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Abstract

In the last decades, the amount of published results on clinical diagnostic tests has

expanded very rapidly. The counterpart to this accelerated technological development

has been the formal evaluation and synthesis of diagnostic results. However, published

results can be regarded as so far removed from the classical domain of meta-analysis,

that they can provide a rather severe test of classical methods. This work concerns the

applications of computer intensive statistical methods in meta-analysis of diagnostic

test data. These methods are considered from both the classical and Bayesian perspec-

tive.

From the classical point of view, bootstrap methods are used to build confidence

intervals for complex statistics in meta-analysis. These methods are evaluated exten-

sively by a simulation experiment.

Under the Bayesian perspective, a novel statistical model is presented. This model

is general enough to include the presence of studies with different designs, unusual ac-

curate results, large amounts of sparsity data, missing reporting data and heterogeneity

between studies’ population. These multiple sources of variability are modeled with

a Bayesian graphical approach. In this approach a complex model is broken up into

manageable sub-models. The full model is built up as a network by exploring the lo-

cal dependency structure of each model component. A schematic description of this

process is presented by Directed Acyclic Graph (DAG), which gives a non-algebraic

structure and links computations to Markov chain Monte Carlo (MCMC) techniques.

Statistical computations are implemented in open source and public domain statis-

tical software (BUGS and R) and illustrated with a complex systematic review which

evaluates the diagnostic performance of computer tomography scans in diagnostic of

appendicitis.
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Zusammenfassung

In den letzten Jahrzehnten ist dieMenge der publizierten Ergebnisse klinisch - diagnos-

tischer Tests stark angestiegen. Das Pendant zu dieser beschleunigten technologischen

Entwicklung war die formale Evaluierung und Synthese diagnostischer Ergebnisse.

Publizierte Ergebnisse jedoch können manchmal so stark von der klassischen Domäne

der Metaanalyse abweichen, dass die klassischen Methoden ernsthaft auf die Probe

gestellt werden.

Das Thema dieser Arbeit ist die Anwendung computer-intensiver statistischer Me-

thoden in der Metaanalyse diagnostischer Test-Daten. Diese Methoden werden sowohl

aus der klassischen wie auch aus der Bayesschen Perspektive her betrachtet. In der

klassischen Perspektive werden Bootstrap Methoden verwendet, um Konfidenzinter-

valle für komplexe Statistiken in der Metaanalyse zu konstruieren. Diese Methoden

werden in einem Simulations-Experiment intensiv evaluiert.

In der Bayesschen Perspektive wird ein neuartiges statistisches Modell vorgestellt.

Dieses Modell ist allgemein genug, um die Präsenz von Studien mit unterschiedlichen

Designs, ungewöhnlich genauen Ergebnissen, großen Mengen dünnbesetzter Daten,

fehlenden Daten sowie heterogenen Studienpopulationen zu umfassen. Diese Quellen

von Variabilität werden anhand eines Bayesschen graphischen Ansatzes modelliert. In

diesem Ansatz wird ein komplexes Modell in handhabbarere Unter-Modelle aufge-

brochen. Das vollständige Modell wird dann als Netzwerk zusammengesetzt, indem

die lokale Abhängigkeits-Struktur einer jeden Modell-Komponente exploriert wird.

Eine schematische Beschreibung dieses Prozesses wird anhand Gerichteter Azyklis-

cher Graphen dargestellt, wodurch eine nicht-algebraische Struktur erzeugt wird und

die Berechnung mit Markov-Ketten Monte-Carlo Methoden (MCMC) verknüpft wird.

Die statistischen Berechnungen sind in Open Source und Public Domain Statis-

tik Software implementiert (BUGS und R) und werden anhand eines komplexen sys-

tematischen Reviews illustriert, der die diagnostische Leistungsfhigkeit von Computer

Tomographie bei der Diagnose der Appendizitis evaluiert.
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Introduction

”One of the most important and difficult problems in science is

the synthesis of evidence...” -

-David M. Eddy, Vic Hasselblad and Ross Shachter,

Meta-Analysis by the Confidence Profile Method, 1991, pag.1.

The first crucial information in the presence of illness is a medical diagnosis. How

good or bad a diagnosis is performed may directly influence the quality of the health

care. Accurate evaluation of diagnostic tests contributes to the prevention of unjustified

treatment, as well as unnecessary health costs.

In the last decades, the amount of published results on clinical diagnostic tests has

expanded very rapidly (Knottnerus et al.(2002)[70]). Naturally, the counterpart to this

accelerated development has been the formal evaluation and synthesis of diagnostic

results. In this regard, methods for searching and assessing the quality of studies have

been established (Whiting et al. [132] 2003), and statistical methods for meta-analysis

have been proposed (Gatsonis and Paliwal (2006) [43]).

However, published results can be regarded as so far removed from the classical

methodological domain of meta-analysis, that they can provide a rather severe test of

classical methods. During the last few years, the statistical study of meta-analysis

of diagnostic test has provided a series of interesting problems for applied statistics.

Those challenges are the topic of this work.
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Special features of meta-analysis of diagnostic data

Meta-analysis of diagnostic test data differs from other type meta-analysis, in at least

in two aspects. First is the high complexity of the published data. The context where

diagnostic studies have been performed can be very different in terms of study de-

sign, population characteristics, study quality or diagnostic setup. These sources of

heterogeneity have been investigated by Lijmer et al. (1999)[81], Lijmer et al. (2002)

[80] and Westwood et al. (2005) [131]. Moreover, the way that this information is

published may differ from paper to paper and in some cases relevant information may

be incomplete. Therefore, meta-analysis of diagnostic tests implied the synthesis of

imperfect and probably incomplete evidence.

Second, meta-analysis of diagnostic tests involves a small sample of heterogeneous

non-normal multivariate data, which is complex to analyze.

Aims of this work

We aim to develop a flexible class of statistical models and techniques to deal with

meta-analysis of diagnostic test. Although we use basic mathematics to describe the

statistics methods, our aim is not to develop theorems and proofs of theorems, but

rather to provide the statistician with statistical tools to make inference from published

data.

The starting point is the use of bootstrap methods. We analyze the application of

these computational intensive techniques in building confidence intervals for complex

summary statistics in meta-analysis. These methods are evaluated extensively by a

simulation experiment.

Second, we present a Bayesian statistical framework to model the apparent dis-

parate diagnostic test data. We construct a hierarchical Bayesian model, that realisti-

cally reflects the underlying complexities of these types of data. We follow a Bayesian

graphical modeling approach where a complex model is broken up into small manage-

able sub-models. The full model is build up as a network by exploring the local de-

pendency structure of each model component. A schematic description of this process

is presented by Directed Acyclic Graph (DAG), which gives a non-algebraic structure

and links computations to Markov chain Monte Carlo (MCMC) techniques.

The access of high quality, open source and free statistical software has fundamen-

tally changed the way that we develop and communicate our statistical ideas. Another
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important aim of this work is to develop the software tools to apply the methods pre-

sented in this work. With this aim, two statistical computer languages are used: R

[93], the open source implementation of the statistical S language and BUGS (Baye-

sian Analysis Using Gibbs Sampling), a free available statistical software to implement

complex Bayesian modeling (Spiegelhalter et al. (2004)[110]).

Style and typographical conventions

More emphasis is placed on methods and applications than theoretical development,

with statistical model building and data analysis playing a central role. Mathematical

presentation is kept as elementary as possible and many of the arguments are quite

informal. However, some statistical modeling in Chapter 3, Chapter 5 and Chapter 6

may be difficult to understand without substantial experience in applied statistics.

R and BUGS scripts have been developed by ourselves and details are given in

Chapter 7. We follow some typographical conventions: R’s and BUGS command lines

are printed in a monospace typewriter font like this. We use the symbol > for the

prompt of the R’s console. In order to save space some of the R output has been edited,

when some output lines are omitted we indicate that by ...

Most of the R output was generated with the option setting

options(width = 65, digits = 3)

Not all R’s functions follow this setting, so sometimes we had to reduce manually

the printed numerical precision. Calculations are performed on a PC with a CPU of

3.06GHz and 457.136KB RAM running under the Windows 2000 operative system

and they have been tested on Windows XP, VISTA and Linux operating systems re-

spectively.

Overview of the chapters

Chapter 1 presents our running example and a review of the statistical methods. More

details of the data are described in Chapter 2, which include the process used to se-

lect the studies, the medical databases used, searching scripts, study characteristics,

missing information, etc.

Chapter 3 deals with bootstrap methods and their applications in meta-analysis of

test data. This chapter starts with a general introduction of bootstrap methods and

3



how these techniques can be used in meta-analysis. We illustrate the construction of

different types of confidence intervals for the area under the summary ROC curve and

we evaluate their performance.

A general introduction of Bayesian statistics is presented in Chapter 4. This chapter

gives a less technical and more philosophical discussion about Bayesian methods.

The starting point of the model building is presented in Chapter 5. This approach

was originally introduced by Verde (2005) [120] and further extended by Verde (2006)

[121]. It constitutes a full Bayesian framework to perform meta-analysis of diagnostic

test. This chapter includes details in MCMC computations, Bayesian model selection

and predictive model checking. We also compare this model with other similar statis-

tical models based on approximate numerical methods (e.g. quadrature for integrals

and numerical optimization) implemented in commercial statistical software (SAS and

Stata).

Important extensions of the basic Bayesian model are presented in Chapter 6.

Using a structural dispersion model we deal with cross-synthesis and quantify the rela-

tive credibility of studies with different designs. A new concept, called study relevance,

is presented to assess studies with unusual diagnostic results. Finally, we present a bi-

variate meta-regression approach to account for systematic variation. These models

were presented by Verde (2007a, 2007b, 2008) [122, 123, 124].

Chapter 7 deals with details of the R and BUGS computations. Finally, a general

overview of this work is given and further research in this area is discussed.
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Chapter 1

A Review of Meta-analysis of

Diagnostic Test

”Essentially, all models are wrong, but some are useful -

-George E.P. Box and Normal R. Draper (1987) Empirical Model-Building

and Response Surfaces, p. 424,.

1.1 Introduction

In this Chapter we introduce some basic concepts of diagnostic test data and how these

data are usually combined in a meta-analysis. We start by describing our running ex-

ample. We briefly explain how a diagnostic test is designed for a single study and

how these concepts influence statistical methods to perform meta-analysis of diagnos-

tic tests. Current statistical methods are reviewed and their limitations are highlighted.

These limitations motivate the statistical methods that will be described in the next

chapters.

1.2 Running Example

Table 1.1 summarizes results of 52 published papers investigating the use of Computer

Tomography (CT) scans in the diagnosis of appendicitis (Ohmann et al., 2006) [90].

This disease is one of the most common acute surgical events (Addiss et al., 1990) [1],

where traditional clinical examination delivers low diagnostic performance (Kraemer

et al., 2000)[71]. Therefore, a new diagnostic technology could reduce the risk of

postoperative complications and save health care resources (Flum et al., 2000)[40].

5
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Study-design-id tp fp fn tn Study-design-id tp fp fn tn

Applegate2001 (R)1 87 4 2 3 Morris2002(R)27 38 8 1 82

Balthazar1998 (R)2 111 1 4 30 Mullins2001(R)28 64 1 2 128

Bendeck2002 (R)3 184 7 8 9 Peck2000(R)29 103 1 8 252

Brandt2003 (R)4 168 3 1 7 Pickut2001(P)30 88 3 5 24

Cakirer2002 (P)5 89 3 5 33 Raman2003(R)31 137 8 5 402

Cho1999 (R)6 21 1 0 14 Raman2002(R)32 137 8 5 402

Choi1998 (R)7 125 3 0 12 Rao1999(P)33 32 2 0 66

Cole2001 (P)8 40 4 5 43 Rao1999(P)34 114 3 1 211

DIppolito1998 (P)9 40 0 4 8 Rao1997(P)35 52 1 1 46

Ege2002 (R)10 104 3 4 185 Rao1996(P)36 17 0 0 18

Fefferman2001 (R)11 34 4 1 54 Rao1997(P)37 56 2 0 41

Funaki1998 (P)12 29 4 1 66 Schuler1998(R)38 49 4 1 43

Garcia Pena1999 (P)13 28 5 1 74 Sivit2000(R)39 58 6 3 87

Hershko2002 (P)14 67 7 5 118 Stacher1999(P)40 21 0 1 34

Hong2003 (P)15 30 3 3 42 Stroman1999(R)41 33 11 3 60

Horton2000 (P)16 36 1 1 11 Styrud2000(R)42 44 3 6 61

Kaiser2002 (P)17 131 12 4 170 Torbati2003(P)43 43 5 4 166

Kamel2000 (R)18 23 0 1 76 Tsai2001(P)44 4 0 0 22

Kan2001 (P)19 4 2 0 25 Ujiki2002(R)45 28 8 3 64

Karakas2000 (R) 20 31 2 6 76 Walker2000(P)46 30 0 2 25

Lane1999 (P)21 110 4 5 181 Weltman2000(P)47 47 1 1 51

Lane1997 (P)22 37 2 4 66 Weyant2000(P)48 183 26 9 24

Lowe2001 (P)23 18 1 1 55 Wijetunga2001(P)49 28 2 2 68

Lowe2001 (R)24 35 0 1 36 Wilson2001(P)50 33 3 2 33

Maluccio2001 (P)25 28 6 7 63 Wong2002(P)51 35 1 2 12

McDonough2002 (R)26 9 2 2 16 Yetkin2002(R)52 42 3 3 17

Table 1.1: Cross classified tables for 52 studies reporting diagnostic results of Com-

puter Tomography scans used to diagnose appendicitis.

In Table 1.1 diagnostic results for the ith Study (i = 1, . . . , 52) are denoted by

(tpi, fpi, fni, tni), those quantities are the usual information that each study reports

and they are summarized in a 2 × 2 table as follows:

Patient status

With disease Without disease

Test + tpi fpi

outcome - fni tni

Sum: ni,1 ni,2

where tpi and fni are the number of patients with positive and negative diagnostic re-

sults in the group with disease and fpi and tni are the number of patients with positive
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and negative test results in the group without disease respectively. The total number

of patients with disease is ni,1 = tpi + fni and the total number of patients without

disease is ni,2 = fpi + tni. In Table 1.1 (R) and (P) indicate that the study has a

retrospective or prospective design respectively.

Common summary statistics describing test accuracy can be estimated for each

study, the most commonly used are the empirical true positive rate or sensitivity and

the empirical true negative rate or specificity,

T̂PRi =
tpi

ni,1

, T̂NRi =
tni

ni,2

, (1.1)

and their complementary empirical rates, the false positive rate (F̂PR) and the false

negative rate (F̂NR),

F̂PRi =
fpi

ni,2

, F̂NRi =
fni

ni,1

. (1.2)

Another common measure of diagnostic performance is the diagnostic odds ratio,

which is usually estimated as

D̂ORi =
(tpi + 0.5) × (tni + 0.5)

(fni + 0.5) × (fpi + 0.5)
. (1.3)

This odds ratio is a measure of the discriminatory power of the test, i.e. how the

test correctly classified the presence of disease between disease and non-disease pop-

ulations1. In practice, for high technology discriminatory procedures we may expect

values of DOR in the order of hundreds! As usual in statistics, the notation with hat

indicates that a theoretical quantity has been estimated from the available data.

One of the main research interests of this systematic review was to give overall

measurements of diagnostic accuracy of CT technology. Another one was to explore

study characteristics or published information that may influence diagnostic results. In

principle any of the above quantities can be pooled to give an overall diagnostic ac-

curacy. However, sensitivity and specificity are usually interdependent and a marginal

combination by averaging or pooling these quantities might be misleading [65]. In the

next section we clarify this issue.

1.3 Diagnostic data generation process

In this section we briefly explain how a diagnostic test is usually designed in practice.

The intention is to understand how TPR and FPR are tied to the particular threshold

1We add the 0.5 value to each frequency to avoid numerical indetermination.
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value that defines test outcomes. This underlying relationship between TPR and FPR

drives most of the meta-analytic methods for diagnostic test data.

Let yj be a test measurement (or test score) of patient j and λ the positivity thre-

shold value. For example in our running example, yj may be the length of the appendix

in millimeters calculated in a CT image and λ the length value such as disease is de-

clared, for example 6 mm. In this way the test outcome variable, zi, is such that

zi =

{
1, (test positive), yi ≥ λ

0, (test negative), otherwise.

Now, suppose that we carried out this hypothetical diagnostic test in two groups, one

group with n1 patients with disease and another one with n2 patients without disease.

For a given positivity threshold value λ, we organize diagnostic test results, as usual,

in a 2× 2 table giving the number of positive and negative test results for patients with

and without disease:

Patient status

With disease Without disease

Test + tp(λ) fp(λ)

outcome - fn(λ) tn(λ)

Sum: n1 n2

where

tp(λ) = #{zi = 1|presence of disease, λ},

denotes the number of patients with positive test results in the group of disease for a

threshold value λ. In the same way,

tn(λ) = #{zi = 0|absence of disease, λ},

is the number of patients without disease correctly classified for a threshold value λ.

Clearly, in this setup we can estimate TPR and FPR for a given value of λ as,

T̂PR(λ) =
tp(λ)

n1

, F̂PR(λ) =
fp(λ)

n2

.

A diagnostic test is usually calibrated by plotting the pair (T̂PR(λ), F̂PR(λ)) that

results by changing the possible values of λ. The resulting graphical display is called

the Receiver Operating Characteristic (ROC) curve. The ROC curve is a well estab-

lished method in signal detection theory [54]. Modern applications included calibra-

tion of statistical classification procedures in machine-learning applications [61, pag.
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Figure 1.1: Data for a single study: true positive rates vs false positive rates displayed

for different threshold values of a diagnostic procedure.

277-278]. The medical decision-making community has an extensive literature on the

use of the ROC curve (see [133, 134] for reviews).

Figure 1.1 shows an artificial example where these pairs of operating characteristics

(T̂PR(λ), F̂PR(λ)) are plotted at 9 different values of λ. In practice the test threshold

λ is chosen as a tread-off between TPR and FPR. Usually, λ will be a value such that

the ROC curve intercepts the diagonal line which goes from (0,1) to (1,0), that is the

line where sensitivity = 1 − specificity.

The ROC curve is a detailed description of test accuracy. It is usually summarized

by low dimensional functional statistics, one of the most common is the area under

the curve (AUC). The AUC takes values between 0 and 1, and it is interpreted as the

probability that in randomly chosen pairs of a diseased and non-diseased case, the

disease case is correctly classified as more likely to have the disease. The empirical

AUC estimate is in fact the Mann-Whitney version of the Wilcoxon two-sample rank

sum statistics [58]. A value of AUC close to 1 indicates high test accuracy and values

of AUC less than 0.5 indicates a test accuracy that is less accurate than flipping a coin.

In this way, the construction of diagnostic tests introduces a dependency between

TPR and FPR due to λ. A meta-analytic procedure that aims to combine indepen-

dent studies reporting diagnostic test accuracy should methodologically consider the

relationship between TPR and FPR.
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1.4 The SROC curve

Probably the most popular meta-analytic method to combine diagnostic results is the

Summary Receiving Operation Characteristic (SROC) curve proposed by Moses et al.

(1993) [87]. This method is a simple and elegant meta-regression approach inspired

by old ideas of analyzing binary data, that can be found in Cox and Snell (1989)[15].

The SROC curve is calculated as follows, the logistic differences

D̂i = logit(T̂PRi) − logit(F̂PRi) (1.4)

= log(D̂ORi) ≡ log

(
sensitivity × specificity

(1 − sensitivity) × (1 − specificity)

)
(1.5)

are modeled as a function of the logistic sum

Ŝi = logit(T̂PRi) + logit(F̂PRi) ≡ log

(
sensitivity × (1 − specificity)

(1 − sensitivity) × specificity

)
, (1.6)

by fitting the regression line

D̂i = A+B × Ŝi + ǫi, (1.7)

where logit(p) = log(p/(1− p)). The quantity D̂i is the estimated diagnostic odds ra-

tio D̂ORi in the log scale, which summarizes the discriminatory power of the test. The

variable Ŝi is constructed in a way, that describes the overall level of test positive re-

sponse in each study, it is 0 when sensitivity equals specificity, it is positive for studies

with high sensitivity and low specificity and negative for studies with low sensitivity

and high specificity. We may think that Ŝi is a proxy variable for ”a threshold” test

value for positiveness between studies or as a summary variable for other study cha-

racteristics that may influence test positive result, e.g., a diagnostic setup that makes

the test very sensitive.

In this model the estimated coefficient Â represents a pooled D̂i adjusted by some

contextual influence captured by Ŝi. Meta-analysis is summarized by transforming

back results from (S,D) to (FPR,TPR) by

TPR = logit−1

[
Â

(1 − B̂)
+

B̂ + 1

(1 − B̂)
× log

(
FPR

1 − FPR

)]
, (1.8)

the SROC curve is obtained by calculating TPR in a grid of values of FPR.

Figure 1.2 presents different SROC curves for a fixed value of A and for values of

B equal to 0, -0.7, 0.7 and -2. Symmetric SROC curves are obtained when B = 0
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Figure 1.2: Different resulting SROC curves for a fixed value of A and different values

of B.

indicating studies homogeneity with respect to Ŝi. Asymmetric curves are obtained

for different values of B. One surprising feature of the SROC curve is that it may not

behave as a ROC curve, we see in Figure 1.2 that for B = −2 the curve is monotonic

decreasing. This suggests an implausible relationship between TPR and FPR. In prac-

tice we expect data yielding values of B within the range (-1,1). For more discussion

about mathematical properties of the SROC curve see Walter [126, 127].

The left panel of Figure 1.3 shows the relationship between D̂i and Ŝi for our data.

The regression line corresponds to the simple model (1.7), with parameters estimated

by ordinal least squares: Â = 5.735 (0.179) and B̂ = −0.298 (0.121). The right

panel of Figure 1.3 presents the SROC curve for our data. The location of the upper

left corner of the SROC and a D̂OR = exp(5.735) = 309.513 indicates an excellent

diagnostic result for the CT techniques. Most of this type of meta-analysis would end

at this point, however, as we will see in the following chapters, we can extract more

interesting information from this systematic review and summarize results in a more

comprehensive way.
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Figure 1.3: Left panel: Scatter plot of D̂i against Ŝi with a regression line estimated

by ordinal least squares. Right panel: Scatter plot for F̂PRi and T̂PRi with the SROC

curve.

1.4.1 Meta-regression with the SROC curve

Moses et al. (1993)[87] also extended the SROC to a meta-regression approach to

include variables that could systematically influence diagnostic test accuracy. We write

this meta-regression model as:

D̂i = A+B × Ŝi + α1xi,1 + . . .+ αkxi,k + ǫi, (1.9)

where now D̂i depends also on a vector of covariates (xi,1, . . . , xi,k) and a vector of

regression coefficients (α1, . . . , αk) that has to be estimated from the data, usually by

ordinal least squares. The regression coefficients are interpreted in the same way as in

classical logistic regression analysis [15]. For example if xi,1 is a factor variable which

indicates study design:

xi,1 =

{
1, Restrospecive design

0 Prospective desing,
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Figure 1.4: SROC curves for different subgroups of studies. Upper panels: On the left

SROC curves for studies in university hospitals vs. studies in non-university hospitals.

On the right studies with retrospective design vs. studies with prospective design.

Lower panels: On the left studies which use one localization area vs. more than one

area. On the right studies with contrast medium vs. studies without contrast medium.

then exp α̂1 is an estimated odds ratio, which indicates increase or decrease of diag-

nostic accuracy of retrospective design with respect to prospective design. This simple

regression approach has been extensively used to explore sources of heterogeneity in

systematic reviews of diagnostic tests [65, 81, 80].

In Chapter 2 we give details of covariates that may influence diagnostic results.

Now, as an example of the meta-regression model (1.9) we analyze the following 4 co-

variates: type of hospital, study design, contrast medium and localization. Figure 1.4

shows the effect on the SROC curve after including this covariates and Table 1.2 sum-

marizes numerical results. We see an effect of type of hospital (p-value = 0.0872).

