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1 Introduction

1.1 Laser Plasma Interaction Physics : Motivation

The advent of the chirped pulse amplification (CPA) [1] has made a breakthrough in the
technological development of laser production by fabricating the way to produce ultra-
short and extremely high power lasers with huge focus intensities. Since then the laser
technology has progressed continuously and resulted in a dramatic increase of achievable
powers and focus intensities as high as 1022W/cm2 recently [2]. The very new Optical
Parametric Chirped-pulse Amplification (OPCPA) technology is going to result in lasers
of few cycle pulses at petawatt (1015 Watt) [3, 4] and even exawatt-class (1018 Watt)
power level [5]. Whenever new intensity levels are achieved ever new physics can be
studied with these laser systems.
In this context one should mention that the intensity 1016 W/cm2 is the ionization

threshold, above which the laser field becomes stronger than the atomic fields strength.
This leads to instantaneous ionization of any material. Moreover, now-a-days even
the table-top laser systems [6, 7] are capable of producing intensities ∼ 1018 W/cm2.
Beyond this intensity a fundamental threshold is crossed and the laser plasma interaction
becomes relativistic, meaning the quiver velocity of the electrons in the electromagnetic
field of the incident laser becomes comparable to the speed of light in vacuum. The
physics of laser plasma interaction at intensities higher than 1018 W/cm2 is extremely
non-linear. As a consequence, analytical models of laser plasma interaction in this
relativistic regime are highly complicated. The most dependable approaches in this
regime are massively parallelized numerical simulations.
One of the most significant applications for such short ultra-intense laser pulses [1, 2]

is the acceleration of charged particles [8–14] along a very short distance (precisely, a
few hundred microns to couple of centimeters) into directed nano/atto-bunches with
energies up to GeVs [12, 13]. Additionally, at these high intensities a series of physical
processes like field ionization [15–20], electron-ion binary collision [21–24], collisional ion-
ization [20, 25, 26], generation of quasistatic fields [27–31], pulse compression [32–34],
front- and back-surface ion acceleration [35, 36], harmonics generation [37–39], x-ray
production [40, 41], extreme pressure generation [42], and many other effects play a
significant role. There are several possibilities to exploit these phenomena for high en-
ergy electron production [13, 43–46], directed acceleration of particles [14, 36, 47], etc.
Moreover, the other very promising application for powerful short-pulse lasers is the
so-called Fast-Ignition (FI) [48] scheme of the Inertial Confinement Fusion (ICF), where
the transportation of a relativistic electron beam (REB) through an overdense back-
ground plasma is a challenging phenomena. However, this configuration is unstable and
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1. Introduction

sensitive to several instabilities, e.g. Weibel (filamentation) instability [49], two-stream
instability [50–53], etc. Extensive understanding of the effects of background plasma
collisions and transverse beam temperature in this context is extremely substantive.
On the other hand, the FI plasma has a density of the order of 1000 times compressed

solid hydrogen, i.e., of the order of 105 nc, where nc = meω
2/4πe2 is the critical plasma

density,me and e are the electron mass and charge and ω is the laser frequency. Similarly,
there are increasing demands to simulate laser-solid interactions, where the densities vary
over a range 100− 1000 nc [54]. The classical explicit particle-in-cell (PIC) methods are
extremely computationally expensive as they have to resolve the plasma frequency ωp =√

4πnee2/me, which is the frequency of the plasma electrostatic oscillations. Therefore,
they are limited to be applied to systems with relatively low plasma densities only.
Hence, looking from the computational point of view, the usability of classical PIC
codes for simulating FI plasma as well as solid density plasmas is facing big question.
Thus, developing an advanced and computationally efficient numerical technique, which
can deal with virtually arbitrary densities, will be a significant development in the field
of plasma simulations [55].
This thesis reports relativistic short-pulse laser-matter interactions concentrating on

significant inelastic and nonlinear physical phenomena in high density regime, such as,
tunneling ionization, binary collision, collimated attosecond GeV electron bunches pro-
duction, directed acceleration of electrons, hot electron and x-ray generation, collisional
Weibel and two-stream instabilities in the context of FI scheme. Furthermore, success-
ful development of advanced numerical methods for the simulations of ultra-relativistic
ultra-short pulse laser interactions with high density plasmas has also been incorpo-
rated. These new findings are anticipated to have crucial consequence on a number of
practical applications in high energy nuclear physics, material science, ultrafast sciences,
computational physics, energy production, radiation biology, molecular physics, etc.

1.2 Thesis Overview

This thesis consists of four major parts dealing with physical phenomena, which appear
in laser-plasma interactions in the wide range of laser intensities 1016 − 1024 W/cm2.
In this work we primarily concentrate on the numerical simulations, however, all these
numerical modelings are compared and supported by analytical calculations. Listed
below are the topics covered in this thesis:

• The first part of the thesis is devoted to the study of tunneling ionization in
relativistic short-pulse laser-plasma interactions, explained in Chapter 2. Devel-
oping an ionization module for the three dimensional Particle-in-cell (3D-PIC)
code Virtual Laser Plasma Laboratory (VLPL) [see Appendix A for more details]
is described in detail. A new concept of particle acceleration using the tunneling
ionization of high-Z materials producing energetic electrons around 8 GeV has been
studied. Particle acceleration using laser-plasma interaction physics has become a
very well accepted mainstream subject recently.

12



1.3. A Brief Historical Overview

• Chapter 3 deals with the physics of binary collisions in relativistic laser-plasma
interactions. Details of implementation and benchmarking of the binary collision
module developed by the author for the 3D-PIC code VLPL is reported therein.
This collision module has been used in the kinetic plasma simulations to study
directed acceleration of electrons from a solid target surface by sub-10-fs laser
pulses.

• The third topic is the development of the semi-implicit particle-in-cell (PIC)-
hydrodynamic hybrid simulation code, Hybrid Virtual Laser Plasma Laboratory
(H-VLPL), for simulating solid state densities and Fast Ignition (FI) plasmas. In
the last couple of years there has been an increasing demand to simulate these ex-
tremely high density plasmas. The details of the hybrid model, numerical scheme,
numerical stability and physical benchmarkings of the code H-VLPL, have been
considered in Chapter 4. Development of a code which can deal with virtually
arbitrary densities is a remarkable step forward in the computational high-density
plasma physics.

• In the last chapter of this thesis we study the extremely significant key topic
related to Fast Ignition (FI). The effects of relatively high beam temperature and
ambient plasma collisions on Weibel and two-stream instabilities are studied, both
numerically and analytically, using a computationally efficient simulation model.
An in-depth report on all these works is discussed in Chapter 5.

1.3 A Brief Historical Overview

1.3.1 Plasma based particle acceleration

In the last decade the laser technology has developed extensively and presently able
to produce few-cycle pulses of focused intensities ∼ 1022 W/cm2 [2]. The electric field
associated with these ultra-intense laser systems, I > 1018 W/cm2, is huge and if could
be utilized, can accelerate charged particles up to relativistic energies very easily [11].
However, using the laser electric field is not straightforward, as the field is fast oscillating
and always perpendicular to the wave propagation [77]. Tajima and Dawson [8] proposed
a way to overcome this difficulty by using the longitudinal plasma waves excited by laser
beams to accelerate electrons.
Plasma based particle accelerators are of great interest because of their ability to

sustain extremely large acceleration gradients. The accelerating gradient in conventional
accelerators are limited due to breakdown which occurs on the walls of the structure [66].
Plasmas, however, can sustain electron plasma waves with electric field of the order of
the non-relativistic wave breaking field [78, 79], given by

E0 [V/cm] ≈ 0.96n
1/2
0

[
cm−3

]
(1.1)
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1. Introduction

where n0 is the ambient electron density. For overdense plasmas, the electron densities
can be much higher than nc ∼ 1021 cm−3, which results in the plasma fields a few orders
of magnitude greater than those in a conventional accelerator. The relativistic plasma
electrons run with the plasma wave with nearly the same speed and get accelerated to
very high energies. Some of the well established and experimentally achieved accelera-
tion schemes are laser wakefield accelerators (LWFA) [8, 80], plasma beat-wave acceler-
ators (PBWA) [8, 81]. But, for last couple of years, the “bubble regime” [11] (see 1.4.4)
of electron acceleration proved to be very efficient due its mono-energetic nature of the
energy spectrum of accelerated electrons and easy attainability. Another, mechanism
of electron acceleration, which exploits the properly manipulated laser beams (radially
polarized, Bessel pulse etc.) has also opened a new way to achieve very high energy
and high charge electron bunches [13, 46, 82] (for details see Chapter. 2 of this thesis).
In addition, there have been some significant successes in ion acceleration in the re-
cent past from target back surface by the so-called Target Normal Sheath Acceleration
(TNSA) [35, 36] and also from the front surface [83].
Presently, electron energies from 100 MeV [68, 84, 85] up to GeV [12, 86–89] have been

achieved in the bubble regime of particle acceleration in plasmas [44]. When the laser
pulse propagates in plasmas, its transverse electric field is converted into the longitudinal
field of the plasma wave, which accelerates the particles. However, the next generation
of the short pulse lasers is designed to achieve focal intensities of 1024 W/cm2, or even
higher. The natural question is arising if these laser fields can accelerate particles to
high energies directly, without any conversion to plasma fields. Further discussion on
this topic will be carried out in Chapter 2.

1.3.2 Advanced numerical methods for simulations

Numerical simulations are an integrated part of plasma research. It has been proved to
be very important for both theoretical and experimental studies. Some of the remarkable
physical processes in the laser-plasma physics have been discovered through numerically
predicted consequences. Plasma simulations can be divided into two main categories:
kinetic and fluid. The kinetic simulations follow the plasma in a 6D phase space and very
efficiently simulate the phenomena like laser-plasma interactions. On the contrary, fluid
simulations integrate over velocity space to maintain only mean particle velocity and
temperature. Fluid codes are widely used to simulate huge complex experiments such
as tokamak and astrophysical processes like gamma ray bursts and supernovae [90].
Kinetic simulations, on the contrary, has been a major tool in the research of laser-
plasma interaction physics [91, 92].
In the last decade, particle-in-cell (PIC) methods, initially proposed by Dawson [93]

and later developed and coded exclusively by Birdsal and others [91, 92], proved to
be a very reliable and successful method for kinetic simulations [11]. Large full 3D
parallel electromagnetic simulation codes like VLPL [95], OSIRIS [96], VORPAL [97],
OOPIC [98], and others have influenced outstandingly the development of extremely
nonlinear laser-plasma interaction physics. But, as new physical processes and simu-
lating high density plasmas are becoming very common now-a-days, the need for de-
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1.3. A Brief Historical Overview

veloping new numerical techniques and large computational powers are becoming evi-
dent. Fortunately, the boundaries of what is possible are always advancing by virtue
of Moore’s law [99]. The PIC-hydrodynamic hybrid simulation codes [55], implicit PIC
algorithms [160], quasi-static PIC algorithm [100], etc. have evolved as an innovative
solution to meet the growing need to model very high (solid) density plasmas [54] and
FI plasmas [153]. In this connection, it is worthwhile to state here that, Chapter 4 of
this thesis is devoted to elaborately discuss the numerical algorithms and benchmarking
of the newly developed PIC-hydrodynamic code H-VLPL [55]. On the other hand there
has been a significant development on the nonlinear wave equation solver for the laser
propagation in a relativistic plasma by proposing a new variant of the Gautschi-type
integrator for reducing the number of time steps [101].

1.3.3 Relativistic electron beam propagation

In the context of FI, propagation of laser-generated relativistic electron beam through
an over-dense plasma to heat the hot-spot in the core of a pre-compressed fusion fuel
target [48], is of extreme importance. On the other hand, the maximum electron current
achievable in vacuum is limited by the Alfvén current limit JA = (mc3/e)γ = 17γ kA,
wherem is the electron mass, e is the electronic charge. The forward electron current car-
ried by the these beam electrons, which is higher than the Alfvén limit, is compensated
by a return plasma current, thus maintaining the global charge neutrality. This system
of beam and a compensating plasma current is unstable and subject to Weibel (fila-
mentation) and the two-stream instabilities. The Weibel instability, first predicted by
E. S. Weibel [49], has been studied rigorously in laser plasma interactions [105], and also
in the astrophysical scenario [70, 74, 75]. Over a long time the research of Weibel insta-
bility has been the main subject for several analytical and numerical [106, 107, 111–119]
as well as experimental studies [108–110]. A kinetic modeling of the Weibel instability
in the context of charged particle beam transport in accelerator physics have been de-
veloped Yoon et al. [112]. Nonlinear dynamics of the beam filaments have been studied
in [102] and later including movable ions in [103, 116]. The effects of the Rutherford
scattering on the Weibel instability were investigated using simulations in [23]. More
recently, to study this instability in linear regime a number of theoretical models, both
kinetic and hydrodynamic, have been developed [113–115]. A very significant study of
the collective stopping of the beam and ion heating in the context of FI have been done
by Honda et al. [116]. Some current research works have been performed using three-
dimensional simulations of resistive beam filamentation focused on the ignition-scale FI
configuration [117]. Structures of magnetic fields generated due to the Weibel instability
in a collisionless plasma have also been investigated in real three-dimensions by Califano
et al. [118]. Lately, a series of experiments reported the evidence of Weibel-like dynam-
ics and filamentation of electron beams [108–110]. Modeling for characterization of the
initial filamentation of the relativistic electron beam passing through a plasma have
also been performed [115] and saturated magnetic fields were studied with numerical
simulations in [104]. There are several facts about the physics of the Weibel instability,
which are yet to be explored. Such a task, simultaneous effects of plasma collisions and
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1. Introduction

beam temperature on the Weibel instability will be reported in this thesis in Chapter 5.

1.4 Basic Laser-Plasma Interaction Physics

1.4.1 Optical field ionization

For a laser pulse with extremely high intensity, the corresponding electric and magnetic
fields are also massive. This order of intensities is fairly comparable with the inner-
atomic filed strengths. For the first Bohr’s orbit of hydrogen atom this atomic field
strength can be estimated as:

Ea =
e

r2
B

≈ 5.1× 109 V/cm, (1.2)

where the Bohr radius

rB =
~2

mec2
≈ 5× 10−9 cm. (1.3)

The laser pulse intensity corresponding to this atomic field Ea is given by

Iatomic =
cE2

a

8π
≈ 3.4× 1016 W/cm2. (1.4)

This intensity is considered to be the threshold for ionization, as any laser with I > Ia
can immediately ionize atoms. Precisely, the mechanism of ionization is very much
intensity dependent.
The actual mechanism of ionization in that particular intensity is determined by so-

called Keldysh parameter Γ [56]:

Γ2 =
Ip

2εos

, (1.5)

where Ip is the ionization potential and εos is the quiver energy of the electron in the
laser pulse with field E and carrier frequency ω. The quiver energy is defined by the
formula

εos =
e2E2(1 + α2)

4meω2
(1.6)

where the parameter α = 0 for linear polarization and α = 1 for circular polarization.
When the value of Keldysh parameter is large, Γ À 1 the mechanism ionization is dom-
inated by multiphoton ionization, whereas, for Γ ¿ 1, optical field ionization (OFI)
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1.4. Basic Laser-Plasma Interaction Physics

Figure 1.1: A 3D perspective of barrier suppression (BSI) and tunneling ionization: perturbed atomic
potential-well when a strong filed is applied. An electron sitting inside the potential well
has two possibilities to come out from the atomic structure depending upon the intensity
of the applied optical field.

almost instantly knocks out the electrons from the atomic levels ensuing plasma forma-
tion. This optical field ionization (OFI) can occur in two different mechanism: barrier
suppression ionization (BSI) and tunneling ionization.

