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Zusammenfassung

In vielen sozialwissenschaftlichen Fragestellungen ist der Selbstbericht eine unverzicht-

bare und oftmals die einzig praktikable Datenquelle. Gleichwohl ist bekannt, dass auf

Selbstauskünften beruhende Daten zu sozial erwünschten oder unerwünschten Merk-

malen eine fragliche Validität aufweisen. Zwar existieren verschiedene Vorschläge, die

Validität von Selbstauskünften bei sensiblen Themen zu erhöhen, etwa die Bogus-Pipeline

Technik (Jones & Sigall, 1971), implizite Einstellungsmessung (Greenwald, McGhee, &

Schwartz, 1998), psychophysiologische Lügendetektion (Iacono, 2000) sowie der Einsatz

von sozialen Erwünschtheitsskalen (z.B. Paulhus, 1984). Jedoch sind diese Verfahren nur

mit großem Aufwand zu betreiben, mit ethischen oder rechtlichen Problemen verbun-

den, oder erlauben nur eine bedingte Kontrolle sozial erwünschter Antworttendenzen.

Sie sind deshalb kaum für die Schätzung von Prävalenzen sensibler Merkmale an großen

Stichproben geeignet.

Ein vielversprechender und vergleichsweise einfach zu realisierender Ansatz besteht

hingegen in der Herstellung von Anonymität. Um die Anonymität über das in direk-

ten Befragungen realisierbare Maß hinaus zu gewährleisten, wurde von Warner (1965)

die Randomized Response Technik (RRT) eingeführt. Die zugrundeliegende Idee besteht

darin, unter Zuhilfenahme eines Zufallsgenerators die Antworten der Teilnehmer dahinge-

hend zu verschlüsseln, dass die gegebene Antwort nicht mehr direkt mit dem wahren

Merkmalsstatus korrespondiert. In der forced-response Variante der RRT entscheidet

ein Zufallsgenerator, ob der Befragte gebeten wird die Frage wahrheitsgemäß zu beant-

worten, oder ob er aufgefordert wird das Vorhandensein des sensiblen Merkmals inhalts-

unabhängig zu bejahen. Da eine “Ja”-Antwort somit nicht mehr eindeutig mit dem

sensiblen Merkmal assoziiert ist, fördert dieses Verfahren die Bereitschaft der Befragten,

das Vorhandensein sensibler Merkmale einzugestehen. Bei bekannter Verteilung des
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Zusammenfassung

Zufallsgenerators ist auf Gruppenebene die Schätzung der Prävalenz bei gleichzeitiger

Wahrung der Vertraulichkeit der Befragung möglich.

Obgleich in einer Reihe von Validierungsstudien die Überlegenheit der RRT gegenüber

traditionellen direkten Befragungsarten wie Fragebögen und Interviews belegt werden

konnte (für eine Metaanalyse, siehe Lensvelt-Mulders, Hox, van der Heijden, & Maas,

2005), wird die RRT eher selten in der substanzwissenschaftlichen Forschung angewen-

det. Dafür scheint es mehrere Gründe zu geben. Zum einen besteht in traditionellen

Randomized-Response-Befragungen das Problem, dass sich ein unbekannter Anteil der

Teilnehmer eventuell nicht an die Instruktionen hält (z.B. Campbell, 1987), mit der

Folge, dass die RRT die wahre Prävalenz von sozial erwünschten Merkmalen unter-

schätzt. Zum anderen entstehen praktische Probleme, wenn es die Forschungsfragestel-

lung erfordert, in einer Studie mehrere sensible Merkmale gleichzeitig zu erfassen. Da-

rüber hinaus gibt es derzeit keine frei verfügbare und einfach zu bedienende Software,

welche die Analyse gängiger Randomized-Response-Modelle ermöglicht.

Die vorliegende Dissertation ist diesen Problemen gewidmet; sie hat das Ziel, die

Randomized-Response-Technik einem breiteren Anwenderkreis zugänglich zu machen.

In Studie I wird dazu ein multinomiales Modell einer Verweigererdetektionsvariante der

RRT (Clark & Desharnais, 1988) zur Bestimmung der Prävalenz von ungenügender

Zahnhygiene bei Studenten und Studentinnen einer Pekinger Universität eingesetzt. Es

kann gezeigt werden, dass mit Hilfe der Verweigererdetektionsvariante signifikant höhere

und mutmaßlich validere Prävalenzschätzungen als in einer direkten Befragung erzielt

werden können. In Studie II wird mit Hilfe von Computersimulationen die Robustheit

des Verweigererdetektionsmodells gegenüber Verletzungen der ihm zugrundeliegenden

Modellannahmen überprüft. Die Ergebnisse zeigen, dass Verletzungen der Modellan-

nahmen substantielle Verzerrungen in den Parameterschätzungen zufolge haben können.
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Zusammenfassung

Daher wird eine empirisch testbare Erweiterung der Verweigererdetektionsvariante vor-

geschlagen, deren Power, Verletzungen der Modellannahmen aufzudecken, ebenfalls be-

stimmt wird. Studie III behandelt das praktische Problem, mehrere sensible Merkmale

in einer einzigen Studie zu erfassen. Damit die Anonymität der Befragten aufrechterhal-

ten wird, scheint die Erfassung mehrerer sensibler Merkmale multiple Randomisierungs-

prozesse zu erfordern. In Studie III wird jedoch gezeigt, dass ein geeignet gewähltes

Befragungsschema die Durchführung wiederholter Zufallsziehungen bei der Erfassung

der Antworten auf mehrere sensible Fragen zu vermeiden erlaubt und dabei gleichwohl

die Vertraulichkeit der Angaben der Befragten vollständig zu wahren ermöglicht. Studie

IV behandelt das Problem, dass in der Verweigererdetektionsvariante der RRT keine

Aussage über den wahren Merkmalsstatus von Befragten, die sich nicht an die Instruk-

tion halten, getroffen werden kann. Vorgeschlagen wird eine Erweiterung von Mangats

(1994) Variante der RRT, welche es ermöglicht, den Anteil der unehrlich antwortenden

Merkmalsträger zu bestimmen. In Studie V wird gezeigt, dass die meisten Random-

ized Response Modelle als Spezialfall der allgemeineren Klasse der multinomialen Ve-

rarbeitungsbaummodelle aufgefasst werden können. Basierend auf dieser multinomi-

alen Reformulierung der Modelle wird ein Programm entwickelt, welches die Analyse

von dreizehn verschiedenen Randomized-Response-Modellen in einzelnen und mehreren

Gruppen ermöglicht und überdies in der Lage ist, a priori und post-hoc Poweranalysen

durchzuführen. Zusammengefasst werden im Rahmen der vorliegenden Dissertation eine

Reihe von Problemen gelöst, die einer breiteren Anwendung der Randomized-Response-

Technik bislang entgegenstanden. Der Umfrageforschung wird somit ein wirksames und

verbessertes Instrument zur Kontrolle von Antwortverzerrungen bei Selbstauskünften

zur Verfügung gestellt.
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Summary

Although interviews and questionnaires are widely used in behavioral research, the va-

lidity of self-reports of sensitive attitudes and behaviors suffers from the tendency of

individuals to distort their responses towards their perception of what is socially ac-

ceptable. As a consequence, studies self-report measures consistently underestimate the

prevalence of undesirable attitudes or behaviors and overestimate the prevalence of desir-

able attitudes or behaviors. The randomized response technique (RRT) was developed

as a means to overcome this problem by adding random noise to the responses such

that there is no direct link between the response an individual provides and his or her

true status. Owing to the randomization, the RRT guarantees the confidentiality of re-

sponses and encourages more honest responding. Although the superiority of the RRT

over more traditional data collection techniques has been repeatedly demonstrated, the

RRT is rarely used in substantive research on sensitive issues. Reasons for this dearth

of RRT applications include the susceptibility of the RRT to respondents that fail to

comply with the instructions, practical problems when assessing multiple attributes in a

single study, and the lack of a freely available and easy to use software program imple-

menting randomized response models. The present thesis addressed these problems by

extending and validating a cheating detection modification (CDM) of the RRT, showing

how to assess multiple attributes with just a single randomization process, and develop-

ing a software program tailored for the needs of a wider audience wishing to use RRT

models in practice. In Study I, a multinomial reformulation of the CDM was utilized to

obtain information about dental hygiene habits among male and female Chinese college

students. The results showed that the RRT can substantially improve the validity of

prevalence estimates of sensitive behaviors as compared to a traditional direct question-

ing format. In Study II, computer simulations were performed in order to examine the
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Summary

statistical efficiency, the statistical power, and the robustness to violations of assump-

tions of the CDM. It was demonstrated that violations of the assumptions underlying

the model lead to biased parameter estimates. Given that the CDM is just-identified

and will fit the data perfectly irrespective of violations of assumptions, an extension of

the CDM that has the capability to detect violations of assumptions was proposed and

examined. The simulation studies further called attention to the importance of choosing

diverging randomization probabilities to improve statistical efficiency and power. Study

III addressed the problem of assessing multiple attributes in a single study. Using the

RRT with multiple attributes seems to either require multiple initializations of the ran-

domization device rendering the administration of the RRT tedious and complicated,

or effectively cancels the privacy protection feature of the RRT. To overcome this prob-

lem, a particular distribution scheme of the outcomes of the randomization device was

developed, which simultaneously avoids the need for multiple randomization processes

and maintains privacy protection. Study IV was concerned with the shortcoming of the

CDM that it is not able to distinguish whether cheating participants have or do not have

a critical attribute. To overcome this problem, an extension of Mangat’s (1994) variant

of the RRT was proposed. This extension is able to estimate the extent of untruthful re-

sponding of those participants who unequivocally carry the sensitive attribute. In Study

V, thirteen variants of the RRT are reviewed and it is shown how a common multinomial

modeling framework can be adopted for these models. Based on the multinomial refor-

mulation of the models, a software program was developed that allows for the analysis of

all of the RRT models in single and multiple groups. Additionally, the program includes

an option to perform a-priori and post hoc power analyses. Taken together, the present

thesis tackled a series of concerns precluding a wider use of models suitable to gain more

valid estimates of the prevalence of sensitive attitudes and behaviors.
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1 Introduction

In behavioral and survey research, it is often desired to estimate the proportion of respon-

dents holding a certain attitude or behaving in a certain way. To this end, researchers

usually ask participants directly on the issue under consideration and utilize the observed

proportion of a particular response as an estimate of the prevalence of the respective

attribute. It is well known, however, that survey responses do not necessarily reflect

an individual’s true status. The tendency to present oneself in the best possible light

systematically biases responses to sensitive, incriminating, or illegal issues towards a re-

spondent’s perception of what is socially acceptable (e.g. Lee, 1993; Tourangou & Yan,

2007). As a consequence, self-report measures consistently underestimate the preva-

lence of socially undesirable attitudes and behaviors (e.g., doping, drug use, academic

cheating, software piracy, tax evasion) and overestimate the prevalence of socially desir-

able attitudes and behaviors (e.g., general health behavior, hygiene practices, physical

activity, moral courage, xenophilia). Several methods have been proposed to overcome

this bias, including the bogus pipeline procedure (Jones & Sigall, 1971), implicit attitude

measurement (Greenwald, McGhee, & Schwartz, 1998), psychophysiological lie detection

(Iacono, 2000), and the use of scales measuring individual differences in the tendency to

provide socially desirable responses (e.g., Paulhus, 1984).

Providing confidentiality and anonymity is a simpler but probably the most promis-

ing way to encourage truthful and honest responding (e.g., Ong & Weiss, 2000). It has

repeatedly been shown that anonymous questionnaires enhance the validity of responses

compared to more public modes of administration such as face-to-face interviews. Gen-

erally, however, this approach has yielded limited success. Participants may fear that

their answer might become known to the researchers conducting the study, and may still

decide to mask their true status on the respective attribute by providing supposedly so-
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2 The Randomized Response Technique (RRT)

cially acceptable responses. As an attempt to maximize anonymity and confidentiality of

responses, random noise is added to the responses in the randomized response technique

(RRT; Warner, 1965). Information is thus requested on a probability basis rather than

by direct questioning. The confidentiality of responses is increased by ensuring that an

individual’s status cannot be determined on grounds of his or her response. Since indi-

viduals are more likely to be honest when there is no direct link between their attitude

or behavior and their response, it is possible to yield more valid prevalence estimates of

sensitive or incriminating issues.

2 The Randomized Response Technique (RRT)

In the historically first randomized response model propounded by Warner (1965), re-

spondents are asked to answer either the sensitive question (e.g., “I have used cocaine”)

with probability p or its negation (“I have never used cocaine”) with probability 1− p.

Because it is not known to the interviewer which of these questions was answered, a

“yes” answer may indicate that a cocaine-user answered the sensitive question with

probability p, or that a non-user answered the negation of the sensitive question with

the complementary probability 1 − p. Hence, the proportion of “yes” responses (λ) is

λ = πp+ (1− π)p . A simple algebraic rearrangement yields a maximum likelihood es-

timator of the prevalence of the sensitive attribute (π), that is, in the present example,

the lifetime prevalence of cocaine use:

π̂ =
λ̂+ (p− 1)

(2p− 1)

with variance
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2 The Randomized Response Technique (RRT)

var(π̂) =
π̂(1− π̂)

n
+

p(1− p)

n(2p− 1)2

The variance estimator includes two terms: the first term is the usual sampling vari-

ance of proportions; the second term represents the variance added by the randomiza-

tion procedure. Because the second term is always greater than zero, the RRT suffers a

considerable loss of efficiency compared to direct questioning techniques (e.g., Lensvelt-

Mulders, Hox, & van der Heijden, 2005). Accordingly, many efforts of developing variants

of the Warner model were directed to reduce the variance added by the randomization

procedure.

In one of the most efficient variants of the RRT (the forced-response model; Dawes &

Moore, 1980), each participant is confronted with the sensitive question, but a certain

proportion of respondents is asked to disregard the question entirely and to provide a

pre-specified response. Depending on the outcome of the randomization device, respon-

dents are prompted to reply “yes” with probability py independently of the content of the

question or to answer truthfully with probability 1− py. For example, the participant’s

month of birth, unknown to the experimenter, may be used to determine whether par-

ticipants are prompted to respond truthfully to a certain sensitive question (e.g., “Have

you ever used cocaine?”). Depending on their month of birth, some participants are

asked to respond truthfully, whereas others are prompted to answer “yes” irrespectively

of whether they have used cocaine. Using official birth statistics as a proxy for the prob-

ability distribution of the randomization device, it is possible to estimate the proportion

of non-forced “yes”-responses, that is, the prevalence of the sensitive attribute (π), by

π̂ =
λ̂− py

(1− py)
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2 The Randomized Response Technique (RRT)

The variance is given by

var(π̂) =
λ̂(1− λ̂)

n(1− py)2

and can be shown to be always smaller than the variance of the Warner model.

Since the randomization procedure guarantees that a “yes”-response is no longer un-

equivocally indicative of a socially undesirable attribute and therefore no longer stig-

matizing to the participants, the RRT encourages more honest responding and, in turn,

provides more valid prevalence estimates of sensitive issues. A variety of variants of the

RRT have been suggested and successfully employed to obtain information about atti-

tudes and behaviors as diverse as employee theft (Wimbush & Dalton, 1997), doping in

fitness sports (Simon, Striegel, Aust, Dietz, & Ulrich, 2006), medication non-adherence

(Ostapczuk, Musch, & Moshagen, 2008b), rape (Soeken & Damrosch, 1986), smuggle

(Nordlund, Holme, & Tamsfoss, 1994), social security fraud (Lensvelt-Mulders, van der

Heijden, & Laudy, 2006), and xenophobia (Ostapczuk, Musch, & Moshagen, 2008a).

Likewise, a recent meta-analysis (Lensvelt-Mulders, Hox, van der Heijden, & Maas,

2005) confirmed that the RRT generally yields more valid prevalence estimates of sen-

sitive attributes than conventional direct questioning formats. Lensvelt-Mulders, Hox,

van der Heijden, and Maas (2005) concluded that “currently available research has not

demonstrated the superiority of any [italics added] data collection method to RRT”

(p.343).

Successful applications notwithstanding, the RRT has been criticized as being sus-

ceptible to respondents who are not answering as directed by the randomization device

(Campbell, 1987). When employing the forced response variant of the RRT, two types

of non-compliance with the instructions may occur (Antonak & Livneh, 1995). First,

respondents may refuse to answer truthfully when prompted by the randomization de-

12



2 The Randomized Response Technique (RRT)

vice (respondent jeopardy). Although the superiority of the RRT over the traditional

direct questioning format is owed to the fact that respondents are more likely to ad-

mit carrying a sensitive attribute, the RRT may rather reduce than eliminate this type

of non-compliance. Second, the randomization procedure introduces another type of

non-compliance, namely the denial to comply with the instruction of answering “yes”

to a sensitive question regardless of its content (risk of suspicion). Both types of non-

compliance, respondent jeopardy and risk of suspicion, lead to a “no”-response, although

the randomization device asks respondents to answer in the affirmative. In fact, evidence

suggests that cheating occurs (Edgell, Duchan, & Himmelfarb, 1992; Lensvelt-Mulders

& Boeije, 2007; Soeken & Macready, 1982). Respondents who are prompted by the

randomization device to answer truthfully may answer “no” although they carry the

sensitive attribute, because they may, for instance, not fully understand the rationale of

the RRT, do not feel sufficiently protected when the probability of being asked to answer

truthfully is high, or may not trust the integrity of the randomization process (Land-

sheer, van der Heijden, & van Gils, 1999; Lensvelt-Mulders & Boeije, 2007; Soeken &

McReady, 1982). Furthermore, respondents may answer “no” in spite of being prompted

by the randomization device to answer in the affirmative irrespectively of the content of

the item to avoid even the slightest suspicion that they are carriers of the sensitive at-

tribute (Clark & Desharnais, 1998), or because they may feel uncomfortable when being

“forced to be dishonest” (Lensvelt-Mulders & Boeije, 2007, p. 602). Whatever causes

non-compliance with the RRT instructions, the RRT underestimates the prevalence of

the critical behavior to the extent that participants fail to comply with the instructions

and deny adopting the sensitive attribute even though they are asked to attest to it.
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2 The Randomized Response Technique (RRT)

Detecting cheating in the randomized response model

Addressing this issue, Clark and Desharnais (1998) proposed a modification of the forced

response model: The cheating detection model (CDM) explicitly assumes that some

respondents may not comply with the RRT instructions and answer “no” irrespective

of the outcome of the randomization device. Figure 1 illustrates how the CDM can

be represented as a special case of the more general family of multinomial processing

tree models (Batchelder & Riefer, 1999; Hu & Batchfelder, 1994). The population

is divided into three disjoint and exhaustive groups: The first group (π) represents

the proportion of compliant and honest “yes”-respondents, that is, respondents who

honestly admit having the sensitive attribute (honest cocaine users). The second group

(β) is the proportion of compliant and honest “no”-respondents, that is, respondents

who truthfully deny having the sensitive attribute (honest non-users). The third group

(γ = 1−π−β) represents the proportion of non-compliant cheaters who do not comply

with the instruction of the RRT and answer “no” to the sensitive question irrespective

of the outcome of the randomization process. It is important to note that nothing is

assumed about whether non-compliant respondents actually have the sensitive attribute.

Conceivably, respondents who are prompted by the randomization device to answer

truthfully deny a critical behavior in which they have in fact been engaged; but it is

also possible that respondents who have not been engaged in the critical behavior want

to avoid even the slightest suspicion that anyone might think that they committed a

prohibited or undesirable act, and therefore answer “no” despite being prompted by the

randomization device to answer affirmatively. Thus, the true status of a respondent

choosing not to follow the instructions remains unknown.

As the proportions π, β and γ are constrained to add up to 1, the CDM contains two

independent parameters that cannot be estimated on the basis of only one proportion
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2 The Randomized Response Technique (RRT)

Figure 1. A multinomial model of Clark and Desharnais’ (1998) cheating detection

modification of the randomized response technique. Two independent samples with

different randomization probabilities p1 and p2 are needed to make the model

identifiable.

of “yes”-responses provided by traditional RRT procedures. An experimental approach

is needed to obtain a sufficient data base. More specifically, two independent samples of

respondents have to be drawn with different probabilities p1 and p2 of being prompted

to reply “yes” by the randomization device (Clark & Desharnais, 1998). Figure 1 shows

only one of these conditions, in which probability p1 applies; the second condition could

be represented by an identical figure with the sole exception that probability p1 would

be replaced with probability p2. Under the assumption that the same proportions apply

in both groups when participants are randomly assigned to conditions (π1 = π2, β1 = β2,

γ1 = γ2), the CDM allows to observe two independent proportions of “yes”-responses

(λ1 and λ2), which are sufficient to estimate the two independent parameters π and β
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2 The Randomized Response Technique (RRT)

(with γ = 1 − π − β). For this particular model, Clark and Desharnais (1998) provide

closed-form solutions for unbiased maximum likelihood estimates of the parameters π,

β, and γ:

π̂ =
py2λ̂1 − py1λ̂2

(py2 − py1)

β̂ =
λ̂2 − λ̂1

(py2 − py1)

and γ̂ can be easily computed by γ̂ = 1 − π̂ − β̂. The asymptotic variance of π and β

are given by

var(π̂) =
1

(py2 − py1)2

[
p2

y1ny2nn2

N2
3 +

p2
y2ny1nn1

N1
3

]

and

var(β̂) =
1

(py2 − py1)2

[
ny2nn2

N2
3 +

ny1nn1

N1
3

]

where nyi and nni represent the observed frequency of “yes” and “no” responses in the

i-th sample, respectively.

The CDM offers a unique advantage over both traditional surveys and previous RRT

models: If no cheating occurs (γ = 0), the parameter π provides an asymptotically

unbiased estimate of the population proportion having the sensitive attribute. If there

is a significant proportion of non-compliant respondents, it is possible to compute both

an upper and a lower bound for the prevalence of the sensitive attribute by assuming that

non-compliant respondents either have or do not have the sensitive attribute (Musch,

Bröder, & Klauer, 2001). The CDM may also be considered as a generalization of
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3 Research Questions and Aims of the Studies

the forced response variant of the RRT in that the proportion of cheaters is explicitly

modeled, but may also become zero, in which case the CDM is identical to the forced

response model extended to two groups.

3 Research Questions and Aims of the Studies

Given that research repeatedly demonstrated the superiority of randomized response

models over direct questioning formats, it is desirable that the RRT be routinely used

in research on sensitive issues. However, as noted by Umesh and Peterson (1991), there

is a mismatch between the theoretical development of the RRT and studies using this

technique for substantive research questions (see also, Antonak & Livneh, 1995). Possible

reasons of the dearth of applications include the susceptibility of the RRT to respondents

that fail to comply with the instructions, practical problems when multiple attributes are

to be assessed in a single study, and the lack of a freely available and easy to use software

program that is implementing randomized response models. The purpose of the present

thesis was to tackle these problems in order to increase the use of randomized response

models in substantive research. More specifically, the following research questions were

addressed:

First, randomized response models have traditionally been analyzed using closed-form

solutions. Although mathematically appealing, this approach is limited to specific de-

signs and does not allow for the formulation of more complex models involving additional

parameters representing, for example, moderator variables or direct questioning control

conditions. Therefore, the possibilities offered by the more general family of multinomial

processing tree models were explored and demonstrated.

Second, the statistical properties of Clark and Desharnais’ (1998) cheating detection

model are largely unknown. Using computer simulations, the efficiency, statistical power,
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3 Research Questions and Aims of the Studies

and the robustness to violations of the underlying assumptions of the model were in-

vestigated. A major drawback of the CDM is that it is just-identified and will show

a perfect fit to the data irrespectively of violations of assumptions. A modification of

the CDM was therefore proposed, which allows observing one additional proportion of

“yes”-responses and, thereby, may be falsified empirically.

Third, it is often desired to measure multiple sensitive attributes in a single study.

In order to maintain the privacy protection of the RRT, multiple randomization pro-

cesses seem to be required, rendering the administration of the RRT rather tedious

and complicated. A model was developed that allows for assessing multiple attributes

with just a single randomization process by using an appropriate answering scheme. This

multiple-issues-cheating-detection (MICD) model allows for assessing multiple attributes

in a single study while simultaneously maintaining the privacy protection feature of the

RRT.

Fourth, a limitation of the CDM is that it is not possible to distinguish between cheat-

ing participants that possess or do not possess the sensitive attribute. A modification of

Mangat’s (1994) variant of the RRT was therefore proposed which has the capability to

estimate the proportion of participants who are unequivocally carriers of the sensitive

attribute, but fail to respond truthfully.