Other effects that we see in Figure 1.4 can not be explained by model (1.9). In Chap-

ter 6 we present a novel bivariate meta-regression approach that allows detection of,

for instance the influence of contrast medium that is depicted in the lower left panel of

Figure 1.4.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.476 1.232 3.634 0.001

S −0.310 0.127 −2.435 0.019

hosp 0.638 0.365 1.747 0.087

design −0.082 0.364 −0.227 0.822

contrast −0.019 0.429 −0.045 0.964

local 0.263 0.413 0.636 0.528

Table 1.2: Results of a meta-regression with covariates: S, type of hospital, study

design, contrast medium and localization

1.4.2 Summary statistics based on the SROC curve

There are some efforts to summarize results based on the SROC curve in a single

number, the most commonly discussed in the bibliography are the Q∗ index proposed

by Moses et al. (1993) [87] and the Area Under the SROC curve (AUC)proposed by

Walter (2002) [126]. The index Q∗ summarizes the SROC curve by the point where

sensitivity = specificity, this point has coordinates

TPRse=sp =
exp(Â/2)

1 + exp(Â/2)
and FPRse=sp =

1

1 + exp(Â/2)
.

Moses et al. (1993)[87] define

Q∗ =
exp(Â/2)

1 + exp(Â/2)
, (1.10)

the value of TPR where sensitivity = specificity. The problem with this quantity is

that several SROC curves may have the same Q∗ index and be very different. See

our example of Figure 1.2, all SROC curves share the same Q∗ but they differ in their

symmetry. To tackle this issue Walter (2002) [126] proposed to integrate the SROC

curve in the range of TPR and summarize results with a single number, the area under

the SROC curve (AUC). Later he proposed to integrate the SROC in the range where

we have only observed data and he called this summary the partial area under the curve

(PAUC) (Walter, 2005 [127]).

Now, suppose that we have performed a meta-analysis and we get estimate values

(Â, B̂) if we wish to summarize our meta-analysis with the AUC, we need to calculate

ÂUC =

∫ 1

0

logit−1

[
Â

(1 − B̂)
+

B̂ + 1

(1 − B̂)
× log

(
x

1 − x

)]
dx, (1.11)
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which has to be numerically integrated. We can use the function integrate() in R,

which uses adaptive quadrature in the range of 0 to 1. For our meta-analysis we have

ÂUC = 0.981.

However, here the problem is how to make statistical inference about ÂUC, for

example, how to calculate its standard error, build confidence intervals, make statistical

tests, and so on. Walter (2002)[126] gives approximative standard errors based on the

delta method (Davison, 2003 pag. 33)[18] for the ÂUC, which results in the following

expression:

var(ÂUC) =




exp
(

Â

1−B̂

)

1 − B̂

∫ 1

0

(
x

1−x

)p

[
1 +

(
x

1−x

)p
exp

(
Â

1−B̂

)]2dx




2

var(Â)

+




exp
(

Â

1−B̂

)

(1 − B̂)2

∫ 1

0

(
Â+ 2 log

(
x

1−x

)) (
x

1−x

)p

[
1 +

(
x

1−x

)p
exp

(
Â

1−B̂

)]2 dx




2

var(B̂)

+




exp
(

Â

1−B̂

)

1 − B̂

∫ 1

0

(
x

1−x

)p

[
1 +

(
x

1−x

)p
exp

(
Â

1−B̂

)]2dx


×

×




exp
(

Â

1−B̂

)

(1 − B̂)2

∫ 1

0

(
Â+ 2 log

(
x

1−x

)) (
x

1−x

)p

[
1 +

(
x

1−x

)p
exp

(
Â

1−B̂

)]2 dx


×

× cov(Â, B̂). (1.12)

Here, var(Â), var(B̂) and cov(Â, B̂) are the components of the estimated variance

covariance matrix of the ordinal least square estimate (XTX)−1XTD = (Â, B̂)T :

(XTX)−1ŝe
2 =

(
var(Â) cov(Â, B̂)

cov(Â, B̂) var(B̂)

)
,

where X is the matrix with two columns, the first one with a vector of 1’s repeated n

times and the the second column is (Ŝ1, . . . , Ŝn)T , and

ŝe
2 =

1

n− 2

n∑

i=1

(D̂i − (Â+ B̂ Ŝi))
2.

The integrals in (1.12) have to be integrated numerically. After evaluating these inte-

grals we have

SE(ÂUC)delta =

√
var(ÂUC) = 0.00358.
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Walter (2002)[126], also, proposed to simplify (1.12) in the case where B̂ = 0, then

the integral (1.11) is analytically tractable and the standard error of ÂUC is:

SE(ÂUC)homog =
ÔR

(ÔR− 1)3
[(ÔR + 1) log(ÔR) − 2(ÔR− 1)]SE(Â) (1.13)

Here exp(Â) = ÔR and SE(Â) is the standard error of the estimate Â. For our data

we have

SE(ÂUC)homog = 0.0022,

which clearly underestimate (1.12) in our data. The reason is clear, our SROC is not

symmetric.

Verde (2005)[119] presented a bootstrap analysis for the SROC curve that allows

the inference of complex functional statistics like ÂUC in realistic situations where

B̂ 6= 0 and (1.11) is not analytically tractable. Moreover, this bootstrap analysis allows

the building of accurate confidence intervals of AUC for practical situations where we

have small number of studies (say n = 10) in a meta-analysis. This work is presented

in Chapter 3.

1.4.3 Classical critics on the SROC methods

The SROC curve has become the ”off-the-shelf” procedure for meta-analysis of diag-

nostic test, however, we should highlight its clear methodological limitations:

• It is a fixed-effect meta-regression, where the assumptions of the linear regres-

sion model are usually unrealistic. Other estimation methods based on robust

regression techniques and weighted regression have been proposed, but they are

subject of debate [87, 126, 99]. Moreover, diagnostic test data present substan-

tial variability between studies that can not be explained by a systematic change

in ”threshold values” [81].

• To avoid numerical problems, the common practice is to calculate diagnostic

rates after adding 1/2 to the cells (tpi, tpi, fni, tni). This procedure induces a

downward bias to the estimated rates, e.g. study number 7 has a specificity of

100% that after correction is 96%. This correction could be acceptable with

a low amount of sparse data, but as we see in Table 1.1 about 30% of the

studies reported 100 % sensitivities or specificities. Therefore, for a high tech-

nological diagnostic method it is more convenient to model the frequencies

(tpi, tpi, fni, tni) directly without introducing ad hoc corrections.
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• The variable Si is assumed to be fixed but it is a sum of two random variables.

Ignoring the randomness of Si can produce a bias toward zero in the estimation

of the parameter B [42]. Moreover, given that this variable conveys a different

type of information as Di, it is interesting to know which study information

influenced its value. Therefore it is natural to model Si as an outcome quantity.

• In the author’s experience, it is not easy to explain the SROC model to medi-

cal researchers, whom usually expect more direct pooled summaries based on

sensitivities and specificities.

1.5 Other statistical methods

Some of the issues mentioned above have been recently tackled with approximate bi-

variate meta-analysis models for sensitivities and specificities. While the SROC curve

is an automatic procedure to make meta-analysis, the models presented in this section

require for their correct application a substantial expertise from the statistician.

1.5.1 Bivariate models

Reitsma et al. (2005)[94] proposed to model the pairs (logit(T̂PRi), logit(T̂NRi))
T

with a bivariate Gaussian model with bivariate Gaussian random effects. This model

can be written as

(logit(T̂PRi), logit(T̂NRi))
T ∼ Normal2(µi,Σi) i = 1 . . . , N (1.14)

where µi is assumed to come from a bivariate normal distribution

µi ∼ Normal2(µ,Ψ). (1.15)

In this model the mean value parameter µ and the covariance matrix Ψ are both es-

timated with the data, the covariance matrix Σi is assumed know, diagonal and with

diagonal elements given by the asymptotic variance of logit(T̂PRi) and logit(T̂NRi)

calculated with the delta method, i.e.

Σi =

(
S2

i,1 0

0 S2
i,2

)
(1.16)

where

S2
i,1 =

1

ni,1T̂PRi(1 − T̂PRi)
and S2

i,2 =
1

ni,2T̂NRi(1 − T̂NRi)
. (1.17)
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This model is based on previous work on multivariate meta-analysis [117] and they

rely upon ad hoc continuity corrections for sparse data, that may introduce a severe

bias into the analysis [113]. Moreover, normal approximation (1.14) require large

numbers of observations per study and stable estimates of µ and Ψ in (1.15) require

large numbers of studies in the meta-analysis. In practice both requirements may be

difficult to achieve.

To mitigate these issues, Arends (2006) [3] and Chu and Cole (2006) [12] inde-

pendently proposed a bivariate generalized linear mixed effects model on the pairs

(tpi, tni). They presented a Binomial mixed effect model with a logit link function

and Gaussian random effects. This model can be represented as following:

tpi ∼ Bin(TPRi, ni,1), tni ∼ Bin(TNRi, ni,2),

where

µi =

(
logit(TPRi)

logit(TNRi)

)

and µi is assumed to follow a bivariate normal distribution

µi ∼ Normal2(µ,Ψ),

with µ = (µA, µB)T the mean vector and

Ψ =

(
σ2

A σAB

σAB σB

)
,

the variance-covariance matrix for between studies effects. Note that in this model

TPR and FPR are assumed unknown for each study, while in the Rietsma’s model

these quantities are assumed known and replaced by T̂PRi and T̂NRi.

To fit this bivariate GLMM, these authors used the SAS procedure NLMIXED

[100] which uses adaptive Gaussian quadrature to approximate the integrated likeli-

hood. This model demands a formidable computational work and it may be sensitive

to the numerical setup (e.g. starting values, number of points used in the adaptive

quadrature procedure, etc.) [78]. To get stable estimates of Ψ we usually need a large

number of studies included in the meta-analysis, this could be problematic in practice.

Efficient ways to fit GLMMs are current research topics, for a practical overview of

different estimation methods see Venables and Ripley (2002, pag. 292-300) [118].

The GLMMmodel is restricted to bivariate Gaussian random effects and no model-

checking is presented by the authors. Given that in practice we never know which sta-

tistical model is correct, model checking is fundamental. In Chapter 5 and Chapter 6
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we show, for example, that an appropriate analysis of the link function is fundamen-

tal and random effects that follows a bivariate-t distribution is more appropriate for

our data. Model diagnostic and model-checking for statistical models with multiple

sources of variability is a new area of research, some practical ideas have been re-

cently presented by Lee, Nelder and Pawitan (2006, pag. 49-63)[77] and Gelman and

Hill (2007, chap. 24) [47].

1.5.2 The HSROC model

Rutter and Gatsonis (2001)[99] introduce the HSROC model, a full Bayesian hier-

archical regression approach based on a model for ordinal regression, that has been

used to estimate ROC curves in single studies [116]. This model has a less intuitive

parametrization, that has limited its popularity in practice. The HSROC model can be

written in the following way:

tpi ∼ Bin(TPRi, ni,1), fpi ∼ Bin(FNRi, ni,2),

where

logit(TPRi) = (θi + αiXi,j) exp(−βXi,j), (1.18)

logit(FPRi) = (θi − αiXi,j) exp(βXi,j). (1.19)

In this model the parameters (θi, αi) represent the effects for study i, where θi is inter-

preted as a cut-point parameter or positivity criteria and αi is an accuracy parameter.

The last one can be worked out as the difference between TPRi and FPRi. The variable

Xi,j is usually taken as 1/2 and the parameter β is a scale parameter, if β 6= 0 then the

diagnostic odds ratio change with θi even if αi is held fixed. The study effects αi and

θi are assumed independent and are modeled as

θi ∼ Normal1(Θ, σ
2
θ), αi ∼ Normal1(Λ, σ

2
α).

This model is based on a full Bayesian approach and priors for (Θ,Λ, σ2
α, σ

2
θ) are mo-

deled as independent with

Θ ∼ Normal1(µ1, σ
2
1), Λ ∼ Normal1(µ2, σ

2
2),

and

σ−2
α ∼ Gamma(a1, b1), σ−2

θ ∼ Gamma(a2, b2)
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with hyper parameters (µ1, σ
2
1, µ2, σ

2
2) and (a1, b1, a2, b2) considered known and care-

fully selected to be informative. Posteriors are calculated by Gibbs sampling using

BUGS language.

Although, computations with Gibbs sampling can be very intensive, one important

advantage of this method is that it does not relay on numerical approximations, esti-

mation of posteriors is exact (up to Monte Carlo error). Therefore, in meta-analysis

where we expect small numbers of studies to be included for analysis, Gibbs sampling

is a much more reliable method than methods which combine numerical integration

with optimization.

Rutter and Gatsonis (2001)[99] proposed to summarize meta-analytic results by

recovering a SROC curve from their model. This curve is calculated by allowing the

threshold parameter θi to vary while holding the accuracy parameter αi fixed at its

mean Λ, then the expected sensitivity for a given specificity is

logit(sensitivity) = E(Λ) exp(E(β)/2) − exp(E(β)) logit(specificity), (1.20)

where expectations are calculated over the marginal posterior distribution of Λ and

β. The authors suggest that the curve is restricted to the observed rage of estimated

specificities and they do not encourage extrapolation beyond this range. When the

scale parameter β is 0, then the curve is symmetric around the point where sensitivity

is equal to specificity.

Macaskill (2004)[83] proposed to use Empirical Bayes methods to fit the HSROC

model and avoid Gibbs sampling, for the data investigated in the paper, results between

Gibbs sampling and EB closely agree. The HSROC approach has been extended to

handle different numbers of threshold values per study [27].

1.5.3 Relationships between bivariate and HSROC models

Harbord et al.(2007) [59] investigate the relationship between the parametrization used

in the HSROCmodel and the bivariate binomial-gaussian meta-analysis approach. The

authors ignore the Bayesian structure of the original HSROC model, and they ignore

that the likelihood of the bivariate model. They concentrate on the parametrization

of the structural distribution of the studies’ effects (θi, αi). In this way, we write the

relationship of the studies’ effects between the bivariate and the HSROC model as

following:

logit(TPRi) = b−1 (θi + 1/2αi) (1.21)

logit(TPRi) = −b−1 (θi − 1/2αi), (1.22)
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where b−1 = exp(β/2). Clearly we can express these relationships with matrix nota-

tion:
(

logit(TPRi)

logit(TPRi)

)
= S−1

(
θi

αi

)
, whereS−1 =

(
b−1 1

2
b−1

−b 1
2
b

)
.

Or the invert transformation
(

θi

αi

)
= S

(
logit(TPRi)

logit(TPRi)

)
, whereS =

(
1
2
b −1

2
b−1

b b−1

)
. (1.23)

S is a transformation matrix, which changes the coordinates from the bivariate model

(logit transformed sensitivities and specificities) to the coordinates of the HSROC

model (cutpoint and accuracy parameters). We can note that the matrix S is not ortho-

gonal (S−1 6= ST ), consequently when plotted in the bivariate model space (logit-ROC

space), the axes corresponding to the HROCmodel are not perpendicular to each other.

Taking expectation and variances of both sides of (1.23) we can express the relation-

ship between the means (
Θ

Λ

)
= Sµ,

and variances (
σ2

θ 0

0 σ2
α

)
= SΨST .

Thus, S is a non-orthogonal transformation matrix that diagonalizes the variance-

covariance matrix of the bivariate model, these off-diagonal elements are zero if and

only if b =
√
σA/σB or in terms of β

β = log(σB/σA).

Interestingly, this shape parameter does not depend on the correlation between sensitiv-

ity and specificity in the logit scale. In the same way, we can work out the relationship

between the other model parameters:

Θ =
1

2

{
(σB/σA)1/2µA − (σA/σB)1/2µB

}
, (1.24)

Λ = (σB/σA)1/2µA + (σA/σB)1/2µB, (1.25)

σ2
θ =

1

2
(σAσB − σAB), (1.26)

σ2
α =

1

2
(σAσB + σAB). (1.27)
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These equations can be inverted to give the five parameters of the bivariate model in

terms of those of the HSROC model:

µA = b−1(Φ +
1

2
Λ), (1.28)

µB = −b(Φ − 1

2
Λ), (1.29)

σ2
A = b−2(σ2

θ +
1

4
σ2

α), (1.30)

σ2
B = b2(σ2

θ +
1

4
σ2

α), (1.31)

σAB = −(σ2
θ −

1

4
σ2

α). (1.32)

The paper of Harbord et al.(2007) [59] is an interesting attempt to investigate the

relationship between bivariate models. However, the marginal distribution of (θi, αi)

in a binomial-gaussian generalized linear mixed model is not bivariate normal and the

random effects are not parametrization invariant. So, the above relationships may hold

only asymptotically. Unfortunately, the authors do not mention these issues. There-

fore, further work in this direction should be done.

1.5.4 Beta-binomial model for sensitivity and specificities

There is another Bayesian approach that has been recently proposed by Cong et al.

(2007)[13]. They propose to model the number of true positive results and true neg-

ative results independently with a beta-binomial model. This model can be expressed

as following:

tpi ∼ Bin(αi, ni,1), fpi ∼ Bin(βi, ni,2),

where

αi ∼ Beta(ζ1, ζ2) βi ∼ Beta(κ1, κ2),

with independent exponential priors on the parameters ζ1, ζ2, κ1 and κ2. They compare

this model with a bivariate binomial-normal generalized linear model with logistic

link function. They conclude that the beta-binomial model delivers results similar to

the classical SROC model, while the binomial-normal model shows point estimates

higher than those of the SROC approach, although the credible intervals overlapped.

A sensitivity analysis showed that the Bayesian models are somewhat sensitive to the
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variance of the prior distribution, but their point estimates are more robust than those

of the SROC approach. In general they recommend to use a Bayesian approach.

1.6 Further methodological comments

We have seen in this review that new statistical methods has been proposed to over-

come the limitations of the SROC curve. However, this simple and elegant model may

be quite adequate in several applications. The use of the AUC as summary statistics

are still been reported for authors. Until now, only the standard error of the AUC is

attached to its estimation. More informative is to present a confidence interval for the

AUC. In Chapter 3 we combine the simplicity of these techniques with the power of

today computation to build confidence intervals for the AUC.

A common denominator of the models proposed in the bibliography is the universal

use on the logistic link function. Although this link function can be suitable in some

cases it can also badly fit the data at hand, especially when we have extreme results

with very high TPRs as is usually found in high technology diagnostic procedures. In

Chapter 6 we present a model with a general link function, the appropriate choice of

this function is done by data analysis and not dogmatically imposed.

Droitcour et al. (1993) [25] highlight the restrictions and limitations of analyz-

ing only one type of study design and introduce the term of cross-design synthesis,

an approach to combine results from studies with different experimental designs (e.g.

prospective, retrospective, case-control, etc). However, it is not easy to quantify the

contribution of studies with different designs in the meta-analysis. And in our knowl-

edge this has not been solved for multivariate problems. The use of bivariate mixture

distributions for random effects presented in Chapter 6 is a practical approach to ana-

lyze these type of data.

The default assumption that random effects follow a normal distribution has been

technically convenient. The SAS procedure NLMIXED [100] only allow us to use

normal distributions for random effects and the same is for other statistical software

(e.g. lmer() function in R). This assumption may not only be unrealistic but also

dangerous in practice. Specially if a small number of studies present extreme results

in comparison to the rest of the studies. This issue motivated the model extensions

to consider multivariate heavy tails distribution in Chapter 6. This extension not only

allow us to identify outliers but also automatically download the effects of these studies

in the meta-analysis.
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All models that we have reviewed in this section can be extended to include covari-

ates to model systematic changes between primary studies. Although this is a simple

conceptual extension, the previous authors did not highlight the technical complexity

behind this point. In our knowledge this topic has not been carefully studied. For

example the complex models like the HSROC have only been fitted with one single

categorical covariate [99]. Moreover, model fitting, variables selection and inclusion

of covariates with missing values in GLMMs are all topics of research at the time we

are writing this work. In Chapter 6, we propose how to handle some these issues and

we point out other avenues of research.

Modern meta-analysis has been growing during the recent years, a comprehensive

introduction is given by Spiegelhalter et al. (2004)[108], an excellent review of com-

plex multiparameter meta-analysis is presented by Ades and Sutton (2006)[2]. The

introduction of the Confidence Profile Method (CPM) by Eddy, et al. (1992)[33] is a

pioneer work in analyzing complex evidence synthesis scenarios.



Chapter 2

Data example: CT scans for diagnosis

of appendicitis

”Why does he insist that we must have a diagnosis? Some things are not

meant to be known by man.”

-Susanna Gregory, An Unholy Alliance.

2.1 Introduction

In Chapter 1 we introduce our running example. In this chapter we document fur-

ther details. These include: how primary studies have been selected, which medical

databases have been used, how study quality and other studies’ characteristics have

been assessed. This information is fundamental to understanding that data collected in

a systematic review is fundamentally different when compared to experimental data or

observational studies.

It is important to highlight that data at patient level is usually not available in meta-

analysis. The variables described in this chapter will be used in Chapter 6 to perform

a multivariate meta-regression.

2.2 Information search and data extraction

The data of our running example resulted from an exhaustive search over 13 databases

containing online medical publications. Papers were selected to be published in the

period running from 1996 to 2003. They had to present diagnostic results for acute
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abdominal pain with 10 patients or more. Diagnoses had to be performed with a Com-

puter Tomography (CT) image without restriction on the CT technology used.

2.2.1 Electronic Database Searches

A systematic search was performed on the following databases: Catline (CA66); Can-

cerlit (CL63); HealthStar (HE75); Medline (ME66; ME60); Somed (SM78); Elsevier

Biobase (EB94); Russmed Articles (SU88); CV72; Embase (EM74); Int Health Tech-

nology Assessment (HT83); Biosis Preview (BAA93; BA70); Index to Scientific and

Technical Proceedings/Index to Social Sciences and Humanities Proceedings (II98;

II78); SciSearch (IS74). The search was performed by DIMDI (Deutsches Institut fr

Medizinische Dokumentation und Information). The following search patterns were

used:

(Find "APPENDI?" and "COMPUTER?" and "DIAGN?")
or(CT="APPEND ..." and CT="DIAGNOS ..." and

CT="COMPUTER ...")

with related keywords, e.g.,

"APPENDICAL ABSCESS", "DIAGNOSIS ERROR"
"COMPUTER-ASSISTED DIAGNOSIS"

The second pattern was:

(Find "APPENDI?" and FT=CT and find "DIAGN?")

This searching process showed 1211 papers.

2.2.2 Selection of Studies

Two reviewers independently read articles’ abstracts and classified them as: relevant,

potentially relevant and not relevant. The articles’ assessments were later compared

and in case of disagreement a consensus meeting was held with these two reviewers

and a third independent researcher. A total of 107 abstracts were classified as relevant

and 94 as potentially relevant. Hard copies of these 201 articles were later classified

by a forth independent researcher as relevant and not relevant . Finally, a total of

52 papers describing results of CT diagnostic for appendicitis were included in this

systematic review.
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Notation Variable Name Value description NA (%)

x1 Country EU and others / USA 0

x2 Type of hospital University / Others 0

x3 Inclusion criteria Suspected / Appendectomy 0

x4 Other CT findings included No / Yes 0

x5 Study design Retrospective / Prospective 0

x6 Contrast medium No /Yes 0

x7 Localization One area / More than one area 0

x8 Children included No / Yes 0

z1 Follow up No / Yes 13 %

z2 Valid reference standard No / Yes 11 %

z3 Sample Selected / Random or systematic 21 %

z4 Gender (majority of women) No / Yes 26%

Table 2.1: List of covariates describing study characteristics, patients characteristics,

study quality and diagnostic setup.

2.2.3 Data extraction and quality assessment

Standardized data extraction forms were used to collect the papers’ results and to

assess quality information (The Cochrane Methods Group on Systematic Review of

Screening and Diagnostic Tests, Recommended methods: Screening and diagnostic

tests, 2005). [114].

Table 2.1 gives some variables describing study characteristics (Country, Type of

hospital), patients characteristics (Inclusion criteria, Children included , Gender),

study quality (Valid reference standard, Sample, Follow up, Design) and diagnostic

setup (Contrast medium, Localization). We analyze these data in Chapter 6 with a

meta-regression model in order to understand how published information may influ-

ence diagnostic results.
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Chapter 3

Bootstrap analysis of the SROC curve

”My general feeling about bootstrapping is that I don’t like it very much.

It’s easy for me to say that, because nowadays I don’t have to do practical

problems for a living.”

-Henry Daniels, Statistical Science, August 1993.