A 3D perspective of the atomic potential-well distorted by application of a strong
optical field is presented in Fig. 1.1. An electron sits inside the unperturbed atomic
potential well on an energy level Ip. Considering the atomic transition frequency is
much lower than the laser frequency, the electric field of the laser is normally considered
to be static. The applied laser field distorts the atomic potential-well and lowers the
potential barrier seen by an electron in the atom/ion. As a result the electron is free
to come out of the atomic structure. When the field is strong enough the potential
barrier is suppressed below the electron energy level, freeing the electron (see Fig. 1.2).
Moreover, the quasi-classical approximations, ~ω ¿ Ip and E ¿ Ea (~ω is the emitted
photon energy, Ip is the energy of the considered state) has to be satisfied. One can also
easily estimate a threshold field E = I2

p/(4Z) [17], where, Z is the ionic charge. The
corresponding threshold laser intensity can be calculated as:

17



1. Introduction

IBSI(W/cm2) = 4.00× 109
I4p(eV)

Z2
. (1.7)

In the case when when the suppression of the Coulomb potential barrier is not able
to free the electron, it still has a non-zero quantum mechanical probability of escaping.
This process is called tunneling Ionization, illustrated physically in Fig. 1.2. Though this
is forbidden by classical laws, it is a predominant effect in the field induced ionization
dynamics. Evidently, there has to be a tunneling ionization probability, which is more
complex than the rather straightforward ionization mechanism.

Potential due to the
laser electric field

V(x)

x

Ionization by
tunneling-Ip

Figure 1.2: A simple illustration of tunneling ionization mechanism. The electric field bends the
Coulomb potential to form a barrier through which the electron can tunnel.

There were several attempts for calculating the probability of ionization [15, 56], but
the most widely accepted and experimentally verified theory comes from the work of
Ammosov, Delone and Krainov, widely known as ADK-theory [16]. Considering an
external field of the form

E = E0 cos(ωt), (1.8)

the tunneling probability of the electron located in the Coulomb potential of a complex
atom/ion is given by ADK model as:

18



1.4. Basic Laser-Plasma Interaction Physics

WADK

[
s−1
]

= ωACn∗lf(l,m)Ip

(
3E

π(2Ip)3/2

)1/2 [
2

E
(2Ip)

3/2

]2n∗−|m|−1

(1.9)

× exp

(
− 2

3E
(2Ip)

3/2

)
where ωA = 4.134 × 1016 sec−1 is the atomic unit of frequency, E is the laser field in
atomic units. The factors f and C are given by

f(l,m) =
(2l + 1)(l + |m|)!

2|m|(|m|)!(l − |m|)!

and

Cn∗l =

(
2e

n∗

)n∗
1

(2πn∗)1/2
.

Here n∗ is the effective principal quantum number, l and m are magnetic and orbital
quantum numbers, and e is the Euler number.
At this point, we leave this preliminary discussion with the introduction of ADK theory.
A more elaborate discussion on tunneling ionization emphasizing on ADK probability
will considered in Chapter 2.

1.4.2 Plasma frequency and Debye length

Due to long-range forces between plasma particles, a plasma behaves in some situations
as a system of coupled oscillators. One basic characteristic of oscillation of the plasma
state is the electron plasma frequency ωpe, defined as [57]

ωpe =

√
4πnee2

me

, (1.10)

ne is the particle number density, and me is the electron mass. It is customary to
call electron plasma frequency ωpe as plasma frequency ωp as the electrons are lightest
particles in a plasma.
In case of ions, one can define the ion plasma frequency as

ωpi =

√
4πZ2e2nie2

mi

, (1.11)

where Ze and ni are the ion charge and density, respectively. Using the plasma quasi-
neutrality condition, one can compare the electron and ion plasma frequency as

ωpi

ωpe

=

√
me

mi

¿ 1. (1.12)
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1. Introduction

The plasma frequency is often used as a means of specifying the electron density in
plasma. It also gives a measure of Debye length, the characteristic length which an
electron or ion moving with thermal speed vth =

√
kBT/me to travel in during the

interval of one plasma frequency (ω−1
p ). Debye length is defined as

λD =

√
kBT

4πnee2
, (1.13)

where kB is the Boltzmann constant.

1.4.3 Particle motion in an electromagnetic wave, relativistic
threshold

Plane electromagnetic wave

A plane electromagnetic wave can be described by its vector potential

A(r, t) = Re{A0 exp iψ}, (1.14)

where A0 = A0êy is the laser amplitude for linear polarization (LP) and A0 = A0(êy ±
iêz), (êx, êy and êy are system of unit vectors), for circular polarization (CP) with +
and – for right and left-circular polarization, respectively; ψ = kr − ωt is the phase; k
is the wave vector; r and t are space and time coordinate. The dispersion relation in
vacuum is

ω = kc, (1.15)

where c is the speed of light and k = |k|. Introducing the wavelength λ = cT = 2πc/ω,
one can rewrite Eq. (1.15) as

k =
2π

λ
(1.16)

Here, we use the standard Coulomb gauge, i.e. div A = 0. Then, the expression for
electric field E and magnetic field B take the form

E = −1

c

∂A

∂t
(1.17)

B = rotA.

Using the Poynting vector S = (c/4π)E×B, one can write the intensity of light as

I = |S| = ωk

8π
A2

0 ×
{

(1 + sin 2ψ), for LP ,
2 , for CP . (1.18)
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1.4. Basic Laser-Plasma Interaction Physics

One has to remember here that the intensity oscillates with twice the phase for linear
polarization, while it is independent of the phase for circular polarization. This is a
significant factor to make difference when interaction with matter occurs. The intensity
averaged over the phase is then given by

I =
1

2π

∫ 2π

0

I(ψ)dψ = ζ
ωk

8π
A2

0 (1.19)

The factor ζ = 1 for linear polarization and ζ = 2 for circular polarization. Using 1.16
one gets

Iλ2 = ζ
π

2
cA2

0. (1.20)

When the electrons caught by the light wave acquire the velocity of light, the relativis-
tic threshold intensity is reached. In non-relativistic case (v ¿ c), the motion equation
of an electron

m
dv
dt

= −e
(
E +

v
c
×B

)
≈ −eE (1.21)

has the integrals

v = Re

{
eE

imω

}
= −eA0

mc

{
êy cosψ, for LP ;
(êy cosψ ∓ êz sinψ), for CP . (1.22)

r = Re

{
eE

mω2

}
= −eA0

mc

{
êy sinψ, for LP ;
(êy sinψ ∓ êz cosψ), for CP . (1.23)

Using dimensionless light amplitude

a0 = − eA0

mc2
(1.24)

one can rewrite the previous Eq. (1.20) as

I0λ
2 = ζ

π

2
P 2

0A
2
0 = ζ

[
1.37× 1018 W

cm2
µm

]
a2

0 (1.25)

When the quiver velocity of the electron approaches c, the relativistic threshold is
reached, i.e. a0 = 1. Surely, at this condition the trajectory of the electron alters
from a simple transverse oscillations described above. This will be discussed in the next
part of this Section 1.4.3.
From Eq. (1.25) the relativistic power comes out as
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P0 =
mc2

e2/mc3
=
mc5

e2
= 8.67 GW, (1.26)

which may be written as the product of the voltage mc2/e = 511 keV corresponding to
the rest energy of the electron and the current unit J0 = mc3/e = 17 kA, which is related
to Alfvén current JA = J0βγ with β = v/c and γ = 1/

√
1− β2. Any current larger

than this can not at all be transported in vacuum due to magnetic self-interactions.
This phenomenon is very important in the physics of Weibel instability, which will be
discussed in Chapter 5.

Free particle motion in an electromagnetic wave

Let us now consider the motion of a relativistic particle in the plane light wave of
arbitrary amplitude. The relativistic Lagrange function of a particle with mass m and
charge q moving in an electromagnetic field with potential φ and vector-potential A is
given by

L(r,v, t) = −mc2
√

1− v2

c2
+
q

c
v ·A + qφ (1.27)

From the Euler-Lagrange equation

d

dt

∂L

∂v
− ∂L

∂r
= 0 (1.28)

we obtain the relativistic equation of motion of the particle

dp

dt
= q

(
E +

v

c
×B

)
. (1.29)

Here, the full canonical momentum is p = ∂L/∂v = mγv + qA/c = p + qA/c, where
γ = 1/

√
1− v2/c2.

Following [58, 59] we proceed to discuss the solution of Eq. (1.28). For a plane wave,
there exists two different symmetries, which provides two constants of motion. The first
symmetry appears from the plane wave planar symmetry. Planar symmetry implies
∂L/∂r⊥ = 0 and hence, conservation of the perpendicular component of the canonical
momentum.

∂L

∂v⊥
= p⊥ +

q

c
A⊥ = const. (1.30)

The second symmetry appears from the fact, that the laser pulse propagates with a
constant phase velocity vph (in vacuum vph = c) and considering an infinite wave form
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1.4. Basic Laser-Plasma Interaction Physics

of A = A(t − x/vph). We introduce the Hamiltonian function H(x,p, t) = E(t) [60],
which actually refers the total time-dependent energy of the particle. Thus, taking into
account ∂H/∂t = −∂L/∂t and Ax = 0 for plane wave, one obtains

∂E

∂t
= −∂L

∂t
= c

∂L

∂x
= c

d

dt

∂L

∂vx

= c
dpcan

x

dt
= c

dpx

dt
. (1.31)

Hence, from this we obtain the second invariant

E − cpx = const. , (1.32)

and, for the electrons initially at rest, the kinetic energy

Ekin = E −mc2 = (γ − 1)mc2 = pxc. (1.33)

Using the relation E = mc2γ =
√

(mc2)2 + p2c2, one can obtain the expression for
kinetic energy as

Ekin =
p2

x

2m
=
a2

2
mc2. (1.34)

A very crucial observation here is that, Ekin is directly linked to the amplitude of the
light wave a and retreats back to zero as soon as the electron leaves the light field. But
in case of real experimental configurations, due to finite beam radius etc., the electron
breaks the planar symmetry and obtains a net energy gain.

Relativistic threshold

For a0 ∼ 1 we can see from Eq. (1.34), that Ekin ∼ mc2. The corresponding intensity
I0 (for a specific λ) is normally considered as the relativistic threshold for a particular
sort of particles. In case of motion of electrons this amplitude a0 = 1 corresponds to a
laser intensity

I0λ
2 = 1.37× 1018W cm−2µm2. (1.35)

One needs to explain the physical significance of this threshold. When |a| < 1,
i.e, v⊥ ¿ c, the particles oscillate mainly in the direction of laser polarization with
a small ponderomotive drift along the wave propagation direction. On the contrary,
in the relativistic regime, i.e. |a| > 1 and v⊥ ∼ c, the laser ponderomotive force
v×B/c pushes the particle forward and under this condition the relativistic motion of
the particle become primarily longitudinal.
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Focused laser pulse

In real experiments the laser pulses are not plane waves, rather tightly focused. Near
the focal plane, one can write

A = A(ζg, r) exp(kζph) (1.36)

where,
ζph = z − vpht, ζg = z − vgt.

The phase velocity vph > c and the group velocity vg < c. It follows from the Coulomb
gauge condition ∇ · A = 0, that the focused electromagnetic wave has not only the
transverse component of the vector potential, but also the longitudinal one

∂zAz = −∇⊥.A⊥. (1.37)

Due to interaction with the focused laser pulse in vacuum, the particles get scattered
out from the focal plane. There is no general exact analytical solution for particles’
motion in this case. But, for low laser intensities a ¿ 1, the particle momentum p̄,
averaged over the laser period can be described introducing the so-called relativistic
ponderomotive force (RPF) (see [61] for details) as

Fpond =
dp̄

dt
= −mc∇ p̄

2

2
. (1.38)

This concept is valid only if the laser wave amplitude is a slow varying one compared
to the phase of the wave. One can see from Eq. (1.38), that the electrons are expelled
from the regions of high intensity as the RPF is independent of the laser polarization.
It has been shown [62, 63] that the RPF model is still valid even at higher intensities.
Hence, Eq. (1.38) takes the form

dp̄

dt
= −mc

2

γ̄
∇γ̄. (1.39)

It has been described by Quensel et al. [63] that this process depends upon the di-
mensionless parameter α = kσ/(1 − vz/c). If α ¿ 1 the scattering of the electron
remains ponderomotive, whereas, in the opposite case, α > 1, the electron motion is
overcomplicated and polarization asymmetries come into play.

1.4.4 Particle Acceleration Mechanisms

Direct laser acceleration (DLA)

The proposal of direct laser acceleration has initially been predicted from numerical
studies of [64]. The underlying physics behind this mechanism is, that the electrons,

24



1.4. Basic Laser-Plasma Interaction Physics

when propagating in a plasma channel, can resonantly interact with the laser wave
propagating in the same direction. These electrons get kicked out from the channel by
the ponderomotive force creating a radial electrostatic field. Simultaneously, the light
propagating in the channel pushes the electrons in forward direction, which produces a
current. An azimuthal magnetic field is generated as a result of this current.
If one approximates the laser plasma channel as a cylinder with uniform electron

density Ne = fN0 (0 ≤ f ≤ 1), the radial electric field can be written as

−eEr = (1− f)
mω2

pe

2
r, (1.40)

where ωpe is the electron plasma frequency. Now, the current −efN0c produces the
corresponding azimuthal magnetic field, estimated as

−eBφ = f
mω2

pe

2
r. (1.41)

Hence, in this kind of ideal plasma channel, the motion equation of the electron can be
written as

mγ
d2r

dt2
= −eEr − eBφ. (1.42)

One can calculate the oscillation frequency of the electron, the so-called betatron
frequency, as

ωβ =
ωpe√
2γ
. (1.43)

In this simplified model the fields operate in such a manner, that the propagation
of electrons is mainly confined along the channel axis, on the other hand, the channel
works merely as a potential well. In this potential well the electrons get trapped and
oscillate radially with a frequency ≈ ωβ.
As the electrons propagate along channel axial direction with a velocity vz, they go

through a strong down shift of optical frequency. Selection of proper conditions can make
the transverse betatron oscillations to be in resonance with the laser. This permits the
laser field to drive a fraction of the electrons resonantly.
We note here once again, that the electron oscillations are directed along the laser

polarization. In this situation, the electrons can gain energy two times of the laser period
due to energy coupling. As a consequence of this, the transverse velocity v⊥ oscillates
according to the laser period, whereas, the longitudinal velocity oscillates twice during
the whole laser period. This phenomenon results in bunching of electrons in space twice
every laser period. It has already been shown in both experiments and simulations,
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that the conversion efficiency in this mechanism goes up to 30-40% [11]. These electrons
usually have quasi-static energy spectra, which can be characterized by an exponential
slope indicating some effective temperature. The tail of these spectra reaches far beyond
the normal ponderomotive energy. Evidently, the phenomenon of electron acceleration
using this mechanism is significantly different from the simple picture of a free electrons
in a plane electromagnetic wave discussed earlier in Section 1.4.3. A detailed discussion
of DLA can be found in [64, 65].