Finally, an easy to use, platform-independent software program was developed that

allows for the estimation of randomized response models in single and multiple groups,

including support to analyze moderator variables and to conduct power analyses. Such

analyses are difficult to conduct without a thorough knowledge of advanced statistical

techniques, but they are of considerable practical importance for researchers using the

RRT in applied settings.

In pursuing these issues, the present thesis contributes both to the development of
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4 Studies

advanced statistical methods and to the provision of recommendations and tools for

researchers wishing to use randomized response models in substantive research.

4 Studies

4.1 Study I: Employing a multinomial representation of the CDM to

investigate gender differences in dental hygiene habits among college

students in the PR China

The purpose of this study was to explore the utility of a multinomial representation of

Clark and Desharnais’ (1998) cheating detection modification of the RRT. To this end,

gender differences in dental hygiene habits among Chinese college students were exam-

ined. Poor dental hygiene is considered a significant risk factor for a variety of dental

diseases such as caries (Bader, Shugars, & Bonito, 2001) and periodontitis (Pihlstrom,

Michalowicz, & Johnson, 2005). Since it is difficult to objectively assess the frequency

of teeth brushing, previous epidemiological studies mainly relied on self-reported teeth

brushing behavior. However, since self-reported hygiene practices are likely to be dis-

torted by socially desirable responding (e.g. Little, Hollis, Stevens, Mount, Mullooly, &

Johnson, 1997; Tang, Quinonez, Hallett, Lee, & Whitt, 2005), estimates of the preva-

lence of appropriate teeth brushing behavior may be overly optimistic. Consequently,

assessment of dental hygiene practices was considered a fruitful area of application for

randomized response models. The research design comprised a direct questioning con-

trol condition in order to obtain an estimate on how much response bias can be reduced

by using the CDM. Moreover, because there is evidence suggesting gender differences

in teeth-brushing behavior (Lim, Schwarz & Lo, 1994; Petersen, Peng & Tai, 1997),

the possibility to include additional parameters representing gender groups in suitably
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expanded multinomial models was demonstrated. The results show that only 34.9% of

males and 10.4% of females admitted to brush their teeth less than twice a day when

questioned directly. Using the CDM, however, 50.7% of males and 20.4% of females ad-

mitted this undesirable behavior, indicating that the CDM helps to improve the validity

of prevalence estimates of sensitive issues.

4.2 Study II: Investigating the robustness to violations of assumptions

and the statistical power of the CDM and an enhanced CDM

A major drawback of the CDM is that the model is saturated and will always fit the

data perfectly irrespective of whether the assumptions underlying the model are violated.

To make the model identifiable, two independent samples using different randomization

probabilities have to be drawn, while assuming that the same proportions π, β, and

γ apply in both conditions. From a Bayesian perspective, however, there is reason to

suspect that the likelihood to disregard the RRT instructions may be a function of the

assigned randomization probabilities (Scheers, 1992; Soeken & McReady, 1982). This

is because the likelihood that a ”yes”-answer is associated with the sensitive attribute

increases with decreasing probability of being prompted to reply “yes”. Under these

circumstances, the assumption of equal proportions of cheaters across conditions would

be violated, which, in turn, might lead to biased parameter estimates. This would be

especially critical if the violation of the assumption of equal proportions of cheaters

across groups resulted in inflated estimates of the prevalence of the sensitive attribute.

Unfortunately, it is unknown how the CDM performs in the presence of an unequal

proportion of cheaters across groups.

Given these concerns, an enhancement of the cheating detection model (ECDM) was

proposed. The basic idea is to extend the CDM to three different groups, each of
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which is questioned with a different randomization probability, while maintaining the

assumption of cross-group equality of the parameters π, β, and γ. By this extension,

the ECDM provides three independent proportions of ”yes”-responses to estimate the

two parameters π and β (with γ = 1 − π − β). Thus, the ECDM is overidentified and

thereby providing a means for detecting violations of assumptions and model misfit in

general. This feature is especially important, as applied researchers will typically not be

aware whether an assumption is violated, and may therefore run the risk of obtaining

severely biased parameter estimates.

A series of computer simulations was performed to investigate the effects of violations

of the assumption of an equal proportion of cheaters across conditions on the accuracy of

parameter estimates. Additionally, the statistical power to detect violations of assump-

tions using the ECDM was determined, and the CDM and the ECDM were compared

with respect to the standard errors of the parameter estimates, and the power for an-

alyzing parameter restrictions. Moreover, recommendations were given regarding the

optimal choice of the randomization probabilities.

The results demonstrate that violations of the assumption of an equal proportion of

cheaters across conditions result in biased estimates using both the CDM and the ECDM.

Even though the bias in the parameter estimates may be substantial, it was shown that

the models act conservatively by underestimating both the prevalence of the critical

behavior and the proportion of cheaters. On the other hand, the models overestimate

the proportion of compliant and honest “no”-respondents if the assumption underlying

the model are violated. The power of the ECDM to detect violations of the underlying

assumptions was found to be rather low, unless the violations are severe or the sample

size is large. Moreover, the ECDM was found to suffer from a slight loss of efficiency.

Nevertheless, the alternative to using the ECDM – namely, to use a saturated cheater
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detection model – is equivalent to accepting that violations of the assumptions and

biases in the parameter estimates will not be detectable at all, however large they may

be. Furthermore, it was found that power and efficiency may be greatly enhanced by

choosing randomization probabilities that lie as far apart as possible.

4.3 Study III: Assessing multiple attitudes with a single randomization

process

In substantive research, it is often desired to assess multiple sensitive attributes in a single

study. If one were to use just a single randomization process for multiple questions, a

situation arises where it would be possible to infer from an individual’s response pattern

whether he or she responded truthfully, or responded as directed by the randomization

device. In such a situation, the RRT offers no more privacy protection than traditional

direct questioning formats (Tamhane, 1981). A possible solution for this problem is to

use a randomization device that allows for multiple initializations (as for example, a

die) and re-initialize the randomization process for each question in the survey (e.g.,

Himmelfarb & Lickteig, 1982). However, this approach is not very attractive because of

its complexity, particularly when a large number of questions is to be asked.

This study offered an alternative solution for this problem that does not require multi-

ple randomization processes and simultaneously maintains the privacy protection feature

of the RRT. The basic idea is to create as many response patterns solely by the random-

ization procedure as there are possible response patterns. Consider as an example the

participant’s month of birth as randomization device. Table 1 clarifies how to distribute

the twelve outcomes of the randomization device on the three different questions such

that each response pattern (except for denying each question) could be the result of

the randomization process. Conversely, there is no response pattern indicating that a
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particular participant was prompted to answer truthfully.

Table 1

Distribution of the outcomes of the participants’ month of birth as a randomization

device on three different questions

Month of birth

Item Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

#1 x x x x

#2 x x x x

#3 x x x x

Note. Participants born in a month marked with an ‘x’ are prompted to provide a pre-specified
response (e.g., “yes”) to the particular item, the remaining participants are asked to answer truthfully.
Each possible response pattern (except for denying every item) may thus be the result from either the
randomization procedure, or from truthful responding.

The proposed method can be further enhanced to detect cheaters by sampling two

groups for each question. In the first group, a randomization probability of p1 has to be

used, whereas in the second group, a randomization probability of p2 = 1−p1 is used by

inverting the set of months that determines the outcome of the randomization process.

This multiple-issues-cheating-detection (MICD) model was tested in an empirical ap-

plication with three different questions containing a reference to socially desirable at-

titudes. Additionally, the performance of the MICD model was compared against a

direct question condition, as well as a traditional forced-response RRT not considering

cheating. The results showed that the MICD model allows for observing higher and pre-

sumably more valid prevalence estimates of the population proportion sharing a socially

undesirable attitude as compared to a conventional direct questioning format. It was

also shown, that the traditional forced response model not considering cheating leads to
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misleading results if substantial non-compliance to the RRT instructions occurs.

4.4 Study IV: Development of a model capable of detecting untruthful

answering

Albeit Clark and Desharnais’ (1998) cheating detection model is a vast improvement

compared to both conventional data collection techniques and traditional randomized

response variants not considering cheating, the model is not capable of distinguishing

whether cheating participants possess or do not possess the sensitive attribute. In fact,

Clark and Desharnais (1998) warn against using the proportion of cheaters as a cor-

rection factor for the prevalence of the critical behavior. Clark and Desharnais (1998)

further note that “neither this model nor any other model is capable of indicating the

true behavior of cheaters” (p.166). However, the latter observation only holds true as

far as the forced response variant underlying Clark and Desharnais’ cheating detection

model is concerned. In general, determining whether cheating to the RRT instructions

occurred requires the response pattern of cheaters to differ from the response pattern of

individuals who truthfully deny having the sensitive attribute. In the forced response

variant, respondents truthfully denying to have the sensitive attribute reply “no” if asked

to respond truthfully, but reply “yes” if asked to provide a pre-specified response with

probability py; whereas non-compliant cheaters always reply “no” regardless of the out-

come of the randomization device. Consequently, it is possible to estimate the extent

of non-compliance; however, since both innocent and guilty respondents may decide to

disregard the instructions, no assumption can be made about the true status of these

cheating participants.

This study showed that another variant of the RRT (Mangat, 1994) also fulfils the ba-

sic requirement of different response patterns of respondents disobeying the instructions
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and respondents truthfully denying to carry the sensitive attribute. In Mangat’s (1994)

two-step procedure, each respondent actually carrying the sensitive attribute is asked

to answer the sensitive question truthfully. Respondents who do not carry the sensitive

attribute are required to use the Warner device, that is, they are asked to answer either

the sensitive question with probability p or the negation of the sensitive question with

probability 1−p. Consequently, participants who are carrying the sensitive attribute and

respond truthfully (π) reply “yes”, participants who are carrying the sensitive attribute,

but fail to respond truthfully (γ) reply “no”, and participants who are not carrying the

sensitive attribute (β) reply “yes” or “no” depending on the outcome of the random-

ization process (Figure 2). Given these different response patterns, it is shown that the

three proportions π, β, and γ may be estimated by extending Mangat’s (1994) procedure

to two independent samples with different randomization probabilities. The proposed

model has a unique theoretical advantage over Clark and Desharnais’ (1998) cheating

detection model: The parameter γ now unequivocally refers to participants who are car-

riers of the sensitive attribute, but fail to respond truthfully. This feature obviates the

necessity of alternately assuming that all or none of the cheating participants actually

carry the sensitive attribute, and directly allows for determining the extent of untruthful

answering.

4.5 Study V: Development of a multiplatform software program for the

analysis and rational design of randomized response models

Randomized response models have traditionally been analyzed using paper and pencil

and applying closed form solutions to obtain parameter estimates. This approach suf-

fers from several shortcomings, with the main one being a lack of flexibility. In this

study, it was shown that most randomized response models can be subsumed under the
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Figure 2. A multinomial representation of the proposed modification of Mangat’s

(1994) variant of the RRT. The population is divided into three disjoint and exhaustive

groups: respondents who carry the sensitive attribute and respond truthfully (π),

respondents who carry the sensitive attribute and fail to respond truthfully (γ), and

respondents who do not carry the sensitive attribute (β). Two independent samples

with different randomization probabilities p1 and p2 are needed to make the model

identifiable.

more general multinomial processing tree framework (Batchelder & Riefer, 1999; Hu

& Batchelder, 1995). A multinomial representation offers several benefits: First, it is

easily possible to place constraints on certain parameters, for example, to test whether

an RRT-based prevalence estimate of a sensitive attribute differs significantly from the

estimate obtained in a conventional direct questioning condition. Second, the models

can be extended to the simultaneous analysis of multiple groups with or without cross-

group equality constraints on the parameters. Third, more complex models involving

additional parameters may be formulated, permitting the estimation of models for which

currently there are no closed-form solutions available. Finally, it is possible to perform a

priori and post-hoc power analyses, which are necessary for the rational design of studies
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employing a particular randomized response model.

The second purpose of this study was to develop a java-based software program called

RRTM (randomized response tree modeling) that allows for the analysis of thirteen

different randomized response models in single and multiple groups based on multino-

mial processing tree models as a common framework, additionally including support for

performing both, a priori and post-hoc power analyses. Given a randomized response

model, the respective design parameters, and the observed response frequencies, RRTM

computes maximum likelihood estimates of the parameters of the particular model along

with their standard errors, confidence intervals, and significance levels. RRT also makes

it easy to analyze multiple-group models. Different groups may represent different sub-

groups (for example, identified by gender) for which the parameters should be estimated

separately, or different RRT questions such as hierarchically ordered questions on a

quantity of a sensitive attribute (e.g., “Were you ever involved in a theft from your em-

ployer of cash worth from 5$-10$ / 10$-50$ / 50$ and more?”). If more than one group

were specified, RRTM provides parameter estimates both with and without cross-group

equality restrictions on the parameters along with statistics indicating the applicability

of these constraints. Moreover, an option is provided to include a direct questioning con-

trol condition. RRTM is not limited to the estimation of the parameters of a particular

randomized response model, but also includes the possibility to perform power analyses.

The statistical power of a test is defined as the complement of the β-error probability of

falsely retaining an incorrect null hypothesis (H0; Cohen, 1988; Faul, Erdfelder, Lang,

& Buchner, 2007). Generally, the power of a test is a function of the probability of an

α-error, the sample size, and the degree of deviation between the null and alternative

hypothesis (H1). Power is calculated by evaluating the non-central χ2-distribution at a

given α with the difference of the G2 fit-statistics of the more restricted H0 model and
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the less restricted H1 model as an estimate of the non-centrality parameter. Two types

of power-analysis are implemented in RRTM. In a-priori power analyses (Cohen, 1988),

the required sample size to reject a false H0 is computed given a fixed significance level

α and the desired power. In post-hoc power analyses (Cohen, 1988), the power achieved

to reject a false H0 is computed for a given significance level α and a fixed sample size.

5 General Discussion

Although it has repeatedly been demonstrated that the RRT helps to improve the

validity of prevalence estimates of issues threatened by socially desirable responding

(Lensvelt-Mulders, Hox, van der Heijden, & Maas, 2005), there is an apparent mis-

match between the theoretical development of the RRT and studies using this technique

for substantive research questions (Antonak & Livneh, 1995; Umesh & Peterson, 1991).

Three possible reasons for dearth of RRT applications have been addressed in the present

thesis: the susceptibility of the RRT to respondents that fail to comply with the instruc-

tions, practical problems when surveying multiple attributes in a single study, and the

lack of a freely available and easy to use software program implementing randomized

response models.

Regarding the first concern, a cheating detection modification (CDM; Clark & Deshar-

nais, 1998) of the forced response variant of the RRT has been illustrated and validated

in Studies I and III. It was demonstrated that as compared to a conventional direct

questioning format, the CDM yields higher and presumably more valid prevalence esti-

mates of sensitive issues threatened by over- and underreporting. It was also shown in

Study III that the traditional forced response variant of the RRT which is not consid-

ering cheating provides misleading results if non-compliance with the instructions does

occur. Using computer simulations (Study II), the power of the CDM to reject the null
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hypothesis that a parameter does not differ significantly from zero was determined, and

power curves were provided as a reference guide for researchers wishing to employ the

CDM for their substantive research questions. Study II also investigated the robustness

of the CDM to violations of the assumption of cross-group equality of the proportion of

cheaters. In the presence of a violation of the assumptions, the CDM was found to act

conservatively by underestimating both, the proportion of cheaters and the prevalence

of the sensitive attribute. However, given that the CDM is just identified and thus will

show a perfect fit irrespective of any violations of the underlying assumptions, researchers

might run the risk of obtaining severely biased parameter estimates. For this reason, an

enhancement of the CDM called ECDM was proposed. The ECDM allows observing one

additional independent proportion of “yes”-responses and, thereby, becomes empirically

falsifiable. Even though the power of the ECDM to detect small to moderate violations

of the assumptions was found to be rather low and the ECDM suffers a slight loss of

efficiency compared to the CDM, it is still preferable to the CDM unless efficiency is a

major concern. A further limitation of Clark and Desharnais’ (1998) cheating detection

model was addressed in Study IV by proposing a model that is capable of estimating

the proportion of participants who unequivocally are carriers of the sensitive attribute,

but fail to respond truthfully. To the best of my knowledge, the proposed procedure

is currently the only randomized response model and, more generally, the only survey

method so far, that not only provides incentives for respondents to reply more hon-

estly by increasing their privacy, but also permits to determine the extent of untruthful

responding. Although the statistical properties of the proposed model have yet to be

established and the validity of the model has yet to be demonstrated, the model may

be considered as a vast theoretical improvement over both conventional data collection

techniques and previous randomized response models.
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In Study III, a particular answering scheme of the outcomes of the randomization

device was proposed to address the commonly encountered problem of utilizing the

RRT to obtain information about more than one sensitive attribute. This answering

scheme permits to assess multiple attributes with just a single randomization process,

while maintaining the privacy protection feature of the RRT, consequently facilitating

the application of the RRT in substantive research.

Moreover, it has been shown in Study V and demonstrated in Studies I, II, and III,

that most randomized response models can be subsumed under the more general family

of multinomial processing tree models (Batchelder & Riefer, 1999; Hu & Batchelder,

1994). This modeling approach offers several benefits, the main one being increased

flexibility compared to the use of closed-form solutions that have to be computed for

each model anew. For instance, a particular model may be augmented with additional

parameters representing different subgroups. This approach was illustrated in Study

I by comparing the prevalence estimates for appropriate dental hygiene habits across

gender groups. As it is often desired to include possible moderator and background

variables of theoretical interest, it is believed that this increase in flexibility offered by

the multinomial modeling framework is a major improvement for researchers using the

RRT.

However, given that employing a multinomial modeling framework to estimate the

parameters of a randomized response model requires substantial statistical knowledge, it

was deemed necessary to provide a simpler means to analyze these models. Consequently,

an easy to use, platform-independent software program was developed (Study V). Based

on the multinomial modeling framework, the program is capable of estimating a variety of

different randomized response models. Additionally, it includes support for moderator

variables and power analyses. To my knowledge, this is the first software program
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available that provides a means to analyze the most commonly used randomized response

models, thereby rendering the necessity of by-hand calculations obsolete. Furthermore,

a rational design of randomized response studies, and an a priori computation of the

sample size needed to detect a hypothesized effect becomes possible by the help of the

power module included in the software program.

The RRT has numerous strengths, but some the limitations of the technique should

also be acknowledged. First, owing to the randomization procedure, the RRT may only

be applied at group-level and cannot be used to obtain information about the status of

single individuals. As a consequence, it is difficult (though not impossible, see Maddala

1983; Scheers & Dayton, 1986; van den Hout, van der Heijden, & Gilchrist, 2007) to

compute measures of association between a sensitive attribute and other variables of

interest. As demonstrated in the present thesis, a possible workaround is to utilize the

multinomial modeling framework to perform moderator analyses; however, this approach

comes to its limits if the number of moderator variables is large. Second, because the

RRT adds random noise to the responses, it suffers a greater sampling variation and

requires more participants compared to a traditional direct questioning format (e.g.,

Lensvelt-Mulders, Hox, & van der Heijden, 2005). The resulting loss of efficiency is only

outweighed by a gain in precision, if the attribute under consideration is of a sufficiently

sensitive nature. Third, employing the RRT is more complicated and tedious than

more simple answering formats, as it requires a careful selection of the randomization

device used, the sensitive question asked, and particular attention in the development

of the instructions given. Finally, the randomized response models considered in the

present thesis are only applicable to qualitative attributes that can be assessed by di-

chotomous items. Using qualitative randomized response models to obtain information

about a quantitatively ordered attribute requires the researcher to a priori categorize
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the quantities of the attribute under consideration and ask a series of randomized re-

sponse questions (e.g., “Were you ever involved in a theft from your employer of cash

worth from 5$-10$ / 10$-50$ / 50$ and more?”; Wimbush & Dalton, 1997). However,

there are extensions of the RRT that allow for an assessment of quantitative attributes

(e.g., Greenberg, Kuebler, Abernathy & Horvitz, 1969). Albeit it might be possible to

extend these models by adding a cheating detection feature in analogy to Clark and

Desharnais’ (1998) cheating detection modification of the forced response technique or

the modification of Mangat’s (1994) variant of the RRT proposed in Study IV, this is

not a straightforward exercise and goes beyond the scope of the present thesis.

Limitation notwithstanding, the RRT shows considerable promise as a means to reduce

the problem of socially desirable responding. Even though a careful decision must be

made prior to adopting this methodology, the RRT may often be a helpful way to

obtain meaningful results when surveying sensitive attributes. The present thesis aimed

at increasing the impact of the RRT on substantive research questions by addressing

various concerns that previously precluded a wider use of these models. To summarize,

the main points made in the present thesis are the following:

1) Socially desirable responding leads to biased prevalence estimates of sensitive, illegal,

or incriminating issues. The randomized response technique (RRT) is a promising

technique for improving the validity of prevalence estimates of issues threatened by

socially desirable responding.

2) Most randomized response models may be subsumed under the more general family

of multinomial processing tree models. A software program permitting to estimate

RRT models based on the multinomial modeling framework is presented.

3) Multiple sensitive attributes may be assessed with just a single randomization process
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using an appropriately designed answering scheme.

4) A major drawback of the RRT is its susceptibility to non-compliance to the instruc-

tions. However, it is possible to estimate the extent of this non-compliance to the

instructions by using a cheating detection modification (CDM; Clark & Desharnais,

1998) of the RRT. The CDM was shown to improve prevalence estimates of sensitive

issues compared to both direct questioning formats and a traditional forced response

variant of the RRT not considering cheating.

5) For the purpose of identification, the CDM requires two conditions with different

randomization probabilities, but assumes the proportion of cheaters to be equal across

conditions. It was shown that violations of this assumptions lead to biased parameter

estimates. It was also shown that CDM acts conservatively by underestimating both

the proportion of cheaters and the prevalence of the critical behavior.

6) The CDM is just-identified and therefore provides no means to detect violations of

assumptions when they are present. An enhanced CDM is proposed that can be

falsified on the basis of empirical data.

7) A limitation of the CDM is that it is not capable of distinguishing whether cheating

respondents do or do not carry the sensitive attribute. An alternative cheating de-

tection model based on Mangat’s (1994) variant of the RRT is proposed that allows

us to estimate the proportion of participants who unequivocally are carriers of the

sensitive attribute, but failed to respond truthfully.
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Summary 

Background. Even though the validity of self-reports of sensitive behaviours is threatened by 

social desirability bias, interviews and questionnaires are widely used as data in 

epidemiological surveys.  

Methods. In order to reduce the problem of socially desirable responding, the confidentiality 

of responses may be enhanced by guaranteeing that the true status of a respondent cannot be 

identified on grounds of his or her response to a sensitive question. In the randomized-

response-technique (RRT), a randomization device is therefore used to determine whether 

respondents are asked to answer truthfully, or whether they are prompted to provide a 

prespecified response. Based on the known probability distribution of the randomization 

device, it is possible to estimate the true population value of sensitive attributes. In the present 

study, the RRT approach was further extended by employing an experimental cheating 

detection extension to obtain more valid data on the dental hygiene habits of Chinese college 

students. 

Results. Whereas only 34.9% of males and 10.4% of females admitted to brushing their teeth 

less than twice a day when questioned directly, 50.7% of males and 20.4% of females attested 

to this hygienically questionable and hence, socially undesirable behaviour in a randomized-

response survey. 

Conclusions. The results show that the cheating detection extension of the RRT encourages 

more honest responding and leads to more valid prevalence estimates than direct questioning. 

Given the considerable discrepancy between the results obtained by direct questioning and by 

using the RRT, we propose to routinely consider using the RRT in epidemiological self-

reports of sensitive behaviours. 