3.1 Introduction

The SROC curve is a standard method to perform meta-analysis of diagnostic test data

(Moses et.al, 1993)[87], one important question is how to summarize meta-analytic

results based on this graphical device. In Chapter 1, we presented the area under

the SROC curve (AUC) as a comprehensive summary statistics for this type of meta-

analysis (Walter, 2002)[126]. The AUC under the SROC curve is interpreted as the

probability that in a pair of disease and non-disease subjects, the disease subject will

be classified as more likely to have the disease.

We have seen that the current statistical inference for the AUC is based on classical

statistical approaches. The application of the delta method presented by Walter (2002)

[126] to calculate the standard error of the AUC is a typical example.

The aim of this chapter is to present Modern Statistical Approaches to extend the

scope of statistical inference based on the SROC curve. For example, we not only

expect to calculate standard errors but also confidence intervals and other measures of

statistical accuracy. To be more specific, we investigate the following two questions:

• Can we reliably improve upon standard meta-analytic methods to make infer-

ence for the AUC?
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• Can we make these methods fully automatic, in the sense that they can be sum-

marized in an algorithm applicable in a wide spectrum of realistic applications?

To answer these questions, we present a novel bootstrap analysis for the SROC curve

that has been originally introduced by Verde (2005)[119].

This chapter is organized as follows: In Section 3.2 we introduced bootstrap meth-

ods in general, in Section 3.3 we show how to apply these techniques to sampling

SROC curves and to calculate the standard error and the bias of the AUC. Section 3.4

is a more technical section dedicated to bootstrap confidence intervals and its applica-

tions to the AUC. An extensive simulation experiment to evaluate different bootstrap

confidence intervals is presented in Section 3.5. Finally, Section 3.6 gives some sum-

mary remarks. The implementation in R of all these bootstrap techniques is presented

in Chapter 7.

3.2 Bootstrap methods

Bootstrap methodswere introduced by Efron (1979)[36]1 as a general statistical appro-

ach to improve upon the Jackknife method to assess variability and to calculate stan-

dard errors of complex statistics. The main contribution of this seminal paper was that

under the bootstrap earlier ideas of sampling techniques were synthesized in a new

framework to perform simulation-based statistical analysis.

The main idea of the bootstrap2 is to replace complicated and often inaccurate ap-

proximations of bias, variances, and other measures of uncertainty by computer power.

These statistical methods are usually called Computer Intensive Methods a term pop-

ularized by Diaconis and Efron (1983) [26]. The aim of bootstrap is to answer routine

questions that are far too complicated for traditional statistical analysis.

To start, suppose that our observed data {y1, . . . , yn} is a realization of a random
sample drawn independently and identically distributed from an unknown distribution

function F , i.e.

Y1, Y2, . . . , Yn ∼i.i.d. F. (3.1)

1Holmes et. al. 2003 presented the anecdote that this paper sent to the Annals of Statistics and it was

turned down. The associate editor, said it that didn’t have any theorems in it.
2Bootstrapping alludes to a German legend Baron Muenchhausen. According to the stories, the

Baron’s astounding feats included traveling to the Moon, and escaping from a swamp by pulling himself

up by his own hair. In later versions he was using his own bootstraps to pull himself out of the sea, which

gave rise to the term bootstrapping. Other more colorful names have been originally proposed. Efron’s

favorite was the Shotgun: a method that can blow the head off any problem if the statistician can stand

the resulting mess (Efron 1979).
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The sample space Y can be anything at all. For example, in our meta-analytic appli-

cation Y is the space of 2 × 2 contingency tables summarizing diagnostic results in

a meta-analysis, see Section 3.3. We are interested in making inference on a scalar

parameter

θ(F ), (3.2)

that will be, estimated from the data by

θ̂ = t(F̂ ). (3.3)

Here F̂ indicates the empirical probability distribution,

F̂ : probability mass , 1/n , on , y1, . . . , yn. (3.4)

This choose of F̂ corresponds to the non-parametric bootstrap, which is the most gen-

eral applicable bootstrap procedure. We further assume that θ̂ is a symmetric function

of the data, i.e., does not depend on the sample order.

The bootstrap idea is very simple:

1. Think about your data {y1, . . . , yn} as a hypothetical population.

2. Assume that the data has been originated by the random mechanism induced by

F̂ .

3. Then, sample with replacement from your data. This procedure will generate a

bootstrap sample say {y∗1, . . . , y∗n}. The asterisk is used to denote a realization
of a bootstrap sample. Note that matches are possible.

4. Now, from the bootstrap sample calculate your statistics of interest θ̂, say, θ̂∗.

This is bootstrap replication of θ̂.

5. Repeat steps 3 to 4 a large number of times, say R. That will generate bootstrap

values θ̂∗1, θ̂
∗
2, . . . , θ̂

∗
R.

The bootstrap values θ̂∗1, θ̂
∗
2, . . . , θ̂

∗
R are used to make statistical inference for θ̂. For

example, the standard error of θ̂, say σ̂, is estimated by the variability of θ̂∗ as:

σ̂ =

√√√√ 1

(R− 1)

R∑

r=1

(θ̂∗r − θ̂∗(·))
2, (3.5)

where θ̂∗(·) = 1/R
∑R

r=1 θ̂
∗
r .
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In the same way, assessment of bias of θ̂ can be approximated by

bias = θ̂∗(·) − θ̂. (3.6)

As we can explain with details in Section 3.4, the bootstrap replicates θ̂∗1, θ̂
∗
2, . . . , θ̂

∗
R

can be used to construct different types of confidence intervals of θ.

In bootstrap methods sample from the sample is used to model sample from the

population, this idea is implemented in practice by computer simulation. In this re-

gard, bootstrap methods rely on computer power to make the inferential part of the

data analysis. We can summarize the bootstrap methods in the following classical

schematic form:

Real World Bootstrap World

F → y =⇒ F̂ → y
∗

↓ ↓
θ̂ θ̂∗

We wish to estimate the accuracy of statistics θ̂ for estimating a parameter of interest

θ. The point estimates F̂ for F delivers the bootstrap data {y∗1, . . . , y∗n}. Statistical in-
ference is based on the variability of bootstrap replications θ̂∗1, θ̂

∗
2, . . . , θ̂

∗
R. The success

of the bootstrap analysis in general depends on the statistical model F̂ which mimics

F . In our meta-analytic application we will choose F̂ as the empirical distribution

function that puts probability 1/n on each study included in the meta-analysis. That

corresponds to the non-parametric bootstrap, which in this context can also be called

a cluster bootstrap where studies are interpreted as clusters, which are selected by

simple random sampling (see Field and Welsh (2007)[41], Section 3.3).

The two main comprehensive references of bootstrap methods are the introduction

book of Efron and Tibshirani (1993) [39] and the most advanced volume of Davison

and Hinkley (1997) [19] with more than 500 pages covering statistical applications in

several areas. A classical theoretical text is given by Hall (1992) [57], which gives a

detailed asymptotic treatment based on Edgeworth Expansions, while Mammen (1992,

1993) [84, 85] describes simulations intended to help when the bootstrap works, and

gives theoretical results for various situations. Recent theoretical work from the sta-

tistical testing point of view is given by Janssen and Pauls (2003)[67]. In 2003 the

journal Statistical Science[135] published a special issue on the 25 years of bootstrap

methods, where we can find a compilation of new applications. The amount of bibli-

ography on bootstrap methods produced during the last two decades is massive and we



3.3. BOOTSTRAPPING THE SROC CURVE MODEL AND THE AUC 33

do not intend to review this material. The most relevant publications will be reviewed

during the presentation in following sections .

3.3 Bootstrapping the SROC curvemodel and the AUC

In order to apply the bootstrap methods to meta-analysis of diagnostic test, we proceed

as following:

1. We define our data {y1, . . . , y52} as the set of the 2 × 2 contingency tables sum-

marizing diagnostic test results for each study included in the meta-analysis, i.e.

yi = (tpi, tpi, fni, tni) for i = 1, . . . , 52.

2. We give probability 1/52 to each table in {y1, . . . , y52}, i.e. we use a nonpara-
metric bootstrap method.

3. We sample with reposition from {y1, . . . , y52} and for each bootstrap sample

{y∗1, . . . , y∗52} we calculate a SROC∗ curve.

4. From each resulting SROC∗ curve we calculate the area under the curve AUC∗

integrating numerically (1.11).

5. We repeat from 3 to 4 a large number of times R.

Then the bootstrap values ÂUC
∗

1, . . . , ÂUC
∗

R are used to assess variability about ÂUC.

Figure 3.1 shows the bootstrap in action. On the left panel we have the first 100

bootstrap replications of the SROC curve, we take a total of R=1000. This amount

of bootstrap is about 10 times what we need to calculate standard errors and large

enough to calculate confidence intervals, see Efron (1987, Sec. 9), Efron and Tib-

shirani (1993,pag 50-53, pag 272-275), Davison an Hinkley (1997, pag 34-37, pag

155-156 and pag 248) and Hall (1992, pag. 306-311) for bootstrap sample size.

The right panel of Figure 3.1 gives the bootstrap distribution of ÂUC, we can see

that this bootstrap distribution is not normal, it is asymmetric to the left, also it is

bounded between 0 and 1, as we expect for values of the AUC. The variability gen-

erated between SROC curves and their AUC results from the different data scenarios

produced by each bootstrap sample.

We have seen in Chapter 1 that the estimated value of the AUC was

ÂUC = 0.981,



34 CHAPTER 3. BOOTSTRAP ANALYSIS OF THE SROC CURVE

Figure 3.1: Bootstrapping the SROC curve. Left panel: 100 bootstrap replications for

the original SROC curve. Right panel: Bootstrap distribution of the AUC based on

R=1000.

from the bootstrap replicates its standard error calculated from (3.5) is

σ̂ = 0.0045

and the bias of ÂUC calculated from (3.6) is

bias = −0.0011.

In Chapter 1 we show that the approximated standard error for the ÂUC using the delta

method [126] yields

SE(ÂUC)delta = 0.0035

compared with our bootstrap calculation (1.12) slightly underestimates the variability

of ÂUC.

One important advantage of the bootstrap estimate of standard error is that it is

produced fully automatic, without making any special assumption about the stochastic
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mechanism which generate the data, and without the formidable analytical calculations

with produced formula (1.12). Unfortunately, all of these important advantages are

mitigated when we want to build a confidence interval for AUC. As we will see in

Section 3.4 much more inside is required from the data analysis point of view to build

reliable confidence intervals.

3.4 Bootstrap confidence intervals for the AUC

In the previous section we introduced a simple but effective way to calculate standard

errors of ÂUC based on bootstrap samples. This section concerns the construction

of confidence interval for the AUC. That is, in order to assess the uncertainty about

a scalar parameter value θ, we want to construct a random interval, say I1−2α with

nominal coverage 1 − 2α such that, if θ is a true parameter value, then

Prob(θ ∈ I1−2α) = 1 − 2α. (3.7)

There is a small number of cases in applied statistics, were exact confidence in-

tervals can be calculated, for example, the use of the t-distribution to calculate the

confidence interval of the mean of normal distribution with unknown variance, the use

of the F-distribution for the ratio of two variance of normal data, etc. Those are all fa-

miliar results of applied statistics, that can be found in statistical textbooks (see Mood,

Graybill and Boes (1974)[63] Chapter 8).

However, in most applied problems these exact results are not possible and con-

fidence intervals are calculated approximately. The use of bootstrap methods is par-

ticular convenient for this task. They try to automatically encapsulate sophisticated

statistical thoughts that sometimes provide good solutions to complicated statistical

problems.

In this section we review common bootstrap approaches to construct confidence

intervals and we apply these techniques to make inference of AUC.

We present these techniques in a general way enabling it to be applied to other

quantities of interest in meta-analysis. We also present a specially designed confidence

interval (SDCI) for the AUC which results from a careful bootstrap analysis. These

techniques are illustrated with the data of Chapter 2 and evaluated with a relatively

extensive simulation experiment.
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3.4.1 Normal confidence intervals

We can build confidence intervals for θ based on the estimated value θ̂ and the bootstrap

replicates θ̂∗r (for r = 1, . . . , R). The most simple approach is based on the normal

confidence intervals. Suppose that the distribution of θ̂∗1, . . . , θ̂
∗
R is perfectly normal

with,

θ̂∗r ∼ N(θ̂, σ̂2), (3.8)

then a confidence bound with level α is given by

θ̂NORM [α] = θ̂ + z(α)σ̂. (3.9)

Here, z(α) is the 100αth percentile of a normal deviate, e.g. z(0.95) = 1.645 and σ̂ is

(3.5) . For example a 95% standard confidence interval has upper and lower limits

given by

(θ̂NORM [0.025], θ̂NORM [0.975]).

The notation of the confidence intervals bounds emphasizes that we wish to have a

coverage at both ends of the interval. This is crucial at the moment of comparing

different types of approximative confidence intervals.

Figure 3.2 shows the histogram of 1000 bootstrap replicates of ÂUC
∗
. The solid

lines show the location of the 95% normal confidence interval, which is

(ÂUCNORM [0.025], ÂUCNORM [0.975]) = (0.973, 0.991).

The asymmetry of the histogram of ÂUC
∗
is evident, which suggests that the model

(3.8) is not appropriate for this application.

3.4.2 Percentile confidence interval

A more natural way to construct a confidence interval for θ is to use the quantiles of

the empirical distribution function of θ̂∗1, . . . , θ̂
∗
R, that is

Ĝ(c) =

{
#θ̂∗r ≤ c

}

R
. (3.10)

This method is called the percentile confidence interval. The α confidence bound is

defined as

θ̂PERC [α] = Ĝ(α)−1, (3.11)

which corresponds to the R · αth value in the ordered list of R replications of θ̂∗. For

example if α = 0.025 and R = 1000, θ̂PERC [0.025] corresponds to the 25th ordered
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Figure 3.2: Bootstrap distribution of the AUC. Vertical lines corresponds to different

bootstrap confidence intervals based on this histogram: solid line is the Normal CI,

dotted lines percentile method and dashed line BCa method.

value of bootstrap replications. If R · α is not an integer, we take the kth largest value

such that k ≤ (R + 1)α [39, pag 160].

Again with R = 1000, the AUC the percentile confidence interval is

(ÂUCPERC [0.025], ÂUCPERC [0.975]) = (0.969, 0.986).

We can see in Figure 3.2 that the percentile interval corrects the normal interval by

shifting the interval to the left. Clearly, when the bootstrap distribution is asymmet-

ric the normal confidence interval (3.9) is not appropriate and it will differ from the

percentile confidence interval.

The percentile method generalizes the normal confidence interval to allow asym-
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metry in the distribution of θ̂. It is based on the following theoretical model: Suppose

that there is a monotonic increasing function φ = m(θ) that perfectly normalizes the

distribution of θ̂:

φ̂− φ ∼ N(0, σ2
φ). (3.12)

Then under this scale a confidence bound of level α is

φ̂[α] = φ̂+ z(α)σφ, (3.13)

which back transforming to the original scale of θ withm−1(·) gives

θ̂PERC [α] = m−1(φ̂[α]) = m−1(φ̂+ z(α)σφ).

Finding a scale where the distribution of θ is normalized is a well known method in

applied statistics, which improves the practical performance of the normal confidence

interval, some commonly used transformations include the logistic transformation of

the odds ratio, and the Fisher’s transformation of the correlation coefficient. The break-

through of the percentile method was that in practice we do not need to know m(·).
This transformation is implicitly constructed by computational brute force from the

bootstrap values θ∗.

This confidence interval has two very important properties, that the normal method

does not share: First, it is transformation-invariant, that is the confidence interval for

a parameter ψ resulted from a monotonic transformation g(θ) = ψ is the percentile

confidence interval for θ mapped by g(θ):

(ψ̂PERC [α], ψ̂PERC [1 − α]) = (g(θ̂PERC [α]), g(θ̂PERC [1 − α])).

Second, the percentile interval is range-preserving, that is the confidence bounds fall

within the range of values where θ is defined. For example, the AUC is a probability

and we expect that a confidence interval falls within the range [0,1].

3.4.3 BCa confidence intervals

BCa stands for bias corrected and accelerated, this bootstrap confidence interval has

been proposed by Efron (1987) [36] to improve the performance of the percentile con-

fidence interval. It was an answer for the qualms of bootstrap confidence intervals

pointed by Schenker (1985) [104]. The BCa interval corrects the percentile method

when the estimate θ̂ is biased and when its standard error σ̂ depends on the value of θ̂.
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Biased estimates with non-constant standard errors are commonly encountered in ap-

plied problems (e.g odds ratios, correlation coefficients, etc.), making theBCa method

particularly attractive for practical purposes.

The BCa method is transformation-invariant and range-preserving like the per-

centile method, but it was also a new achievement in bootstrap inference: their limits

are second-order accurate and they are also second-order correct.

Let θ̂BCa
[α] be a BCa interval limit with intended coverage α, by second-order

accurate we mean that α is actually covered with probability α+O(1/n) i.e.

Prob{θ < θ̂BCa
[α]} = α+O(1/n), (3.14)

where n is the sample size in a i.i.d. (independent and identically distributed) ideal

situation. This result can be compared with the normal and the percentile confidence

interval, that they have both a slower first-order accuracy of α+O(1/
√
n), i.e.

Prob{θ < θ̂NORM [α]} = α+O(1/
√
n),

and

Prob{θ < θ̂PERC [α]} = α+O(1/
√
n).

Now, let θ̂Exact[α] be a theoretical exact confidence limits with probability α, i.e.

Prob{θ < θ̂Exact[α]} = α.

Then, a confidence interval limit is said to be second order correct, if it differs from

θ̂Exact[α] by Op(1/n
3/2). The second order accuracy and correctness of the BCa

method was originally proof by Hall (1988) [56].

The BCa interval has a peculiar model construction which is far to be intuitive,

but it is well motivated by the transformation theory that we describe in this section.

As the percentile method, the BCa postulates the existence of a monotonic increasing

function φ = m(θ) that perfectly normalizes the sampling distribution of θ̂, with φ̂ =

m(θ̂) having distribution:

φ̂− φ ∼ N(−z0 σ(φ), σ(φ)2), σ(φ) = 1 + aφ. (3.15)

Here the constant z0 plays the roll of bias correction factor. The coefficient a is a

skewness correction factor called acceleration constant. In order to get σ(φ) > 0 we

assume that φ > −1/a if a > 0 and φ < −1/a if a < 0. The constant a is typically

|a| < 0.2 and same is for z0 [36, Sec. 3]. The use of z0 and a is similar to the use of
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Bartlett correction factors in likelihood inference for parametric models [19, pag 204]

and see also [36, Sec. 3].

Under the previous conditions the confidence α level confidence limit for the BCa

method is given by:

θ̂BCa
[α] = Ĝ−1Φ

(
z0 +

z0 + z(α)

1 − a(z0 − z(α)
)

)
. (3.16)

Formula (3.16) looks strange, but we can see that for the case z0 = a = 0 the confi-

dence limit defined by (3.16) is

θ̂BCa
[α] = Ĝ−1(α)

the 100αth percentile of the bootstrap distribution. If in addition Ĝ is perfectly normal,

then

θ̂BCa
[α] = θ̂ + z(α)σ̂,

the normal interval.

We can work out the percentile θ̂BCa
[α] under the scale of φ and transform results

back to the scale of θ as we did in the percentile method. However, it is more infor-

mative in terms of the statistical theory behind θ̂BCa
[α] to do it in the following way:

From (3.15) we can deduce that

φ̂ = φ+ (1 + aφ)(Z − z0), Z ∼ N(0, 1),

then expanding terms on the right we have

φ̂ = φ+ Z + Zaφ− z0 − z0aφ,

multiplying both sides by a, adding 1 and collecting terms we have

1 + aφ̂ = {1 + aφ}{1 + a(Z − z0)}. (3.17)

Taking logarithms results

log(1 + aφ̂) = log(1 + aφ) + log(1 + a(Z − z0))

which is a monotonic increasing in φ. Then calling ξ̂ = log(1 + aφ̂), ξ = log(1 + aφ)

andW = log(1 + a(Z − z0)), we put the problem into the standard translation form,

ξ̂ = ξ +W, (3.18)
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where the α confidence limit is given by

ξ̂[α] = ξ̂ − w(1−α). (3.19)

Here w(α) is the 100 · α percentile point forW , i.e. Prob{W < w(α)} = α.

We can go all the way back by mapping ξ̂[α] to the φ scale by noting that

φ =
exp(ξ) − 1

a
, (3.20)

φ̂ =
exp(ξ̂) − 1

a
, (3.21)

(Z − z0) =
exp(W ) − 1

a
, (3.22)

which, after some little algebra results in

φ̂[α] = φ̂+ (1 + aφ)
(z0 − z(α))

1 − a(z0 + z(α))
. (3.23)

Now, according to the model (3.16) the α confidence limit of θ is m(φ̂[α])−1, but of

coursem(·) is unknown. Using monotonicity ofm(·) we have that

Ĝ(θ̂BCa
[α]) = Prob(θ∗ < θ̂BCa

[α]) (3.24)

= Prob(φ∗ < φ̂[α]) (3.25)

= Φ

(
φ̂[α] − φ

σ(φ)
+ z0

)
(3.26)

= Φ

(
z0 +

(z0 − z(α))

1 − a(z0 + z(α))

)
, (3.27)

and by applying Ĝ(·)−1 on both sides we have that the BCa confidence limit is

θ̂BCa
[α] = Ĝ−1

{
Φ

(
φ̂+

(z0 − z(α))

1 − a(z0 + z(α))

)}
, (3.28)

which expressed in terms of the ordered list of simulated values θ̂∗ gives

θ̂BCa
[α] = θ̂∗(Rα̃) (3.29)

with

α̃ = Φ

(
z0 +

(z0 − z(α))

1 − a(z0 + z(α))

)
. (3.30)

When R · α̃ is not an integer we take the largest integer k such that k ≤ (R + 1)α̃.

We have seen that the theoretical construction of the BCa limits involve two trans-

formations:
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1. First a monotone transformation

θ → φ,

which normalizes the the sampling distribution of θ̂.

2. Second, another monotone transformation

φ→ ξ,

which reduce (3.15) to a translation problem. We can think about this transfor-

mation as a variance stabilization transformation.

TheBCa limits are calculated by transforming back from ξ → φ and from φ→ θ. The

most remarkable aspect, at least in theory, is that these transformations did not need to

be known, they are replaced by computational power!

Of course in practice the constants z0 and a have to be estimated. For z0 we use

the following result (Efron 1987, Section 4)[36]:

Prob(θ∗ < θ̂) = Prob(φ∗ < φ̂) = Φ (z0) (3.31)

then we have

ẑ0 = Φ−1
{
Ĝ

(
θ̂
)}

, (3.32)

which in terms of simulated values gives

ẑ0 = Φ−1

{
#θ̂∗ < θ̂

R

}
. (3.33)

The most common way to estimate the acceleration constant a is by

â =

∑n
i=1(θ̂(·) − θ̂(i))3

6
{∑n

i=1(θ̂(·) − θ̂(i))2
} , (3.34)

where θ̂(i) is the ith jackknife value, i.e. the estimation of θ by omitting the ith obser-

vation and θ̂(·) =
∑n

i=1 θ̂(i)/n.

It is not obvious why the formula (3.34) provides an estimate of a. For a single pa-

rameter distribution problem it is an empirical estimation of one-sixth the skewness of

the score function of model (3.15) evaluated at θ = θ̂ = m−1(φ̂). In a multiple parame-

ter situation, it has the same interpretation but the likelihood is profiled in the direction

of the least favorable family (Stein, 1956) [111]. For the full non-parametric situation
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a multinomial distribution is induced to reduce F̂ to a multiparameter model and the

same theoretical arguments applied. For discussions and details about (3.34) see [36],

[19, pag 205-209] and [29, Section 3]. DiCiccio and Romano (1990) [30] formallized

the construction of non-parametric confidence intervals by reducing a non-parametric

problem to a parametric problem with no nuisance parameters via the construction of a

least favorable family. They show that theBCa interval is a particular case of a general

procedure to obtain second order accurate intervals.

We calculate the 95% confidence interval of the AUC with R=1000 and we get the

following results:

(ÂUCBCa[0.025], ÂUCBCa[0.975]) = (0.971, 0.987).

The constants z0 and a are estimated as

(ẑ0, â) = (0.037, 0.046).

The dashed lines of Figure 3.2 shows the effect introduced the corrections of this con-

fidence interval. We can see that the BCa shrinks the percentile method quite strongly

and translate the interval to the right. The advantages of this elaborated theory can

be appreciated in Section 3.4.6, where we reproduce similar calculations for smaller

sample sizes (e.g. n = 20 or n = 10) and in the simulation experiment of Section 3.5.

