,-y,-z-1; (IV): -x+1,-y,-z; (V): x,y+1,z+1; (VI): -x,-y-1,-z-1; (VII): x,y-1,z.
In **3** sind die zwei kristallographisch unabhängigen Diammonium-Kationen in Schichten parallel zu der *a*, *b*-Ebene der Elementarzelle angeordnet. Zwischen den kationischen Schichten sind Ketten aus komplexen Anionen vorhanden, deren Glieder entlang [100] durch O-H^{...}Cl Wasserstoffbrückenbindungen zusammengehalten werden. Die "freien" Chloridionen sind in einem Kanal, der aus den kationischen Schichten und den im stäbchenförmigen Verbund angeordneten komplexen Anionen gebildet wird, eingebettet. Bei einem Vergleich dieser Festkörperstruktur mit der Struktur des 1,6-Hexamethylendiamin-dihydrochlorid^[57] fällt auf, dass sich die Diammonium-Kationen im Festkörper flexibel an die weiteren Bausteine der Struktur anpassen. Das zeigt sich vor allem in den zwei unterschiedlichen Konformationen der Kationen.

3.4 Synthese und Kristallstruktur von Tris(1,7-diammonioheptan)-

bis[pentachlorooxomolybdat(V)]-dichlorid,

[H₃N(CH₂)₇NH₃]₃[Mo(O)Cl₅]₂Cl₂ (4)

3.4.1 Synthese und Kristallstrukturbestimmung von 4

Aus Lösungen von Molybdän(V)-chlorid in konzentrierter Salzsäure wachsen nach Zugabe von 1,7-Diaminoheptan in ebenfalls salzsaurer Lösung innerhalb einiger Tage grüne, plättchenförmige Einkristalle von 4. Ein geeignet erscheinender Kristall wird in eine dünnwandige Glaskapillare eingeschmolzen. Angaben zur Datensammlung und Strukturbestimmung sind in Tabelle 3.4.1.1 aufgeführt. Die Strukturlösung mit Direkten Methoden liefert die Positionen aller Atome des komplexen Anions und des kokristallisierten Chloratoms. Sukzessive Δ F-Synthesen, die durchgeführt werden, ohne dass das bereits vorhandene Teilmodell gleichzeitig verfeinert wird, ergaben die Atomkoordinaten aller "Nichtwasserstoffatome". Im Zuge der Verfeinerung der Ortskoordinaten und der Auslenkungsparameter der Atome des gesamten Modells weist eines der beiden unabhängigen 1,7-Diammonioheptan-Ionen ungewöhnlich lange bzw. kurze C-C- und C-N-Bindungslängen und ungewöhnlich große U-Werte für einige Atome auf. Eine Analyse der berechneten Restelektronendichte lässt mit großer Wahrscheinlichkeit auf eine konformative 2:1-Fehlordnung der Heptan-Kette im 1,7-Diammonioheptan-Kation schließen. Die beiden Stickstoffatome des Dikations sind zwar bezüglich ihrer Lage nur unwesentlich betroffen, schwerer wiegt jedoch, dass durch die Fehlordnung des Kohlenwasserstoffgerüsts auch eine Fehlordnung der H-Atome an jedem N-Atom induziert wird. Dies entspricht zwei im Kristall prinzipiell unterschiedlich möglichen Varianten für die Ausbildung von Wasserstoffbrückenbindungen. Abbildung 3.4.1.1 zeigt die Überlagerung der beiden Teilbilder, die sich im Zuge der Verfeinerung des Fehlordnungsmodells ergeben. Durch die Einbeziehung des Fehlordnungsmodells in die Verfeinerung lassen sich die auftretenden Restelektronendichten wesentlich verringern und sämtliche Gütefaktoren signifikant verbessern. Für die Beschreibung der Kristallstruktur durch ein Fehlordnungsmodell spricht zum einen, dass die C-C- und C-N-Bindungslängen beider Teilbilder im Rahmen der Standardabweichungen den Erwartungen entsprechen. Zum anderen ist dieses Diammonium-Kation im Vergleich zu dem nicht fehlgeordneten Modell des Diammonium-Kations wesentlich lockerer in das Netzwerk der Gesamtstruktur eingebunden, was später noch eingehend diskutiert wird. Es sitzt in einer Lücke, die etwas zu groß ist, und die deswegen zwei unterschiedliche Besetzungsvarianten aufnehmen kann. Es gelingt die Verfeinerung anisotroper Auslenkungsparameter für alle "Nichtwasserstoffatome" inklusive der Split-Atome. Alle Wasserstoffatome der 1,7-Diammonioheptan-Ionen werden mittels eines "Reiter-Modells" mit einem gemeinsamen H-Atome jeder isotropen U_{iso}-Wert für die Gruppe in die abschließende Verfeinerungsrechnung einbezogen.

Empirische Formel	$C_{22}H_{30}N_6O_2Cl_{12}Mo_2$
Molmasse [g/mol]	1028.80
Kristalldimensionen [mm ³]	0.064 x 0.29 x 0.51
Farbe, Habitus	grün, transparent, tafelig
Raumgruppe	$P \overline{1}$
Gitterkonstanten	a = 10.199(2) Å
	b = 10.557(2) Å
	c = 11.062(2) Å
	$\alpha = 106.47(3)^{\circ}$
	$\beta = 90.24(3)^{\circ}$
	$\gamma = 93.81(3)^{\circ}$
Volumen / Z	1139(3) Å ³ / 1
Röntg. Dichte [g/cm ³]	1.499
Temperatur [K]	293
CCD-Diffraktometer	$\lambda = 0.71073$ Å
Absorptionskoeffizient [1/mm]	1.28
F(000)	509
20-Bereich	2.36-25.00 °
Indexgrenzen	$-12 \le h \ge 12$
	$-12 \le k \ge 12$
	$-13 \le 1 \ge 13$
Zahl der gemessenen Reflexe	10367
Zahl der unabhängigen Reflexe	3961 (R _{int} =0.0504)
Zahl der beobachteten Reflexe	3432 (I≥2.0σ(I))
Zahl der Reflexe / Parameter / Restraints	3961 / 245 / 15
GOOF	1.21
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0498, \ wR_2 = 0.1517^{11}$
R-Werte (sämtlicher Daten)	$R_1 = 0.0574, wR_2 = 0.1674$
$\Delta ho_{ m max.}$ / $\Delta ho_{ m min.}$ [eÅ ⁻³]	1.530 / -0.983
Vollständigkeit [%]	98.8
¹⁾ $R_1 = \Sigma F_o - F_c \Sigma F_o ; wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] \Sigma w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] mit P = (F_o^2 + 2F_c^2)/3$	$[(wF_o^2)^2]]^{1/2};$

Tabelle 3.4.1.1 Daten zur Datensammlung und Strukturbestimmung von 4

3.4.2 Diskussion der Kristallstruktur von 4

4 kristallisiert in der triklinen Raumgruppe P $\overline{1}$. Das $[Mo(O)Cl_5]^{2^-}$ -Ion liegt auf einer allgemeinen Lage. Wie schon bei den vorherigen Strukturen besprochen, weicht auch hier die Anordnung der Chloro- und des Oxoliganden um das zentrale Mo^V-Atom für sich genommen nur leicht von der oktaedrischen Geometrie ab, wobei das Molybdänzentralatom deutlich aus dem Zentrum des Oktaeders herausgerückt ist, so dass der Komplex angenähert C_{4V}-Symmetrie^[27] besitzt. Die Mo-Cl-

Bindungen sind von sehr unterschiedlicher Stärke. Die Bindung vom Mo-Atom zum zur Oxogruppe *trans*-stehenden Chloroligand ist, in guter Übereinstimmung mit Literaturwerten^[58], mit 2.7067(12) Å länger als die Bindungen zu den anderen vier Chloroliganden, deren Längen im Bereich von 2.3654(11) Å bis 2.3951(11) Å liegen. Das Anion wird von drei Ammoniogruppen über Wasserstoffbrückenbindungen koordiniert, wobei Cl14 ein zweifacher Akzeptor ist (Abb. 3.4.2.1). Ausgewählte Abstände und Winkel sind in Tabelle 3.4.2.1 aufgeführt.

Im Festkörper von 4 besetzen die 1,7-Diammonioheptan-Kationen zwei kristallographisch unabhängige Lagen. Abbildung 3.4.2.2 zeigt das Ion einer dieser Lagen, von dem aus jede

 NH_3 -Gruppe jeweils drei Wasserstoffbrücken zu dem "freien" Chloridion bzw. zu den Chloroliganden des $[Mo(O)Cl_5]^2$ -Ions ausbildet. Die Bindungslängen und Winkel des Kations liegen im Erwartungsbereich^[59] und ihre Werte werden ebenfalls in Tabelle 3.4.2.1 festgehalten.

Die Diammonium-Kationen der zweiten Lage sind, wie oben bereits erwähnt,

fehlgeordnet. Sie sind im Vergleich zu den Kationen der zuerst genannten Lage nur schwach in das Wasserstoffbrückensystem eingebunden; sie bilden nur jeweils eine Wasserstoffbrückenbindung zu "freien" Chloridionen aus. Genau zwischen den Teillagen C11 und C11^X liegt ein Inversionszentrum, wodurch der jeweils zweite Teil der Kette erzeugt wird.

Das nicht komplexgebundene Chloridion wird im Festkörper von vier NH₃-Gruppen umgeben (Abb. 3.4.2.3). Ihre N-Atome beschreiben eine nahezu quadratisch-planare Koordinationsfigur um das Chloridion und sind, gemessen am N-Cl-Abstand von 3.19 Å bis 3.43 Å, als Akzeptoren für mittelstarke Wasserstoffbrückenbindung zu bezeichnen.

Tabelle 3.4.2.1 Ausgewählte Bindungslängen [Å], Bindungswinkel [°] und Torsionswinkel [°] (N-H = 0.89 Å, C-H = 0.97 Å) in 4

Mo1-O11	1.652(3)	N1-C1	1.489(5)
Mo1-Cl12	2.3654(11)	N2-C7	1.499(5)
Mo1-Cl11	2.3742(13)	C1-C2	1.482(5)
Mo1-Cl13	2.3794(13)	C8-N3	1.267(10)
Mo1-Cl14	2.3951(11)	C9-C10	1.511(13)
Mo1-Cl15	2.7067(12)	C8'-N3	1.493(11)
		C8'-C9'	1.511(14)
		C9'-C10'	1.505(13)
O11-Mo1-Cl15	177.61(11)	C2-C1-N1	113.4(3)
Cl12-Mo1-Cl11	89.87(4)	C1-C2-C3	112.2(3)
Cl12-Mo1-Cl13	89.14(4)	C3-C4-C5	113.0(3)
Cl11-Mo1-Cl13	166.43(4)	C7-C6-C5	111.6(3)
Cl12-Mo1-Cl14	166.48(5)	C6-C7-N2	111.3(3)
Cl11-Mo1-Cl14	89.77(4)	N3-C8-C9	115.8(10)
Cl13-Mo1-Cl14	88.05(4)	C8-C9-C10	108.9(10)

Cl12-Mo1-Cl15	84.11(5)	C9-C10-C11	112.1(8)
Cl11-Mo1-Cl15	83.94(5)	N3-C8'-C9'	122.1(9)
Cl13-Mo1-Cl15	82.50(4)	C10'-C9'-C8'	111.7(10)
Cl14-Mo1-Cl15	82.42(4)	C8-N3-C8'	47.3(6)
N1-C1-C2-C3	173.9(3)	N3-C8-C9-C10	-169.9(8)
C1-C2-C3-C4	-175.1(3)	C8-C9-C10-C11	179.8(7)
C3-C4-C5-C6	-172.8(4)	N3-C8'-C9'-C10'	178.6(8)
C4-C5-C6-C7	-179.6(4)	C9-C8-N3-C8'	-2.3(7)
C5-C6-C7-N2	-174.7(4)	C9'-C8'-N3-C8	15.2(9)

Die Packung kann als Abfolge von zwei unterschiedlichen, senkrecht zur kristallographischen a-Achse gestapelten Schichten beschrieben werden (Abb. 3.4.2.5). Schichten, die und die in 1,7-Pentachlorooxomolybdationen allgemeiner Lage befindlichen Diammonioheptan-Dikationen enthalten, wechseln mit Schichten ab, die nur die fehlgeordnete Dikationen enthalten. Eine Variante der Kationen ist parallel zu den Schichten ausgerichtet, die andere Variante ist entlang der Stapelrichtung orientiert. Vergleicht man die Anordnung der Dikationen in dieser Substanz mit der im 1,7-Diammonioheptandihydrochlorid^[59] kann man die Stapelung zweier unterschiedlicher Schichten entlang der kristallographischen a-Achse als Gemeinsamkeit erkennen. Während in der Struktur des Dihydrochlorids die eine Schicht positiv geladen ist und die andere Schicht aus freien Chloridionen besteht, liegt in der hier vorliegenden Packung keine konsequente Trennung von "Anionen- und Kationenschicht" vor. Im Vergleich zu Verbindung [H₃N(CH₂)₇NH₃]Cl₂^[59], ist im konkreten Fall ein "Aufbruch" der Festkörperstruktur zu erkennen. Durch den Einbau der "großen" komplexen Anionen werden die Diammonium-Kationen gezwungen, ein andersartiges Baumuster zu bilden und die $[Mo(O)Cl_5]^2$ -Ionen einzulagern.

Tabelle 3.4.2.2 Daten zum Wasserstoffbrücken-System von 4, Abstände [Å], Winkel [°]

D-H A	d(D-H)	d(H A)	$d(D^{-}A)$	<(DHA)
N1-H11 Cl14 ^{II}	0.89	2.43	3.272(4)	157.4
N1-H12 Cl1 ^{III}	0.89	2.32	3.175(3)	161.7
N1-H13 Cl14 ^{IV}	0.89	2.66	3.266(3)	126.5
N2-H21 Cl13 ^V	0.89	2.53	3.321(3)	149.1
N2-H22 Cl1 ^{VI}	0.89	2.44	3.313(4)	168.6
N2-H23 Cl1 ^V	0.89	2.31	3.198(3)	179.0
N3-H32 C11 ^{II}	0.89	2.64	3.431(6)	148.5
Symmetrie-Codierung:	(I): -x-1,-y-2,-z-1; (II)	: -x,-y-1,-z-1; #3 -x,-	-y,-z-1; (IV): x-1,y-1	,z-1; (V): x,y-1,z

(I): -x-1,-y-2,-z-1; (II): -x,-y-1,-z-1; #3 -x,-y,-z-1; (IV): x-1,y-1,z-1; (V): x,y-1,z; (VI): -x,-y,-z.

3.5 Synthese und Kristallstruktur von Tris(1,8-diammoniooktan)-

bis[pentachlorooxomolybdat(V)]-dichlorid,

 $[H_3N(CH_2)_8NH_3]_3[Mo(O)Cl_5]_2Cl_2$ (5)

3.5.1 Darstellung und Kristallstrukturbestimmung von 5

Zur Synthese von **5** wird eine salzsaure Lösung von 1,8-Diaminooktan mit einer salzsauren MoCl₅-Lösung versetzt. Innerhalb von drei Tagen wachsen aus der Mischung grüne, transparente Plättchen mit rhomboedrischer Grundfläche. Die Kristalle sind an Luft instabil und verwittern innerhalb weniger Stunden. Unter einem Polarisations-Mikroskop wird ein geeigneter Einkristall, der keine Verwachsungen oder Verwitterungsnarben aufweist, ausgewählt und zur Durchführung eines Röntgenbeugungsexperiments auf dem IPDS in eine Glaskapillare eingeschlossen.

Die Struktur von 5 wird mit der Patterson-Methode gelöst und das Strukturmodell durch mehrere aufeinander folgende Δ F-Synthesen vervollständigt. Alle Wasserstoffatome werden mit Hilfe des "Reiter-Modells" mit einem gemeinsamen isotropen U_{iso}-Wert für die H-Atome jeder Gruppe beim F_o²/F_c²-Vergleich einbezogen. Alle wichtigen Daten zur Diffraktormetermessung und zur Kristallstrukturbestimmung sind in Tabelle 3.5.1.1 aufgeführt.

Tabelle 3.5.1.1 Daten zur Kristallstrukturbestimmung von **5**

Empirische Formel	$C_{12}H_{33}N_3OCl_{16}Mo$
Molmasse [g/mol]	544.05
Kristalldimensionen [mm ³]	0.042 x 0.13 x 0.41
Farbe, Habitus	grün, transparent, tafelig
Raumgruppe	$P2_{1}/n$
Gitterkonstanten	a = 12.979(3) Å
	b = 18.441(4) Å
	c = 10.004(2) Å
	$\alpha = 90.00$ °
	$\beta = 99.57(3)^{\circ}$
	$\gamma = 90.00$ °
Volumen / Z	2361.2(8) Å ³ / 4
Röntg. Dichte [g/cm ³]	1.530
Temperatur [K]	293
STOE IPDS	$\lambda = 0.71073 \text{ \AA}$
Absorptionskoeffizient [1/mm]	1.24
F(000)	1112
20-Bereich	2.34 - 25.00 °
Indexgrenzen	$-15 \le h \ge 15$
	$-21 \le k \ge 21$
	-11 ≤1≥11
Zahl der gemessenen Reflexe	30409
Zahl der unabhängigen Reflexe	4136 (R _{int} =0.1112)
Zahl der beobachteten Reflexe	2800 (I≥2.0σ(I))
Zahl der Reflexe / Parameter / Restraints	4136 / 208 / 0
GOOF	0.833
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0339, \ wR_2 = 0.0734^{11}$
R-Werte (sämtlicher Daten)	$R_1 = 0.0520, wR_2 = 0.0752$
$\Delta ho_{ m max.}$ / $\Delta ho_{ m min.}$ [eÅ ⁻³]	0.849 / -0.245
Vollständigkeit [%]	99.6
¹⁾ $R_1 = \Sigma F_o - F_c / \Sigma F_o ; wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [(w W = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] mit P = (F_o^2 + 2F_c^2) / 3$	$[F_o^2)^2]]^{1/2};$

3.5.2 Diskussion der Kristallstruktur von 5

In 5 liegt das Pentachlorooxomolybdat-Anion erwartungsgemäß auf einer allgemeinen Lage und ist über Wasserstoffbrückenbindungen durch vier Ammoniogruppen koordiniert, wobei jeweils eine Ammoniogruppe von Cl11 und Cl13 Wasserstoffbrückenbindungen über gebunden wird und zwei Ammoniumgruppen vom Cl15 über zwei Wasserstoffbrückenbindung koordiniert Die Mo-Clwerden. bzw. Mo-O-Bindungslängen und die Bindungswinkel liegen in den gleichen Größenordnungen wie

die Bindungslängen und -winkel in den schon vorher besprochenen Verbindungen.

Die beiden kristallographisch unabhängigen 1,8-Diammoniooktan-Dikationen unterscheiden sich in ihrer Konformation. Wie Abbildung 3.5.2.2 zu entnehmen ist, liegt eines der 1,8-Diammoniooktan-Kationen bis zum C7 als Zickzack-Kette vor, ab dem C8 ist die Kette um einen Winkel von 65° aus der Ebene herausgedreht. Die beiden Stickstoffatome werden über ihre H-Atome durch Wasserstoffbrückenbindungen von jeweils zwei freien Chloridionen und einem Chloratom des Pentachloromolybdat-Anions koordiniert. Das andere Kation liegt in Form einer regelmäßigen Zickzack-Kette auf einer zweizähligen Achse. Auch dieses Diammonium-Kation ist durch Wasserstoffbrückenbindungen an insgesamt vier zur

Oxogruppe *trans*-ständige Chloroliganden koordiniert. Die Bindungslängen in beiden Kationen stimmen mit in der Literatur gefundenen Werten für C-H- und C-N-Bindungslängen überein.^[60]

Tabelle 3.5.2.1 Ausgewählte Bindungslängen [Å], Bindungswinkel [°] und Torsionswinkel [°]
(N-H = 0.89 Å, C-H = 0.97 Å) in 5	

Mo1-O11	1.650(2)	N1-C1	1.480(4)
Mo1-Cl11	2.3638(11)	N2-C8	1.485(4)
Mo1-Cl14	2.3758(10)	N3-C9	1.485(4)
Mo1-Cl12	2.3985(10)	C1-C2	1.502(4)
Mo1-Cl13	2.4068(12)	C3-C4	1.508(4)
Mo1-Cl15	2.7456(9)	C7-C8	1.504(5)
		C10-C11	1.515(5)
O11-Mo1-Cl15	177.25(10)	N1-C1-C2	112.6(3)
Cl11-Mo1-Cl14	88.66(4)	C1-C2-C3	112.4(3)
Cl11-Mo1-Cl12	90.06(4)	C4-C3-C2	115.2(3)
Cl14-Mo1-Cl12	165.19(3)	C3-C4-C5	113.4(3)
Cl11-Mo1-Cl13	166.17(3)	C6-C5-C4	114.4(3)
Cl14-Mo1-Cl13	89.30(3)	C5-C6-C7	114.4(3)
Cl12-Mo1-Cl13	88.43(3)	C8-C7-C6	112.9(3)
Cl11-Mo1-Cl15	85.00(3)	N2-C8-C7	111.2(3)
Cl14-Mo1-Cl15	83.63(3)	N3-C9-C10	111.8(3)
Cl12-Mo1-Cl15	81.56(3)	C9-C10-C11	112.9(3)
Cl13-Mo1-Cl15	81.18(3)	C10-C11-C12	113.0(3)
N1-C1-C2-C3	-177.3(3)	C5-C6-C7-C8	-65.1(4)
C1-C2-C3-C4	-178.7(3)	C6-C7-C8-N2	-177.9(3)
C2-C3-C4-C5	-180.0(3)	N3-C9-C10-C11	-173.7(3)
C3-C4-C5-C6	-171.3(3)	C9-C10-C11-C12	173.2(3)
C4-C5-C6-C7	-177.6(3)		

Das "freie" Chloridion in der Kristallstruktur ist von vier NH₃-Gruppen umgeben. Diese spannen eine stark verzerrt tetraedrische Koordinationsfigur um das Chloridion auf. Gemessen am N-Cl-Abstand von 3.17 Å bis 3.26 Å sind die Bausteine durch mittelstarke Wasserstoffbrückenbindungen verknüpft (Abb. 3.5.2.3).

Bei einem Blick auf die Packung der Bausteine in **5** (Abb. 3.5.2.4) sind zwei unterschiedliche Schichten senkrecht zur kristallographischen *b*-Achse zu erkennen.

Die zickzackförmigen Dikationen, die keine regelmäßige all-*trans* Form bilden, verbinden über schwache Wasserstoffbrückenbindungen zwei [Mo(O)Cl₅]²⁻-Oktaeder über die zum Oxoliganden *trans*-ständigen Cl-Atome. Die andere Schichtart wird aus verdrillten Kationen und den freien Cl⁻-Ionen gebildet, wobei sich in der Projektion in Blickrichtung [001] die Alkylketten überkreuzen. In der hier beschriebenen Verbindung liegen konformativ zwei unterschiedliche Kationen vor. Im Vergleich zu der Verbindung 1,8-Diammoniooktan-dihydrochlorid^[61], die nur aus einer Konformation des 1,8-Diammoniooktan-Kations besteht, kann festgestellt werden, dass sich die Kationen der Festkörperstruktur bezüglich der Konformation in dem hier beschriebenen Fall dem komplexen Kation anpassen. Somit handelt es sich um flexible Bausteine im Sinne des Crystal Engineerings.

Tabelle 3.5.2.2 Daten zum Wasserstoffbrücken-System von 5, Abstände [Å], Winkel [°]

d(D-H)	$d(H^{}A)$	$d(D^{\cdot\cdot\cdot}A)$	<(DHA)
0.89	2.41	3.261(3)	159.1
0.89	2.41	3.279(3)	165.8
0.89	2.51	3.360(3)	161.1
0.89	2.32	3.178(3)	161.9
0.89	2.40	3.275(3)	169.7
0.89	2.45	3.330(3)	170.5
0.89	2.47	3.341(3)	164.5
0.89	2.45	3.314(3)	165.2
	d(D-H) 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89	d(D-H)d(H A)0.892.410.892.410.892.510.892.320.892.400.892.450.892.470.892.45	d(D-H)d(H A)d(D A)0.892.413.261(3)0.892.413.279(3)0.892.513.360(3)0.892.323.178(3)0.892.403.275(3)0.892.453.330(3)0.892.473.341(3)0.892.453.314(3)

Symmetrie-Codierung:

(I): x-1,y,z; (II): x-1,-y+3/2,z-1/2; (III): x,-y+3/2,z-1/2; (IV): -x+1,-y+1,-z+1; (V): x,y,z-1.

3.6 Synthese und Kristallstruktur von Tris(1,9-diammoniononan)bis[aquatetrachlorooxomolybdat(V)]-tetrachlorid, [H₃N(CH₂)₉NH₃]₃[H₂OMo(O)Cl₄]₂Cl₄ (6)

3.6.1 Darstellung und Kristallstrukturbestimmung von 6

Aus der Mischung einer salzsauren 1,9-Diaminiononanlösung mit in Salzsäure gelöstem $MoCl_5$ können durch Verdampfung des Lösemittels bei Raumtemperatur grüne, plättchenförmige Kristalle erhalten werden. Der Strukturbestimmung von **6** werden die Daten des bei Raumtemperatur durchgeführten Einkristall-Röntgenbeugungsexperiments zu Grunde gelegt. Auf Basis dieser Daten wird die Struktur mittels Direkter Methoden gelöst. Die Positionen der Nicht-Wasserstoffatome werden durch sukzessive ΔF -Synthesen ermittelt und erst mit isotropen, dann mit anisotropen Auslenkungsparametern verfeinert. Anschließend können die Positionen der Wasserstoffatome des Aqualiganden durch Begrenzung auf unterschiedliche Θ_{max} -Werte (30 °, 35 °, 40 °) in der ΔF -Synthese herausgearbeitet und unter Berücksichtigung sinnvoller Donor-Akzeptor-Abstände festgelegt werden. Alle anderen Wasserstoffatome werden mit Hilfe des "Reiter-Modells" mit einem gemeinsamen isotropen U_{iso}-Wert für die H-Atome jeder Gruppe einbezogen. Als Ergebnis der Kristallstrukturanalyse ergibt sich folgende Formel: [H₃N(CH₂)₉NH₃]₃[H₂OMo(O)Cl₄]₂Cl₄ (**6**). Weitere Einzelheiten sind Tabelle 3.6.1.1 zu entnehmen.