 

Keywords: Randomized-response technique, cheating detection, underreporting bias, social 

desirability, sensitive topics, dental hygiene 
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Introduction/Background 

 

Poor dental hygiene is considered a significant risk factor for a variety of dental diseases such 

as caries (Bader et al, 2001) and periodontitis (Piehlstrom et al, 2005). A survey aimed at 

determining the prevalence of insufficient dental hygiene in China reported that 31% of 20-29 

year-olds admit to brushing their teeth less than twice a day (Peng, Petersen, Tai, Yuan & 

Fan, 1997). This alarming figure seems to be moderated by several demographic variables, 

however; consistent with epidemiological data on the inhabitants of western countries, 

improved dental hygiene practices were found in China for females (Petersen, Peng & Tai, 

1997; Lim, Schwarz & Lo, 1994), the higher educated (Petersen, Peng & Tai, 1997), and the 

inhabitants of urban areas (Lin et al., 2001; Zhu et al., 2003). Whereas the prevalence 

estimates obtained in these studies are already high enough to raise concerns regarding the 

lack of a sufficient dental hygiene in contemporary China, it is important to note that it is 

difficult to objectively assess the frequency of teeth brushing relying on self-reported teeth 

brushing behaviour only. This approach was however taken in all studies that have been 

conducted in China as yet. The validity of the estimates obtained in this manner may be 

questioned because self-reported hygiene practices are likely to be distorted owing to socially 

desirable responding (Little et al, 1997; Tang et al., 2005). Epidemiological validation studies 

comparing self-report data against gold standard measures have repeatedly shown that the 

repondent’s tendency to provide socially desirable answers results in overreporting desirable 

behaviours such as physical activity (Adams et al, 2005), and in underreporting undesirable 

behaviours such as drug use (Colon et al, 2001; Johnson, 2005), energy intake (Hebert et al, 

1997; Subar et al, 2003), and sexual risk behaviour (Fennema et al, 1995). By analogy, there 

is reason to suspect that previous prevalence estimates of appropriate dental hygiene habits in 

China may have been overly optimistic. But what can be done to obtain more valid estimates? 
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The Randomized-Response Technique 

 

In an attempt to overcome the problem of social desirability bias, Warner (1965) proposed the 

randomized-response technique (RRT) to increase the confidentiality of responses to sensitive 

issues. To encourage more honest responding and, consequently, to yield more valid 

prevalence estimates than a direct question, the RRT uses a randomization procedure to 

ensure that an individual’s status cannot be identified on grounds of the response he or she is 

providing  (van der Heijden et al., 2000; Lamb & Stem, 1978; Shotland & Yankowski, 1982). 

The purpose of the present study was to use an extended cheating detection extension of the 

RRT (Clark & Desharnais, 1998) to obtain more valid data than a direct question provides on 

the dental hygiene habits of Chinese college students. 

 

The main idea of the RRT is to improve prevalence estimates of sensitive behaviours by 

enhancing the confidentiality of responses. There are several variants of the RRT (for a 

taxonomy, see Antonak & Livneh, 1995) which all rest on the assumption that responders are 

more likely to be honest when they believe that their true status cannot be determined from 

their response. In the ”forced-response” variant of the RRT (Greenberg et al., 1969), a 

randomization device (e.g., a die) is used to determine whether participants have to answer a 

sensitive question truthfully (e.g. “Have you ever used cocaine?”) or whether they are 

prompted to provide a prespecified response (e.g., “yes”) irrespective of their true status. 

Because the outcome of the randomization process is solely known to the participant, the 

investigator never knows whether a “yes”-response resulted from truthful answering, or from 

the randomization process. However, the proportion of “yes”-responses which have not been 

prompted by the randomization procedure (cocaine users in the present example) may be 

estimated because the probability distribution of the randomization device is known. As a 

randomization device, the participant’s month of birth, unknown to the experimenter, may be 
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used. Depending on their month of birth, some participants are then asked to respond 

truthfully, while others are prompted to answer “yes” regardless of their true status. The 

probability distribution of the randomization device can easily be approximated on the basis 

of official birth statistics, and the proportion of non-forced “yes”-responses may be estimated 

by straightforward probability calculations. Hence, the RRT allows to estimate the prevalence 

of sensitive behaviours at group level without exposing the true status of any individual 

respondent. The confidentiality of responses is guaranteed by this randomization procedure; 

owing to the forced “yes”-responses of some of the participants, a respondent no longer 

unequivocally associates himself with an undesirable behaviour by answering in the 

affirmative to a sensitive question. 

 

Experimental cheating detection extension of the Randomized-Response-Technique 

In spite of their many successful applications (see Lensvelt-Mulders et al., 2005; Antonak & 

Livneh, 1995; and Fox & Tracy, 1986 for reviews), traditional RRT models have been 

criticized as being susceptible to non-compliant participants, that is, respondents who are not 

answering as directed by the randomization device (Campbell, 1987). The prevalence of 

critical behaviours is underestimated to the extent that participants fail to comply with the 

instructions and deny being carriers of a sensitive attribute even though they are being asked 

by the randomization device to attest to it. To address this issue, Clark and Desharnais (1998) 

proposed an inventive extension of the “forced-response” model: In what we will refer to as 

the cheating detection model, it is assumed that some respondents may not comply with the 

RRT rules and answer “no” irrespective of the outcome of the randomization device. For 

example, respondents who are prompted by the randomization device to answer truthfully 

may answer “no” in spite of having performed the critical behaviour. On the other hand, 

innocuous respondents may answer “no” in spite of being prompted by the randomization 

device to answer in the affirmative, just to avoid associating themselves with a sensitive 
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attribute. It is important to note that nothing is assumed about whether non-compliant 

respondents actually performed the sensitive behaviour. It is conceivable that respondents 

who have been prompted to answer truthfully by the randomization device deny a critical 

behaviour in which they have in fact been engaged; but it is also possible that respondents 

who have not been engaged in the critical behaviour want to rule out even the slightest 

suspicion that they committed a prohibited or undesirable act despite in spite of being asked 

by the randomization device to answer in the affirmative. Thus, the true status of a respondent 

choosing not to follow the instructions necessarily remains unknown, and their number cannot 

simply be added as a correction factor to the number of truthful “yes”-responses (Clark & 

Desharnais, 1998). Adding all of them to the number of truthful “yes”-respondents is however 

equivalent to computing an upper bound according to a worst-case scenario which assumes 

that all incompliant respondents have actually engaged in the critical behaviour. 

 

### please insert figure 1 about here ### 

 

Figure 1 illustrates that the cheating detection model can be depicted as a multinomial model 

dividing the population into three disjoint groups: The first group (π) consists of compliant 

and honest “yes”-respondents, that is, respondents honestly admitting the critical behaviour 

(e.g., honest cocaine users). The second group (β) consists of honest “no”-respondents, that is, 

respondents truthfully denying the critical behaviour (honest non-users). The third group 

(γ = 1-π–β) consists of non-compliant cheaters who do not conform to the rules of the RRT 

and answer “no” to the sensitive question irrespective of the outcome of the randomization 

process. As explained above, nothing can be said about the true status of these non-compliant 

respondents. However, the cheating detection model allows for computing both an upper and 

a lower bound for the prevalence of the sensitive attribute by assuming that these non-

 6



compliant respondents either did, or did not engage in the critical behaviour (Musch et al., 

2001). 

As the proportions π, β and γ are constrained to add up to 1, the cheating detection model 

comprises two independent parameters. These cannot be estimated on the basis of the only 

one proportion of “yes”-responses that is provided by traditional RRT procedures and thus, 

the model is not identified. To make the model identifiable, it is necessary to pursue an 

experimental approach. In particular, two independent samples of respondents have to be 

questioned with different probabilities p1 and p2 of being prompted by the randomization 

device to answer in the affirmative to the sensitive question (Clark & Desharnais, 1998). 

Figure 1 depicts only one of these groups, in which probability p1 applies; the second group 

could be represented by an identical figure with the sole exception that probability p1 would 

be replaced with probability p2. Under the assumption that the same proportions π, β, and γ 

apply in both groups when participants are randomly assigned to conditions, the cheating 

detection model allows to observe two independent proportions of “yes”-responses which are 

sufficient to estimate the two independent parameters π and β (with γ=1-π-β). For this 

particular model, Clark and Desharnais (1998) provide closed-form solutions for maximum 

likelihood estimates of the parameters π, β, and γ, as well as a statistical test of the null 

hypothesis that no cheating occurs. However, their cheating detection model can actually be 

regarded as a special case of the more general family of multinomial models (Batchelder & 

Riefer, 1999; Riefer & Batchelder, 1988). Converting the ternary tree model into a 

statistically equivalent binary tree representation allows using established procedures of 

parameter estimation for multinomial models (Batchelder & Riefer, 1999; Hu & Batchelder, 

1994), and also allows to test the applicability of restrictions on the parameters such as the 

assumption that no cheating occurs (γ=0). The latter can be done because the difference of the 

fit of a restricted and an unrestricted model follows the asymptotically χ2 distributed log-

likelihood ratio statistic G2. Importantly, using a multinomial modelling framework, it is also 
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possible to formulate more complex models incorporating additional parameters. These may 

represent, for example, subgroups for which parameters have to be estimated separately (e.g., 

parameter estimates for different sexes or age groups). 

The cheating detection model offers a unique theoretical advantage over both, traditional 

surveys and previous RRT models: If no cheating occurs (that is, if the proportion γ of non-

compliant respondents can be set equal to zero without a significant loss in the goodness of fit 

of the model to the data), the parameter π provides an asymptotically unbiased estimate of the 

population proportion engaged in the sensitive behaviour. Morevoer, if there is a significant 

proportion of non-compliant respondents, it is possible to compute both an upper and a lower 

bound for the prevalence of the sensitive attribute by assuming that non-compliant 

respondents either all did, or did not engage in the critical behaviour. 

 

In order to explore the magnitude of a potential bias in self-reported hygiene habits due to 

socially desirable responding, we performed an RRT study on teeth brushing behaviour 

among Chinese college students. By breaking down the sample by sex to investigate a 

possible influence of this variable, we took advantage of the possibility to include additional 

parameters for different subgroups in our multinomial randomized response model. 

Additionally, we included a direct questioning control condition to obtain an estimate of how 

much response bias can be reduced by using the cheating detection extension of the RRT. 

 

Methods 

Participants 

A total of 2254 undergraduates, 1023 of which were female, from various faculties of the 

Beijing Normal University, Beijing volunteered to participate in this study. Age ranged from 

18 to 24 years. Students completed the questionnaire on an anonymous and voluntary basis 

during regular classes. 

 8



 

Measures and Procedures 

Participants completed a questionnaire comprising demographic information, several 

questions not pertinent to the present study, and the sensitive question concerning their dental 

hygiene habits: “Do you brush your teeth at least twice a day?” In previous applications of the 

RRT, the socially undesirable response to a sensitive question typically was to answer in the 

affirmative (e.g., “Yes, I did use cocaine”). Because in the present investigation, the socially 

undesirable response was to admit brushing one’s teeth less than twice a day by answering 

“no”, we adapted the randomized response procedure to this reverse direction of social 

desirability by making sure that the randomization procedure required some of the 

participants to provide a forced “no”-answer, to protect the answer that would otherwise be 

regarded as stigmatizing. 

 

Participants were randomly assigned to one of three conditions, with the restriction that a 

higher number of participants was assigned to the randomized-response conditions to 

compensate for the loss of efficiency in parameter estimation associated with the use of the 

randomization procedure. In the direct questioning control condition (N=463, 251 female), 

participants were simply asked to answer truthfully to the sensitive question. In the two RRT 

conditions (p1: N=900, 501 female; p2: N=891, 478 female), the sensitive question was asked 

in randomized-response format. In order to keep the randomization procedure simple and 

transparent, we used the participants’ month of birth as a randomization device. The RRT 

instructions presented to the low probability group (p1) read as follows: “If you were born in 

January or February, then please answer ‘no’ to the question independently of its content. If 

you were born in another month, then please answer truthfully”. Instructions for the high 

probability group (p2) were identical with the exception that the months of births were 

reversed; participants in this group were asked to respond truthfully when they were born in 
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January or February, and to answer ‘no’ regardless of the question content if they were born 

in another month. According to birth statistics provided by the National Bureau of Statistics of 

China, the probabilities p1 and p2 of being forced to say “no” in the two RRT conditions thus 

approximated .17 and .83, respectively. Detailed instructions explained that owing to the 

randomization, the procedure guaranteed the confidentiality of responses. 

 

### please insert table 1 about here ### 

 

Results 

 

Maximum likelihood estimates were computed for the multinomial model parameters using 

the EM-algorithm (Hu & Batchelder, 1994) implemented in the freely available software 

program HMMTree (Stahl & Klauer, 2007). When questioned directly, 34.9% of males and 

10.4% of females admitted to brushing their teeth less than twice a day (i.e., answered “no” to 

the sensitive question). Because the fit of the model significantly deteriorated when these two 

proportions were restricted to be equal (ΔG2 (df=1)=41.78, P< .01), we estimated the 

parameters of the model for both sexes separately (see Table 1 for the parameter estimates for 

the whole sample). In general, the figures we obtained in the direct questioning condition 

were consistent with the proportions reported in the prior study of Peng, Petersen, Tai, Yuan 

and Fan (1997). However, when questioned using the randomized-response model, 50.7% of 

males and 20.4% of females admitted to brushing their teeth less than twice a day (Table 1). 

These proportions are significantly higher than those in the direct questioning condition: 

Assuming that the proportion of “no”-responses to the direct question does not differ from the 

estimated proportion of honest “no”-responses in the RRT condition (% “no” = π) 

significantly worsened the fit of the model both for males (ΔG2 (df=1)=11.70, P<.01) and for 

females (ΔG2 (df=1)=9.01, P< .01). Similarly, constraining π to be equal across sexes also 

 10



resulted in a significant loss in model fit (ΔG2 (df=1)=51.67, P<.01), indicating that males and 

females are found to differ with respect to dental hygiene habits when questioned in 

randomized response format. Finally, a noteworthy proportion of noncompliance to 

instructions was observed for both males (γ=10.1%) and females (γ=13.0%). These 

proportions of non-compliant respondents differed significantly from zero in both groups 

(ΔG2 (df=1)=23.12, P<.01 for males, and ΔG2 (df=1)=33.21, P<.01 for females). Restricting 

the γ parameters to be equal across sexes did not significantly worsen model fit (ΔG2 

(df=1)=0.70, ns), indicating that males and females did not differ with respect to their 

tendency to be noncompliant to the RRT rules. Depending on whether non-compliant 

respondents were considered to have or have not been engaged in insufficient teeth brushing, 

we computed a lower-bound and an upper-bound estimate for the proportion of respondents 

admitting to brushing their teeth less than twice a day. The lower-bound estimate for this 

proportion was π = 50.7% for males and π = 20.4% for females; the respective upper-bound 

estimate was π + γ = 60.8% for males and of π + γ = 33.4% for females, respectively. 

According to the model, the proportion of males and females that can unequivocally be 

classified as brushing their teeth at least twice a day was thus estimated at only 39.2% for 

males and 66.6% for females, respectively. 

 

Discussion 

 

It has often been argued that survey data reflect what respondents tell investigators, rather 

than the respondents’ actual behaviour. The present paper used a cheating detection extension 

of the RRT as a means to improve the validity of an epidemiological survey on dental hygiene 

habits among Chinese college students. Only 34.9% of males and 10.4% of females admitted 

to brushing their teeth less than twice a day when questioned directly. When the cheating 

detection extension of the RRT was employed, the respective proportions increased 
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substantially for males, and almost doubled for females. Assuming that all non-compliant 

respondents do in fact not brush their teeth at least twice a day, it was possible to compute an 

upper-bound prevalence of insufficient dental hygiene for males and females of 60.8% and 

33.4%, respectively. Taken together, these figures clearly demonstrate the superiority of the 

cheating detection variant of the RRT over direct questioning formats, which may provide 

strongly distorted prevalence estimates when the behaviour in question is subject to social 

desirability bias, and also over traditional variants of the RRT not capable of detecting 

cheating. The latter underestimate the true population proportion of the carriers of a sensitive 

attribute to the extent that there are non-compliant respondents. In order to yield more valid 

prevalence estimates of sensitive issues, we therefore strongly suggest to routinely consider 

the cheating detection extension of the RRT in future epidemiological surveys on sensitive 

issues. 

Some limitations of the RRT should however be acknowledged. First, due to the 

randomization procedure, randomized-response models introduce random error and therefore 

induce greater sampling variance; this can only be compensated by increasing the sample size. 

Second, RRT surveys are somewhat more time-consuming and slightly more complicated to 

administer. Third, the cheating detection extension of the forced response variant of the RRT 

is only applicable to dichotomous items. Although the cheating detection model can readily 

be applied to any other variant of the RRT, those allowing for the quantitative assessment of 

attributes (e.g. Greenberg et al., 1971; Pollock & Bek, 1976) are characterized by a 

considerably lower efficiency (Lensvelt-Mulders et al., 2005b). Finally, the true dental 

hygiene habits of any single individual necessarily remains unknown, since the RRT can only 

be applied at group level. However, it is exactly this feature of the RRT that enhances the 

confidentiality of responses and encourages participants to answer more honestly. Despite 

these limitations, we argue that the cheating detection extension of the RRT shows 

considerable promise as a means to improve prevalence estimates of sensitive behaviors. 

 12



Given the considerable discrepancy between the results we obtained in the direct questioning 

and the randomized-response condition, we strongly recommend the use of the cheating 

detection variant of the RRT in future epidemiological surveys on sensitive behaviours. 

 

 13



Author note 

 

This work was supported by a grant of the German Research Foundation (DFG, 

Mu 2674/1-1). Correspondence concerning this article should be addressed to Morten 

Moshagen (E-Mail: morten.moshagen@uni-duesseldorf.de) or Jochen Musch (E-Mail: 

jochen.musch@uni-duesseldorf.de), Institute for Experimental Psychology, University of 

Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany. 

 14



References 

 

1. Adams SA, Matthews CE, Ebbelin CB et al. The effect of social desirability and social 

approval on self-reports on physical activity. Am J Epidemiol 2005; 161: 389-98. 

 

2. Antonak RF, Livneh H. Randomized response technique: A review and proposed 

extension to disability attitude research. Genet Soc Gen Psych 1995; 121: 97-145. 

 

3. Bader JD, Shugars DA, Bonito AJ. A systematic review of selected caries prevention 

and management methods. Community Dent Oral Epidemiol 2001; 29: 399-411. 

 

4. Batchelder WH, Riefer DM. Theoretical and empirical review of multinomial process 

tree modeling. Psychon Bull Rev 1999; 6: 57-86. 

 

5. Campbell AA. Randomized response technique. Science 1987; 236: 1049. 

 

6. Clark SJ, Desharnais RA. Honest answers to embarrassing questions: Detecting 

cheating in the randomized response model. Psychol Methods 1998; 3: 160-8. 

 

7. Colón HM, Robles RR, Sahai H. The validity of drug use responses in a household 

survey in Puerto Rico: Comparison of survey responses of cocaine and heroin use with hair 

tests. Int J Epidemiol 2001; 30: 1042-9. 

 

8. Fennema JSA, van Ameijden EJC, Coutinho RA, van den Hoek JAR. Validity of self-

reported sexually transmitted diseases in a cohort of drug-using prostitutes in Amsterdam: 

Trends from 1986-1992. Int J Epidemiol 1995; 24: 1034-41. 

 15



 

9. Fox JA, Tracy PE. Randomized response: A method for sensitive surveys. Beverly 

Hills, CA: Sage, 1986. 

 

10. Greenberg BG, Abul-Ela A-LA, Simmons WR, Horvitz DG. The unrelated question 

randomized response model. Theoretical framework. J Am Stat Assoc 1969; 64: 520-39. 

 

11. Hebert JR, Ma Y, Clemow L et al. Gender differences in social desirability and social 

approval bias in dietary self-report. Am J Epidemiol 1997; 146: 1046-55. 

 

12. Hu X. Multinomial processing tree models: An implementation. Behav Res Methods 

1999; 31: 689-95. 

 

13. Hu X, Batchelder WH. The statistical analysis of general processing tree models with 

the EM algorithm. Psychometrika 1994; 59: 21-47. 

 

14. Johnson T, Fendrich M. Modeling sources of self-report bias in a survey of drug use 

epidemiology. Ann Epidemiol 2005; 15: 381-9. 

 

15. Lamb CW, Stem DE. An empirical validation of the randomized response technique. J 

Marketing Res 1978; 15: 616-21. 

 

16. Lee RM. Doing Research on Sensitive Topics. London: Sage, 1993. 

 

17. Lensvelt-Mulders GJLM, Hox JJ, van der Heijden PGM. How to improve the 

efficiency of randomised response designs. Qual Quant 2005; 39: 253-65. 

 16



 

18. Lensvelt-Mulders GJLM, Hox JJ, van der Heijden PGM, Maas C. Meta-analysis of 

randomized-response research. Thirty-five years of validation. Sociol Method Res 2005; 33:  

319-48. 

 

19. Lim LP, Schwarz E, Lo ECM. Chinese health beliefs and oral health practices amont 

the middle-aged and the elderly in Hong Kong. Community Dent Oral Epidemiol 1994; 22: 

364-8. 

 

20. Lin HC, Wong MCM, Wang ZJ, Lo ECM. Oral health knowledge, attitudes, and 

practices of Chinese Adults. J Dent Res 2001; 80: 1466-70. 

 

21. Little SJ, Hollis JF, Stevens VJ, Mount K, Mullooly JP, Johnson BD. Effective group 

behavioral intervention for older periodontal patients. J Periodont Res 1997; 32: 315-325. 

 

22. Madalla GS. Limited dependent and qualitative variables in econometrics. Cambridge: 

Cambridge University Press, 1983. 

 

23. Musch J, Bröder A, Klauer KC. Improving survey research on the World-Wide Web 

using the randomized response technique. In: Reips U-D, Bosnjak M eds). Dimensions of 

Internet Science. Lengerich:  Pabst,  2001. 

 

24. Peng B, Petersen PE, Tai BJ, Yuan BY, Fan MW. Changes in oral health knowledge 

and behaviour 1987-95 among inhabitants of Wuhan city, PR China. Int Dent J 1997; 47: 

142-7. 

 

 17



25. Petersen PE, Peng B, Tai BJ. Oral health status and oral health behaviour of middle-

aged and elderly people in PR China. Int Dent J 1997; 47: 305-12. 

 

26. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet 2005; 366: 

1809-20. 

 

27. Pollock KH, Bek Y. A comparison of three randomized response models for 

quantitative data. J Am Stat Assoc 1976; 71: 884-6. 

 

28. Riefer DM, Batchelder WH. Multinomial modeling and the measurement of cognitive 

processes. Psychol Rev 1988; 95: 318-39. 

 

29. Scheers NJ, Dayton CM. RRCOV: Computer program for covariate randomized 

response models. Am Stat 1986; 40: 229. 

 

30. Shotland RL, Yankowski LD. The random response method: A valid and ethical 

indicator of the "truth" in reactive situations. Pers Soc Psychol Bull 1982; 8: 174-9. 

 

31. Stahl C, Klauer KC. HMMTree: A computer program for hierarchical multinomial 

processing tree models. Behav Res Methods 2007; 39: 267-273. 

 

32. Subar AF, Kipnis V, Troiano RP et al. Using intake biomarkers to evaluate the extent 

of dietary misreporting in a large sample of adults: The OPEN study. Am J Epidemiol 2003; 

158: 1-13. 

 

 18



33. Tang C, Quinonez RB, Hallett K, Lee JY, Whitt JK. Examining the association 

between parenting stress and the development of early childhood caries. Community Dent  

Oral Epidemiol 2005; 33: 454-60. 

 

34. van der Heijden PGM, van Gils G, Bouts J, Hox JJ. A comparison of randomized 

response, CASI and face-to-face direct questioning: Eliciting sensitive information in the 

context of welfare and unemployment benefit. Sociol Method Res 2000; 28: 505-37. 

 

35. Warner SL. Randomized response: A survey technique for eliminating evasive answer 

bias. J Am Stat Assoc 1965; 60: 63-.9. 

 

36. Zhu L, Petersen PE, Wang H-Y, Bian J-Y, Zhang B-X. Oral health knowledge, 

attitudes and behaviour of children and adolescents in China. Int Dent J 2003; 53: 289-98. 

 

 

 19



Tables 

 

Table 1. Observed and estimated proportions (%) of “yes” and “no”-responses to the question: 

“Do you brush your teeth at least twice a day?”. 

 
  Total Females Males 
DQ yes  

[95% CI] 
78.40 
[74.65-82.15] 

89.64 
[85.87-93.41] 

65.09 
[58.67-71.51] 

 no 
[95% CI] 

21.60 
[17.85-25.35] 

10.36 
[6.59-14.13] 

34.91 
[28.49-41.32] 

RRT Honest yes (β) 
[95% CI] 

54.71 
[48.36-61.06] 

66.63 
[58.14-75.11] 

39.22 
[30.08-48.37] 

 Honest no (π) 
[95% CI] 

33.82 
[29.69-37.94] 

20.42 
[15.20-25.64] 

50.73 
[44.56-56.90] 

 Non-compliant cheaters (γ) 
[95% CI] 

11.47 
[8.02-14.92] 

12.95 
[8.01-17.90] 

10.05 
[5.35-14.74] 

 
Notes. DQ=direct questioning control condition. RRT=randomized-response conditions. All 

proportions are significant at P<.01.  
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Figures 

 

Figure 1: A multinomial representation of the cheating detection extension of the randomized-

response-technique 
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Abstract  

 

The randomized response technique (RRT) encourages more honest responses to sensitive 

questions by requesting information on a probability basis, but underestimates the prevalence 

of the critical behavior to the extent that respondents fail to comply with the instructions. The 

cheating detection modification (CDM) provides a means to estimate the extent of non-

compliance with the RRT instructions by questioning two independent groups with different 

randomization probabilities. The CDM assumes the proportion of cheaters to be equal across 

groups; however, there is reason to assume that the extent of cheating may depend on the 

assigned randomization probabilities. Using computer simulations, we demonstrate that 

violations of this assumption lead to biased parameter estimates. Because the CDM is a 

saturated model always perfectly fitting the data, we propose an enhancement of the cheating 

detection model (ECDM). The ECDM is overidentified and allows detecting violations of 

assumptions and model misfit in general. We recommended to use the ECDM with diverging 

randomization probabilities to enhance statistical power and efficiency. 