3.4.4 Bootstrap-t intervals

The bootstrap-t confidence interval is a conceptually simple algorithm to construct a

confidence interval. Its name comes from its analogy with the Student’s t-statistic.

This interval needs an estimate of the standard error σ̂∗ of the statistic θ̂∗ for each

bootstrap sample. It is based on the studentized statistic

T ∗ =
θ̂∗ − θ̂

σ̂∗
. (3.35)

The bootstrap distribution of T ∗ is used to estimate the distribution of

T =
θ̂ − θ

σ̂
, (3.36)

which of course is unknown in most situations3. By analogy of the Student-t confi-

dence interval, the end points of a 1 − 2α bootstrap-t confidence interval is defined

3Usually these pivotal quantities are presented with n
1/2 in front of the righthand equation, here this

constant is absorbed by σ̂
∗ and σ̂ respectively.
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as

θ̂T [α] = θ̂ − T̂ (1−α) σ̂, θ̂T [1 − α] = θ̂ − T̂ (α) σ̂. (3.37)

Here T̂ (α) is obtained by αth ordered value of the simulated T ∗
r for r = 1, . . . , R. For

example if R = 1000 and α = 0.025 then T̂ (0.025) is the 25th ordered T ∗
r .

This method was originally proposed by Efron (1979)[35], but poor numerical

behavior reduced its interest. Babu and Singh (1983)[4] gave the first proof of second-

order accuracy for the bootstrap-t. Hall (1988)[56] showed that the bootstrap-t limits

are second-order correct and revived its interest. Davison and Hinkley (1997)[19]

present extensive use of this technique in several applied problems. Venables and

Ripley (2002, pag.137)[118] recommend its use in general applications.

The bootstrap-t is computationally very intensive4. It requires that we estimate σ̂∗

for each bootstrap sample. If we use a second level bootstrap to calculate σ̂∗ with

R2 bootstrap replications, then the number of evaluations of θ̂
∗ will be R2 × R. This

computational burden is one of the drawbacks of this method. One remedy is to use

the jackkinfe estimate of σ̂∗ in each bootstrap sample (see below).

Another drawback is that, unlike the percentile method and the BCa, this method

is not transformation invariant.

More dangerous in practice, the bootstrap-t algorithm may be very unstable. Its

numerical problem is produced by the fact that σ̂∗ could be very small compared to

θ̂∗ − θ̂, this artefact produces an artificially heavy tailed distribution of T ∗ resulting in

a very long confidence interval. This is particular dangerous in situations where the

confidence limits must be bounded to the range where θ is defined.

The application of bootstrap-t intervals to the AUC is straightforward. We define

the T ∗ statistics as

T ∗ =
ÂUC

∗
− ÂUC

σ̂∗
, (3.38)

where σ̂∗ is calculated for each bootstrap sample with the Jackknife estimate

σ̂∗2 =

{
1

n− 1

n∑

i=1

(
ÂUC

∗
(·) − ÂUC

∗
(i)

)2
}

(3.39)

where ÂUC(i) is the ith jackknife value, i.e. the estimation of ÂUC by omitting the ith

observation and ÂUC(·) =
∑n

i=1 ÂUC(i)/n. The α level confidence limit for AUC is

4Measured in computational time, the bootstrap-t interval is the most intensive statistical method

presented in this work, more intensive than the Bayesian applications of MCMC sampling of the fol-

lowing chapters.
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calculated as

ÂUCT [α] = ÂUC− T̂ (1−α) σ̂. (3.40)

We calculate the 95% confidence interval of the AUC based on R=1000 and we get the

following results:

(ÂUCT [0.025], ÂUCT [0.975]) = (0.969, 0.992).

This calculation takes approximately 12 minutes while the percentile and BCa takes

approximately 12 seconds. Interesting, the lower limit is numerically similar to the

BCa method and the upper limit almost reach the maximum value of AUC.

3.4.5 Specially designed confidence interval for AUC

With its strong theoretical background and worrisome practical drawbacks, the bootstrap-

t can be used as a starting point to build better bootstrap confidence intervals. There

is considerable practical evidence that this method is likely to deliver good results if θ

is a location parameter, such as a median or a mean. Tibshirani (1988)[115] proposed

an algorithm for transforming a scalar parameter θ to a more location-like parameter

φ = m(θ), before applying the bootstrap-t method. The resulting interval is trans-

formed back to the θ scale via m−1(φ) = θ. The transformation m(·) is calculated
with nonparametric smoothing techniques from the scatter plot of (θ̂∗, σ̂∗) andm−1(·)
is calculated by numerical integration. For more discussion about this approach see

DiCiccio and Romano (1995)[31], Efron and Tibshirani (1993, Section 12.6)[39].

In this section we pursue a less general approach we concentrate only in the prob-

lem of finding a parametric transformation h(·)which stabilizes the variability of ÂUC.
This is a pure heuristic approach based on recommendations given by recently Di-

Ciccio, Monti and Young (2006)[32] and further applications given by Davison and

Hinkley (1997)[19], Sections 3.9 and 5.2.

The plan that we follow is quite simple, first we prepare a variance parameter plot,

which is the scatter plot of the points

(ÂUC
∗
,Var(ÂUC)∗). (3.41)

Then, we analyze a suitable transformation h(·) such that the T ∗ statistics

T ∗ =
h(ÂUC

∗
) − h(ÂUC)√

Var( ̂h(AUC))∗
, (3.42)
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is approximately a pivotal quantity, i.e. the distribution of T ∗ does not depend on

AUC. We measure the success of h(·) by the correlation coefficient of the variance

parameter plot. A transformation with correlation close to 0 gives points out a good

variance stabilization function (see, DiCiccio, Monti and Young (2006)[32] Section

2.3)

In practice, it is quite difficult to identify a single transformation for this problem

and we have had relatively bad empirical results with classical transformations, that

includes the logistic, the log, the square root and the Box-Cox transformation. There-

fore, we proposed a composed transformation based on the Box-Cox transformation.

This transformation is build first by defining the odds of the ÂUC
∗
:

g(ÂUC
∗
) =

ÂUC
∗

1 − ÂUC
∗ , (3.43)

and then by applying a Box-Cox transformation to g(ÂUC
∗
):

h(ÂUC
∗
) =





[
g

(
̂AUC

∗
)]λ

−1

λ
if λ > 0

log
(
g
(
ÂUC

∗))
if λ = 0.

(3.44)

The parameter λ is estimated by maximum likelihood from the variance plot. Then the

bootstrap confidence interval based on T ∗ is calculated as usual

ÂUCSDCI [α] = h−1

[
h(ÂUC) − T̂ (1−α)

√
Var( ̂h(AUC))

]
(3.45)

where T̂ (1−α) is the (1 − α)th ordered value of the simulated T as in the previous

section, but this time calculated in the scale of h(·). Finally, these results are backward
transformed by h(·)−1 to the scale of AUC.

The left panel of Figure 3.3 shows the scatter plot of (ÂUC
∗
,Var(AUC)∗)5. The

correlation of these points is -0.522. After applying the transformation h(·) this corre-
lation is reduced to -0.017, the right panel of Figure 3.3 shows the effect of applying

h(·) with λ̂ = 0.303. The resulting 95% confidence interval for AUC is

(ÂUCSDCI [0.025], ÂUCSDCI [0.975]) = (0.967, 0.990).

5We have scaled the vertical axis to make the variability between panels comparable.
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Figure 3.3: Variance plot for bootstrap-t confidence interval. Left panel: each point

represents (ÂUC
∗
, var(ÂUC

∗
)). Right panel: variance plot after a variance stabiliza-

tion transformation h(·).

As noted by Davison and Hinkley (1997) [19] Section 5.2 we can use a variance

stabilization transformation to improve a normal interval as well, which can be calcu-

lated as

ÂUCNORMAL−SDCI [α] = h−1

[
h(ÂUC) − z(1−α)

√
Var( ̂h(AUC)),

]
, (3.46)

where z(α) is the 100αth percentile of a normal deviate. Calculating the normal interval

in the scale of h(·) and reporting results in the scale of AUC gives

(ÂUCNORMAL−SDCI [0.025], ÂUCNORMAL−SDCI [0.975]) = (0.971, 0.987).

One important advantage of this interval is that we do not need to calculate the boot-

strap distribution of T . That substantially reduce the computation burden of this pro-

cedure.
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Method Sample size Original scale Transformed scale

Lower Upper Lower Upper

Normal n=52 0.973 0.991 0.971 0.988

Bootstrap-t 0.968 0.991 0.966 0.990

Percentile 0.969 0.987

BCa 0.969 0.987

Normal n=20 0.955 0.997 0.944 0.986

Bootstrap-t 0.928 1.039 0.898 0.998

Percentile 0.946 0.986

BCa 0.952 0.988

Normal n=10 0.721 1.320 0.959 0.995

Bootstrap-t 0.972 1.006 0.970 0.998

Percentile 0.141 0.990

BCa 0.969 0.992

Table 3.1: Results of bootstrap confidence intervals for the AUC calculated with dif-

ferent sample sizes (R=1000).

3.4.6 Comparison of bootstrap confidence intervals with different

sample sizes

In the previous subsections, we have seen that we obtain little practical differences

between different methods for our data. One possible explanation is that we have a

meta-analysis with large number of studies included, n = 52.

In this section we explore potentially different results between confidence intervals

by reducing the number of studies in the analysis. We take two samples at random

from the 52 studies, one with n = 20 and the other with n = 10. Then, we recalculate

all the bootstrap confidence intervals. Table 3.1 summarizes these results.

We can summarize the effect of changing the sample size as following:

• For n = 10 and n = 20 both the normal and bootstrap-t give confidence bounds

out of the range of the AUC, which is a pathological result.

• The percentile method is un-stable for n = 10.

• The BCa presents stable numerical results when we change the sample size.

• The SDCI deliver stable results for different sample sizes.

In the next section we present a simulation experiment to evaluate these confidence

intervals for a more general application.
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3.5 Simulation experiment

In the previous section we have presented 6 different confidence intervals for the AUC.

How do these different confidence intervals perform in finite small samples? In this

section we investigate two questions:

1. Which is most reliable, in the sense that the coverage is closest to nominal?

2. Which one does deliver a better quality inference in terms of interval length and

range respecting (i.e. 0 ≤ AUC ≤ 1)?

We perform a simulation study to estimate coverage, interval length and rates for ex-

ceeding the limits where AUC is defined. We expect that a good statistical method

delivers both features good reliability and inferential quality.

3.5.1 Design of the experiment

Simulation experiments with bootstrap methods are computationally extremely de-

manding and in general it is wise to define carefully an experiment that covers realistic

situations.

In order to define simulation scenarios that cover most of the common situations,

we roughly define three different SROC curves with different values of A and B:

1. A = 5 and B = 0.1, this curve represents a meta-analysis where the diagnos-

tic procedure has a very high diagnostic performance and studies are relatively

homogeneous with respect to B. The AUC is 0.972.

2. A = 3 and B = 0.20, this curve represents a meta-analysis where the diagnostic

performance is not so extreme like the previous one, but studies may show some

substantial heterogeneity with respect to B. The AUC in this case is 0.883.

3. A = 1.5 and B = 0.30, this curve evidently represents a meta-analysis where

studies in general report a lower diagnostic performance, AUC = 0.726, and

there is also an important heterogeneity with respect to B causing a substantial

asymmetry in the SROC curve.

Figure 3.4 shows these three SROC curves. We clearly see a gradient going from

the most extreme homogeneous and highly diagnostic performance to the lower and

asymmetry situation. We have chosen these parameter values based on published in-

formation ([126] and Walter 2008 personal communication) and our own data.
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Figure 3.4: Summary of the SROC behavior of 5 different scenarios for different values

of A and B. These 5 cases are studied with 2 different sample sizes n = 10 and n = 20.

The fact that the AUC is symmetric with respect toB has been helpful to reduce the

number of scenarios to the half, e.i. we investigate only positive values of B. Another

criteria that we follow to save number of scenarios was not to pretend to estimate the

effect of A and B and their interaction. That would demand covering simultaneously

different levels of A and different levels of B, this results in combinations of levels

with very similar AUC values. For example, taking A = 5 and three levels of B =

0.1, 0.2, 0.3, results AUC = 0.972, 0.970, 0.967, which are of course an uninteresting

difference to analyze.

Another important ingredient in the simulation experiment is the probability struc-

ture of the variables D and S which are used to estimate the coefficients A and B in

the SROC curve. For this design component we use only information coming from our
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own data. Values of (D,S) are simulated with a bivariate normal distribution with the

following model:

(Dsim
i , Ssim

i ) ∼ Normal2(µ,Σ), s = 1, 2, . . . , N. (3.47)

where

µ =

(
µD

µS

)
=

(
A

S̄

)
(3.48)

and S̄ = 0.138 for our data. The covariance matrix is given by

Σ =

(
σ2

D σD,S

σD,S σ2
S

)
(3.49)

where using our data we have σ2
D = 1.828 and σ2

S = 2.227. For the covariance

parameter we use standard results of regression analysis which gives σD,S = Bσ2
S .

Clearly, the parameter valuesA andB are used to generate the possible three scenarios

described above. Note, that in our experiment both Di and Si are random variables,

like we expect in practice.

The simulated values (Dsim
i , Ssim

i ) are mapped to the ROC space with

TPRsim
i = (1 + exp(−0.5 (Ssim

i +Dsim
i ))−1

and

FPRsim
i = (1 + exp(−0.5 (Ssim

i −Dsim
i ))−1

where TPRsim
i and FPRsim

i are the summary results of a simulated study. Figure 3.5

shows two examples, on the left panel we have 20 simulated studies coming from

a SROC curve with (A,B) = (5, 0.1) and the right panel 20 simulated studies with

(A,B) = (1.5, 0.3). In both panels the dotted line is the estimated SROC curve and the

solid line the true SROC curve. We can see that the simulated data result in plausible

real situations.

In order to evaluate the performance of the 6 confidence intervals, we simulate

1000 meta-analysis for each combination of values of (A,B) and with samples n = 10

and n = 20. These two sample sizes were chosen in order to cover most of the realistic

situations, where we expect a small number of studies to be included in the meta-

analysis. With this specification, we have a total of 6000 possible scenarios to analyze.

The size of the bootstrap samples is fixed to R = 1000 for all confidence intervals.

The BCamethod may require a larger number of bootstrap samples (Efron 1987, Sec-

tion 9)[36] to reduce the simulation error of the bias parameter z0. We also calculated

for this method the confidence intervals with R = 5000, we did not find important

differences and we only reported results with R = 1000.
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Figure 3.5: Left panel: simulated meta-analysis with n=20, and parameters of the

SROC curve A = 5 and B = 0.1. Right panel: simulated meta-analysis with n=20,

and parameters of the SROC curve A = 1.5 and B = 0.3.

3.5.2 Results

Table 3.2 and Table 3.3 summarize the results of our simulation experiment. We start

by describing the two sided coverage, the target is that in 1000 different simulated data

95% of the time the true AUC is covered by the interval.

Given that the normal interval is the most commonly applied in statistics we use

this interval as a reference method. The coverage of this interval is relatively good

across the tables, including the case of n = 10 where we expect that the nominal

rate could be underestimated. Only for the case (A,B) = (1.5, 0.3) and n = 10 the

coverage is 91.1%, which underestimate the nominal coverage of 95%.

Both percentile bootstrap methods clearly tend to underestimate the nominal co-

verage. The BCa does not improve upon the simple percentile method and it did not

better than the normal interval. In this case a more sophisticated statistical method has

not been justified. This tendency of bootstrap percentile methods to undercover rela-
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tively large nominal levels in small samples has been reported in simulation studies for

other scalar parameters (see Hall 1992, pag.137; Davison and Hinkley 1997, pag.231

and Canty, Davison and Hinkley 1996).

Both versions of bootstrap-t intervals outperform their competitors across the ta-

bles, that includes the small sample n = 10, where we obtained real coverage very

close to 95%. That is a remarkable result!

The normal transformed interval gives also good results. It has the tendency to un-

dercover the proposed nominal level, but outperformed the percentile bootstrap meth-

ods in all cases. That is also a very interesting result, this method is computationally

very efficient. It computation requires 10% of any percentile method.

Of course coverage in confidence intervals is not the end of the story. We also

required that a confidence interval for the AUC gives limits between 0 and 1. Also, we

required a notion of precision in terms of the interval length. With these respects, the

6 confidence intervals gave very different results in our experiment.

The normal confidence interval has serious problems in the upper bound of the

interval in all cases. In particular, for n = 10 and (A,B) = (5, 0.1) we have that

85.9% of the time the interval exceeds 1! The bootstrap-t interval did not better than

the normal one. In fact, for n = 10 and (A,B) = (1.5, 0.3) it did worse than the

normal interval. By construction, the rest of the intervals respect the range (0,1) of the

AUC, and in this regard delivers optimal quality results.

With respect to the length of the interval, the most pronounce result is the large

length and the unstable results of the bootstrap-t interval. For n = 10 it is the worst

case and for n = 20 it still is the worst with very unstable length. This is explained

by the fact that the standard error of the AUC tends to be small and produce numerical

unstable results.

The second worst case is the normal interval followed by the percentile bootstrap

across the tables. The transformed normal interval did better than the normal and

percentile method.

The most sophisticated methods BCa and bootstrap-t transformed (SDCI), deliver

the best results in terms of length and stability.

Clearly, the SDCI is the clear winner of this simulation experiment. It retains the

excellent coverage of the bootstrap-t interval and adds numerical stability and preci-

sion. The construction of a transformation that respects the range of definition of the

AUC also makes, that the interval are always bounded to the (0,1) range.
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Confidence interval (A, B) Lower limit Upper limit Two sided Interval length

AUC AUC < 0 AUC > 1 coverage mean± sd
(%) (%) (%)

(5, 0.1)

0.972

Normal 0.5 85.9 97.5 0.417 ± 0.387
Normal, SDCI 0 0 91.6 0.102 ± 0.117
Bootstrap-t 4.68 54.6 94.3 2.001 ± 9.430
Bootstrap-t, SDCI 0 0 94.0 0.128 ± 0.183
Percentile 0 0 86.9 0.312 ± 0.373
BCa 0 0 88.1 0.175 ± 0.291

(3, 0.2)

0.883

Normal 1.45 63.2 95.4 0.406 ± 0.300
Normal, SDCI 0 0 93.1 0.205 ± 0.123
Bootstrap-t 6.92 47.3 93.9 1.760 ± 6.447
Bootstrap-t, SDCI 0 0 94.2 0.239 ± 0.168
Percentile 0 0 90.0 0.354 ± 0.279
BCa 0 0 89.0 0.261 ± 0.240

(1.5, 0.3)

0.726

Normal 1.25 18.2 91.1 0.336 ± 0.176
Normal, SDCI 0 0 89.9 0.264 ± 0.101
Bootstrap-t 7.8 33.5 95.5 1.083 ± 2.598
Bootstrap-t, SDCI 0 0 94.2 0.349 ± 0.179
Percentile 0 0 90.0 0.316 ± 0.160
BCa 0 0 89.3 0.305 ± 0.158

Table 3.2: Results of the simulation experiment. Nominal coverage 95%, number of

simulations S=1000, sample size of the meta-analysis n=10, bootstrap sample size

R=1000.
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Confidence interval (A, B) Lower limit Upper limit Two sided Interval length

AUC AUC < 0 AUC > 1 coverage mean± sd
(%) (%) (%)

(5, 0.1)

0.972

Normal 0 37.9 96.7 0.115 ± 0.165
Normal, SDCI 0 0 93.3 0.039 ± 0.040
Bootstrap-t 0.2 6.6 94.5 0.149 ± 2.360
Bootstrap-t, SDCI 0 0 94.3 0.045 ± 0.052
Percentile 0 0 91.2 0.068 ± 0.157
BCa 0 0 92.8 0.050 ± 0.119

(3, 0.2)

0.883

Normal 0.1 17.9 93.7 0.171 ± 0.164
Normal, SDCI 0 0 92.4 0.113 ± 0.065
Bootstrap-t 0.4 4.8 94.7 0.195 ± 1.132
Bootstrap-t, SDCI 0 0 94.3 0.115 ± 0.055
Percentile 0 0 92.0 0.144 ± 0.165
BCa 0 0 91.8 0.121 ± 0.142

(1.5, 0.3)

0.726

Normal 0.1 2.7 95.1 0.194 ± 0.097
Normal, SDCI 0 0 94.1 0.171 ± 0.056
Bootstrap-t 0.5 5.0 96.4 0.238 ± 0.491
Bootstrap-t, SDCI 0 0 97.1 0.188 ± 0.070
Percentile 0 0 93.5 0.184 ± 0.100
BCa 0 0 92.5 0.180 ± 0.096

Table 3.3: Results of the simulation experiment. Nominal coverage 95%, number of

simulations S=1000, sample size of the meta-analysis n=20, bootstrap sample size

R=1000.
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3.6 Concluding remarks

The area under the summary ROC curve (AUC) has been proposed as a comprehensive

summary statistics for meta-analysis of diagnostic test data. It has the appealing in-

terpretation to be the probability that in a pair of disease and non-disease subjects, the

disease subject will be classified as more likely to have the disease. The AUC is calcu-

lated by numerical integration over the SROC curve in the range of the false positive

rate. The available statistical methods for calculating standard errors and confidence

intervals are analytically cumbersome and may deliver inaccurate results.

In this chapter we proposed to use bootstrap methods and variance stabilization

techniques to improve statistical inference of the AUC. We have reviewed and illus-

trated several bootstrap techniques and we have proposed a specially designed boot-

strap confidence interval for the AUC based on a transformed version of the bootstrap-t

interval.

We empirically analyzed these methods with an extensive simulation experiment.

In this experiment we evaluate nominal coverage, length of the interval and boundary

respecting of its limits. The simulation experiment shows that for meta-analysis with

small number of studies, standard statistical methods perform poorly, second order

accurate bootstrap methods (BCa and bootstrap-t) deliver unstable results and SDCI

(transformed bootstrap-t and transformed normal) methods are extremely effective.

We conclude that for complex meta-analytic inference a strategy that combines

both computer power and careful analytic methods may be an adequate approach to

use the bootstrap in practice.



Chapter 4

An Introduction to Bayesian

Inferences

”I shall not assume the truth of Bayes’ axiom (...) theorems which are

useless for scientific purposes.”

-Ronald A. Fisher (1935) The Design of Experiments, page 6.

4.1 Introduction

There are at least two reasons why Bayesian statistics is particularly important nowa-

days. One is the ability to combine multiple sources of information in a common

synthesis. Bayesian models are particularly well suited for this task, which has a great

impact in modern meta-analysis, multi-level models and hierarchical modeling in gen-

eral. The other reason is the computational revolution produced by the rediscovery of

Markov chain Monte Carlo (MCMC) techniques in statistics. As a result, we can con-

struct arbitrary complex statistical models that reflect the complexity for phenomena

of interest.

The aim of this chapter is to give a brief overview to Bayesian statistics. We limit

the technical aspects of the presentation as much as possible. More technical details

are presented in Chapter 5 and Chapter 6.

4.2 Bayes’ Theorem and statistical inference

Let us suppose that yT = (y1, y2, . . . , yn) is a vector of n observations whose pro-

bability distribution p(y|θ) depends on the values of k unknown quantities θT =

57
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(θ1, . . . , θk). In classical statistics θ is an unknown fixed quantity, in Bayesian statis-

tics it is an uncertain quantity. This uncertainty about θ is modeled with a probability

distribution probability distribution p(θ). Then,

p(y|θ)p(θ) = p(y, θ) = p(θ|y)p(y). (4.1)

Given the observed data y, Bayes’ theorem says that the conditional distribution of θ is

p(θ|y) =
p(y|θ)p(θ)
p(y)

, (4.2)

which clearly follows from (4.1). Now p(y) = c−1 is just a normalizing constant to

ensure that the distribution p(θ|y) integrates or sums to one. Then, the Bayes’ theorem
is sometimes stated as

p(θ|y) = cp(y|θ)p(θ), (4.3)

or shortly as

p(θ|y) ∝ p(y|θ)p(θ), (4.4)

where∝ denotes proportional to. Expression (4.4) is usually called the un-normalized

posterior distribution.