Empirische Formel	$C_{27}H_{76}N_6O_4Cl_{12}Mo_2$
Molmasse [g/mol]	1166.22
Kristalldimensionen [mm ³]	0.062 x 0.212 x 0.52
Farbe, Habitus	grün, transparent, tafelig
Raumgruppe	$P \overline{1}$
Gitterkonstanten	a = 12.374(3) Å
	<i>b</i> = 14.517(3) Å
	c = 15.163(3) Å
	$\alpha = 104.01(3)^{\circ}$
	$\beta = 92.55(3)^{\circ}$
	$\gamma = 90.16(3)^{\circ}$
Volumen / Z	2639.9(9) Å ³ / 2
Röntg. Dichte [g/cm ³]	1.467
Temperatur [K]	293
STOE IPDS	$\lambda = 0.71073$ Å
Absorptionskoeffizient [1/mm]	1.12
F(000)	1200
20-Bereich	$2.10-25.00~^{\circ}$
Indexgrenzen	$-14 \le h \ge 14$
	$-17 \le k \ge 17$
	$-18 \le l \ge 18$
Zahl der gemessenen Reflexe	34763
Zahl der unabhängigen Reflexe	8759 (R _{int} =0.0602)
Zahl der beobachteten Reflexe	6304 (I≥2.0σ(I))
Zahl der Reflexe / Parameter / Restraints	8759 / 479 / 6
GOOF	0.988
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0502, \ wR_2 = 0.1485^{11}$
R-Werte (sämtlicher Daten)	$R_1 = 0.0612, wR_2 = 0.1529$
$\Delta ho_{max.} / \Delta ho_{min.} [e \text{\AA}^{-3}]$	3.077 / -0.350
Vollständigkeit [%]	94.2
¹⁾ $R_1 = \Sigma F_o - F_c / \Sigma F_o ; wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma w = 1 / [\sigma^2 (F_o^2) + (aP)^2 + bP] mit P = (F_o^2 + 2 F_c^2) / 3$	$[(wF_o^2)^2]]^{1/2};$

Tabelle 3.6.1.1 Daten zur Datensammlung und Strukturbestimmung von 6

3.6.2 Diskussion der Kristallstruktur von 6

Die Verbindung **6** kristallisiert in der Raumgruppe P 1. Als Einzelbausteine sind $[(H_2O)Mo(O)Cl_4]^-$, $[H_3N(CH_2)_9NH_3]^{2+}$ und Cl⁻ zu nennen, wobei die asymmetrische Einheit der Kristallstruktur so gewählt wird, dass sie zwei vollständige kristallographisch unabhängige Aquatetrachlorooxomolybdat(V)-Anionen, drei kristallographisch unabhängige 1,9-Diammoniumnonan-Kationen und vier freie Chloridionen enthält.

Nur einer der vier Chloroliganden des einen komplexen Anions mit Mo1 (Abb. 3.6.2.1) eine Wasserstoffgeht brückenbindung zu einer Ammoniogruppe ein. Der komplexgebundene Aqualigand ist über seine zwei Wasserstoffatome mit Wasserstoffbrückenbindungen zu zwei freien Chloridionen "koordinativ" abgesättigt.

Auch die Liganden des komplexen Anions mit Mo2 sind nicht alle mit H-Brücken involviert, wobei sich jedoch hier die

Wasserstoffbrückensituation etwas unterscheidet. In diesem Fall sind drei der vier Chloroliganden in das Wasserstoffbrückensystem einbezogen, der Oxoligand nicht und der

Aqualigand nur über H222. Die Mo-Obzw. Mo-Cl-Bindungslängen liegen bei beiden komplexen Anionen im Bereich von 2.288(3) Å bis 2.3918(14) Å und die Mo1-O11- bzw. Mo2-O12-Bindungslänge beträgt 1.642(3) Å bzw. 1.637(3) Å. Diese Werte stimmen mit den Werten, die bei den übrigen Strukturen gefundenen werden, überein. Die einzelnen Werte sind der Tabelle 3.6.2.1 zu entnehmen.

Als weitere Bausteine sind die Diammoniononan-Kationen näher zu

betrachten. In Abbildung 3.6.2.3 sind alle drei kristallographisch unabhängigen

[H₃N(CH₂)₉NH₃]²⁺-Ionen dargestellt. Ihre Bindungslängen stimmen mit den Bindungslängen des Dikations in anderen Verbindungen überein.^[60] Hinsichtlich der Konformationen ist festzuhalten, dass es sich zweimal um die für die hier untersuchten Strukturen am häufigsten aufgefundene all-*trans*-Konformation handelt und ein Vertreter in der S-förmigen-Konformation vorliegt. Es werden Wasserstoffbrückenbindungen nicht nur zu freien Chloridionen ausgebildet, sondern überwiegend zu den Chloroliganden der komplexen Anionen, so dass insbesondere die zwei kristallographisch unabhängigen Anionen durch die S-förmigen Kationen koordiniert werden. Die hier dargestellten Kationen sind fester Bestandteil des supramolekularen Systems in dieser Verbindung, da sie über jede N-H-Bindung eine Funktion im Wasserstoffbrückensystem einnehmen und damit vollständig durch nichtkovalente Wechselwirkungen abgesättigt sind.

Bis auf eine Wasserstoffbrücke, und zwar N3-H32^{...}Cl24, sind alle Wasserstoffbrückenbindungen, auf Grund ihres D^{...}H-Abstandes (Tab. 3.6.2.2), als mittel stark bis schwach einzuordnen.

Um das supramolekulare System vollständig zu analysieren, müssen schließlich auch die Wasserstoffbrückenbindungen der freien Chloridionen betrachtet werden. Drei von den vier kristallographisch unabhängigen Chloridionen sind Bestandteile eines zweidimensionalen Netzwerkes in der Ebene a/b. Cl1, Cl2 und Cl4 spannen durch ihre Wasserstoffbrückenbindungen ein Ringmotiv auf, wobei mit zwei Akzeptoren (die Chloridionen) und vier Donatoren (die Wasserstoffatome der Ammoniumgruppen) insgesamt acht Atome in dieses

Motiv eingebunden sind und es so mit dem Deskriptor $R^{2}_{4}(8)^{[24]}$ benannt werden kann. An dieser Vernetzung, die über das beschriebene Wasserstoffbrückenmotiv organisiert ist, sind alle sechs in dieser Struktur vorhandenen Ammoniogruppen beteiligt, so dass von einem Zusammenhalt organischen der Einzelbausteine gesprochen werden kann. Zusätzlich bildet Cl1 eine Wasserstoffbrückenbindung zum Aqualiganden des Komplexes mit dem Zentralatom Mo2 aus.

Cl3 wird von drei Ammoniogruppen koordiniert und von den Aqualiganden zweier symmetrieäquivalenter komplexer Anionen. Die intermolekularen Wechselwirkungen sind höchstens als mittelstark weil der einzuordnen, Donator-Akzeptor-Abstand einen Wert von nicht 3.319(4) Å überschreitet.

(N-H = 0.89 Å, C-H = 0.97 Å) in 6				
Mo1-O11	1.642(3)	N1-C1	1.480(5)	
Mo1-O12	2.288(3)	N3-C10	1.493(8)	
Mo1-Cl14	2.3362(13)	N5-C19	1.474(5)	
Mo1-Cl11	2.3673(13)	C1-C2	1.502(6)	
Mo1-Cl12	2.3731(14)	C5-C6	1.528(6)	
Mo1-Cl13	2.3918(14)	C7-C8	1.509(6)	
Mo2-O21	1.637(3)	C10-C11	1.525(10)	
Mo2-O22	2.304(3)	C14-C15	1.521(9)	
Mo2-Cl23	2.3572(14)	C16-C17	1.520(8)	
Mo2-Cl24	2.3602(14)	C19-C20	1.503(6)	
Mo2-Cl21	2.3757(14)	C23-C24	1.524(6)	
Mo2-Cl22	2.3822(13)	C25-C26	1.508(6)	
O11-Mo1-O12	177.77(14)	N1-C1-C2	112.1(3)	
Cl11-Mo1-Cl12	89.54(6)	C2-C3-C4	113.3(4)	
Cl14-Mo1-Cl13	88.25(6)	C8-C7-C6	115.0(4)	
Cl11-Mo1-Cl13	87.41(6)	N2-C9-C8	113.1(3)	
Cl12-Mo1-Cl13	162.65(5)	N3-C10-C11	115.8(7)	
O21-Mo2-O22	177.50(15)	C12-C11-C10	120.8(7)	
Cl23-Mo2-Cl24	89.48(6)	C11-C12-C13	116.2(8)	
Cl23-Mo2-Cl21	162.59(5)	N4-C18-C17	111.8(5)	
Cl24-Mo2-Cl21	88.95(6)	N5-C19-C20	111.8(3)	
Cl23-Mo2-Cl22	88.29(6)	C19-C20-C21	111.9(3)	
Cl24-Mo2-Cl22	163.79(5)	N6-C27-C26	112.9(3)	
N1-C1-C2-C3	178.2(4)	C12-C13-C14-C15	176.0(5)	
C2-C3-C4-C5	178.6(5)	C14-C15-C16-C18	-76.0(8)	
C4-C5-C6-C7	176.4(5)	N4-C18-C17-C16	171.5(4)	
C6-C7-C8-C9	176.5(4)	C15-C16-C17-C18	-75.6(8)	
N3-C10-C11-C12	76.6(10)	N5-C19-C20-C21	178.9(4)	
C10-C11-C12-C13	64.9(11)	C20-C21-C22-C23	179.8(5)	
C11-C12-C13-C14	-169.6(7)	C22-C23-C24-C25	177.3(5)	

Tabelle 3.6.2.1 Ausgewählte Bindungslängen Å], Bindungswinkel [°] und Torsionswinkel [°]

Die Packung von **6** ist in Abbildung 3.6.2.5 in Blickrichtung entlang *b* dargestellt. Die Einzelbausteine der Verbindung bilden in der Packung kleinere "Päckchen", wobei die zwei parallel angeordneten all-*trans*-Konformere der Dikationen die Päckchen nach oben und unten abgrenzen. Das S-förmige-Konformer umschlingt die beiden gestreckten Dikationen. Es fungiert wie eine Art Linearspacer zwischen zwei organischen Schichten. In den so entstehenden Hohlräumen liegen die anionischen Komplexe.

Tabelle 3.6.2.2 Daten zum Wasserstoffbrücken-System von 6, Abstände [Å], Winkel [°]

D-H A	d(D-H)	d(H A)	d(D A)	<(DHA)
O12-H121 Cl3 ^I	0.81(4)	2.41(3)	3.086(3)	141(4)
O12-H122 Cl3	0.82(3)	2.29(5)	3.104(3)	168(5)
O22-H222 Cl1 ^{II}	0.82(3)	2.29(4)	3.110(3)	175(5)
N1-H11 Cl4 ^{III}	0.89	2.43	3.311(4)	170.2
N1-H12 Cl3 ^{IV}	0.89	2.47	3.319(4)	159.1
N1-H13 Cl4 ^V	0.89	2.41	3.287(4)	168.3
N2-H21 Cl4 ^{VI}	0.89	2.75	3.456(4)	137.7

N2-H22 Cl1 ^V	0.89	2.49	3.359(5)	167.0
N2-H23 Cl2 ^{VII}	0.89	2.34	3.218(4)	169.9
N3-H31 Cl4 ^V	0.89	2.43	3.305(5)	169.3
N3-H32 Cl24 ^V	0.89	2.81	3.661(5)	160.7
N3-H33 Cl13 ^{III}	0.89	2.40	3.275(4)	168.1
N4-H41 Cl3	0.89	2.36	3.205(4)	157.8
N4-H42 Cl2 ^{VIII}	0.89	2.40	3.196(4)	148.8
N4-H43 Cl22 ^{VIII}	0.89	2.55	3.369(4)	153.6
N5-H51 Cl2 ^{VIII}	0.89	2.44	3.304(4)	163.3
N5-H52 Cl1 ^{IX}	0.89	2.42	3.292(4)	165.5
N5-H53 Cl2	0.89	2.36	3.235(4)	169.1
N6-H61 Cl2 ^X	0.89	2.62	3.360(4)	140.7
N6-H62 C13 ^{XI}	0.89	2.29	3.179(4)	173.2
N6-H63 Cl4 ^{IX}	0.89	2.38	3.236(4)	162.2

Symmetrie-Codierung:

(I): -x,-y+1,-z; (II): -x-1,-y,-z-1; (III): -x,-y+1,-z+1; (IV): -x+1,-y+1,-z+1; (V): x+1,y,z+1; (VI): x+1,y,z; (VII): -x+1,-y,-z; (VIII): -x,-y,-z; (IX): -x,-y,-z-1; (X): x,y,z-1; (XI): x,y-1,z-1.

3.7 Synthese und Kristallstruktur von Piperazinium-pentachlorooxomolybdat(V), [H₂N(C₂H₄)₂NH₂][Mo(O)Cl₅] (7)

3.7.1 Darstellung und Kristallstrukturbestimmung von 7

Aus einer Mischung von Lösungen, die aus Molybdän(V)-chlorid bzw. Piperazin mit konzentrierter Salzsäure hergestellt wird, sind durch Verdampfung des Lösungsmittels bei Raumtemperatur grüne, plättchenförmige Kristalle zu erhalten. Die Durchführung eines Einkristall-Röntgenbeugungsexperimentes ergibt für diese Verbindung folgende strukturierte Formel: $[H_2N(C_2H_4)_2NH_2][Mo(O)Cl_5]$ (7).

Das Einkristall-Röntgenbeugungsexperiment zur Strukturbestimmung von 7 wird bei Raumtemperatur durchgeführt. Die Daten dieser Messung werden zur Lösung der Struktur in der Raumgruppe C2/c mittels Direkter Methoden genutzt. Der Baustein Piperazin begünstigt den centrosymmetrischen Aufbau. Im Vergleich zu Verbindung **8**, in der eine centrosymmetrische Raumgruppe nicht von dem verwendeten Amin unterstützt wird, lässt in diesem Fall die passende denkbare Eigensymmetrie des Bausteins diese Raumgruppe zu. Dadurch, dass die Bindung von Molybdän zum Oxoliganden des zweiten Bausteins der Verbindung **7** auf einer zweizähligen Achse liegt, ist der Festkörperstruktur die Raumgruppensymmetrie C2/c zuzuweisen. Aus sukzessiven Δ F-Synthesen ergeben sich die Koordinaten aller Nichtwasserstoffatome. Nach der Verfeinerung aller Nichtwasserstoffatome unter Verwendung anisotroper Auslenkungsfaktoren können die Wasserstoffatome der NH₂-Gruppen bei der Durchführung sukzessiver Δ F-Synthesen lokalisiert werden. Für die Verfeinerung der Wasserstoffatome der CH₂-Gruppen wird das "Reiter-Modell" angewendet. Die U_{iso}-Werte der Wasserstoffatome werden auf das 1,5-fache des äquivalenten isotropen Auslenkungsfaktors des betreffenden Kohlenstoffatoms gesetzt.

Weitere Einzelheiten zur Kristallstrukturbestimmung sind Tabelle 3.7.1.1 zu entnehmen.

Empirische Formel	C ₄ H ₁₂ N ₂ OCl ₅ Mo
Molmasse [g/mol]	377.3478
Kristalldimensionen [mm ³]	0.08 x 0.31 x 0.64
Farbe, Habitus	grün, transparent, tafelig
Raumgruppe	C2/c
Gitterkonstanten	a = 14.161(5) Å
	b = 7.925(2) Å
	c = 12.692(6) Å
	$\alpha = 89.66(3)^{\circ}$
	$\beta = 117.80(3)^{\circ}$
	$\gamma = 90.18(3)^{\circ}$
Volumen / Z	1260.0(8) Å ³ / 2
Röntg. Dichte [g/cm ³]	0.995
Temperatur [K]	293
STOE IPDS	$\lambda = 0.71073$ Å
Absorptionskoeffizient [1/mm]	1.03
F(000)	370
20-Bereich	$3.14-25.00\ ^{\circ}$
Indexgrenzen	$-16 \le h \ge 16$
	$-9 \le k \ge 9$
	$-15 \le 1 \ge 15$
Zahl der gemessenen Reflexe	6797
Zahl der unabhängigen Reflexe	2374 (R _{int} =0.0601)
Zahl der beobachteten Reflexe	6473 (I≥2.0σ(I))
Zahl der Reflexe / Parameter / Restraints	2374 / 62 / 0
GOOF	1.105
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0454, \ wR_2 = 0.1194^{11}$
R-Werte (sämtlicher Daten)	$R_1 = 0.0465, wR_2 = 0.1208$
$\Delta \rho_{\text{max.}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	0.511 / -1.505
Vollständigkeit [%]	99.7

Tabelle 3.7.1.1 Daten zur Datensammlung und Strukturbestimmung von 7

¹⁾ $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [(wF_o^2)^2]]^{1/2}; w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] mit P = (F_o^2 + 2F_c^2) / 3$

3.7.2 Diskussion der Kristallstruktur von 7

Die Verbindung 7 kristallisiert in der monoklinen Raumgruppe C2/c. Bei sinnvoller Wahl besteht die asymmetrische Einheit der Kristallstruktur aus einem halben

Pentachlorooxomolybdän(V)-Ion und einem halben Piperazinium-Kation. Das $[Mo(O)Cl_5]^2$ -Ion liegt auf einer zweizähligen (Wyckoff-Achse Notation 4e). Die Mo-Cl-Bindungslängen liegen im Bereich von 2.3408(10) Å bis 2.6456(10) Å und die Mo-O-Bindungslänge beträgt im Einklang mit den Erwartungen 1.654(3) Å. Das Ion ist von vier NH_2 -Gruppen umgeben, wobei alle fünf Chloroliganden Wasserstoffbrückenbindungen eingehen und Cl3 Wasserstoffbrückenbindungen ist.

Das auf einem Inversionszentrum befindliche Piperazinium-Dikation (Abb. 3.7.2.2) besitzt

Sessel-Konformation. Die Bindungslängen und Bindungswinkel entsprechen den Erwartungen.^[62, 63] In der Umgebung des inversionssymmetrischen Dikations stehen insgesamt vier Chloratome zur Bildung von Wasserstoffbrücken zur Verfügung. Entsprechend der C_i-Symmetrie ist auf beiden Seiten des Ions eine etwas stärkere und eine etwas schwächere N-H^{...}Cl-Wasserstoffbrückenbindung zu finden (Tab. 3.7.2.2).

Mo1-O11	1.654(3)	N1-C1	1.407(3)
Mo1-Cl11	2.3408(10)	N1-C2	1.493(3)
Mo1-Cl12	2.5110(15)	C1-C2 ¹	1.674(4)
Mo1-Cl13	2.6456(10)	C2-C1 ¹	1.674(4)
Cl11-Mo1-Cl12 ^{II}	77.44(4)	C1-N1-C2	112.98(18)
Cl11-Mo1-Cl12	101.34(4)	N1-C1-C2 ^I	113.3(2)
Cl12 ^{II} -Mo1-Cl12	170.69(3)	N1-C2-C1 ^I	109.1(2)
O11-Mo1-Cl13	180.0		
Cl12 ^{II} -Mo1-Cl13	85.55(4)	C2-N1-C1-C2 ¹	-55.2(3)
Cl12-Mo1-Cl13	85.14(4)	C1-N1-C2-C1 ^I	53.0(3)

Tabelle 3.7.2.1 Ausgewählte Bindungslängen [Å], Bindungswinkel [°] und Torsionswinkel [°] (N-H = 0.89 Å, C-H = 0.97 Å) in 7

Symmetrie-Codierung : (I): -x,-y+1,-z ; (II): -x,y,-z+1/2.

Der Festkörper besteht aus zwei verschiedenen Schichten, welche entlang der kristallographischen *c*-Achse gestapelt sind. Eine Schicht besteht aus den Dikationen, die andere Schicht aus den komplexen Anionen. Intermolekulare Wechselwirkungen zwischen der zweifach positiv und der zweifach negativ geladenen Schicht verbinden die unterschiedlichen Bausteine zu einem Hybridmaterial.

Wenn man die Kristallstruktur dieser Verbindung mit der Kristallstruktur des Piperaziniumdihydrochloridmonohydrats vergleicht, fällt auf, dass es auch bei dieser Verbindung zu einer Trennung von anorganischer und organischer Schicht kommt und ebenfalls zu einer positiven und negativen Ladung der Schichten.^[64, 65]

Tabelle 3.7.2.2 Daten zum Wasserstoffbrücken-System von 7, Abstände [Å], Winkel [°]

D-H A	d(D-H)	d(H A)	d(D A)	<(DHA)
N1-H11 Cl12 ^{II}	0.98	2.60	3.390(3)	137.8
N1-H11 Cl11 ^{III}	0.98	2.73	3.563(3)	143.5
N1-H12 Cl13 ^I	0.92	2.15	3.050(3)	166.4

Symmetrie-Codierung : (I): -x,-y+1,-z ; (III): -x+1/2,y+1/2,-z+1/2 ; (III): x+1/2,y+1/2,z.

 3.8 Synthese und Kristallstruktur von Bis(1-(2-ammonioethyl)-piperazinium)aquatetrachlorooxomolybdat(V)-pentachlorid,
 [(H₃NC₂H₄)HN(C₂H₄)₂NH₂]₂[H₂OMo(O)Cl₄]Cl₅ (8)

3.8.1 Darstellung und Kristallstrukturbestimmung von 8

Bei Verbindung 7 begünstigt die Gestalt des verwendeten Amins die Kristallisation in centrosymmetrischer Raumgruppe. Von Interesse ist nun, wie sich die Festkörperstruktur bei Reduktion der Symmetrie des Eduktes verändert.

Eine salzsaure Lösung von 1-(2-Aminoethyl)-piperazin wird mit einer salzsauren MoCl₅-Lösung im stöchiometrischen Verhältnis von 2:1, bezogen auf die gelösten Komponenten, vermischt und die innerhalb weniger Wochen gebildeten grünen, plättchenförmigen Kristalle werden aus der Lösung geerntet. Auch wenn die Kristalle äußerlich keinerlei Anzeichen einer Verzwillingung zeigen, stellt sich bei der röntgenographischen Untersuchung auf dem Stoe CCD-Diffraktometer heraus, dass die Kristalle der Verbindung [(H₃NC₂H₄)HN(C₂H₄)₂NH₂]₂[H₂OMo(O)Cl₄]Cl₅ offenbar ein typisches Beispiel für eine meroedrische Verzwillingung^[66] darstellen.

Das Zwillingselement gehört zwar zur Lauegruppe, aber nicht zur Punktgruppe des Kristalls. Es handelt sich um ein Inversionszentrum, so dass ein so genannter racemischer Zwilling vorliegt. Obwohl die Kristallqualität bzw. die mikroskopischen Voruntersuchungen keinen Grund zur Beanstandung geben, treten Probleme bei der Raumgruppenbestimmung und der Strukturlösung auf. Die Zusammensetzung der Substanz ist bei der Strukturlösung nicht exakt bekannt, aber es ist anzunehmen, dass der Kristall ein Komplexion mit zentralem Molybdänatom mit Oxo- und einigen Chloroliganden enthält.

Die Struktur lässt sich in der Raumgruppe P2₁/c lösen. Die Verfeinerung ergibt jedoch ein mangelhaftes Strukturmodell: Das Molybdän sitzt auf dem Inversionszentrum und lässt sich im Prinzip wie die Chloridionen lokalisieren. Jedoch sind die Oxogruppe und die Aquagruppe nicht zu identifizieren bzw. voneinander zu unterscheiden. Das Kation liegt auf einer

allgemeinen Lage. Die Verfeinerung ergibt schlechte Gütefaktoren, die Positionierung der H-Atome ist nicht möglich und eine Identifizierung des Oxo- und der Aqualigands ebenfalls nicht. Bei genauerer Analyse stellt sich heraus, dass ca. 100 Reflexe des Datensatzes der Auslöschungsbedingung der Gleitspiegelebene der Raumgruppe widersprechen. Ein Übergang von der Raumgruppe $P2_1/c$ in einer translationengleichen Untergruppe von Index 2 erfolgt durch Symmetriereduktion, in diesem Fall wäre das der Fortfall der Schraubenachse, der Gleitspiegelebene oder des Inversionszentrums. Dem t2-Übergang nach $P2_1$ folgend ergibt eine Strukturlösung und Verfeinerung ein neues, wohlgeordnetes Modell: Sowohl das Molybdänatom als auch die zwei Kationen liegen auf allgemeinen Lagen. Die H-Atome lassen sich finden und auch eine Identifikation von Oxo- und Aqualigand ist möglich.

Bei der Betrachtung des Flack-Parameters (0.55(4)) ergibt sich die Notwendigkeit, eine Inversionszwillingsverfeinerung vorzunehmen. Das Modell bleibt identisch. Jedoch sind Gütefaktoren und Restelektronendichte zwischen Mo-O signifikant kleiner geworden.

Das protonierte Amin bildet ein Wirtsgitter, in dessen Hohlräume die Komplexe eingelagert sind. In einem Zwillingsindividuum liegt der Oxoligand oben und der Aqualigand steht trans Im anderen Zwillingsindividuum ist die Anordnung von Oxo- und dazu nach unten. Aqualigand genau umgekehrt. So kommt es bei der Verfeinerung nicht unerwartet zu Problemen bei der Lokalisierung der Wasserstoffatome des Aqualiganden. Die Zwillingsverfeinerung unter Annahme der Additivität der Reflexintensität der Einzelindividuen ergibt ein Volumenverhältnis der Zwillingsdomänen von 54% zu 46%. Es

wird eine numerische Absorptionskorrektur vorgenommen, wonach sowohl der interne R-Wert als auch die Restelektronendichte deutlich sinken. Alle wichtigen Daten zur Diffraktormetermessung und Kristallstrukturbestimmung können Tabelle 3.8.1.1 entnommen werden.