 

 

Keywords:  

Randomized response technique, cheating, social desirability, computer simulation, power 
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Making compliance testable:  

How to improve cheating detection in the randomized response technique 

 

Questionnaires and interviews are commonly used in behavior research to study a 

variety of attitudes and behaviors. Unfortunately, the tendency to present oneself in the best 

possible light systematically biases responses on sensitive, incriminating, or illegal issues 

towards respondents’ perceptions of what is socially acceptable. As a consequence of the 

desire to conform to societal norms and to avoid being embarrassed, self-report measures 

consistently underestimate the prevalence of undesirable attitudes and behaviors and 

overestimate the prevalence of desirable attitudes and behaviors. 

Providing confidentiality and anonymity to respondents is probably the most 

promising way to encourage honest and truthful responding. However, this strategy has 

yielded limited success. Respondents may not always completely trust the investigators or 

may fear that their answer becomes known at the very least to the researchers conducting the 

survey. As an attempt to overcome this problem, Warner (1965) developed the randomized 

response technique (RRT), which requests information on a probability basis rather than by 

direct questioning. The confidentiality of responses is increased by ensuring that an 

individual’s status cannot be determined by his or her response. Since individuals are more 

likely to be honest when their true status cannot be identified from their response, it is 

possible to yield more valid prevalence estimates of sensitive or incriminating issues. Several 

variants and extensions of the original RRT have been proposed (for a taxonomy, see 

Antonak & Livneh, 1995), among which the forced response variant (Dawes & Moore, 1980) 

has been shown to be most efficient under a variety of conditions (Lensvelt-Mulders, Hox, & 

van der Heijden, 2005). 

In the forced response variant of the RRT, each respondent is confronted with a 

sensitive question (e.g., “Have you ever used cocaine?”). Before answering, a randomization 
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device (e.g., a die) is used to determine whether participants are asked to respond truthfully or 

whether they are prompted to provide a prespecified response (e.g., “yes”) irrespective of 

their true status. Because the outcome of the randomization process is solely known to the 

participants, the investigator cannot determine whether a “yes”-response resulted from 

truthful answering or from the randomization process. However, the proportion of “yes”-

responses that have not been prompted by the randomization procedure (the lifetime 

prevalence of cocaine use in the present example) can be estimated by straightforward 

probability calculations based on the a-priori known probability distribution of the 

randomization device. Suppose that participants are asked to answer in the affirmative to the 

question on cocaine use if the die shows 1-5 and are asked to respond truthfully if the die 

shows a 6. Assuming a fair die (i.e., the probability of being prompted to answer in the 

affirmative is equal to p = 5/6), the observed proportion of “yes”-responses (λ) equals the sum 

of the proportion of cocaine users (π) and the proportion of non-users (1 - π) which were 

asked to answer in the affirmative with the randomization probability p:  

λ = π + p (1 - π) 

A simple algebraic rearrangement yields an unbiased maximum likelihood estimate of the 

prevalence of the critical behavior given an observed proportion of “yes”-responses and the 

randomization probability: 

π = (λ – p) / (1 – p) 

with the variance of π given by 

var(π) = λ (1 - λ) / N [(1 - p)]2 

 

### insert figure 1 about here ### 

 

As Figure 1 shows, the forced response variant of the RRT can also be represented as 

a special case of the more general family of multinomial processing tree models (Batchelder 
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& Riefer, 1999; Hu & Batchfelder, 1994; Riefer & Batchelder, 1988). The population is 

divided into two groups: those, who have been engaged in the critical behavior (π) and those, 

who have not (β = 1 - π). The former group will answer “yes” to the sensitive question 

irrespective of the outcome of the randomization device, whereas the latter group will only 

answer “yes” if prompted by the randomization device. This multinomial representation is 

advantageous in that established procedures of multinomial modeling may be used to estimate 

parameters and to test the applicability of parameter restrictions, such as a test of the null-

hypothesis that the prevalence of the critical behavior does not differ from zero (π = 0). Using 

the multinomial modeling framework, it is also possible to formulate more complex models 

incorporating additional parameters. For example, one could estimate a multigroup model 

with and without cross-group equality restrictions on the parameters to examine whether the 

prevalence of the critical behavior differs across gender or various age groups. Similarly, one 

may wish to compare prevalence estimates obtained by using traditional direct questioning 

formats with RRT-based prevalence estimates. This may be achieved by setting equality 

constrains on the π parameters and comparing the difference in model fit in relation to the 

unconstrained model as assessed by the asymptotically χ2 distributed log-likelihood ratio 

statistic G2. 

Given that the randomization procedure of the RRT guarantees that a “yes”- response 

is no longer unequivocally indicative of an undesirable attitude or behavior, the RRT allows 

for group-based prevalence estimates without revealing an individual’s status on the 

respective attribute. More honest responses are thereby encouraged and have, in fact, been 

observed. As demonstrated in studies where the true status of each individual on the sensitive 

attribute was known, RRT-based prevalence estimates are less biased than those based on 

conventional data collection techniques. Likewise, comparative surveys on such diverse 

issues as academic dishonesty, illegal drug use, employee theft, shoplifting, and rape have 

repeatedly shown that the RRT yields higher and presumably more valid prevalence estimates 
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than traditional surveys (for reviews, see Chaudhuri & Mukerjee, 1988; Lensvelt-Mulders, 

Hox, van der Heijden, & Maas, 2005).  

Successful applications notwithstanding, the RRT has been criticized as being 

susceptible to respondents who are not answering as directed by the randomization device 

(Campbell, 1987). When employing the RRT, two types of non-compliance with the RRT 

instructions may occur. First, respondents may refuse to answer truthfully when prompted by 

the randomization device (respondent jeopardy). The superiority of the RRT over traditional 

direct questioning formats is owed to the fact that respondents are more likely to admit a 

critical behavior. However, the RRT may be able to reduce this type of non-compliance rather 

than to eliminate it altogether. Second, the randomization procedure of the RRT introduces 

another type of non-compliance, namely the denial to comply with the RRT instruction of 

answering “yes” to a sensitive question regardless of its content (risk of suspicion). Both 

types of non-compliance, respondent jeopardy and risk of suspicion, lead to a “no”-response, 

although the randomization device asks respondents to answer in the affirmative. In fact, there 

is evidence that cheating occurs (Edgell, Duchan, & Himmelfarb, 1992; Locander, Sudman, 

& Bradburn, 1976; Lensvelt-Mulders & Boeije, 2007; Shimizu & Bonham, 1978; Shotland & 

Yankowski, 1982; van der Heijden, van Gils, Bouts, & Hox, 2000). Respondents who are 

prompted by the randomization device to answer truthfully may answer “no” although they 

have performed the critical behavior, because, for example, they may not fully understand the 

rationale of the RRT, do not feel sufficiently protected when the probability of being asked to 

answer truthfully (1 - p) is high, or may not trust the integrity of the randomization process 

(Landsheer, van der Heijden, & van Gils, 1999; Lensvelt-Mulders & Boeije, 2007; Soeken & 

McReady, 1982). Furthermore, respondents may answer “no” in spite of being prompted by 

the randomization device to answer in the affirmative irrespective of the item’s content to 

avoid even the slightest suspicion that they have been engaged in a critical behavior or 

because they may feel uncomfortable when being “forced to be dishonest” (Lensvelt-Mulders 
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& Boeije, 2007, p. 600). Whatever causes non-compliance with the RRT instructions, the 

RRT underestimates the prevalence of the critical behavior to the extent that participants fail 

to comply with the instructions and deny the critical behavior even though they are asked to 

attest to it.  

 

### insert figure 2 about here ### 

 

Addressing this issue, Clark and Desharnais (1998) proposed a modification of the 

forced response model: In what we will refer to as the cheating detection model (CDM), it is 

assumed that some respondents may not comply with the RRT instructions and answer “no” 

irrespective of the outcome of the randomization device. Figure 2 illustrates how the CDM 

can be depicted as a multinomial model dividing the population into three distinct and 

exhaustive groups: The first group (π) represents the proportion of compliant and honest 

“yes”-respondents, that is, respondents who honestly admit the critical behavior (honest 

cocaine users). The second group (β) is the proportion of compliant and honest “no”-

respondents, that is, respondents truthfully denying the critical behavior (honest non-users). 

The third group (γ = 1 – π – β) represents the proportion of non-compliant cheaters who do 

not comply with the instruction of the RRT and answer “no” to the sensitive question 

irrespective of the outcome of the randomization process. It is important to note that nothing 

is assumed about whether non-compliant respondents have actually engaged in the sensitive 

behavior. Conceivably, respondents who are prompted by the randomization device to answer 

truthfully deny a critical behavior in which they have in fact been engaged; but it is also 

possible that respondents who have not been engaged in the critical behavior want to avoid 

even the possibility of anyone thinking that they committed a prohibited or undesirable act 

and answer “no” despite being prompted by the randomization device to answer affirmatively. 

Thus, the true status of a respondent choosing not to follow the instructions remains unknown.  
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As the proportions π, β and γ are constrained to add up to 1, the CDM contains two 

independent parameters that cannot be estimated on the basis of only one proportion of “yes”-

responses provided by traditional RRT procedures. An experimental approach is needed to 

obtain at least two degrees of freedom for the purpose of identification. More specifically, two 

independent samples of respondents have to be questioned with different probabilities p1 and 

p2 of being prompted by the randomization device to say “yes” (Clark & Desharnais, 1998). 

Figure 2 shows only one of these groups, in which probability p1 applies; the second group 

could be represented by an identical figure with the sole exception that probability p1 would 

be replaced with probability p2. Under the assumption that the same proportions apply in both 

groups when participants are randomly assigned to conditions (π1 = π2, β1 = β2, γ1 = γ2), the 

CDM allows to observe two independent proportions of “yes”-responses (λ1 and λ2), which 

are sufficient to estimate the two independent parameters π and β (with γ = 1 – π - β). For this 

particular model, Clark and Desharnais (1998) provide closed-form solutions for unbiased 

maximum likelihood estimates of the parameters π, β, and γ as well as a statistical test of the 

null hypothesis that no cheating occurs. When y is the frequency of “yes”-responses, π and β 

are given by 

π = (p2 y1 / n1) / (p2 – p1) 

β = (y2 / n2 – y1 / n1) / (p2 – p1) 

π = (p2 λ1) / (p2 – p1) 

β = (λ2 – λ1) / (p2 – p1) 

and γ may be easily computed by γ = 1 – π – β. Again, it is also possible (and probably 

preferable) to estimate the CDM using the multinomial modeling framework. Converting the 

tree model depicted in Figure 2 into a statistically equivalent binary tree representation (see 

Appendix for details on the reparameterization) allows estimating the parameters using the 

EM algorithm, testing parameter restrictions, and formulating more complex models 

incorporating additional parameters. Employing the EM algorithm has the additional 
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advantage that the parameter estimates, which are proportions, will always be within the 

range of 0 - 1. 

The cheating detection model offers a unique theoretical advantage over both 

traditional surveys and previous RRT models: If no cheating occurs (γ = 0), the parameter π 

provides an asymptotically unbiased estimate of the population proportion engaged in the 

sensitive behavior. If there is a significant proportion of non-compliant respondents, it is 

possible to compute both an upper and a lower bound for the prevalence of the sensitive 

attribute by assuming that non-compliant respondents either did or did not engage in the 

critical behavior (Musch, Bröder, & Klauer, 2001). The CDM may also be considered as a 

generalization of the forced response variant of the RRT in that the proportion of cheaters is 

explicitly modeled, but may also become zero, in which case the CDM is identical to the 

forced response model extended to two groups.   

However, the CDM is also subject to certain problems. Recall that for the purpose of 

identification it is necessary to question two independent samples using different 

randomization probabilities, while assuming the model parameters π, β, and γ to be equal 

across groups. Whereas π and β are unlikely to differ systematically across groups over and 

above sampling fluctuations when participants are randomly assigned to conditions, the 

assumption of equal proportions of cheaters across conditions (γ1 = γ2) is problematic in that it 

might well be possible that the likelihood to disregard the RRT instructions is a function of 

the randomization probabilities applied (e.g., Scheers, 1992; Soeken & McReady, 1982). 

From a Bayesian perspective, the conditional probability of being identified as a respondent 

who has actually been engaged in the critical behavior given a “yes”-response to the sensitive 

question depends on the proportion of respondents who have been prompted to answer 

affirmatively irrespective of their true status: As the randomization probability declines, the 

likelihood that a “yes”-answer is associated with the critical behavior increases. 

Consequently, respondents may be more likely to disregard the RRT instructions in the 
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condition with a lower randomization probability than in the condition with a higher 

randomization probability. Under these circumstances, the assumption of equal proportions of 

cheaters across groups would be violated, which in turn might lead to biased parameter 

estimates. This would be especially critical if the violation of the assumption of equal 

proportions of cheaters across groups resulted in inflated estimates of the prevalence of the 

critical behavior. Unfortunately, it is unknown how the CDM performs in the presence of 

unequal proportions of cheaters across groups. 

A related problem of the CDM is that the two independent proportions of “yes”-

responses are just sufficient to estimate the parameters, that is, the CDM is saturated and will 

fit perfectly to the data, even when there are serious departures from equal proportions of 

cheaters across groups. Hence, it is not possible to get any clues about violations of 

assumptions and potentially biased parameter estimates, as the G2 fit statistic will be close to 

zero in any case. Given these concerns, we propose an enhancement of the cheating detection 

model (ECDM). The basic idea is to extend the CDM to the application on three different 

samples, each of which questioned with a different randomization probability, while keeping 

the assumption of equal parameters π, β, and γ across groups. By this extension, the ECDM 

provides three independent proportions of “yes”-responses to estimate the two parameters π 

and β (with γ = 1 – π - β). Thus, the ECDM is overidentified and, thereby, provides a means 

for detecting violations of assumptions and model misfit in general. The multinomial 

representation of the ECDM is similar to the one shown in Figure 2 with the sole exception 

that this model is fit to the data in three groups with three different randomization 

probabilities p1, p2, and p3 (where p1 ≠ p2 ≠ p3). Although the assumption inherent in the CDM 

that the proportions of cheaters do not differ across conditions also applies to the ECDM, the 

latter has the advantage that it may be rejected on the basis of a significant G2 statistic with 

one degree of freedom. This feature is especially important, because applied researchers will 
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typically not be aware as to whether any assumption is violated, and therefore might run risk 

to obtain potentially severely biased parameter estimates without knowing.  

The previous discussion highlights three points of critical importance for evaluating 

the usefulness of both the CDM and the ECDM in applied research settings. First, it is vital to 

examine the effect of violations of assumptions -- which are not detectable as far as the CDM 

is concerned -- on the estimate of the prevalence of the critical behavior and the proportion of 

cheaters, respectively. At the presence of unequal proportions of cheaters across groups, it is 

likely that the parameter estimates will be biased. It is not obvious, however, to what degree 

the parameter estimates will be biased, and, even more importantly, whether the prevalence of 

the critical behavior will be underestimated or overestimated. Whereas downward biased 

prevalence estimates, albeit clearly undesirable, would merely result in more conservative 

results, the possibility that prevalence might be overestimated effectively renders both the 

CDM and the ECDM useless. Second, it is important to examine the ability of the ECDM to 

detect violations of assumptions when they are actually present. As the CDM is saturated and 

will perfectly fit the data irrespective of model misspecifications, the advantage of the ECDM 

is that it is overidentified and may thereby be subject to empirical falsification. Yet, the 

statistical power for rejecting the null hypothesis that the ECDM fits the data is unknown. 

Finally, a major drawback of all techniques belonging to the RRT family is their poor 

statistical efficiency compared to direct questioning formats (e.g., Lensvelt-Mulders, Hox, & 

van der Heijden, 2005). The standard errors in randomized response models are a function of 

both sampling variation and variation due to the randomizing device, in turn resulting in 

reduced power for parameter restrictions and higher sample size requirements. In traditional 

single group randomized response models, it is clear that the statistical efficiency depends on 

the randomization probability, because more random noise is introduced into the data as the 

probability of being prompted to answer truthfully declines. Considering the CDM, the power 

estimates to detect the presence of cheating provided by Clark and Desharnais (1998) suggest 
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that power may be enhanced by choosing more diverging randomization probabilities. 

However, this relation does not necessarily hold for the ECDM, whose statistical efficiency 

remains to be determined. In pursuing these issues, the present study contributes both to the 

understanding of the statistical properties of the CDM and the ECDM as well as to the 

provision of recommendations for applied research. 

 

Method 

 

A series of computer simulation studies were performed to (1) investigate the effects 

of violations of the assumption of equal proportions of cheaters across different groups on the 

accuracy of parameter estimates, (2) determine the statistical power to detect violations of 

assumptions using the ECDM, and (3) compare the CDM and the ECDM with respect to 

parameter standard errors and power for parameter restrictions. As elaborated in greater detail 

in the preceding sections, the CDM and the ECDM are special cases of the more general 

family of multinomial processing tree models. The model shown in Figure 2 can easily be 

reparameterized into an equivalent binary tree model for which model parameters can be 

estimated by the EM algorithm for general tree models (see Appendix for details of the 

reparameterization). In the present investigation, the asymptotically χ2 distributed 

loglikelihood ratio PDλ=0 (equivalent to the G2 statistic) power divergence statistic was used 

as discrepancy measure for both parameter estimation and power calculation. 

Violations of assumptions 

Both the CDM and the ECDM assume the cross-group equality of the parameters π, β, 

and γ. Since there is no reason to assume that π and β systematically differ across groups over 

and above sampling fluctuations when participants are randomly assigned to conditions, we 

restricted the simulation studies to the effects of unequal proportions of cheaters (γ) across 

groups. Although, in principle, the proportion of cheaters in group k (γk) can take any value 

 



Randomized response technique 13

between 0 and 1, we require the proportion of cheaters to vary symmetrically around a mean 

population value of γ. In order to quantify the magnitude of the violation of equal γ 

parameters, we define v as the absolute difference between the true proportions of cheaters in 

two groups: 

v = | γk – γj |,   k ≠ j

Hence, when the sample sizes are equal across groups (i.e., nk = nj), the true population value 

of γ is the mean of its realizations in the k groups and the maximum of v equals twice the 

value of γ. The proportion of cheaters for the second group in the ECDM was always set 

equal to the mean population value of γ to mimic the CDM as closely as possible. For 

example, given a mean population value of γ = .2 and a model violation of v = 0.1, the 

proportion of cheaters in group k becomes γ1 = .15, γ2 = .25 in the CDM and γ1 = .15, γ2 = .2, 

γ3 = .25 in the ECDM. 

Randomization probabilities 

The requirement of symmetric deviations of γk around the mean population value of γ 

results from the assumption of a linear relationship between a randomization probability and 

the likelihood to disregard the RRT instructions. Assuming that equal randomization 

probabilities pk lead to a specific proportion of cheaters, the extent to which the proportion of 

cheaters decreases at higher randomization probabilities should be the identical to the 

increment of cheating at lower randomization probabilities. For reasons of coherence and 

simplicity, the present studies used randomization probabilities that vary symmetrically 

around p = .5.  

Data generation 

 Observed frequency counts for the response categories in group k were generated 

based on combinations of the population parameters π (which was always restricted to 

equality across groups), γk, and pk. The resulting category probabilities were multiplied with 
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the number of observations nk to obtain observed frequency counts for the kth group. The 

total sample size N was always equally distributed across groups (i.e., nk = nj). 

Study outcomes 

The absolute bias of the γ parameter (Δγ) and the π parameter (Δπ) was examined to 

investigate the effect of violations of assumption on the parameter estimates. The general 

equation for the absolute bias is: 

Δθ = θ^ - θ 

where θ is the true population value and θ^ is the estimate of the respective parameter. A 

relative percentage bias (RBθ) may be computed by standardizing Δθ: 

RBθ = Δθ / θ 

For the comparison of the efficiency of the two models, we examined the standard 

errors of π and γ. Hu and Batchfelder (1994) provided closed-form solutions for estimating 

the observed Fisher information matrix, which was used to obtain an estimate of the 

parameters’ variance. Furthermore, the statistical power for rejecting the null hypothesis that 

π and γ, respectively, equals zero was examined. Power was calculated by evaluating the 

noncentral χ2 distribution at a significance level of α = .05 with the difference of the G2 fit-

statistics of the restricted model and the unrestricted model as an estimate of the noncentrality 

parameter. The power to detect violations of assumptions (i.e., unequal γ parameters) using 

the ECDM was determined by estimating a model assuming equal γ parameters and utilizing 

the resulting discrepancy measure G2 as an estimate of the noncentrality parameter. It should 

be noted that this computation merely gives the power to detect global model misfit. 

However, the only source of misfit within the present simulation studies constituted unequal γ 

parameters.  

 

Results 
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Effects of unequal cheating proportions on parameter estimates 

 In order to examine the effects of violations of assumptions on the estimates of π and 

γ, a simulation study was conducted based on true γ parameters between .05 and .5, π 

parameters between .05 and 1 - γ, β = 1 – π – γ, and randomization probabilities of p1 = .75, p2 

= .25 and p1 = .75, p2 = .5, p3 = .25 for the CDM and the ECDM, respectively. Since the EM 

algorithm internally operates with relative frequencies, parameter estimates are not affected 

by the sample size used. Therefore, the sample size was arbitrarily fixed at 1,000 

observations. Violations of equal γ parameters across groups were introduced by varying 

levels of v. Table 1 summarizes the absolute and relative bias in γ as a function of π and the 

model violation v. Because the absolute bias in γ (Δγ) is independent of both the number of 

groups and the population value of γ, for the clarity of presentation only the results obtained 

using the CDM (i.e., two groups) at γ = .2 are reported.1 Generally, γ is consistently 

underestimated, with an increasing bias relative to an increase in v and π. Since Δγ does not 

depend on the true value of γ, the relative bias increases with smaller values of γ. For 

instance, when the proportions of cheaters differ to v = 0.1 and π is .4, γ is underestimated by 

0.08, which constitutes a small bias at high proportions of cheaters, but a severe bias at small 

proportions of cheaters. 

Considering the estimates for π, there is again no effect of the number of groups, so 

Table 2 only presents the absolute and relative bias in π obtained by using the CDM. 

Similarly to the results reported for γ, π is consistently underestimated relative to increasing 

model violation v; however, the bias in π is slightly lower than the bias in γ at identical values 

of π, γ, and v. Unlike Δγ, the absolute bias in π depends on both γ and π. At higher values of 

π, the absolute bias increases, whereas the relative bias decreases. Moreover, Δπ increases 

with an increasing proportion of cheaters. The effect of γ is most pronounced when π is high 

and model violation is severe, but diminishes when v is small.  
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Taken together, violations of the assumption of equal proportions of cheaters across 

groups lead to downward biased estimates of π and γ using both the CDM and the ECDM. 

The relative bias increases with smaller values of the corresponding parameter, but decreases 

with higher values of the second parameter, i.e., RBπ is likely to be high when π is small and γ 

is high, and vice versa. However, RBπ primarily depends on the value of π rather than on the 

value of γ. The absolute bias in the parameter estimates is most likely to be high when γ, π, 

and v are high. Although the bias in parameter estimates is substantial even at low to 

moderate differences between γk, the models act conservatively by underestimating both the 

proportion of cheaters and the prevalence of the critical behavior. 

 

### insert tables 1 and 2 about here ### 

 

### insert figure 3 about here ### 

 

Because the bias in π and γ also depends on the randomization probabilities, an 

additional simulation was conducted with γ = .2, π = .2, β = .6, various levels of v, N = 1,000, 

and three different randomization probabilities: (1) p1 = .9, p2 = .1; (2) p1 = .75, p2 = .25; (3) 

p1 = .66, p2 = .33 for the CDM and analogously for the ECDM. Results are similar for the two 

models with respect to both the bias in π and γ, so we restrict ourselves to the effect of the 

randomization probabilities on the bias in π using the CDM. Figure 3 shows that the absolute 

bias in π may be dramatically reduced by choosing more diverging randomization 

probabilities. In fact, at v = 0.1, Δπ is 4 times higher using randomization probabilities of p1 = 

.66, p2 = .33 (Δπ = -0.09) when compared to randomization probabilities of p1 = .9, p2 = .1 

(Δπ = -0.02). Furthermore, there is a notable bend in the curve for randomization probabilities 

of p1 = .66, p2 = .33. At smaller v, the bias in π grows linearly, but when v exceeds 0.2, Δπ 

slowly approaches the maximum of -.2. This behavior is due to a concurrent underestimation 

 



Randomized response technique 17

of γ by nearly 100%, i.e., the maximum likelihood estimate of π given a near zero estimate of 

γ only changes marginally with increasing model violation v. These results strongly suggest 

the use of diverging randomization probabilities to minimize the bias in parameter estimates. 