Laser wakefield acceleration

Let us now proceed to describe briefly one other major mechanism of laser induced
acceleration of electrons in plasma, called laser wakefield acceleration (LWFA). This
acceleration mechanism is different from DLA in a sense that it uses the laser-driven
high amplitude plasma waves and their longitudinal electric field to accelerate particles.
The DLA process, which produces electrons of a quasi-thermal spectra, is not sufficient
for practical applications of high energy physics as they require much better quality of
electron beams. Such a kind of beam might be generated using LWFA [8, 66].
When a laser pulse propagates through a underdense plasma, it excites a running

plasma wave oscillating at the plasma frequency ωp. The wave drops back the laser
pulse with a phase velocity defined by the laser pulse group velocity

vwake
ph = vg = c

(
1−

ω2
p

ω2
0

)
, (1.44)

where, ω0 is the laser frequency. The electric field of this plasma wave is truly lon-
gitudinal, pointing in the laser propagation direction. A relativistic electron can be
accelerated to high energies, if it can ride on the plasma wave staying in-phase with the
longitudinal electric field.
Excitation of the plasma wave by the laser pulse can occur in different ways. The

excitation is most effective, when the laser pulse is shorter than the plasma wavelength,
λp = 2π/ωp, and fits completely into the first wave bucket. This wake field excita-
tion pattern differs significantly for laser pulses longer than plasma period due to self-
modulation of the of the laser pulse and resonance with plasma frequency. This regime
of wakefield acceleration is called SM-LWFA [67].
The energy gain by the trapped electrons can be estimated as

eW ≈ eEmLd, (1.45)

where, Em is the maximum electric field, Ld is the dephasing length (the length over
which the electrons experience the accelerating field). One can estimate this from the
relation

ωp

(
Ld

vp

− td

)
∼ π (1.46)
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where, td = Ld/c.

Bubble regime of electron acceleration

There has been a breakthrough in the laser-induced electron acceleration physics through
the invention of the so-called “bubble regime” [44], in which the 3D geometry of the laser
pulse was considered. In this regime, the laser wave takes the shape of a solitary plasma
cavity, referred to as the bubble.

-20

20

-50 0Z/�

X/�

Figure 1.3: Structure of a typical bubble (solitary laser-plasma cavity) produced by 12-J, 33-fs laser
pulse (Figure from [44]). The laser pulse (shaded oval) stays in the front of the bubble
and the trapped electrons follow this laser pulse.

When the laser pulse is ultra-relativistic and the pulse duration is much shorter than
the relativistic plasma period, then the wake field takes the form of a single cavity: the
bubble. The bubble is a very efficient device to trap and accelerate electrons. This
trapping of electrons is a continuous process and the bubble elongates as the number
of trapped electrons increase inside the plasma. The effective bubble velocity decreases
and the electrons start to dephase relative to the accelerating field. This causes in
self-bunching of the trapped electrons in the phase space. This results in a very signif-
icant monoenergetic peak in the energy spectrum of the electrons. Recently, this has
also been successfully observed in experiments [68], where the produced electron beam
was extremely collimated and quasi-monoenergetic. Some recent studies established
that bubbles can be formed at much lower laser power compared to what was initially
proposed [38, 40, 69].
Analytical investigation of the theory of bubble is very complicated due to occurrence

of system of non-linear kinetic equations and a number of significant parameters. An

27



1. Introduction

outstanding progress in the development of bubble scaling laws has been performed by
Gordienko et al. [38], where the similarity theory of the laser-plasma interactions in ultra-
relativistic regime was developed. Gordienko et al. discussed an optimal configuration
for the monoenergetic electron production. The optimal parameters are scaled as: the
focal radius R ≈ √

a0/kp, where, a0 is the dimensionless laser amplitude and kp = ωp/c.
Using the similarity theory for the regime cτ < R, several scaling laws were obtained.

The maximum energy of the monoenergetic peak in the electron spectrum can be cal-
culated as

Emono ≈ 0.65mec
2

√
P

Prel

cτ

λ
, (1.47)

where, P is the pulse power and Prel = m2
ec

5/e2 ≈ 8.5 GW. The numerical pre-factors
have been obtained directly from 3D Particles-in-cell (3D PIC) simulations.
The similarity parameter, defined as

S =
ne

a0nc

, (1.48)

where, ne and nc are the electron and critical densities, respectively, is a very important
factor for bubble scaling. The dynamics of the plasmas with S =const. is similar and
electrons move along the same trajectories. The parameter S has the role of relativisti-
cally corrected plasma density. It separates relativistically overdense plasmas, S À 1,
from relativistically underdense ones, S ¿ 1.

1.4.5 Weibel and Two-stream Instability

Discussion about the physics of laser-plasma interaction cannot be completed without
talking about instabilities. It is believed that there are thousands of instabilities oc-
curring in plasma physics depending upon the physical conditions and many of them
are not yet well understood. In this section we will discuss briefly about Weibel and
two-stream instabilities, which are our point of interest for Chapter. 5.
Weibel instability (WI) [49], first predicted by Weibel (1959), is a very frequently

encountered plasma instability, occurring in a broad range of physical processes. Fig. 1.4
describes pictorially some of the main possibilities of occurrence of the WI. In case of
Fast Ignition [153] scheme of ICF, transportation of relativistic electron beam through a
dense ambient plasma is a significant process. Filamentation of the electron beam takes
place due to the WI as it propagates towards the precompressed core of the fusion fuel.
Secondly, in giant particle accelerators such as, CERN-LHC, SLAC, etc., the accelerated
electron beam has to be transported through the large beam lines. These relativistically
energized electron beams are also prone to WI during transportation. Moreover, Weibel
instability is a very significant phenomenon in astrophysical scenario such as, giant
Gamma Ray Bursts (GRB) [74], pulsar, active galactic nuclei [70]. There, this instability
is a source of strong cosmic electromagnetic fields. The interesting features for a WI
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(a) (b) (c)

Laser pulse

fast electrons

Fast electrons
generation

and transport

Figure 1.4: Occurrence of Weibel instability. (a) Fusion scenario: transport of relativistic electron
beam into the dense background plasma in the FI scheme (Figure from [71]). (b) Accel-
erator physics: Transportation of accelerated electron beam in large-scale accelerators
(Figure source [72]). (c) Astrophysical scenario: generation of strong magnetic fields in
the so-called Gamma Ray Burst (GRB), pulsar, active galactic nuclei (Figure from [73]).

are: pinching, filamentation, generation of strong magnetic fields and saturation, etc.
However, the analytical modeling of WI is extremely non-linear and complicated.
To give a brief, qualitative description of the Weibel instability mechanism, we con-

sider the Fig. 1.5 [75], where it is illustrated with a simple picture. At first we consider
the dynamics of the electrons only and assume that the plasma ions are fixed charge
neutralizing background. The electrons are assumed to move along the x-axis with a
velocity v = ±x̂vx and for net current balance there are equal particle fluxes in oppo-
site direction along the negative x-axis (return electron current). Let us now, add an
infinitesimal fluctuation of magnetic field, B = ẑBz cos(ky). The electron trajectories
will be deflected as demonstrated by the dashed lines in Fig. 1.5 due to the Lorentz
force, −e(v/c)×B. As a result, the electrons moving to the right will be accumulated
in layer I, and, those moving to the left in layer II, and hence, current sheaths form.
Thus, the initial magnetic field fluctuation appears to enhance due to this current sheath
formation. The growth rate can be written as

Γ = ωp
vy

c
, (1.49)

where ω2
p = (4πe2n/m) is the non-relativistic plasma frequency [76]. In a similar consid-

eration, perpendicular electron motions along the y-axis result in the oppositely directed
current which, in a way, suppresses the Weibel Instability. Particle velocity along the
z-axis is unimportant as they remain unaffected by the magnetic field.
The Lorentz force deflection of the particle trajectories escalates as the amplitude of

the magnetic field perturbation gets amplified. This amplified magnetic field is random
in the plane perpendicular to the particle motion. After a certain instance the particles
will eventually isotropize and the associated thermal energy of the particle motions will
be equal to their initial kinetic energy. This will bring the instability to saturation
point, in fact, the instability is self saturating. It is to be noted here, that despite its
intrinsically kinetic nature, the instability is non-resonant. One needs to mention here,
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Figure 1.5: Illustration of the Weibel Instability (Figure from [75]). A magnetic field perturbation
deflects electron motion along the x-axis and results in current sheets (j) of opposite
signs in regions I and II, which in turn amplify the perturbation. The amplified field lies
in the plane perpendicular to the original electron motion.

that this instability is temperature sensitive and gets suppressed by a finite temperature
spread.
Another kind of instability, a very common in plasma physics, is called the two-stream

instability [50–53]. Such kind of instability, similar to Weibel instability, can be triggered
by an energetic particle stream injected in a dense plasma. Moreover, different currents
for two different species of particles e.g., electron current and ion current, can set off
this instability, as well. In this scenario, excitation of the plasma wave can result from
the particle energy. The dispersion relation of these plasma waves has a growing wave
solution, which is identified as the two-stream instability. If we consider a cold, uniform,
and unmagnetized plasma, where ions are stationary and the electrons have velocity v0,
that is, the reference frame is moving with the ion stream, then the dispersion relation
can be written as

ω2
p =

[
me/mi

ω2
+

1

(ω − kv0)2

]
= 1, (1.50)

where me and mi are electron and ion masses, respectively, k, wave vector. One can
think the two-stream stream instability as the inverse of Landau damping. The roots of
Eq. (1.50) can be written as
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ωj = αR
j + iγj, (1.51)

where, α and γ are Re(ω) and Im(ω), respectively. If the imaginary part Im(ωj) = 0,
then the solutions represent all the possible modes with no temporal wave growth or
damping. The time dependence then is given by

E = ε exp[i(kx− ωjt)]x̂ (1.52)

Positive Im(ωj) indicates an exponentially growing wave; negative Im(ωj) indicates a
damped wave. Now, if Im(ωj) 6= 0, i.e., the solution contains one or more complex roots,
then they will occur in conjugate pairs. One of these roots will always be unstable unless
all the roots are real. The damped roots are not self-excited and not of our interest for
this case.
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2 Acceleration of Electrons Using
Ionization

2.1 Introduction

Optical field ionization of atoms or ions in a high intensity optical field has long attracted
attention in the laser-plasma interaction physics [15–20, 56]. Recently, there have been
several theoretical [17–19, 120], numerical [13, 20, 22, 121–123] and experimental [94,
124–126] works performed to understand the ionization physics and to exploit it for
different schemes e.g. electron / ion acceleration [11, 12, 68, 84–89]. For all different
kind of optical filed ionizations (OFI) processes, barrier suppression (BSI) or tunneling,
one requires an ionization probability which determines the possibility of ionization of
the atom or ion for that particular field intensity. Tunneling ionization probability for
Hydrogen like atoms considering potential well was initially proposed by keldysh [56].
This theory was later extended to ionization from excited electronic states by Perelomov
et al. [15] and modified for complex ions and atoms by Ammosov et al. [16]. In our
simulations we mostly concentrate on tunneling ionization. This chapter is dedicated
to the implementation of ionization module and understanding the effect of deeper
shell ionization of high-Z material in the process of electron acceleration by a radially
polarized laser pulse.
The chapter is organized as follows. The first section describes the implementation of

the tunnel ionization module in the code VLPL. The second section presents the 3D PIC
simulation of generation of collimated attosecond GeV electron bunches from ionization
of high-Z material. In the third Section 2.4, 3D PIC simulations of the experiment,
performed at Texas laser facility, for production of hot electrons from intense laser
irradiated polystyrene spheres is presented followed by an overall discussion and outlook
on the study of ionizations in laser-plasma interaction.

2.2 Implementation of Tunneling Ionization in VLPL
Code

Virtual Laser Plasma Lab (VLPL) [95] is a relativistic fully electromagnetic Particle-in-
cell (PIC) code, written using strongly Object Oriented programming and parallelized
using Message Passing Interface (MPI). Up to 109 particles and 108 mesh cells can be
used with the single processor performance 0.5 µs/particle, linearly scalable on up to
several hundreds nodes. VLPL solves the full sets of Maxwell’s equation and equation
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Figure 2.1: An illustration of the ionization methods in one time-step ∆t in the 3D PIC code VLPL.
Both BSI and Tunneling ionization processes are implemented and the suitable process
for the current case is determined by the critical field for ionization Ecrit.

of motion of the particles. The object oriented configuration allows easy and effective
modifications of algorithms.
In VLPL ionization module both Barrier Suppression (BSI) and Tunneling ionization

have been implemented. The process taken into account depends on the laser pulse
intensity. The key dimensionless parameter that distinguishes between multiphoton
and optical field ionization (OFI) is the Keldysh parameter [56]

Γ =
√
Ip/εos

where Ip is the ionization potential and

εos =
e2E2 (1 + α2)

4mω2

is the quiver energy of an electron, α is the polarization parameter and ω, the laser
frequency [11]. In this thesis we consider laser intensities well above ∼ 1016 W/cm2,
leading to Γ ¿ 1. Thus, we work in the OFI regime, i.e., tunneling and BSI.
The tunneling regime corresponds to low frequency laser fields, ~ω ¿ Ip, where Ip

is the ionization potential. The field must be smaller than the atomic field E ¿ Ea,
where Ea is the atomic field at the corresponding electron orbit. We calculate the
ionization probability in the tunneling regime according to the ADK (Ammosov-Delone-
Krainov) [16] model.
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W
[
s−1
]

= ωACn∗lf(l,m)Ip

(
3E

π(2Ip)3/2

)1/2 [
2

E
(2Ip)

3/2

]2n∗−|m|−1

(2.1)

× exp

(
− 2

3E
(2Ip)

3/2

)
where ωA = 4.134 × 1016 sec−1 is the atomic unit of frequency, E is the laser field in
atomic units. The factors f and C are given by

f(l,m) =
(2l + 1)(l + |m|)!

2|m|(|m|)!(l − |m|)!

and

Cn∗l =

(
2e

n∗

)n∗
1

(2πn∗)1/2
.

Here n∗ is the effective principal quantum number, l and m are magnetic and orbital
quantum numbers, and e is the Euler number.
The validity of the ADK theory improves as n∗ increases [17]. This occurs for atoms

with high atomic numbers and higher charge states, and in our work we focus exactly
on these atoms. Further, we introduce the critical electric field [17]

Ecrit =
I2
p

4Z
,

where Ip is the ionization potential and Z is the atomic number corresponding to the
threshold laser intensity

Ith(W/cm
2) = 4× 109

I4
p (eV )

Z2
.

This critical field distinguishes between the tunneling ionization and BSI. For multiple-
electron atoms we implement the sequential ionization only. This means that at ev-
ery time step, only the bound electron with the lowest ionization potential can be
released. For high-Z materials, we use the calculated ionization potentials from Atomic
Data Table [128]. Fig. 2.1 shows the numerical scheme of the ionization module in the
code. The fields calculated inside the particles motion solver are passed to the method
Mesh:IonizeParticles(), which ionizes the numerical IonSpecie depending on the
field strength. In this way a new electron is created and the ion charge is increased.
Simultaneously, the new electron gets included into the mesh and continues further.
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Figure 2.2: Geometrical perspective of the 3D Particle-in-cell simulation. All the lengths are in
units of laser wavelength λ. The right hand boundary is the diagnostic boundary for the
accelerated electrons. The electrons reaching the diagnostic boundary are captured for
post-processing.