Empirische Formel	$C_{12}H_{38}N_6O_2Cl_9Mo$
Molmasse [g/mol]	713.47
Kristalldimensionen [mm ³]	0.05 x 0.24 x 0.56
Farbe, Habitus	grün, transparent, tafelig
Raumgruppe	$P2_1$
Gitterkonstanten	a = 6.452(3) Å
	b = 16.373(7) Å
	c = 13.508(5) Å
	$\alpha = 90.00^{\circ}$
	$\beta = 92.20(3)^{\circ}$
	$\gamma = 90.00$ °
Volumen / Z	1425.9(11) Å ³ / 2
Röntg. Dichte [g/cm ³]	1.662
Temperatur [K]	293
CCD Diffraktometer	$\lambda = 0.71073$ Å
Absorptionskoeffizient [1/mm]	1.32
F(000)	726
20-Bereich	4.62 - 25.00 °
Indexgrenzen	$-7 \le h \ge 7$
	$-19 \le k \ge 19$
	$-16 \le 1 \ge 16$
Zahl der gemessenen Reflexe	10856
Zahl der unabhängigen Reflexe	4863 (R _{int} =0.0234)
Zahl der beobachteten Reflexe	4660 (I≥2.0σ(I))
Zahl der Reflexe / Parameter / Restraints	4863 / 318 / 6
GOOF	1.058
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0282, \ wR_2 = 0.0671^{10}$
R-Werte (sämtlicher Daten)	$R_1 = 0.0298, wR_2 = 0.0686$
$\Delta \rho_{max.} / \Delta \rho_{min.} \ [e \text{\AA}^{-3}]$	0.663 / -0.700
Vollständigkeit [%]	99.4
¹⁾ $R_1 = \Sigma F_o - F_c \Sigma F_o ; wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] \Sigma [(w) w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] mit P = (F_o^2 + 2F_c^2)/3$	$F_o^2)^2]]^{1/2};$

Tabelle 3.8.1.1 Daten zur Datensammlung und Strukturbestimmung von 8

3.8.2 Diskussion der Kristallstruktur von 8

Für die Kristallstruktur der Verbindung Bis(1-(2-ammonioethyl)piperazinium)aquatetrachlorooxomolybdat(V)-pentachlorid können folgende Bausteine der asymmetrischen Einheit definiert werden: ein $[H_2OMo(O)Cl_4]^2$ -Oktaeder, zwei kristallographisch unabhängige $[(H_3NC_2H_4)H_2N(C_2H_4)_2NH_2]^{3+}$ -Kationen und fünf über Wasserstoffbrückenbindungen

eingebundene Chloridionen. Alle Bestandteile liegen auf allgemeinen Lagen. Bei dem komplexen Anion handelt es sich bei dieser Verbindung erneut um die Spezies mit vier Chloroliganden und einem zum Oxoligand trans-stehenden Aqualigand. Die Bindungslängen zwischen Molybdän und den Chloratomen liegen zwischen 2.3635(16) Å und 2.3910(14) Å. Die Bindung zwischen Molybdän und dem O-Atom des Aqualiganden ist erwartungs-

gemäß etwas kürzer mit 2.273(3) Å und die Bindung zum Oxoliganden ist mit 1.697(3) Å die kürzeste. Der oktaedrische Komplex wird von zwei freien Chloridionen und einer Aquagruppe eines symmetrieäquivalenten Komplexes koordiniert. Abbildung 3.8.2.1 zeigt das Molybdänatom und seine komplexe Umgebung. Wie auch in den vorherigen Verbindungen weichen Anordnung der Chloroliganden und des Oxo- und Aqualiganden um

3.8.2.3 Die H-Donor-Umgebung der freien Chloridionen in **8** [Symmetrie-Codierung: (I): 1+x, y, z; (II): -1+x, y, z; (VII): 1-x, 0.5+y, 2-z; (VIII): 2-x, -0.5+y, 2-z; (IX): x, y, 1+z; (X): 2-x, 0.5+y, 1-z]

das zentrale Mo^V-Atom nur leicht von der oktaedrischen Geometrie ab. Die Bindungs- und

Winkelverhältnisse sind in Tabelle 3.8.2.1 dargestellt.

Die zwei 1-(2-Ammonioethylpiperazinium)-Kationen befinden sich in kristallographisch allgemeiner Lage, wobei sie jeweils von fünf Chloridionen umgeben sind und ihre zur Verfügung stehenden H-Atome sechs intermolekulare Wechselwirkungen in Form von Wasserstoffbrückenbindungen zu den ..freien" Chloridionen ausbilden. Die Ammoniumgruppen der Kationen können auf Grund ihrer Affinität, Protonen zu spenden, in drei Prioritäten klassifiziert werden. Alle Bindungslängen und Winkel des Trikations sind mit den gefundenen Werten in der Literatur, die das gleiche Kation in unterschiedlichen Verbindungen beschreibt, stimmig.^[67, 68]

Die Betrachtung des Wasserstoffbrücken-Systems um die in allgemeiner Lage befindlichen Chloridionen zeigt deutlich unterschiedliche Umgebungen. Cl1, Cl3 und Cl4 dabei gehen jeweils drei Wasserstoffbrückenbindungen ein. Cl1 wird von einem Aqualiganden des komplexen Anions koordiniert und von einer Ammoniumgruppe der ersten Priorität und einer der dritten. Cl3 und Cl4 werden lediglich von Ammoniumgruppen der ersten und zweiten Priorität koordiniert. Cl2 und C15 gehen jeweils nur zwei Wasserstoffbrückenbindungen Alle ein. Werte der Bindungslängen und Winkel zum Wasserstoffbrückensystem sind in Tabelle 3.8.2.2 aufgeführt.

1.697(3)	N1-C1	1.480(5)
2.273(3)	N2-C2	1.494(5)
2.3635(16)	N4-C7	1.484(5)
2.3650(14)	N6-C12	1.485(5)
2.3741(16)	C3-C4	1.515(6)
2.3910(14)	C5-C6	1.518(6)
	C7-C8	1.519(5)
	C9-C10	1.508(5)
176.25(17)	C1-N1-C4	110.9(3)
89.77(6)	C5-N2-C2	113.4(3)
165.75(4)	C7-N4-C9	111.1(3)
89.03(6)	C8-N5-C10	109.2(3)
89.71(6)	N1-C1-C2	110.4(3)
169.03(6)	N2-C3-C4	110.4(3)
88.78(6)	N4-C7-C8	109.7(3)
	N4-C9-C10	110.1(3)
177.8(3)	C11-N5-C8-C7	-177.4(3)
-58.3(4)	N4-C7-C8-N5	-58.9(4)
-176.8(4)	C7-N4-C9-C10	-57.4(4)
57.5(4)	C8-N5-C10-C9	-59.2(4)
57.2(4)	C11-N5-C10-C9	175.9(3)
-56.8(5)	N4-C9-C10-N5	57.9(4)
-68.0(4)	C8-N5-C11-C12	68.0(4)
168.2(4)	C10-N5-C11-C12	-169.5(4)
-77.6(4)	N5-C11-C12-N6	75.2(4)
	1.697(3) 2.273(3) 2.3635(16) 2.3650(14) 2.3741(16) 2.3910(14) 176.25(17) 89.77(6) 165.75(4) 89.03(6) 89.71(6) 169.03(6) 88.78(6) 177.8(3) -58.3(4) -176.8(4) 57.5(4) 57.2(4) -56.8(5) -68.0(4) 168.2(4) -77.6(4)	1.697(3) N1-C1 2.273(3) N2-C2 2.3635(16) N4-C7 2.3650(14) N6-C12 2.3741(16) C3-C4 2.3910(14) C5-C6 C7-C8 C9-C10 176.25(17) C1-N1-C4 89.77(6) C5-N2-C2 165.75(4) C7-N4-C9 89.03(6) C8-N5-C10 89.71(6) N1-C1-C2 169.03(6) N2-C3-C4 88.78(6) N4-C7-C8 N4-C9-C10 N1-C1-C2 177.8(3) C11-N5-C8-C7 -58.3(4) N4-C7-C8-N5 -176.8(4) C7-N4-C9-C10 57.5(4) C8-N5-C10-C9 57.5(4) C8-N5-C10-C9 57.5(4) C8-N5-C10-C9 57.2(4) C11-N5-C10-C9 -56.8(5) N4-C9-C10-N5 -56.8(5) N4-

Tabelle 3.8.2.1 Ausgewählte Bindungslängen [Å], Bindungswinkel [°] und Torsionswink	el [°]
(N-H = 0.89 Å, C-H = 0.97 Å) in 8	

Der Festkörper der Verbindung **8** ist aus Schichten aufgebaut, die entlang der kristallographischen *b*-Achse gestapelt sind. Eine Schicht besteht aus Strängen von komplexen Anionen, die untereinander über den Aqualiganden und den Chloroliganden Cl12 Wasserstoffbrücken verbunden sind und weiterhin über das "freie" Chloridion Cl1 verknüpft sind. Diese Stränge erstrecken sich in Blickrichtung [100] (s. Abb. 3.8.2.4). Die andere Schicht besteht aus Ammonium-Kationen, die ebenfalls entlang [100] gestapelt sind und über die "freien" Chloridionen ein zweidimensionales Netzwerk bilden, in das die "Metallatstränge" eingelagert sind. In Abbildung 3.8.2.4 ist einerseits die Stapelung der zwei unterschiedlichen Schichten entlang der *b*-Achse zu erkennen, aber ebenfalls die Stränge der Anionen bzw. die Stapelung der Amine innerhalb der zwei Schichten entlang der kristallographischen *a*-Achse.

D-H A	d(D-H)	d(H A)	d(D A)	<(DHA)
N1-H11 Cl2 ^I	0.90	2.41	3.151(4)	140.3
N1-H12 Cl4	0.90	2.31	3.181(4)	162.6
N2-H21 Cl5	0.83(4)	2.19(4)	2.978(4)	160(4)
N3-H31 C13 ^{II}	0.89	2.19	3.193(4)	172.2
N3-H32 Cl4 ^{III}	0.89	2.38	3.172(4)	148.7
N3-H33 C15	0.89	2.50	3.152(4)	130.8
N4-H41 Cl3 ^{IV}	0.90	2.36	3.194(4)	153.7
N4-H42 Cl2 ^V	0.90	2.47	3.201(4)	138.2
N5-H51 Cl1	0.92(5)	2.13(5)	3.012(4)	160(4)
N6-H61 Cl1	0.91(5)	2.46(5)	3.237(5)	144(4)
N6-H62 Cl4	1.03(5)	2.13(5)	3.157(4)	171(4)
N6-H63 C13 ^{VI}	0.74(6)	2.52(6)	3.212(5)	157(5)

Tabelle 3.8.2.2	Daten zum	Wasserstoffbrücken	-System von 8,	Abstände [Å]], Winkel [°]

Symmetrie-Codierung: (I): x+1,

(I): x+1,y,z; (II): x,y,z-1; (III): -x+2,y-1/2,-z+1; (IV): x-1,y,z; (V): -x+1,y-1/2,-z+2; (VI): -x+2,y+1/2,-z+2.

3.9 Synthese und Kristallstruktur von Triethylentetraammoniumaquatetrachlorooxomolybdat(V)-trichlorid-monohydrat, [H₃N(CH₂)₂NH₂(CH₂)₂NH₂(CH₂)₂NH₂][H₂OMo(O)Cl₄]Cl₃ · H₂O (9)

3.9.1 Synthese und Kristallstrukturbestimmung von 9

Zur Synthese der Verbindung **9** wird wiederum eine konzentrierte salzsaure Molybdänchloridlösung mit einer ebenfalls konzentrierten salzsauren Lösung von Triethylentetraamin im äquimolaren stöchiometrischen Verhältnis der gelösten Edukte zusammengegeben, wobei man eine zunächst dunkelgrüne klare Lösung erhält. Nach wenigen Stunden beginnen Kristalle zu wachsen, die sich innerhalb weniger Tage so vergrößern, dass die Kristalle zur Durchführung eines Einkristall-Röntgenbeugungsexperimentes ausgewählt werden können. Sie werden für das Experiment in eine dünnwandige Glaskapillare eingeschmolzen. Als Ergebnis der Strukturanalyse ergibt sich folgende strukturierte Formel für die Verbindung **9**: $[H_3N(CH_2)_2NH_2(CH_2)_2NH_2]$ $[H_2OMo(O)Cl_4]Cl_3H_2O$.

Bei der Analyse der Kristallstruktur stellt sich heraus, dass die Bestimmung der Kristallsymmetrie nicht als trivial eingestuft werden kann. Die Gittermetrik und die damit verbundene notorische Neigung zur Verzwillingung suggerieren in Verbindung mit der E-Werte-Statistik eine monokline azentrische Raumgruppe. Verfeinert man die Kristallstruktur zunächst in der monoklinen Raumgruppe *C*2, so führt dies zu (für diese Verbindungsklasse) schlechten R-Werten ($R_1 = 0.0756$, $wR_2 = 0.2254$). Es liegt die Vermutung nahe, dass die tatsächliche Symmetrie der Kristallstruktur nicht richtig erkannt wurde. Die Annahme, dass es sich bei der zweizähligen Achse um ein Pseudosymmetrieelement handelt und gegebenenfalls ein Achsenzwilling vorliegt, macht eine Zwillingsverfeinerung (Flack-Parameter: 0.30(4)) in der Raumgruppe *C*1 notwendig. Es handelt sich bei dieser Raumgruppe um eine unkonventionell aufgestellte Variante der triklinen Raumgruppe *P*1. Eine Verfeinerung unter Berücksichtigung der Zwillingsmatrix (-100 010 00-1) in der Raumgruppe *C*1 unter Annahme
der Additivität der Reflexintensitäten der Einzelindividuen ergibt ein Volumenverhältnis der Einzelindividuen von 51,1 % zu 48,9 % bei deutlich besseren Qualitätsindikatoren. Somit ist die Verfeinerung der Kristallstruktur in der unkonventionell aufgestellten Variante der triklinen Raumgruppe der Verfeinerung in der monoklinen Raumgruppe vorzuziehen.

Auf dieser Basis kann durch aufbauende Δ F-Synthesen schließlich das gesamte Strukturmodell inklusive aller Wasserstoffatompositionen entwickelt werden. Für die Verfeinerung der Wasserstoffatome der Ethylengruppen wird das "Reiter-Modell" angewendet. Die U_{iso}-Werte der Wasserstoffatome werden auf das 1,5-fache des äquivalenten isotropen Auslenkungsfaktors des betreffenden Kohlenstoffatoms gesetzt.

Durch den Wegfall des Pseudosymmetrieelements ergibt sich eine Verdopplung der Zahl der Einzelbausteine in der asymmetrischen Einheit. Nur noch eins der beiden komplexen Anionen weist nun eine Fehlordnung auf (s. Abb. 3.9.1.1). Die Position seines Molybdänatoms ist gesplittet, die zwei Teillagen weisen einen Abstand von 0.543 Å auf. Auch Aqua- sowie Oxoligand sind fehlgeordnet. Die Verfeinerung ergibt Besetzungsfaktoren von 0.511(2) und 0.489(2). Weitere Einzelheiten zur Rechnung sind in Tabelle 3.9.1.1 aufgeführt.

Empirische Formel	$C_6H_{26}N_4O_3Cl_7Mo$
Molmasse [g/mol]	546.40
Kristalldimensionen [mm ³]	0.1 x 0.02 x 0.35
Farbe, Habitus	grün, transparent, tafelig
Raumgruppe	<i>C</i> 1
Gitterkonstanten	a = 10.289(2) Å
	<i>b</i> = 10.470(2) Å
	c = 19.055(4) Å
	$\alpha = 90.00$ °
	$\beta = 104.71(3)^{\circ}$
	$\gamma = 90.00$ °
Volumen / Z	1985.4(9) Å ³ / 4
Röntg. Dichte [g/cm ³]	1.828
Temperatur [K]	293
CCD Diffraktometer	$\lambda = 0.71073 \text{ \AA}$
Absorptionskoeffizient [1/mm]	1.61
F(000)	1100
2θ-Bereich	2.82-25.00 °
Indexgrenzen	$-13 \le h \ge 12$
	$-13 \le k \ge 13$
	$-24 \le 1 \ge 24$
Zahl der gemessenen Reflexe	12670
Zahl der unabhängigen Reflexe	7699 (R _{int} =0.0370)
Zahl der beobachteten Reflexe	7612 (I≥2.0σ(I))
Zahl der Reflexe / Parameter / Restraints	7699 / 442 / 50
GOOF	0.936
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0348, \ wR_2 = 0.1021^{12}$
R-Werte (sämtlicher Daten)	$R_1 = 0.0354, wR_2 = 0.1060$
$\Delta \rho_{max.} / \Delta \rho_{min.} [e \text{\AA}^{-3}]$	0.556 / -1.137
Vollständigkeit [%]	97.8
	- 2, 21/2

Tabelle 3.9.1.1 Daten zur Datensammlung und Strukturbestimmung von 9

¹⁾ $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [(wF_o^2)^2]]^{1/2}; w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] mit P = (F_o^2 + 2F_c^2)/3$

3.9.2 Diskussion der Kristallstruktur von 9

Die asymmetrische Einheit der Verbindung 9 beinhaltet neben zwei Aquatetrachlorooxomolybdat(V)-Anionen zwei Triethylentetraammonium-Kationen, sechs

Wassermoleküle. Zusätzlich dem zu fehlgeordneten komplexen Anion mit dem Atom Mo2 liegt das andere verzerrte Aquatetrachlorooxomolybdat-Ion wohlgeordnet in allgemeiner Lage vor. Die Mo-Cl-Bindungslängen liegen erwartungsgemäß im Bereich

freie Chloridionen und zwei

von 2.390(5) Å bis 2.396(4) Å und die Mo-O-Bindungslängen entsprechen ebenfalls den Größenordnungen, die auch schon in den vorher beschriebenen komplexen Anionen zu finden sind (s. Tab. 3.9.2.1). Das Anion mit Mo2 wird von zwei Ammoniogruppen und zwei Chloridionen umgeben (Abb. 3.9.2.1). Wie später bei der Diskussion der Packung noch näher erläutert wird, sich hier aber bereits andeutet, bilden die komplexen Anionen Stränge mit den Ammoniumkationen und sind von der Schicht der freien Chloridionen klar getrennt.

Die Triethylentetraammonium-Kationen befinden sich ebenfalls in allgemeiner Lage (s. Abb.

3.9.2.2) und erstrecken sich entlang der kristallographischen a-Achse. Verglichen mit anderen Verbindungen, die das gleiche Tetrakation enthalten, stimmen die C-C-Bindungslängen überein.^[69-71] Die Kationen bilden entlang der kristallographischen b-Achse nach oben und nach unten eine Vielzahl von Wasserstoffbrückenbindungen zu den kokristallisierten Chloridionen aus, die der anderen Schicht in diesem System angehören. Über N1 und N4 bzw. N5 und N6 bilden sie die Verknüpfungspunkte zu den Oktaedern, in dem sie Wasserstoffbrückenbindungen zu den Chloroliganden eingehen.

Um die fehlenden Aspekte des Wasserstoffbrückensystems zu erläutern, soll Betrachtung eine der einzelnen Chloridionen und der Kristallwassermoleküle erfolgen. Das Wasserstoffbrückensystem der freien Chloridionen und der Wassermoleküle wird in Abbildung 3.8.2.3 dargestellt. Alle sechs Chloridionen sind Akzeptor für jeweils drei bis vier Wasserstoffbrückenbindungen. Cl1 und Cl4 werden jeweils von zwei Ammoniumgruppen koordiniert und beiden zusätzlich den von

Wassermolekülen. Cl3 und Cl4 bilden intermolekulare Wechselwirkungen zu jeweils zwei Ammoniumgruppen aus und sind über die Wasserstoffe der Aquagruppe Ol2 verbrückt. In der Darstellung von Cl5 und Cl6 ist ebenfalls die Trennung einer Chloridionenschicht von einer Schicht bestehend aus komplexen Anionen und Ammoniumkationen zu erkennen. Alle Daten zum Wasserstoffbrückensystem sind in Tabelle 3.9.2.2 aufgeführt.

Mo1-O12	2.274(6)	N2-C2	1.546(16)
Mo1-Cl14	2.390(3)	N3-C5	1.517(15)
Mo1-Cl11	2.397(3)	N5-C7	1.466(13)
Mo2-O21	1.627(5)	N6-C9	1.506(11)
Mo2-O22	2.317(5)	N7-C10	1.507(12)
Mo2-Cl21	2.364(3)	C3-C4	1.571(16)
Mo2-Cl22	2.399(3)	C7-C8	1.509(14)
Mo2'-O21'	1.629(5)	C11-C12	1.511(14)
Mo2'-O22'	2.319(5)		
Mo2'-Cl21	2.405(3)		
O11-Mo1-O12	178.5(3)	C3-N2-C2	115.4(8)
Cl12-Mo1-Cl13	87.99(11)	C4-N3-C5	113.7(9)
Cl12-Mo1-Cl11	89.52(11)	C11-N7-C10	113.2(11)
Cl14-Mo1-Cl11	88.90(11)	N1-C1-C2	112.9(9)
O21-Mo2-O22	170.8(7)	C1-C2-N2	111.3(10)
Cl21-Mo2-Cl23	89.67(12)	N3-C4-C3	107.7(10)
Cl24-Mo2-Cl23	166.7(2)	C6-C5-N3	110.0(10)
Cl21-Mo2-Cl22	166.66(19)	N4-C6-C5	113.5(9)
Cl23-Mo2-Cl22	88.36(13)	N5-C7-C8	114.0(9)
O21'-Mo2'-O22'	169.5(8)	N6-C8-C7	116.9(10)
Cl22-Mo2'-Cl24	89.41(12)	C9-C10-N7	113.5(11)
Cl23-Mo2'-Cl21	89.46(13)	N7-C11-C12	116.8(10)
Cl24-Mo2'-Cl21	88.13(12)	N8-C12-C11	114.1(10)
N1-C1-C2-N2	90.4(12)	N2-C3-C4-N3	178.4(6)
C3-N2-C2-C1	168.3(10)	C9-N6-C8-C7	165.1(10)
C5-N3-C4-C3	70.8(15)	N5-C7-C8-N6	83.2(14)

Tabelle 3.9.2.1 Ausgewählte Bindungslängen [Å], Bindungswinkel [°] und Torsionswinkel [°] (N-H = 0.89 Å, C-H = 0.97 Å) in **9** Verbindung **9** ist, wie oben angedeutet, aus zwei Schichtenarten aufgebaut, die entlang [010] gestapelt sind. Eine Schicht wird aus einem Strang von Oktaedern der komplexen Anionen und ineinander verzahnten Ammonium-Kationen gebildet, wobei die anorganischen und organischen Bausteine auch untereinander Wasserstoffbrückenbindungen eingehen. Die zweite Schicht ist eine rein anorganische, negativ geladene Schicht bestehend aus Chloridionen und Wassermolekülen. Über die Wasserstoffbrückenbindungen, die von den "freien" Chloridionen aus der angrenzenden oberen und unteren Schicht akzeptiert werden, wird ein zweidimensionales Netzwerk in der Ebene a/b aufgespannt.

D-H A	d(D-H)	$d(H^{}A)$	$d(D^{}A)$	<(DHA)
O1-H2 Cl1	0.83(3)	2.26(3)	3.077(7)	166(9)
O2-H4 Cl4 ^I	0.83(3)	2.32(4)	3.088(7)	153(8)
N1-H11 Cl4 ^I	0.89	2.42	3.219(11)	149.0
N1-H13 Cl5 ^{II}	0.89	2.35	3.166(13)	151.9
N2-H21 C15 ^{II}	0.90	2.43	3.249(10)	151.7
N2-H22 C13 ^{III}	0.90	2.23	3.121(13)	171.3
N3-H31 Cl2 ^{IV}	0.90	2.46	3.055(13)	166.7
N3-H32 Cl6 ^V	0.90	2.46	3.296(10)	153.9
N4-H41 Cl1	0.89	2.51	3.231(12)	139.0
N4-H41 Cl21	0.89	2.74	3.355(10)	127.3
N4-H42 C16 ^V	0.89	2.28	3.139(12)	162.1
N5-H51 Cl3 ^{VI}	0.89	2.51	3.168(11)	131.8
N5-H51 Cl13 ^{III}	0.89	2.69	3.366(11)	134.1
N5-H53 Cl5	0.89	2.29	3.176(15)	171.4
N6-H61 Cl4 ^{VII}	0.90	2.21	3.110(14)	176.1
N6-H62 Cl5	0.90	2.47	3.259(12)	146.4
N7-H71 Cl6	0.90	2.47	3.264(12)	146.9
N7-H72 Cl1 ^I	0.90	2.22	3.112(13)	174.4
N8-H81 Cl2 ^{VIII}	0.89	2.39	3.122(11)	139.3
N8-H81 Cl11 ^{VIII}	0.89	2.78	3.405(11)	128.8
N8-H82 Cl6	0.89	2.27	3.154(15)	172.0

Tabelle 3.9.2.2	Daten zum	Wasserstoffbrücken	-System von 9,	Abstände [Å	Å], Winkel	[°]

Symmetrie-Codierung:

(1): x-1/2,y+1/2,z-1; (2): x+1/2,y-1/2,z; (3): x-1/2,y+1/2,z; (4): x-1,y,z; (5): x+1/2,y-1/2,z+1; (6): x-1,y+1,z; (7): x-1,y+1,z-1; (8): x-3/2,y+1/2,z-1.

3.10 Synthese und Kristallstruktur von Hexakis(bis-(3-ammonio-propyl)-ammonio)-

tris[pentachlorooxomolybdat(V)]-chlorid,

[H₃N(CH₂)₃NH₂(CH₂)₃NH₃]₆[Mo(O)Cl₅]₃Cl₁₂ (10)

3.10.1 Synthese und Kristallstrukturbestimmung von 10

Zur Synthese von **10** wird eine salzsaure Lösung von Bis(3-aminopropyl)-amin mit einer salzsauren Lösung von $MoCl_5$ zur Reaktion gebracht. Im Laufe einiger Wochen kristallisieren grüne, plättchenförmige Kristalle aus, die für die Durchführung eines Einkristall-Röntgenbeugungsexperiments entnommen werden können. Es wird folgende strukturierte Formel für die Verbindung **10** gefunden: [H₃N(CH₂)₃NH₂(CH₂)₃NH₃]₆[Mo(O)Cl₅]₃Cl₁₂.

Das Einkristall-Röntgenbeugungsexperiment zur Strukturbestimmung von **10** wird bei Raumtemperatur durchgeführt. Die Daten der Intensitätsmessung werden zur Lösung der Struktur in der Raumgruppe *Pbcm* mittels Direkter Methoden genutzt. Aus sukzessiven Δ F-Synthesen ergeben sich die Koordinaten aller Nichtwasserstoffatome. Nach der Verfeinerung aller Nichtwasserstoffatome, unter Verwendung anisotroper Auslenkungsfaktoren, können die Wasserstoffatome der NH₃- und NH₂-Gruppen bei der Durchführung sukzessiver Δ F-Synthesen lokalisiert werden. Für die Verfeinerung der Wasserstoffatome der Alkylengruppen wird das "Reiter-Modell" angewendet. Die U_{iso}-Werte der Wasserstoffatome werden auf das 1,5-fache des äquivalenten isotropen Auslenkungsfaktors des betreffenden Kohlenstoffatoms gesetzt. Alle Einzelheiten zur Rechnung können Tabelle 3.10.1.1 entnommen werden.

Tabene 5.10.1.1 Daten zur Datensamm	nung und Strukturbestimmung von
Empirische Formel	$C_{12}H_{40}N_6OCl_9Mo$
Molmasse [g/mol]	699.48
Kristalldimensionen [mm ³]	0.09 x 0.45 x 0.64
Farbe, Habitus	grün, transparent, tafelig
Raumgruppe	Pbcm
Gitterkonstanten	a = 7.268(2) Å
	b = 21.745(4) Å
	c = 18.983(4) Å
	$\alpha = 90.00$ °
	β = 90.00 °
	$\gamma = 90.00$ °
Volumen / Z	3000.2(10) Å ³ / 2
Röntg. Dichte [g/cm ³]	0.774
Temperatur [K]	293
CCD Diffraktometer	$\lambda = 0.71073 \text{ \AA}$
Absorptionskoeffizient [1/mm]	0.63
F(000)	714
20-Bereich	$2.15-25.00~^{\circ}$
Indexgrenzen	$-8 \le h \ge 8$

Tabelle 3.10.1.1 Daten zur Datensammlung und Strukturbestimmung von 10

	$-25 \le k \ge 25$
	$-22 \le l \ge 22$
Zahl der gemessenen Reflexe	35359
Zahl der unabhängigen Reflexe	2723 (R _{int} =0.0639)
Zahl der beobachteten Reflexe	2496 (I≥2.0σ(I))
Zahl der Reflexe / Parameter / Restraints	2723 / 173 / 0
GOOF (GOOF restrain)	1.064
Endgültige R-Werte [I>2sigma(I)]	$R_1 = 0.0500, \ wR_2 = 0.1592^{1)}$
R-Werte (sämtlicher Daten)	$R_1 = 0.0559, wR_2 = 0.1699$
$\Delta \rho_{max.} / \Delta \rho_{min.} [e \text{\AA}^{-3}]$	0.710 / -1.237
Vollständigkeit [%]	99.7
¹⁾ $R_1 = \Sigma F_o - F_c \Sigma F_o ; wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] \Sigma[(wR_o^2 - F_o^2)^2] W = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] mit P = (F_o^2 + 2F_c^2)/3$	$[F_{o}^{2})^{2}]^{1/2};$

3.10.2 Diskussion der Kristallstruktur von 10

Die Verbindung 10 kristallisiert in der orthorhombischen Raumgruppe Pbcm. Die gewählte

asymmetrische Einheit der Kristallstruktur besteht aus einer Hälfte eines komplexen Anions $[Mo(O)Cl_5]^{2-}$, einem $[H_3N(CH_2)_3NH_2(CH_2)_3NH_3]^{3+}$ -Kation und drei freien Chloridionen, davon zwei in spezieller Lage.