The probability distribution p(θ), which tells us what is known about θ indepen-

dently of the data y, is called the prior distribution of θ, or the distribution of θ a

priory. The probability distribution p(θ|y), which tells us what is known about θ given
the knowledge of the data, is called the posterior distribution of θ given y, or the distri-

bution of θ a posteriori. In this work we sometimes refer to the prior distribution and

the posterior distribution simply as the ”prior” and the ”posterior”, respectively.

Given the data y, the probability distribution p(y|θ) may be regarded not as a func-
tion of y but of θ, in this way we call it the likelihood function of θ. We can clearly see

that the Bayes’ theorem tells us that the posterior of θ is proportional to the product of

the prior and the likelihood, that is,

posterior distribution ∝ likelihood× prior distribution.

In Chapter 5 and Chapter 6 we will meet models with hierarchical structure where the

likelihood function is not well defined, for this reason we prefer to call p(y|θ) the data
model distribution function.

Once the Bayesian paradigm is accepted for inference, the posterior distribution

p(θ|y) is used for inference about θ and no other concepts are required. For example,
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play no role in Bayesian statistics classical concepts like repeated sampling, bias, con-

sistency, sufficiency, etc. Most of the difficulty centers in an adequate specification

of the prior distribution p(θ) and the calculation of p(θ|y), that could be extremely

difficult in practice. The revolutionary use of MCMC techniques and their friendly

implementation in several statistical softwares (e.g. WinBUGS, R, SAS, MLWin, etc.)

has popularized the use of Bayesian techniques, but the specification of the prior distri-

bution, particularly in multivariate situations, remains a difficult part in this approach.

4.3 Sequential Nature of Bayes’ Theorem

Another important result of Bayesian statistics is the sequential nature of the Bayes’

Theorem. Suppose that we have an initial sample of observations y1, then the Bayes’

formula gives

p(θ|y1) ∝ p(y1|θ)p(θ). (4.5)

Now, suppose that we have a second sample of observations y2 distributed indepen-

dently of the first sample, then,

p(θ|y2, y1) ∝ p(y2|θ)p(y1|θ)p(θ) (4.6)

∝ p(y2|θ)p(θ|y1). (4.7)

The last expression shows that the posterior distribution p(θ|y1) plays the role of a

prior distribution of the second sample y2. Obviously, this process can be repeated any

number of times. Therefore, the Bayes’s theorem describes the process of learning

from experience, and shows how knowledge about θ is continually modified as new

data becomes available.

4.4 Unknown quantities, predictions and

model checking

In Bayesian inference the unknown quantity θ is generic, it can denote a vector of

parameters, missing data, predictive values, mismeasured data, etc. This approach

gives great flexibility at the time of building statistical models that better reflect the

complexities encountered in practice. For example, if we are interested in making
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predictions, we can write θ = (yPred, η), after observing y we have

p(yPred|y) =

∫
p(yPred, η|y)dη =

∫
p(yPred|η, y)p(η|y)dη (4.8)

=

∫
p(yPred|η)p(η|y)dη. (4.9)

The second line clearly shows that the posterior predictive distribution p(yPred|y) is an
average of conditional predictions, p(yPred|η)weighted by the posterior distribution of
η. Of course, the integral is calculated over the parameter space of η and it is replaced

by sums if the parameter space is discrete.

Posterior predictions play a very important role in model checking assumptions as

we will see in Chapter 5 and Chapter 6. The basic point here is, that as usual in practice,

we can not guarantee that the model is correct. So in Bayesian modeling we analyze

the fitted model by posterior predictive model checking, which consists in simulating

data from the fitted model and comparing these quantities with the observed ones. This

procedure permits us to understand deficits deficits of the fitted model and correct it by

using an updated model. For example, in Chapter 5 we introduce a bivariate normal

distribution for random effects in meta-analysis, but in Chapter 6 we will see in that

a more elaborated distribution consisting in a mixture of bivariate-t distribution will

improve the fitness of our model.

The use of simulated data from a model for model checking has a long tradition in

data analysis, see for example Bush and Mosteller (1955)[11], and particularly in Ba-

yesian Data Analysis. Posterior predictive assessment was introduced by Guttman

(1967)[55], further developments in this are given by Box (1980)[8], applications

are given by Rubin (1981)[97], a formalization is given by Rubin (1984)[98]; West

(1986)[130] and Gelfand, Dey, and Chang (1992)[45] also present posterior predictive

approaches to model evaluation.

For an excellent introduction to Bayesian model checking see Gelman, Carlin ,

Stern and Rubin (2004)[46] Chapter 6 and Gelman and Hill (2007) Chapter 24 [47].

4.5 Some philosophical aspects

Mathematically, Bayes’ formula is a valid statement of conditional probability. What

has been in debate for a long time is its applicability for general statistical inference.

That is the use of probabilities for inductive inference. The difficulties are centered in

the meaning of probability and in Bayesian statistics the choice of and necessity for
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the prior distributions. In this section we concentrate on the first issue, we discuss the

issue of prior distributions in the next section.

The two main interpretations of probability are

1. As frequency distributions, where there is a physical random mechanism gener-

ating the value of θ.

2. As a subjective measure of what a particular individual believes about θ.

The first interpretation is uncontroversial and gives an objective application of Bayes

theorem. This is the case in some technological applications, for example monitoring

the position of an aircraft with Kalman Filtering techniques. In this interpretation of

probability we say: probability of and event, which indicates that this is a property

of the system under investigation. However, in most applications, exactly known of

objective prior distributions are unusual.

The second interpretation of probability has extensive literature: Ramsay (1931)[92],

De Finetti (1937) [21], Savage (1954, 1961a, 1961b) [101, 102, 103] and see Kyburg

and Smokler (1964) [72] for a compiled work on subjective probability. In the subjec-

tive interpretation of probability, the prior distribution p(θ) expresses our uncertainty

about θ without considering the data y and the posterior distribution p(θ|y) represent
an update of our knowledge once y is included in the analysis.

Under the subjective interpretation of probability, Bayesian inference implied a

mental construct where probabilities are used to express our uncertainty concerning

the experiment and not a property of the system under investigation. This is why sub-

jectivists use a pedantic: ”probability for an event”, which indicates that probability

is not a property of the system under investigation, but a measure of uncertainty in the

relationship between the analyst and the problem at hand. Strictly speaking, we should

denote prior probabilities as p(θ|H), whereH indicates the context where the analysis

takes place. This context represents the information on which an individual bases his

or her own subjective assessment of the degree of belief, i.e. probability, of an event

occurring (see Spigelhalter, Abrams, and Myles (2004), pag. 11) [108].

In this work we recognize that real data analysis tends to be more clumsy and

difficult than a clear philosophical division. In this way we follow a hybrid position

where depending on the analytical context one or another interpretation of probability

is more appropriate. For example, when we build a statistical model to handle meta-

analysis of diagnostic data we adopt a clear subjectivistic Bayesian position, but when

we perform model checking we adopt a frequentist point of view.
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We follow this pragmatic and eclectic practice with an important dose of trans-

parency in the analysis, which include: formal description of the statistical model

used, elicitation of priors, description of the algorithms, detailed numerical aspects,

sensitivity analysis, etc.

4.6 Exchangeability

As before suppose that yT = (y1, y2, . . . , yn) is a vector of n observations whose pro-

bability distribution is p(y|θ). Exchangeability is a formal expression of the idea that
we find no systematic reason to distinguish among the individual variables Y1, . . . , Yn

that have produced the outcome y. We say that these variables are similar but not iden-

tical. Exchangeability represents a component of our knowledge of the data. For ex-

ample, if we know that a data set results from a mixture of studies with different study

design, it would not be reasonable consider these data as exchangeable. Although,

numerical results may be similar among studies, the quality of the data is different if a

study was performed with a retrospective or a prospective design.

Technically exchangeability implied invariance of p(y|θ) under permutation of the
indexes. Note that we do not mean that Y1, . . . , Yn are independent and identically

distributed (i.i.d) with a distribution function p(y|θ), this will mean that p(y|θ) =

p(y1|θ) . . . p(yn|θ).

4.7 Priors

Who can deny that there are substantial quantifiable prior beliefs in medicine and other

scientific areas? Anyone who has been involved in planing a clinical trial or other

experiment knows that there is a clear body of information before an experiment is

performed.

To be more precise, in almost all data analysis there are substantial amounts of

information, that are external to the data that we wish to analyze. The Bayesian appro-

ach formalizes a procedure to combine different sources of information. However, the

main issue is how to translate this body of knowledge in a formal distribution function.

Given that Bayesian data analysis is driven by priors and it is worth pointing out

some misunderstanding regarding prior distributions, we follow here some points men-

tioned by Spigelhalter, Abrams, and Myles (2004), pag. 73 [108] and others that are

the product of our own experience.
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• The name prior suggests a temporal relationship, however, this is misleading.

The prior distribution models the uncertainty given by the external evidence.

I was surprised to read that priors must be chosen before the data

have been seen. Nothing in the formalism demands this. Prior does

not refer to time, but to a situation, hypothetical when we have data,

where we assess what our evidence would have been if we had had no

data. This assessment may rationally be affected by having seen the

data, although there are considerable dangers in this, rather similar

to those in frequentist theory.

Cox (1999)[16]

• The prior is not necessarily unique! In a recent article Lambert et. al. (2005)[73]

analyze the use of 13 different priors for the between study variance parameter

in random-effects meta-analysis. There is no such thing as the ‘correct’ prior.

Bayesian analysis is regarded as transforming prior into posterior opinion, rather

than producing ’the’ posterior distribution. For different formal constructions of

priors see Kass and Wasserman [69].

• The prior may not be completely specified. In hierarchical models, as we will

see in Chapter 5 and Chapter 6, the priors have unknown parameters that have

to be estimated.

• Priors can be overparametrized. Sometimes we intentionally overparametrized

the priors in order to accelerate convergence of simulation methods, see Gel-

man, Carlin, Stern and Rubin (2004)[46] Chapter 6 and Gelman and Hill (2007)

Chapter 24 [47]. We follow this approach in Chapter 6 to build a prior for the

degrees of freedom in a multivariate-t distribution.

• Inference may rely only on priors distributions. There are situations where no

further data are available to combine with our priors or there is no intention to

update the priors. This is the typical case of risk analysis, sample size determi-

nation in experiments, simulation of complex process , etc. In these analytical

scenarios priors are usually used to simulate hypothetical data and we refer to

that prior predictive analysis, prior because it is not conditional on observations

of the process, predictive because it is the distribution for a quantity that is ob-

servable.
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• Finally, priors are not necessarily important. In many scientific applications, as

the amount of data increases, the prior is overwhelmed by the likelihood and the

influence of the prior disappears, see Box and Tiao (1973) (pag. 20-25)[7].

4.8 Modern Bayesian Data Analysis

The statistical model building presented in Chapter 5 and Chapter 6 is based onModern

Bayesian Data Analysis. What we mean by that is the coherent combination of the

following statistical and probabilistic techniques:

• The use of hierarchical models to reflect multiple sources of uncertainty in the

data analysis.

• The extensive use of MCMCmethod as a simulation based approach to calculate

marginal posterior distributions of quantities of interest. For a general introduc-

tion to this topic see Brooks (1998)[5].

• The systematic use of graphical models to give a schematic description of model

quantities and their interrelation. This technique is usually combined with auto-

matic algebraic algorithm to factorize complex joint distributions into its condi-

tional marginal distributions. This automatic factorization simplifies the use of

MCMC techniques; in particular the application of Gibbs sampling (see Gilks

et.al. (1993)[52] and Gilks et.al. (1996)[53]).

• The use of systematic model checking and model diagnostic techniques.

• The ability of using classical and Bayesian techniques when appropriate.

Many of these ideas have been discussed in a paper by Spiegelhalter (1998)[106]. In

general bringing these ideas together has substantially changed the way that we make

Bayesian statistics. We give technical details about the previous points in our concrete

work in Chapter 5 and Chapter 6.



Chapter 5

A Bayesian model for combining

diagnostic test data

”Beware: MCMC sampling can be dangerous!”

-David Spiegelhalter, Andrew Thomas, Nicky Best and Dave Lunn

WinBUGS User Manual, January 2003

5.1 Introduction

In Chapter 1 we highlighted some limitations of current statistical methodologies to

analyze and combine diagnostic test results. In this chapter we start to develop a sta-

tistical model that can tackle most of the current issues. Although this model does not

reflect all data complexities encountered in practice, it sets up the mechanic of model

fitting and model validation that makes it possible to understand how the model will

be extended in practice. These model extensions are presented in Chapter 6.

In this chapter, we present a hierarchical Bayesian model for combining diag-

nostic test data. Model building starts by specifying a data model, p(y|θ), where
y = (y1, . . . , yN) denotes the available data and θ = (θ1, . . . , θN) all study-specific

unknown quantities (e.g. random effects). The set of study-specific parameters θi are

modeled by the structural distribution p(θi|φ). Uncertainty about φ is modeled by a

prior distribution p(φ). Inferential statements about θ and φ are based on the posterior

probabilities

p(θ, φ|y) ∝ p(φ)p(θ|φ)p(y|θ). (5.1)

Model checking is performed by simulating unknown quantities from (5.1), these sim-

ulations are compared with observed values by visual inspection and more formally

65
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calculating model deviation quantities.

5.2 A Bayesian model

5.2.1 Data model

Following the notation of Chapter 1, let tpi and fpi be the true positive and false

positive results for study i (i = 1, . . . , N ). Conditioning on ni,1, which is the number

of disease patients, and on ni,2 the number of non-disease patients, our data model is a

binomial distribution with

tpi ∼ Bin(TPRi, ni,1), fpi ∼ Bin(FPRi, ni,2), (5.2)

where TPRi and FPRi are the probabilities to observe a positive test result in the disease

and non-disease population respectively.

The N pairs of probabilities TPRi and FPRi are transformed by a link function g

to a scale where they are defined in the range (−∞,∞). The canonical link function

for binomial data is the logistic link function, but other alternative links, e.g. the

complementary log-log (cloglog) link function can be used. Choosing a suitable link

function for the data at hand is a delicate modeling problem that will be analyzed in

this Chapter.

5.2.2 Structural distribution

We model the variability between studies with a bivariate normal distribution on the

differences

Di = g(TPRi) − g(FPRi)

and the sums

Si = g(TPRi) + g(FPRi)

with

(Di, Si) ∼ Normal2(µ,Λ), i = 1, 2, . . . , N. (5.3)

Where µ is the mean value of (Di, Si) and Λ their precision matrix, i.e., Λ = Σ−1 with

Σ the variance covariance matrix. This parametrization is convenient in a Bayesian

setup.

Clearly, when g(·) is the logistic link function the random effectsDi and Si can be

related with the classical SROC curve. ThereforeDi is the study effect related with di-

agnostic discriminatory power and Si is the effect associated with diagnostic threshold
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value. Modeling (Di, Si) is similar to direct modeling (g(TPRi), g(FPRi)), however, the

linear transformation should leave (Di, Si) roughly independent making our inference

less sensitive to the prior distribution of Λ. A similar approach is presented by Gelman

et al.(2004, pag. 488-491) [46] in another bivariate meta-analysis.

The exchangeability assumption between studies is clearly unsuitable for our data.

Study labels contain substantial information that should be included in our model. We

address this problem in detail in Chapter 6.

5.2.3 Prior distributions

Our modeling approach is full Bayesian and we need to specify prior distributions on

model parameters. We assume independent Normal prior distributions for the compo-

nents of µ = (µD, µS)T

µD ∼ N(mD, vD), µS ∼ N(mS, vS).

For the precision matrix Λ we give a prior Wishart distribution with scale matrix R

and k degrees of freedom:

Λ ∼ Wishart(R, k).

The constants mD, vS , mS , vS , R and k are known. In our data analysis, we take mD =

mS = 0, vD = vS = 0.25, R = Diag(1, 1) and k = 3. We choose these constants in

a way that the data model dominates the inference as much as possible. They can also

be used for prior elicitation and sensitivity analysis. Table 5.1 summarizes the notation

involved in our starting model.

5.2.4 Posterior distribution

Given this model specification all inference is based on the posterior distribution

p(θ, φ|y) ∝
N∏

i=1

[(
ni,1

tpi

)
TPR

tpi

i (1 − TPRi)
(ni,1−tpi)

(
ni,2

fpi

)
FPR

fpi

i (1 − FPRi)
(ni,2−fpi)

]

(5.4)

×
N∏

i=1

{
exp

[
−1/2 (Di − µD, Si − µS)T Λ(Di − µD, Si − µS)

]}
× |Λ|N

2

× exp
[
−1/2 (vD (µD −mD)2 + vS (µS −mS)2)

]

× |Λ|(N−k−2)/2 exp [−1/2 trace(ΛR−1)]

2k(N−1)/2πk(k−1)/4|Λ|(N−1)/2
∏N

i=1 Γ(1/2(N − i))
,
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Notation Parameter

tpi Frequency of true positive patients

fpi Frequency of false positive patients

ni,1 Total number of disease patients in the study

ni,2 Total number of non disease patients in the study

TPRi True positive rate of study i
FPRi False positive rate of study i
Di link function differences of TPR and FPR

Si link function sum of TPR and FPR

µD Mean of Di

µS Mean of Si

Λ The precision matrix of (Di, Si)
σ2

D Variance of Di

σ2
S Variance of Si

σD,S Covariance (Di, Si)

Table 5.1: Notation and parameter names for the basic bivariate hierarchical model.

where (θ, φ) is dimension L = N × 2 + 2 + 3 and contains all random effects and all

components of µ and Λ.

5.2.5 Summary quantities of interest

In general, we are interested in making inference of particular components of (θ, φ),

or in functional parameters of components of (θ, φ), say h(θ, φ). For example, to

summarize results at the group level we are interested in the posterior distribution of

TPR = g−1[(µD + µS)/2], FPR = g−1[(µD − µS)/2], (5.5)

we called (5.5) pooled summaries.

At the study level, we are interested in the marginal posterior distributions

p(TPRi|y) and p(TNRi|y), (5.6)

we call (5.6) the study summaries.

Another important summary is the predicted pair of rates (FPR, TPR), for a study

that has not been included in the review. In such a case we base inference on the jointly

predictive posterior distribution

p(FPRpred,TPRpred|y). (5.7)
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Based on (5.7), we can graphically report the predictive surface for the pairs (FPR,

TPR) at a given credibility level (e.g. 95%), we called this summary the Bayesian pre-

dictive surface (BPS). Clearly, in this model framework we can calculate the marginal

predictive posteriors p(FPRpred) and p(TPRpred|y) as well.

5.2.6 Summary ROC curve and the AUC

We can easily recover a Bayesian version of the SROC curve by applying standard

results of the bivariate normal distribution. We have that the conditional distribution

of (Di|Si = si) has mean

E(Di|Si = si) = E(A) + E(B) (si − E(µS)), (5.8)

where the functional parameters A and B are

A = µD + µSB, B = σD,S/σ
2
S. (5.9)

We define the Bayesian SROC curve (BSROC) by transforming back results from

(S,D) to (FPR,TPR) with

TPR = BSROC(FPR) = g−1

[
A

(1 −B)
+

B + 1

(1 −B)
g(FPR)

]
. (5.10)

As in the classical approach the SROC curve is obtained by calculating TPR in a grid

of values of FPR. It is important to highlight, that there is no estimation of variability

associated to the SROC curve and to the HSROC curve. Our definition of the BSROC

implies a posterior for each value of FPR, therefore it is straightforward to give credi-

bility intervals for the BSROC for each value of FPR.

Finally, we can define a Bayesian area under the SROC curve (BAUC) by integrat-

ing numerically the BSROC for all possible values of the false positive rate:

BAUC =

∫ 1

0

BSROC(x) dx. (5.11)

As in the classical approach the BAUC has the appealing interpretation to be the pro-

bability that in a pair of disease and non-disease subjects, the disease subject will be

classified as more likely to have the disease.

5.2.7 MCMC computations

All of these marginal posteriors and predictive distributions presented in Section 5.2.5

and Section 5.2.6 are not analytically tractable, we based our inference on MCMC
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techniques implemented in the BUGS language (Lunn, Thomas, Best and Spiegelhal-

ter; 2000)

BUGS stands for Bayesian analysis Using Gibbs Sampling, a name that reflects

the computational methods originally implemented. It is interesting, that the BUGS

project is prior to the seminal paper of Gibbs sampling in Bayesian inference by

Gelfand and Smith (1990) [44] and has its roots in modeling complex decision pro-

cesses with artificial intelligence systems during the 80’s (Spiegelhalter, 2006) [107].

This origin has influenced the architecture of the system, which clearly separates

knowledge-base (e.g. use of declarative programming, graphical modeling, etc.) and

inference-engine (i.e. draw conclusions in a specific situation). In other words, the

philosophy behind BUGS is: first build a probabilistic model for the problem at hand,

then use the observed data to update the model. If no data is observed, the model can

still be used for prior predictive inference.

In BUGS we assume that the joint posterior distribution can be represented by

a directed acyclic graph (DAG). Figure 5.1 displays the DAG for our basic model.

A DAG describes all model components as nodes and their relationships by directed

links between them. Oval nodes represent stochastic quantities and square ones known

parameters. Single arrows define probability distributions, e.g. tpi ∼ Bin(TPRi, n1,i),

while double arrows represent logical or functional relationships, e.g. TPRi = g−1((Di+

Si)/2). The big square containing several nodes and arrows is called a plate, which

represents replicated sub-model structures over an index, e.g. i = 1, . . . , N .

A DAG defines a set of parent-child relationships between stochastic nodes, we say

that a node vk is a parent of a node vl if an arrow points from vk to vl. For example, µ

and Λ are parents of (Di, Si). This parent-child relationship enables us to factorize the

joint probability distribution of the model as a product of the conditional distributions

of each node given their parents (Lauritzen, Dawid, Larsen and Leimer, 1990)[75]:

p(v1, ..., vL) = p(θ, φ|y) ∝ p(θ, φ, y) =
L∏

k=1

p(vk|parents[vk]). (5.12)

This factorization has two practical advantages: first it allows us to build arbitrary

complex models by defining their stochastic local structure (parent-child relationships)

and second it makes the identification of all conditional distributions automatic. Let

v(−k) = (v1, . . . , vk−1, vk+1, . . . , vL) denote all nodes in the DAG except vk then the

full conditional p(vk|v−k) is proportional to the product of the terms in p(v1, ..., vL)
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Figure 5.1: Directed Acyclic Graph (DAG) of the bivariate structural model for meta-

analysis of diagnostic test data.

that contains vk:

p(vk|v−k) ∝ p(vk|parents[vk]) ×
∏

j∈children[vk]

p(vj|parents[vj]). (5.13)

The first term p(vk|parents[vk]) is called the prior component and the second one is

called the data component or likelihood component. These conditional distributions

define the kernel of the Gibbs sampler of the model.

Once the model has been specified, BUGS scans each node of the DAG and builds

each p(vk|v−k), then the system decides how to sample from each distribution by a

hierarchical decision process: if the system detects a conjugate distribution it samples

directly by standard algorithms (Ripley, 1987) [95], for non-conjugate problems uses

adaptive rejection sampling with log-concave densities (Gilks and Wild, 1992) [51].

If log-concavity is not identified the system uses slice sampling for restricted range

supports (Neal, 2003) [88] and Metropolis-Hastings algorithm with a normal proposal

distribution otherwise (Metropolis, et al. 1953 [86], Hastings, (1970) [64]). In general,

we will denote a sampling value of a node vk by v
∗
k.

This Bayesian graphical model approach is not only a friendly way to perform

complex Bayesian computations but a semantic to represent further model structures.

Figure 5.2 represent the calculations involved in the posterior distribution of the BSROC

(5.10) and the BAUC (5.11). We define two logical nodes pointing from µ and Λ to
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Figure 5.2: Directed Acyclic Graph (DAG) of the BSROC and BAUC under a bivariate

structural model for meta-analysis of diagnostic test data.

A and B, this represents the mathematical relationship between the mean and the pre-

cision matrix and the regression coefficients of equation (5.8). Then a logical node

called BSROC is defined as a function of A, B and a constant node FPR. Finally a

functional relationship is represented by logical node BAUC.

This idea of developing complex models by DAGs representation will be further

extended in Chapter 6.

5.2.8 Assessing convergence of MCMC simulations

The output of a simulated MCMC should be treated with care. The sophisticated

Gibbs sampler implemented in BUGS and in general MCMC methods satisfied only

sufficient conditions for convergence. In general we need to assess convergence of a

simulated Markov chain by empirical methods, which may include a subjective deci-

sion of the data analyst.