 

### insert figures 4 – 6 about here ### 

 

Power to detect unequal proportions of cheaters  

 The ECDM has the advantage that the model is overidentified and, thereby, provides a 

test of the null hypothesis that the proportions of cheaters are equal across groups. The power 

to detect violations of assumptions depends on a number of factors, including the degree of 

bias in the parameter estimates introduced by violations of the assumption of equal 

proportions of cheaters across groups. Given that the relative bias at a given level of v is 

likely to be severe when the population value of the respective parameter is small, power to 

detect violations of assumptions tends to be higher at smaller values of π and γ. However, the 

effects of π and γ are rather small compared to the effects of degree of violation, sample size, 

and randomization probability. We therefore restricted the simulations on the latter factors 

with π and γ fixed at proportions likely to be encountered in practice. Thus, in order to 

determine the power to detect model violations, a simulation study was performed using γ = 

.2, π = .2, β = .6, different levels of v, sample sizes ranging from N = 250 to N = 10,000, and 

three different randomization probabilities: (1) p1 = .9, p2 = .5, p3 = .1; (2) p1 = .75, p2 = .5, p3 

= .25; (3) p1 = .66, p2 = .5, p3 = .33. Figures 4-6 present the power curves for various sample 

sizes, with the total sample equally distributed across groups. Generally, the power to detect 

small to moderate violations is low even at large samples sizes. For example, the power to 

detect a cross group difference in γ of v = 0.1 with N = 10,000 and randomization 

probabilities of p1 = .75, p2 = .5, p3 = .25 is merely 14.7% (Figure 5). The power to detect 

model violations, however, also varies with the randomization probabilities applied. When 
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choosing less diverging randomization probabilities (i.e., p1 = .66, p2 = .5, p3 = .33; Figure 4), 

power is only acceptable at extremely large sample sizes when at least one parameter is 

underestimated by nearly 100% (which occurs when v exceeds 0.2). Conversely, power may 

be vastly enhanced by choosing randomization probabilities of p1 = .9, p2 = .5, p3 = .1 (Figure 

6). At identical levels of model violations, power at N = 1,000 using randomization 

probabilities of p1=.9, p2 = .5, p3=.1 is even higher than power at N = 5,000 using 

randomization probabilities of p1=.66, p2 = .5, p3=.33. Taking into account that more 

diverging randomization probabilities also tend to reduce the amount of bias in the parameter 

estimates, the power to detect model violations is higher for more diverging randomization 

probabilities although the parameter estimates are less biased. For example, π is 

underestimated by 25% (RBπ = -0.25) using randomization probabilities of p1 = .66, p2 = .5, 

p3 = .33; p1 = .75, p2 = .5, p3 = .25; and p1 = .9, p2 = .5, p3 = .1 when v = .05, v = .09, and v = 

.18, respectively. Given a relative bias in π of RBπ = -0.25, the power to detect violations of 

assumptions with N = 5,000 is about 5.6%, 8.9%, and 48.3%, respectively. Thus, given a 

specific parameter bias, power to detect model violations is clearly higher at more diverging 

randomization probabilities 

 

### insert table 3 about here ### 

 

Statistical efficiency 

 In order to determine if the rather low power to detect model violations justifies the 

use of the ECDM, the effects of the number of groups on the efficiency of parameter 

estimates and the power for parameter restrictions are explored in the following. To this end, 

simulation studies were conducted based on true γ parameters between .05 and .5, π 

parameters between 0 and 1 - γ, β = 1 – π – γ, sample sizes ranging from N = 250 to N = 

5,000, and randomization probabilities of p1 = .9, p2 = .1; p1 = .75, p2 = .25; and p1 = .66, p2 = 
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.33 for CDM and analogously for the ECDM. The γ parameters were restricted to equality 

across groups, that is, the assumption of equal proportion of cheaters across groups was not 

violated. Since results are similar for both π and γ with respect to parameter standard errors 

and power for parameter restrictions, only the results for π with γ fixed at .2 are reported. 

Table 3 summarizes the standard errors and the power for rejecting the null hypothesis that π 

equals zero as a function of the sample size, randomization probability, π, and the model used. 

Standard errors for π are higher in the ECDM than in the CDM with most pronounced 

differences at small sample sizes. As a consequence, power for rejecting the null hypothesis 

that π equals zero is also higher using the CDM; however, the differences between the power 

of the models rarely exceed 10%. Contrasting the fact that the differences between the CDM 

and the ECDM in the parameter standard errors are negligible when the sample is large, the 

power differences remain essentially unchanged with increasing sample sizes with the CDM 

consistently outperforming the ECDM. Consistent with the effect of the randomization 

probabilities on the power to detect model violations reported above, power for parameter 

restrictions is clearly higher at more diverging randomization probabilities. In fact, the sample 

size needs to be almost 10 times as large to achieve a similar power with randomization 

probabilities of p1 = .66, p2 = .33 compared to the power using randomization probabilities of 

p1 = .9, p2 = .1. 

 

Discussion 

 

The present study evaluated the robustness of the cheating detection modification of 

the randomized response technique and proposed an enhancement that allows obtaining a 

testable model. The results demonstrate that violations of the assumption of equal proportions 

of cheaters across groups result in biased estimates using both the CDM and the ECDM. 

Although the bias in the parameter estimates is substantial even at minor violations of 
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assumptions, the models act conservatively by underestimating the prevalence of the critical 

behavior as well as the proportion of cheaters and, consequently, overestimating the 

proportion of compliant and honest “no”-respondents. Hence, confidence in the prevalence 

estimates obtained by these models may be placed in that they provide lower-bound estimates 

of the critical behavior, which may still be well above prevalence estimates obtained by using 

direct questioning formats and traditional randomized response models not considering 

cheating.  

Still, the possibility that parameter estimates may be potentially severely biased due to 

violations of assumptions may be considered undesirable at best, and every model should 

provide a means to indicate whether it fits the data or not. Given that the CDM is saturated 

and will perfectly fit the data regardless of violations of assumptions, we proposed the 

enhanced cheating detection model. The advantage of the ECDM is that it is overidentified 

and thus may be empirically rejected on the basis of a significant G2 fit statistic with one 

degree of freedom. However, the power of the ECDM in detecting violations of assumptions 

was found to be rather low, unless violations are severe or the sample size is large, and the 

ECDM suffers a slight loss of efficiency. Nevertheless, the alternative in using a saturated 

model means that violations of assumptions and biased estimates will not be detectable at all, 

how large they may be. It seems more appropriate to accept a rather low power and a slight 

loss in efficiency to obtain a testable model that has the capability to indicate at least 

moderate misspecifications. Furthermore, power and efficiency may be greatly enhanced by 

choosing more diverging randomization probabilities. 

The closer the randomization probabilities lie together (e.g., p1 = .66, p2 = .33), the 

larger the parameter standard errors, the stronger the bias in the parameter estimates when 

assumptions are violated, and the lower the power to detect violations of assumptions when 

they are present. Albeit these results suggest preferring randomization probabilities that lie 

further apart, it is obvious that the randomization probabilities cannot be varied indefinitely: 
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As the probability of being prompted to answer affirmatively approaches zero in one group, 

the privacy protection becomes nil and there would be no difference to traditional direct 

questioning formats. As noted by Clark and Desharnais (1998), exactly these conditions are 

likely to provoke the extent of cheating to differ as a function of the randomization 

probabilities, thereby introducing violations of the assumption of equal proportions of 

cheaters across conditions.  

Notwithstanding, we recommend avoiding randomization probabilities that lie close 

together for a number of reasons. First, more diverging randomization probabilities vastly 

enhance statistical efficiency. In order to achieve an identical level of power for detecting that 

π significantly differs from zero, the sample size at p1 = .66, p2 = .33 needs to be almost 10 

times as large as the sample size at p1 = .9, p2 = .1. This is an important aspect since the 

(E)CDM is likely to be frequently used to estimate the prevalence of sensitive behaviors that 

are not very common in the population (e.g., drug use, illegal abortion, and rape). In the 

introductory example on cocaine use, the required sample size to reliably detect that 5% 

honestly admit to have ever used cocaine amounts to N = 10,000 using less diverging 

randomization probabilities, but is merely N = 1,000 using more diverging randomization 

probabilities. Hence, from the perspective of efficiency, more diverging randomization 

probabilities are clearly preferable. 

Second, more diverging randomization probabilities substantially alleviate the effects 

of violations of assumptions on the bias in parameter estimates. As can be seen from Figure 3, 

the absolute bias in π given a specific model violation is almost four times higher at less 

diverging than at more diverging randomization probabilities. Similarly, the parameter bias at 

p1 = .9, p2 = .1 is still less severe even when the difference of the proportion of cheaters across 

conditions at randomization probabilities of p1 = .9, p2 = .1 is three times the difference at 

randomization probabilities of p1 = .66, p2 = .33. The degree to which the extent of cheating 

depends on the randomization probabilities is unknown at present and finally is an empirical 
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question that remains to be investigated in future studies. However, unless randomization 

probabilities of p1 = .9, p2 = .1 triple the difference between the γ parameters across 

conditions as compared to randomization probabilities of p1 = .66, p2 = .33, one fares better 

with more diverging randomization probabilities.  

Finally, more diverging randomization probabilities greatly enhance the ability of the 

ECDM to detect violations of assumptions when they are actually present. Given that more 

diverging randomization probabilities also reduce the bias in the parameter estimates, this is 

an interesting result as it suggests that the power to detect violations does not primarily 

depend on the degree of bias in the parameter estimates. Power to detect violations of 

assumptions is higher for more diverging randomization probabilities, in spite of less biased 

parameters given particular model violations, again suggesting the use of more diverging 

randomization probabilities.  

We have also shown how to represent both the CDM and the ECDM as special cases 

of the more general family of multinomial models. This representation is attractive in that it 

becomes unnecessary to perform by-hand calculations since established programs suitable for 

multinomial modeling, such as Appletree (Rothkegel, 1999), gpt (Hu, 1999), or HMMTree 

(Stahl & Klauer, 2007), may be used to estimate the parameters and to test the applicability of 

restrictions on them. Moreover, the multinomial modeling approach has the advantage to 

allow the formulation of more complex models with additional parameters representing, for 

example, different subgroups for which the parameters have to be estimated separately or 

direct questioning control conditions. As far as the ECDM is concerned, the possibility to 

include additional parameters also provides a means to deal with violations of assumptions 

when the likelihood ratio statistic indicates a significant departure from equality of the γ 

parameters across groups. Apart from relaxing equality constraints on the γ parameters, one 

may also wish to embed parameters that model the process of cheating. For example, 

assuming that the extent of cheating linearly depends on the randomization probabilities (γk = 

 



Randomized response technique 23

a pk + b), it is possible to include the slope and the intercept of the regression equation in 

expanded multinomial models allowing for prevalence estimates while taking the inequality 

of the proportions of cheaters across conditions into account.  

Implications for applied research 

Based on the results of the present investigation, several recommendations can be 

provided for applied research. Generally, we suggest to prefer the ECDM over the CDM, as 

the ECDM is empirically falsifiable and thereby has the capability to indicate whether 

assumptions are violated and parameters may be biased. Unless statistical efficiency is a 

major concern, this advantage outweighs the slight loss in statistical efficiency compared to 

the CDM. To further improve statistical efficiency, we strongly suggest avoiding 

randomization probabilities that lie close to .5. The loss of power associated with less 

diverging randomization probabilities for both parameter restrictions and detecting model 

misfit is remarkable. Moreover, when violations of assumptions are present, more diverging 

randomization probabilities produce less biased parameter estimates. Thus, there is no 

compelling reason for using randomization probabilities that lie close together and we 

recommend choosing randomization probabilities that lie between p1 = .75, p2 = .5; p3 = .25 

and p1 = .9, p2 = .5; p3 = .1. However, it is advisable to choose randomization probabilities 

contingent on the expected prevalence of the critical attitude or behavior and the available 

sample size. With respect to the latter, the question arises which sample may be regarded as 

sufficient. Although both the CDM and the ECDM require fairly large samples, the exact 

answer depends on a number of factors, including the expected prevalence of the critical 

behavior, the randomization probabilities, and the desired power. Figures 3-6 as well as Table 

3 may serve as a reference for deciding on the sample size given these factors. Generally 

speaking, we would expect most investigations employing either the CDM or the ECDM to 

use a sample size equal to or greater than N = 1,000. Given that typical applications of the 
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RRT merely contain one or two sensitive questions, obtaining such sample sizes does not 

seem as a principle limitation for using the (E)CDM. 

Limitations and future research 

Some limitations should be considered when interpreting the results of the present 

study. As with any simulation study, there are lots of conditions to manipulate and choices 

have to be made in order to keep the design manageable. We restricted the simulations studies 

to the effects of violations of the assumption of equal proportions of cheaters across groups 

and did not investigate the effect of violations of the assumption of cross-group equality of π 

and β. Although the latter is not likely to occur when participants are randomly assigned to 

conditions, future research should determine the robustness of both the CDM and the ECDM 

to violations of these assumptions. Likewise, the forced response variant of the RRT (which 

underlies both the CDM and the ECDM) requires a-priory known randomization probabilities 

to estimate the parameters. There may be certain circumstances, where the randomization 

probabilities are unknown and need to be estimated, for example, when the participants’ 

month of birth is used as randomization device. It is unknown how the (E)CDM performs 

when the actual randomization probabilities depart from the expected randomization 

probabilities. The basic idea in proposing the ECDM was to extend the CDM to three groups 

to gain one additional degree of freedom. In principle, it is also possible to use more than 

three groups, each of which questioned with different randomization probabilities. Based on 

the results of the present study, we hypothesize that the statistical efficiency will decline as 

the number of groups increases. However, we did not examine this issue, and future research 

should determine the benefits of this approach. Furthermore, in the present study, the total 

sample was always equally distributed across groups. From a practical perspective, it would 

be interesting to examine whether there is an optimal distribution of the total sample size on 

the experimental conditions with respect to changes in the statistical efficiency. 

Conclusion 
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The cheating detection modification of the RRT provides a means to estimate the 

proportion of participants who fail to comply with the RRT instructions, but suffers from 

substantially biased prevalence estimates when assumptions are violated. Given that the CDM 

is saturated and will perfectly fit the data irrespective of violations of assumptions, we 

recommend employing the enhanced cheating detection model to obtain an empirically 

falsifiable model. We are confident that this model will be a valuable aid to researchers 

examining issues threatened by socially desirable responding.  
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Appendix 

Model estimation 

Both the cheating detection model and the enhanced cheating detection model divide 

the responses to a sensitive question into three distinct and exhaustive groups: Compliant and 

honest “yes”-respondents (π), compliant and honest “no”-respondents (β), and non-compliant 

cheaters (γ). To estimate these parameters, the multinomial representation shown in Figure 2 

needs to be reparameterized in order to satisfy the general form of binary processing tree 

models (Hu & Batchfelder, 1994). The probability for observing a “yes” (y) or “no” (n) 

response in group k is given by the sum of the probabilities of each branch i leading to that 

category: 

∑
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In order to obtain parameter estimates and their associated standard errors, three 

different binary tree models need to be computed, each of which yielding an estimate of π, β, 

and γ respectively. The branch probabilities pi,j,k for an estimate of π are given by: 

p1,y,k = πk

p2,y, k = (1 - πk) (1- ηk) pk

p1,n,k = (1 - πk) (1 - ηk) (1 - pk) 

p2,n,k = (1 - πk) ηk 

where pk is the randomization probability (i.e., the probability of being prompted to answer in 

the affirmative) and ηk reflects the proportion of non-compliant participants among those, 

who did not honestly admit to have been engaged in the critical behavior, such that βk = (1 - 

πk) (1- ηk) and γk = (1 - πk) ηk. The utility of this particular representation is limited, since one 
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merely obtains conditional estimates of β and γ. An alternative formulation is needed to 

obtain a direct estimate of β: 

p1,y,k = βk pk

p2,y, k = (1 - βk) (1- ξk) 

p1,n,k = βk (1 - pk)  

p2,n = (1 - βk) ξk 

where the ξk parameter reflects the proportion of non-compliant participants among those, 

who did not honestly report to have not been engaged in the critical behavior, such that πk = 

(1 - βk) (1- ξk) and γk = (1 - βk) ξk. To obtain a direct estimate of γ and associated standard 

errors, one may formulate the binary tree model as follows: 

p1,y,k = (1 - γk) μk

p2,y, k = (1 - γk) (1- μk) pk

p1,n,k = (1 - γk) (1 - μk) (1 - pk) 

p2,n = γk

where the μk parameter reflects the prevalence of the critical behavior among the compliant 

participants, such that πk = (1 - γk) μk and βk = (1 - γk) (1 - μk).  

In typical applications, the model parameters, except for the randomization probability 

pk, will be restricted to equality across groups for the purpose of identification. It is assumed 

that the probability of being prompted to answer truthfully equals 1 - pk; however, asymmetric 

randomization probabilities may easily be embedded in these formulations by replacing the 

term 1 - pk by the corresponding probability. The multinomial models may be estimated by 

suitable software packages such as Appletree (Rothkegel, 1999), gpt (Hu, 1999), or 

HMMTree (Stahl & Klauer, 2007).  
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Footnotes 

1 Additional material may be obtained from the first author. 
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Tables 

 

Table 1 

Absolute and relative bias of γ^ as a function of π and v at a population value of γ = .2    

  π = .1   π = .2  π = .4  

v  Δγ RBγ  Δγ RBγ Δγ RBγ

0.05  -0.03 -0.17  -0.04 -0.18  -0.04 -0.20 

0.10  -0.07 -0.34  -0.07 -0.36  -0.08 -0.41 

0.15   -0.10 -0.50  -0.11 -0.54  -0.12 -0.61 

0.20  -0.13 -0.67  -0.14 -0.72  -0.16 -0.81 

0.25  -0.160 -0.80  -0.18 -0.90  -0.20 -1.00 

0.30  -0.18 -0.90  -0.20 -1.00  -0.20 -1.00 

Note. Δγ = absolute bias, RBγ = relative bias. CDM; N = 1,000; p1 = .75, p2 = .25. 
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Table 2 

Absolute and relative bias in π as function of γ, π, and v 

   π = 0.1  π = 0.2  π = 0.4  

γ v  Δπ RBπ Δπ RBπ Δπ RBπ

0.10 0.05  -0.02 -0.22  -0.03 -0.13  -0.03 -0.08 

 0.10  -0.04 -0.44  -0.05 -0.26  -0.07 -0.16 

 0.15  -0.07 -0.67  -0.07 -0.36  -0.08 -0.21 

 0.20  -0.07 -0.68  -0.08 -0.37  -0.09 -0.21 
           

0.20 0.05  -0.02 -0.23  -0.03 -0.13  -0.03 -0.09 

 0.10  -0.05 -0.45  -0.05 -0.27  -0.07 -0.17 

 0.15  -0.07 -0.68  -0.08 -0.40  -0.10 -0.26 

 0.20  -0.09 -0.91  -0.11 -0.53  -0.14 -0.34 

 0.25  -0.10 -1.00  -0.13 -0.66  -0.17 -0.42 

 0.30  -0.10 -1.00  -0.15 -0.75  -0.17 -0.44 

           

0.40 0.05  -0.02 -0.24  -0.03 -0.15  -0.04 -0.10 

 0.10  -0.05 -0.48  -0.06 -0.29  -0.08 -0.20 

 0.15  -0.07 -0.72  -0.09 -0.44  -0.12 -0.30 

 0.20  -0.10 -0.96  -0.12 -0.58  -0.16 -0.40 

 0.25  -0.10 -1.00  -0.15 -0.73  -0.20 -0.50 

 0.30  -0.10 -1.00  -0.18 -0.88  -0.24 -0.59 

Note. Δπ = absolute bias, RBπ = relative bias. CDM; N = 1,000; p1 = .75, p2 = .25
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Table 3 
Standard errors of π and power for π = 0 as a function of the RRT model, sample size, randomization probability (p), and prevalence (π) 
 

   CDM  ECDM 

   N = 250 N = 500 N = 1,000 N =2,500 N = 5,000  N = 250 N = 500 N = 1,000 N = 2,500 N = 5,000 

p1 π  SE 1 - β SE 1 - β SE 1 - β SE 1 - β SE 1 - β  SE 1 - β SE 1 - β SE 1 - β SE 1 - β SE 1 - β 

.9 0.025  .031 0.14 .022 0.23 .015 0.41 .010 0.78 .007 0.97  .037 0.11 .026 0.17 .019 0.30 .012 0.62 .008 0.89 

 0.05  .034 0.39 .024 0.66 .017 0.92 .011 1.00 .008 1.00  .040 0.28 .028 0.50 .020 0.79 .013 0.99 .009 1.00 

 0.075  .036 0.68 .025 0.93 .018 1.00 .011 1.00 .008 1.00  .043 0.53 .030 0.82 .021 0.98 .014 1.00 .010 1.00 

 0.1  .038 0.88 .027 0.99 .019 1.00 .012 1.00 .009 1.00  .045 0.75 .032 0.96 .022 1.00 .014 1.00 .010 1.00 

                        
.75 0.025  .060 0.07 .042 0.09 .030 0.14 .019 0.27 .013 0.48  .072 0.06 .051 0.08 .036 0.11 .023 0.20 .016 0.35 

 0.05  .061 0.13 .043 0.22 .031 0.39 .019 0.76 .014 0.96  .073 0.18 .052 0.17 .037 0.29 .023 0.60 .016 0.88 

 0.075  .062 0.24 .044 0.42 .031 0.70 .020 0.98 .014 1.00  .075 0.18 .053 0.31 .037 0.54 .024 0.91 .017 1.00 

 0.1  .064 0.38 .045 0.64 .032 0.91 .020 1.00 .014 1.00  .076 0.28 .054 0.49 .038 0.78 .024 0.99 .017 1.00 

                        
.66 0.025  .092 0.06 .065 0.07 .046 0.08 .029 0.14 .021 0.23  .112 0.06 .079 0.06 .056 0.07 .035 0.11 .025 0.17 

 0.05  .093 0.08 .066 0.12 .047 0.19 .030 0.40 .021 0.68  .113 0.07 .080 0.10 .057 0.14 .036 0.29 .025 0.51 

 0.075  .094 0.13 .067 0.21 .047 0.36 .030 0.72 .021 0.95  .114 0.10 .081 0.16 .057 0.26 .036 0.56 .026 0.84 

 0.1  .095 0.19 .067 0.33 .048 0.57 .030 0.92 .021 1.00  .115 0.14 .082 0.24 .058 0.42 .036 0.80 .026 0.98 

 
Note. CDM = cheating detection model; ECDM= enhanced cheating detection model; p1= randomization probability in the first group; 1 - β = 
power. γ = .2.
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Figure captions 

 

Figure 1: Multinomial representation of the forced response variant of the RRT. 

 

Figure 2: Multinomial representation of the cheating detection modification of the RRT. 

 

Figure 3: Absolute bias in π as a function of v and the randomization probabilities using the 

CDM.  

 

Figure 4: Power for detecting model violations at various sample sizes using the ECDM with 

randomization probabilities of p1 = .66, p2 = .5, p3 = .33. 

 

Figure 5: Power for detecting model violations at various sample sizes using the ECDM with 

randomization probabilities of p1 = .75, p2 = .5, p3 = .25. 