011. Cl11, Cl12 C14 und des Pentachlorooxomolybdat(V)-Ions liegen auf einer Spiegelebene (Wyckoff-Notation 4d). Der Komplex wird von vier Ammoniogruppen umgeben und die Chloroliganden bilden ein der Symmetrie entsprechendes Muster von Wasserstoff-

brückenbindungen aus. Das Atom H12 der Ammoniogruppe mit dem Atom N1 bildet eine lineare Wasserstoffbrücke zum Cl14 aus. Das Atom H33 der Ammoniogruppe mit N3 bildet eine gegabelte Wasserstoffbrückenbindung zu den Chloroliganden Cl14 und Cl13 aus.

Das Kation dieser Verbindung liegt in allgemeiner Lage und erstreckt sich entlang der kristallographischen *a*-Achse. Alle NH-Funktionen der Baueinheit sind abgesättigt, d.h. sie

Wasserstoffbrückengehen bindungen zu freien Chloridionen Chloroliganden und der komplexen Anionen ein. Die Hdie sich Atome, in der kristallographischen Ebene a/cnach unten ausrichten, werden durch zwei der freien Chloridionen koordiniert. Die H-Atome, die seitlich und nach oben orientiert sind, gehen intermolekulare Wechselwirkungen zu den Komplexen und dem freien Cl3-Ion ein. Bereits hier sind die zwei Schichten in dieser Verbindung zu erkennen. Eine Schicht besteht aus den Pentachlorooxomolybdationen, den Ammonium-Kationen und dem einen freien Chloridion und die zweite Schicht wird lediglich aus zwei freien Chloridionen gebildet.

Die Umgebung der freien Chloridionen ist in Abbildung 3.10.2.3 dargestellt. Cl1 und Cl3 liegen auf speziellen Lagen. Cl1 liegt auf einer zweizähligen Achse (Wyckoff-Notation 4c) und Cl3 auf einer Spiegelebene (Wyckoff-Notation 4d). Cl1 und Cl2 gehen jeweils drei Wasserstoffbrückenbindungen ein und bilden dadurch ein zweidimensionales Netzwerk zu der anderen Schicht. Cl3 bildet lediglich zwei Wasserstoffbrückenbindungen aus. Alle Werte zum Wasserstoffbrückensystem sind Tabelle 3.10.2.1 zu entnehmen.

Tabelle 3.10.2.1 Ausgewählte Bindungslängen [Å], Bindungswinkel [°] u Torsionswinkel [°] (N-H = 0.89 Å, C-H = 0.97 Å) in **10**

Mo1-O11	1.726(8)	N1-C1	1.482(15)
Mo1-O12	2.191(9)	N2-C3	1.525(14)
Mo1-Cl11	2.375(3)	N3-C5	1.503(14)
Mo1-Cl12	2.376(3)	N4-C6	1.450(15)
Mo1-Cl14	2.383(3)	C1-C2	1.570(16)
Mo1-Cl13	2.388(3)	C3-C4	1.514(14)
		C5-C6	1.493(14)
O11-Mo1-O12	177.3(5)	C2-N2-C3	114.2(9)
Cl11-Mo1-Cl12	89.12(11)	C4-N3-C5	112.9(9)

Cl11-Mo1-Cl14	89.39(12)	N1-C1-C2	110.4(11)
Cl12-Mo1-Cl14	168.17(14)	N2-C2-C1	113.2(9)
Cl11-Mo1-Cl13	168.65(13)	C4-C3-N2	110.5(9)
Cl12-Mo1-Cl13	90.01(11)	N3-C4-C3	112.7(9)
Cl14-Mo1-Cl13	89.14(11)	C6-C5-N3	114.5(9)
		N4-C6-C5	116.2(10)
C3-N2-C2-C1	163.6(11)	N2-C3-C4-N3	177.4(11)
N1-C1-C2-N2	91.5(13)	C4-N3-C5-C6	-168.6(10)
C2-N2-C3-C4	-72.7(14)	N3-C5-C6-N4	-83.2(12)
C5-N3-C4-C3	66.9(14)		

Wie bei der Interpretation der einzelnen Bausteine dieser Struktur schon erwähnt, liegt auch in dieser Verbindung eine Zwei-Schichten Folge vor. Die zwei beschriebenen Schichten sind entlang der kristallographischen c-Achse gestapelt und in Abbildung 3.10.2.4 dargestellt. Das zweidimensionale, von intermolekularen Wechselwirkungen gestützte Netzwerk ist in der Ebene c/b aufgespannt.

D-H A	d(D-H)	d(H A)	$d(D^{\cdot\cdot\cdot}A)$	<(DHA)
N1-H12 Cl14 ^I	1.00(6)	2.40(6)	3.308(3)	152(5)
N1-H13 Cl3 ^{II}	0.86(5)	2.30(5)	3.155(3)	171(4)
N2-H21 Cl2	0.86(4)	2.24(4)	3.090(3)	174(3)
N2-H22 Cl1	0.82(4)	2.36(4)	3.162(3)	165(4)
N3-H31 Cl2 ^{III}	0.91(5)	2.22(5)	3.126(3)	176(4)
N3-H32 Cl1 ^{IV}	1.06(7)	2.22(7)	3.253(4)	164(5)
N3-H33 Cl14 ^{IV}	0.84(7)	2.66(7)	3.401(3)	148(5)
N3-H33 Cl13 ^{IV}	0.84(7)	2.74(6)	3.298(3)	126(6)

Tabelle 3 10 2 2	Daten zum	Wasserstoffbrücken.	System von 1	10 Abstände [Ål Winkel [°]
1 400110 5.10.2.2	Daten Zum	w asserstorror deken	System von i		[11], [11], [11]

Symmetrie-Codierung: (I): -x,y+1/2,z; (II): x-1,y,z; (III): x,-y+1/2,-z; (IV): x+1,y,z.

4. Vergleichende Betrachtung

Durch Kristallisation werden zehn neue Verbindungen mit hochkomplexer Festkörperstruktur erhalten. In diesen neuen Hybridmaterialien können zwei unterschiedliche komplexe Anionen voneinander unterschieden werden, das Aquatetrachlorooxomolybdat-Ion und das Pentachlorooxomolybdat-Ion. Diese beiden Spezies liegen in einer konzentrierten Salzsäurelösung von MoCl₅ stets nebeneinander vor und treten in den synthetisierten Verbindungen auf.

Um die Festkörperstrukturen miteinander zu vergleichen, Gemeinsamkeiten aufzuzeigen, Unterschiede deutlich zu machen und auf die ursprüngliche Fragestellung nach der Funktionalität der Anionen und den veränderten Aufbau der Amine im Festkörper mit verschiedenen Anionen einzugehen, werden die Strukturen nach der Funktionalität des zugrunde liegenden Amins eingeteilt (α , ω -Diamine, andere kettenförmige Oligoamine, cyclische Amine) und miteinander verglichen.

Bei allen vorliegenden Verbindungen, in denen ein α , ω -Diammonioalkan das organische Kation ist, liegen Schichtenstrukturen vor. Alle Verbindungen können als anorganischorganische Hybridmaterialien bezeichnet werden, da anorganisch dominierte Bereiche von organisch dominierten Bereichen abzugrenzen sind. Die Variabilität, die einerseits durch die Anwesenheit von zwei unterschiedlichen komplexen Anionen in den Reaktionslösungen gegeben ist und andererseits durch die zunehmende Kettenlänge der α , ω -Diammonioalkane, findet sich auch in dem Aufbau der unterschiedlichen Schichten in den Strukturen der Verbindungen wieder.

Werden die Packungsmuster der Verbindungen verglichen, sind zwei unterschiedliche Prinzipien zu erkennen. In den Verbindungen **3**, **4** und **6** sind die Kationen, die in der all*trans*-Konformation vorliegen, immer parallel zum Schichtverlauf angeordnet. Die Kationen, die in andere Richtungen orientiert sind, besitzen eine von der all*trans*-Anordnung abweichende Konformation. In den Verbindungen **2** und **5** ist ein gradliniger Packungstyp zu beobachten, denn alle Kationen liegen mehr oder weniger parallel zur Schichtenebene.

Lediglich in den Verbindungen 4 und 5 liegt das Pentachlorooxomolybdat als komplexes Anion vor. In den übrigen vier Verbindungen dieser Gruppe ist in Verbindung mit den Diammonium-Ionen das Aquatetrachloromolybdat-Ion auskristallisiert. Die Fähigkeit des Anions, über seine Liganden Wasserstoffbrückenbindungen auszubilden, wird nicht vollständig genutzt. Die Anionen, die aus der Oxogruppe und fünf Chloroliganden gebildet werden, sind tendenziell in geringerem Maße durch sekundäre Bindungen in das supramolekulare Netzwerk involviert, wenngleich der Oxoligand wie auch die Chloroliganden die Fähigkeit zur Ausbildung solcher Wechselwirkungen besitzen. Der Aqualigand, der in Komplexionen der Verbindungen 1, 2, 3 und 6 gebunden ist, ist immer vollständig in das Wasserstoffbrückensystem einbezogen, so dass man hier von einem Funktionalitätsgewinn der heteroleptisch höchsten Stufe in den hier beschriebenen Vertretern sprechen kann, da die Zahl der supramolekularen Wechselwirkungen deutlich größer wird.

Die Fähigkeit des Kations, Wasserstoffbrückenbindungen einzugehen, wird in allen Verbindungen vollkommen ausgenutzt. Mit zunehmender Länge der α , ω -Diammonioalkane nimmt die Tendenz zu, unterschiedliche Konformationen im Festkörper einzunehmen. Die unterschiedlichen Konformationen sind zum einen die gewöhnliche all-*trans* Form, das andere energetische Extrem die S-Konformation und die energetisch dazwischen liegende verdrehte Konformation. Im Vergleich zu den α , ω -Diammonioalkanchlorid Strukturen, in denen alle Diammonium-Kationen in einer all-*trans* Konformation vorliegen, erkennt man hier eine Anpassung der flexiblen Bausteine an das komplexe Anion. Im Sinne des Crystal Engineerings wird in den hier vorgestellten Verbindungen eine Wirtsgitterstruktur bestehend aus organischen Kationen und "freien" Chloridionen aufgebaut, in welche die anorganischen, anionischen Komplexe eingelagert sind.

Weiterhin ist bei dem Vergleich der ersten sechs Verbindungen zu erkennen, dass lediglich in Verbindung 2 Kristallwasser mitkristallisiert ist. In allen Strukturen sind die "freien" Chloridionen ein Bestandteil des gebildeten Wirtsgitters.

In der zweiten Gruppe, zu der die Verbindungen 7 und 8 zu zählen sind, bei deren Synthese cyclische Amine als Edukte eingesetzt werden, können die organischen von anorganischen Bereichen in der Festkörperstruktur noch besser voneinander abgegrenzt werden. Auch diese beiden Verbindungen bilden Schichtenstrukturen aus, wobei jeweils eine anorganische von einer organischen Schicht getrennt werden kann. Die Strukturen der Verbindungen 7 und 8 sind nicht nur über den Schichtenaufbau zu vergleichen, auch die Schichtdicken liegen mit 6.31 Å für Verbindung 7 und 6.45 Å für Verbindung 8 in der gleichen Größenordnung.

Aber auch in dieser Gruppe von Verbindungen treten beide Oxochloromolybdat-Spezies auf, das Pentachlorooxomolybdat und Verbindung 8 in Verbindung 7 in das Aquatetrachlorooxomolybdat. Beide Anionen sind in das Wasserstoffbrückensystem eingebunden und wenn man die Anzahl der ausgebildeten sekundären Wechselwirkungen zu Grunde legt, bildet hier das Pentachlorooxomolybdat die stärkeren supramolekularen Wechselwirkungen aus. Im Sinne des Crystal Engineerings ist an diesen beiden Beispielen sehr gut zu erkennen, dass hier bei einem gleichen Typ von Ammonium-Ion die Strukturen durchaus miteinander zu vergleichen sind: Das organische Ammonium-Kation bildet in beiden Fällen eine seiner Wasserstoffatome entsprechende Zahl von Wasserstoffbrückenbindungen zu den "freien" Chloridionen aus und bildet so ein Wirtsgitter, in welches das komplexe Anion eingelagert ist. Durch die minimale Verlängerung des 1-(2-Ammonioethyl)piperazinium-Ion im Vergleich zum Piperazinium-Ion sind im Wirtsgitter größere Plätze frei, so dass sich das Aquatetrachlorooxomolybdat in dieses Gitter einlagern kann.

Für die Verbindungen 9 und 10 werden andere kettenförmige Oligoamine als Edukte eingesetzt. Auch hier sind anorganische von organischen Bereichen klar abzugrenzen, jedoch ist zumindest bei Verbindung 9 keine klare Trennung in anorganische und organische Schichten möglich. Wie in allen anderen Verbindungsgruppen treten auch bei diesem Typ des zugrunde liegenden Amins beide komplexen Anionen auf. Das Pentachlorooxomolybdat-Ion in Verbindung 10 geht - mit zwei linearen und einer gegabelten - insgesamt weniger Wasserstoffbrückenbindungen ein und bildet auch vergleichsweise schwächere sekundäre Wechselwirkungen Aquatetrachlorooxomolybdat mit vier linearen aus als das Wasserstoffbrückenbindungen in Verbindung 9. Es kann ein Funktionalitätsgewinn darin festgemacht werden, dass das $[MoOCl_5]^2$ -Ion nur Wasserstoffbrückenbindungen zu Ammoniogruppen ausbilden kann, das [(H2O)MoCl4]-Ion hingegen bildet zudem Wasserstoffbrückenbindungen zu "freien" Chloridionen der Verbindung aus.

Wie alle anderen Amine der untersuchten Verbindungen sind auch die kettenförmigen, protonierten Oligoamine der Verbindungen **9** und **10** vollständig mit Wasserstoffbrückenbindungen abgesättigt. Im Hinblick auf das Konzept des Crystal Engineerings kann an diesen zwei Verbindungen (wie auch schon an allen anderen Verbindungen) nachgewiesen werden, dass es sich bei den Ammonium-Ionen um Bausteine handelt, die in der Lage sind, sich im Festkörper so anzuordnen, dass sie mit den "freien" Chloridionen ein passendes Wirtsgitter für die komplexen Anionen bilden.

5. Experimenteller Teil

5.1 Allgemeine Arbeitstechniken

In der Literatur wird in einer ganzen Reihe von Vorschriften dokumentiert, auf welche Weise Einkristalle gezüchtet werden können.^[72, 73] Um Einkristalle von denen hier vorstellten Verbindungen zu erhalten, wurden unterschiedlichste Methoden angewendet. Durch langsame Verdampfung des Lösungsmittels wurden die besten Ergebnisse erzielt.

5.2 Gerätebeschreibungen

Zur Durchführung der Experimente, Aufarbeitung der Reaktionsansätze sowie für spektroskopische und analytische Untersuchungen werden folgende Geräte verwendet.

5.2.1 Einkristallstrukturanalysen

Die Einkristalldiffraktometrie geeigneter Kristalle werden nach Betrachtung unter einem Polarisationsmikroskop mit einem einkreisigen IPDS Diffraktometer (Image Plate Diffraction System), Fa. Stoe (Darmstadt, Deutschland) mit Mo-K $_{\alpha}$ -Strahlung durchgeführt. Das Gerät verfügt über die Kühlanlage der Fa. Oxford Cryostream. Alternativ werden einige Röntgenuntersuchungen mit einem Stoe Stadi CCD-Diffraktometer durchgeführt.

Lösung und Verfeinerung der Kristallstrukturen erfolgt mit dem Programmpaket SHELX-97.^[74] Dabei werden für die Strukturlösung Direkte Methoden oder die Patterson Methode verwendet. Die Verfeinerung verläuft unter Minimierung der Fehlerquadratsummen über mehrere Zyklen. In einigen Fällen erweist es sich als notwendig, unter Verwendung starrer Gruppen ("constraints") oder geometrischer Einschränkungen ("restraints") zu verfeinern. Für die Wasserstoffatome in allen Strukturen werden idealisierte C-H-Bindungslängen und idealisierte Bindungswinkel vorgegeben. Die in dieser Arbeit verwendeten Abbildungen von Kristallstrukturen werden unter Verwendung eines Graphikhilfeprogramms erstellt.^[75, 76]

5.2.2 Elementaranalysen

Die Analysen des Kohlenstoff-, Wasserstoff- und Stickstoffgehalts werden mit dem Gerät "Series II Analyser 2400" von Perkin Elmer durchgeführt.

5.2.3 Spektroskopische Untersuchungen

Die IR-Messungen werden mit dem FT-IR-Spektrometer, Fa. Digilab (früher Bio Rad), Modell: FTS 3500; Serie: Excalibur, vorgenommen. Gemessen werden ATR-Spektren (abgeschwächte Totalreflexion) mit dem ATR-Zusatz MIRacleTM, Fa. Pike Technologies, der mit einem ZnSe-Kristall ausgestattet ist.

Die Raman-Messungen werden an dem FT-IR Spektrometer FTS 3500, Fa. Digilab (früher Bio Rad) vorgenommen, welches über ein Raman-Modul mit einer Spectra Physics Laserquelle verfügt (Nd: YAG diodengepumpt) und einem N₂ gekühlten Ge-Detektor.

Zur Angabe der Banden in IR- und Raman-Spektren werden folgende Abkürzungen verwendet: s = strong, m = medium, w = weak; alle Werte sind Wellenzahlen in cm⁻¹. Der Messbereich für IR-Spektren bei Verwendung der ATR-Technik zwischen 4000 und 510 cm⁻¹ mit einer Auflösung von 4 cm⁻¹; der für Raman-Spektren liegt zwischen 4000 und 80 cm⁻¹ bei einer Auflösung von 8 cm⁻¹.

5.2.4 Thermische Analysen

Die Untersuchungen zur Differenzthermoanalyse und Thermogravimetrie (DSC/TG-Messungen) werden an dem Gerät STA 449C (Firma Netzsch) durchgeführt, an welches ein ThermoStar Massenspektrometer (Firma Pfeiffer Vacuum) gekoppelt ist. Die Messungen werden unter Stickstoffatmosphäre bei einem Stickstoffstrom von 50 ml pro Minute im Temperaturbereich von 30 °C bis 650 °C mit einer Aufheizgeschwindigkeit von 5 K pro Minute vorgenommen.

5.3 Ausgangsverbindungen

Alle Synthesen werden, soweit nicht anders erwähnt, in wässrigem Medium an der Luft durchgeführt. Die verwendeten Chemikalien stammen von gängigen Anbietern (Fluka, Riedel-de Haën, Merck) und werden wie erhalten eingesetzt.

5.4 Synthesevorschriften

5.4.1 Herstellung von $[H_3N(CH_2)_3NH_3]_4[H_2OMo(O)Cl_4]_2Cl_6$

Einwaage:	1,3-Diaminopropan	0.222 g (3.00 mmol)
	Molybdän(V)-chlorid	0.041 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (10 ml)

Sowohl das 1,3-Diaminopropan als auch das Molybdän(V)-chlorid werden in jeweils 4 ml Salzsäure gelöst und die Lösungen zusammen in eine Kristallisierschale gegeben. Die anfangs grünliche Lösung färbt sich innerhalb von 72 Stunden bräunlich und wird ölig. Versetzt man die Lösung erneut mit 2 ml HCl, färbt sie sich wieder grün und es wachsen innerhalb mehrerer Tage rautenförmige, mehrschichtige, plättchenförmige Kristalle.

Summenformel:	$C_{12}H_{52}N_8O_4Cl_{14}Mo_2\\$
Strukturierte Formel:	$[H_3N(CH_2)_3NH_3]_4[H_2OMo(O)Cl_4]_2Cl_6$
Molare Masse:	1048.8 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	11.98	4.47	9.32
Gefunden	11.79	4.63	9.07

(s. Anmerkung S. 96)

DTA/DSC:	Messbereich: RT - 600 °C; Zersetzungspeak: Tonset: 321.5 °C; Tmax.:
	332.9 °C; T _{offset} : 345.8 °C
IR:	$v [cm^{-1}]: 3211 (m), 3024 (s), 2986 (s), 2935 (s), 2903 (s), 2703 (w),$
	2629 (w), 2549 (w), 1975 (w), 1607 (m), 1599 (m), 1524 (m), 1994 (w),
	1476 (m), 1412 (w), 1180 (w), 991 (m), 946 (w), 754 (w).
Raman:	v [cm ⁻¹]: 2969 (s), 2931 (s), 2873 (m), 1590 (w), 1444 (w), 1326 (m),
	986 (s), 938 (w), 407 (w), 327 (s), 275v (w), 231 (s), 158 (s).

5.4.2 Herstellung von $[H_3N(CH_2)_4NH_3][H_2OMo(O)Cl_4]Cl^+H_2O$

Einwaage:	1,4-Diaminobutan	0.264 g (3 mmol)
	Molybdän(V)-chlorid	d 0.041 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (12 ml)

Zur Darstellung von 1,4-Diammoniobutan-aquatetrachlorooxomolybdat(V)-chloridmonohydrat werden 1,4-Diaminobutan in 5 ml HCl gelöst und mit einer salzsauren Lösung von MoCl₅ in eine Kristallisierschale gegeben. Um die schnelle Verdampfung der Salzsäure zu verhindern, wird die Kristallisierschale abgedeckt. Innerhalb von fünf Tagen können der Lösung rautenförmige, grüne, transparente Kristalle entnommen werden.

Summenformel:	$C_4H_{18}N_2O_3Cl_5Mo$
Strukturierte Formel:	$[H_3N(CH_2)_4NH_3][H_2OMo(O)Cl_4]Cl^{\cdot}H_2O$
Molare Masse:	415.5 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	11.57	4.37	6.75
Gefunden	13.47	4.98	6.76
(s. Anmerkung S. 96)			

DTA/DSC:	Messbereich: RT - 600 °C; Zersetzungspeak: T _{onset} : 340.1 °C;
	T _{max} : 348.8 °C; T _{offset} : 359.9 °C

IR: v [cm⁻¹]: 3387 (m), 3181 (s), 3144 (s), 3108 (s), 3042 (s), 2984 (s), 2925(s), 2869 (s), 1582 (m), 1485 (s), 1463 (m), 1436 (m), 1395 (w), 1307 (w), 1227 (w), 1776 (w), 1045 (w), 973 (s), 943 (m), 904 (m), 835 (w), 807 (w), 725 (w).

 Raman:
 v [cm⁻¹]: 3178 (w), 3109 (w), 3020 (w), 2982 (m), 2954 (m), 2923 (m),

 2863 (w), 1570 (w), 1458 (w), 1324 (w), 1145 (w), 1091 (w), 1044 (w),

 973 (s), 941 (m), 903 (w), 877 (w), 791 (w), 382 (m), 313 (s), 231 (s),

 171 (s).

5.4.3 Herstellung von [H₃N(CH₂)₆NH₃][H₂OMo(O)Cl₄]Cl

Einwaage:	1,6-Diaminohexan	0.348 g (3 mmol)
	Molybdän(V)-chlor	rid 0.041 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (14 ml)

Für die Synthese von 1,6-Diammoniobutan-aquatetrachlorooxomolybdat(V)-chloridmonohydrat wird 1,6-Diaminohexan in 10 ml HCl gelöst und mit einer salzsauren Lösung von Molybdän(V)-chlorid und 4 ml HCl in eine Kristallisierschale gegeben. Die Lösung wird abgedeckt und nach 24 Stunden werden rautenförmige, dunkelgrüne Kristalle erhalten.

Summenformel:C6H20N2O2Cl5MoStrukturierte Formel:[H3N(CH2)6NH3][H2OM0(O)Cl4]ClMolare Masse:425.4 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	16.94	4.74	6.58
Gefunden	16.72	5.21	7.64

(s. Anmerkung S. 96)

DTA/DSC:	Messbereich: RT - 600 °C; Zersetzungspeak: Tonset: 315.5 °C; Tmax.:
	332.9 °C; T _{offset} : 348.3 °C
IR:	v [cm ⁻¹]: 3407 (m), 3200(s), 3141 (s), 3023 (s), 2938 (s), 2646 (w),
	2608 (w), 2421 (w), 1607 (m), 1585 (m), 1493 (m), 1472 (m), 1459 (w),
	991 (m), 979 (w), 931 (w), 922 (w), 734 (w).
Raman:	v [cm ⁻¹]: 3184 (w), 2993 (w), 2962 (m), 2921 (m), 2902 (s), 2871 (m),
	2851 (w), 1447 (w), 1308 (w), 1030 (w), 992 (s), 888 (w), 344 (s),
	284 (w), 235 (s), 203 (w), 170 (s).

5.4.4 Herstellung von $[H_3N(CH_2)_7NH_3]_3[Mo(O)Cl_5]2Cl_2$

Einwaage:	1,7-Diaminoheptan	0.390 g (3 mmol)
	Molybdän(V)-chlor	rid 0.041 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (14 ml)

Zu der salzsauren Lösung von 1,7-Diaminoheptan mit 5 ml HCl wird eine ebenfalls salzsaure Lösung aus Molybdän(V)-chlorid in 4 ml HCl gegeben. Über mehrere Tage verdampft die Salzsäure und ein brauner Feststoff bleibt zurück. Dieser wird erneut in 5 ml Salzsäure aufgelöst und diesmal zur langsameren Verdampfung mit Parafilm abgedeckt und erneut stehen gelassen. Nach wenigen Tagen sind wenige grüne, plättchenförmige Kristalle gewachsen, welche isoliert werden können.

Summenformel:	$C_{22}H_{30}N_6O_2Cl_{12}Mo_2$
Strukturierte Formel:	[H ₃ N(CH ₂) ₇ NH ₃] ₃ [Mo(O)Cl ₅]2Cl ₂
Molare Masse:	1027.8 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	25.71	2.94	8.18
Gefunden	26.92	3.89	8.21

(s. Anmerkung S. 96)

DTA/DSC:	Messbereich: RT - 600 °C; Zersetzungspeak: T _{onset} : 341.7 °C; T _{max} .:
	348.9 °C; T _{offset} : 361.4 °C
IR:	v [cm ⁻¹]: 3138 (s), 3076 (m), 3019 (s), 2964 (s), 2938 (s), 2857 (m),
	2819 (w), 1597 (m), 1492 (m), 1473 (s), 1393 (w), 1330 (w), 1260 (m),
	1089 (m), 1015 (s), 981 (m), 882 (w), 795 (s), 731 (m), 704 (w).
Raman:	v [cm ⁻¹]: 3173 (w), 2966 (m), 2901 (s), 2865 (s), 2763 (w), 2726 (w),
	1581 (w), 1445 (m), 1303 (m), 1157 (m), 1060 (m), 1033 (m), 980 (s),
	914 (w), 326 (s), 237 (s), 165 (s).