In this work we base the assessment of convergence of MCMC simulations with

three different approaches:

1. Visual analysis via trace plots and autocorrelation functions (ACF). Trace plots

are the simulated samples versus the simulation index, these time series apport

substantial information about convergence. A trace can tell us if the chain has



5.2. A BAYESIAN MODEL 73

converged to its stationary distribution or if it needs a longer burn-in period.

Together the trace and the ACF gives us information about stationarity and tells

us if a chain mixed well, i.e. its excursions run rapidly across the posterior

space. In our experience a quick look at these graphical tools is more valuable

than statistical tests designed to assess convergence. At the end of this chapter

we will see clear examples where a model with bad parametrization delivers

convergence problems.

2. We report the Brooks-Gelman-Rubin (B-G-R) diagnostic (Gelman and Rubin,

1992 [48] and Brooks and Gelman 1997 [9]). This is a test based on analyzing

multiple simulated MCMC chains by comparing the variance within each chain

and the variance between chains. Large deviation between these two variances

indicates convergence problems. In our analysis we run 3 independent chains,

starting with random initial values.

3. A measure of mixing is the effective sample size (ESS) (Kass et al. 1998 [68]).

This number is defined as:

ESS =
M

1 + 2
∑L

k=1 ρ̂(k)
, (5.14)

whereM is the length of the simulated chain and ρ̂(k) is the empirical autocorre-

lation function of the chain. The value of L is taken as a lag where ρ̂(k) < 0.05.

A low value of ESS indicates bad mixing of the Markov chain.

We use the coda (Plummer et al., 2007) [91] package in R to analyze convergence .

In our experience, a serious data analysis work needs a combination of methods

to assess convergence and mixing. At the end of the chapter we report a case, where

the trace plots of a MCMC output clearly indicate non-stationarity and the B-G-R

test shows convergence, but the ESS points out bad mixing. In our work we declare

convergence if all three methods point out convergence for all parameters in the model.

Classical references about convergence issues in MCMC methods are Cowles and

Carlin (1996) [17] and Brooks and Roberts (1998) [10].

5.2.9 Using DIC for model selection

The Deviance Information Criterion (DIC) has been introduced by Spiegelhater et al.

(2002) [109] as a Bayesian model selection tool. It is based on trading off between

goodness of fit and model complexity:
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DIC = measure of fit + complexity penalty

where the measure of goodness of fit is based on the deviance statistic:

D(θ) = −2 logL(y|θ) (5.15)

and complexity of the model via:

pD = Eθ|y [D] −D
(
Eθ|y [θ]

)
(5.16)

= D̄ −D(θ̄) (5.17)

i.e. posterior mean deviance minus deviance evaluated at the posterior mean of the

parameters. pD should be approximately the true number of parameters. The DIC is

defined similarly to AIC (Akaike’s information criterion) as

DIC = D(θ̄) + 2 × pD = D̄ + pD. (5.18)

Models with smaller DIC are better supported by the data, in the sense of short-term

predictions like the AIC or the predictive error by cross-validation. As a practical rule,

a difference in DIC less than 5 is not considered as an important model improvement.

Therefore, just reporting a model with the lowest DIC can be misleading (Spiegelhal-

ter, et al. 2004) [110].

The DIC is trivially calculated from the output of the MCMC. It does not require

maximization over the parameter space, like the AIC and BIC (Bayesian Information

Criterion). Another advantage is that it can be used to compare non-nested models,

models with different hierarchical structures and models which involve dependent data

structure. Moreover, the DIC does not require the existence of a ”true model” like AIC

and BIC (see Ripley, 2004, pag. 159-161) [96].

DIC is based on posterior densities, i.e. it takes prior information into considera-

tion. In this way if a model is based on informative priors it may have a less DIC value

than a model based on non-informative priors. In general, in this work we use DIC as

a model assessment tool together with careful model diagnostic approaches.

5.3 Data analysis

In this section we analyze the data presented in Chapter 1 and Chapter 2 with the

techniques presented in the previous sections. We applied the bivariate random effect

model with vague prior distributions and two different link functions: logistic and
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Link function Parameter Mean 2.5% 50% 97.5%

cloglog σ2
D 1.066 0.581 1.016 1.820

σ2
S 1.118 0.606 1.067 1.899

σD,S -1.044 -1.788 -0.996 -0.564

Sensitivity (pooled) 0.955 0.945 0.955 0.965

Specificity (pooled) 0.951 0.934 0.952 0.966

Sensitivity (predicted) 0.951 0.897 0.955 0.986

Specificity (predicted) 0.924 0.686 0.952 0.994

logistic σ2
D 1.147 0.551 1.092 2.070

σ2
S 1.388 0.700 1.321 2.476

σD,S -1.071 -1.890 -1.027 -0.488

Sensitivity (pooled) 0.955 0.946 0.955 0.963

Specificity (pooled) 0.950 0.931 0.951 0.966

Sensitivity (predicted) 0.953 0.915 0.955 0.977

Specificity (predicted) 0.925 0.693 0.952 0.994

Table 5.2: Summary results of two fitted models. One model with complementary

loglog link and the other with logistic link. Posterior distributions are based on a

single chain of length 20,000 with the first 10,000 iterations discarded.

cloglog. Calculations are based on 3 chains with random starting values and with

20,000 replications. The last 10,000 iterations are used for analysis. We used these

3 chains to assess convergence. Graphical and numerical summaries are based on a

single chain of length 10,000. BUGS/R scripts and more details of these calculations

are in Chapter 7.

Table 5.2 summarizes the numerical results for these models. The variance covari-

ance matrix, in both models, indicates that there is substantial heterogeneity between

studies in both components Di and Si, with negative correlation as is expected.

Results are very similar in both models, but the model with logistic link func-

tion gives larger values for σ2
D and σ2

S and narrow confidence limits for sensitivity.

Figure 5.3 shows this result more clearly. The tails of the posterior distribution for

sensitivity summaries (pooled and predicted) are much lighter for the logistic link than

for the cloglog link function. The question is: which model should we use for infer-

ence?

To answer this question, we picked 200 simulated values (TPR∗,TNR∗) from

p(TPR,TNR|y) and we compare these pairs with (T̂PRi, T̂PRi). Figure 5.4 shows

the resulting scatter plots, the left panel corresponds to the model with cloglog link

and the right panel to the model with logistic link function.

The scatter of the predicted values are quite similar for both link functions. The
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Figure 5.3: Summary results for sensitivity and specificity. Upper panels correspond

to posterior distributions for pooled sensitivity and specificity. Lower panels show

predictive posteriors for a study not included in the review. Smoothed histograms cor-

respond to the model with logistic link function and bold line to the posterior densities

based on cloglog link function.

Figure 5.4: Scatter plots of pairs (FPR, TPR). Crosses denote (T̂PRi, T̂PRi), circles
simulated values form p(TPR,FPR|y). Left panel: Results for the model with cloglog

link function. Right panel: Results for the model with logistic link function.
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DIC for the model with logistic link is 426.5, while the DIC for the model with cloglog

link is 425.1. We found that the last model slightly better fits the data, but not substan-

tially. Given that the logistic link is easily interpretable (e.g. as diagnostic odds rations,

etc.) we choose this model for further analysis.

We pay particular attention to this posterior model checking, because the logistic

link function is applied commonly to binary data, but it may fit the data poorly. In

some circumstances, it may be more appropriate to model our uncertainty about the

link function, for example by using a mixture of link functions [74, 82].

Another model assumption that we should check is the normality of the random

effects. We stress the importance of this type of model checking in meta-analysis,

where the normal distribution for random effects is commonly applied without further

analysis. Figure 5.5 shows the qq-normal plots for standardized study effects D∗
i and

S∗
i and the qq-plot of the distances

d∗i = r∗Ti Λ∗r∗i ,

where r∗i = (D∗
i − µ∗

D, S
∗
i − µ∗

S), which are compared to a χ2 distribution with 2

degrees of freedom. We see that there are clear deviations to the normal distribution

and the random effects of some studies are inconsistent with the rest of the studies. In

Chapter 6 we model these deviations by incorporating study design information and in

general by using a bivariate t-distribution for random effects.

Finally, Figure 5.6 presents the trace plots for µ1, µ2, and the components of Σ,

these traces corresponds to the last 1000 simulated values of three chains with ran-

domly starting values. We can see that convergence is very stable for all parameters in

the model. In Chapter 7 we give more details on convergence checking.

BSROC, BAUC and BPS

The left panel of Figure 5.7 presents the BSROC with the 2.5%, 50% and 97.5% per-

centiles of its posterior distribution at each value of FPR, with wider posteriors for

larger values of FPR.

The posterior mean and percentiles of 2.5% and 97.5% of the posterior distribution

of the coefficient A is 6.112 (5.724, 6.513) and for B is -0.632 (-0.986 , -0.238), while

for the classical SROC curve we have 5.735 (5.384,6.086) and -0.298 (-0.535, -0.06)

respectively. The coefficient A is interpreted as a pooled diagnostic odds ratio in the

logistic scale, the classical SROC underestimate the diagnostic accuracy of the CT

technique in comparison to the BSROC. Both methods give different results with re-
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Figure 5.5: Diagnostic plots for multivariate normality of random effects.

spect to B, in this case the classical SROC underestimates the effect of the heterogene-

ity presented in these data. These two results are expected, the bias of the SROC is a

well known problem and most of the classical critics of the SROC curve reviewed in

Chapter 1 are resolved by the BSROC.

The right panel of Figure 5.7 shows the posterior distribution of the BAUC. The

posterior distribution of the BAUC has percentiles of 2.5%, 50% and 97.5% equal to

0.955, 0.975 and 0.987 respectively and mean 0.974. These results are slightly dif-

ferent from the estimated AUC calculated over the SROC which gives ÂUC = 0.981

and a bootstrap BCa confidence interval (0.969, 0.987). The reason why the AUC

calculated over the SROC has higher value than the posterior mean of the BAUC is

explained in Figure 5.7 where we can see that the SROC artificially dominates the

BSROC for larger values of FPR, this effect is caused by the underestimation of B. It

is very interesting, that the upper limit of the confidence interval based on the BCa

gives exactly the same numerical value as the 97.5% percentile of the posterior dis-

tribution of BAUC, the theory developed by Efron (1993)[38] showed that the BCa

confidence intervals can be transformed to posterior distribution for a parameter of in-

terest. However, the lower confidence limit of the BCa underestimate the dispersion

of these data.

The ability to predict results of a hypothetical study, that is not included in the sys-

tematic review, has fundamental importance in meta-analysis. In the previous section

in Table 5.2 and Figure 5.3 we presented the marginal posteriors of sensitivity and



5.3. DATA ANALYSIS 79

Figure 5.6: Trace plots for model parameters in the multivariate normality of random

effects.
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Figure 5.7: Left panel: crude estimates of the pairs (FPR, TPR) and the BSROC. Right

panel: posterior distribution of the Bayesian Area Under the Summary ROC Curve.

specificity. Figure 5.8 shows the BPS which is based on the jointly posterior distribu-

tion of (FPR, TPR). The BPS covers a greater region for FPR than TPR and excludes

studies which reported 100% sensitivity or 100 % specificity, the same applies for the

credibility intervals of the BSROC. One possible use of these predictive regions is to

look along the line where sensitivity = specificity and pick the two interception points.

These two points give the better and the worst case studies with a credibility of 95%.

For our data, we have that the better predicted case has a combination of sensitivity

and specificity of (0.985, 0.985) and the worst case has (0.878, 0.878).

All computations performed in this section took approximately three minutes, that

includes the simulation of three independent Markov chains on length 20,000 to assess

convergence and the model checking and graphical outputs.
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Figure 5.8: Predictive surface for the pairs (FPR, TPR).
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5.4 Numerical comparison with other approaches

The model introduced in this chapter is similar but not equivalent to other methods

reviewed in Chapter 1. Users of these meta-analytic techniques may be interested in the

difference between these techniques in practice. In this section, we present numerical

and graphical results that can clearly point out advantages and disadvantages of these

statistical techniques.

5.4.1 Comparisons with the classical bivariate approach

In Chapter 1 we have seen that a series of bivariate models with bivariate Gaussian

random effects has been proposed in the literature ( Reitsma et al., 2005 [94]; Arends,

2006 [3]; Chu and Cole, 2006 [12]; Macaskill [83]; and Harbord et.al., 2007 [59]) The

current implementation of these techniques are in SAS with using the NLMIXED pro-

cedure and in Stata software. Both implementations are based on Adaptive Gaussian

Quadrature, the programs have been made available by courtesy of Dr. Roger Harbord.

The classical bivariate model directly models the pairs of (tpi, tni) and uses lo-

gistic link function with a bivariate normal distribution for the random effects. We

reparametrized our Bayesian model in order to make results comparable in terms of

the classical model.
We use two data sets, first one with our data with 52 studies and second one with a

small set with 10 randomly selected studies. These 10 studies were selected with the
R commands:

> set.seed(123)
> sample(1:52, size = 10, replace = FALSE)
[1] 15 41 21 44 46 3 25 51 48 20
>

The SAS and Stata programs are run with the default initial values and without any

change in the programs’ setup. The Bayesian model is run with an a single chain with

length 100,000 with the first 50,000 discarded, this numerical setup gave exactly three

decimal values, i.e. values calculated without Monte Carlo error.

Table 5.3 presents the results of this numerical analysis. We can see that for the

case on n = 52 studies all softwares gave very similar numerical results. Both SAS

and Stata implementations deliver fast and reliable results. In general, we can see that

the model proposed in this chapter is comparable with previous models and software

implementations presented in the literature.
However, when we repeat the calculations for n = 10 we found that SAS prints

out the warning
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n =52 n=10

Coef. Std. [95% CI] Coef. Std. [95% CI]

SAS (*)

E(logitSe) 3.092 0.120 [2.850, 3.333] 2.694 0.202 [2.228, 3.161]

E(logitSp) 3.023 0.183 [2.655, 3.390] 3.021 0.416 [2.060, 3.981]

Var(logitSe) 0.255 0.135 [-0.016, 0.526] 0.023 0.051 [-0.094, 0.141]

Var(logitSp) 1.170 0.332 [0.504, 1.836] 1.204 0.060 [1.064, 1.343]

Corr(logits) -0.084 0.243 [-0.572, 0.403] -1.000 . [. , .]

Stata (*)

E(logitSe) 3.092 0.120 [2.856, 3.327] 2.694 0.202 [2.298, 3.091]

E(logitSp) 3.030 0.186 [2.665, 3.395] 3.030 0.445 [2.157, 3.902]

Var(logitSe) 0.255 0.136 [0.089, 0.726] 0.023 0.0507 [0.001, 1.700]

Var(logitSp) 1.198 0.332 [0.696, 2.063] 1.239 0.822 [0.337, 4.548]

Corr(logits) -0.075 0.243 [-0.503, 0.383] -1.000 . [. , .]

R/WinBUGS
E(logitSe) 3.097 0.123 [2.866, 3.346] 2.564 0.273 [2.029,3.107]

E(logitSp) 3.010 0.183 [2.656, 3.377] 2.451 0.534 [1.445,3.564]

Var(logitSe) 0.303 0.132 [0.118, 0.624] 0.428 0.299 [0.120,1.188]

Var(logitSp) 1.217 0.358 [0.671, 2.064] 2.421 1.704 [0.733,6.763]

Corr(logits) -0.066 0.223 [-0.487, 0.373] -0.286 0.352 [-0.830,0.486]

Table 5.3: Summary results for a bivariate random effect model. Three softwares SAS,

Stata and R/WinBUGS and two sample sizes n=52 and n=10. (*) SAS and Stata reports

convergence with warnings.

NOTE: GCONV convergence criterion satisfied.
NOTE: At least one element of the (projected) gradient

is greater than 1e-3.
WARNING: The final Hessian matrix is full rank but has

at least one negative eigenvalue. Second-order
optimality condition violated.

indicating convergence problems. In Table 5.3 we can see that the correlation para-

meter is reported equal to −1 without standard error and without confidence intervals.

Stata gave similar results, but without any warning message. Our MCMC calculations

gave convergence after about 5,000 simulations and posterior distributions reflect the

dispersion caused by reducing the number of studies in the analysis. Moreover, the

difficult correlation parameter has a posterior distribution with correct percentiles.
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5.4.2 Comparison with the HSROC curve

To compare the bivariate Bayesian model with the HSROC model proposed by Rutter

and Gatsonis (2001)[99] we used the BUGS code published by the authors. We ap-

plied exactly the same prior specifications presented in the BUGS script, this include

a carefully chosen informative prior distribution for the dispersion parameters in the

model (see Sections 3.2.1 and 3.2.2 in the paper).

We fit the HSROC curve model with the original data with n = 52 by running

three randomly initiated chains of length 100,000 and we discarded the first 50,000.

The panels of Figure 5.9 gave the trace plots of the last 1,000 simulated values of these

chains, we see that the parameters Θ, Λ and b = exp(β) do not converge. Interest-

ing, the B-G-R diagnostic reports convergence, this diagnostic is used for the authors,

which for our data gives misleading results. We try to extend the number of simula-

tions, but convergence was not possible. We also try standard non-informative priors

distributions for the variance parameters and WinBUGS stops report numerical errors.

Given all of these convergence problems we did not perform the analysis with smaller

sample size. However, we report the resulting HSROC curve in Figure 5.10, but these

results should also be carefully interpreted.

5.5 Concluding remarks

In this chapter we have presented a novel approach for meta-analysis of diagnostic

test. This approach is inspired in the classical SROC curve of Moses et al. (1993) [87],

however, by using modern Bayesian modeling techniques we avoided the classical

critics of the SROC model. Moreover, we presented a uniform modeling approach

that gave a Baysian version of the SROC curve, of the area under the curve, and the

predictive surface in the ROC space.

We summarize in the following points, which compare our approach with the cur-

rent ones:

1. Our approach includes all sources of variability like other bivariate meta-analysis

models. That is an important aspect in comparison with the SROC curve.

2. We make emphasis in model checking and model diagnostic. This aspect is

completely ignored for the current bivariate meta-analytic methods.

3. We get very similar numerical results in comparison with bivariate models im-

plemented in SAS and Stata. But superior results in terms of numerical conver-
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Figure 5.9: Trace plots for model parameters of the HSROC.
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Figure 5.10: Comparison between three different methods: SROC, HSROC and

BSROC.
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gence for small sample size. We make a case study with n = 10, which is a very

reasonable number of studies to be include in a meta-analysis.

4. With our experience on the SAS and Stata implementation of the bivariate meta-

analysis model, we recommend its use for relatively large sample sizes (at least

20 studies included in the meta-analysis).

5. The HSROC curve model is the only complete bivariate Bayesian approach pre-

viously presented in the literature. This model has been receiving critics for

bing difficult to interpret. We found that it is also numerically unstable and it

is based on a poor parametrization. In general, we do not recommend its use in

meta-analysis of diagnostic test.

We conclude that MCMC techniques are the method of choice to perform this

type of meta-analytical problems. Moreover, the numerical reliability of our model

permits us to make further complex extensions that will be presented in the following

chapter. These extensions allow us to use non-normal distributions for random effects,

fit bivariate meta-regression models with missing values on the covariates and make

automatic variable selection. Neither current popular statistical software (e.g. SAS

or Stata) nor classical methodological advances (e.g. adaptive Gaussian quadrature)

make these extensions possible.
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Chapter 6

Modeling extensions

”(...) Box also coined the aphorism ”all models are false but some models

are useful”, raising immediately the questions as to what makes a false

model useful and as to why should we bother to criticize models that we

know are false anyway.”

-D.R. Cox (2004)Methods and models in statistics: in honor of Professor

John Nelder, FRS, page 13.

6.1 Introduction

In this Chapter we extend the model presented in the previous Chapter. These model

extensions are used to summarize the meta-analysis in a novel way. That includes:

assessment of credibility of studies with retrospective designs relative to studies with

prospective designs, quantification of study relevance and meta-regression to explore

the influence of study quality, study population and study characteristics in diagnostic

results.

6.2 Accounting for studies with different designs and

relative credibility

Our meta-analysis includes studies with retrospective and prospective designs, which

is known as cross-synthesismeta-analysis. Including different study designs in a meta-

analysis may extend the inferential scope, e.g. the spectrum of the population under

study at the cost of increasing the complexity of the model.

89



90 CHAPTER 6. MODELING EXTENSIONS

Given the uncontrolled context where the data of retrospective studies are obtained,

we may expect that retrospective studies present substantially more variability than

prospective ones. One way to quantify this feature is by modeling the variance matrices

of the random effects for each study design separately. Let ΣR and ΣP be the between

studies covariance matrix for retrospective and prospective studies respectively, then

we model random effects as

(Di,d, Si,d) ∼ Normal2(µ,Λd), i = 1, 2, . . . , N, d ∈ {R,P}, (6.1)

where Λd = Σ−1
d . In this model we assume that each study informs us on the same

mean parameter µ but at the cost of increasing variability. One attractive feature of this

approach is that retrospective studies will be down-weighted if they present more vari-

ability than prospective ones. We may use priors onΛd to reinforce a weighted schema,

but we prefer to model a-priory Λd with a common non-informative distribution and

leave the data to dominate inference.

We can summarize study design variability by the trace of their covariance ma-

trices Σd and define the relative credibility (RC) of retrospective studies relative to

prospective ones by the ratio

RC =
trace(ΣP )

trace(ΣR)
. (6.2)

The posterior distribution of RC is used to describe this data feature, mass of pro-

bability concentrated away from 1 indicates lower level of evidence of studies with

retrospective design compared to studies with prospective design.

Data analysis

Figure 6.1 shows the posterior distribution of RC for our running example. This his-

togram is based on a single chain with 10,000 iterations after discarding the first 10,000

ones. The posterior mean is 0.552 with 95% credibility interval (0.190, 1.264), which

points out that studies with retrospective design have contributed with less informa-

tion to the analysis. The DIC for this model is 423.8 which indicates an interesting

improvement compared to the model with common variability between studies with

different design.

Accounting for study design variability has influenced summary diagnostic results

as follows: sensitivity predictive summaries are almost the same with 0.951 (0.892,

0.984) for prospective studies and 0.949 (0.871, 0.986) for retrospective ones. Speci-

ficity summaries are markedly different, with 0.935 (0.773, 0.992) for prospective

studies and 0.913 (0.579, 0.997) for retrospective ones.
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Figure 6.1: Posterior distribution of RC. RC = 1 indicates the same credibility

between studies with retrospective and prospective designs. Most of the probability

mass is over RC < 1, indicating less credibility for studies with retrospective designs.

Figure 6.2 presents the 95% predictive posterior surfaces for studies with retro-

spective and prospective designs, we can clearly see the effect of study design in the

meta-analysis. In synthesis, retrospective studies are less specific and more uncertain.

6.3 Non-Gaussian random effects and study relevance

In Section 6.2 we have quantified the relative variability for one predefined group of

studies with respect to the rest of the studies, which is relatively simple because we

know a-priory how the data have been collected according to their study design. In

this section we are interested to identify some particular studies that could influence

results and are not simple to find a-priory.

For this sort of outliers detection, we model the random effects (Di, Si) with a
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Figure 6.2: Differences in 95% predictive posteriors surfaces for studies with retro-

spective and prospective design.

mixture of two bivariate t-distribution with common mean µ, dispersion matrices ΛR

and ΛP , and common degrees of freedom ν > 2. This multivariate t-distribution

can be constructed as a mixture of bivariate normal distributions with the following

hierarchical structure,

(Di,d, Si,d) ∼ Normal2(µ,Ψi,d), i = 1, 2, . . . , N, d ∈ {R,P}, (6.3)

Ψi,d = wi × Λd, (6.4)

wi ∼ Γ(ν/2, ν/2). (6.5)

The weight wi is an outlier indicator for study i, which in the context of meta-analysis

we call study relevance, a term borrowed from Efron [34], but used here in a different

way. A study is relevant to the systematic review, if its results do not substantially de-

viate from the rest of the studies. All studies are relevant a-priory with mean relevance
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of 1. Less relevant studies will concentrate posterior distribution of wi with values less

than 1.

We may give a fixed small value of ν, e.g. ν = 4 or admit our uncertainty about

ν by modeling this parameter with an exponential prior distribution with support on

values ν > 2 and parameter τ (Geweke, 1993) [50]. Values of τ between [0.5, 0.01]

correspond to degrees of freedom in the range of 2 to 100.