 

Figure 6: Power for detecting model violations at various sample sizes using the ECDM with 

randomization probabilities of p1 = .9, p2 = .5, p3 = .1. 
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Randomized response technique 39

Figure 3 
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Figure 4 
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Figure 5
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Figure 6
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Abstract 

 

The tendency to provide socially desirable responses to sensitive questions is a well known 

problem in attitude measurement. The randomized response technique (RRT) protects the 

privacy of respondents by adding random noise to their responses, such that there is no direct 

link between an individual’s response and his or her true attitude. Although the RRT has 

repeatedly been shown to improve the validity of self-reports of behaviours, there are two 

reasons why the technique has rarely been used in research on attitudes. First, since the RRT 

was originally designed for posing single sensitive questions, it is difficult to survey attitudes 

on multiple issues simultaneously. Second, most RRT models do not take the problem of non-

compliance to the RRT instructions into account. We describe a modification of the RRT that 

is capable of surveying multiple attitudes using a single randomization process, while at the 

same time controlling for non-compliance to the instructions. An empirical application 

demonstrates the superiority of this multiple issues cheating detection (MICD) model over 

both, simple direct questioning and the forced response variant of the RRT which does not 

take cheating into account. We recommend that researchers should routinely consider using 

the MICD variant of the RRT to obtain more valid prevalence estimates for sensitive attitudes. 
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Surveying multiple sensitive attitudes using a cheating detection extension  

of the randomized response technique 

 

Questionnaires and interviews are frequently used in social psychology to measure attitudes 

on sensitive topics. It is well known, however, that survey data do not necessarily reflect the 

respondents’ actual opinion. The tendency to present themselves favourably systematically 

biases their responses to sensitive, incriminating, or illegal issues in the direction of their 

perception of what may be socially acceptable (Lee, 1993). As a consequence, self-report 

measures consistently underestimate the prevalence of socially undesirable attitudes, and 

overestimate the prevalence of socially desirable attitudes (Tourangou & Yan, 2007). Several 

methods have been proposed to reduce answering bias in self-reports of sensitive attitudes, 

including the bogus pipeline procedure (Jones & Sigall, 1971), implicit attitude measurement 

(Greenwald, McGhee, & Schwartz, 1998), and the use of scales measuring individual 

differences in the tendency to provide socially desirable responses (e.g., Paulhus, 1984).  

 

Providing confidentiality and anonymity is a more simple but perhaps the most 

promising way to encourage truthful and honest responding. It has repeatedly been shown that 

providing questionnaires anonymously enhances the validity of responses as compared to 

more public modes of administration, such as face-to-face interviews. However, even in 

presumably anonymous surveys, participants may still fear that their responses may become 

known to the researcher, and may therefore decide to play safe and mask their true attitude by 

providing a response that is socially acceptable. In an attempt to maximize and guarantee the 

anonymity and confidentiality of responses, Warner (1965) therefore proposed the 

randomized response technique which adds random noise to the responses. Confidentiality is 

thus increased, and an individual's true attitude can no longer be determined on the basis of 

his or her response.  
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An example is helpful to illustrate how the RRT works. In the forced response variant 

of the RRT (Dawes & Moore, 1980), which is one of the most efficient RRT procedure 

available (Lensvelt-Mulders, Hox, & van der Heijden, 2005), each participant is confronted 

with the sensitive question. However, a randomization device is used to determine whether 

the participant is asked to respond truthfully, or whether he or she is prompted to provide a 

pre-specified response (e.g., “yes”) irrespective of his or her true attitude. Because the 

outcome of the randomization process is known only to the participant, the investigator 

cannot determine whether a “yes”-response resulted from truthful answering, or from the 

randomization process. The proportion of “yes”-responses that have not been prompted by the 

randomization procedure can however be estimated by straightforward probability 

calculations based on the known probability distribution of the randomization device. For 

example, the participant’s month of birth, unknown to the experimenter, may be used to 

determine whether participants are prompted to respond truthfully to a sensitive question (e.g., 

“Do you feel uneasy in the presence of people with disabilities?”; Ostapczuk & Musch, 2008). 

Depending on their month of birth, some participants are then asked to respond truthfully to 

this question, whereas others are prompted to reply “yes” irrespective of their true attitude. 

Using official birth statistics to determine the probability distribution of the randomization 

variable, it is possible to estimate the proportion of non-forced “yes”-responses (Musch, 

Bröder, & Klauer, 2001). Since the randomization procedure guarantees that a “yes"-response 

can no longer be unequivocally associated with a socially undesirable attribute and is 

therefore no longer stigmatizing, the RRT encourages more honest responding. Validation 

studies have repeatedly shown that this procedure results in more valid estimates of the 

prevalence of sensitive behaviours (for a recent review, see Lensvelt-Mulders, Hox, van der 

Heijden, & Maas, 2005). Given the considerable number of successful applications in surveys 

of sensitive behaviour, it is rather surprising that the RRT has rarely been used in attitude 
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research (Antonak & Livneh, 1995). We argue that there are two likely reasons for this 

surprising lack of applications of the RRT to the measurement of attitudes. 

 

First, it is often desirable to measure attitudes not only towards a single issue, but 

towards several issues simultaneously. The RRT, however, was originally developed for 

posing single questions based on the outcome of a single randomization process. In order to 

maintain the privacy protection offered by the RRT even when asking several questions, 

multiple randomization processes are needed (Tamhane, 1981). The necessity to use several 

randomization devices, or to use the same randomization device repeatedly to gather 

responses to more than one sensitive question, renders the administration of the RRT rather 

tedious and troublesome, however. Second, the RRT has been criticized as being susceptible 

to cheaters, that is, to respondents who do not comply with the instructions and deny replying 

as prompted by the outcome of the randomization device (Campbell, 1987). In the remainder 

of this paper, we will show how multiple sensitive attitudes may be assessed with just a single 

randomization process. The procedure we are proposing also allows us to estimate the 

proportion of non-compliant respondents for each question, and thus enables attitude 

researchers to compute an upper bound for the prevalence of several sensitive attitudes 

simultaneously.  

 

A Cheating Detection Extension of the RRT 

 

A major concern with traditional randomized response models is that some participants may 

choose not to comply with the instructions by denying to reply as directed by the 

randomization device (Campbell, 1987). There is indeed evidence suggesting that such 

cheating occurs (Edgell, Duchan, & Himmelfarb, 1992; Lensvelt-Mulders & Boeije, 2007; 

Soeken & Macready, 1982). The RRT underestimates the prevalence of socially undesirable 
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attitudes to the extent that participants fail to comply with the instructions and reply “no” 

despite being prompted by the randomization device to answer in the affirmative regardless of 

question content.  

 

## insert figure 1 ### 

 

However, advanced RRT models allow for estimating the extent of non-compliance to 

the RRT instructions. In what we will refer to as the cheating-detection model (Clark & 

Desharnais, 1998), it is explicitly assumed that a certain proportion of respondents may fail to 

comply with the instructions. Consequently, the cheating detection model shown in Figure 1 

divides the population into three disjoint and exhaustive groups: The first group (π) represents 

the proportion of compliant and honest “yes”-respondents, that is, respondents who truthfully 

admit having a socially undesirable attitude. The second group (β) is the proportion of 

compliant and honest “no”-respondents, that is, respondents who truthfully deny having a 

socially undesirable attitude. The third group (γ = 1 – π – β) represents the proportion of non-

compliant cheaters who do not conform to the instructions by denying to adopt a socially 

undesirable attitude irrespective of the outcome of the randomization process. It is important 

to note that nothing is, nor can be assumed about the true attitude of the non-compliant 

respondents. Conceivably, some respondents may deny the undesirable attitude although they 

are actually sharing it just to avoid to identify themselves as carriers of a socially undesirable 

attribute; however, it is also possible that respondents not sharing an undesirable attitude are 

deciding to play safe by answering “no” in an attempt to rule out even the slightest suspicion 

that they are holding an objectionable attitude. Thus, the true attitude of a respondent 

choosing not to follow the instructions necessarily remains unknown. As the three proportions 

π, β, and γ add up to 1, the model contains two independent parameters which cannot be 

estimated on the basis of the one proportion of “yes"-responses that is provided by traditional 
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randomized response models. In order to obtain a sufficient data base, two independent 

samples of respondents with different randomization probabilities p1 and p2 have to be drawn 

(Clark & Desharnais, 1998). Figure 1 shows only the condition in which probability p1 

applies; the second condition could be represented by an identical figure with the sole 

exception that p1 would be replaced with p2. Assuming that π, β, and γ are equal across groups 

when participants are randomly assigned to conditions, the two independent proportions of 

“yes"-responses are sufficient to estimate the two independent parameters π and β (with γ = 1 

– π – β). 

 

The cheating detection model offers a unique advantage over both, traditional direct 

questioning formats and previous randomized response models: If no cheating occurs, an 

assumption which can be tested within the model, the parameter π provides an asymptotically 

unbiased estimate of the prevalence of the socially undesired attitude. To the best of our 

knowledge, there is no other technique that is capable of providing such an estimate. The 

model also allows us to estimate the proportion of non-compliant respondents. If this 

proportion differs significantly from zero, it should not be routinely assumed that of all them 

are actually carriers of the unwanted attribute (Clark & Desharnais, 1998); it is, however, 

possible to compute a lower and upper bound for the prevalence of an objectionable attitude 

by alternatively assuming that all non-compliant respondents either do, or do not hold the 

sensitive attitude (Musch et al., 2001).  

 

Using the RRT to Assess Multiple Attitudes 

 

A second reason for the dearth of RRT studies in attitude measurement is the fact that 

multiple randomization processes are required to maintain the privacy protection offered by 

the RRT whenever a researcher wants to assess multiple attitudes within a single study 
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(Tamhane, 1981). The major strength of the RRT is that there is no direct link between a 

participant’s attitude and the response he or she provides. If one were to use the outcome of a 

single randomization process repeatedly for posing multiple questions, a situation would arise 

in which some response patterns can only result from a particular outcome of the 

randomization device. It would then be possible to directly infer from a participant’s response 

pattern whether he or she responded truthfully, or just responded affirmatively because being 

prompted by the randomization device. For example, consider an RRT study comprising three 

different questions using a randomization device with 12 possible outcomes such as the 

participants’ month of birth (e.g, Ostapczuk, Moshagen, Zhao, & Musch, 2008). Participants 

born in January, February, or March might be prompted to respond affirmatively to these 

questions, whereas participants born in another month are asked to respond truthfully to each 

of the three questions (i.e., the randomization probability is p = 3/12). This randomization 

procedure would ask participants born in either January, February, or March to reply “yes” to 

each question. Therefore, if a participant denies at least one of these questions, it would 

become obvious that he or she was prompted to reply truthfully to each of the questions. Each 

“yes”-answer to one of the other questions would therefore expose his or her true attitude 

regarding this question. In such a situation, the RRT effectively offers no more privacy 

protection than a traditional direct questioning format. For this reason, the fixed outcome of a 

randomization process should not be used repeatedly for posing multiple questions in a RRT 

survey. 

 

An obvious solution for this problem is to use a randomization device different from 

the participant’s birth of month (e.g., a die), and to reinitialize the randomization process for 

each single question in the survey (e.g., Himmelfarb & Lickteig, 1982). However, this 

approach is not very attractive because it relies on the troublesome procedure of determining a 

new randomization outcome for each single question, for example by using a spinner over and 
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over again. Instead, we are proposing a method that relies on the use of just a single 

randomization process, but employs a carefully designed answering scheme that relates the 

participant’s answers to the outcome of the randomization device in a different way for each 

question. This answering scheme makes sure that it is impossible to infer a respondent’s true 

attitude from his or her response, even without a need to determine a randomization outcome 

for each question anew. The basic idea of this method is to take care that each possible 

response pattern (the vector of all yes/no-answers to all questions asked) may be the result of 

the randomization procedure entailed in the answering scheme. As an example, consider again 

a study using the participant’s month of birth as a randomization device. Table 1 shows how 

the twelve possible outcomes of the randomization device (that is, January to December) can 

be used to simultaneously pose three questions such that each possible response may be the 

result of the randomization process. As a result, the privacy of the respondents is preserved. 

For example, a respondent may answer in the affirmative to the first two items, but may 

answer “no” to the third item. The response vector (Question 1: “yes”, Question 2: “yes”, 

Question 3: “no”) of this respondent does not reveal anything about his or her true status with 

regard to the three sensitive questions, if the RRT questions follow the scheme shown in 

Table 1. According to this scheme, respondents born in January, February, April or May are 

prompted to provide the prespecified response “yes” to the first question; otherwise, they are 

asked to answer truthfully. With regard to the second question, participants are prompted to 

answer “yes” regardless of the question content if they are born in January, February, March, 

or June; otherwise, they are again asked to answer truthfully. Finally, with regard to the third 

question, participants are prompted to answer “yes” if they are born in January, March, April, 

or July, and to respond truthfully otherwise. Employing this answering scheme, there is no 

response pattern that allows inferring the true status of a respondent with regard to any of the 

questions. This is because each of the seven possible answering patterns to the three questions 

(“Yes/Yes/Yes”; “Yes/Yes/No”; “No/Yes/Yes”; “Yes/No/Yes”; “Yes/No/No”; “No/Yes/No”; 
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and “No/No/Yes”) might be due to the respondent being born in a month that required him or 

her to respond with this particular pattern (that is, in either January, February, March, April, 

May, June, or July, respectively). Thus, the true status of a respondent with regard to the 

critical questions can never be determined on the basis of his or her responses. The only 

answer pattern that is not considered in Table 1 is the case of a respondent who is denying 

every question (“No/No/No”). However, this particular response pattern may be safely 

ignored anyway, as there is no reason for a respondent to feel embarrassed when all of his or 

her responses are in agreement with social norms.  

 

To summarize, the procedure illustrated in Table 1 maintains the privacy protection 

offered by the randomization procedure and simultaneously allows to ask multiple questions 

using only a single randomization procedure. In the case of the present example, this method 

allows to pose three randomized questions using only one random variable, the participant’s 

month of birth. 

 

## Please insert table 1 about here ## 

 

The proposed method can be further enhanced to detect cheaters - that is, respondents 

who disobey the instructions - by sampling two groups for each question. In the first group, a 

randomization probability of p1 (for example, 4/12 if the four months of January, February, 

March and April are used to determine the outcome of the randomization process) has to be 

used, whereas in the second group, a randomization probability of p2 = 1- p1 is used by 

inverting the set of months that determines the outcome of the randomization process. 

Respondents in the first group may then be asked to answer “yes” regardless of the question 

content if they were born in either January, February, March, or April, and to respond 

truthfully otherwise; whereas respondents in the second group may be asked to answer “yes” 
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if they were born in neither January, February, March, nor April, and to respond truthfully 

otherwise. Thus, it is possible to pose three randomized questions using only one random 

variable, while simultaneously determining the proportion of cheaters for each of the three 

questions. 

 

In what follows, we compare the performance of this multiple issues cheating 

detection (MICD) model against the traditional forced-response RRT model not considering 

cheating. Additionally, we include a direct questioning control condition to obtain an estimate 

of the extent to which the above two variants of the RRT are capable of reducing response 

bias. 

 

Methods 

Participants  

One-thousand three-hundred and thirty-nine volunteers (515 female) participated in the study. 

Mean age was 29.58 years (SD=10.44). Participants were randomly assigned to one of three 

groups by a ratio of 2:2:1 to compensate for the loss of efficiency in parameter estimation 

associated with the use of the randomization procedure. The three groups employed the RRT 

with randomization probability p1 (N = 538), the RRT with randomization probability p2 (N = 

515), or a direct questioning procedure (N = 286). The two RRT conditions with different 

randomization probabilities p1 and p2 are needed in order to obtain a sufficient data base to 

estimate the two independent parameters π and β (with γ = 1 – π – β) included in the MICD 

model. 

 

Measures and Procedures

After completing demographic background information, participants received three 

sensitive questions relating to socially desirable attitudes in randomized order: (1) “I am of 
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the opinion that the Federal Republic of Germany should grant asylum to each civil war 

refugee”; (2) “I am of the opinion that except for their sexual preference, homosexuals are no 

different from other people”; (3) “I am willing to pay an additional amount of 100 € to obtain 

electricity from renewable sources”. A pretest with 69 respondents confirmed that it is 

considered socially undesirable to deny these questions. Mean ratings on a nine-point scale 

ranging from (1) “It is socially desired to deny this question” to (9) “It is socially desired to 

answer this question affirmatively” for the three questions were (1) M = 6.70 (SD = 1.13), (2) 

M = 7.55 (SD = 1.21), and (3) M = 5.39 (SD = 1.10), respectively. The social desirability 

ratings for the questions differed significantly from each other: (1) vs. (2): t(68)=3.98, p<.01; 

(1) vs. (3): t(68)=6.76, p<.01; (2) vs. (3): t(68)=10.48, p<.01. 

In the direct questioning control condition, participants were simply asked to answer 

the sensitive questions truthfully. In the two remaining conditions, instructions were given in 

RRT format, using the participants’ month of birth as a randomization device according to the 

answering scheme shown in Table 1. Importantly, in the present study, the randomization 

procedure prompted participants for a “no”-answer, because it was socially desirable to 

respond to the critical attitude questions in the affirmative. Therefore, the anonymity of 

undesirable “no”-answers had to be protected by enforcing other participants to answer “no” 

via the randomization process. The usual rationale of the RRT, which asks participants to 

provide “yes”-answers in response to questions asking for socially undesirable behaviours, 

was thus inverted for the purpose of the present study. Consequently, the instructions given in 

the RRT high-probability condition for the first question read: “If you were born in January, 

February, April, or May, please reply ‘no’ to the following question independently of its 

content. If you were born in another month, please answer truthfully.” The instructions given 

in the RRT low probability condition for the first question were: “If you were born in January, 

February, April, or May, please answer truthfully. If you were born in another month, please 

reply ‘no’ to the following question independently of its content.” According to exact birth 
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statistics provided by the German Federal Agency for Statistics, the probability of being 

prompted to reply “no” to the first question in the high and low probability condition 

approximated p1 = . 34 and p2 = 1 - p1 = .66, respectively. The randomization probabilities for 

the second question approximated p1 = .34 and p2 = 1 - p1 = .66, and for the third question, 

p1 = .35 and p2 = 1 - p1 = .65. Detailed instructions explained how this randomization 

procedure guaranteed the confidentiality of responses, and that privacy protection was 

maintained in spite of the use of only a single randomization device due to the answering 

scheme governing the randomization process. 

 

Statistical Analysis 

Both the MICD and the traditional forced response model not considering cheating can be 

subsumed under the more general multinomial modelling framework (Batchelder & Riefer, 

1999). Reparameterizing the model shown in Figure 1 into a statistically equivalent binary 

tree model (Moshagen et al., 2008) allowed us to utilize the EM-algorithm (Hu & Batchelder, 

1994) implemented in the software program HMMTree (Stahl & Klauer, 2007) to compute 

maximum-likelihood estimates for the parameters π, β, and γ. The traditional forced response 

variant of the RRT is simply a restricted version of the MICD, constrained by the assumption 

that the proportion of cheaters equals zero (γ=0). The unconstrained MICD is saturated with 

zero degrees of freedom, as the two independent proportions of “yes” responses are just 

sufficient to estimate the two independent parameters π and β (with γ = 1 - π - β). In the 

following, we judged the justifiability of parameter restrictions by evaluating how much 

model fit worsened when imposing the respective restriction. The significance of a reduction 

in the fit of the model was assessed using the asymptotically χ2-distributed log-likelihood-

ratio statistic ΔG2 with one degree of freedom.  

 

## please insert Table 2 here ## 
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Results 

 

As shown in Table 2, only 36.01 % (SE = 2.84) of the respondents in the DQ condition 

expressed the socially undesirable opinion that the Federal Republic of Germany should not 

grant asylum to each civil war refugee. When the MICD was employed, 49.19 % (SE = 4.99) 

admitted to share this attitude. Constraining the estimates of the DQ and the RRT conditions 

to be equal resulted in a significant loss of fit of the model [ΔG2(Δdf=1) = 4.95, p < .05], 

indicating a significantly higher prevalence estimate using RRT, as compared to DQ. 

Employing the MICD also revealed that there was a significant proportion of non-compliant 

respondents who disobeyed the instructions by denying to adopt a socially undesirable 

attitude (γ = 18.73 %; SE = 4.86). This proportion of cheating respondents was not negligible 

and significantly higher than zero, ΔG2(Δdf=1)= 15.93, p <.01. It is therefore inappropriate to 

use the traditional forced-response model not considering cheating. However, if the traditional 

forced variant had nevertheless been employed, the proportion of participants sharing the 

sensitive attitude would have been estimated at only 32.23 % (SE = 2.79), which is an even 

slightly – though not significantly – lower estimate than in the DQ condition [ΔG2(Δdf=1)= 

0.93, ns]. Thus, the traditional forced response RRT would have underestimated the 

proportion of respondents adopting a socially undesirable attitude. As explained above, no 

assumption can be made about the true status of the cheating participants. Alternately 

assuming in a worst- and best-case scenario that either none or all of the cheating participants 

actually adopted the sensitive attitude, we computed a lower and upper bound prevalence 

estimate of π = 49.19 % and π + γ = 67.92 %, respectively, for the first question. 

 

A similar pattern of results emerged considering the second question (“I am of the 

opinion that except for their sexual preference homosexuals are no different from other 
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people”). Under DQ conditions, only 12.59 % (SE = 1.96) admitted holding a homophobic 

attitude. The MICD, however, estimated the proportion of homophobes at 30.48 % (SE = 

5.26), which is significantly higher than the DQ-based estimate [ΔG2(Δdf=1) = 10.16, p < 

.01]. Furthermore, significant non-compliance to the instructions occurred with the proportion 

of cheating participants estimated at 19.99% [SE = 5.23; ΔG2(Δdf=1) = 15.39, p < .01]. Thus, 

the lower bound for the proportion of homophobes is π = 30.48%, and the upper bound is π + 

γ = 50.47 %. Given that significant non-compliance to the RRT rules occurred, applying the 

traditional forced response variant not considering cheating may be misleading. Accordingly, 

the traditional forced response variant provides a prevalence estimate of π = 13.31 % (SE = 

2.86), which is not significantly different from the DQ estimate [ΔG2(Δdf=1) = 0.45, ns]. 

 

When questioned directly, 38.11 % (SE = 2.87) of respondents stated that they would 

not pay an additional annual fee to obtain electricity from renewable sources. Employing the 

MICD resulted in an estimate of 44.02 % (SE = 4.79); however, the difference between DQ-

based estimate and RRT-based estimate failed to reach statistical significance [ΔG2(Δdf=1) = 

0.40, ns]. Moreover, there was a marginal proportion of cheating participants (γ = 5.73 %; SE 

= 4.46), which did not differ significantly from zero [ΔG2(Δdf=1) = 1.70, ns]. Consequently, 

employing the traditional forced response model not considering cheating resulted in virtually 

identical prevalence estimates. 

  

Discussion 

Although the superiority of the RRT over more traditional data collection techniques has been 

demonstrated repeatedly, the RRT has been rarely used in attitude research. Possible reasons 

for this lack of applications include the problem of non-compliance to the RRT instructions 

and the practical difficulties arising when multiple attitudes have to be assessed in a single 

session. In the present study, we demonstrated how to assess multiple sensitive attitudes 
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simultaneously using just a single randomization process, while at the same time employing 

Clark and Desharnais’ (1998) cheating detection modification of the RRT to identify the 

proportion of respondents not following the instructions. 

 

The results demonstrate that the multiple issues cheating detection (MICD) model 

allowed for obtaining higher, and thus presumably more valid, prevalence estimates for the 

three sensitive attitudes than both, the forced-response variant of the RRT not considering 

cheating and a traditional direct questioning format. The results also suggest that the forced 

response variant not considering cheating results in misleading prevalence estimates if a 

substantial proportion of the respondents fail to comply to the instructions and deny to 

respond to the sensitive question as directed by the randomization device. It is also interesting 

to note that the discrepancy in the estimates obtained by direct questioning and by employing 

the MICD increased with increasing sensitivity of the attitude under consideration. For the 

least sensitive question on renewable energy, the DQ estimate of 38.11% was quite close to 

the randomized response estimate of 44.02 %. Moreover, virtually no cheating was observed 

for this question (γ = 5.73 %). Regarding the most sensitive question on homophobia, 

however, the MICD estimates the prevalence of socially undesirable negative attitudes 

towards homosexuals at 30.48%, a significantly higher estimate than in the DQ condition 

(12.59%). Furthermore, a substantial amount of non-compliance to instructions was observed 

for this question (γ = 19.99%). Assuming in a worst-case scenario that all of these non-

compliant cheaters are in fact adopting a homophobic attitude, it is possible to compute an 

upper bound estimate of 30.48% + 19.99% = 50.47 % for the prevalence of this most socially 

undesirable attitude. This pattern of results suggests that the RRT is to be recommended only 

for sensitive issues that are severely threatened by socially desirable responding; with regard 

to the question on renewable energy, the small difference between the DQ and RRT estimate 

did not justify the additional cost (in terms of efficiency) that is associated with the use of the 
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RRT. Arguably, there are many socially acceptable reasons (e.g., financial constraints) for 

being unwilling or unable to pay more in order to obtain electricity from renewable sources.  