5.4.5 Herstellung von $[H_3N(CH_2)_8NH_3]_3[Mo(O)Cl_5]_2Cl_2$

Einwaage:	1,8-Diaminooktan	0.432 g (3 mmol)
	Molybdän(V)-chlorid	0.041 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (8 ml)

Um Tris(1,8-diammoniooktan)-bis(pentachlorooxomolybdat)(V)-dichlorid herzustellen, wird das Diamin und das Molybdän(V)-chlorid jeweils in 4 ml konzentrierter Salzsäure gelöst und die Lösungen in einer Kristallisierschale zusammengegeben. In dem abgedeckten Reaktionsgefäß entstehen im Laufe von drei Tagen grüne, transparente Kristalle in Form von Rhomboedern.

Summenformel: $C_{24}H_{66}N_6O_2Cl_{12}Mo_2$ Strukturierte Formel: $[H_3N(CH_2)_8NH_3]_3[Mo(O)Cl_5]_2Cl_2$ Molare Masse:1088.10 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	26.49	6.11	7.72
Gefunden	29.42	7.44	8.44
(s. Anmerkung S. 9	6)		

DTA/DSC:	Messbereich: RT - 600 °C; Zersetzungspeak: T _{onset} : 349.6 °C; T _{max} .:
	362.4 °C; T _{offset} : 381.7 °C

IR:	$v [cm^{-1}]$: 3119 (m), 3022 (s), 2976 (s), 2924 (s), 2855 (s), 2671 (w),
	2633 (w), 2606 (w), 2506 (w), 2421 (w), 2046 (m), 1612 (m),
	1522 (m), 1482 (m), 1469 (m), 1401 (w), 1227 (w), 1125 (w), 987 (w),
	949 (m), 893 (m), 730 (w).

 Raman:
 v [cm⁻¹]: 2965 (m), 2909 (s), 2898 (s), 2862 (m), 2852 (m), 2769 (w),

 1578 (s), 1440 (m), 1304 (m), 1155 (w), 1060 (w), 983 (m), 946 (s),

 893 (m), 383 (m), 310 (m), 235 (m), 216 (m), 171 (w), 159 (w).

5.4.6 Herstellung von $[H_3N(CH_2)_9NH_3]_3[H_2OMo(O)Cl_4]_2Cl_4$

Einwaage:	1,9-Diaminononan	0.474 g (3 mmol)
	Molybdän(V)-chlorid	0.0409 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (12 ml)

Durch Auflösen von 1,9-Diaminononan in konzentrierter Salzsäure und Zugabe einer salzsauren Lösung von Molybdän(V)-chlorid entsteht eine grüne klare Lösung, die zum Auskristallisieren mehrere Wochen stehen gelassen wird. Es entstehen grüne, plättchenförmige Kristalle, die aus der Lösung isoliert werden können.

Summenformel:C27H76N6O4Cl12M02Strukturierte Formel:[H3N(CH2)9NH3]3[H2OM0(O)Cl4]2Cl4Molare Masse:1166.2 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	27.81	6.57	7.21
Gefunden	28.13	6.67	7.22

(s. Anmerkung S. 96)

DTA/DSC:	Messbereich: RT - 600 °C; Zersetzungspeak: Tonset: 342.8 °C; Tmax.:		
	351.1 °C; T _{offset} : 375.4 °C		
IR:	v [cm ⁻¹]: 3609 (w), 3509 (w), 3196 (s), 3103 (s), 3029 (s), 2925 (s),		
	2852 (m), 2632 (w), 2423 (w), 1974 (w), 1597 (m), 1502 (m), 1485 (s),		
	1470 (m), 1394 (w), 1261 (w), 1160 (w), 1016 (w), 986 (m), 907 (w),		
	752 (w), 733 (w), 716 (w).		
Raman:	v [cm ⁻¹]: 3190 (w), 3088 (w), 2993 (m), 2972 (m), 2907 (s), 2884 (s),		
	2858 (s), 1449 (m), 1301 (m), 1158 (w), 1061 (m), 987 (s), 911 (w),		
	468 (w), 347 (m), 308 (m), 239 (s), 166 (s).		

5.4.7 Herstellung von $[H_2N(C_2H_4)_2NH_2][Mo(O)Cl_5]$

Einwaage:	Piperazin	0.258 g (3 mmol)
	Molybdän(V)-chloric	l 0.041 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (15 ml)

Piperazin wird in 11 ml Salzsäure aufgelöst und die Lösung in einer Kristallisationsschale mit einer salzsauren Lösung von MoCl₅ und 4 ml HCl vermischt. Innerhalb weniger Tage bilden sich plättchenförmige, grüne Kristalle, die von der überstehenden Lösung isoliert werden können.

Summenformel:	$C_4H_{12}N_2OCl_5Mo$
Strukturierte Formel:	$[H_2N(C_2H_4)_2NH_2][Mo(O)Cl_5]$
Molare Masse:	219.5 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	21.88	5.51	12.76
Gefunden	22.93	7.23	12.88

(s.	Anmerkung	S.	96)
-----	-----------	----	-----

DTA/DSC:	Messbereich: RT - 600 °C; Zersetzungspeak: Tonset: 368.7 °C; Tmax.:
	385.3 °C; T _{offset} : 411.5 °C
IR:	v [cm ⁻¹]: 3557 (w), 3479 (w), 3137 (s), 3105 (m), 3016 (m), 2984 (s),
	2957 (s), 2787 (m), 2750 (m), 2603 (w), 2545 (w), 2374 (w), 2117 (w),
	1940 (w), 1621 (w), 1554 (m), 1433 (s), 1402 (m), 1383 (w), 1304 (w),
	1201 (m), 1081 (m), 1049 (w), 973 (s), 921 (m), 867 (m), 562 (m).
Raman:	v [cm ⁻¹]: 2965 (s), 1592 (w), 1444 (w), 1045 (w), 987 (s), 800 (m),
	340 (m), 302 (m), 239 (s), 162 (s).

5.4.8 Herstellung von $[(H_3NC_2H_4)HN(C_2H_4)_2NH_2]_2[H_2OMo(O)Cl_4]Cl_5$

Einwaage:	1-(2-Aminoethyl)-Piperazin	0.387 g (3 mmol)
	Molybdän(V)-chlorid	0.041 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (14 ml)

Zur Darstellung von Bis(1-(2-Ammonioethyl)piperazinium)-aquatetrachlorooxomolybdat(V)pentachlorid werden 1-(2-Aminoethyl)-Piperazin in 10 ml Salzsäure gelöst und mit einer salzsauren Lösung von MoCl₅ in eine Kristallisierschale gegeben. Um die schnelle Verdampfung der Salzsäure zu verhindern, wird die Kristallisierschale abgedeckt. Nach wenigen Wochen kann der Lösung plättchenförmige, grüne, transparente Kristalle entnommen werden.

Summenformel:	$C_{12}H_{38}N_6O_2Cl_9Mo$
Strukturierte Formel:	$[(H_3NC_2H_4)HN(C_2H_4)_2NH_2]_2[H_2OMo(O)Cl_4]Cl_5$
Molare Masse:	713.5 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	20.20	3.96	11.78
Gefunden	21.03	6.01	11.95

(s. Anmerkung S. 96)

DTA/DSC:	Messbereich: RT - 600 °C; Zersetzungspeak: T _{onset} : 326.6 °C; T _{max} .: 334.1 °C; T _{offset} : 342.9 °C
IR:	v [cm ⁻¹]: 3378 (m), 3003 (s), 2969 (s), 2772 (s), 2705 (s), 2513 (m),
	2443 (m), 1555 (m), 1474 (s), 1408 (m), 1385 (s), 1308 (w), 1230 (w),
	1139 (w), 1071 (w), 1042 (m), 999 (m), 948 (m), 771 (w), 569 (w).
Raman:	v [cm ⁻¹]: 3000 (s), 2960 (s), 1555 (w), 1441 (m), 1413 (w), 1307 (m),
	1274 (w), 1234 (w), 1178 (w), 1141 (w), 1077 (w), 1042 (m), 998 (m),
	854 (w), 831 (w), 771 (w), 585 (w), 569 (w), 475 (w), 420 (w), 340 (m),
	237 (m), 162 (s).

5.4.9 Herstellung von $[H_3N(CH_2)_2NH_2(CH_2)_2NH_2][H_2OMo(O)Cl_4]Cl_3$ H_2O

Einwaage:	Triethylentetraamin	0.109 g (1.5 mmol)
	Molybdän(V)-chlorid	0.041 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (16 ml)

Zur Synthese von Triethylentetraammonio-aquatetrachlorooxomolybdat(V)-trichloridmonohydrat wird das Triethylentetraamin in 12 ml Salzsäure aufgelöst. Molybdänchlorid wird in 4 ml Salzsäure aufgelöst und zu der Ammoniumsalzlösung gegeben. Durch Verdampfen des Lösungsmittels bei Raumtemperatur werden innerhalb weniger Tage Kristalle der Verbindung **9** erhalten.

Summenformel:	$C_6H_{26}N_4O_3Cl_7Mo$
Strukturierte Formel:	$[H_3N(CH_2)_2NH_2(CH_2)_2NH_2(CH_2)_2NH_2][H_2OMo(O)Cl_4]Cl_3 H_2OMo(O)Cl_4]Cl_3 H_2OMo(O)Cl_4]Cl_4 H_2OMo(O)Cl_4]Cl_4 H_2OMo(O)Cl_4]Cl_4 H_2OMo(O)Cl_4]Cl_4 H_2OMo(O)Cl_4 H_2OMO(O)CO(O)Cl_4 H_2OMO(O)CO(O)Cl_4 H_2OMO(O)CO(O)Cl_4 H_2OMO(O)CO(O)Cl$
Molare Masse:	546.4 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	13.19	4.79	10.25
Gefunden	13.08	5.00	10.02
(s. Anmerkung S. 96)			

DTA/DSC:	Messbereich: RT - 600 °C; Zersetzungspeak: T _{onset} : 311.3 °C; T _{max} .:
	325.6 °C; T _{offset} : 349.8 °C

IR:	v [cm ⁻¹]: 3236 (s), 3136 (s), 3001 (s), 2974 (s), 2916 (s), 2837 (m),
	2730 (m), 2699 (m), 2598 (m), 2558 (m), 2464 (w), 2369 (w), 2337 (w),
	1615 (m), 1582 (m), 1507 (m), 1450 (w), 1330 (w), 1243 (w), 1151 (w),
	989 (m), 970 (m), 821 (w), 642 (w).

Raman: $v [cm^{-1}]: 2965 (s), 1592 (w), 1444 (m), 1045 (w), 987 (s), 800 (w), 340 (m), 302 (s), 239 (s), 162 (s).$

5.4.10 Herstellung von [H₃N(CH₂)₃NH₂(CH₂)₃NH₃]₆[Mo(O)Cl₅]₃Cl₁₂

Einwaage:	N,N'-Bis(3-aminopropyl)-1,3-propandiamin 0.393 g (3 mmol)	
	Molybdän(V)chlorid	0.041 g (1.5 mmol)
	Salzsäure (37%)	im Überschuss (17 ml)

Zur Darstellung der Verbindung Hexakis(bis-(3-ammonio-propyl)ammonio)tris(pentachlorooxomoybdat(V))-chlorid wird das Amin in 13 ml konzentrierter Salzsäure gelöst und zu dem in 4 ml Salzsäure gelösten Molybdänchlorid gegeben. Unter langsamer Verdampfung der Salzsäure können transparente, grüne, plättchenförmige Kristalle erhalten werden.

Summenformel:	$C_{12}H_{40}N_6OCl_9Mo$
Strukturierte Formel:	$[H_3N(CH_2)_3NH_2(CH_2)_3)NH_3]_6[Mo(O)Cl_5]_3Cl_{12}$
Molare Masse:	699.5 g/mol

Elementaranalyse:

	C (%)	H (%)	N (%)
Berechnet	20.61	5.76	12.01
Gefunden	20.81	6.76	12.01
(s. Anmerkung S. 96)			

DTA/DSC: Messbereich: RT - 600 °C; Zersetzungspeak: T_{onset} : 330.7 °C; T_{max} .: 340.8 °C; T_{offset} : 353.2 °C

IR: v [cm⁻¹]: 3393 (m), 3152 (m), 2956 (s), 2892 (s), 2834 (s), 2765 (s), 2614 (m), 2504 (w), 2420 (w), 1958 (w), 1603 (m), 1508 (m), 1456 (m), 1404 (w), 1356 (w), 1284 (w), 1166 (w), 1061 (w), 982 (m), 922 (w), 777 (w).

 Raman:
 v [cm⁻¹]: 3176 (w), 2999 (s), 2968 (s), 2943 (s), 2930 (s), 2909 (s),

 2875 (m), 2822 (w), 2507 (w), 1589 (w), 1464 (w), 1313 (w), 1163 (w),

 1313 (w), 1163 (w), 1057 (w), 979 (s), 322 (s), 272 (m), 228 (m),

 158 (s).

Die Werte der durchgeführten Elementaranalysen enthalten trotz Mehrfachmessung Schwankungen, die weder systematisch noch in den Methoden begründet sind. Ebenfalls ist kein substanzspezifisches Abweichungsmuster zu erkennen.

6. Zusammenfassung

Im Rahmen der beschriebenen Untersuchungen werden folgende Verbindungen synthetisiert und ihre Strukturen bestimmt:

$[H_3N(CH_2)_3NH_3]_4[H_2OMo(O)Cl_4]_2Cl_6$	(1)
$[H_3N(CH_2)_4NH_3][H_2OMo(O)Cl_4]Cl^+H_2O$	(2)
[H ₃ N(CH ₂) ₆ NH ₃][H ₂ OMo(O)Cl ₄]Cl	(3)
$[H_3N(CH_2)_7NH_3]_3[Mo(O)Cl_5]_2Cl_2$	(4)
$[H_3N(CH_2)_8NH_3]_3[Mo(O)Cl_5]_2Cl_2$	(5)
$[H_3N(CH_2)_9NH_3]_3[H_2OMo(O)Cl_4]_2Cl_4$	(6)
$[H_2N(C_2H_4)_2NH_2][Mo(O)Cl_5]$	(7)
$[(H_3NC_2H_4)HN(C_2H_4)_2NH_2]_2[H_2OMo(O)Cl_4]Cl_5$	(8)
$[H_3N(CH_2)_2NH_2(CH_2)_2NH_2(CH_2)_2NH_2][H_2OMo(O)Cl_4]Cl_3 H_2O$	(9)
[H ₃ N(CH ₂) ₃ NH ₂ (CH ₂) ₃ NH ₃] ₆ [Mo(O)Cl ₅] ₃ Cl ₁₂	(10)

Mit der Synthese ist es gelungen, zehn neue anorganisch-organische Hybridmaterialien herzustellen. Die bislang kaum erforschte Verbindungsklasse der Ammonioalkanoxochloromolybdate wird systematisch untersucht und durch die neuen Verbindungen erweitert. In allen Verbindungen sind "anorganische" von "organischen" Bereichen klar abzugrenzen und teilweise kann sogar von ausschließlich anorganischen und organischen Schichten gesprochen werden.

An den Verbindungen konnte im Einzelnen nachgewiesen werden, dass beim Crystal Engineering der Übergang von homoleptischen Hexachlorometallaten zu heteroleptischen Spezies als Bausteinen immer mit einem Funktionalitätsgewinn verbunden ist. Im konkreten Fall ist durch die Einführung eines Aqualiganden das komplexe Anion in der Lage neben Wasserstoffbrückenbindungen zu nahe liegenden positiv geladenen stickstoffhaltigen Wasserstoffbrückendonor-Gruppen auch zu Akzeptoren wie z. B. Chloridionen Wasserstoffbrückenbindungen aufzubauen. In den meisten Fällen sind in der Gesamtbilanz stärkere supramolekulare Wechselwirkungen bei den [H₂OMo(O)Cl₄]⁻-Ionen zu verzeichnen. Das drückt sich zum einen in der großen Anzahl der geknüpften H-Brückenbindungen aus und zum anderen an den durchschnittlich kürzeren H-Brückenbindungslängen.

Weiterhin konnte die Stereochemie der Organylammonium-Ionen im Festkörper dieser Verbindungen mit der in einfachen Organylammoniumhalogeniden verglichen und im Sinne des Crystal Engineerings ausgewertet werden. Als Ergebnis kann festgehalten werden, dass es sich bei den Organylammonium-Ionen um supramolekulare Synthone handelt, die mit einatomigen, nicht komplexgebundenen Ionen variationsfähige Wirtsgitter bilden, in die verschiedene komplexe Anionen unter Nutzung der konformativen Flexibilität der Organylammonium-Ionen und unter Erhalt von Teilstrukturen des Wirtsgitters eingebaut werden können.

7. Literaturverzeichnis

- [1] J.-M. Lehn, Angew. Chem., Int. Ed. Engl. 1988, 27, 89.
- [2] J.-M. Lehn, Pure Appl. Chem. 1978, 50, 871.
- [3] D. S. Reddy, D. C. Craig, G. R. Desiraju, J. Chem. Soc., Chem. Commun. 1995.
- [4] D. Braga, *Chem. Comm.* **2003**, 2751.
- [5] D. V. Soldatov, I. S. Terekhova, J. Struct. Chem. 2005, 46, 1.
- [6] J.-M. Lehn, Angew. Chem. **1990**, 102, 1347.
- [7] G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647.
- [8] D. Braga, L. Brammer, N. R. Champness, *Cryst. Eng. Comm.* 2005, 7, 1.
- [9] K. Biradha, *Cryst. Eng. Comm.* **2003**, *5*, 374.
- [10] E. J. Corey, Pure Appl. Chem. 1967, 14, 19.
- [11] G. R. Desiraju, Angew. Chem. 1995, 107, 2541.
- [12] A. Nangia, Cryst. Eng. Comm. 2002, 4, 93.
- [13] J. D. Dunitz, Pure Appl. Chem. 1991, 63, 177.
- [14] G. R. Desiraju, Angew. Chem., Int. Ed. Engl. 2007, 46, 8342.
- [15] G. R. Desiraju, Acc. Chem. Res. 1991, 24, 290.
- [16] G. R. Desiraju, Acc. Chem. Res. 1996, 29, 441.
- [17] T. Steiner, Angew. Chem. 2002, 114, 50.
- [18] G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, 1997.
- [19] L. Brammer, F. Zordan, Acta Crystallogr. 2004, B60, 512.
- [20] P. Coppens, Angew. Chem. 1977, 89, 33.
- [21] L. J. Prins, D. N. Reinhoudt, P. Timmermann, *Angew. Chem., Int. Ed. Engl.* 2001, 40, 2382.
- [22] A. F. Wells, *Acta Crystallogr.* **1954**, *7*, 842.
- [23] L. N. Kuleshova, P. M. Zorky, Acta Crystallogr. 1980, B36, 2113.
- [24] M. C. Etter, J. C. MacDonald, J. Bernstein, Acta Crystallogr. 1990, B46, 256.
- [25] N. N. Greenwood, A. Earnshaw, *Chemie der Elemente, Vol. 1*, VCH Weinheim [et al.], 1990.
- [26] F. Jalilehvand, et al., *Inorg. Chem.* **2007**, *46*, 4430.
- [27] H. B. Gray, C. R. Hare, *Inorg. Chem.* **1961**, *1*, 363.
- [28] A. Bino, F. A. Cotton, J. Am. Chem. Soc. 1979, 4150.
- [29] C. D. Garner, et al., J. Chem. Soc., Dalton Trans. 1977, 1202.

- [30] M. Cindric, D. Matkovic-Calogovic, B. Kamenar, *Inorg. Chem. Acta.* 1996, 103.
- [31] C. J. Kepert, et al, J. Chem. Soc., Dalton Trans. 1997, 607.
- [32] P. C. Junk, J. L. Atwood, J. Organomet. Chem. 1998, 179.
- [33] C.-D. Wu, et al., Acta Crystallogr. 2001, E57, m511.
- [34] S. J. Hibble, S. G. Eversfield, A. N. Chippindale, *Acta Crystallogr.* 2002, *E58*, m366.
- [35] B. Modec, J. V. Brencic, Eur. J. Inorg. Chem. 2005, 1698.
- [36] M. Bujak, W. Frank, Z. Naturforsch. 2002, 57b, 1391.
- [37] P. P. Toffoli, et al., *Acta Crystallogr.* **1985**, *C41*, 1589.
- [38] F. A. Cotton, J. H. Matonic, D. Silva, *Inorg. Chim. Acta* 1995, 234, 115.
- [39] A. Kallel, J. Fail, Acta Crystallogr. **1980**, *B36*, 2788.
- [40] D. W. Pheleps, et al., *Inorg. Chem.* **1976**, *15*, 3147.
- [41] R. D. Willett, E. F. Riedel, *Chem. Phys.* **1975**, *8*, 112.
- [42] International tables for crystallography, Vol. A Space-group symmetry, Dordrecht: Holland, Boston: USA, 1983.
- [43] T. Kottke, D. Stalke, J. Appl. Crystallogr. 1993, 26, 615.
- [44] A. J. Bridgeman, G. Cavigliasso, J. Chem. Soc., Dalton Trans. 2001, 3556.
- [45] K. Chandrasekhar, V. Pattabhi, Acta Crystallogr. 1980, B36, 2486.
- [46] W. Frank, G. J. Reiß, Chem. Ber. 1996, 129, 1355.
- [47] T. Maris, et al., J. Phys. Chem. Solids 1996, 57, 1963.
- [48] J. K. Garland, K. Emerson, M. R. Pressprich, Acta Crystallogr. 1990, C46, 1603.
- [49] K. Tichý, et al., Acta Crystallogr. 1980, B36, 1355.
- [50] M. Amami, et al., *Acta Crystallogr.* **2002**, *E58*, m357.
- [51] C. Blerk, G. J. Kruger, *Acta Crystallogr.* **2007**, *E63*, 0342.
- [52] J. L. Atwood, et al., J. Coord. Chem. 1996, 37, 89.
- [53] W. P. Binnie, J. M. Robertson, Acta Crystallogr. 1949, 2, 180.
- [54] W. Frank, G. J. Reiß, *Inorg. Chem.* **1997**, *36*, 4593.
- [55] A. H. Mahmoudkhani, V. Langer, Acta Crystallogr. 2002, E58, m592.
- [56] B. D. James, et al., *Inorg. Chim. Acta* **1995**, *247*, 169.
- [57] N. Borkakoti, et al., *Acta Crystallogr.* **1978**, *B34*, 3431.
- [58] A. J. Bridgeman, G. Cavigliasso, J. Chem. Soc., Faraday Trans. 2003, 124, 239.
- [59] A. L. Beauchamp, J. Brisson, Acta Crystallogr. 1988, C44, 1152.
- [60] V. Maisonneuve, et al., *Solid State Sci.* **2002**, *4*, 1213.
- [61] J. Brisson, F. Brisse, *Acta Crystallogr.* **1984**, *C40*, 1405.
- [62] I. Leban, P. Segedin, Inorg. Chim. Acta 1984, 85, 181.

- [63] D. T. Qui, E. Palacios, *Acta Crystallogr.* **1990**, *C46*, 1212.
- [64] P. C. Rérat, Acta Crystallogr. 1960, 13, 459.
- [65] A. H. Mahmoudkhani, et al., *Acta Crystallogr.* 2001, *E57*, o610.
- [66] W. Massa, *Kristallstrukturbestimmung, Vol. 3*, Teubner, Stuttgart, 2002, p.183.
- [67] G. C. Pellacani, et al., J. Am. Chem. Soc. 1980, 102, 5506.
- [68] L. Menabu, G. C. Pellacani, *Inorg. Chim. Acta* 1982, 58, 227.
- [69] W. Frank, T. Hahn, Acta Crystallogr. 2008, E64, m257.
- [70] W. Steed, et al., New J. Chem. 2000, 24, 787.
- [71] P. Ligthfoot, et al., J. Chem. Soc., Dalton Trans. 2007, 2271.
- [72] P. G. Jones, *Chem. Br.* **1981**, *17*, 222.
- [73] Hulliger, Angew. Chem. 1994, 106, 151.
- [74] G. M. Sheldrick, in SHELX-97, A Program for the Solution and the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- [75] K. Brandenburg, Diamond Version 3.0a, Crystla Impact GbR, 1997-2004.
- [76] CambridgeSoftCorporation, in *ChemDraw Ultra, Chemical Drawing Standard*, Version 8.0, Cambridge, USA, 2003.