2.3 Collimated Attosecond GeV Electron Bunches

In this section, we will describe the three dimensional Particle-in-Cell (3D PIC) sim-
ulations of electron acceleration in vacuum with radially polarized ultra-intense laser
beams. It is shown that single-cycle laser pulses efficiently accelerate a single attosec-
ond electron bunch to multi-GeV energies. When the laser pulse is longer and consists
of several cycles, one has to use ionization of high-Z materials to inject electrons in the
accelerating phase at the laser pulse maximum. In this case, a train of highly collimated
attosecond electron bunches with quasi-mono-energetic spectra is produced. The radi-
ally polarized laser pulse is compared with the usual Gaussian pulse. It is shown that
the radially polarized laser pulses are superior both in the maximum energy gain and
in the quality of the produced electron beams. The reason is the unique field structure
of the radially polarized beams that confines the accelerated electrons and keeps them
tightly focused near the optical axis over the full acceleration stage.
Although some semi-analytical studies of electron acceleration with radially polarized

electron beams have been published in the last few years [46, 82, 127], here we present
the first full electromagnetic 3D PIC simulations. The 3D PIC code VLPL (Virtual
Laser Plasma Lab) [95] solves the full set of Maxwell equations. In addition, we have
incorporated the Monte-Carlo ionization module that allows us to simulate tunnel ion-
ization of deep electron levels of various high-Z materials.
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2.3. Collimated Attosecond GeV Electron Bunches

The most important result of the current study is that one needs electron injection via
tunneling ionization into the high-intensity center of the multi-cycle laser pulse to achieve
high energy gains. When low-Z materials are used, the target is completely ionized by
the very foot of the laser pulse. The electrons are trapped by the low intensity part of the
laser pulse and never experience the high-field middle of the pulse. As a consequence,
electron energy gains are low. The situation changes when high-Z materials are used.
If some deep electron shells of the high-Z material survive the laser field, electrons
are injected at the laser pulse maximum and experience high energy gains. We show
that the electron energy spectra contain quasi-monoenergetic features corresponding
to ionization of different electronic shells of the high-Z material. This work has been
published in Laser and Particle Beams in 2007 [13].
In the following sections we will present the 3D PIC simulation results of accelera-

tion of electrons to GeV energies by ionization of high-Z material and then a detailed
theoretical discussion on the underlying physics of the current acceleration scheme.

2.3.1 Electron acceleration from ionization of high-Z material

To simulate the laser acceleration of electrons in vacuum we use the three-dimensional
(3D) Particle-in-Cell (PIC) code VLPL (Virtual Laser Plasma Lab) with the ionization
module as explained in the previous section. The simulation box is (X × Y × Z) =
(10× 30× 30)λ3, where λ = 0.82 µm is the assumed laser wavelength. The simulation
domain is sampled with a grid of 200× 150× 150 cells.
The laser pulse is either linearly polarized Gaussian, or radially polarized. It propa-

gates in the X− direction. The target is located short in front of the laser focal plane,
see Fig. 2.2. It is a tiny spherical droplet of radius 200 nm and atomic density n = nc,
where nc = mcω2/4πe is the critical density. As the laser pulse reaches the droplet,
electrons are trapped and accelerated forward. At this time, the moving window tech-
nique is applied and the simulation box follows the relativistic electron bunches. In the
simulation, we use 28 atoms or ions per cell. Each atom with Z bound electrons can
emit all these during the tunneling or barrier suppression ionization. A single run took
around two hours on 32 Intel-Xeon processors.
We were looking for materials with large enough ionization potentials to survive laser

fields as high as 1024 W/cm2 (ELI Laser Project). Our choices were Xe and Cu, because
the Ip for Xe52+ is 39.25 keV and for Cu28+ 11.17 keV [128]. We compare these two
materials with hydrogen, where Ip = 13.6 eV. Hydrogen is, of course, ionized completely
by the very foot of the laser pulse. Earlier, electron injection into high-intensity Gaussian
laser pulses via ionization has been discussed elsewhere [129, 130]. Here, we show the
difference between the simple Gaussian laser pulses and the radially polarized pulses.

2.3.2 Radially polarized laser pulse

Here we present the simulation results of a radially polarized laser pulse. At the focal
plane, the transverse (radial) component of the laser pulse is
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2. Acceleration of Electrons Using Ionization

Figure 2.3: X − Y cut of longitudinal field (Ex) (a) and intensity distribution (b) for the radially
polarized laser pulse. Axes are in units of λ.
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where σ0 is the focal spot waist and T is the pulse duration. The corresponding longi-
tudinal X−component of the laser field at the focal plane is
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where k = ω/c is the laser pulse wave number in vacuum. The expression (2.3) gives the
first order approximation to the longitudinal laser electric field. The VLPL numerical
scheme [95] has the second order accuracy and propagates the fields according to the
Maxwell’s equations. Fig. 2.3 shows a X−Y cut of the E-field and pulse intensity along
the propagation direction inside the simulation box.
One immediately sees from the expression (2.3) that the longitudinal electric field

of the radially polarized laser pulse reaches its maximum on-axis. The phase of the
longitudinal field is shifted by π/2 with respect to the transverse component (2.2). This
means that a phase range exists, one per laser wavelength, where the longitudinal field
is accelerating and the transverse field is focusing.
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2.3. Collimated Attosecond GeV Electron Bunches

Figure 2.4: (a) Electron energy spectrum (b) angular distribution of accelerated electrons for xenon,
copper and hydrogen produced by the 100 PW, 10 fs radially polarized laser pulse with
the focused field amplitude eE0/mcω = 1000 and σ0 = 3λ.

Figure 2.5: (a) Electron energy spectrum and (b) angular distribution of accelerated electrons for
xenon, copper and hydrogen produced by the 2 PW, 10 fs radially polarized laser pulse
with the focused field amplitude eE0/mcω = 150 and σ0 = 3λ.
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Figure 2.6: Train of attosecond electron bunches produced by the 100 PW, 10 fs radially polarized
laser beam for the xenon target after t = 50 laser cycles. The axes are in units of
wavelength λ.

Figure 2.7: 1d-cut of attosecond electron bunches. (a) 100 PW, 10 fs laser pulse, eE0/mcω =
1000, σ = 3λ with Xenon target, (b) single-cycle 100 TW laser pulse with eE0/mcω =
100, σ = λ and hydrogen target.
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2.3. Collimated Attosecond GeV Electron Bunches

The group velocity of the focused laser pulse is less than c. Thus, electron buckets
trapped and accelerated in this phase range may overtake the laser pulse. If the laser
pulse contains many cycles, already its relatively low intense foot wipes electrons away.
The electrons will never experience the pulse maximum and the energy gain will be
moderate. However, injection due to the ionization of deep levels of high-Z materials
can provide an electron source at the pulse maximum. Singh et al. described this as
self injection of electrons [45].
In the first 3D PIC simulation we take the radially polarized laser pulse (2.2)-(2.3)

beam with the power of 100 PW (1 PW=1015 Watt), 10 fs duration and the focal waist
σ0 = 3λ. The corresponding amplitude eE0/mcω = 1000. Such (or stronger) laser pulses
are expected within the Extreme Light Infrastructure (ELI) project [5]. Electron energy
spectrum and angular distribution of the accelerated electrons are shown in Fig. 2.4.
In the case of high Z atoms (xenon or copper), the maximum electron energies reached

are significantly higher compared to Hydrogen. The peak at the lowest energy range
corresponds to electrons extracted from the outer shells by the very foot of the pulse. The
high energy peaks correspond to ionization of the deep electronic shells. For the angular
distribution we take electrons from the high energy peaks of the electron spectrum.
The maximum energies of the accelerated electrons reach ∼7 GeV for xenon and ∼5

Gev for copper. This difference is because xenon has deeper inner shells than copper
with ionization potentials of those levels four times higher. We observe also a quasi-
monoenergetic peak around 4.5 GeV containing some ∼ 106 electrons per GeV. Looking
at the degrees of ionization of the atoms we observed Xe52+ and Cu27+ in this simulation.
Fig. 2.6 and 2.7(a) show the properties of the high energy electron bunches as a 1D

on-axis cut (a) and as a 3D volume view (b). Both the results confirm that these are
very short and highly compressed dense electrons bunches with attosecond shortness.
The spikes in Fig. 2.7(a) i.e. the bunches in 3D volume view Fig. 2.6, are around
100 attoseconds short.
To check how the acceleration process scales with the laser power, we performed an

additional simulation with the laser pulse of eE0/mcω = 150, that corresponds to a
power of 2 PW. Results are shown in Fig. 2.5. In this case, the electron energies reach
GeV level, indicating the electron energy scaling as Emax ∝ P 1/2, where P is the laser
power. In this simulation, we observed ionization up to Xe44+ and Cu27+. Again, there
is a drastic difference between the hydrogen target and the high-Z materials.

2.3.3 Single-cycle laser pulse

To get more insight on the performance of radially polarized laser pulses for electron
acceleration, we did a further similar simulation with the 100 TW laser pulse, amplitude
eE0/mcω = 100, waist σ0 = λ, and duration T = λ/c. The target material was
hydrogen, so that the atoms were instantaneously ionized by the pulse foot. Fig. 2.8
shows the electrons energy spectrum and angular distribution of the accelerated electrons
for this case. One observes an excellent monoenergetic peak at 0.9 GeV. Electrons in this
peak are collimated within a few degree opening angle. The 3D volume view, Fig. 2.9,
shows the single attosecond electron bunch.
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2. Acceleration of Electrons Using Ionization

Figure 2.8: (a) Electron energy spectrum and (b) angular distribution for the single cycle 100 TW
laser pulse focused down to the amplitude eE0/mcω = 100

Figure 2.9: 3D volume view of the single attosecond quasi-monoenergetic electron bunch produced
by the single cycle radially polarized laser pulse after t = 50 laser cycles. The axes
lengths are measured in the laser wavelength λ
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2.3. Collimated Attosecond GeV Electron Bunches

The electron bunch length in the 1D on axis cut, Fig. 2.7(b), is below 100 attoseconds
and is limited by the numerical spatial resolution of this simulation.

2.3.4 Acceleration by the Gaussian beam

In this section we present simulation results for electron acceleration with the linearly
polarized Gaussian laser pulse. The transverse electric field of the laser pulse at the
focal plane is

Ey = E0 exp
(
−r2/σ2

0

)
exp

(
−t2/T 2

)
cos(ωt), (2.4)

where E0, σ0, r =
√
y2 + z2 and T have the same meaning as that of the radially

polarized beam (2.2)-(2.3). The longitudinal component of the Gaussian beam at the
focal plane is

Ex = −E0
2y

kσ0

exp
(
−r2/σ2

0

)
exp

(
−t2/T 2

)
sin(ωt). (2.5)

Evidently, the longitudinal electric field component of the Gaussian pulse is zero on-axis
and reaches its maximum at the pulse periphery.
We perform two simulations with the Gaussian laser pulses. The powers of the Gaus-

sian pulses correspond to those of the radially polarized ones, 100 PW and 2 PW.
The simulation results for these two case are presented in Fig. 2.10 and 2.11. Ev-

idently, electron acceleration with the Gaussian laser pulses is much less efficient and
the accelerated electrons have large angular spread. Apparently, the effect of inner shell
electron ionization does not improve much the acceleration, as the maximum energy
reached by electrons of Xenon or Copper ions are not notably larger compared to that
of hydrogen.

2.3.5 Theoretical explanation

In the previous sections we have shown that radially polarized laser pulses are suitable
for acceleration of attosecond electron bunches to very high energies. The energy gain
of electrons is given by the path integral∫

E · dr (2.6)

along the trajectory. We have seen that it is the longitudinal component of the radially
polarized laser pulse (2.3) that accelerates the electrons. This component is of the order
of

Ex ∝ Er

(kσ0)

and decays together with the laser pulse on the distance of the order of the Rayleigh
length ZR = πσ2

0/λ. Thus, the estimate for the energy gain is

43



2. Acceleration of Electrons Using Ionization

Figure 2.10: (a) Electron energy spectrum and (b) angular distribution for xenon, copper and hy-
drogen targets for 100 PW, 10 fs Gaussian laser pulse with σ0 = 3λ. Compare with
the radially polarized pulse case, Fig. 2.4

Figure 2.11: (a) Electron energy spectrum and (b) angular distribution for xenon, copper and hy-
drogen targets for 2 PW, 10 fs Gaussian laser pulse with σ0 = 3λ. Compare with the
radially polarized pulse case, Fig. 2.5
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∆W ∝ Ex · ZR ∝ ERσ0 ∝
√
P , (2.7)

where P is the laser pulse power. This estimate agrees well with the simulation results.

2.4 Hot Electron Production from Laser Irradiated
Polystyrene Spheres

2.4.1 Simulation of the Texas laser droplet interaction
experiment

Figure 2.12: Measured x-ray signal as a function of sphere diameter for two different cutoff fil-
ters [41]. A significant peak in the x-ray signal is noticeable near the spheres daiameter
of 0.26 µm.

This experiment was performed with the THOR laser at the University of Texas at
Austin, a high intensity Ti:sapphire laser operating at a central wavelength of 800 nm
and capable of delivering 0.7 J on target. In this particular experiment the effects of
laser interaction with spheres with a well defined size and of dimensions comparable
to the wavelength were attempted to study [41]. Solving for a plane electromagnetic
wave impinging on a plasma sphere (Mie resonance) indicates that there should be an
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Figure 2.13: An experimental observation showing the enhancement of square of the laser field
around a 0.26 µm sphere. The color map is in units of laser field incident from the top
of the image [41]. Field enhancements are noticeable once again.

enhancement of the local field around the sphere in some parts. This motivated the
experiment, to see if this indeed occurs, then one could expect more energetic electrons
to be created via vacuum heating.
The target consisted of a glass slide with a covering of a mono-layer of identically sized

spheres. Sphere diameters of 100, 170, 260, 360, 540, 740, 1000 and 2900 nm polystyrene
spheres have been irradiated. The laser pulse was frequency doubled laser of 400 nm.
The spheres were made of polystyrene whose density is 1.05 g/cm3 and a chemical
composition of C8H8. The maximum intensity achieved was 2× 1017 Wcm−2 with pulse
duration of roughly 100 fs. The laser was incident at normal angle to the target. The
experimental diagnostics were measuring the x-ray yield with six NaI detectors with
various filters. The experimental x-ray yields are plotted in Fig. 2.12. The experimental
observations show a peak in the production of total x-rays for the spheres of size 260
nm. The x-ray signal corresponding to this sphere was of the order of three times the
strength compared to the 100 or 2900 nm spheres.
The implied electron temperatures were also enhanced but not significantly. From the

experiment a simple enhancement of the electric field for a particular sphere size has
been seen but that does not seem to give the the results obtained. The enhancement
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Enhanced field

Plasma sphere

5

0
0 5

0

0.1

Y/�

X/�
Figure 2.14: A plot of the square of the electric field during an intense pulse interacting with a

250 nm plasma sphere as found from the PIC simulations. The color bar indicates the
average of square of the total field 0.5(E2 + B2).

of the electric fields for the sphere with 0.26 nm diameter is shown in Fig. 2.13. The
other idea is that of multiple vacuum heating of the electrons. All these experimental
observations strongly motivated us to perform the 3D PIC simulation modeling of the
performed experiment with the relativistic parallelized PIC code VLPL [95].
Additionally, another set of experiments with an identical setup was conducted. In this

experiment the glass substrate was replaced with silicon and the x-ray k-alpha emission
from silicon has been measured. A similar pattern was observed in these x-rays yields.
The silicon k-alpha x-ray yield peaked up when using the 260 nm spheres.
To explore the field enhancements around the spheres and x-ray yields, particle-in-

cell (PIC) simulations of electron heating were conducted. Together with the simulation
results the experimental findings can explain effects of interplay of all of these effects on
hot electron production from plasma spheres. In the simulations the laser pulse has been
assumed as a 10 fs Gaussian pulse with 400 nm wavelength incident on a plasma sphere
with an intensity of ≈ 1017 Wcm−2. The plasma spheres are composed of a mixture of
carbon and hydrogen ions with an initial electron density n = 14nc, where, nc is the
critical density. Moreover, the effects of ionization of the Carbon (C) and Hydrogen (H)
atoms are also taken into account.
The square of the dimensionless field around the plasma sphere of 260 nm diameter

is calculated from the simulation results during the laser interaction. This has been
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Figure 2.15: Electron energy spectra for the spheres with diameters 80, 260 and 360 nm much after
the interaction with the laser pulse.
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Figure 2.16: Electron energy spectra for the spheres with diameters 540, 740, 1000 and 2900 nm
much after the interaction with the laser pulse.
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Figure 2.17: A plot of the average hot electron energy in the PIC simulation well after the pulse
has passed. The electron energies are normalized with the total number of electrons
in that sphere.

illustrated in Fig. 2.14. A well-defined enhancement of the field on the surface of that
plasma sphere is evident in this plot. Multiple heating also plays an important role in
the final electron temperature. This can be confirmed with the energy spectrum of the
electrons inside each type of spheres in Fig. 2.15 and 2.16. The total electron kinetic
energy is maximum in case of the 260 nm sphere. Additionally, we noticed a significant
resonance for this particular sphere in the simulations.
Fig. 2.17 plots the numerically calculated average electron energy after time T = 40,

time in laser cycles, into the interaction. This set of simulations show that a maximum
in the average energy of the hot electrons occurs for plasma spheres of 250 nm diameter.
This represents a remarkable agreement with the trend observed in the experimental
data. Hence, at this point, one can conlcude from the simulation studies together
with the experimental observations, that there exists an optimum sphere diameter for
generating hard x-rays from the intense laser irradiated plasma spheres. This is expected
to be a consequence of the physics of Mie resonance.