 

Some limitations should be considered when interpreting the results of the present 

study, however. First, the proposed answering scheme is applicable only for use with up to 

three sensitive questions. This is because in the case of two response categories (“yes” and 

“no”) and three different questions, there are only 23 = 8 possible response patterns, whereas 

in the case of 4 questions, there are 24 = 16 different response patterns, a figure that surpasses 

the number of months per year. Of course, to extend the present method to more than three 

sensitive questions, it is easily possible to use a randomization device different from the 

participant’s month of birth yielding the required number of outcomes (e.g., the participant’s 

day of birth, or another randomization device that provides a sufficiently large number of 

possible outcomes). Second, the RRT provides estimates at group level only, without 

revealing the true attitude of any individual. However, it is exactly this feature that enhances 

the confidentiality of responses and encourages the respondents to answer more honestly to a 

RRT than to a direct question. Finally, owing to the randomization employed, the RRT 

necessarily suffers a loss of efficiency as compared to a direct question. This loss of 

efficiency is only outweighed by a gain in precision if an attitude under question is of a 

sufficiently sensitive nature.  

  

The above limitations notwithstanding, the present results show that the cheating 

detection model shows considerable promise as a means to measure attitudes threatened by 

socially desirable responding. Employing the answering scheme proposed here, it is also 

easily possible to survey more than one attitude in a single study without the need for the 

repeated use of a randomization device. Given the considerable discrepancy between the 

results obtained by direct questioning and by employing the cheating detection model, we 
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recommend that researchers should routinely consider using the cheating detection variant of 

the RRT in future surveys on sensitive attitudes. 
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Tables 

 

Table 1 

Distribution of the outcomes of the participants’ month of birth as a randomization device on 

three different questions 

  Month of birth 

Item  Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

#1  x x  x x        

#2  x x x   x       

#3  x  x x   x      

 

Note. Participants born in a month marked with an ‘x’ are prompted to provide a prespecified 

response (e.g., “yes”) to the particular item, the remaining participants are asked to answer 

truthfully. Each possible response pattern (except for denying every item) thus may be the 

result from either the randomization procedure or from truthful responding. 
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Table 2 

Parameter estimates 

  
Question 1: 

Political Asylum 

Question 2: 

Homosexuals 

Question 3: 

Renewable energy 

DQ % “No” 36.01** 12.59** 38.11** 

RRT Honest “No” (π) 49.19** 30.48** 44.02** 

 Honest “Yes” (β) 32.08** 49.53** 50.25** 

 Cheaters (γ) 18.73** 19.99** 5.73 

 

Note. DQ = direct questioning; RRT = randomized response. Question 1: “I am of the opinion 

that the Federal Republic of Germany should grant asylum to each civil war refugee”; 

Question 2: “I am of the opinion that except for their sexual preference, homosexuals are no 

different from other people”; Question 3: “I am willing to pay an additional amount of 100 € 

to obtain electricity from renewable sources”. 

 ** p < .01 for the test that an estimated proportion is equal to zero. 
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Figure captions 

 

Figure 1: 

A multinomial representation of Clark & Desharnais’ (1998) cheating detection modification 

of the randomized response technique. 
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Abstract  

 

In a randomized response survey (Warner, 1965), the participant’s privacy is protected by 

adding random noise to their responses to prevent any direct link between their answers and 

their true status with regard to a sensitive attribute. Randomized response surveys provide 

distorted estimates, however, if some respondents do not answer truthfully in spite of the 

privacy that is guaranteed by this randomization process. We propose a modification of 

Mangat’s (1994) variant of the randomized technique that allows to estimate the proportion of 

participants who are carriers of the sensitive attribute, but fail to respond truthfully. 

 

 

 

Keywords: Randomized response technique, multinomial model, social desirability, untruthful 

responding 
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A note on untruthful responding in randomized response surveys 

 

The randomized response technique (RRT; Warner, 1965) was developed as a means to 

reduce social desirability bias in surveys of sensitive behaviour. The rationale of the RRT is to 

add random noise to the participant’s answers to ensure that an individual’s true status cannot 

be determined on the basis of his or her response to a critical question. Although the 

randomization process protects the true status of any individual participating in the survey, 

elementary probability calculations allow us to compute estimates of the prevalence of a 

critical attribute at group level. In the original Warner (1965) model, respondents are to 

answer either the sensitive question (e.g., “Have you ever  used cocaine?”) with probability 

p , or the negation of the sensitive question (“Have you never  used cocaine?”) with 

probability p−1 . Thus, the observed proportion of ‘yes’ responses is )1)(1( pp −−+= ππλ . 

It is easy to see that the proportion of respondents carrying the sensitive attribute (π) can be 

estimated by )12/()]1(ˆ[ −−+= ppλπ .  

 Since the seminal work of Warner (1965), several variants of the RRT have been 

proposed, including the unrelated question model (Bourke, 1984; Greenberg, Abul-Ela, 

Simmons, & Horvitz, 1969; Moors, 1971), forced response models (Boruch, 1971; Dawes & 

Moore, 1980), and random binary event models (Kuk, 1990). In an attempt to reduce the 

sampling variance, Mangat (1994) recommended an optimization of a model previously 

proposed by Mangat and Singh (1990). In Mangat’s (1994) procedure, respondents actually 

carrying the sensitive attribute are requested to respond truthfully. Respondents who do not 

carry the sensitive attribute receive the sensitive question in the format proposed by Warner 

(1965) as explained above. Given that an individual “yes” response may then stem from either 

respondents that carry, or from respondents that do not carry the sensitive attribute, and given 

that the researcher cannot tell which of these two possibilities applies, the confidentiality of 

respondents answering in the affirmative is protected. Because only the “yes”-responses are 
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distorted and all “no” responses are true ”no’s”, the estimation of the proportion having the 

sensitive attribute is simplified, in turn resulting in a smaller variance of the estimates.  

Although randomized response models have been repeatedly shown to yield more 

valid prevalence estimates of sensitive attributes (for a recent meta-analysis, see Lensvelt-

Mulders, Hox, van der Heijden, & Maas, 2005), they have been criticized as being susceptible 

to respondents that fail to comply with the instructions by denying to reply as directed by the 

randomization device (Campbell, 1987). In the present paper, we address this concern by 

proposing a modification of Mangat’s (1994) procedure that allows for estimating the 

proportion of participants that fail to respond truthfully. 

 

The Proposed Method 

We conceptually divide the population into three disjoint and exhaustive groups: Respondents 

who are carrying the sensitive attribute and reply truthfully (π), respondents who are carrying 

the sensitive attribute but fail to reply truthfully (γ), and respondents who are not carriers of 

the sensitive attribute and reply truthfully by denying it (β). By symmetry, it can be argued 

that there may also be respondents who are not carriers of the sensitive attribute but for some 

reason, nevertheless attest to it. Given that this is equivalent to associate oneself with a 

socially undesirable or prohibited behaviour without a need and without a reason, it can be 

argued that such a voluntary self-incriminating behaviour should be extremely rare. It is 

therefore assumed in the model that it can safely be ignored. In Mangat’s (1994) procedure, 

respondents belonging to π would reply “yes”, respondents belonging to γ would reply “no”, 

and respondents belonging to β would reply “yes” if they received the negation of the 

sensitive question with probability ( p−1 ), and “no” otherwise. Thus, the proportion of “yes” 

responses in the i-th sample is )1( ii p−+= βπλ . 

In order to estimate the two independent parameters (since 1=++ γβπ ), it is 

necessary to draw two independent non-overlapping random samples, where the probability to 
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answer the sensitive question ( ip ) must differ across samples. Parameter estimates can then 

be obtained by utilizing the general family of multinomial processing tree models (Batchelder 

& Riefer, 1999; Hu & Batchelder, 1994). This modelling approach has several benefits, the 

main one being increased flexibility. For instance, it is easily possible to augment the 

proposed model with additional parameters representing, for example, different subgroups 

(e.g., males and females) for which parameters should be estimated separately. Since the 

definition of general processing tree models only covers the case of binary tree models, three 

different models need to be estimated in order to obtain unconditional estimates of the 

parameters of interest π, β, and γ along with appropriate standard errors. Using a sensitive 

question on cocaine use as an example, the multinomial models of our proposed procedure are 

shown in Figures 1-3, where µ, ν, and ξ are helper parameters with )/( γββµ += , 

)/( γππν += , and )/( βππξ += . Note that ν (often also denoted as T) represents the 

probability of answering truthfully for respondents who are actually carrying the sensitive 

attribute. The models may be estimated by employing the EM-algorithm (Dempster, Laird, & 

Rubin, 1977) adapted for binary tree models (Hu & Batchelder, 1994) as implemented in 

freely available software programs such as Appletree (Rothkegel, 1999), GPT (Hu & Phillips, 

1999), and HMMTree (Stahl & Klauer, 2007). 

 

### insert Figures 1-3 about here ### 

 

Statistical Efficiency 

Table 1 shows the relative efficiency of the proposed method with respect to the Warner 

(1965) model as a function of π and γ, where 21 nnNWarner +=  and 21 nn = . In this table, the 

randomization probability is fixed at 67.1 =p  (with 12 1 pp −= ), corresponding to the mean 

p found in a meta-analysis of 42 randomized response studies (Lensvelt-Mulders et al., 2005). 



 6

Generally, for values of π and γ most likely to be encountered in practice, our method suffers 

a slight loss in efficiency. It is interesting to note that this observation also holds true if 0=γ , 

that is, for completely truthful responding, unless π exceeds .4.  

 

Conclusion 

 

To the best of our knowledge, the present contribution shows for the first time how the 

proportion of participants actually carrying a sensitive attribute but failing to respond 

truthfully can be estimated. This is done by a small modification of Mangat’s (1994) variant 

of the RRT. Because the possibility of noncompliant carriers of a critical attribute is perhaps 

the major obstacle to a more widespread use of the RRT in survey research, we believe that 

our model, which allows to determine the prevalence of such behaviour, will be a valuable aid 

for behavioural and survey research involving questions on sensitive issues threatened by 

socially desirable responding. 
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Figure Captions 

 

Figure 1: A multinomial model for estimating the proportion of respondents who are carrying 

the sensitive attribute and respond truthfully (π). µ is a helper parameter, where 

)/( γββµ += . Two independent samples with different randomization 

probabilities 1p and 2p are needed to make the model identifiable.  

 

Figure 2: A multinomial model for estimating the proportion of respondents who are not 

carrying  the sensitive attribute (β). The helper parameter ν represents the probability of 

truthful answering for respondents who are carrying the sensitive attribute, that is, 

)/( γππν += . Two independent samples with different randomization 

probabilities 1p and 2p are needed to make the model identifiable. 

 

Figure 3: A multinomial model for estimating the proportion of respondents who are carrying 

the sensitive attribute, but fail to respond truthfully (γ). ξ is a helper parameter, where 

)/( βππξ += . Two independent samples with different randomization 

probabilities 1p and 2p are needed to make the model identifiable. 
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Figures 
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Figure 2 
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Figure 3 
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Tables 

 

Table 1. Relative efficiency of the proposed method with respect to the Warner model 

π  γ 

  .00 .05 .1 .2 .3 .4 .5 

.05  0.89 0.90 0.91 0.94 0.99 1.07 1.18 

.1  0.89 0.89 0.90 0.92 0.96 1.02 1.10 

.2  0.90 0.90 0.90 0.90 0.92 0.95 1.00 

.3  0.94 0.92 0.91 0.90 0.90 0.91 0.94 

.4  1.00 0.97 0.95 0.92 0.90 0.90 0.91 

.5  1.09 1.05 1.02 0.96 0.93 0.91 0.90 
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Abstract 

 

Prevalence estimates of sensitive or incriminating issues are well known to be threatened by 

socially desirable responding. The randomized response technique (RRT) was developed as 

an attempt to reduce this bias by guaranteeing anonymity and confidentiality to respondents. 

Although the superiority of the RRT over traditional direct questioning formats has been 

repeatedly demonstrated, it has been rarely used in substantive research. Perhaps the major 

reason for the scarcity of RRT applications is the lack of an easy to use and freely available 

software program. In the present paper, we first review thirteen randomized response models 

and show how to adopt a multinomial representation of these. Second, we present a java-

based software program allowing for the multinomial analysis of these models, including 

support for multiple-group analyses and power analyses.  

 

 

 

 

 

Keywords: Randomized response technique, multinomial processing tree models, power 

analysis, computer program, social desirability 
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Randomized response models: A review and a software program 

 

In behavioural and survey research, it is often desired to estimate the population proportion 

that holds a certain attitude or has engaged in a certain behavior. To this end, researchers 

usually ask participants directly on the issue under consideration and utilize the resulting 

observed proportion of a particular response as an estimate of the prevalence of the respective 

attribute. It is well known, however, that survey responses merely reflect what participants tell 

investigators rather than their true status. As a consequence, prevalence estimates of sensitive, 

incriminating or illegal attributes are systematically biased toward respondents’ perception of 

what is socially acceptable (e.g., Tourangou & Yan, 2007).   

 The randomized response technique (RRT; Warner, 1965) was developed as a means 

to overcome this response bias by providing a higher degree of anonymity and confidentiality 

than traditional direct questioning formats. The rationale of the RRT is to add random noise to 

the responses given by the participants such that the true status of an individual is not 

identifiable from his or her response. Although the randomization process renders it 

impossible to gather information about the status of individuals, elementary probability 

calculations allow us to yield group based prevalence estimates of the attribute in question. 

 Since the seminal work of Warner (1965), a variety of variants of the RRT have been 

proposed and successfully employed to obtain information about attitudes and behaviors as 

diverse as academic cheating (Scheers & Dayton, 1987), alcohol abuse (Volicer, B.J. & 

Volicer, L., 1982), employee theft (Wimbush & Dalton, 1997), doping in fitness sports 

(Simon, Striegel, Aust, Dietz, & Ulrich, 2006), hygiene practices (Moshagen, Ostapczuk, 

Zhao, & Musch, 2008), illegal substance use (Fisher, Kupferman, & Lesser, 1992), 

medication non-adherence (Ostapczuk, Musch, & Moshagen, 2008b), rape (Soeken & 

Damrosch, 1986), smuggle (Nordlund, Holme, & Tamsfoss, 1994), social security fraud 

(Lensvelt-Mulders, van der Heijden, & Laudy, 2006), and xenophobia (Ostapczuk, Musch, & 
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Moshagen, 2008a). A recent meta-analysis (Lensvelt-Mulders, Hox, van der Heijden, & 

Maas, 2005) confirmed that the RRT generally yields more valid prevalence estimates of 

sensitive attributes than traditional data collection techniques. Lensvelt-Mulders, Hox, et al. 

(2005) concluded that “currently available research has not demonstrated the superiority of 

any [italics added] data collection method to RRT” (p.343). 

Given that research repeatedly demonstrated the superiority of randomized response 

models over direct questioning formats, it is desirable that the RRT be routinely used in 

applied research on sensitive issues. However, as noted by Umesh and Peterson (1991), there 

is a mismatch between the theoretical development of the RRT and studies using this 

technique for substantive research questions (see also, Antonak & Livneh, 1995). Perhaps the 

major obstacle to a wider use of randomized response models is the lack of a freely available 

and easy to use software program. Therefore, the present paper presents a software program 

tailored for the needs of a wider audience wishing to use randomized response models in 

applied research settings. In the remainder of this paper, we first review thirteen randomized 

response models and show how to adopt a multinomial representation of these. Second, we 

present a software program called “RRTM” (Randomized Response Tree Modelling) which is 

suitable for the analysis of the randomized response models in single and multiple groups and 

also includes the possibility to perform power analyses. 

 

Randomized Response Models 

This section is devoted to the review of thirteen randomized response models. Extending the 

taxonomy proposed by Antonak and Livneh (1995), we classify randomized response models 

into related question models, unrelated question models, forced response models (also known 

as directed-answer models), random binary event models, and variants of these models that 

are capable of detecting untruthful answering.  
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Related Question Models 

Warner Model 

In the historically first randomized response model propounded by Warner (1965), 

respondents are to answer either the sensitive question (e.g., “Have you ever used cocaine?”) 

with probability p  (where 5.≠p ) or its negation (“Have you never used cocaine?”) with 

probability p−1  (Figure 1). Because it is not known to the interviewer which of these 

questions was answered, a “yes” answer is no longer stigmatizing to the participants, thus 

increasing the truthfulness of responses. Generally, a “yes” answer may indicate that a 

respondent who has used cocaine answered the sensitive question with probability p or that a 

respondent who has not used cocaine answered the negation of the sensitive question with the 

complementary probability p−1 . Hence, the proportion of “yes” responses (λ ) is  

)1)(1( pp −−+= ππλ .    (1) 

A simple algebraic rearrangement yields a maximum likelihood estimator of the proportion of 

respondents actually having used cocaine, that is, the prevalence of the sensitive attribute (π ): 

     
)12(
)1(ˆ

ˆ
−
−+

=
p
pλπ ,     (2) 

with variance  

   2)12(
)1()1()ˆvar(

−
−

+
−

=
pn

pp
n
πππ .    (3) 

The variance estimator includes two terms: the first term is the usual sampling 

variance of proportions; the second term represents the variance added by the randomization 

procedure. Because the second term is always greater than zero, the RRT suffers a 

considerable loss of efficiency compared to a direct question (e.g., Lensvelt-Mulders, Hox, 

van der Heijden, 2005). Accordingly, many efforts of developing variants of the Warner 

model were directed to reduce the variance added by the randomization procedure. 
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### please insert figure 1 about here ### 

 

Mangat’s Two-Step Procedure 

In Mangat’s (1994) variant of the Warner model (Figure 2), each respondent actually having 

the sensitive attribute is asked to answer the sensitive question truthfully. Respondents who 

do not have the sensitive attribute receive the sensitive question with probability p or its 

negation with probability p−1 . Consequently, only the “yes” responses are distorted with  

)1)(1( p−−+= ππλ .     (4) 

The prevalence of the sensitive attribute can be estimated by 

      
p

p+−
=

1ˆ
ˆ λπ .     (5) 

Given that only the “yes” responses are distorted and all “no” responses are true “no’s”, the 

variance of π  is smaller in Mangat’s procedure than in the Warner model:  

  
np

p
n

)1()1()1()ˆvar( −
−+

−
= ππππ .    (6) 

 

### please insert figure 2 about here ### 

 

Unrelated Question Models 

As an attempt to increase the truthfulness of responses, Horvitz, Shah, and Simmons (1967) 

proposed a modification of the Warner model known as unrelated question technique (UQT). 

The rationale of the UQT is that respondents should have more confidence toward the privacy 

protection feature of the RRT when one question pertains to a completely innocuous attribute. 

Although the primary motivation of this approach was to enhance respondents’ cooperation, it 

has the further advantage of reducing the variance of the estimates (Greenberg, Abul-Ela, 

Simmons, & Horvitz, 1969). As shown in Figure 3, respondents either receive the sensitive 
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question with probability p  or an unrelated innocuous question with probability p−1 . Thus, 

the proportion of “yes” responses in the i-th sample equals the sum of respondents who have 

the sensitive attribute and are prompted to answer the sensitive question and respondents who 

have the unrelated attribute and are prompted to answer the innocuous question:  

Biii pp ππλ )01( −+= ,    (7) 

where Bπ  is the prevalence of the unrelated attribute. Depending on whether the prevalence 

of the unrelated attribute is known beforehand, one may distinguish unrelated question models 

with known and unknown prevalence. 

  

### please insert figure 3 about here ### 

 

UQT with Known Prevalence of the Unrelated Attribute 

If the prevalence of the second attribute is known beforehand, only one sample is needed to 

estimate the prevalence of the sensitive attribute: 

 
p

b )ˆ1(ˆ
ˆ λπλπ −−
= .     (8) 

The sampling variance of π  is 

  2
)ˆ1(ˆ)ˆvar(

np
λλπ −

= .     (9) 

In practice, the unrelated question is often constructed from demographic information 

such as “Is the last digit of your telephone number odd?” or “Were you born in April?” 

(Scheers, 1992). When researchers want to ask a series of sensitive questions, however, 

respondents may feel that they are identifiable from their pattern of responses to the unrelated 

question (Tracy & Fox, 1981). Thus, there may be circumstances when it is desirable to use 

an innocuous question with unknown prevalence of the unrelated attribute.  
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UQT with Unknown Prevalence of the Unrelated Attribute 

If the prevalence of the unrelated innocuous attribute is not known beforehand, it is possible 

to estimate Bπ  from the data by drawing two samples. In the classic UQT with unknown 

prevalence of the unrelated attribute (Greenberg, Abul-Ela, Simmons, & Horvitz, 1969), two 

independent random samples (henceforth called conditions) are questioned with different 

probabilities of receiving the sensitive question (conventionally, 121 =+ pp , where 5.≠ip ). 

The prevalence of the sensitive attribute can then be estimated by 

       
)(

)1(ˆ)1(ˆ
ˆ

21

1221

pp
pp

−
−−−

=
λλπ ,    (10) 

where 1̂λ  = proportion of “yes” responses in the first condition, 2λ̂  = proportion of “yes” 

responses in the second condition, 1p  = probability of receiving the sensitive question in the 

first condition, and 2p  = probability of receiving the sensitive question in the second 

condition. The variance of π  is given by  

⎥
⎦

⎤
⎢
⎣

⎡ −−
+

−−
−

=
2

2
122

1

2
211

2
21

)1)(ˆ1(ˆ)1)(ˆ1(ˆ

)(
1)ˆvar(

n
p

n
p

pp
λλλλπ   (11) 

with 1n =number of respondents in the first condition and 2n =number of respondents in the 

second condition. The multinomial model depicted in Figure 3 shows only one condition; 

however, the second condition could be represented by an identical figure with the sole 

exception that 1p would be replaced by 2p . 

 

### please insert figure 4 about here ### 

 

Moors’ Procedure 

Moors (1971) developed an optimization of the UQT with unknown prevalence of the 

unrelated attribute by proposing to fix the probability of answering the sensitive question at 
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zero in the second condition; that is, a second condition sans randomization is used to 

estimate the prevalence of the unrelated attribute (Figure 4). Consequently, the proportion of 

observed “yes” responses in the second condition ( 222 /ˆ nny=λ ) also is the estimate of the 

prevalence of the unrelated attribute. The prevalence of the sensitive attribute can then be 

computed by 

1

121 )1(ˆˆ
ˆ

p
p−−

=
λλπ      (12) 

with a variance of  

      

2

2
1

11221 )ˆ1(ˆ)ˆ1(ˆ)1(
)ˆvar(

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−−
=

np
p λλλλ

π .   (13) 

 

### please insert figure 5 about here ### 

 

Bourke’s Symmetric UQT 

Bourke (1984) called attention to the fact, that unrelated question models offer less protection 

to respondents actually carrying the sensitive attribute than the Warner model. The Warner 

model is symmetric in that both “yes” and “no” responses may be associated with having the 

sensitive attribute. In unrelated question models, however, a “yes” response indicates that a 

respondent has either the sensitive attribute or the unrelated attribute, whereas a “no” response 

conveys the information that a respondent has neither of these attributes. Therefore, a “no” 

response is safer, for it is never associated with the sensitive attribute. Accordingly, 

asymmetric designs are more likely to provoke respondent’s non-cooperation.  

In order to improve the protection offered by unrelated question models, Bourke 

(1984) proposed a symmetric model by combining the Warner model with the UQT with 

known prevalence of the unrelated attribute (Figure 5). Participants randomly get one of three 

cards containing two mutually exclusive questions each (e.g., 1. "I have used cocaine." and 2. 
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"I have never used cocaine") and are prompted to give as response the number of the question 

describing their true status. The first two cards contain the sensitive question and its negation 

(the Warner format) in balanced order, and the third card contains the unrelated question and 

its negation. If ap  is the probability of answering the sensitive question in order A, bp  ( ap≠ ) 

is the probability of answering the sensitive question in order B, and up  ( ba pp −−=1 ) is the 

probability of answering the unrelated question, the observed proportion of “number 1” 

responses ( 1λ ) is given by 

      ubba ppp πππλ +−+= )1(1 .    (14) 

Since the intuitive estimator of 1̂λ  ( 11 / nny= ) may lie outside the admissible region, 1̂λ  is 

truncated to fall in the region of ),max(/),min( 11 bayba ppnnpp >> . The maximum 

likelihood estimator for the prevalence of the sensitive attribute is  

)(

ˆ
ˆ 1

ba

bub

pp
pp

−
−−

=
πλπ      (15) 

with a variance of  

2
11

)(
)ˆ1(ˆ

)ˆvar(
ba ppn −

−
=

λλπ .    (16) 

Using the multinomial modeling framework, it is also possible to extend Bourke’s 

symmetric UQT with known prevalence to situations where the prevalence of the unrelated 

attribute is not known beforehand. The model shown in Figure 5 can be extended to two 

conditions with different randomization probabilities aip , bip , and uip . When π  and Bπ  are 

restricted to equality across conditions, the two independent proportions of observed “number 

1” responses allow for estimating the prevalence of both the sensitive and the unrelated 

attribute. 