8. Anhang

Alle äquivalente isotrope U-Werte sind definiert als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

8.1 Tabellenwerk zu 1

8.1.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren von 1

Atom	x/a	y/b	z/c	U_{eq}
Mo1	0.3312(1)	0.5000(1)	0.1809(1)	0.033(1)
Mo2	0.2218(1)	0.0001(1)	0.3287(1)	0.041(1)
011	0.3210(2)	0.5003(4)	0.2486(2)	0.058(1)
O12	0.3451(2)	0.4994(4)	0.0857(1)	0.044(1)
O21	0.1572(3)	0.0005(5)	0.2659(2)	0.081(1)
O22	0.3082(2)	0.0002(4)	0.4182(2)	0.061(1)
Cl11	0.4244(1)	0.3346(1)	0.1953(1)	0.055(1)
Cl12	0.4245(1)	0.6655(1)	0.1954(1)	0.054(1)
Cl13	0.2418(1)	0.6625(1)	0.1376(1)	0.059(1)
Cl14	0.2417(1)	0.3374(1)	0.1376(1)	0.058(1)
Cl21	0.1689(1)	-0.1613(1)	0.3787(1)	0.056(1)
Cl22	0.1691(1)	0.1614(1)	0.3788(1)	0.056(1)
C123	0.3001(1)	0.1655(2)	0.3053(1)	0.071(1)
Cl24	0.3001(1)	-0.1655(2)	0.3054(1)	0.071(1)
Cl1	0.3889(1)	0.2721(1)	0.0164(1)	0.050(1)
Cl2	0.0455(1)	0.5000(1)	0.1716(1)	0.042(1)
C13	0.0161(1)	0.5001(2)	0.3367(1)	0.056(1)
Cl4	0.3775(1)	0.2507(2)	0.4818(1)	0.061(1)
Cl5	0.3889(1)	-0.2723(1)	0.0164(1)	0.050(1)
Cl6	0.3774(1)	-0.2506(2)	0.4818(1)	0.061(1)
N1	0.0561(2)	0.2425(4)	0.1010(2)	0.046(1)
N2	0.0565(2)	-0.2421(4)	0.1010(2)	0.047(1)
N3	-0.0113(3)	0.7579(5)	0.4005(2)	0.056(1)
N4	-0.0111(3)	0.12421(5)	0.4001(2)	0.058(1)
N5	0.2285(11)	0.0010(30)	0.5182(8)	0.058(10)
N'5	0.2287(10)	-0.0007(18)	0.5173(8)	0.052(8)
N6	0.3413(7)	-0.0732(8)	0.7102(5)	0.049(3)
N6'	0.3413(7)	0.0759(9)	0.7101(5)	0.057(3)
N7	-0.1078(3)	0.5002(5)	0.2185(2)	0.058(1)
N8	-0.2007(3)	0.5000(4)	0.0039(2)	0.049(1)
C1	0.0832(3)	0.1236(5)	0.1368(2)	0.042(1)
-----	------------	-------------	-----------	-----------
C2	0.0608(3)	-0.0001(5)	0.1012(2)	0.045(1)
C3	0.0831(3)	-0.1245(5)	0.1364(2)	0.044(1)
C4	-0.0257(3)	0.8769(6)	0.3628(2)	0.057(1)
C5	-0.0137(3)	1.0000(6)	0.4001(2)	0.054(1)
C6	-0.0260(3)	1.1244(6)	0.3628(2)	0.058(1)
C7	0.2856(13)	0.0020(30)	0.5754(8)	0.079(12)
C7'	0.2863(7)	-0.0006(18)	0.5750(4)	0.032(6)
C8	0.2496(9)	0.0337(17)	0.6251(6)	0.043(4)
C8'	0.2501(7)	-0.0274(17)	0.6253(5)	0.040(3)
C9	0.3044(7)	0.0508(12)	0.6851(5)	0.039(3)
C9'	0.3049(6)	-0.0480(13)	0.6850(5)	0.047(3)
C10	-0.1740(3)	0.4994(5)	0.1702(2)	0.041(1)
C11	-0.1552(3)	0.5000(5)	0.1114(2)	0.045(1)
C12	-0.2237(3)	0.4998(5)	0.0601(2)	0.048(1)

8.1.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 1

Atom	x/a	y/b	z/c	U_{iso}
H121	0.362(3)	0.559(4)	0.069(2)	0.066(2)
H122	0.359(5)	0.428(4)	0.074(4)	0.140(4)
H221	0.333(3)	-0.066(4)	0.431(3)	0.070(2)
H222	0.332(4)	0.071(4)	0.425(4)	0.130(4)
H11	0.0690	0.3145	0.1231	0.069
H12	0.0069	0.2389	0.0877	0.069
H13	0.0759	0.2456	0.0704	0.069
H21	0.0697	-0.3142	0.1231	0.071
H22	0.0762	-0.2450	0.0704	0.071
H23	0.0073	-0.2390	0.0878	0.071
H31	-0.0184	0.6859	0.3778	0.085
H32	-0.0422	0.7564	0.4236	0.085
H33	0.0353	0.7595	0.4229	0.085
H41	-0.0182	1.3141	0.3774	0.086
H42	0.0356	1.2402	0.4222	0.086
H43	-0.0417	1.2438	0.4234	0.086
H51	0.2504	-0.0002	0.4888	0.087
H52	0.2003	0.7028	0.5152	0.087
H53	0.2004	-0.0710	0.5160	0.087
H5'1	0.2507	-0.0023	0.4879	0.078
H5'2	0.2012	0.0720	0.5144	0.078
H5'3	0.2001	-0.0718	0.5150	0.078
H61	0.3737	-0.0564	0.7447	0.074

H62	0.3650	-0.1077	0.6853	0.074
H63	0.3075	-0.1305	0.7155	0.074
H6'1	0.3738	0.0591	0.7446	0.086
H6'2	0.3073	0.1326	0.7156	0.086
H6'3	0.3647	0.1110	0.6853	0.086
H71	-0.1201	0.4999	0.2527	0.087
H72	-0.0814	0.5726	0.2163	0.087
H73	-0.0808	0.4287	0.2164	0.087
H81	-0.2408	0.4998	-0.0267	0.074
H82	-0.1736	0.4282	0.0024	0.074
H83	-0.1739	0.5721	0.0024	0.074
H1A	0.0631	0.1220	0.1709	0.051
H1B	0.1368	0.1272	0.1510	0.051
H2A	0.0831	0.0002	0.0683	0.054
H2B	0.0074	0.0000	0.0850	0.054
H3A	0.1368	-0.1280	0.1506	0.053
H3B	0.0631	-0.1233	0.1705	0.053
H4A	-0.0764	0.8749	0.3382	0.069
H4B	0.0071	0.8776	0.3370	0.069
H5A	0.0365	1.0001	0.4256	0.064
H5B	-0.0475	0.9998	0.4252	0.064
H6A	0.0065	1.1235	0.3367	0.069
H6B	-0.0768	1.1266	0.3385	0.069
H7A	0.3228	0.0685	0.5745	0.095
H7B	0.3098	-0.0833	0.5824	0.095
H7'A	0.3112	0.0844	0.5811	0.038
H7'B	0.3230	-0.0684	0.5748	0.038
H8A	0.2208	0.1143	0.6152	0.052
H8B	0.2156	-0.0373	0.6276	0.052
H8'A	0.2182	0.0467	0.6281	0.048
H8'B	0.2190	-0.1055	0.6156	0.048
H9A	0.3419	0.1142	0.6816	0.047
H9B	0.2786	0.0872	0.7124	0.047
H9'A	0.2792	-0.0855	0.7122	0.057
H9'B	0.3424	-0.1109	0.6809	0.057
H10A	-0.2037	0.5767	0.1729	0.049
H10B	-0.2030	0.4213	0.1729	0.049
H11A	-0.1258	0.5778	0.1090	0.054
H11B	-0.1255	0.4226	0.1089	0.054
H12A	-0.2533	0.4218	0.0618	0.058
H12B	-0.2535	0.5775	0.0618	0.058

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	0.033(1)	0.035(1)	0.032(1)	-0.003(1)	0.008(1)	0.001(1)
Mo2	0.050(1)	0.045(1)	0.028(1)	-0.003(1)	0.010(1)	0.001(1)
O11	0.066(2)	0.068(2)	0.043(2)	-0.002(2)	0.023(2)	0.002(2)
O12	0.053(2)	0.044(2)	0.035(2)	-0.001(2)	0.014(2)	-0.001(2)
O21	0.097(3)	0.088(3)	0.039(2)	-0.002(2)	-0.015(2)	-0.004(3)
O22	0.052(2)	0.057(3)	0.062(2)	0.000(2)	-0.005(2)	0.002(2)
Cl11	0.050(1)	0.051(1)	0.062(1)	0.008(1)	0.011(1)	0.015(1)
Cl12	0.049(1)	0.049(1)	0.062(1)	-0.014(1)	0.011(1)	-0.013(1)
Cl13	0.051(1)	0.046(1)	0.074(1)	-0.004(1)	0.007(1)	0.016(1)
Cl14	0.049(1)	0.046(1)	0.074(1)	-0.002(1)	0.006(1)	-0.014(1)
Cl21	0.063(1)	0.049(1)	0.062(1)	-0.004(1)	0.030(1)	-0.03(1)
Cl22	0.064(1)	0.049(1)	0.063(1)	-0.004(1)	0.030(1)	0.005(1)
Cl23	0.092(1)	0.064(1)	0.074(1)	-0.004(1)	0.051(1)	-0.012(1)
Cl24	0.091(1)	0.063(1)	0.075(1)	-0.003(1)	0.051(1)	0.012(1)
Cl1	0.058(1)	0.050(1)	0.042(1)	-0.011(1)	0.014(1)	-0.006(1)
C12	0.048(1)	0.039(1)	0.039(1)	-0.003(1)	0.009(1)	0.001(1)
C13	0.053(1)	0.069(1)	0.045(1)	-0.003(1)	0.010(1)	0.000(1)
Cl4	0.055(1)	0.077(1)	0.047(1)	-0.018(1)	0.005(1)	0.003(1)
C15	0.058(1)	0.049(1)	0.041(1)	0.005(1)	0.014(1)	0.008(1)
C16	0.055(1)	0.078(1)	0.046(1)	0.011(1)	0.005(1)	-0.002(1)
N1	0.051(2)	0.040(2)	0.047(2)	-0.013(2)	0.013(2)	0.001(2)
N2	0.051(2)	0.043(2)	0.047(2)	0.004(2)	0.012(2)	0.000(2)
N3	0.053(3)	0.062(3)	0.048(2)	-0.008(2)	0.005(2)	0.007(2)
N4	0.052(3)	0.066(3)	0.049(2)	0.003(2)	0.005(2)	-0.004(2)
N5	0.060(16)	0.090(20)	0.040(12)	-0.006(10)	0.042(12)	-0.002(12)
N'5	0.048(12)	0.036(10)	0.053(13)	-0.001(7)	-0.020(7)	0.003(7)
N6	0.062(7)	0.042(5)	0.036(5)	-0.003(4)	-0.001(5)	-0.007(5)
N6'	0.064(7)	0.054(6)	0.045(6)	-0.005(4)	0.001(5)	0.010(5)
N7	0.052(3)	0.089(4)	0.031(2)	-0.003(2)	0.009(2)	0.001(2)
N8	0.056(3)	0.043(2)	0.037(2)	-0.003(2)	-0.010(2)	0.001(2)
C1	0.041(3)	0.041(3)	0.045(2)	-0.005(2)	0.011(2)	0.001(2)
C2	0.047(3)	0.046(3)	0.040(2)	-0.002(2)	0.009(2)	0.002(2)
C3	0.044(3)	0.042(3)	0.047(3)	-0.001(2)	0.015(2)	0.001(2)
C4	0.050(3)	0.081(4)	0.036(2)	-0.012(3)	0.003(2)	0.008(3)
C5	0.051(3)	0.069(4)	0.037(2)	-0.004(2)	0.004(2)	0.001(3)
C6	0.053(3)	0.074(4)	0.040(3)	0.005(3)	0.001(2)	-0.005(3)
C7	0.080(20)	0.045(16)	0.100(20)	0.007(13)	-0.003(18)	0.004(14)
C7'	0.020(8)	0.073(15)	0.006(6)	-0.005(6)	0.010(7)	0.005(8)
C8	0.044(7)	0.052(9)	0.034(6)	0.000(6)	0.013(5)	0.003(7)
C8'	0.034(5)	0.062(10)	0.027(5)	-0.003(6)	0.012(4)	0.005(7)

8.1.3 Anisotrope Auslenkungsparameter in 1

С9	0.046(8)	0.032(7)	0.044(7)	0.001(5)	0.020(6)	0.007(5)
C9'	0.047(7)	0.053(8)	0.045(7)	-0.002(6)	0.018(6)	-0.005(6)
C10	0.039(3)	0.044(3)	0.040(2)	-0.004(2)	0.009(2)	-0.001(2)
C11	0.038(3)	0.058(3)	0.932(2)	-0.003(2)	-0.001(2)	0.002(2)
C12	0.044(3)	0.050(3)	0.044(3)	-0.006(2)	0.002(2)	0.001(2)

8.2 Tabellenwerk zu 2

8.2.1	Ortskoordinaten	und äquivalente	isotrope	Auslenkungsfaktoren	von 2

Atom	x/a	y/b	z/c	U_{eq}
Mo1	0.7796(1)	0.7168(1)	0.0063(1)	0.027(1)
C11	0.4218(1)	0.9830(1)	-0.1706(1)	0.034(1)
Cl11	0.9022(1)	0.8631(1)	0.1252(1)	0.041(1)
Cl12	0.6581(1)	0.6428(1)	0.1102(1)	0.040(1)
Cl13	0.6164(1)	0.6257(1)	-0.1178(1)	0.040(1)
Cl14	0.8630(1)	0.8384(1)	-0.1043(1)	0.045(1)
011	0.8796(2)	0.5830(3)	0.0216(2)	0.045(1)
012	0.6485(2)	0.9028(3)	-0.0082(2)	0.036(1)
01	0.1066(3)	0.5369(3)	0.1959(2)	0.052(1)
N1	0.2180(3)	0.8235(3)	0.1978(2)	0.042(1)
N2	0.2887(3)	0.6819(3)	-0.1927(2)	0.035(1)
C1	0.2937(3)	0.7794(4)	0.1331(2)	0.039(1)
C2	0.2126(3)	0.7670(4)	0.362(2)	0.036(1)
C3	0.2911(3)	0.7262(3)	-0.0298(2)	0.033(1)
C4	0.2101(3)	0.7174(4)	-0.1287(2)	0.040(1)

8.2.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 2

Atom	x/a	y/b	z/c	U_{iso}
H121	0.622(4)	0.911(5)	0.037(3)	0.058(13)
H122	0.583(5)	0.915(5)	-0.062(3)	0.072(14)
H1	0.063(4)	0.544(6)	0.235(2)	0.076(16)
H2	0.071(4)	0.504(5)	0.1436(16)	0.078(17)
H11	0.2691	0.8306	0.2546	0.062
H12	0.1576	0.7608	0.1974	0.062
H13	0.1821	0.9056	0.1801	0.062
H21	0.2395	0.6789	-0.2503	0.052
H22	0.3250	0.5992	-0.1776	0.052
H23	0.3490	0.7461	-0.1887	0.052
H1A	0.3335	0.6904	0.1529	0.046
H1B	0.3609	0.8467	0.1349	0.046
H2A	0.1708	0.8553	0.0169	0.044
H2B	0.1469	0.6976	0.0339	0.044
H3A	0.3309	0.6367	-0.0115	0.039
H3B	0.3583	0.7942	-0.0262	0.039

H4A	0.1446	0.6472	-0.1330	0.047
H4B	0.1681	0.8060	-0.1466	0.047

8.2.3 Anisotrope Auslenkungsparameter in 2

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	0.028(1)	0.029(1)	0.024(1)	0.001(1)	0.006(1)	0.002(1)
Cl1	0.035(1)	0.036(1)	0.031(1)	0.002(1)	0.007(1)	0.002(1)
Cl11	0.035(1)	0.052(1)	0.033(1)	-0.008(1)	0.004(1)	-0.007(1)
Cl12	0.051(1)	0.037(1)	0.035(1)	0.003(1)	0.019(1)	-0.005(1)
Cl13	0.039(1)	0.049(1)	0.031(1)	-0.007(1)	0.008(1)	-0.007(1)
Cl14	0.050(1)	0.051(1)	0.037(1)	0.003(1)	0.019(1)	-0.010(1)
011	0.039(1)	0.041(1)	0.052(1)	0.003(1)	0.011(1)	0.014(1)
012	0.038(1)	0.039(1)	0.028(1)	0.003(1)	0.004(1)	0.011(1)
01	0.047(1)	0.070(2)	0.042(2)	0.010(1)	0.014(1)	-0.001(1)
N1	0.044(1)	0.057(2)	0.026(1)	-0.003(1)	0.013(1)	0.002(1)
N2	0.042(1)	0.039(1)	0.025(1)	-0.002(1)	0.010(1)	-0.005(1)
C1	0.039(2)	0.051(2)	0.028(1)	-0.007(1)	0.013(1)	-0.005(1)
C2	0.040(2)	0.041(2)	0.030(2)	-0.002(1)	0.011(1)	-0.003(1)
C3	0.038(1)	0.035(2)	0.027(1)	-0.003(1)	0.011(1)	-0.005(1)
C4	0.041(2)	0.051(2)	0.029(2)	-0.002(1)	0.015(1)	-0.004(2)

8.3 Tabellenwerk zu 3

8.3.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren von 3	8.3.1	Ortskoordinaten	und äquivalente	isotrope	Auslenkungsfaktoren	von 3
--	-------	-----------------	-----------------	----------	---------------------	--------------

x/a	y/b	z/c	U_{eq}
0.3764(1)	0.1026(1)	-0.2614(1)	0.040(1)
0.2500(1)	-0.4769(1)	-0.5318(1)	0.041(1)
0.6360(1)	0.0946(2)	-0.2587(1)	0.050(1)
0.3901(2)	0.2424(2)	-0.3958(1)	0.055(1)
0.0962(1)	0.0422(2)	-0.3213(1)	0.055(1)
0.3365(2)	-0.1074(2)	-0.1975(1)	0.054(1)
0.4377(5)	0.2659(4)	-0.1110(4)	0.066(1)
0.2984(3)	-0.1194(3)	-0.4786(3)	0.042(1)
0.3921(4)	0.2782(5)	0.2949(4)	0.048(1)
0.0597(4)	-0.6550(5)	-0.3986(4)	0.048(1)
0.3553(5)	0.2783(6)	0.1610(5)	0.052(1)
0.1759(5)	0.2109(6)	0.0849(5)	0.050(1)
0.0881(5)	0.0313(6)	0.0427(5)	0.045(1)
0.1193(5)	-0.5408(6)	-0.2501(4)	0.044(1)
0.0008(5)	-0.5864(6)	-0.1847(4)	0.042(1)
0.0609(5)	-0.4780(6)	-0.0321(4)	0.042(1)
	x/a 0.3764(1) 0.2500(1) 0.6360(1) 0.3901(2) 0.0962(1) 0.3365(2) 0.4377(5) 0.2984(3) 0.3921(4) 0.0597(4) 0.3553(5) 0.1759(5) 0.0881(5) 0.1193(5) 0.0008(5) 0.0609(5)	x/a y/b $0.3764(1)$ $0.1026(1)$ $0.2500(1)$ $-0.4769(1)$ $0.6360(1)$ $0.0946(2)$ $0.3901(2)$ $0.2424(2)$ $0.0962(1)$ $0.0422(2)$ $0.3365(2)$ $-0.1074(2)$ $0.4377(5)$ $0.2659(4)$ $0.2984(3)$ $-0.1194(3)$ $0.3921(4)$ $0.2782(5)$ $0.0597(4)$ $-0.6550(5)$ $0.3553(5)$ $0.2783(6)$ $0.1759(5)$ $0.2109(6)$ $0.0881(5)$ $-0.5408(6)$ $0.0008(5)$ $-0.5864(6)$ $0.0609(5)$ $-0.4780(6)$	x/a y/b z/c $0.3764(1)$ $0.1026(1)$ $-0.2614(1)$ $0.2500(1)$ $-0.4769(1)$ $-0.5318(1)$ $0.6360(1)$ $0.0946(2)$ $-0.2587(1)$ $0.3901(2)$ $0.2424(2)$ $-0.3958(1)$ $0.0962(1)$ $0.0422(2)$ $-0.3213(1)$ $0.3365(2)$ $-0.1074(2)$ $-0.1975(1)$ $0.4377(5)$ $0.2659(4)$ $-0.1110(4)$ $0.2984(3)$ $-0.1194(3)$ $-0.4786(3)$ $0.3921(4)$ $0.2782(5)$ $0.2949(4)$ $0.0597(4)$ $-0.6550(5)$ $-0.3986(4)$ $0.3553(5)$ $0.2783(6)$ $0.1610(5)$ $0.1759(5)$ $0.2109(6)$ $0.0849(5)$ $0.0881(5)$ $0.0313(6)$ $-0.2501(4)$ $0.0008(5)$ $-0.5864(6)$ $-0.1847(4)$ $0.0609(5)$ $-0.4780(6)$ $-0.0321(4)$

8.3.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 3

Atom	x/a	y/b	z/c	U_{iso}
H121	0.323(5)	-0.107(2)	-0.541(2)	0.052(15)
H122	0.310(7)	-0.206(4)	-0.486(4)	0.080(2)
H11	0.4975	0.3263	0.3403	0.072
H12	0.3584	0.1750	0.2811	0.072
H13	0.3425	0.3334	0.3437	0.072
H21	0.1236	-0.6167	-0.4366	0.072
H22	-0.0394	-0.6632	-0.4371	0.072
H23	0.0588	-0.7538	-0.4115	0.072
H1A	0.4033	0.2119	0.1055	0.062
H1B	0.4019	0.3899	0.1758	0.062
H2A	0.1577	0.2245	0.0032	0.060
H2B	0.1292	0.2766	0.1426	0.060
H3A	0.0973	0.0181	0.1242	0.054
H3B	0.1387	-0.0348	-0.0097	0.054
H4A	0.1376	-0.4294	-0.2359	0.053

H4B	0.2208	-0.5434	-0.2062	0.053
H5A	-0.0990	-0.5787	-0.2261	0.050
H5B	-0.0218	-0.6999	-0.2037	0.050
H6A	0.0860	-0.3642	-0.0129	0.050
H6B	0.1590	-0.4881	0.0097	0.050

8.3.3 Anisotrope Auslenkungsparameter in **3**

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mol	0.048(1)	0.036(1)	0.036(1)	0.015(1)	0.020(1)	0.014(1)
C11	0.044(1)	0.039(1)	0.043(1)	0.020(1)	0.018(1)	0.015(1)
C111	0.038(1)	0.057(1)	0.050(1)	0.025(1)	0.014(1)	0.009(1)
C112	0.071(1)	0.050(1)	0.066(1)	0.038(1)	0.038(1)	0.027(1)
Cl13	0.053(1)	0.062(1)	0.066(1)	0.035(1)	0.033(1)	0.030(1)
Cl14	0.066(1)	0.060(1)	0.058(1)	0.039(1)	0.035(1)	0.030(1)
011	0.085(3)	0.051(2)	0.048(2)	0.011(2)	0.029(2)	0.021(2)
012	0.049(2)	0.038(2)	0.035(2)	0.015(2)	0.015(1)	0.016(2)
N1	0.040(2)	0.049(2)	0.040(2)	0.010(2)	0.006(2)	0.019(2)
N2	0.044(2)	0.056(3)	0.048(2)	0.026(2)	0.026(2)	0.015(2)
C1	0.044(3)	0.053(3)	0.054(3)	0.027(3)	0.014(2)	0.012(2)
C2	0.051(3)	0.052(3)	0.039(3)	0.020(2)	0.007(2)	0.018(2)
C3	0.041(2)	0.053(3)	0.039(3)	0.020(2)	0.011(2)	0.020(2)
C4	0.046(2)	0.041(3)	0.042(3)	0.0017(2)	0.020(2)	0.013(2)
C5	0.042(2)	0.040(3)	0.041(2)	0.017(2)	0.019(2)	0.014(2)
C6	0.042(2)	0.040(3)	0.037(2)	0.015(2)	0.011(2)	0.014(2)

8.4 Tabellenwerk zu 4

Atom	x/a	y/b	z/c	U_{eq}
Mo1	0.2806(1)	0.2133(1)	0.2514(1)	0.040(1)
Cl1	0.2351(1)	0.5860(1)	-0.0338(1)	0.069(1)
Cl11	0.4723(1)	0.3433(1)	0.3477(1)	0.061(1)
Cl12	0.1734(1)	0.4088(1)	0.2657(1)	0.063(1)
C113	0.1103(1)	0.0905(1)	0.1105(1)	0.050(1)
Cl14	0.4057(1)	0.0221(1)	0.1903(1)	0.053(1)
Cl15	0.3788(1)	0.2537(1)	0.0373(1)	0.055(1)
011	0.2221(3)	0.1822(3)	0.3798(3)	0.064(1)
N1	-0.3239(3)	-0.8523(3)	-0.9005(3)	0.052(1)
N2	0.0654(4)	-0.6805(3)	-0.0357(3)	0.055(1)
N3	-0.5067(7)	-1.4400(5)	-0.8234(5)	0.106(2)
C1	-0.2400(4)	-0.8998(4)	-0.8143(4)	0.050(1)
C2	-0.1973(4)	-0.7950(4)	-0.6979(4)	0.049(1)
C3	-0.1238(3)	-0.8497(4)	-0.6049(3)	0.048(1)
C4	-0.0887(4)	-0.7496(4)	-0.4814(4)	0.055(1)
C5	-0.0260(4)	-0.8084(4)	-0.3876(4)	0.056(1)
C6	-0.0057(5)	-0.7109(4)	-0.2566(4)	0.057(1)
C7	0.0573(4)	-0.7725(4)	-0.1669(4)	0.056(1)
C8	-0.4486(11)	-1.3402(9)	-0.7450(10)	0.070(3)
C9	-0.5358(11)	-1.2485(10)	-0.6577(9)	0.054(2)
C10	-0.4545(10)	-1.1241(8)	-0.5878(8)	0.052(2)
C11	-0.5373(8)	-1.0242(8)	-0.4962(8)	0.053(2)
C8'	-0.5550(11)	-1.3298(10)	-0.7200(10)	0.064(3)
C9'	-0.4703(12)	-1.2045(10)	-0.6598(9)	0.055(2)
C10'	-0.5428(11)	-1.1079(8)	-0.5604(8)	0.051(2)

8.4.1	Ortskoordinaten	und äquivalente	isotrope	Auslenkungsfaktoren	von 4
8.4.1	Ortskoorainaten	una aquivalente	isotrope	Ausienkungsjaktoren	von 4

8.4.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 4

Atom	x/a	y/b	z/c	U_{iso}
H102	-0.624(4)	-1.109(9)	-0.607(6)	0.061
H101	-0.566(7)	-1.131(8)	-0.484(4)	0.061
H11	-0.3432	-0.9181	-0.9703	0.077
H12	-0.2809	-0.7853	-0.9207	0.077
H13	-0.3979	-0.8253	-0.8623	0.077

H21	0.1046	-0.7188	0.0154	0.083
H22	-0.0152	-0.6620	-0.0091	0.083
H23	0.1118	-0.6060	-0.0356	0.083
H1A	-0.2885	-0.9713	-0.07911	0.060
H1B	-0.1628	-0.9352	-0.8589	0.060
H2A	-0.2738	-0.7530	-0.6576	0.059
H2B	-0.1405	-0.7280	-0.7201	0.059
H3A	-0.1780	-0.9222	-0.5892	0.057
H3B	-0.0439	-0.8852	-0.6434	0.057
H4A	-0.1676	-0.7088	-0.4457	0.066
H4B	-0.0285	-0.6806	-0.4960	0.066
H5A	0.0583	-0.8391	-0.4188	0.067
H5B	-0.812	-0.8846	-0.3812	0.067
H6A	0.0495	-0.6344	-0.2624	0.069
H6B	-0.0899	-0.6806	-0.2246	0.069
H7A	0.1450	-0.7952	-0.1946	0.067
H7B	0.0065	-0.8536	-0.1670	0.067
H8A	-0.3975	-1.2899	-0.7917	0.084
H8B	-0.3874	-1.3715	-0.6945	0.084
H9A	-0.5745	-1.2913	-0.5982	0.065
H9B	-0.6062	-1.2264	-0.7056	0.065
H10A	-0.386(5)	-1.135(8)	-0.531(6)	0.063
H10B	-0.413(6)	-1.079(7)	-0.644(6)	0.063
H11A	-0.617(4)	-1.000(9)	-0.531(7)	0.063
H11B	-0.566(6)	-1.073(8)	-0.437(6)	0.063
H8'A	-0.5817	-1.3674	-0.6527	0.076
H8'B	-06342	-1.3032	-0.7521	0.076
H9'A	-0.3923	-1.2266	-0.6219	0.066
H9'B	-0.4424	-1.1633	-0.7243	0.066
H31	-0.5755	-1.4693	-0.7872	0.159
H32	-0.4514	-1.5036	-0.8477	0.159
H33	-0.5341	-1.4169	-0.8901	0.159