2.5 Conclusion and Outlook

In summary, an ionization module, which includes both BSI and tunneling ionization,
has been implemented into our existing relativistic PIC code. Full three dimensional
Particle-in-Cell (3D PIC) simulations of acceleration of electrons in vacuum with radially
polarized ultra-intense laser beams have been successfully performed. Our simulation
results show that single-cycle radially polarized laser pulses, where the longitudinal com-
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ponent of the laser pulse plays the principal role in accelerating the electrons, efficiently
accelerate a single extremely collimated quasi-monoenergitic attosecond electron bunch
to GeV scale energies. On the other hand, when similar multi-cycle laser pulses are used,
one has to properly utilize deeper shell ionization of high-Z materials to inject electrons
in the accelerating phase at the laser pulse maximum. In this case, a train of highly
collimated attosecond electron bunches with quasi-monoenergetic spectra is produced.
A comparison with electron acceleration by Gaussian laser pulses has also been done. It
is established that the radially polarized laser pulses are superior both in the maximum
energy gain and in the quality of the produced electron beams.
Further, the experimental results of the production of hard x-rays from laser irradi-

ated precisely controlled microscopic spheres were magnificently reproduced with the
ionization enabled VLPL code. Moreover, the simulation results were able to explain
the enhancements of hard x-rays production for an optimum diameter. These enhance-
ments, from Mie resonance and multiple heating for a sphere of diameter roughly half
that of laser wavelength, leads to substantial increase in total number of hot electrons.
These enhancements results in the uprise of x-ray yield. This has also been successfully
reconfirmed with the numerical simulations.
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3 Collisions in Relativistic
Laser-Plasma Interactions

3.1 Introduction

In relativistic laser-plasma physics, collisions or rather binary collisions are very fre-
quently encountered inelastic processes. Electron-ion binary collisions play a crucial
role in the relativistic beam transportation process of Fast Ignition (FI) scheme of Iner-
tial Confinement Fusion (ICF) [131]. Classical Particle-in-cell (PIC) codes, most widely
used to simulate collisionless plasmas, have the possibility to efficiently incorporate col-
lision processes [91, 92]. But implementing collision into the classical PIC scheme has
always been a challenge for numerical plasma physicists. Many different approaches
both with kinetic and fluid description of plasma e.g. binary PIC-MCC (Particle-in-
cell–Monte-Carlo-Collision) model [133–135], Coulomb collision model [136], Langevin
approach [132], Gyrokinetic Simulation model [137] and Grid-Based Coloumb Collision
model [138], have been adopted to effectively simulate collisional cases of laser-plasma
interaction physics. Theoretical models have also been continuously developed to inter-
pret binary collisions more accurately in plasmas under relativistic laser fields [21, 139–
141]. In this chapter, we will discuss about the implementation and benchmarking of
a collision module incorporated into the relativistic PIC code VLPL [95], followed by
the results of a 3D collisional PIC simulations of the electron acceleration experiment
performed at Düsseldorf fs-laser system and lastly a conclusion to this chapter.

3.2 Numerical Simulation of Electron-Ion Binary
Collisions

It is well understood that collisional impacts in plasma always occur in a distance scale
much smaller than the spatial grid size δx of a PIC algorithm, and hence, it has always
been difficult to model collision physics in a PIC code [90]. To overcome this complexity,
one needs to lower the spatial grid size below the Debye length λD, otherwise, there are
risks of artificial numerical heating. This in return will increase λD, ruining the energy
conservative nature of the scheme, until λD > δx. However, as the classical closest
approach parameter for an electron (bmin), to be deflected through large angle, is of the
order of N−1

D , where ND is the total number of electrons in Debye sphere, even when
δx < λD, it is troublesome for PIC codes to resolve collision physics properly [145].
Due to such complex nature of collisions, most of the well known PIC codes, initially,
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were refrained to include collision algorithms. But there have been several successful
developments on implementing collision into the PIC codes. One of the basic approaches
are to reduce the collision process restricting to electron-ion binary scattering only, then
the collision parameters, such as cross-section, probability, etc. can well be calculated
taking into account the electron velocity and ion densities inside the cells of a PIC code.
Electrons can then be scattered using a well-know Monte-Carlo randomizing algorithm
to give them some altered motion. This approach is a very fruitful, simple and not
always wrong. It is important to mention here that, when the fields are computed
from direct solutions of Coulomb’s law, one can avoid resolving Debye length [142].
Hence, we can summarize at this point, that implementation of collisions in a PIC
code is difficult, tricky but not impossible. There have been successful implementations
of collision models in some PIC codes and some more complex extensions using Tree
Codes [143] and Fokker-Planck modeling [144] have also been performed successfully.
As a matter of fact, this has also motivated us to study the extremely interesting but

not trivial electron ion-binary collisions in laser plasma interactions. A Monte-Carlo
collision module for the code VLPL has been implemented into the PIC. Afterwards, this
implementation, with some test simulations, have been benchmarked sucessfully. In the
following subsection, the implementation of the algorithm 3.2.1 and also a benchmarking
simulation 3.3 will be presented in detail.

3.2.1 Implementation of the VLPL3d collision module

At this point it is worthy to remind that, the benefit of a PIC numerical method is that
it solves a system of ordinary differential equations for every particle, which involve
a long-range electromagnetic force, i.e. Lorentz force. The current collision method
includes electron-ion binary collisions in overdense plasma in a precise manner. For the
sake of simplicity it is presumed that all simultaneous collisions are avoided although
multiple collisions may, of course, occur in this consideration. In a collisional plasma
the position coordinates of the numerical ‘macroparticles’ satisfy all the characteristics
numerical equations of the collisionless case, whereas, the particle momentum equations
do not. Hence, the particle motion equations have to be rewritten for the short-range
Coulomb collisions in the following way [132]:

d

dt
p = eE + e

(v

c
×B

)
+ Fcoll (3.1)

where Fcoll is the effective collisional force acting on the particles.
At the same time, one has to rethink the way to find the collisional force Fcoll. More-

over, it is also a matter of concern that modifying the implicit particle momentum in
the main PIC algorithm can be potentially dangerous for the momentum/energy con-
servation methods therein. A couple of faithful ways to do it are: solving the Focker-
Planck-Landau equation [57] or solving for the well known BGK equation etc. But these
may become extremely computationally expensive for cases like, ultrashort relativistic
laser produced plasmas, high density or Fast Ignition (FI) plasmas. Hence, two crucial
considerations need to be taken into account in choosing the collision algorithm:
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Figure 3.1: Description of the UML Class interface of the VLPL code with the flowchart diagram of
the implicit collision algorithm. The method void Mesh::moveparticles() executes
the motion equation for all the particles inside the Mesh.
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1. The model needs to define efficiently well, the binary collisions preserving the
energy conservation methods of the PIC scheme. Therefore, one can avoid the
risk of numerical instabilities and unwanted forced conservation methods.

2. The numerical model should be computationally optimal. Hence, one can increase
the efficiency as it will not be extremely time consuming for very high density
plasmas, like fusion plasma, where the density corresponds to 105nc and one has
to choose couple of hundred of particles-per-cell in a PIC simulation.

In Fig. 3.1 the technical descriptions of the VLPL3D collision module has been pro-
vided with an interface of the VLPL3D UML class definitions coupled with collision
algorithm flowchart diagram. The particle motion equations are modified inside the the
method Mesh::MoveParticles(). The first important task is to calculate the collision
probability of the electrons. Since the ions are 1836 times heavier than the electrons,
we only calculate the collision probability νei for the numerical electrons inside each cell
of the simulation domain in a single time-step Ts. Now, the distance traversed by an
electron in a single time-step (Ts) is given by

d =
|p|√

1 + |p|2
Ts. (3.2)

Implicit ion densities inside each numerical cell (Ni) has been considered to calculate
the mean free-path length of the binary collision as

λfree =
1

Niσ
, (3.3)

where σ is the differential scattering cross-section, which can be obtained from a list of
experimental values. Thus, the numerical scattering probability νei comes out to be

νei =
d

λfree

. (3.4)

Now, we generate a unit vector of of arbitrary orientation f , such that,

|f | =
∣∣∣fxî+ fy ĵ + fzk̂

∣∣∣ = 1. (3.5)

This will, at once, allow us to introduce a stochastic change in the particle motion
equation. A new vector F can be constructed right away, such that,

|F| = |f · νei| , (3.6)
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where νei is the electron-ion collision frequency. Henceforth, we modify the particle
motion equation as

d

dt
p = eE + e

v

c
× [B + f · νei] . (3.7)

We continue to push the same particle into the inherent PIC scheme with the modified
motion equation. This implicit method avoids directly modifying the implicit particle
momenta p, hence, keeps off any numerical heating therein. The whole sequence of
process loops over all the mesh cells.
This collision module, implemented with the above mentioned scheme, has been

benchmarked with a simple and intuitive test collisional simulation. This has been
described in the following Section 3.3.

3.3 Benchmarking with Physical Processes

3.3.1 Scattering of hot electron beam in ambient collisional
plasma

To benchmark the collision module, we choose to simulate a simple test problem. A
narrow, extremely low density cylindrical electron beam which is propagating in the
positiveX-direction with an initial thermal velocity vth expressed in terms of momentum
spread as px ∼ 50 keV as shown in the schematic of Fig. 3.2. The incident electron beam
is approximately 2 µm wide with a radius of 1 µm. The beam has a very low electron
density, nb = 10−10n0, where n0 is the background density, to have a larger free-path
λfree. We have chosen different instances of the thickness of the ambient plasma slab to
be able to verify the validity of the collision algorithm. The thickness of the overdense
(n = 5n0) plasma slab (d) has been altered to five different multiples of λfree. This,
in a way, will provide us different multiples of the free-path length. The simulation
box dimension is (X × Y × Z) = (5 × 5 × 5) µm. For all the cases the differential
collision cross-section is σ = 10−16 srad/cm2. Five different simulations have been
performed for thicknesses (a) d = 0.01λfree (b) d = 0.1λfree (c) d = 1.0λfree (d) d = 3λfree

(e) d = 10λfree to understand the validity of the collision module. A schematic of the
simulation problem has been illustrated in Fig. 3.2.
When the thickness of the plasma slab d¿ λfree, free-path of the ambient collisional

plasma electrons, i.e., case (a), the beam electrons do not actually get any chance to
get scattered by the ambient plasma ions. Hence, relativistic beam electrons can pass
through the very thin plasma slab without even facing any noticeable instance of binary
collision. This is also the case in a real physical condition. When the slab thickness,
on the contrary, has been increased to d = 0.1λfree in case (b), there will be very low
possibility of the beam electrons getting scattered due to collisions with the plasma ions.
As a consequence, a very small number of beam electrons may get spread out, which is
also evident from the Fig. 3.3(b).
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Figure 3.2: 3D schematic of the benchmarking simulation for collision of a hot electron beam elec-
trons with ambient plasma ions for different thicknesses of a plasma slab.

On the other hand, if the interacting plasma slab thickness corresponds to λfree, i.e., in
case (c) of Fig. 3.4, the beams electrons encounter a minimum distance, which is enough
to collide with ambient ions. That results in a recognizable amount of scattering of
the beam electrons but a significant portion of the beam passes non-scattered. This
observation, as well, matches considerably enough with the physical understanding.

To benchmark further, the feasibility of the VLPL collision module, we proceed to
observe the effects of interaction lengths much larger than λfree. In the following case
(d), when the interaction length of the beam-plasma system is 3λfree, very reasonably,
most of the beam electrons at least once get collided with the ambient plasma ions. As
a result, the beam electrons virtually become entirely scattered after colliding with the
ambient plasma ions. The simulation result, which shows the similar observation, has
been depicted in Fig. 3.5(d).

Furthermore, we simulate the case (e), when the interaction length of the beam-plasma
system is 10λfree, all the beam electrons must experience collision here, as they traverse
enough length to face multiple collisions. Thus, after passing through the ambient
plasma slab the beam gets extremely scattered, because the beam electrons flow some
random path after colliding with the plasma ions. At this point, we can summarize
that, the collision module of the code VLPL benchmarks well enough the collisional
processes in relativistic laser-plasma interactions. The feasibility of the scheme has
passed important tests successfully.
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Figure 3.3: Scattering of an electron beam for different thickness of a plasma slab. (a) When the
thickness of the slab is d = 0.007λfree there are no scattering of electrons. (b) For
d = 0.1λfree just a little amount of scattering occurs.

3.4 Directed Acceleration of Electrons from Solid
Surface

A more extensive use of our VLPL collisional algorithm has been undertaken by repro-
ducing and explaining the results of an experiment done by Brandl et. al. [14] at ILPP,
HHU, Düsseldorf. In this experiment electrons have been accelerated from solid target
surfaces by a sub-10-fs laser pulses of 120 µJ energy which was focused to an intensity
of 2 × 1016 W/cm2. The details of the simulation results and its comparison with the
experimental findings have been discussed in 3.4.1.
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Figure 3.4: When (c) d = 1.0λfree a significant part of the beam passes unscattered whereas, a
recognizable amount of beam electrons get scattered by the ions.