 

### please insert figure 6 about here ### 
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Forced Response Models 

Forced response (or directed-answer) models (Dawes & Moore, 1980; Greenberg et al., 1969) 

were developed to eliminate the problem in unrelated question models to either know or 

determine the prevalence of the unrelated attribute. In forced response models, only one 

question is asked, but a certain proportion of participants is prompted to disregard the 

question entirely and to provide a prespecified response. Depending on the outcome of the 

randomization device, respondents are prompted to reply “yes” with probability yp or “no” 

with probability np  independently of the content of the question, or are asked to respond 

truthfully with probability ny pp −−1  (Figure 6). The proportion of “yes” responses equals 

the sum of those respondents who were prompted to reply “yes” irrespectively of the content 

of the question and those respondents who have the sensitive attribute and were prompted to 

answer truthfully: 

yny ppp +−−= )1(πλ .    (17) 

The prevalence of the sensitive attribute can be estimated by 

    
)1(

ˆ
ny

y

pp
p
−−

−
=

λ
π      (18) 

with a variance  

2)1(
)ˆ1(ˆ

)ˆvar(
ny ppn −−

−
=

λλ
π .    (19) 

In the asymmetric forced response variant (Dawes & Moore, 1980), np  is set equal to 

zero. The maximum likelihood estimator and its variance remain identical to the symmetric 

forced response variant (with 0=np ), however, the proportion of “yes” responses becomes 

      yp)1( ππλ −+= ,     (20) 
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since respondents who have the sensitive attribute will always reply “yes”, and respondents 

who do not have the sensitive attribute will only reply “yes” if prompted by the outcome of 

the randomization device. 

 

### please insert figure 7 about here ### 

 

Random Binary Outcome Models 

The basic idea of random binary outcome models is to let participants generate two binary 

outcomes and report either the first or the second outcome instead of a “yes” or a “no” 

answer. In Kuk’s (1990) playing card method (Figure 7), the binary outcomes are generated 

by two card decks containing a different proportion of red cards ( 1p and 2p , where 21 pp ≠ ). 

Respondents receive the sensitive question and are prompted to provide the first and second 

outcome if they have and do not have the sensitive attribute, respectively. The proportion of 

reported red cards is 

21 )1( pp ππλ −+= .     (21) 

The maximum likelihood estimator of the prevalence of the sensitive attribute is 

        
)(

ˆ
ˆ

21

2

pp
p

−
−

=
λπ      (22) 

with variance 

   2
21 )(
)ˆ1(ˆ)ˆvar(

ppn −
−

=
λλπ .    (23) 

 

Detecting Untruthful Answering in Randomized Response Models 

Although is has been repeatedly demonstrated that RRT based prevalence estimates are less 

biased than prevalence estimates based on more conventional data collection techniques, it is 

clear that randomized response models rather reduce than eliminate the tendency to provide 
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socially acceptable responses (Campbell, 1987; Edgell, Duchan, & Himmelfarb, 1992; 

Landsheer, van der Heijden, & van Gils, 1999; Lensvelt-Mulders, Hox, et al., 2005; Soeken & 

McReady, 1982). Accordingly, more recent developments attempt to estimate proportion of 

participants that fail to respond truthfully. 

 

### please insert figure 8 about here ### 

 

Cheating Detection Model  

The cheating detection model (Clark & Desharnais, 1998) extends the asymmetric forced 

response model (Dawes & Moore, 1980) to two conditions with different probabilities of 

being prompted to reply “yes” 1yp  and 2yp . It is assumed that a certain proportion of 

respondents (hereafter called cheaters) fails to comply with instructions and replies “no” 

although being asked by the outcome of the randomization device to answer affirmatively. 

Two types of cheating may occur in the asymmetric forced response model (Antonak & 

Livneh, 1995; Lensvelt-Mulders & Boeije, 2007): First, respondents actually carrying the 

sensitive attribute may reply “no” despite being asked to answer truthfully (with yip−1 ). 

Second, both guilty and innocent respondents may decide to reply “no” although being 

prompted to answer affirmatively (with yip ). Because both guilty and innocent respondents 

may decide to disregard the instructions, no assumption is made about the true status of the 

cheating participants. As shown in Figure 8, the cheating detection model therefore contains 

three parameters representing the proportion of non-compliant cheaters (γ ), the proportion of 

participants that have (π ), and the proportion of participants that do not have (β ) the 

sensitive attribute (where 1=++ βπγ ). Although the true status of the non-compliant 

cheaters cannot be identified, it is still possible to compute upper and lower bound estimates 

of the prevalence of the sensitive attribute by alternately assuming that all non-compliant 
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participants either have ( γπ ˆˆ + ) or do not have ( π̂ ) the sensitive attribute (Moshagen, 

Ostapczuk, et al., 2008). Under the assumption that the parametersπ ,β , andγ  are equal 

across conditions, the observed proportion of “yes” responses in condition i is 

      βπλ yii p+=      (24) 

and the maximum likelihood estimators for the three parameters are  

   
)(

ˆˆ
ˆ

12

2112

yy

yy

pp
pp

−

−
=

λλ
π ,     (25) 

      
)(

ˆˆˆ
12

12

yy pp −
−

=
λλβ ,      (26) 

and 

        βπγ ˆˆ1ˆ −−= .     (27) 

The asymptotic variance of π  and β  are given by 
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and 
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where yin  and nin  represent the observed frequency of “yes” and “no” responses in the i-th 

condition, respectively.  

Since the asymmetric forced response model underlying Clark and Desharnais’ (1998) 

cheating detection model is not optimal with respect to the protection of respondents’ privacy 

(Bourke, 1984), Ostapczuk, Moshagen, Zhao, and Musch (2008) proposed a symmetric 

variant of the cheating detection model, in which participants are prompted either to provide 

the prespecified answers “yes” with probability yip or “no” with probability nip , or to 

respond honestly with probability niyi pp −−1 . The parameters of the symmetric cheating 
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detection model can be estimated by using the multinomial modelling framework as described 

in greater detail below. 

 

### please insert figure 9 about here ### 

 

Chang and Huang’s Two-Step Procedure 

In Chang and Huang’s (2001) procedure (Figure 9), each participant receives a sensitive 

question in a direct questioning format at the first step. If a participant denies the direct 

question, the sensitive question is asked again in the Warner format at the second step. Using 

two conditions with different randomization probabilities, it is possible to estimate the 

probability that participants who have the sensitive attribute reply truthfully when questioned 

directly (denoted as T). The proportion of “yes” responses in condition i thus equals the sum 

of participants that have the sensitive attribute and reply truthfully, participants that have the 

sensitive attribute and reply “yes” when asked the sensitive question in the Warner format, 

and participants that do not have the sensitive attribute and reply “yes” to the negation of the 

sensitive question when asked in the Warner format: 

   )1)(1()1( iii ppTT −−+−+= πππλ .   (30) 

The maximum likelihood estimator of the prevalence of the sensitive attribute and its variance 

are identical to the unrelated question model with unknown prevalence (Equations 10 and 11). 

An estimator of T is given by 
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It is important to note that the parameter T differs substantially from the proportion of 

cheating participants (γ ) in the cheating detection models (Clark & Desharnais, 1998; 

Ostapczuk, Moshagen, et al., 2008): Chang and Huang’s (2001) two-step procedure assumes 

that participants may not respond truthfully when asked directly, but are completely honest 

when asked in the Warner format. The cheating detection models, however, do not assume 

that participants are completely honest when being asked in a randomized response format, 

but still may decide to cheat. Consequently, theγ  parameter directly translates to an estimate 

of the proportion of non-compliant participants and is of substantive interest (e.g., for 

constructing upper-bound prevalence estimates; Moshagen, Ostapczuk, et al., 2008), whereas 

the parameter T is an estimate of the probability of truthful responding given a direct question 

and may primarily be used as a measure of sensitivity for deciding whether to employ a 

randomized response survey. 

 

Multinomial Processing Tree Models 

It is possible to subsume the randomized response models reviewed above under the more 

general family of multinomial processing tree models (Batchelder & Riefer, 1999; Hu & 

Batchelder, 1994). This representation has several advantages: First, it is easily possible to 

place constraints on certain parameters, for example, to test whether an RRT-based 

prevalence estimate of a sensitive attribute differs significantly from the estimate obtained in a 

conventional direct questioning condition. Second, the models can be extended to the 

simultaneous analysis of multiple groups with and without cross-group equality constraints on 

the parameters. Third, more complex models involving additional parameters may be 

formulated, permitting the estimation of models for which there are currently no closed-form 

solutions available, such as the extension of Bourke’s symmetric UQT to situations when the 

prevalence of the second attribute is unknown and the symmetric variant of Clark and 
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Desharnais’ (1998) cheating detection model (Ostapczuk, Moshagen, et al., 2008). Finally, it 

is easily possible to perform power analyses for each of these models in order to determine 

the required sample size to reliably reject a certain null hypothesis if it is in fact false. 

 

Definition of Multinomial Processing Tree Models 

Multinomial processing tree models attempt to estimate latent parameters from observed 

category frequency counts. A multinomial processing tree model comprises a set of branches 

that lead to observable response categories. Each branch consists of a series of conditional 

link probabilities of one stage to another. The probability of a branch i leading to category j 

equals the product of the corresponding link probabilities 

       ∏
=

−=Θ
S

s
cp ijsijs b

s
a

sijij
1

)1()( θθ ,    (33) 

where ),...,( 1 sθθ=Θ  is a vector of the parameters representing the conditional link 

probabilities, ijsa  and ijsb  are nonnegative integer structure coefficients, and c is a 

nonnegative real representing the product of constants on the links. A particular response may 

be reached by more than one branch, thus, the probability of observing a response in category 

j equals the sum of the branch probabilities leading to that category  

   ∑
=

Θ=Θ
Ij

i
ijj pp

1
)()( .     (34) 

 To illustrate the definition of multinomial tree models consider as an example the 

asymmetric forced response model, which can be derived from the symmetric forced response 

model shown in Figure 6 by setting np equal to zero. The reduced model consists of four 

branches leading to two response categories (“yes” and “no”) and comprises two independent 

parameters (π  and yp ). Participants who have the sensitive attribute (π ) are either prompted 

to reply “yes” with probability yp  or to answer truthfully with probability yt pp −= 1 . In 

either way, these participants will reply “yes”. Participants who do not have the sensitive 
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attribute ( π−1 ) are also prompted to reply “yes” with probability yp  or to answer truthfully 

with probability yt pp −= 1 . These participants will reply “yes” if asked by the outcome of 

the randomization device to answer affirmatively, but will answer “no” if asked to answer 

truthfully. Thus, the probabilities of the three branches leading to a “yes” response are  

          yy pp π=1 ,     (35) 

     )1(2 yy pp −=π ,     (36) 

      yy pp )1(3 π−=      (37) 

and the probability of the branch leading to a “no” response is  

    )1)(1(1 yn pp −−= π .    (38) 

The joint probability of observing a “yes” and “no” response, respectively, is simply the sum 

of the probabilities of corresponding branches: 
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Note that yesp  is equivalent to the expected proportion of observed “yes” responses (λ ) of 

the asymmetric forced response model (Equation 20). 

 As the definition of multinomial processing tree models given above only covers the 

case of binary tree models, a slight complication arises for randomized response models that 

require more than two branches at a given stage of the model. For example, in the symmetric 

forced response model (Figure 6), respondents are prompted to reply “yes”, “no”, or 

truthfully, resulting in three branches. However, it is easily possible to reparametrize this 

model into a statistically equivalent binary tree model: Because the randomization 

probabilities are constrained to add up to one ( 1=++ tny ppp ) and two of three branches 
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lead to the same response category, the probabilities yp  and tp can be replaced by np−1 in 

the branch for the cocaine-users and the probabilities np  and tp can be replaced by yp−1  in 

the branches for the non-users. A similar reparametrization can be applied to Bourke’s (1984) 

variant of the UQT and to the cheating detection models (Clark & Desharnais, 1998; 

Ostapczuk, Moshagen, et al., 2008). The latter models, however, additionally require 

estimating a particular model for each of the three parametersπ ,β , andγ  in order to obtain 

appropriate parameter standard errors (see Moshagen, Musch, et al., 2008, for details). 

 

Parameter Estimation 

Parameter estimation proceeds by employing the expectation-maximization (EM) algorithm 

(Dempster, Laird, & Rubin, 1977) adapted for binary tree models (Hu, 1999; Hu & 

Batchelder, 1994). The algorithm attempts to obtain a set of parameters ),...,( 1 sθθ=Θ that 

minimize the distance between observed and expected frequencies. Multinomial processing 

tree models utilize distance measures that can be characterized as a power divergence family 

(Read & Cressie, 1988). λPD defines an asymptotically 2χ distributed family of distance 

measures depending on the value of λ  
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where ),...,( 1 jnnR = is a vector of observed frequencies and )](,...,)([)( 1 ΘΘ=Θ jNPNPP  is a 

vector of expected frequencies given parameter Θ . The Pearson 2χ distance measure is a 

special case with 1=λ . For 0=λ , λPD reduces to the likelihood ratio statistic 2G .  

The EM algorithm is an iteration of trials consisting of an expectation (E) and a 

maximization (M) step. In the E-step of the EM algorithm, expected frequencies ijm for each 
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branch are generated given the parameter vectorΘ from the previous trial (respectively, the 

initial start values) 
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The M-step calculates revised parameter estimates )(),...,( 1 Θ==Φ Msφφ  given the expected 

frequencies of the E-step: 
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The final parameter estimates after each iteration depend on the value of the step-width 

parameterε  

)]([ )1()1()1()( −−− Θ−Θ−Θ=Θ nnnn M λε  .   (44) 

Variances (and hence standard errors) for the parameter estimates may be obtained by 

computing the inverse of the observed Fisher information matrix which is an estimate of the 

variance-covariance matrix of the estimators (see Hu & Batchelder, 1994, for details). As the 

maximum likelihood estimates of the parameters are asymptotically normally distributed, 

confidence intervals can be computed according to ss SEz θαθ ± , where αz  is the tail of the 

standard normal distribution corresponding to the desired α  level. 

 

RRTM: A Software Program to Multinomially Analyze Randomized Response Models  

 RRTM is a Java-based software program for the multinomial analysis of the randomized 

response models reviewed in the preceding sections. Given a particular model, design 

parameters, and a set of frequencies, RRTM computes maximum likelihood estimates of the 

parameters (using 0=λPD = 2G as distance measure) along with standard errors, 95%-

confidence intervals, and significance levels. Owing to the multinomial modeling approach, a 
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model can be easily extended to estimate the parameters simultaneously for multiple groups. 

Note that a distinction is made between the number of conditions that are necessary to make a 

particular model identifiable and the number of groups for which the parameters should be 

estimated separately. For example, employing Clark and Desharnais’ (1998) cheating 

detection model requires two conditions with different randomization probabilities for the 

purpose of identification. In contrast, groups always comprise as many conditions as 

necessary to obtain an identified model. Groups may represent different subgroups such as 

gender groups, but may also represent different randomized response questions such as 

hierarchically ordered questions on a quantity of a sensitive attribute (e.g., “Were you ever 

involved in a theft from your employer of cash worth from 5$-10$/10$-50$/50$ and more?”). 

The number of conditions is determined from the selected model, whereas the number of 

groups should be chosen according to the particular research question. If more than one group 

was specified, RRTM provides parameter estimates both with and without cross-group 

equality restrictions on the parameters along with 2GΔ statistics indicating the applicability of 

these constraints. 

 RRTM is not limited to the estimation of the parameters of a model given observed 

frequencies, but is also capable of performing a-priori and post hoc power analyses. Statistical 

power of a test is defined as the complement of theβ -error probability of falsely retaining an 

incorrect null-hypothesis (Cohen, 1988; Faul, Erdfelder, Lang, & Buchner, 2007). Generally, 

the power of a test is a function of theα -error probability (the significance level), the sample 

size, and the degree of deviation between null (H0) and alternative hypothesis (H1). In the 

context of multinomial models, the latter can be defined as the difference between the 

parameters of a more restricted H0 model and a less restricted H1 model (Erdfelder, 2000). For 

instance, one may be interested in the required sample size to reliably detect that a certain 

proportion carrying a sensitive attribute (e.g., π =.05) differs significantly from zero. The H1 

model would place no constraints on the parameter representing the proportion carrying a 
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sensitive attribute (π ). In the H0 model, however, π  would be restricted to be equal to zero. 

Power can then be calculated by evaluating the non-central 2χ  distribution at a given α  with 

the difference of the 2G  fit-statistics of the more restricted H0 model and the less restricted H1 

model as an estimate of the non-centrality parameter. Two types of power-analysis are 

implemented in RRTM: First, in a-priori power analyses (Cohen, 1988), the required sample 

size to reject a H0 if it is in fact false is computed given a significance level α  and the desired 

power. Second, in post-hoc power analyses (Cohen, 1988), the achieved power to reject a H0 

if it is in fact false is computed given a significance level α  and a prespecified sample size. 

 

Program Handling 

The following sections describe how to use RRTM to estimate the parameters of a model and 

how to perform power analyses. Finally, an overview of the save and export features of 

RRTM are given. 

 

Estimating the Parameters of a Randomized Response Model 

Using RRTM to estimate the parameters of a particular model involves three steps: (1) select 

and specify a model, (2) enter data, and (3) perform analysis to view the results. Right after 

starting RRTM, a dialog appears prompting to select a model, to specify the number of 

groups, and to indicate whether the design includes a direct questioning control condition. 

After selecting and specifying a model, the observed frequencies and the randomization 

probabilities need to be entered. Parameter estimation may then be started by selecting “Run 

Analysis” from the menu, pressing ALT+R, or clicking the green arrow in the toolbar. The 

output is organized as follows: After repeating a summary of the input, the actual output starts 

with the goodness of fit statistic ( 2G ) of the estimated model.1 Next, the output shows the 

parameter estimates for π  andβ  (and eventually additional parameter estimates depending 
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on the selected model) along with associated standard errors, 95% confidence intervals, and 

2GΔ statistics for the test that a parameter does not differ significantly from zero ( 0=sθ ). If a 

direct questioning control condition was specified, the resulting prevalence estimate with 

standard error and 95% confidence interval is presented below; including the 2GΔ statistic for 

the test that the randomized response prevalence estimate does not differ from the direct 

questioning prevalence estimate ( DQRRT θθ = ). Finally, if the design comprises multiple 

groups, cross-group equality constrained parameter estimates with standard errors and 95% 

confidence intervals as well as the 2GΔ statistics for the test that the parameters do not differ 

significantly across groups are given. 

 

Performing Power Analyses 

If it is desired to perform a power analysis, it is necessary to select and specify a particular 

model and mark the checkbox labeled “Power analysis” in the model selection window. 

Performing a power analysis involves four steps: (1) select the type of power analysis, (2) 

specify the population model, (3) specify the H0 model, and (4) start the analysis to view the 

results. The first step is to select the type of power analysis (a-priori versus post-hoc) and, 

optionally, to enter theα  level and the desired power. The population model needs to be 

specified in the second step. This involves setting population values for the parameters, the 

randomization probabilities and, if a post-hoc power analysis is to be performed, specifying 

sample sizes. The population model is used to generate observed frequency counts given the 

parameter specifications. It is not necessary to explicitly specify a H1 model, since RRTM 

estimates an unrestricted H1 model as a baseline model. The third step is to specify a H0 

model reflecting the particular parameter constraint of interest. The parameters of a model 

may be freely estimated, constrained to a constant value or restricted to be equal to another 

parameter. To replace a parameter with a constant, the drop-down box next to the parameter 
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of interest is switched from “free” to “constant” and the associated text-field is changed to 

hold the desired constant value. In order to set a parameter A to be equal to another parameter 

B, the name of the parameter B is selected from drop-down box next to parameter A. It is also 

possible to combine several constraints, for example, restricting two parameters to equality 

and assign a constant value to one of these parameters. After these steps are completed, the 

power analysis may finally be started in the same way as stated above. 

To illustrate how a power analysis would actually be performed, suppose a researcher 

using the UQT with known prevalence of the unrelated attribute is interested in the required 

sample size to detect a difference of 10% between the π  parameters of two groups ( 1π  and 

2π ) with a power of .8 at an α  error probability of .05.  The prevalence of the unrelated 

attribute is known to be 20%, and the probability of receiving the sensitive question is p=.8 

for both groups. After choosing UQT with known prevalence, selecting two groups, and 

marking the checkbox labeled “Power analysis” in the model selection window, the first step 

is to change the type of power analysis to “Compute required sample size given power”. The 

population model is specified in the second step. Suppose that the prevalence of the sensitive 

attribute is hypothesized to be 10% for the first group ( 1.1 =π ) and 20% for the second group 

( 2.2 =π ). The randomization probabilities and the prevalence of the unrelated attribute are 

equal for both groups, thus we enter 8.21 == critcrit pp  and 2.21 == unrelatedunrelated ππ . Since we 

are interested in computing the required sample size, the fields labeled sample size may 

remain empty. The third step is to specify the H0 model. In the present example, the H0 model 

contains two parameters 1π and 2π  which are freely estimated by default. In order to test 

whether these parameters can be restricted to equality given the implied frequencies of the 

population model, the parameters are constrained to be equal by selecting “= Pi Group 2” 

from the drop-down menu next to 1π . Finally, the power analysis can be started. The results 
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show that we would need 327 participants in each group to detect a difference between 1π and 

2π  of 10% with a power of .8 whenα  is .05. 

 

Save and Export 

RRTM offers several save and export features: The current state of the program (specified 

model, entered data, and displayed output) can be saved in a binary file format with file 

extension “.rrt”. Furthermore, there is an option to save the output as a regular ASCII 

formatted text file. It is also possible to export equation (“.eqn”) and data files (“.mdt”) 

suitable to be used as input files for general purpose multinomial processing tree programs 

such as AppleTree (Rothkegel, 1999), gpt (Hu & Phillips, 1999), and HMMTree (Stahl & 

Klauer, 2007). 

 

System Requirements and Program Availability 

RRTM is a Java-based program running under Linux, MacOS, and Windows operation 

systems provided that at least version 1.5.0 of the Java runtime environment is installed on the 

target machine. The Java runtime environment may be freely downloaded from 

http://java.sun.com. RRTM itself requires about 5 MB free disk space. Processing speed 

varies considerably with the model estimated; however, current machines estimate even very 

large models including multiple groups and conditions within seconds. 

Linux, MacOS, and Windows versions of RRTM can be downloaded from 

http://www.psycho.uni-duesseldorf.de/abteilungen/ddp/RRTM free of charge for academic 

and personal use. Users who wish to distribute RRTM in another way need to ask the first 

author for permission. The charge for commercial applications is US $300. Although 

considerable effort has been put into program development and evaluation, there is no 

warranty whatsoever.  
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Footnotes 

1 Although each of the models reviewed is just-identified and, consequently, is likely to show 

a perfect fit to the data, the 2G  statistic may become greater than zero if the assumptions of a 

particular model are seriously violated. For example, the forced response model may yield a 

2G  statistic greater than zero if the observed proportion of “yes” responses is smaller than 

would be expected solely on the basis of prompted “yes” responses (i.e., if yp<λ ). 
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Figure captions 

Figure 1:  

A multinomial representation of the Warner model. 

Figure 2:  

A multinomial representation of Mangat’s two-step procedure. 

Figure 3:  

A multinomial representation of the unrelated questions technique. If the prevalence of the 

unrelated attribute ( Bπ ) is known beforehand, one condition is sufficient to estimate the 

parameters. If the prevalence of the unrelated attribute is unknown, two conditions are needed 

with different probabilities ( 1p and 2p ) and π and Bπ  constrained to equality across 

conditions. 

Figure 4:  

A multinomial representation of Moors’ variant of the unrelated questions technique.  

Figure 5:  

A multinomial representation of Bourke’s variant of the unrelated questions technique. One 

condition is sufficient to estimate the prevalence of the sensitive attribute (π ) if the 

prevalence of the unrelated attribute ( Bπ ) is known beforehand. If the prevalence of the 

unrelated attribute is unknown, two conditions with different randomization probabilities 

( 1ap , 2ap ; 1bp , 2bp ; 1up , 2up ) are needed with π and Bπ  constrained to equality across 

conditions. 

Figure 6:  

A multinomial representation of the symmetric forced response variant. In asymmetric forced 

response models, np is equal to zero.  

Figure 7:  

A multinomial representation of Kuk’s playing card method.  
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Figure 8:  

A multinomial representation of the symmetric cheating detection model. Two conditions 

with different randomization probabilities ( 1yp , 2yp ; 1np , 2np ; 1tp , 2tp ) are needed to make 

the model identifiable, where the parametersπ , β , andγ  are constrained to be equal across 

conditions. In the asymmetric cheating detection model, nip is equal to zero.  

Figure 9:  

A multinomial representation of Chang and Huang’s two-step procedure. For the purpose of 

identification, two conditions with different probabilities of receiving the sensitive question 

( 1p and 2p ) are needed, whereπ and T are constrained to equality across conditions. 
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