8.4.3 Anisotrope Auslenkungsparameter in 4

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	0.035(1)	0.047(1)	0.037(1)	0.009(1)	-0.003(1)	0.001(1)
C11	0.081(1)	0.055(1)	0.073(1)	0.024(1)	0.009(1)	-0.007(1)
Cl11	0.050(1)	0.060(1)	0.066(1)	0.007(1)	-0.023(1)	-0.007(1)
Cl12	0.060(1)	0.057(1)	0.066(1)	0.001(1)	-0.008(1)	0.020(1)
Cl13	0.041(1)	0.054(1)	0.050(1)	0.010(1)	-0.009(1)	-0.011(1)
Cl14	0.054(1)	0.049(1)	0.057(1)	0.016(1)	-0.004(1)	0.010(1)

Cl15	0.047(1)	0.073(1)	0.050(1)	0.023(1)	0.005(1)	0.005(1)
011	0.054(2)	0.092(2)	0.046(2)	0.022(2)	0.005(1)	-0.001(1)
N1	0.048(2)	0.060(2)	0.049(2)	0.021(2)	-0.006(1)	-0.006(1)
N2	0.071(2)	0.050(2)	0.045(2)	0.018(1)	-0.015(2)	-0.007(1)
N3	0.0172(6)	0.084(3)	0.067(3)	0.020(3)	0.037(3)	0.049(3)
C1	0.046(2)	0.054(2)	0.050(2)	0.013(2)	-0.006(2)	0.006(1)
C2	0.052(2)	0.053(2)	0.041(2)	0.008(2)	-0.03(2)	0.009(2)
C3	0.044(2)	0.056(2)	0.042(2)	0.008(2)	-0.002(1)	0.010(1)
C4	0.061(2)	0.057(2)	0.046(2)	0.011(2)	-0.005(2)	0.014(2)
C5	0.063(2)	0.058(2)	0.044(2)	0.011(2)	-0.006(2)	0.007(2)
C6	0.078(3)	0.54(2)	0.041(2)	0.016(2)	-0.009(2)	0.007(2)
C7	0.066(2)	0.048(2)	0.054(2)	0.014(2)	-0.009(2)	0.006(2)
C8	0.081(7)	0.058(5)	0.060(6)	0.004(4)	0.005(5)	-0.012(4)
C9	0.058(5)	0.051(5)	0.054(5)	0.019(4)	0.001(4)	0.000(4)
C10	0.072(6)	0.049(4)	0.035(4)	0.014(4)	-0.007(4)	-0.002(4)
C11	0.067(5)	0.052(5)	0.037(4)	0.013(4)	-0.002(4)	-0.010(3)
C8'	0.072(6)	0.053(5)	0.057(6)	0.001(4)	0.005(5)	0.001(4)
C9'	0.065(6)	0.046(5)	0.049(5)	0.009(4)	-0.002(4)	-0.006(4)
C10'	0.066(6)	0.047(4)	0.040(4)	0.013(4)	0.011(4)	-0.001(4)

8.5 Tabellenwerk zu 5

8.5.1	Ortskoordinaten	und äquivalente	isotrope A	luslenkungsfaktoren	von 5
-------	-----------------	-----------------	------------	---------------------	-------

Atom	x/a	y/b	z/c	U_{eq}
Mo1	0.7416(1)	0.4863(1)	0.8142(1)	0.040(1)
Cl1	0.7507(1)	0.7905(1)	0.8341(1)	0.051(1)
Cl11	0.8522(1)	0.4886(1)	1.0273(1)	0.056(1)
Cl12	0.6227(1)	0.4081(1)	0.9051(1)	0.051(1)
Cl13	0.6073(1)	0.5067(1)	0.6211(1)	0.052(1)
Cl14	0.8348(1)	0.5874(1)	0.7480(1)	0.051(1)
Cl15	0.6293(1)	0.5906(1)	0.9228(1)	0.045(1)
011	0.8039(2)	0.4223(2)	0.7443(3)	0.064(1)
N1	-0.1535(2)	0.8303(2)	0.5617(3)	0.049(1)
N2	0.6402(2)	0.6853(2)	0.6021(3)	0.048(1)
N3	0.5908(2)	0.4990(2)	0.1952(3)	0.055(1)
C1	-0.485(3)	0.7989(2)	0.6071(4)	0.059(1)
C2	0.0162(2)	0.7966(2)	0.4959(3)	0.051(1)
C3	0.1217(3)	0.7612(2)	0.5409(4)	0.055(1)
C4	0.1918(2)	0.7585(2)	0.4350(3)	0.050(1)
C5	0.2959(2)	0.7228(2)	0.4842(3)	0.047(1)
C6	0.3735(3)	0.7293(2)	0.3881(3)	0.051(1)
C7	0.4774(3)	0.6904(2)	0.4354(3)	0.050(1)
C8	0.5384(3)	0.7227(2)	0.5624(3)	0.051(1)
C9	0.6784(2)	0.4587(2)	0.2769(3)	0.048(1)
C10	0.7662(2)	0.5088(2)	0.3377(3)	0.048(1)
C11	0.8615(3)	0.4685(2)	0.4087(3)	0.053(1)
C12	0.9548(2)	0.5183(2)	0.4555(3)	0.054(1)

8.5.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 5

Atom	x/a	y/b	z/c	U_{iso}
H11	-0.1891	0.8303	0.6304	0.074
H12	-0.1875	0.8039	0.4940	0.074
H13	-0.1470	0.8756	0.5336	0.074
H21	0.6747	0.7053	0.6774	0.072
H22	0.6778	0.6895	0.5358	0.072
H23	0.06291	0.6385	0.6169	0.072
H31	0.5407	0.4680	0.1611	0.082
H32	0.6139	0.5221	0.1278	0.082

Anhang

0.5653	0.5310	0.2476	0.082
-0.0561	0.7501	0.6402	0.071
-0.0123	0.8276	0.6817	0.071
0.0267	0.8456	0.4658	0.061
-0.0214	0.7699	0.4195	0.061
0.1577	0.7873	0.6191	0.066
0.1104	0.7120	0.5697	0.066
0.2039	0.8076	0.4062	0.061
0.1564	0.7322	0.3566	0.061
0.3262	0.7442	0.5704	0.056
0.2842	0.6718	0.4999	0.056
0.3875	0.7803	0.3754	0.061
0.3421	0.7097	0.3008	0.061
0.4636	0.6397	0.4517	0.060
0.5193	0.6926	0.3638	0.060
0.5505	0.7737	0.5476	0.061
0.4980	0.7188	0.6354	0.061
0.7052	0.4232	0.2198	0.057
0.6528	0.4328	0.3492	0.057
0.7411	0.5409	0.4022	0.057
0.7862	0.5386	0.2663	0.057
0.8815	0.4323	0.3474	0.064
0.8435	0.4433	0.4868	0.064
0.9791	0.5377	0.3762	0.065
0.9315	0.5587	0.5047	0.065
	0.5653 -0.0561 -0.0123 0.0267 -0.0214 0.1577 0.1104 0.2039 0.1564 0.3262 0.2842 0.3875 0.3421 0.4636 0.5193 0.5505 0.4980 0.7052 0.6528 0.7411 0.7862 0.8815 0.8435 0.9791 0.9315	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

8.5.3 Anisotrope Auslenkungsparameter in 5

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mol	0.044(1)	0.041(1)	0.034(1)	-0.002(1)	0.006(1)	0.001(1)
C11	0.063(1)	0.052(1)	0.042(1)	-0.002(1)	0.016(1)	-0.006(1)
C111	0.053(1)	0.068(1)	0.042(1)	0.002(1)	-0.003(1)	0.008(1)
C112	0.060(1)	0.042(1)	0.050(1)	0.004(1)	0.011(1)	-0.003(1)
C113	0.059(1)	0.055(1)	0.037(1)	0.002(1)	-0.05(1)	-0.014(1)
Cl14	0.047(1)	0.058(1)	0.048(1)	0.000(1)	0.013(1)	-0.009(1)
Cl15	0.040(1)	0.041(1)	0.053(1)	-0.005(1)	0.011(1)	-0.002(1)
011	0.076(2)	0.063(2)	0.054(2)	-0.004(1)	0.019(1)	0.010(1)
N1	0.048(2)	0.054(2)	0.047(2)	0.006(1)	0.013(1)	0.008(1)
N2	0.047(2)	0.052(2)	0.044(2)	0.004(1)	0.002(1)	-0.004(1)
N3	0.050(2)	0.066(2)	0.046(2)	0.009(1)	0.003(1)	-0.003(1)
C1	.053(2)	0.081(3)	0.043(2)	0.006(2)	0.006(2)	0.016(2)
C2	0.046(2)	0.064(3)	0.042(2)	0.005(2)	0.007(2)	0.001(2)

C3	0.051(2)	0.068(3)	0.045(2)	0.004(2)	0.004(2)	0.008(2)
C4	0.049(2)	0.064(3)	0.037(2)	-0.001(2)	0.005(2)	0.004(2)
C5	0.051(2)	0.050(2)	0.039(2)	-0.001(2)	0.004(2)	0.002(2)
C6	0.055(2)	0.061(3)	0.033(2)	-0.001(2)	-0.001(2)	0.004(2)
C7	0.051(2)	0.055(2)	0.043(2)	-0.007(2)	0.009(2)	0.002(2)
C8	0.050(2)	0.052(2)	0.048(2)	-0.007(2)	0.003(2)	0.001(2)
С9	0.045(2)	0.051(2)	0.044(2)	0.008(2)	-0.001(2)	-0.001(2)
C10	0.052(2)	0.052(2)	0.039(2)	-0.002(2)	0.009(1)	-0.003(2)
C11	0.055(2)	0.061(3)	0.042(2)	0.003(2)	0.003(2)	-0.005(2)
C12	0.051(2)	0.066(3)	0.045(2)	-0.003(2)	0.007(1)	-0.006(2)

8.6 Tabellenwerk zu 6

8.6.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren von 6

Atom	x/a	y/b	z/c	U _(eq)
Mo1	-0.1840(1)	0.5726(1)	0.2263(1)	0.042(1)
Mo2	-0.3279(1)	-0.0657(1)	-0.2340(1)	0.045(1)
Cl1	-0.3610(1)	-0.0546(1)	-0.9163(1)	0.065(1)
C12	0.0800(1)	-0.1670(1)	-0.0486(1)	0.051(1)
C13	1447(1)	0.4719(1)	0.0901(1)	0.056(1)
Cl4	-0.4341(1)	0.3242(1)	-0.0556(1)	0.053(1)
Cl11	-0.3196(1)	0.5665(1)	0.1099(1)	0.073(1)
Cl12	-0.1537(1)	0.4081(1)	0.1686(1)	0.064(1)
Cl13	-0.1813(1)	0.7413(1)	0.2473(1)	0.070(1)
Cl14	-0.205(1)	0.5874(1)	0.3121(1)	0.061(1)
Cl21	-0.3448(1)	0.0989(1)	-0.1658(1)	0.059(1)
Cl22	-0.1867(1)	-0.0710(1)	-0.1234(1)	0.060(1)
Cl23	-0.3416(1)	-0.2324(1)	-0.2638(1)	0.065(1)
Cl24	-0.4986(1)	-0.0630(1)	-0.3093(1)	0.070(1)
011	-0.2687(3)	0.5642(3)	0.3045(2)	0.064(1)
O12	-0.0711(2)	0.5819(2)	0.1132(2)	0.051(1)
O21	-0.2500(3)	-0.0557(3)	-0.3157(2)	0.070(1)
O22	-0.4359(2)	-0.0728(2)	-0.1158(2)	0.052(1)
N1	0.5873(3)	0.5369(3)	0.9065(2)	0.049(1)
N2	0.6630(3)	0.1729(3)	0.0729(2)	0.057(1)
N3	0.4309(3)	0.1875(3)	0.7675(3)	0.078(1)
N4	0.1007(3)	0.2968(3)	0.1786(2)	0.064(1)
N5	0.951(3)	0.0416(3)	-0.0884(2)	0.054(1)
N6	0.1748(3)	-0.3149(3)	-0.9246(2)	0.054(1)
C1	0.5600(4)	0.5405(3)	0.8114(3)	0.051(1)
C2	0.6240(4)	0.4709(3)	0.7446(3)	0.055(1)
C3	0.5939(4)	0.4720(4)	0.6470(3)	0.060(1)
C4	0.6561(4)	0.4006(4)	0.5780(3)	0.065(1)
C5	0.6229(4)	0.4011(4)	0.4809(3)	0.062(1)
C6	0.6756(4)	0.3236(4)	0.4099(3)	0.062(1)
C7	0.6347(4)	0.3227(3)	0.3137(3)	0.053(1)
C8	0.6764(4)	0.2428(3)	0.2403(3)	0.050(1)
C9	0.6241(3)	0.2470(3)	0.1493(3)	0.049(1)
C10	0.4775(6)	0.2162(5)	0.6889(4)	0.093(2)
C11	0.4515(8)	0.1502(6)	0.5956(5)	0.128(3)
C12	0.3516(7)	0.1508(5)	0.5525(5)	0.119(3)
C13	0.3210(6)	0.2439(5)	0.5245(4)	0.106(3)

0.2087(6)	0.2486(5)	0.4941(4)	0.096(2)
0.1756(5)	0.3419(5)	0.4727(4)	0.087(2)
0.0635(6)	0.3412(6)	0.4305(4)	0.098(2)
0.0968(5)	0.3488(4)	0.2726(3)	0.070(2)
0.0506(5)	0.2896(5)	0.3306(4)	0.081(2)
0.0628(4)	0.0418(3)	-0.1831(3)	0.051(1)
0.1259(4)	-0.0285(4)	-0.2502(3)	0.060(1)
0.911(4)	-0.0297(4)	-0.3485(3)	0.063(1)
0.1521(5)	-0.1009(4)	-0.4183(3)	0.068(1)
0.1160(5)	-0.1010(4)	-0.5150(3)	0.067(1)
0.1686(4)	-0.1779(4)	-0.5864(3)	0.063(1)
0.1266(4)	-0.1791(3)	-0.6824(3)	0.053(1)
0.1744(4)	-0.2545(3)	-0.7564(3)	0.050(1)
0.1249(3)	-0.2492(3)	-0.8482(3)	0.048(1)
	$\begin{array}{c} 0.2087(6)\\ 0.1756(5)\\ 0.0635(6)\\ 0.0968(5)\\ 0.0506(5)\\ 0.0628(4)\\ 0.1259(4)\\ 0.911(4)\\ 0.1521(5)\\ 0.1160(5)\\ 0.1686(4)\\ 0.1266(4)\\ 0.1249(3)\end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

8.6.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 6

Atom	x/a	y/b	z/c	U _(iso)
H121	-0.119(3)	0.574(3)	0.073(2)	0.063
H221	-0.430(4)	-0.1292(12)	-0.140(3)	0.063
H122	-0.017(3)	0.549(3)	0.113(3)	0.063
H222	-0.490(2)	-0.040(3)	-0.111(3)	0.063
H11	0.5493	0.5802	0.9441	0.074
H12	0.6576	0.5489	0.09189	0.074
H13	0.5713	0.4795	0.09138	0.074
H21	0.6310	0.1792	0.0210	0.085
H22	0.6471	0.1158	0.0812	0.085
H23	0.7343	0.1789	0.0704	0.085
H31	0.4661	0.2178	0.8189	0.116
H32	0.4375	0.1251	0.7604	0.116
H33	0.3612	0.2025	0.7702	0.116
H41	0.1268	0.3344	0.1459	0.095
H42	0.343	0.2770	0.1572	0.095
H43	0.1433	0.2468	0.1749	0.095
H51	0.0581	0.0855	-0.0506	0.080
H52	0.1656	0.0545	-0.0787	0.080
H53	0.0811	-0.0153	-0.0789	0.080
H61	0.1478	-0.3050	-0.9769	0.081
H62	0.1607	-0.3745	-0.9226	0.081
H63	0.2460	-0.3050	-0.9207	0.081
H1A	0.5741	0.6041	0.8046	0.061
H1B	0.4834	0.5267	0.7980	0.061

H2A	0.6118	0.4076	0.7529	0.066
H2B	0.7005	0.4860	0.7569	0.066
H3A	0.6075	0.5351	0.6388	0.071
H3B	0.5171	0.4584	0.6354	0.071
H4A	0.7329	0.4151	0.5883	0.078
H4B	0.6439	0.3375	0.5869	0.078
H5A	0.6417	0.4625	0.4706	0.075
H5B	0.5449	0.3934	0.4727	0.075
H6A	0.7534	0.3336	0.4149	0.075
H6B	0.6606	0.2623	0.4220	0.075
H7A	0.5563	0.3188	0.3109	0.063
H7B	0.6549	0.3825	0.3007	0.063
H8A	0.6595	0.1823	0.2534	0.060
H8B	0.7543	0.2485	0.2387	0.060
H9A	0.5463	0.2400	0.1515	0.059
H9B	0.6388	0.3088	0.1383	0.059
H10A	0.5555	0.2209	0.6989	0.112
H10B	0.4516	0.2790	0.6881	0.112
H11A	0.5047	0.1632	0.5549	0.154
H11B	0.4636	0.0858	0.6013	0.154
H12A	0.2972	0.1379	0.5923	0.142
H12B	0.3481	0.0991	0.4982	0.142
H13A	0.3367	0.2971	0.5762	0.128
H13B	0.3667	0.2508	0.4761	0.128
H14A	0.1632	0.2370	0.5409	0.115
H14B	0.1946	0.1978	0.4400	0.115
H15A	0.1807	0.3916	0.5286	0.104
H15B	0.2267	0.3577	0.4317	0.104
H16A	0.412	0.4064	0.4369	0.118
H16B	0.148	0.3120	0.4645	0.118
H17A	0.530	0.4048	0.2762	0.084
H17B	0.1694	0.3698	0.2959	0.084
H18A	0.876	0.2294	0.3205	0.097
H18B	-0.0255	0.2767	0.3138	0.097
H19A	0.0742	0.1049	-0.1923	0.062
H19B	-0.0138	0.0264	-0.1939	0.062
H20A	0.1155	-0.0914	-0.2403	0.072
H20B	0.2024	-0.0124	-0.2402	0.072
H21A	0.0144	-0.0446	-0.3578	0.075
H21B	0.1022	0.0332	-0.3582	0.075
H22A	0.2289	-0.0859	-0.4094	0.081
H22B	0.1412	-0.1639	-0.4088	0.081
H23A	0.1329	-0.0395	-0.5258	0.081
H23B	0.0381	-0.1099	-0.5219	0.081

H24A	0.2463	-0.1673	-0.5819	0.075
H24B	0.1546	-0.2393	-0.5742	0.075
H25A	0.0487	-0.1883	-0.6859	0.064
H25B	0.1413	-0.1176	-0.6940	0.064
H26A	0.1602	-0.3167	-0.7460	0.060
H26B	0.2522	-0.2452	-0.7553	0.060
H27A	0.0482	-0.2637	-0.8503	0.057
H27B	0.1329	-0.1848	-0.8551	0.057

8.6.3 Anisotrope Auslenkungsparameter in 6

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	0.040(1)	0.046(1)	0.038(1)	0.008(1)	0.002(1)	0.003(1)
Mo2	0.046(1)	0.043(1)	0.043(1)	0.006(1)	0.004(1)	0.000(1)
Cl1	0.058(1)	0.086(1)	0.055(1)	0.023(1)	0.011(1)	0.019(1)
C12	0.055(1)	0.047(1)	0.048(1)	0.08(1)	-0.002(1)	0.010(1)
C13	0.052(1)	0.070(1)	0.048(1)	0.019(1)	0.006(1)	0.011(1)
Cl4	0.054(1)	0.051(1)	0.051(1)	0.007(1)	0.002(1)	0.014(1)
Cl11	0.044(1)	0.0124(1)	0.054(1)	0.028(1)	-0.008(1)	0.000(1)
Cl12	0.066(1)	0.046(1)	0.077(1)	0.005(1)	0.006(1)	-0.002(1)
C13	0.068(1)	0.049(1)	0.095(1)	0.015(1)	0.014(1)	0.012(1)
Cl14	0.055(1)	0.069(1)	0.055(1)	0.010(1)	-0.013(1)	0.000(1)
Cl21	0.062(1)	0.041(1)	0.071(1)	0.007(1)	0.003(1)	0.001(1)
C122	0.048(1)	0.067(1)	0.060(1)	0.011(1)	-0.006(1)	0.002(1)
C123	0.065(1)	0.045(1)	0.078(1)	0.002(1)	0.003(1)	0.000(1)
Cl24	0.064(1)	0.078(1)	0.067(1)	0.017(1)	-0.018(1)	-0.003(1)
O11	0.064(2)	0.076(2)	0.049(2)	0.008(2)	0.013(2)	-0.001(2)
O12	0.040(2)	0.066(2)	0.045(2)	0.012(1)	0.004(1)	0.004(1)
O21	0.079(2)	0.070(3)	0.057(2)	0.09(2)	0.017(2)	-0.002(2)
O22	0.052(2)	0.052(2)	0.052(2)	0.08(1)	0.011(1)	0.006(2)
N1	0.052(2)	0.056(2)	0.041(2)	0.012(2)	0.006(2)	0.0011(2)
N2	0.054(2)	0.068(3)	0.046(2)	0.011(2)	0.004(2)	0.002(2)
N3	0.060(3)	0.080(4)	0.096(4)	0.031(3)	-0.018(2)	-0.001(2)
N4	0.076(3)	0.058(3)	0.057(2)	0.017(2)	-0.014(2)	-0.002(2)
N5	0.061(2)	0.053(2)	0.049(2)	0.015(2)	0.011(2)	0.013(2)
N6	0.051(2)	0.067(3)	0.046(2)	0.018(2)	0.003(2)	0.008(2)
C1	0.054(2)	0.059(3)	0.042(2)	0.018(2)	0.002(2)	0.014(2)
C2	0.064(3)	0.060(3)	0.040(2)	0.010(2)	0.000(2)	0.020(2)
C3	0.071(3)	0.066(3)	0.040(2)	0.009(2)	-0.001(2)	0.020(3)
C4	0.077(3)	0.073(4)	0.042(2)	0.007(2)	0.000(2)	0.024(3)
C5	0.074(3)	0.065(3)	0.044(2)	0.007(2)	0.001(2)	0.021(3)
C6	0.070(3)	0.071(3)	0.043(2)	0.008(2)	0.003(2)	0.021(3)

C7	0.056(2)	0.058(3)	0.044(2)	0.011(2)	0.001(2)	0.006(2)
C8	0.058(2)	0.048(3)	0.045(2)	0.014(2)	0.006(2)	0.006(2)
C9	0.049(2)	0.050(3)	0.047(2)	0.008(2)	0.001(2)	0.001(2)
C10	0.104(5)	0.107(5)	0.073(4)	0.036(4)	-0.023(3)	0.004(4)
C11	0.190(9)	0.103(6)	0.093(5)	0.032(4)	-0.019(5)	0.046(6)
C12	0.163(7)	0.085(5)	0.091(5)	-0.004(4)	-0.040(5)	0.041(5)
C13	0.131(6)	0.115(6)	0.059(3)	-0.002(3)	-0.024(4)	0.044(5)
C14	0.119(5)	0.108(6)	0.052(3)	0.004(3)	-0.011(3)	0.034(4)
C15	0.101(4)	0.102(5)	0.049(3)	0.006(3)	-0.008(3)	0.023(4)
C16	0.103(5)	0.134(6)	0.059(3)	0.021(4)	0.015(3)	0.046(5)
C17	0.077(3)	0.070(4)	0.062(3)	0.013(3)	-0.008(3)	0.020(3)
C18	0.066(3)	0.111(5)	0.070(3)	0.028(3)	-0.001(3)	0.006(3)
C19	0.058(2)	0.052(3)	0.047(2)	0.016(2)	0.005(2)	0.011(2)
C20	0.073(3)	0.060(3)	0.048(2)	0.013(2)	0.005(2)	0.024(3)
C21	0.073(3)	0.067(3)	0.047(2)	0.012(2)	0.003(2)	0.022(3)
C22	0.077(3)	0.074(4)	0.048(2)	0.010(2)	0.001(2)	0.028(3)
C23	0.077(3)	0.069(3)	0.053(3)	0.009(2)	0.001(2)	0.025(3)
C24	0.067(3)	0.073(4)	0.046(2)	0.012(2)	0.001(2)	0.020(3)
C25	0.057(2)	0.056(3)	0.047(2)	0.012(2)	0.000(2)	0.009(2)
C26	0.050(2)	0.050(3)	0.053(2)	0.018(2)	0.004(2)	0.005(2)
C27	0.043(2)	0.050(3)	0.050(2)	0.012(2)	0.001(2)	0.005(2)

8.7 Tabellenwerk zu 7

8.7.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren von 7

Atom	x/a	y/b	z/c	U_{eq}
Mo1	0.0000	0.0191(1)	0.2500	0.026(1)
Cl11	-0.1488(1)	0.0557(1)	0.2816(1)	0.039(1)
Cl12	0.1500(1)	0.0448(1)	0.4582(1)	0.033(1)
C113	0.0000	0.03529(1)	0.2500	0.045(1)
011	0.0000	-0.1896(3)	0.2500	0.042(1)
N1	0.1019(2)	0.5784(3)	0.0173(2)	0.029(1)
C1	0.0404(2)	0.6571(3)	0.0636(2)	0.037(1)
C2	0.0895(2)	0.3911(3)	0.0105(3)	0.036(1)

8.7.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 7

Atom	x/a	y/b	z/c	U _{iso}
H11	0.1785	0.5991	0.0631	0.035
H12	0.0783	0.6148	-0.0601	0.035
H1A	0.0486	0.7784	0.0612	0.044
H1B	0.0676	0.6240	0.1464	0.044
H2A	0.1203	0.3434	0.0902	0.043
H2B	0.1267	0.3440	-0.0301	0.043

8.7.3 Anisotrope Auslenkungsparameter in 7

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	0.041(1)	0.021(1)	0.025(1)	0.000	0.022(1)	0.000
Cl11	0.046(1)	0.052(1)	0.033(1)	0.002(1)	0.028(1)	0.005(1)
Cl12	0.044(1)	0.036(1)	0.024(1)	0.002(1)	0.021(1)	0.005(1)
Cl13	0.092(1)	0.021(1)	0.029(1)	0.000	0.033(1)	0.000
011	0.079(2)	0.022(1)	0.044(2)	0.000	0.044(2)	0.000
N1	0.041(1)	0.027(1)	0.032(1)	-0.001	0.026(1)	-0.007(1)
C1	0.057(2)	0.028(1)	0.041(1)	-0.011(1)	0.036(1)	-0.011(1)
C2	0.048(1)	0.024(1)	0.047(1)	0.001(1)	0.033(1)	0.001(1)

8.8 Tabellenwerk zu 8

8.8.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren	von 8
--	--------------