Outliers modeling by a scale mixture approach has a long history in Bayesian data

analysis, in linear models it was proposed by De Finetti (1961) [22], in generalized

linear models by West (1984, 1986)[128, 129] and for recent modern applications see

Congdon (2006) [14].

Data analysis

The data of our example resulted from a carefully performed systematic review and we

could expect relatively good results for a relevance analysis. We applied the mixture

multivariate t-distribution (6.3) by running a chain of length 20,000 and by discarding

the first 10,000 iterations as previous sections. The estimated degrees of freedom ν

is 8.47 (2.62, 30.96), indicating the presence of studies with lower relevance. Studies

number (R)1, (R)3, (R)4, (R)7, (P)25, (P)34 had posterior mean relevance weights of

0.65, 0.71, 0.69, 0.73, 0.73 and 0.77 respectively. Study number (P)48 has relevance

0.25 indicating that it is a clear outlier. Figure 6.3 displays the location of these studies

in the ROC space with circles and their study identification number. The DIC = 409.83

shows an important improvement on model building. We see that model design and

study relevance are both important features of this meta-analysis.

Going back to study information, we found that these unusual diagnostic results

have been produced by a remarkable imbalance between disease and non-disease groups,

which is more accentuated in retrospective studies. This analysis points out serious de-

sign deficits in published results.

6.4 Meta regression

In this section, we present a meta-regression approach that may be useful to analyze

the impact of some published information, like study characteristics or population dif-

ferences, in diagnostic accuracy. This type of analysis is evidently not possible for

single studies and gives an extra pay-off to the meta-analysis. However, it is worth

mentioning some limitations of meta-regression methods: results are susceptible to
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Figure 6.3: Relevance analysis, circles indicate estimated studies with lower relevance,

in particular study number 48 has a relevance of 0.25.

aggregation or ecological bias, which occurs when study results and published pop-

ulations’ summaries do not directly reflect the relationship between patient characte-

ristics and patients’ diagnostic outcomes. In addition, the published available data for

analysis may be limited, we mitigate this issue by modeling missing covariate data.

In synthesis, meta-regression analysis should be interpreted as a knowledge discovery

approach where results may be useful to suggest further investigation.

It is easy to include a regression structure to analyze systematic influence of vari-

ables in diagnostic results. We write (µi,D, µi,S), the fixed effects of the model, as a

system of two regression equations,

µi,D = α0 + α1xi,1 + . . .+ αpxi,p, (6.6)

µi,S = β0 + β1xi,1 + . . .+ βpxi,p, (6.7)

where each equation depends on a known vector of covariates (xi,1, . . . , xi,p) and un-

known regression coefficients vectors (α1, . . . , αp) and (β1, . . . , βp).

A positive value of αi corresponds to an improvement of the diagnostic perfor-

mance and a negative value to a reduction of this feature. They can be directly inter-
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preted as an odds ration in the logarithmic scale. In the same line, a positive value

of βi represents an increase in test positive outcome and negative values a reduction.

Posterior distributions centered at 0 represent variables that do not have any influence

on test results.

6.4.1 Variable selection strategies

Prior distributions for the regression coefficients are essential ingredients in any Baye-

sian analysis, they encapsulate a variable selection strategy. The nature of our model

building allows us to incorporate different variable selection strategies in a complex hi-

erarchical model. We present two well known Bayesian variable selection procedures

that will be compared in our data analysis.

Ridge regression

In ridge regression we model αj and βj as exchangeable with two independent Gaus-

sian distributions,

αj ∼ N(0, φα), βj ∼ N(0, φβ). (6.8)

Now, for fixed values of φα and φβ this approach is equivalent to the classical ridge

regression, where these parameters are usually estimated by a cross-validation tech-

nique, for an excellent introduction to ridge regression see Hastie, Tibshirani and

Friedman (2001, pag 59-64)[61]. In Bayesian modeling we prefer to admit uncertainty

on these scale parameters and model them with two independent Gamma distributions:

φα ∼ Γ(rα,mα) and φβ ∼ Γ(rβ,mβ). We use the constants rα, rβ ,mα andmβ to make

a sensitivity analysis for the regression results.

Stochastic Search Variable Selection

Stochastic Search Variable Selection (SSVS) was introduced by George and McCul-

loch (1993)[49], it consists of modeling the regression coefficients with mixture a

normal distributions with common mean 0 and different precision parameters. The

SSVS procedure is also known as Spike and Slab Variables Selection, which has been

developed from the classical and Bayesian perspectives, for a recent review of these

techniques see Ishwaran and Rao (2005)[66].

The method presented in this section is close to Dellaportas et al. (2000, 2002)[23,

24] and based on the implementation in BUGS given by Ntzougras (2002)[89].
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In the SSVS approach we model αj and βj as exchangeable with two independent

mixture Gaussian distributions,

αj ∼ γα,i N(0, φα) + (1 − γα,i) N(0, cα), (6.9)

βj ∼ γα,i N(0, φβ) + (1 − γβ,j) N(0, cβ). (6.10)

The random variables γα,i and γα,i are indicator variables, which are modeled a priori

as independent with

γα,i ∼ Ber(pα,i) and γβ,j ∼ Ber(pβ,j). (6.11)

The probabilities pα,i and pβ,j are hyper-parameters that represent the probabi-

lity that a covariate xi will be included in the model. We can set these probabilities

equal to 0.5 to indicate prior ignorance, or model our uncertainty with vague priors for

pα,i, pβ,j ∼ Beta(0.5, 0.5) (Box and Tiao, 1973) [7].

The precision parameters cα and cβ are also considered know a priory. They are

set to a large value to indicate a spike at 0, which corresponds to a model where the

regression coefficients are all equal to 0. In our model we set up cα = cβ = 100.

Uncertainty about the scale parameters φα and φβ is modeled with two independent

Gamma distributions: φα ∼ Γ(rα,mα) and φβ ∼ Γ(rβ,mβ) as in the previous section.

Low values of φα and φβ correspond to the stab of the model, which allows that the

regression coefficients can take any value far from 0.

6.4.2 Accounting for covariates with missing data

One additional problem in meta-regression is the presence of covariates with missing

values. Chapter 2 reports 4 covariates with proportions of missing values ranging from

10% to 21%. If we select only studies with completed reported data we reduce our

sample form 52 to 23 studies, with the potential problem of bias results. Including a

sub-model for missing covariates can alleviate this problem.

In a Bayesian approach, missing covariates data is reduced to a posterior prediction

problem. In our running example, we have only missing data in dummy covariates, so

for each covariate zk (k = 1, . . . , 4) we assign a Bernoulli data model,

zk ∼ Ber(pzk
),

with vague priors for pzk
∼ Beta(0.5, 0.5) (Box and Tiao, 1973) [7]. Posterior distri-

butions of pzk
depend on the observed part of each covariate and the contribution of
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Figure 6.4: DAG for the meta-regression model including mixture t-distribution.

the study effect (Di, Si). Missing values are imputed by sampling from the predictive

posterior distribution of zk in each MCMC iteration.

Figure 6.4 presents the DAG for the meta-regression model including imputation

for missing covariate data and variable selection by the ridge approach.

6.5 Data analysis

We fitted two models, one with ridge regression and another with SSVS approach,

covariates with missing values where, also, included in the model.

Figure 6.5 summarizes the results for both models. Each segment corresponds

to the 5%, 50% and 95% percentiles of the posterior distribution for each group of

coefficients. The left panel corresponds to the posteriors for αis and the right panel for

βis, solid lines correspond to the model with SSVS and dotted lines correspond to the

model with ridge regression. We can see that both variable selection methods point out

the same conclusions that we summarize in the following points:

• Studies performed outside University Hospitals tend to present better diagnos-
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Figure 6.5: Summary plot for regression analysis. Left panel: regression coefficient αi

explaining influence of test discriminatory power. Right panel: regression coefficient

βi explaining influence of positive test results.
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tic results indicating that some of these clinics may have specialists in this CT

technology.

• Studies with Contrast Medium do not improve diagnostic results, and increase

false positive rates. This result indicates that contrast medium should be avoided.

• For studies with more than 50% of women in the study population the CT di-

agnostic tends to deliver less positive values. This result show that women can

present a variety of alternative pathological findings.

• Studies with Children included present better diagnostic results, probably by the

fact that this is a common disease in the children population.

• Studies with Valid reference standard tend to deliver better results with less in-

crease of false positives rates. This result, together with the trend of studies with

follow-up to reduce the number of positive test results can be interpreted as a

bias correction for lack of quality in the studies.

This analysis shows the importance of the modeling effort to include missing covari-

ates data, some interesting results including a bias correction for low quality perfor-

mance (no valid reference and no follow-up) are coming from this part of the data.

Other modeling characteristics, for example the heavy tails of the random effects re-

main important, in both models the number of degrees of freedom ν was estimated as

9.476 (2.214, 48.860) for the SVSS and the relative credibility for studies with retro-

spective design remains low RC 0.380 (0.084, 1.139).

The DIC of this model is 601, which indicates less model fitness than the previous

models. However the presence of model components with missing values and the

structural distribution for variables selection make this DIC not comparable with the

models without covariates. In this case it should be more appropriate to decompose

the DIC by model components (see Spiegelhalter, et al. 2004 [110]).

For the scale parameters we have: φ1 2.373 (0.648, 3.799) and φ2 2.288 (1.222,

3.799). We analyze the sensitivity of these results with two priors for the scale para-

meters φ1 and φ2, one using a less informative Γ(1, 1) and another with a strong in-

formative Γ(10, 5). Results remained robust to this prior sensitivity analysis. Further-

more, we run this analysis from 3 chains randomly initiated at different starting points

and convergence presented no problem.
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6.6 Concluding remarks

In this chapter we have presented a series of innovative modeling extensions. Two new

concepts in multivariate meta-analysis are presented, the relative credibility between

studies with different designs and the study relevance as a measure of study quality.

We have introduced a bivariate meta-regression model with two different variable

selection procedures and with the possibility to include covariates with missing data.

We conclude this chapter with the following summary remarks:

• The use of a mixture of bivariate distributions to model study effects, makes it

possible to understand the effect of performing cross-synthesis , i.e. the inclusion

of studies with different designs in the meta-analysis.

• We have measured the relative credibility of studies with retrospective design in

comparison to studies with prospective design. We have seen that results form

studies with retrospective design are systematically more disperse.

• The measurement of study relevance through a bivariate-t distribution has shown

that some studies are not in concordance with the rest of the meta-analysis and

these studies presented possible serious design and quality problems.

• We have presented a bivariate meta-regression model to assess systematic vari-

ability through test, study and population characteristics. These models have

included covariates with missing data as well. At the present, no other bivariate

meta regression approach has been presented in the literature with this level of

flexibility.

• Two different Bayesian variable selection procedures have been applied. In gen-

eral, we have experienced the tremendous problem of finding covariates that

point out about clear trends. That may indicate that the published data is not

sufficient to resolve these issue.

We conclude that the Bayesian approach to meta-analysis of diagnostic test data

allows modeling extensions which reflect the complexity of the published data. These

modeling extensions can be implemented with reliable numerical techniques based on

MCMC implemented in BUGS and R. The next chapter centers on the important topic

of making these methods freely accessible to practitioners.
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Statistical Computations with R and

BUGS

”Research statistician proudly have a great idea, write it up, getting

glowing referees reports from a good journal, maybe even read a paper to

the Society, and then sit back and wait for the idea to conquer the world.”

And wait and wait and wait ...

-Brian D. Ripley (2002) Statistical Methods Need Software: a View of

Statistical Computing. RSS.

7.1 Introduction

In this chapter we describe how to perform the bootstrap calculations of Chapter 3 and

to fit the Bayesian models introduced in Chapter 5 and Chapter 6. We use R [93] and

WinBUGS [79] statistical systems, both available for free. We assume that the user

has experience in both statistical systems. Our statistical analyzes have been done on

Windows systems and tested on Windows XP, VISTA and Linux operating systems

respectively.

We have prepared two R scripts as complementary material:

• One script to make the bootstrap calculations of Chapter 3. This file is called

meta-boot-Rscript.r. This script can be run from start to the end without any

special setup.
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• Another script is called meta-bayes-Rscript.r to perform the statistical analy-

sis of Chapter 5 and Chapter 6. This script requires some special setup that is

described in the following two sections.

7.2 Getting started

You should setup your computational environment as follows:

1. Install R (2.7.0 or above) and WinBUGS (1.4.3).

2. Within the R’s console install the package R2WinBUGS and load it:

> library(R2WinBUGS)

3. Setup your working directory and the WinBUGS directory, e.g.

> bugsdir <- "C:/Programs/WinBUGS14"
> workdir <- "C:/meta-analysis"

4. The file models.txt contains our models in BUGS language. It has to be

edited by splitting it up into 6 files, one for each model. For instance, the file

model1.txtwill correspond to our starting model of Chapter 5. Put these model

files in your working directory.

5. Copy and paste the data section of the script into your R workspace:

# true positive
tp <- c(87, 111, 184, 168, ...
# number of patients with disease
n1 <- c(89, 115, 192, 169, ...
...



7.3. BOOTSTRAP METHODS IN R 103

7.3 Bootstrap methods in R

In this section we explain how to make the bootstrap calculations of Chapter 3. There

are two packages in R to make bootstrap analysis, one is the boot package which

is linked to the volume of Davison and Hinkley (1997) [19] and the other package

is bootstrap which is associated to the introductory book of Efron and Tibshirani

(1993) [39]. In our calculations we use boot, which in general has a more flexible

implementation and is part of the standard distribution of R.

The first step to make bootstrap calculations with the package boot is to write

the statistics of interest in the sampling form. This is done by defining a function

with arguments corresponding to the data and to a vector with observations’ index as

following:

theta.boot <- function(dat, Ind){
S <- dat[Ind, 1]
D <- dat[Ind, 2]
f1 <- lm(D˜S)
A <- coef(f1)[1]
B <- coef(f1)[2]
f <- function(FPR, A, B){
x <- A/(1-B) + (B+1)/(1-B)*log(FPR/(1-FPR))
exp(x)/(1+exp(x))

}
theta <- integrate(f, A, B, lower=0, upper=1)$value
var.theta <- var.linear(

empinf(data = dat[Ind, ],
statistic = theta.abc,
type = "jack", stype="w")
)

return(c(theta, var.theta))
}

Here the function theta.boot gives the sampling form of the Area Under the

Summary ROC curve. It has two arguments, one is dat, the dataframe with the original

data, and the other is the argument Ind, which is used by the function boot() to

produce the bootstrap values based on the statistic theta.boot.

This function is implemented to make all the bootstrap confidence intervals pre-

sented in Chapter 3. Its value is the estimated AUC and its variance calculated with

the Jackkinfe method for a particular bootstrap sample. To calculate this variance, we

use two functions from the package boot. One is empinf(), which calculates the em-

pirical influence values for the statistic applied to a data set. Its value is a vector of the

empirical influence values. The second function is var.linear(), which estimates

the variance of the statistic from its empirical influence values.
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In order to apply empinf() to estimate the variance of the AUC in each bootstrap

sample, we need to write the statistics AUC in its weighted form. We write the function

theta.abc for this purpose:

theta.abc <- function(dat, P) {
S <- dat[ , 1] ; D <- dat[ , 2]
P <- abs(P/sum(P))
f1 <- lm(D˜S, weights = P)
A <- coef(f1)[1]
B <- coef(f1)[2]
f <- function(FPR, A, B)

{
x <- A/(1-B) + (B+1)/(1-B)*log(FPR/(1-FPR))
exp(x)/(1+exp(x))
}

integrate(f,A, B, lower=0, upper=1)$value
}

The function theta.abc is implemented in a very flexible way. Note that its second

argument is P, each component of P, say P[i] is the probability that the observation

dat[i, ] is in a bootstrap sample. This function can be used to perform Jackknife

variance calculations or more sophisticated bootstrap calculations like the non para-

metric ABC confidence interval (see Efron and Tibshirani 1994, page.188)[39].

The following lines gives the bootstrap analysis with R = 1000 bootstrap replica-

tions of the AUC:

library(boot)

aucboot <- boot(dat, theta.boot, R=1000)

ci <- boot.ci(aucboot, conf=c(0.90, 0.95,0.99),
type=c("norm","basic", "stud", "perc",
"bca"))

ci

Intervals :
Level Normal Basic Studentized
90% (0.975, 0.990 ) ( 0.976, 0.991 ) (0.972, 0.990)
95% (0.973, 0.991 ) ( 0.976, 0.993 ) (0.969, 0.992)
99% (0.970, 0.994 ) ( 0.974, 0.998 ) (0.960, 0.997)

Level Percentile BCa
90% (0.971, 0.986) (0.973, 0.986)
95% (0.969, 0.986) (0.971, 0.987)
99% (0.965, 0.989) (0.966, 0.989)
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In Chapter 3, we have introduced a transformed version of the bootstrap-t interval.

To implement this bootstrap confidence interval we need to define three functions: the

original function m(·), the inverse function m−1(·) to scale back the interval, and the
first derivativem

′

(·) to calculate the variance in the transformed scale:

m <- function(x){
m1 <- x/(1-x)

(m1ˆ0.303 -1)/0.303
}

m. <- function(x){
(x/(1-x))ˆ(0.303-1)*1/(1-x)ˆ2
}

minv <- function(y){
a <- 0.303*y+1
a <- aˆ{1/0.303}
a/(1+a)
}

The bootstrap calculations defined on the scale of the function m(·) is performed
as following:

boot.ci(tmp, conf=c(0.90, 0.95,0.99),h=m, hdot=m., hinv=minv,
type=c("norm", "stud"))

.......
Intervals :
Level Normal Studentized
90% ( 0.973, 0.987 ) ( 0.971, 0.989 )
95% ( 0.971, 0.987 ) ( 0.967, 0.990 )
99% ( 0.967, 0.989 ) ( 0.953, 0.993 )
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7.4 Bayesian analysis

To perform the statistical analyzes described in Chapter 5 and in Chapter 6, we run

BUGS within R with the function bugs() from the package R2WinBUGS [112]. This

approach combines the powerful MCMC calculations implemented in BUGS and gives

flexibility for building plots and further summaries within R. It is the recommended

form to make this type of Bayesian statistical analysis.

7.4.1 Fitting a model with R and BUGS

We call Model 1 the simple bivariate Generalized Linear Mixed effects model, with

logistic link function and bivariate normal random effects distribution. This is the

simplest model presented in Chapter 5. In order to fit this model, we assume that the

BUGS code for Model 1 is in the file model1.tex:

model
{

for( i in 1 : n ) {
tp[i] ˜ dbin(tpr[i], n1[i]); fp[i] ˜ dbin(fpr[i], n2[i])
logit(tpr[i]) <- m[i,2]/2 + m[i,1]/2 # (Di + Si)/2
logit(fpr[i]) <- m[i,2]/2 - m[i,1]/2 # (Di - Si)/2
m[i,1:2]˜dmnorm(mu[], sigma.inv[1:2 ,1:2 ] )

}
# Priors ...

mu[1] ˜ dnorm(0, 0.25)
mu[2] ˜ dnorm(0, 0.25)
sigma.inv[1:2,1:2] ˜ dwish(R[1:2,1:2], 3)

# Summary pooled statistics ...
x <- (mu[1]+mu[2])/2
y <- (mu[2]-mu[1])/2
se <- exp(x) / ( 1 + exp(x) ) # with logit link
sp <- 1 - exp(y) / ( 1 + exp(y) ) # with logit link

# Predictive summaries ...
m.star[1:2] ˜ dmnorm(mu[], sigma.inv[1:2 ,1:2] )
x.star <- (m.star[1]+m.star[2])/2
y.star <- (m.star[2]-m.star[1])/2
se.star <- exp(x.star)/(1 + exp(x.star))
sp.star <- 1 - exp(y.star) /(1 + exp(y.star))

# Variance covariance matrix for random effects...
sigma[1:2, 1:2] <- inverse(sigma.inv[ , ])

}

To fit this model, we need to specify two R objects, one with the names of the data

and another with the names of the parameters of interest, so in R we have:

> data <- list ("R", "tp", "n1", "fp", "n2","n")
> parameters <- c("sigma", "se", "sp", "se.star", "sp.star")
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The function bugs() has a series of arguments that are needed to run BUGS:

ct.m1 <- bugs(data, inits=NULL, parameters, "model1.txt", n.chains = 1,
n.iter = 20000, n.thin=1, bugs.directory = bugsdir,
working.directory = workdir, clearWD=TRUE, debug=FALSE)

The first argument refers to the data nodes, the second how initial values are gener-

ated (here NULL means that BUGS will generate these values randomly), parameters

is the vector of parameters to monitor and mode1.txt the BUGS model.

In this example, the argument n.chains=1 indicates that we generate one chain,

n.inter = 20000 the length of the chain, by default the first n.inter/2 iterations

will be omitted for analysis. For more details see the help files of bugs().

The resulting object ct.m1 is an R object from the class mcmc.list, which can be

analyzed using the package coda or manually as we do in this section. For example

the print() function gives a summary of the object:

> print(ct.m1, digits.summary = 3)
Inference for Bugs model at "model1.txt", fit using WinBUGS,
1 chains, each with 20000 iterations (first 10000 discarded)
n.sims = 10000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5%
sigma[1,1] 1.359 0.441 0.687 1.042 1.298 1.605 2.379
sigma[1,2] -0.952 0.366 -1.827 -1.150 -0.913 -0.698 -0.371
sigma[2,1] -0.952 0.366 -1.827 -1.150 -0.913 -0.698 -0.371
sigma[2,2] 1.522 0.471 0.805 1.191 1.455 1.774 2.644
se 0.955 0.005 0.946 0.952 0.956 0.959 0.965
sp 0.951 0.008 0.932 0.946 0.951 0.957 0.966
se.star 0.952 0.025 0.892 0.941 0.956 0.968 0.984
sp.star 0.923 0.086 0.680 0.904 0.950 0.976 0.995
mu[1] 6.046 0.212 5.636 5.906 6.046 6.186 6.469
mu[2] 0.099 0.216 -0.319 -0.046 0.098 0.245 0.533
m.star[1] 6.051 1.175 3.770 5.289 6.056 6.804 8.399
m.star[2] 0.135 1.263 -2.320 -0.706 0.132 0.975 2.626
deviance 372.057 14.097 344.800 362.300 371.800 381.025 401.002

DIC info (using the rule, pD = Dbar-Dhat)
pD = 54.4 and DIC = 426.5

The following lines show how to access sensitivity and specificity posterior distri-

butions and plot them:

> sensitivity <- ct.m1$sims.array[,1,"se"]
> specificity <- ct.m1$sims.array[,1,"sp"]
> par(mfrow = c(1,2))
> hist(sensitivity, breaks=80, prob=T, main="",
xlab="sensitivity")
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Figure 7.1: Summary plot. Left panel: Posterior distribution for sensitivity. Right

panel: Posterior distribution for specificity.

> lines(density(sensitivity), lwd = 2, col ="blue")
> hist(specificity, breaks=80, prob=T, main="",
xlab="specificity")
> lines(density(specificity), lwd = 2, col ="red")
> par(mfrow = c(1,1))

Figure 7.1 displays the resulting histograms. For further analysis see the supple-

mentary R script meta-bayes-Rscript.r.
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7.4.2 Comments on BUG codes for diverse model extensions

In the Appendix B we give the BUGS code for each model fitted in Chapter 5 and

Chapter 6. Here we give the description of these models with some comments on

specific BUGS code.