There have been many successful attempts where a relativistic (a0 > 1) sub-ps laser
pulse has been focused into an underdense gas to produce strongly collimated accelerated
electron beams in the specular directions. These works observed quasi-monoenergetic
spectra for accelerated electron beams up to the GeV scale [10, 12, 68, 84, 146, 147]. But
focusing on a solid target instead of gas, typically produces less energy electrons in a very
broad angular dispersion; showing a strong dependence on the physical properties of the
expanding plasma produced on the solid target surface [148–150]. A different method has
also been undertaken by Osterholz et al. [151], where a laser pulse with much lower pulse
energies (≤ 1 mJ) but with sub-10-fs duration focused on a solid surface to produce a
near solid density plasma and peak electron energy of ∼ 100 eV. The current experiment
shows that such laser pulses with only 120 µJ of energy can also be used for directed
electron acceleration from the solid target surfaces and that energies well above 100
keV can be obtained. This experiment is dominated by the primary interaction of the
electromagnetic fields with free electrons together with collisions inside the solid, whereas
the plasma plays no significant role. The simulation results shows a detailed perceptive
of the electron energy spectrum and the angular divergence of the hot electron from
the target surface. In addition, the excellent agreement with the experimental finding
confirms the correctness of the VLPL collision module.

3.4.1 3D–PIC simulation of the experiment

A three-dimensional (3D) simulation of the experiment has been performed using Virtual
Laser Plasma Lab (VLPL) [95], a fully relativistic, massively parallelized electromagnetic
Particle-in-Cell (PIC) code. A p-polarized laser pulse of wavelength λ = 0.82 µm with
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Figure 3.5: Scattering of an electron beam for different thickness of a plasma slab. (d) When the
thickness of the slab is d = 3λfree almost all the beam electrons get dispersed by colliding
with the plasma ions. (e) for d = 10λfree, the scattering rate or probability is much
higher and virtually every electron experiences collision.

a0 = 0.2 is obliquely incident on an overdense plasma layer. The angle of incidence is 45◦

and the laser peak intensity is I0 = 5.5× 1016 W/cm2. The plasma density rose sharply
from 0 to n = 50nc within 0.1 µm, here nc = mω2/4πe2 is the critical density. The
plasma layer is 1 µm thick. The simulation box size is (X × Y × Z) = (3λ× 10λ× 1λ)
µm3. The laser pulse profile was chosen to be Gaussian:

a = a0 exp(−r2/R2) exp(−t2/T 2) cos(ωt) (3.8)

where the spot radius R = 1.64 µm, and r2 = x2 + y2, the time duration was T = 9 fs.
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Figure 3.6: Experimental setup for spectral measurements. Used without aperture, E-field and
shielding for 2D survey images. (Figure: Brandl et al. [14])

The entire simulation box is sampled with a mesh grid of 120× 100× 2 cells. To resolve
the angular distribution of electrons accurately, we used an extensively large number of
electrons (as much as 1000 particles per cell for electrons). The boundary conditions for
the fields and particles were periodic in the lateral directions.
The code VLPL has been equipped with electron-ion binary collisions. The velocity

dependent differential scattering cross-section σ for electrons have been taken from [152]
to obtain the scattering probability in each time-step inside the cells. In the present
simulation σ corresponds to Aluminum plasma. The laser pulse train has been allowed
to interact 15 laser cycles period and the electrons leaving the front surface of the target
have been saved for diagnostics.
Fig. 3.6 shows the experimental setup for the spectral measurement. In this exper-

iment, a p-polarized pulse hits the target under 45◦ incidence. Flat surface targets of
different metals (Al, Ag, and Au) were used as targets for this experiment. Two different
diagnostics has been performed: firstly, the angular electron distribution was recorded
in the angular cone of (90◦ - 135◦) and secondly, the energy spectra of the hot electrons
leaving the target front surface in the same angular cone.
The first experimental result was that the hot electrons emitted from the interaction

region of the target fly to distinct angular directions, as shown in Fig. 3.7. One or
several confined spots on the image plate have been formed by these energetic electrons,
typically around the horizontal laser plane and at angles between 100◦ and 130◦. This
particular pattern was reproducible from shot to shot and similar for all investigated
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Figure 3.7: Typical 2D survey image of electrons detected with an IP for a single laser shot on an
Al target. Emission is predominantly at distinct angles (highlighted regions) between
target normal and the direction of the reflected laser. The colors range from blue for
small to red for high electron signal. Figure: Brandl et al. [14]

metals. The simulation results for the angular distribution of the hot electrons flying
out of the target front surface has been shown in Fig. 3.8, which compares the angular
distribution of the hot electrons to the results when electron-ion collisions are switched
off. The scattering angle of the hot electrons is counted from target normal. The hot
electrons fly in a significantly broader angular cone in a collisional plasma and one can
also observe several confinements of the energetic electrons in the cone of target normal
and direction of the reflected laser. This is obviously a very remarkable agreement with
the experimental results. On the other hand, obviously, collisionless plasma effects are
insufficient to produce the experimental results, which proves that an interplay of the
laser field electron acceleration and binary collisions in overdense plasma is needed to
achieve the experimental observations.
The experimental electron energy spectra were also measured at such angles where

strong emissions were found. Maximum energies above 150 keV were detected for all
metal targets. This has been shown in Fig. 3.9. The highest energy attained by these
electrons are much higher than the electrons can gain due to a purely ponderomotive
acceleration. Hence, there has to be some other physical effect which plays an important
role in accelerating the electrons to such high energies. This can better be understood
with our PIC simulation results. The PIC simulation results for the electron energy
spectrum are shown in Fig. 3.10, where the maximum kinetic energy obtained by the
accelerated electrons is also above 150 keV, similar to the experiment. Once again,
it has been noticed that, the collisionless plasma failed to reproduce the experimental
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Figure 3.8: Angular distributions of the hot electrons obtained by PIC simulations with and with-
out scattering. The experimental distribution of Fig. 3.7 can only be reproduced with
scattering. 0◦ here corresponds to 135◦ in the experimental setup of Fig. 3.6

observations of spectrum. At this point one can conclude that the effects of plasma
collisions in overdense plasma add up to the laser field ponderomotive acceleration of
the electrons and steps up the maximum electron energy to significantly larger than
Up = 4 keV. This can be explained as, the electrons inside the target encounter several
collisions and then get heated multiple times, which, in return, contributes to increase
the electron kinetic energy. Hence, the unpredicted large peak in the electron kinetic
energy is observed.

To get more insight into the energy distribution of the electrons confined into some
regions as noticed in the experimental results of Fig. 3.7, we have studied the energy
spectrum of each of these bunches at different angular cones in the collisional case. This
has been shown in Fig. 3.11(I - VI). It is evident that most of the higher energy electrons
fly in the range of (15◦-35◦) and (35◦-52◦) as depicted in Fig. 3.11(II) and (III). In all
the other angular cones the electrons have much less energies. Referring to the Fig. 3.10,
one can observe that the maximum energy of all the bulk accelerated electrons is over
150 keV and these higher energies are contributed by the electrons traveling other than
along the specular direction. Moreover, the number of electrons in the region (II) and
(III) is larger than the electrons flying on the other angular cones. Hence, the density
of the confined electrons in the ranges (II) and (III) are much higher than others, which
is also the experimental finding.
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Figure 3.9: Experimental electron energy spectrum: Electron spectrum obtained close to the direc-
tion of the reflected laser for a single laser shot on a silver target. (Figure: Brandl et
al. [14]) .

Figure 3.10: Energy spectrum from the 3D-PIC simulation: Electron energy spectra obtained by PIC
simulations using collisional VLPL code with and without scattering. The experimental
energies ≥70 keV can only be reproduced with scattering.
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Figure 3.11: Energy spectra of the electrons in different angular ranges obtained by 3D-PIC simula-
tions using scattering. The angular ranges are shown in the inset boxes. These angular
ranges correspond to Fig. 3.8. The highest energy electrons fly in the angular cone of
15◦ to 35◦.
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3.5 Conclusion

In conclusion, a stochastic collisional algorithm has been implemented into the existing
3D-PIC code VLPL and this implementation has been successfully tested with a simple
simulation of electron beam scattering in an overdense plasma. After this successful
test, the experimental results of the directed acceleration of electrons from a solid target
surface by sub-10-fs laser pulses has been reproduced and explained magnificently by the
collisional VLPL code simulations. The directed electron ejection from solid surfaces was
simulated using laser intensities in the range of 2×1016 W/cm2 and pulse durations below
10 fs, i.e. only a few cycles of the electromagnetic field. In contrast to longer laser pulses,
it turned out that plasma effects are of minor importance for the electron acceleration
in this regime. The interaction is deterministic and governed by the interaction of the
electromagnetic field with the single electrons, leading to distinct ejection angles. The
unexpectedly high kinetic energies observed are explained by an interplay of acceleration
in vacuum and scattering inside the solid target which leads to phase-delayed reemission
into the field. In this way, the kinetic energies are boosted by accelerating single electron
in subsequent cycles of one laser pulse. Another, more complex, simulation problem of
collisional Weibel instability has also been performed and will be discussed in Chapter 5:
Effects of Temperature and Collisions on the Weibel Instability.
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4 Implicit PIC-Hydrodynamic
Hybrid Simulation Code H-VLPL

4.1 Introduction: Motivation

Computer simulations are key tools in the study of laser-plasma interactions [91, 92].
Large full 3D parallel electromagnetic simulation codes like VLPL [95], OSIRIS [96],
VORPAL [97], OOPIC [98], and others contributed remarkably in our understanding
of the complex laser-plasma physics. Adding new physical processes in the codes, as
well as doing large scale high-density plasma simulations are becoming more and more
computationally expensive. As a result new algorithms and simulation techniques are
being developed to cope with challenges of the laser-plasma physics.
One of the main reasons why the classical explicit Particle-in-Cell (PIC) methods

are extremely computationally expensive is that they have to resolve the plasma fre-
quency ωp =

√
4πnee2/me, which is the frequency of the plasma electrostatic oscilla-

tions. Therefore, they are limited to be applied to systems with lower plasma densities
only.
On the contrary, there are increasing demands to simulate high-density plasmas, e.g.,

in the experiments where the laser pulse interacts with solid targets [54]. The solid state
density plasmas densities vary over a range 100− 1000 nc, where nc = mω2/4πe2 is the
critical plasma density. Here, m is the electron mass, −e is its charge, and ω is the laser
frequency. Other important applications include the Fast Ignition (FI) physics in the
Inertial Confinement Fusion (ICF) studies [153]. The FI plasma has a density of the
order of 1000 times compressed solid hydrogen, i.e., of the order of 105 nc. Hence, the
applicability of the classical PIC codes in this density range is facing a big question. In
this situation, one is forced to look for a more efficient numerical method to challenge
those ultra-high densities. One of the possibilities is to include hydrodynamic description
of the high-density plasma in the fully kinetic PIC code.
In last couple of years PIC-hydrodynamic hybrid techniques have emerged as an ef-

ficient solution to large scale ultra high-density plasma simulations, e.g., FI physics,
solid state density plasma interactions, high charge and high energy ion production,
etc. [154, 157, 158]. Most of these codes work in the Darwin approximation [159] and
thus exclude the electromagnetic wave propagation completely. They also exclude elec-
trostatic waves keeping the collisional magnetohydrodynamics (MHD) only. Further,
implicit electrostatic particle-fluid hybrid plasma code has been developed by Rambo
and Denavit [155], which has been used to study interpenetration and ion separation in
colliding plasmas [156]. There is also the implicit electromagnetic PIC code LSP [160].
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This code uses an implicit global scheme which leads to no such restrictions over time-
step. The LSP code also employs a field solver based on an unconditionally Courant-
stable algorithm [161] for electromagnetic calculations.
This chapter is solely devoted to the in-depth discussion of the physical model, nu-

merical scheme and benchmarking of the newly developed PIC-Hydrodynamic hybrid
code. This work has been performed in active collaboration with the colleagues from
Applied Mathematics Institute, Heinrich-Heine-University, Düsseldorf.
The code Hybrid Virtual Laser Plasma Laboratory (H-VLPL) [55] is a hybrid code

which unites a hydrodynamic model for overdense plasmas and the full kinetic descrip-
tion of hot low-density electrons and ions. The schematics in Fig. 4.1 illustrates the
physical modelling of the H-VLPL code.

Hybrid Code for Relativistic Laser-Plasma

Figure 4.1: Schematics of the code H-VLPL. Low-density plasma is described kinetically using the
explicit electromagnetic PIC technique. The cold overdense background plasma is de-
scribed hydrodynamically. The full electromagnetic field solver is applied to the complete
domain of simulations, also in the region of overdense plasma.

New matrix algorithms are developed to eradicate the time-step restrictions due to
high plasma frequencies. Since the density of hot electrons is typically rather low,
hybrid codes are expected to be more efficient than direct PIC codes. This allows us for
simulations with physically relevant solid state densities. Although the code H-VLPL
automatically reduces the highest numerical frequency to the stable range, the spatial
description of the field distribution remains correct. Even when the grid step is much
larger than the plasma skin depth, the algorithm gives the correct exponential decay of
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electromagnetic fields in overdense plasma layer (described in Section 4.5.4).
This chapter is arranged as follows. First, we describe the full hybrid method, in

Section 4.2. Then, we write down the implicit numerical scheme and provide the com-
putationally efficient matrix algorithm to solve the implicit set of equations, Section 4.3.
In Section 4.4, we study the numerical dispersion relation for the new scheme and check
its stability. Finally, we benchmark the new code H-VLPL extensively on a number of
well-known physical examples in Section 4.5.

4.2 The Hybrid Model

We begin with writing down the master equations on the fields and particle momenta:

∂ ~E

∂t
= c∇× ~B − 4π

∑
`

~J` , ` = e, i, h (4.1a)

∂ ~B

∂t
= −c∇× ~E (4.1b)

d~ph

dt
= qe ~E − νme~vh (4.1c)

d~p`

dt
= q`( ~E +

~v`

c
× ~B) , ` = e, i (4.1d)

where

~J` = q`n`~v` , ~p` = m`γ`~v` , γ` =

√
1 +

p2
`

(m`c)2
, ν = ηnh .

The index ` = e, i, h refers to electrons, ions, and hybrid particles, respectively. ~E and
~B denote the electric and magnetic field vectors, ~J denotes the current density, ~p is the
momentum and n is the number density of particles. The parameter ν denotes collision
frequency that defines the cold plasma conductivity.
Eqs. (4.1a) – (4.1b) show that we use the unabridged Maxwell equations and thus

include the full physics of electromagnetic waves. Eq. (4.1d) corresponds to the fully
kinetic algorithm for the low-density electrons and ions.
It is essential here to explain the meaning of Eq. (4.1c). The “hybrid particles” are

assumed to be compound quasineutral objects, i.e., the negative charge of electrons
within the hybrid particles is fully compensated by the positive charge of the ions. The
electrostatic force of the “hybrid ions” is so strong that the “hybrid electrons” cannot
be separated. At present, in our scheme the hybrid particles do not move as a whole.
At the same time, the electrons within the hybrid particle are allowed to have non-
zero momenta ~ph and to generate currents ~Jh = −enh ~vh . Thus, the hybrid particles
are purely current carriers for the present scheme. This kind of plasma description
corresponds to the single fluid MHD model [57]. Because the “hybrid electrons” are
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assumed to move slowly, vh ¿ c, and we are interested in their response to fast electric
fields only, hence, we neglect the ~v × ~B/c term in the Lorentz force (4.1c). A further
extension to this present scheme taking into account the hybrid particle dynamics as a
whole will be presented elsewhere.
For modeling the kinetic part we use the standard Cloud-In-Cell (CIC) interpolation

scheme. On the other hand, the hybrid particles are presently point like and are treated
with Nearest Grid Point (NGP) interpolations. One has to mention here that, the kinetic
part of the code exploits the energy conservative scheme, which has been benchmarked
later in Section 4.5.2.