Atom	x/a	y/b	z/c	U_{eq}
Mol	0.7432(1)	0.0001(1)	0.7475(1)	0.033(1)
Cl11	0.8586(2)	-0.0532(1)	0.9049(1)	0.055(1)
Cl12	0.4795(2)	0.0725(1)	0.8282(1)	0.051(1)
Cl13	0.6635(2)	0.0757(1)	0.6018(1)	0.053(1)
Cl14	1.0562(2)	-0.0436(1)	0.6792(1)	0.045(1)
Cl1	1.0611(2)	0.2758(1)	0.8984(1)	0.039(1)
Cl2	0.2513(2)	0.5098(1)	0.7510(1)	0.035(1)
Cl3	1.2158(2)	0.1457(1)	1.1691(1)	0.034(1)
Cl4	0.7255(2)	0.3737(1)	0.6680(1)	0.035(1)
C15	1.5835(2)	0.2311(1)	0.4022(1)	0.041(1)
011	0.5969(5)	-0.0826(2)	0.7154(2)	0.051(1)
012	0.9566(6)	0.1053(2)	0.7930(3)	0.051(1)
N1	1.2064(5)	0.3380(2)	0.6471(3)	0.037(1)
N2	1.1804(5)	0.2112(2)	0.4998(2)	0.024(1)
N3	1.3554(5)	0.0618(2)	0.3744(3)	0.036(1)
N4	0.6968(5)	0.1907(2)	1.1617(2)	0.034(1)
N5	0.6723(5)	0.3117(2)	1.0069(2)	0.023(1)
N6	0.8510(6)	0.4544(3)	0.8740(3)	0.034(1)
C1	1.2863(7)	0.2549(2)	0.6681(3)	0.033(1)
C2	1.1663(6)	0.1930(2)	0.6078(3)	0.031(1)
C3	1.0995(7)	0.2950(2)	0.4780(3)	0.038(1)
C4	1.2185(7)	0.3579(2)	0.5399(3)	0.039(1)
C5	1.0707(6)	0.1501(3)	0.4346(3)	0.033(1)
C6	1.1686(6)	0.0658(2)	0.4352(3)	0.033(1)
C7	0.7827(7)	0.2740(2)	1.1777(3)	0.032(1)
C8	0.6613(6)	0.3347(2)	1.1135(3)	0.028(1)
С9	0.7020(7)	0.1667(2)	1.0553(3)	0.035(1)
C10	0.5832(6)	0.2278(2)	0.9919(3)	0.033(1)
C11	0.5632(6)	0.3715(3)	0.9380(3)	0.031(1)
C12	0.6607(6)	0.4534(2)	0.9324(3)	0.032(1)

8.8.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 8

Atom	x/a	y/b	z/c	U _{iso}
H121	0.892(3)	0.1474(13)	0.805(5)	0.10(2)

Anhang

H122	1.041(12)	0.093(2)	0.838(6)	0.35(1)
H11	0.12811	0.3746	0.6832	0.044
H12	0.10737	0.3413	0.6650	0.044
H21	1.304(6)	0.211(3)	0.486(3)	0.018(1)
H31	1.3294	0.0868	0.3167	0.035(12)
H32	1.3876	0.0098	0.3635	0.048(14)
H33	1.4612	0.0864	0.4065	0.10(2)
H41	0.05651	0.1892	1.1813	0.040
H42	0.07713	0.1547	1.1988	0.040
H51	0.806(8)	0.309(3)	0.986(3)	0.039(12)
H61	0.947(7)	0.419(3)	0.901(3)	0.048(13)
H62	0.810(8)	0.434(3)	0.803(4)	0.058(14)
H63	0.872(8)	0.498(4)	0.866(4)	0.044(15)
H1A	1.2748	0.2428	0.7380	0.040
H1B	1.4317	0.2522	0.6526	0.040
H2A	1.0221	0.1937	0.6257	0.023(9)
H2B	1.2211	0.1389	0.6217	0.039(11)
H3A	0.9535	0.2976	0.4924	0.039(11)
H3B	1.1132	0.3071	0.4083	0.055(14)
H4A	1.3625	0.3586	0.5217	0.041(12)
H4B	1.1607	0.4117	0.5273	0.043(12)
H5A	1.0661	0.1706	0.3672	0.039(11)
H5B	0.9288	0.1450	0.4550	0.050(12)
H6A	1.2070	0.0508	0.5029	0.078(17)
H6B	1.0672	0.0264	0.4100	0.048(13)
H7A	0.9276	0.2749	1.1610	0.038
H7B	0.7740	0.2890	1.2469	0.038
H8A	0.5177	0.3354	1.1322	0.033
H8B	0.7182	0.3890	1.1236	0.033
H9A	0.6410	0.1129	1.0463	0.027(1)
H9B	0.8446	0.1644	1.0353	0.041(12)
H10A	0.5900	0.2125	0.9227	0.056(14)
H10B	0.4386	0.2277	1.0092	0.028(1)
H11A	0.5557	0.3481	0.8720	0.037
H11B	0.4221	0.3783	0.9590	0.037
H12A	0.6956	0.4723	0.9991	0.038
H12B	0.5610	0.4913	0.9029	0.038

8.8.3 Anisotrope Auslenkungsparameter in 8

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	0.032(1)	0.040(1)	0.027(1)	0.007(1)	0.001(1)	0.001(1)
Cl11	0.049(1)	0.081(1)	0.035(1)	0.021(1)	-0.005(1)	0.000(1)

Cl12	0.044(1)	0.058(1)	0.051(1)	-0.018(1)	0.001(1)	0.007(1)
Cl13	0.049(1)	0.067(1)	0.043(1)	0.025(1)	-0.007(1)	-0.004(1)
Cl14	0.045(1)	0.046(1)	0.043(1)	-0.005(1)	0.007(1)	0.005(1)
C11	0.031(1)	0.043(1)	0.042(1)	-0.003(1)	0.010(1)	0.007(1)
C12	0.034(1)	0.028(1)	0.041(1)	-0.010(1)	0.008(1)	-0.006(1)
C13	0.029(1)	0.034(1)	0.040(1)	0.004(1)	-0.001(1)	0.001(1)
Cl4	0.029(1)	0.034(1)	0.041(1)	-0.004(1)	0.00(1)	-0.002(1)
C15	0.028(1)	0.053(1)	0.043(1)	-0.001(1)	0.008(1)	-0.008(1)
011	0.064(2)	0.040(2)	0.050(2)	-0.005(1)	0.002(2)	-0.009(2)
O12	0.057(2)	0.040(2)	0.057(2)	-0.011(2)	0.003(2)	-0.006(2)
N1	0.029(2)	0.031(2)	0.050(2)	-0.017(2)	0.002(1)	-0.004(1)
N2	0.020(2)	0.027(2)	0.025(2)	-0.005(1)	0.004(1)	-0.003(1)
N3	0.036(2)	0.036(2)	0.036(2)	-0.007(2)	0.007(2)	0.007(2)
N4	0.036(2)	0.027(2)	0.038(2)	0.012(1)	-0.001(1)	0.002(1)
N5	0.020(2)	0.022(1)	0.028(2)	0.003(1)	0.002(1)	-0.001(1)
N6	0.040(2)	0.028(2)	0.034(2)	0.009(2)	0.002(2)	0.000(2)
C1	0.036(2)	0.036(2)	0.028(2)	-0.006(2)	0.003(2)	-0.004(2)
C2	0.035(2)	0.028(2)	0.030(2)	-0.004(2)	0.011(2)	-0.007(2)
C3	0.031(2)	0.029(2)	0.053(3)	-0.004(2)	-0.013(2)	0.009(2)
C4	0.040(2)	0.026(2)	0.052(2)	-0.006(2)	-0.006(2)	0.005(2)
C5	0.024(2)	0.038(2)	0.037(2)	-0.016(2)	0.004(2)	-0.001(2)
C6	0.036(2)	0.032(2)	0.032(2)	-0.0010(2)	0.008(2)	-0.010(2)
C7	0.038(2)	0.028(2)	0.030(2)	0.003(2)	-0.001(2)	-0.002(2)
C8	0.035(2)	0.027(2)	0.022(2)	0.003(1)	0.004(1)	0.006(2)
C9	0.040(2)	0.021(2)	0.043(2)	0.001(2)	-0.002(2)	-0.004(2)
C10	0.031(2)	0.027(2)	0.039(2)	0.005(2)	-0.006(2)	-0.007(2)
C11	0.023(2)	0.038(2)	0.030(2)	0.013(2)	-0.005(2)	0.003(2)
C12	0.036(2)	0.028(2)	0.031(2)	0.007(2)	0.003(2)	0.008(2)

8.9 Tabellenwerk zu 9

8.9.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren von 9

Atom	x/a	y/b	z/c	U_{eq}
Mol	0.4725(1)	0.4645(1)	0.2538(1)	0.027(1)
Mo2	0.5180(3)	0.4670(2)	0.7490(1)	0.021(1)
Mo2'	0.4749(3)	0.4415(2)	0.7536(1)	0.022(1)
Cl11	0.4838(4)	0.3190(3)	0.3523(2)	0.037(1)
Cl12	0.6529(4)	0.5847(3)	0.3286(2)	0.042(1)
Cl13	0.5103(4)	0.5769(3)	0.1515(2)	0.038(1)
Cl14	0.3428(4)	0.3100(3)	0.1732(2)	0.042(1)
Cl21	0.5109(4)	0.3268(3)	0.6508(1)	0.038(1)
Cl22	0.4820(4)	0.5798(3)	0.8520(1)	0.038(1)
Cl23	0.3402(4)	0.5894(3)	0.6740(2)	0.042(1)
Cl24	0.6526(4)	0.3180(3)	0.8290(2)	0.042(1)
Cl1	0.1413(4)	0.2541(3)	0.6167(2)	0.035(1)
Cl2	0.8509(4)	0.2588(3)	0.3842(2)	0.038(1)
C13	0.6390(4)	0.1563(3)	0.1161(2)	0.035(1)
Cl4	0.3527(4)	0.1526(3)	0.8856(2)	0.036(1)
C15	-0.5029(5)	0.8043(1)	0.0025(2)	0.039(1)
C16	-0.5015(5)	0.11003(2)	-0.4988(2)	0.040(1)
011	0.3485(9)	0.5517(8)	0.2647(4)	0.039(2)
012	0.6470(7)	0.3407(8)	0.2416(4)	0.033(2)
O21	0.6535(13)	0.5381(16)	0.7401(13)	0.032(4)
O22	0.3448(12)	0.3356(12)	0.7626(10)	0.026(4)
O21'	0.3379(13)	0.3731(15)	0.7628(13)	0.030(4)
O22'	0.6475(16)	0.5734(15)	0.7394(15)	0.028(4)
01	-0.0044(13)	0.0650(5)	0.4993(5)	0.040(1)
O2	-0.0027(13)	0.8474(4)	0.0007(5)	0.038(1)
N1	-0.2691(12)	0.4655(11)	-0.0131(5)	0.032(2)
N2	-0.0465(11)	0.4400(13)	0.1482(5)	0.032(2)
N3	0.0458(11)	0.4598(13)	0.3549(5)	0.034(2)
N4	0.2637(10)	0.4430(13)	0.5157(4)	0.030(2)
N5	-0.2433(13)	0.9752(11)	0.0141(5)	0.036(2)
N6	-0.4579(12)	0.9389(13)	-0.1437(4)	0.034(2)
N7	-0.5492(13)	0.9660(11)	-0.3527(5)	0.036(3)
N8	-0.7608(12)	0.9323(12)	-0.5113(5)	0.035(2)
C1	-0.2256(13)	0.5522(11)	0.0509(5)	0.033(2)
C2	-0.1956(13)	0.4806(11)	0.1237(5)	0.031(2)
C3	0.0002(12)	0.3925(11)	0.2257(5)	0.033(2)
C4	0.0031(15)	0.5090(11)	0.2780(5)	0.039(3)

C5	0.1924(13)	0.4206(11)	0.3785(5)	0.030(2)
C6	0.2213(13)	0.3534(11)	0.4523(6)	0.036(3)
C7	-0.2794(13)	0.10561(10)	-0.0508(5)	0.034(3)
C8	-0.3196(13)	0.9825(13)	-0.1211(5)	0.037(3)
C9	-0.4955(12)	0.8980(10)	-0.2221(5)	0.034(2)
C10	-0.5089(14)	0.10069(12)	-0.2744(5)	0.047(3)
C11	-0.6880(12)	0.9252(12)	-0.3764(5)	0.035(3)
C12	-0.7279(13)	0.8518(11)	-0.4468(5)	0.034(3)

8.9.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 9

Atom	x/a	y/b	z/c	U _{iso}
H121	0.709(5)	0.323(8)	0.277(2)	0.039
H122	0.684(6)	0.351(9)	0.208(3)	0.039
H221	0.2634(17)	0.350(8)	0.746(6)	0.031
H222	0.349(4)	0.281(9)	0.795(5)	0.031
H223	0.628(6)	0.604(9)	0.698(3)	0.033
H224	0.715(4)	0.529(3)	0.741(7)	0.033
H1	-0.85(3)	0.060(9)	0.501(5)	0.060
H2	0.031(8)	0.107(8)	0.536(3)	0.060
H3	-0.046(8)	0.912(6)	0.006(5)	0.057
H4	-0.045(8)	0.818(7)	-0.039(3)	0.057
H11	-0.2656	0.05074	-0.0532	0.048
H12	-0.3529	0.4394	-0.0167	0.048
H13	-0.2146	0.3982	-0.0074	0.048
H21	-0.0323	0.3778	0.1184	0.039
H22	0.0047	0.5071	0.1429	0.039
H31	-0.0055	0.3920	0.3591	0.041
H32	0.0308	0.5209	0.3851	0.041
H41	0.2741	0.3995	0.5568	0.045
H42	0.2010	0.5027	0.5130	0.045
H43	0.3411	0.4800	0.5147	0.045
H51	-0.2213	1.0243	0.0534	0.055
H52	-0.1738	0.9260	0.0121	0.055
H53	-0.3131	0.9263	0.0160	0.055
H61	-0.5129	1.0023	-0.1374	0.041
H62	-0.4692	0.8727	-0.1157	0.041
H71	-0.5362	1.0317	-0.3807	0.044
H72	-0.4957	0.9014	-0.3592	0.044
H81	-0.7748	0.8835	-0.5508	0.053
H82	-0.6931	0.9856	-0.5105	0.053
H83	-0.8348	0.9770	-0.5122	0.053

H5A	-0.2957	0.6147	0.0498	0.039
H5B	-0.1456	0.5980	0.0473	0.039
H4A	-0.2523	0.4054	0.1189	0.037
H4B	-0.2167	0.5353	0.1604	0.037
H2A	0.0891	0.3553	0.2340	0.040
H2B	-0.0608	0.3274	0.2347	0.040
H1A	0.0661	0.5731	0.2702	0.047
H1B	-0.0852	0.5477	0.2689	0.047
H3A	0.2130	0.3636	0.3427	0.036
H3B	0.2490	0.4956	0.3820	0.036
H6A	0.1412	0.3081	0.4561	0.044
H6B	0.2917	0.2907	0.4547	0.044
H7A	-0.2033	1.1102	-0.0518	0.040
H7B	-0.3532	1.1113	-0.0474	0.040
H8A	-0.3023	1.0360	-0.1593	0.045

8.9.3 Anisotrope Auslenkungsparameter in 9

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	0.026(1)	0.035(1)	0.021(1)	-0.005(1)	0.005(1)	-0.005(1)
Mo2	0.023(1)	0.022(1)	0.018(1)	-0.001(1)	0.006(1)	-0.002(1)
Mo2'	0.022(1)	0.027(1)	0.018(1)	0.000(1)	0.005(1)	-0.001(1)
Cl11	0.039(2)	0.041(1)	0.031(1)	0.004(1)	0.009(1)	0.001(1)
Cl12	0.043(2)	0.035(1)	0.038(1)	-0.009(1)	-0.006(1)	-0.009(1)
Cl13	0.033(2)	0.048(2)	0.032(1)	0.008(1)	0.006(1)	0.001(1)
Cl14	0.038(2)	0.040(1)	0.041(1)	-0.0013(1)	-0.004(1)	-0.008(1)
Cl21	0.039(2)	0.052(2)	0.027(1)	-0.008(1)	0.013(1)	0.005(1)
C122	0.041(2)	0.050(2)	0.027(1)	-0.008(1)	0.0014(1)	0.006(1)
C123	0.047(2)	0.040(1)	0.034(1)	0.006(1)	-0.001(1)	0.010(1)
C124	0.044(2)	0.042(2)	0.034(1)	0.004(1)	-0.001(1)	0.009(1)
Cl1	0.040(2)	0.034(1)	0.031(1)	0.001(1)	0.010(1)	-0.007(1)
C12	0.036(2)	0.041(1)	0.034(1)	-0.006(1)	0.003(1)	0.007(1)
C13	0.034(2)	0.038(1)	0.033(1)	-0.008(1)	0.007(1)	0.004(1)
Cl4	0.040(2)	0.036(1)	0.031(1)	0.001(1)	0.010(1)	-0.006(1)
C15	0.039(1)	0.038(1)	0.040(1)	-0.007(1)	0.011(1)	-0.002(2)
C16	0.038(1)	0.041(1)	0.043(1)	-0.007(1)	0.011(1)	-0.002(2)
O11	0.040(4)	0.038(4)	0.039(3)	-0.0011(3)	0.009(3)	0.010(3)
O12	0.034(4)	0.032(3)	0.031(3)	-0.0010(3)	0.005(3)	0.013(3)
O21	0.028(6)	0.041(8)	0.030(5)	-0.002(6)	0.013(4)	0.007(5)
O22	0.040(7)	0.021(6)	0.017(4)	0.000(4)	0.008(4)	0.010(5)
O21'	0.030(6)	0.036(8)	0.027(6)	0.002(7)	0.013(4)	0.017(5)
O22'	0.036(7)	0.026(7)	0.022(6)	-0.001(6)	0.008(5)	0.011(5)
O1	0.032(2)	0.045(2)	0.040(2)	-0.017(4)	0.003(2)	-0.012(4)

O2	0.034(2)	0.037(2)	0.040(2)	-0.014(3)	0.003(2)	-0.009(4)
N1	0.032(4)	0.042(4)	0.024(3)	0.000(3)	0.009(3)	0.003(4)
N2	0.032(4)	0.044(5)	0.027(3)	-0.004(4)	0.0019(3)	0.002(5)
N3	0.037(5)	0.044(6)	0.027(3)	-0.009(4)	0.019(3)	-0.007(5)
N4	0.024(4)	0.047(5)	0.018(3)	0.003(3)	0.003(2)	-0.002(4)
N5	0.038(5)	0.045(5)	0.023(3)	-0.003(3)	0.000(3)	0.014(4)
N6	0.038(5)	0.035(5)	0.023(3)	-0.005(4)	-0.005(3)	-0.009(5)
N7	0.040(5)	0.037(5)	0.026(4)	0.002(4)	-0.003(3)	-0.001(5)
N8	0.035(4)	0.041(4)	0.027(3)	-0.004(3)	0.002(3)	0.015(4)
C1	0.031(5)	0.036(5)	0.029(4)	0.020(4)	0.003(4)	0.005(4)
C2	0.027(4)	0.042(5)	0.026(4)	-0.007(4)	0.009(3)	0.000(4)
C3	0.040(5)	0.034(4)	0.027(4)	-0.003(3)	0.011(3)	0.013(4)
C4	0.061(7)	0.031(5)	0.029(4)	-0.008(4)	0.0018(4)	0.003(5)
C5	0.025(4)	0.040(5)	0.026(4)	0.000(3)	0.007(3)	0.003(4)
C6	0.034(6)	0.039(5)	0.032(5)	0.024(4)	0.001(4)	0.005(4)
C7	0.042(6)	0.031(4)	0.027(4)	0.016(3)	0.007(4)	0.013(4)
C8	0.029(5)	0.056(6)	0.023(4)	-0.014(4)	0.001(4)	0.012(5)
С9	0.041(5)	0.033(5)	0.021(4)	-0.011(3)	-0.006(3)	-0.005(4)
C10	0.043(6)	0.050(6)	0.035(5)	-0.021(4)	-0.012(4)	0.005(5)
C11	0.027(5)	0.053(6)	0.024(3)	-0.006(4)	0.002(3)	0.018(4)
C12	0.037(6)	0.036(5)	0.028(4)	0.014(4)	0.00 7(4)	0.012(4)

8.10 Tabellenwerk zu 10

Atom	x/a	y/b	z/c	U_{eq}
Mo1	0.3727(1)	0.0861(1)	0.2500	0.045(1)
Cl11	0.3715(2)	-0.0222(1)	0.2500	0.063(1)
Cl12	0.2893(2)	0.1928(1)	0.2500	0.070(1)
Cl13	0.3352(2)	0.0822(1)	0.1248(1)	0.090(1)
Cl14	0.0135(1)	0.0744(1)	0.2500	0.039(1)
Cl1	0.2218(2)	0.2500	0.0000	0.048(1)
C12	0.7946(1)	0.4031(1)	0.0105(1)	0.053(1)
C13	0.9966(2)	0.3478(1)	0.2500	0.052(1)
O11	0.5960(6)	0.0963(3)	0.2500	0.108(2)
N1	0.0097(4)	0.4566(1)	0.1401(2)	0.048(1)
N2	0.4920(4)	0.3319(1)	0.0907(2)	0.040(1)
N3	0.9729(5)	0.1728(1)	0.1116(2)	0.050(1)
C1	0.1951(6)	0.4756(2)	0.1187(3)	0.062(1)
C2	0.2993(6)	0.4253(2)	0.0800(2)	0.059(1)
C3	0.3740(5)	0.3771(2)	0.1292(2)	0.047(1)
C4	0.5963(5)	0.2908(2)	0.1388(2)	0.044(1)
C5	0.7226(5)	0.2486(2)	0.0990(2)	0.045(1)
C6	0.8350(6)	0.2102(2)	0.1497(2)	0.050(1)

8.10.2 Ortskoordinaten und isotrope Auslenkungsfaktoren von 10

Atom	x/a	y/b	z/c	U _{iso}
H11	-0.057(7)	0.446(2)	0.101(3)	0.061(12)
H12	-0.036(9)	0.495(3)	0.163(3)	0.094(18)
H13	0.019(6)	0.4279(19)	0.171(2)	0.044(10)
H21	0.571(6)	0.3517(17)	0.0659(19)	0.040(9)
H22	0.426(6)	0.3155(18)	0.061(2)	0.044(10)
H31	0.922(7)	0.149(2)	0.077(2)	0.060(12)
H32	1.072(10)	0.191(3)	0.076(4)	0.11(2)
H33	1.029(9)	0.153(3)	0.143(4)	0.11(2)
H1A	0.2644	0.4874	0.1602	0.074
H1B	0.1857	0.5113	0.0883	0.074
H2A	0.2176	0.4059	0.0463	0.071
H2B	0.4004	0.4436	0.0541	0.071
H3A	0.4459	0.3968	0.1659	0.057

H3B	0.2726	0.3555	0.1514	0.057
H4A	0.5103	0.2665	0.1662	0.053
H4B	0.6680	0.3156	0.1712	0.053
H5A	0.8043	0.2726	0.694	0.054
H5B	0.6507	0.2218	0.0688	0.054
H6A	0.8970	0.2370	0.1829	0.060
H6B	0.7538	0.1833	0.1761	0.060

8.10.3 Anisotrope Auslenkungsparameter in 10

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	0.023(1)	0.052(1)	0.059(1)	0.000	0.000	0.001(1)
Cl11	0.057(1)	0.050(1)	0.081(1)	0.000	0.000	0.020(1)
Cl12	0.059(1)	0.041(1)	0.109(1)	0.000	0.000	-0.011(1)
Cl13	0.105(1)	0.115(1)	0.051(1)	0.016(1)	0.029(1)	0.051(1)
Cl14	0.024(1)	0.039(1)	0.053(1)	0.000	0.000	0.001(1)
Cl1	0.042(1)	0.051(1)	0.049(1)	-0.004(1)	0.000	0.000
Cl2	0.055(1)	0.058(1)	0.047(1)	-0.003(1)	0.007(1)	-0.009(1)
C13	0.058(1)	0.045(1)	0.054(1)	0.000	0.000	-0.006(1)
011	0.027(2)	0.105(4)	0.194(7)	0.000	0.000	-0.001(2)
N1	0.051(2)	0.045(1)	0.049(1)	-0.002(1)	0.003(1)	0.007(1)
N2	0.034(1)	0.047(1)	0.040(1)	-0.007(1)	0.004(1)	-0.001(1)
N3	0.055(2)	0.046(1)	0.048(1)	0.003(1)	-0.010(1)	0.008(1)
C1	0.055(2)	0.046(2)	0.084(3)	0.006(2)	0.012(2)	0.004(2)
C2	0.053(2)	0.065(2)	0.058(2)	0.006(2)	0.013(2)	0.014(2)
C3	0.044(2)	0.053(2)	0.046(2)	-0.008(1)	0.006(1)	0.007(1)
C4	0.042(2)	0.053(2)	0.039(1)	-0.003(1)	0.002(1)	0.006(1)
C5	0.050(2)	0.049(1)	0.038(1)	-0.002(1)	0.002(1)	0.006(1)
C6	0.062(2)	0.051(2)	0.037(1)	0.004(1)	-0.002(1)	0.007(2)

Danksagung:

"Eine Promotion bringt Ihnen etwas für Ihr ganzes Leben." Für diesen Rat, für das Zutrauen eines solchen Projekts, für die stets engagierte Unterstützung und Beratung meiner Arbeit, möchte ich mich ganz herzlich bei Prof. Dr. W. Frank bedanken.

Herrn Prof. Dr. C. Ganter danke ich für die Bereitschaft, sich als Zweitgutachter zur Verfügung zu stellen.

Mein Dank gilt Herrn Dr. G. J. Reiß, der mir bei den Einkristallstrukturanalysen am CCD-Diffraktometer und der Integration meiner Daten geholfen hat. Herrn Dr. W. Poll, Herrn P. Roloff, Eli und Kascha danke ich für die Unterstützung in der Computer- und Laborpraxis und für die Durchführung meiner Elementar-, IR-, Raman- und DSC-Analysen.

Danke, Lasse (James Noob), für das coolste Büro des Sekundär-Gangs. Deine Mrs. Moneypenny

Ein ganz liebes Dankeschön an dich, Sarah, für dein ewig offenes Ohr für meine größeren und kleineren Probleme. Danke für deine ständige Bereitschaft, mit mir über meine Forschung zu diskutieren und mir weiter zu helfen, wo es aus eigener Kraft nicht weiter ging. Gerne werde ich mich auch an die schönen Cocktail- und Gosch-Abende erinnern.

Mein Dank gilt weiterhin dem letzten an der HHU verbleibenden Drittel des "homogenen-Teams": Thomas, danke für die vielen Diskussionen über Kristalle, Strukturlösungen, Raumgruppenprobleme und nicht zu letzt für das Korrekturlesen meiner Arbeit.

Aleksandra, Alexander, Andrè, Andy, Christos, Jan, Maik, Nne und Vivian: Dank an euch, für die schönen und meist lustigen Mittagspausen und das freundschaftliche Auskommen, das sich nicht oft genug auch in den Feierabend hinein ausgeweitet hat.

Sebastian und meinen Eltern danke ich herzlich für ihr unermüdliches Verständnis und für ihre hundertprozentige Unterstützung.

Danke, Bärbel, ohne dich wäre ich nie auf die Idee gekommen, Chemie zu studieren.