Model 2

This model is similar to Model 1, but we use a complementary log log link function,

which is implemented by changing two lines in the model:

cloglog(tpr[i]) <- m[i,2]/2 + m[i,1]/2 # (Di + Si)/2
cloglog(fpr[i]) <- m[i,2]/2 - m[i,1]/2 # (Di - Si)/2

Model 3

This model is Model 1, but we model the variance covariance matrix for the random

effects as a function of the study design. We calculate the Relative Credibility. This

structural variance model is implemented by defining the following random effects

distribution:

m[i,1:2] ˜ dmnorm(mu[], sigma.inv[ design[i ], 1:2, 1:2])

with priors

# Priors ...
sigma.inv[ 1, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)
sigma.inv[ 2, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)

and new summary statistics

# Summary statistics
sigma[1, 1:2, 1:2] <- inverse(sigma.inv[1, 1:2, 1:2]) # Retrospective design
sigma[2, 1:2, 1:2] <- inverse(sigma.inv[2, 1:2, 1:2]) # Prospective design
tr.Rt <- sigma[1, 1:1, 1:1] + sigma[1, 2:2, 2:2]
tr.Pr <- sigma[2, 1:1, 1:1] + sigma[2, 2:2, 2:2]
RC <- tr.Pr / tr.Rt # Relative Credibility

The vector design[i ] has value 1 or 2 for retrospective and prospective design

respectively. In order to run this model, we need the vector design[i ] to be visible

in the R workspace. We need also to specify the data and nodes to monitor in R by:

data <- list ("R", "tp", "n1", "fp", "n2", "n", "design")
parameters <- c("RC", sigma)
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Model 4

We extendModel 3 to have bivariate random effects with a t-distribution. This model is

implemented with scale mixture approach, which is achieved by defining the following

random effects distribution:

m[i,1:2] ˜ dmnorm(mu.0[1:2 ], sigma.inv[ design[i ], 1:2, 1:2])
w[i] ˜ dgamma(nu.2, nu.2) I(0.005, 3)
y[i, 1] <- mu[ 1] + m[i, 1] / sqrt(w[i])
y[i, 2] <- mu[ 2] + m[i, 2] / sqrt(w[i])
logit(tpr[i]) <- (y[i, 2] + y[i, 1])/2
logit(fpr[i]) <- (y[i, 2] - y[i, 1])/2

The prior distribution for the number of degrees of freedom is given by:

nu.2 <- nu/2
nu ˜ dexp(eta) I(2, 100 ) # prior for df exponential eta
eta ˜ dunif(0.02, 0.5) # prior for eta 0.02 to 0.5, which

# implies df between 2 to 50

Model 5

This is a bivariate meta-regression model based on Model 4. This model implements

the ridge regression for variable selection and allows to use covariates with missing

data. It has three new blocks. One with the bivariate regression equation, one with the

priors with the regression coefficients and another one with the sub-model for missing

data:

# Regression equations ...
mu[i,1] <- alpha0 + alpha[1, country[i]] + alpha[2,hosp[i]] +
alpha[3,inclus[i]] + alpha[4,indfind[i]] + alpha[5,design[i] ] +
alpha[6,contr[i]] + alpha[7,localis[i]] + alpha[8, child[i]]

mu[i, 2] <- beta0 + beta[1, country[i]] + beta[2,hosp[i]] +
beta[3,inclus[i]] + beta[4,indfind[i]] + beta[5,design[i] ] +
beta[6,contr[i]] + beta[7,localis[i]] + beta[8, child[i]]

#...

# Prior distributions for regression coefficients ...
for( i in 1:p) {alpha[i, 1] <- 0}
for( i in 1:p) {

alpha[i, 2] ˜ dnorm(0.0, phi1)
}

for( i in 1:p) {beta[i, 1] <- 0}
for( i in 1:p) {

beta[i, 2] ˜ dnorm(0.0, phi2)
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}
# Scale parameters ...
phi1 ˜ dgamma(10, 5)
phi2 ˜ dgamma(10, 5)
#...

# Sub-model for missing covariates ...
for(i in 1:n){

fup.na[i] ˜ dbern(p.fup); fup[i] <- fup.na[i] +1
}

p.fup ˜ dbeta(0.5, 0.5)
#...

Model 6

This is the same model as Model 5, but with SSVS method for variable selection.

This part of the model is implemented with a mixture normal distribution for each

regression coefficient:

# Priors for regression coefficients...
for( i in 1:p) {

g1[i]˜ dbern(0.5)
alpha[i, 2] ˜ dnorm(0.0, tprior1[i] )
tprior1[i] <-pow(100, 1-g1[i])*phi1
}

for( i in 1:p) {
g2[i]˜ dbern(0.5)
beta[i, 2] ˜ dnorm(0.0, tprior2[i])
tprior2[i] <-pow(100, 1-g2[i])*phi2
}

phi1 ˜ dgamma(10, 5)
phi2 ˜ dgamma(10, 5)



112



Summary remarks

”There must be, he thought, some key, some crack in this mystery he could

use to achieve an answer.”

-P.C. Doherty, Crown in Darkness

In this final chapter is summarized the results of this work and draws attention to

points about further research work in this area.

As a general remark, either from the classical or Bayesian perspective, modern

statistics provides important improvement in meta-analysis of diagnostic test. In the

author’s opinion this line of research will play a fundamental role in the upcoming

problems of complex multiparameter meta-analysis (Ades and Sutton, 2006) [2].

In Chapter 1 we have reviewed some clear limitations of the the SROC curve.

However, this method is usually applied in practice and complex statistics, like the

area under the SROC curve, is currently reported as a summary of the meta-analysis

(see Gatsonis and Paliwal (2006) [43]). In Chapter 3 we used bootstrap methods

and variance stabilization techniques to improve statistical inference of the AUC. We

have reviewed and illustrated several bootstrap techniques and proposed a specially

designed bootstrap confidence interval for the AUC, based on a transformed version of

the bootstrap-t interval.

These confidence intervals were evaluated with an extensive simulation experi-

ment. This experiment shows that for meta-analysis with small number of studies,

standard statistical methods perform poorly, second order accurate bootstrap methods

(BCa and bootstrap-t) deliver unstable results, but the transformed bootstrap-t appro-

ach is extremely effective.

Bootstrap methods in meta-analysis could be a clear area of further research. One

possibility is to extend the methodology presented in Chapter 3 to make comparisons

of AUC. For example, build confidence intervals for the difference of AUC of two
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or more different diagnostic tests. What we do not recommend is to follow a boot-

strap modeling approach (e.g. using GLMM) in this area, we have found that a direct

Bayesian modeling is straightforward and numerically stable.

In Chapter 5 and Chapter 6 we have dealt with the problem of modeling multiple

source of uncertainty in meta-analysis. A Bayesian model building approached was

applied. The Bayesian paradigm has been applied with pragmatism, which includes

the use of posterior model checking, building diagnostic plots and trying to understand

deficits of the fitted model. The following are the main aspects of our approach:

• The bivariate model presented in Chapter 5 is simple, comprehensive and it is

based on the classical SROC curve. However it improves upon the SROC model

in all of its drawbacks.

• New Bayesian summaries statistics have been presented those include: the Ba-

yesian SROC, the posterior distribution of the AUC and the Bayesian predictive

surface. All are comparable with other classical approaches.

• In Chapter 5 the bivariate model was compared with the HSROC, an alternative

full Bayesian approach. The HSROC produced very unstable results for our data.

The bivariate model was, also, compared with other similar models implemented

in SAS and Stata. We found no difference in results for large samples. For small

samples, the Bayesian approach has a clear numerical advantage.

• Models in meta-analysis of diagnostic test are fitted without any sort of model

checking or model criticism (e.g. link function, structural distribution, etc.). This

is a dangerous practice, which could end up in fitting models that may poorly

fit the data at hand. In our Bayesian approach we make particular emphasis in

model checking and validation.

• Previous approaches of multivariate meta-analysis have used the normal distri-

bution for random-effects exclusively. The SAS NLMIXED procedure does not

allow the fitting of any other random-effect model. This work has shown that the

normal distribution is not suitable for these data. We proposed to model random

effects as a mixture of normals and mixtures of t-distributions. Important data

characteristics are explained with these extensions, like changes of variability

between study designs (relative credibility) and relevance of particular studies.

• Performing a meta-regression is conceptually simple, but operationally very

complex. For example, a variable selection procedure should be included as



a model strategy and there are many ways to do this. Here we proposed two ap-

proaches one based on ridge regression and another based on SVSS. Although

these techniques have been well studied in multiple linear regression (Ishwaran

and Rao, 2005)[66]), their application in meta-regression or regression with

missing data covariates remains a topic of research.

• MCMC computations have been done with BUGS, which assists us to perform

complex Bayesian modeling. There may be room to improve sampling tech-

niques in some specific situation, but we can report very stable and efficient

results in our applications.

One problem that is still open in meta-analysis of diagnostic test is the assessment

of publication bias. Deeks et al. (2005) [20] examined the limitation of current clas-

sical techniques (e.g. funnel plots) to detect publication bias in meta-analysis of diag-

nostic test. Interesting, we have found that studies with lower relevance are associated

to studies with severe imbalance between the sample size of disease and non-disease

groups in the study. We can conjecture that studies with lower relevance in the meta-

analysis are associated with publication bias. It could be interesting to have access to

more meta-analysis data and to investigate this result.

Combining studies, which reports a single threshold value is the most common case

in meta-analysis. However, it could be interesting to extend our approach to the case of

studies reporting multiple threshold values. Currently, the only approach presented in

the literature is Dukic and Gatsonis (2003) [27], which is based on the HSROC curve

model (Rutter and Gatsonis, 2001). These authors pointed out some limitations of this

methodology, it could be interesting to develop an alternative approach based on our

bivariate Bayesain model.

Finally in Chapter 7 we have explain details on the sophisticated software imple-

mentation of our methods. We plan to port these programs and other Bayesian method

for meta-analysis to a free available package in R.



116



Appendix A: Posterior distributions

for different model extensions

We have performed our Bayesian data analysis with Gibbs sampling implemented in

BUGS, however, some people may be interested to develop their own sampling tech-

niques. In this regard, we give the posteriors distributions that has been used in Chap-

ter 5 and Chapter 6.

The posterior distribution for a model with studies with different designs is

p(θ|y) ∝
N∏

i=1

[(
ni,1

tpi

)
TPR

tpi

i (1 − TPRi)
(ni,1−tpi)

(
ni,2

fpi

)
FPR

fpi

i (1 − FPRi)
(ni,2−fpi)

]

(7.1)

×
2∏

j=1

N∏

i=1

[
exp

(
−1/2 (Di,j − µD, Si,j − µS)T Λj(Di,j − µD, Si,j − µS)

)]
× |Λ1|

N
2 |Λ2|

N
2

× exp
[
−1/2 (vD (µD −mD)2 + vS (µS −mS)2)

]

× |Λ1|(N−k−2)/2 exp [−1/2 trace(Λ1R
−1)]

2k(N−1)/2
∏k(k−1)/4 |Λ1|(N−1)/2

∏N
i=1 Γ(1/2(N − i))

× |Λ2|(N−k−2)/2 exp [−1/2 trace(Λ2R
−1)]

2k(N−1)/2
∏k(k−1)/4 |Λ2|(N−1)/2

∏N
i=1 Γ(1/2(N − i))

.
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For a model with Mixture-Multivariate-t distribution the posterior distribution is

p(θ|y) ∝
N∏

i=1

[(
ni,1

tpi

)
TPR

tpi

i (1 − TPRi)
(ni,1−tpi)

(
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fpi

)
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(7.2)
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w
ν/2−1
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Finally for a meta-regression model with ridge approach the posterior distribution

results as

p(θ|y) ∝
N∏
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Appendix B: Statistical models in

BUGS language

#Model 1 ...
model
{
for( i in 1 : n ) {
tp[i] ˜ dbin(tpr[i], n1[i])
fp[i] ˜ dbin(fpr[i], n2[i])

logit(tpr[i]) <- m[i,2]/2 + m[i,1]/2 # (Di + Si)/2
logit(fpr[i]) <- m[i,2]/2 - m[i,1]/2 # (Di - Si)/2
m[i,1:2] ˜ dmnorm(mu[], sigma.inv[1:2 ,1:2 ] )

}
#Priors simplest noninformative ...
mu[1] ˜ dnorm(0, 0.25) # D
mu[2] ˜ dnorm(0, 0.25) # S
sigma.inv[1:2,1:2] ˜ dwish(R[1:2,1:2], 3)
# Variance covariance matrix for random effects...
sigma.inv[1:2, 1:2] <- inverse(sigma[1:2 ,1:2 ])

# Summary statistics ...
# Pooled summaries...
x <- (mu[1]+mu[2])/2
y <- (mu[2]-mu[1])/2
se <- exp(x) / ( 1 + exp(x) ) # with logit link
sp <- 1 - exp(y) / ( 1 + exp(y) ) # with logit link

# Predictive summaries ...
m.star[1:2] ˜ dmnorm(mu[], sigma.inv[1:2 ,1:2] )
x.star <- (m.star[1]+m.star[2])/2
y.star <- (m.star[2]-m.star[1])/2
se.star <- exp(x.star)/(1 + exp(x.star)) # with logit link
sp.star <- 1 - exp(y.star) /(1 + exp(y.star)) # with logit link

# Variance covariance matrix for random effects...
sigma[1:2, 1:2] <- inverse(sigma.inv[ , ])
}
#...................................................................
# Model 2 ...
model
{
for( i in 1 : n ) {
tp[i] ˜ dbin(tpr[i], n1[i])
fp[i] ˜ dbin(fpr[i], n2[i])

cloglog(tpr[i]) <- m[i,1]/2 + m[i,2]/2 # (Di + Si)/2
cloglog(fpr[i]) <- m[i,2]/2 - m[i,1]/2 # (Di - Si)/2
m[i,1:2]˜dmnorm(mu[], sigma.inv[1:2 ,1:2 ] )
}

# Priors ...
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mu[1] ˜ dnorm(0, 0.25)
mu[2] ˜ dnorm(0, 0.25)
sigma.inv[1:2,1:2] ˜ dwish(R[1:2,1:2], 3)

# Summary statistics ...
x <- (mu[1]+mu[2])/2
y <- (mu[2]-mu[1])/2
se <- 1 - exp(-1*exp(x)) # with cloglog link
sp <- exp(-1*exp(y)) # with cloglog link

m.star[1:2] ˜ dmnorm(mu[], sigma.inv[1:2 ,1:2 ] )
x.star <- (m.star[1] + m.star[2])/2
y.star <- (m.star[2] - m.star[1])/2
se.star <- 1 - exp(-1*exp(x.star )) # with logit link
sp.star <- exp(-1*exp(y.star )) # with logit link

sigma[1:2, 1:2] <- inverse(sigma.inv[ , ])
}
#...................................................................
# Bivariate model ...
# This model is compared to the classical bivariate ...

model
{
for( i in 1 : n ) {
tp[i] ˜ dbin(tpr[i], n1[i])
tn[i] ˜ dbin(tnr[i], n2[i])

logit(tpr[i]) <- m[i,1]
logit(tnr[i]) <- m[i,2]
m[i,1:2] ˜ dmnorm(mu[], sigma.inv[1:2 ,1:2 ] )

}
# Priors ...
mu[1] ˜ dnorm(0, 0.25)
mu[2] ˜ dnorm(0, 0.25)
sigma.inv[1:2,1:2] ˜ dwish(R[1:2,1:2], 3)

# Variance covariance matrix for random effects
sigma[1:2, 1:2] <- inverse(sigma.inv[ , ])

corr <- sigma[1,2]/(pow(sigma[1,1],0.5)*pow(sigma[2,2],0.5))
}
#...................................................................
# HSROC ...
# Statistics in Medicine
# 2001, 20; 2865-2884
# A hierarchical regression approach to meta-analysis of diagnostic
# test accuracy evalations
# Rutter C.M. and Gatsonis C.A.

model
{
# priors ...
THETA˜dunif(-10,10)
LAMBDA˜dunif(-2,20)
beta˜dunif(-5,5)
prec1 ˜ dgamma(2.1, 2)
prec2 ˜ dgamma(2.1, 2)
sigmaq1 <- 1.0/prec1
sigmaq2 <- 1.0/prec2
b <- exp(beta/2)

# data model ...
for(i in 1:n){
theta[i] ˜ dnorm(THETA, prec1)



alpha[i] ˜ dnorm(LAMBDA, prec2)
logit(tpr[i]) <- (theta[i] + 0.5*alpha[i])/b
logit(fpr[i]) <- (theta[i] - 0.5*alpha[i])*b
tp[i] ˜ dbin(tpr[i], n1[i])
fp[i] ˜ dbin(fpr[i], n2[i])

}
}
#...................................................................
# Model 3 ...
model
{
for( i in 1 : n ) {
tp[i] ˜ dbin(tpr[i], n1[i])

fp[i] ˜ dbin(fpr[i], n2[i])
logit(tpr[i]) <- m[i,2]/2 + m[i,1]/2 # (Di + Si)/2
logit(fpr[i]) <- m[i,2]/2 - m[i,1]/2 # (Di - Si)/2
m[i,1:2] ˜ dmnorm(mu[], sigma.inv[ design[i ], 1:2, 1:2])
}

# Priors ...
mu[1] ˜ dnorm(0, 0.25)
mu[2] ˜ dnorm(0, 0.25)
sigma.inv[ 1, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)
sigma.inv[ 2, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)

# Summary statistics
sigma[1, 1:2, 1:2] <- inverse(sigma.inv[1, 1:2, 1:2]) # Retrospective design
sigma[2, 1:2, 1:2] <- inverse(sigma.inv[2, 1:2, 1:2]) # Prospective design

tr.Rt <- sigma[1, 1:1, 1:1] + sigma[1, 2:2, 2:2]
tr.Pr <- sigma[2, 1:1, 1:1] + sigma[2, 2:2, 2:2]
RC <- tr.Pr / tr.Rt # Relative Credibility
}
#...................................................................
# Model 4 ...
model
{
for( i in 1 : n ) {

tp[i] ˜ dbin(tpr[i], n1[i]); fp[i] ˜ dbin(fpr[i], n2[i])
m[i,1:2] ˜ dmnorm(mu.0[1:2 ], sigma.inv[ design[i ], 1:2, 1:2])

w[i] ˜ dgamma(nu.2, nu.2) I(0.005, 3)
y[i, 1] <- mu[ 1] + m[i, 1] / sqrt(w[i])

y[i, 2] <- mu[ 2] + m[i, 2] / sqrt(w[i])
logit(tpr[i]) <- (y[i, 1] + y[i, 2])/2

logit(fpr[i]) <- (y[i, 2] - y[i, 1])/2
}

# Priors ...
mu[1] ˜ dnorm(0, 0.25)
mu[2] ˜ dnorm(0, 0.25)
mu.0[1] <- 0
mu.0[2] <- 0
nu.2 <- nu/2
nu ˜ dexp(eta) I(2, 100 ) # prior for df exponential eta
eta ˜ dunif(0.02, 0.5) # prior for eta 0.02 to 0.5 implies df between 2 to 50

sigma.inv[ 1, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)
sigma.inv[ 2, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)

sigma[1, 1:2, 1:2] <- inverse(sigma.inv[1, 1:2, 1:2]) # Retrospective design
sigma[2, 1:2, 1:2] <- inverse(sigma.inv[2, 1:2, 1:2]) # Prospective design

# t-distribution with nu df

for(i in 1:2){
for(j in 1:2){



sigma.t[2, i, j] <- nu / (nu - 2) * sigma[2, i, j]
sigma.t[1, i, j] <- nu / (nu - 2) * sigma[1, i, j]

}
}

# Summary statistics
trace.R <- sigma.t[1, 1:1, 1:1] + sigma.t[1, 2:2, 2:2]
trace.P <- sigma.t[2, 1:1, 1:1] + sigma.t[2, 2:2, 2:2]

RC <- trace.P/trace.R
}
#...................................................................
# Model 5 ...
model
{

for( i in 1 : n ) {
tp[i] ˜ dbin(tpr[i], n1[i]); fp[i] ˜ dbin(fpr[i], n2[i])
m[i,1:2] ˜ dmt(mu[i, 1:2], sigma.inv[ design[i ], 1:2, 1:2], nu)

x.s[i] <- (m[i, 1] + m[i, 2])/2
y.s[i] <- (m[i, 2] - m[i, 1])/2
logit(tpr[i]) <- x.s[i]
logit(fpr[i]) <- y.s[i]

mu[i,1] <- alpha0 + alpha[1, country[i]] + alpha[2,hosp[i]] +
alpha[3,inclus[i]] + alpha[4,indfind[i]] + alpha[5,design[i] ] +
alpha[6,contr[i]] + alpha[7,localis[i]] + alpha[8, child[i]]

mu[i, 2] <- beta0 + beta[1, country[i]] + beta[2,hosp[i]] +
beta[3,inclus[i]] + beta[4,indfind[i]] + beta[5,design[i] ] +
beta[6,contr[i]] + beta[7,localis[i]] + beta[8, child[i]]

}

# Priors ...
# Regression model ...
alpha0 ˜ dnorm(0, 0.025)
beta0 ˜ dnorm(0, 0.025)
for( i in 1:p) {alpha[i, 1] <- 0}
for( i in 1:p) {alpha[i, 2] ˜ dnorm(0.0, phi1)}
for( i in 1:p) {beta[i, 1] <- 0}
for( i in 1:p) {beta[i, 2] ˜ dnorm(0.0, phi2)}
phi1 ˜ dgamma(10, 5)
phi2 ˜ dgamma(10, 5)
# degrees of freedom t-distribution
nu.2 <- nu/2
nu ˜ dexp(eta) I(2, 100 )# prior for df exponential eta
eta ˜ dunif(0.02, 0.5) # prior for eta 0.02 to 0.5 implies df between 2 to 50

# variance covariance matrix
sigma.inv[ 1, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)
sigma.inv[ 2, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)
}
#...................................................................
# Model 6 ...
model
{
for( i in 1 : n ) {
tp[i] ˜ dbin(tpr[i], n1[i]); fp[i] ˜ dbin(fpr[i], n2[i])
m[i,1:2] ˜ dmt(mu[i, 1:2], sigma.inv[ design[i ], 1:2, 1:2], nu)
x.s[i] <- (m[i, 1] + m[i, 2])/2
y.s[i] <- (m[i, 2] - m[i, 1])/2
logit(tpr[i]) <- x.s[i]
logit(fpr[i]) <- y.s[i]
mu[i,1] <- alpha0 + alpha[1, country[i]] + alpha[2,hosp[i]] +

alpha[3,inclus[i]] + alpha[4,indfind[i]] +
alpha[5,design[i]] + alpha[6,contr[i]] + alpha[7,localis[i]] +
alpha[8, child[i]] + alpha[9,fup[i]] + alpha[10,refer[i]] +



alpha[11,sample[i]] + alpha[12,gender[i]]
mu[i, 2] <- beta0 + beta[1, country[i]] + beta[2,hosp[i]] + beta[3,inclus[i]]

+ beta[4,indfind[i]] + beta[5,design[i] ] +
beta[6,contr[i]] + beta[7,localis[i]] + beta[8, child[i]] +

beta[9,fup[i]] + beta[10,refer[i]] +
beta[11,sample[i]] + beta[12,gender[i]]

}
# Priors ...
# Regression model ...
alpha0 ˜ dnorm(0, 0.01)
beta0 ˜ dnorm(0, 0.01)
for( i in 1:p) {alpha[i, 1] <- 0}
for( i in 1:p) {

g1[i]˜ dbern(0.5)
alpha[i, 2] ˜ dnorm(0.0, tprior1[i] )
tprior1[i] <-pow(100, 1-g1[i])*phi1
}

for( i in 1:p) {beta[i, 1] <- 0}
for( i in 1:p) {

g2[i]˜ dbern(0.5)
beta[i, 2] ˜ dnorm(0.0, tprior2[i])
tprior2[i] <-pow(100, 1-g2[i])*phi2
}

phi1 ˜ dgamma(10, 5)
phi2 ˜ dgamma(10, 5)

# Missing data models ...
for(i in 1:n){fup.na[i] ˜ dbern(p.fup); fup[i] <- fup.na[i] +1 }
p.fup ˜ dbeta(0.5, 0.5)
#
for(i in 1:n){refer.na[i] ˜ dbern(p.refer); refer[i] <- refer.na[i] +1 }
p.refer ˜ dbeta(0.5, 0.5)
#
for(i in 1:n){sample.na[i] ˜ dbern(p.sample); sample[i] <- sample.na[i] +1 }
p.sample ˜ dbeta(0.5, 0.5)
#
for(i in 1:n){gender.na[i] ˜ dbern(p.gender); gender[i] <- gender.na[i] +1 }
p.gender ˜ dbeta(0.5, 0.5)

# degrees of freedom t-distribution
nu.2 <- nu/2
nu ˜ dexp(eta) I(2, 100) # prior for df exponential eta
eta ˜ dunif(0.02, 0.5) # prior for eta 0.02 to 0.5 implies df between 2 to 50

# variance covariance matrix

sigma.inv[ 1, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)
sigma.inv[ 2, 1:2,1:2] ˜ dwish(R[1:2,1:2], 3)
}
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