4.3 The Numerical Algorithm of H-VLPL

For simplicity, we rewrite the equations in dimensionless variables, t̃ = ω0t and x̃ = k0x,
where ω0 denotes the laser frequency and k0 = ω0/c. The new set of variables are then

Ẽ =
eE

mecω0

, B̃ =
eB

mecω0

, p̃h =
ph

mec
, p̃` =

p`

m`c
, ` = e, i,

and

J̃` =
J`

jc
, jc = encc, ρ̃ =

n

nc

, q̃` =
q`me

em`

, ṽ` =
v`

c
, ν̃ =

ν

ω0

.

In Sections 4.3 and 4.4 we choose the ρ notation instead of the usual n for the number
densities of particles to avoid a possible confusion with the time step number n.
In the following, we omit the tildes. Eq. (4.1) then reads

∂ ~E

∂t
= ∇× ~B −

∑
`

~J`, ` = e, i, h (4.2a)

∂ ~B

∂t
= −∇× ~E (4.2b)

d~ph

dt
= − ~E − ν~vh (4.2c)

d~p`

dt
= q`( ~E + ~v` × ~B), ` = e, i. (4.2d)

Suitable boundary conditions for the simulation of a laser-plasma interaction are inho-
mogeneous, time dependent Dirichlet boundary conditions for the incoming laser(s).
We consider the problem in one space dimension at the moment, i.e., all vectors are

of the form

~V = [Vx(t, x), Vy(t, x), Vz(t, x)]
T , x ∈ [0, L]
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We thus have explicitly Bx(t, x) = 0 for the current system.

Following [91] we define the field quantities as

F±
y =

1

2
(Ey ±Bz), F±

z =
1

2
(Ez ±By). (4.3)

If we denote the sum of all currents, derived from the PIC scheme, with ~J (4.2a)–(4.2c)
are equivalent to

∂F±
y

∂t
= ∓

∂F±
y

∂x
+

1

2
ρhvh,y −

1

2
Jy (4.4a)

∂F±
z

∂t
= ±∂F

±
z

∂x
+

1

2
ρhvh,z −

1

2
Jz (4.4b)

dph,y

dt
= −(F+

y + F−
y )− ηρhvh,y (4.4c)

dph,z

dt
= −(F+

z + F−
z )− ηρhvh,z. (4.4d)

The boundary conditions are given by F+
y (0) = F−

z (0) = g(t) and F−
y (L) = F+

z (L) = 0.

For the numerical discretization we use an equidistant staggered grid in space and time
with spatial step size h = L/m for some positive integer m and temporal step size τ > 0.
The fields at grid point j and time tn = nτ are denoted by F n

j , j = 0, . . . ,m, n ≥ 0.
The field equations are integrated along the vacuum characteristics (x ∓ t = constant)
which implies h = τ . We discretize the fields E and B and the momenta ph, pe. The
current ~Jh and the velocity are computed via ~Jh = −ρh~ph/γh = −ρh~vh. Fig. 4.2 shows
the staggered grid and the location of the variables.

We suggest the following implicit finite difference scheme for solving (4.4):

71



4. Implicit PIC-Hydrodynamic Hybrid Simulation Code H-VLPL
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Within this scheme, we approximate

(ρhvh,x)
n+ 1

2
j =

(ζh)
n
j

2

(
(ph,x)

n+1
j + (ph,x)

n
j

)
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n
j )
)
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n
j+1

)
, s = y, z (4.6b)

(ρhvh,s)
n+1
j = (ζh)

n
j (ph,s)

n+1
j , s = x, y, z, (4.6c)

where ζh = ρh/γh. This leads to the following scheme for the x-component
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(
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j + (Ex)

n
j

)
1 + τη(ζh)n

j

, (4.7b)

where
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Figure 4.2: The staggered grid system and the location of the variables for the finite difference
scheme (4.5). The transverse E and B field components and the hybrid momentum ph

are calculated on the local grid points, whereas, longitudinal field component Ex and
the current Jx are calculated at half a grid. The transverse current components Jy and
Jz are calculated over half a time-step on the grid points.

K± = 1± τ 2ζh
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.

However, for the y-component we obtain the implicit scheme
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Next we consider the efficient solution of the linear system for the y-component. For
Y =

[
(F+

y )1, . . . , (F
+
y )m, (F

−
y )0, . . . , (F

−
y )m−1, (ph,y)0, . . . , (ph,y)m

]T we obtain
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AY n+1 = BY n + f(t), (4.9)

where f contains the boundary conditions and the electron currents (from the PIC code),
and

A =

[
I2m D
C G

]
and B =

 ST
m 0
0 Sm

−D

−C Im+1

 .
Here Ik denotes the k × k identity matrix and G = diag(1 + τη(ζh)

n
j ) ∈ R(m+1)×(m+1).

Sk represents the k × k shift matrix with ones on the first upper diagonal and zeros
elsewhere. C ∈ R(m+1)×2m and D ∈ R2m×(m+1) are given by

C =
τ

2

[
0 Im
Im 0

]
, D = −τ

8

[
bidiag((ζh)n

j , (ζh)
n
j+1)

m−1
j=0 ,

bidiag((ζh)n
j , (ζh)

n
j+1)

m−1
j=0

]
,

where bidiag(aj, bj)j=1,m denotes an m × (m + 1) bidiagonal matrix with aj as the jth
diagonal entry and bj as the jth upper diagonal entry.
This large linear system can be solved efficiently by using block Gaussian elimination

A =

[
I2m D
C G

]
=

[
I2m 0
C Im+1

] [
I2m D
0 T

]
,

where T = G − CD is the tridiagonal matrix containing the Schur complement [162]
of A. Thus the solution of (4.9) can be reduced to solving a linear system with the
tridiagonal matrix T of size m+ 1.
Finally, the scheme for the z-component is given by
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The resulting linear system is solved analogously to the one for the y-component.
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4.4 Numerical Dispersion and Stability

In this section we will derive the dispersion relations for the hybrid scheme (4.5) applied
to the dimensionless equations (4.2). In dimensionless variables the plasma frequency is
given by

ω̃` = ω`/ω0 =
√
ρ̃`, ` = e, h. (4.11)

We again omit the tildes, set γ` = 1 and ρ` = const. The explicit PIC scheme is stable
for step sizes

τ ≤ 2

ωe

(4.12)

Therefore it is prohibitive to use this scheme for high densities.

4.4.1 Dispersion relation for the x-component

Due to Bx(t, x) = 0 we have

∂ ~E

∂t
= ρh~ph + ρe~pe (4.13a)

d~ph

dt
= − ~E − ν~vh (4.13b)

d~pe

dt
= − ~E (4.13c)

to obtain the dispersion relation for the x-component.
The finite difference scheme of (4.13) is given by
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n
j

τ
= ρh
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n+1
j + (ph,x)

n
j

2
+ ρe(pe,x)
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j (4.14a)
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j (4.14b)
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2
j − (pe,x)
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2

j

τ
= −(Ex)

n
j . (4.14c)

Substituting plane waves one gets

(Ex)
n
j = E0e

i(ωnτ−kjh), (4.15a)

(ph,x)
n
j = (ph)0e

i(ωnτ−kjh), (4.15b)

(pe,x)
n
j = (pe)0e

i(ωnτ−kjh) (4.15c)
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into (4.14) and using (4.11) leads to
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=
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2
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Solving (4.16b) for (ph)0, (4.16c) for (pe)0 and inserting into (4.16a) yields
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and for η = 0 we obtain

ω =
2

τ
arccos

√
1− ( τωe

2
)2

1 + ( τωh

2
)2
. (4.18)

The numerical dispersion relation (4.18) shows that the scheme is unconditionally stable
for τ ≤ 2/ωe, i.e., independent of ωh. This step size restriction is due to the explicit PIC
code. Note that in our hybrid model we have ωe ¿ ωh, so this restriction is not severe.
For η 6= 0, the stability analysis is more involved since we have complex coefficients

in the relation (4.18). In general, this leads to complex valued solutions ω. Therefore,
we verified numerically, that the scheme is stable for τ ∈ (0, 2/ωe) and η ∈ [0, 1].

4.4.2 Dispersion relation for the y- and the z-component

For the y-component we have
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= − ∂
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dph,y

dt
= −(F+

y + F−
y )− ηρhph,y (4.19c)

dpe,y

dt
= −Ey (4.19d)

The finite difference scheme then reads
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For the dispersion relation, we rewrite (4.20) in terms of the original fields E and B:
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Adding and subtracting (4.21a) and (4.21b) yields
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Analogously to (4.15) we substitute plane waves, which gives
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Solving (4.23b) for B0, (4.23c) for (ph)0, (4.23d) for (pe)0 and inserting into (4.23a)
yields
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from which we obtain
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For cos2 kτ
2

= 1, this is the same dispersion relation as for the x-component. Again,
we solved the relation numerically and verified stability for τ ∈ (0, 2/ωe), and cos2 kτ

2
∈

[0, 1].
For η = 0, the dispersion relation reads

cos2 ωτ

2
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cos2 kτ
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2
)2)

1 + ( τωh

2
)2 cos2 kτ
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and we obtain

ω =
2

τ
arccos ξ.

This shows that the scheme is unconditionally stable for τ ≤ 2/ωe.
In Fig. 4.3 analytical plots for the real and imaginary parts of k(ω) are presented for
η = 0, ωe = 0, ωh = 31.6, τ = 0.05 and ω ∈ [0, π

2τ
].

Analogously, one can obtain the same relation for the z-component.
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Figure 4.3: Plot of the dispersion relation for real (left) and imaginary (right) part of k(ω) with
η = 0, ωe = 0, ωh = 31.6, τ = 0.05 and ω ∈ [0, π

2τ ]. The simulation results for
the same case with ωh = 31.6 will be discussed in Section 4.5.4 and the corresponding
Fig. 4.10 therein.

4.5 Benchmarking with Physical Processes

The numerical scheme described in the previous Sections 4.3 is implemented into the
code H-VLPL. This section describes the key benchmark tests to evaluate accuracy and
applicability of that scheme. First, we check the reflection, transmission and refraction of
a laser pulse at hybrid plasma slabs of different densities. Second, we verify the validity
of the energy conservation principle in the present algorithm. Third, we check the very
well-known process of Target Normal Sheath Acceleration (TNSA) [35, 36]. Fourth,
we benchmark plasma skin fields at very high hybrid densities when the spatial grid
cell size is much larger than the plasma skin length (δs). Lastly, we check absorption
of a circularly polarized Gaussian laser pulse over a long distance propagation in an
underdense hybrid plasmas. Wherever possible, we compare the numerical results with
the existing analytic solutions to establish the impeccability of H-VLPL.
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Figure 4.4: (a) Refraction of the incident laser pulse through the underdense (n = 0.85nc) plasma
(hybrid model) target. (b) Reflection through overdense (n = 1.2nc) plasma (hybrid
model) target.

4.5.1 Reflection and refraction of incident pulse

The first and the simplest test one can think of is the full reflection of the incident laser
pulse from the surface of overdense plasma, as well as, transmission and reflection of
the same when the plasma is underdense. In Fig. 4.4(a) a 30 fs Gaussian laser pulse
propagates in the positive X direction towards an underdense (n = 0.85nc) plasma slab.
Here nc is the critical plasma density for the laser wavelength λ = 0.82µm. At a time
T > 0 a part of the incident laser pulse transmits through the plasma and a significant
reflection also occurs. On the contrary, in Fig. 4.4(b) when a similar pulse is incident on
an overdense plasma surface of density n = 1.2nc one observes a full reflection from the
surface. It is essential to be mentioned here that in both the cases the plasma slabs have
been treated with our new hybrid method, i.e., all the plasma particles in this particular
simulation were “hybrid particles”, as described in Section 4.2.

4.5.2 Energy conservation

Another important point one would like to verify here, is the validity of the conservation
of the total energy (Etot) in the scheme.For this purpose, a test parameter sets with a
very trivial laser pulse and plasma systems have been considered. It is important to
note here that we treat the plasma with the hybrid algorithm as well as with the kinetic
algorithm. The analytical equation for the total energy of the whole system can be
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Figure 4.5: Total energy conservation in H-VLPL code. The total energy of the whole laser-plasma
system has been plotted against laser period. The inset figure is drawn in precision scale
of 10−6 for total energy Etot with the same data set.

written as

Etot =
∑

`

m`c
2(γ − 1) +

1

8π

∫
V

(
E2 +B2

)
dV (4.26)

where, m` are the masses of all sort of particles and γ =
√

1 + (p/m`c)
2 is the relativistic

γ factor. The fields are integrated over the whole simulation domain. One can summarize
as Etot = EEM + Epart, where, EEM and Epart are total electro-magnetic (EM) and
particles’ energy. The total particles’ energy can be estimated as:

Epart = ne (γe − 1)mec
2 + ni (γi − 1)mic

2 + nh (γh − 1)mhc
2 , (4.27)

where, e, i and h represent electrons, ions and hybrids, respectively. Fig. 4.5 shows
the total energy of the whole laser-plasma system in a closed boundary against time,
measured in units of laser periods. The total energy Etot remains constant nearly up to
single precision round off error as it is seen in the inset in Fig. 4.5 over a significantly
large time range. Hence, one can conclude that the total energy in this hybrid scheme
is conserved as that of a conventional PIC scheme.
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4.5.3 Acceleration of ions from a target back surface (TNSA)

Fig. 4.6 shows the physical model of the generation of ultra-intense energetic protons
from laser-solid interactions, first described by Wilks et al. [35]. In the present case,
the process has been examined with the new hybrid code H-VLPL. A 10 fs Gauss pulse
propagating along the positive x− direction targeted to a 3.3 µm thin slab of plasma
considered to be of three components: electrons, ions (protons with mi/me = 1836)
as well as hybrid particles. The density of the target increases to 2nc over a ramp of
∼ 2 µm. This is to model a good amount of preplasma essentially present in the real
experiments. In the back surface, there is a thin layer of protons around 1/10th of a
micron, where the density has been ramped from 2nc to 0. In reality one can think
of a sub-micron sized hydrogen layer pre-formed over the back surface of the target.
The dense part of the target was modeled using the hybrid particles with the density
nh = 1000nc that would correspond to the solid density. The laser pulse used here
has dimensionless amplitude a0 = eE/mω0c = 2.0, which corresponds to intensity of
5.5× 1018 Wcm−2.

Preplasma
Hot electron cloud

Accelerated ions
from back surface

Thin proton layer
on the back surface

Plasma target
(electrons, ions and hybrids)

Low energy ions
from front surface

Laser

X( )�

Figure 4.6: Physical model of the ion acceleration mechanism for a short and ultra-intense pulse
interacting with thin target (TNSA).

The ultra-short laser pulse interacting with the target generates, in the blow off plasma
region, a huge cloud of hot electrons, which propagates through the target and ionizes
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the thin proton layer on the backward surface of the target. These generated protons
are then knocked out of the surface by the electrostatic field of the hot electron cloud.
Eventually, the ions are accelerated to high energies. In Fig. 4.7 the energy spectrum of
the accelerated ions from the rear surface is graphed with the solid line. The maximum
energy reached by these ions is around ∼ 1 MeV, which is pretty remarkable energy
with the intensity of laser used here.

Figure 4.7: Energy spectrum of the accelerated ions from the rear surface of the target (solid line) as
shown in Fig. 4.6 at a later time T = ω0t/2π = 150. Ions’ kinetic energy is in MeV scale.
The maximum kinetic energy of the ions is ∼ 1 MeV. The broken line reproduces the
similar ion spectrum in fully kinetic environment where no hybrid particles are present,
at the same reference time.

At this point it is worthy to verify the kinetic nature of the code using a purely
kinetic simulation i.e. without hybrid particles. The simulation with the same physical
parameters has been performed without the hybrid particles and similar ion energy
spectrum has been obtained with hybrid particles. This is compared with the hybrid
scheme in Fig. 4.7.
Thus, one can be sure that the hybrid code can be used for computationally efficient

studies of very high density plasmas, e.g., how to produce mono-energetic ion beams
manipulating the thickness of the target as well as the hydrogen layer on the rear
surface [163]. To get more insight into the mechanism of acceleration of ions, one can
consider looking into the phase space of the hot electron cloud in Fig. 4.8.
The phase space of the hot electrons in Fig. 4.8 at an earlier time T = ω0t/2π = 100

(i. e. time in laser period) clearly shows that the cloud of hot electrons circulates inside
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Figure 4.8: Phase space diagram of the hot electron cloud at an earlier time T = ω0t/2π = 100.
Electron momenta are normalized to mec and x axis in units of λ. The broken lines
represent the plasma target front and back surfaces as that of the schematic of Fig. 4.6.

the target and pulls out the ions by significantly heating them in recursion. To get a
good amount of acceleration, H-VLPL allows to take as much as 200 particles per cell
for such kind of simulations. It is also anticipated to get little amount of low energy
ions from the front surface, but compared to that from the rear surface they are colder.

It is proved that most of the accelerations of the ions from the rear surface occur in
a short distance. This can also be verified with H-VLPL from the pattern of the accel-
erating fields of the back surface shown in Fig. 4.9. In this case this accelerating length
is ∼ 4µm and this matches well with experimental and numerical findings observed so
far.
At the end one can summarize as, the new hybrid approach of the code H-VLPL

benchmarks efficiently well in detail the physics of generation of energetic ions from the
target back surface.

4.5.4 Scaling of the skin fields

To proceed further in benchmarking H-VLPL one can scale the fields at the skin depth
(Es) to the reflected (or incident) fields (Ei). For the present case we choose a range
of highly overdense plasmas of densities n = 10, 100 and 1000nc with sharp boundaries.
The incident laser is a circularly polarized Gaussian pulse of the dimensionless amplitude
a0 = 0.2. Its duration is 10fs. These parameters are chosen to avoid relativistic non-
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Figure 4.9: The accelerating electric fields, at three different earlier times T = ω0t/2π = 15, 25
and 35.

linearities occurring during the interactions.
To benchmark the code we record the laser field at the plasma surface. According

to the linear theory, the field Es at the surface of a highly overdense plasma, ne À nc,
relates to the field of the incident laser Ei as

Es
2

Ei
2 =

4nc

ne

(4.28)

where we have neglected the absorption.
Fig. 4.10(a) shows the squared ratio of the field, Es

2/Ei
2 as a function of the normal-

ized plasma density n = ne/nc. The numerical results obtained from the H-VLPL code
matches well with the analytical result (4.28).
On the other hand, we know that the laser fields must decay exponentially in the

overdense plasma layer. Analytically, the electromagnetic field intensity decays as

ln I = −2x

δs
, (4.29)

where δs = c/ωp is the skin depth. We have measured the field decay in the H-VLPL
simulations and plotted them in Fig. 4.10(b). One gets excellent agreement with the
analytical expressions for the skin length even for the highest densities.
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Figure 4.10: Scaling of the skin fields using H-VLPL. (a) Logarithm of skin fields plotted for four
different hybrid densities. The fields are normalized as eE/mω0c and density to nc.
The solid line shows the analytical results for the same. (b) Logarithm of skin field
intensities for three different hybrid densities. The analytically calculated values of ωp

are also provided for each density for comparison. The dashed lines show the analytical
results for the corresponding densities. The dispersion relation for ωh = 31.6 has been
discussed in Fig. 4.3.

For the density ne = 1000nc, one finds the skin length δs/λ = 0.005. It is worth
mentioning that this simulation has been done with the grid cell size hx/λ = 0.05, i.e.,
the grid step was much larger than the skin length, hx = 10δs. Yet, the field decay in
plasma is accurately described.

4.5.5 Collisional absorption

We have introduced the effects of collisional absorption into the implicit hybrid scheme
of H-VLPL. This makes the code versatile enough to handle extremely high density
warm plasmas where electron-ion binary collisions cannot be neglected. However, to
test the accuracy of the collisional scheme we have chosen laser pulse absorption as it
propagates in underdense plasma. This is because there is a known analytic solution for
the laser dynamics to compare with.
Fig. 4.11 shows the change in laser amplitude as it propagates through a collisional

underdense plasma of density n = 0.04nc. The laser pulse is chosen to be weakly rel-
ativistic, a0 = 0.2, and relatively long Gaussian pulse of 50fs duration. The longer
duration is selected to avoid dispersion effects. The collisional frequency νei (described
as η in Section 4.2) is 0.5. We calculated the logarithmic field amplitudes at various
propagation lengths, x from H-VLPL and compare the results with the analytical solu-
tion
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Figure 4.11: Benchmarking of collisional absorption using H-VLPL: (a) Logarithm damping of laser
amplitude E/E0 along the propagation direction and comparison with the analytical
results (b) Damping of incident laser intensity over time; all the times are in scale of
laser periods.

ln

(
E

E0

)
= Re [−iωt+ ikx−∆x] , (4.30)

where,

∆ ≈ 1

2

ω2
p(νei/ω)

(ω2 − ω2
p)

1/2

is the collisional absorption rate. The simulation results gives an exponentially decreas-
ing laser field E/E0 inside the bulk plasma as it propagates along. These results are
shown in Fig. 4.11(a). Also, the gradually decreasing peak intensity over laser propaga-
tion time (in laser period) in Fig. 4.11(b) confirms the effect of collisional absorption in
agreement with the analytic solution (4.30).

4.6 Conclusions and Outlook

In conclusion, we have presented a new one-dimensional full electromagnetic implicit
hybrid algorithm that allows to simulate laser-plasma interactions at arbitrary plasma
densities via automatic reduction of the highest plasma frequencies down to numerically
stable range. In this case full kinetic particle-in-cell (PIC) and hydrodynamic model
have been combined in the single hybrid plasma code. It avoids the limitation on the
time step present in explicit PIC codes. The numerical scheme is analyzed, its dispersion
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relation is derived, and a numerically efficient matrix algorithm for solving the implicit
system of equations is presented.
The scheme is tested on a series of physically important examples. It is shown that

the spatial field structure in the highly overdense plasma is well described by the code
H-VLPL even when the grid step size is much larger than the plasma skin length.
In addition to this, we must mention here that one can extend this scheme considering

the hybrid ion momenta dynamics according to:

d~p ion
h

dt
= − qe

mi

~vh

c
× ~B, (4.31)

i.e., the ponderomotive or magnetic force will act directly on the hybrid ions. Yet, we
leave this to a further extension of the H-VLPL code. At present, the hybrid particles are
purely current carriers. Moreover, the presented scheme is one-dimensional. The next
step will be to generalize this hybrid algorithm to the full three-dimensional geometry.
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5 Effects of Temperature and
Collisions on the Weibel
Instability

5.1 Introduction

The fast ignition fusion (FI) is a promising route towards the laser driven fusion. In
the FI scheme, a laser-generated relativistic electron beam with a few MeV per electron
energy must propagate through over-dense plasma to heat a hot spot in the core of
a pre-compressed fusion fuel target [48]. The current carried by these MeV electrons
inside the plasma is much higher than the Alfvén current limit I = (mc3/e)γ = 17γ kA,
where m is the electron mass, e is the electronic charge, and γ is the Lorentz factor of
the beam. Clearly, the transportation of this electron beam is not possible unless it is
compensated by a return plasma current, thus maintaining the global charge neutrality.
However, this configuration is unstable and the current beam is susceptible to the Weibel
and the two-stream instabilities. The Weibel instability [49] is particularly responsible
for the generation of very strong magnetic fields (∼ 100 MG). It is one of the leading
instabilities under relativistic conditions not only in laser plasma interaction [105], but
also in the Universe [75]. It has been a subject of research for a long time [106–119].
Yoon et al. [112] have developed a kinetic formalism of the Weibel instability in the
context of charged particle beam transport in accelerator physics. Recently various the-
oretical models, both kinetic and hydrodynamic ones, have been developed to study
this instability in linear regime [113–115]. Honda et al. [116] have studied the collective
stopping of the beam and ion heating in the context of FI. Three-dimensional simu-
lations of resistive beam filamentation corresponding to the full scale FI configuration
have been performed by Honrubia et al. [117]. Three-dimensional magnetic structures
generated due to the Weibel instability in a collisionless plasma have also been reported
[118]. Recently, the evidence of Weibel-like dynamics and the resultant filamentation of
electron beams have been reported experimentally [108–110].
In this chapter, we will discuss about the 2D and 3D Particle-in-Cell (PIC) simula-

tions of a relativistic electron beam transport in overdense plasmas in two geometrical
planes, transverse to the beam propagation direction and in the plane containing the
propagating beam (longitudinal geometry). We study the effects of the background
plasma collisions and beam temperature on the beam transportation separately as well
as collectively. These two different geometries are chosen because in transverse geometry
the coupling of the Weibel instability (WI) with the two-stream instability (TSI) does
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not occur whereas, the longitudinal geometry is appropriate to study the coupling of WI
and TSI. In the case of transverse geometry we are able to separate the effects of tem-
perature and collisions and study them individually and collectively. On the other hand,
in longitudinal geometry additionally the effects of collisions and beam temperature are
studied. The beam transportation in these simulation geometries has been studied in
four different cases (collisionless, collisional, thermal and collisional) thus highlighting
the influence of these physical processes precisely and distinctly. The simulation results
show that the Weibel instability can not be suppressed by thermal effects only, if small
collisions are present in the background plasma. Moreover, in the coupled Weibel–two-
stream instability, collisional effects initiate the generation of longitudinal magnetic field,
which is suppressed in collisionless case. An analytical model has also been developed,
which is used to compare the growth rates in the linear stage of the instability in the
transverse geometry. We have performed further full 3D simulations which also include
the coupling of these instabilities. These will be presented here briefly.

5.2 Different Simulation Geometries
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20
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(a) (b)

Figure 5.1: Schematic of the geometries of the 2D-Simulation Model. The axes dimensions are in
units of skin depth λs (a) Transverse simulation geometry : the relativistic beam is prop-
agating along the negative Z-direction and the plane of simulation is transverse to the
beam propagation. (b) Longitudinal simulation geometry : the relativistic beam is prop-
agating along negative X-direction and the simulation plane contains the propagating
beam. The beam plasma density ratio is nb/np = 9.

Figure. 5.1 shows the schematics of the two 2D simulation geometries. A 3D simulation
geometry has also been shown in Fig.5.2. In Fig. 5.1(a) the electron beam propagates
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Figure 5.2: Schematic of the geometry of the 3D-Simulation Model. The axes dimensions are in
units of skin depth λs = c/ωpe. The relativistic beam is propagating along the negative
Z-direction whereas the plasma electrons have velocities along positive X direction.
The beam plasma density ratio is nb/np = 9. The intersecting plane demonstrates how
the 2D transverse geometry has been constructed in the (X,Y) simulation domain.

in the negative Z-direction with the relativistic velocity v(b,z) À v(b,x), v(b,y). The bulk
cold background plasma is represented only by ambient plasma electrons, while the
plasma ions are considered as a fixed charge-neutralizing background with the density
n0 = nb + np. In Fig. 5.1(a), vb is into the plane and return plasma current is out of
the plane. The plasma electrons are moving opposite to the beam electrons with the
velocity vp. In Fig. 5.1(b) the electron beam propagates along the negative X-direction
with relativistic velocity v(b,x) À v(b,y), v(b,z) i.e. the plane of simulation is containing the
propagating beam. In this geometry the beam velocity vb is along negative X-direction
and return plasma current is directed the positive X-axis. Similar to Fig. 5.1(a), the
plasma electrons are moving opposite to the beam electrons with the velocity vp, where
vp ¿ vb. The beam density is much smaller than the background plasma electron
density, i.e. nb À np, which is a usual situation in the FI scheme. It may be noted here
that the ambient plasma ions are considered to be fixed neutralizing background with
density n0 = nb + np. In case of the full 3D geometry in Fig.5.2 the simulation domain
is three dimensional (X, Y, Z) and the electron beam propagates along the negative z-
axis. Similar to the 2D geometries the plasma electrons have a velocity opposite to
the beam velocity. All the other parameters are same as in the 2D simulation models.
The spatial dimensions of the simulation domain L is large in comparison with the
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electron skin depth i.e L >> λs, where λs = c/ωpe, where c and ωpe are the velocity
of light in vacuum and electron plasma frequency respectively. The quasi-neutrality is
maintained overall as the field evolutions due to the Weibel instability occurs on a time
scale slower than the plasma electron frequency ∆t >> 1/ωpe. The collisional processes
are simulated with a newly implemented collision module in the relativistic PIC code
Virtual Laser Plasma Laboratory (VLPL) [95].

5.3 Details of the PIC Simulation Parameters

The simulation plane, which is transverse to the plane of propagation of the e-beam or
containing the propagating beam, is of dimensions, X × Y = (20 λs × 20 λs) sampled
with a mesh of 160× 160 cells. All simulations are performed with 64 particles per cell
and with a grid size much smaller than the skin depth δx = δy = 0.02λs. The density
ratio between the beam and plasma electrons is np/nb = 9, whereas the beam and the
background plasma electrons have velocities vb = 0.9 c and vp = 0.1 c. The evolution of
the bulk Weibel E and B fields are measured in every diagnostic step summed over all
the particles (Np) as ∫

S

E2
weibel dx dy =

∑
Np

(
eε

mec ωpe

)2

NxNy, (5.1)

where, Nx and Ny are the number of x and y cells and eε/mecωpe represents the field
normalization. We will discuss in 5.4.3 about the measurement of fields in full 3D
simulations. The electron beam has a temperature of Tb ≈ 70 keV and the ambient
plasma collision frequency is νei/ωpe = 0.15 used for these simulations. In all simulations,
always the background plasma is cold while beam electrons do not face any collisions. It
might be worthwhile to note here that the background electron ion collisions are purely
binary collisions implemented with a widely used stochastic collision algorithm.

5.4 Simulation Results

5.4.1 Transverse geometry

In Fig. 5.3, the snapshots of transverse E and B fields, and the structure of the beam
filaments are shown at the time, T = 20(2π/ωpe) for four different cases, (a) cold electron
beam and collisionless background plasma, (b) cold electron beam and collisional plasma
(c) hot electron beam and collisionless plasma and (d) hot electron beam and collisional
background plasma. The beam density filamentation is shown in the last column in
each panel. To get more insight into the field evolution and filament merging process a
set of figures Fig. 5.4, 5.5 and 5.6 for four different simulation cases in the transverse
geometry has been produced here. Every figure shows snapshots of the growing of
the Weibel E and B and merging of the filaments chronologically. This gives a clear
understanding of the whole scenario. Now we proceed with the explanation of the
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Figure 5.3: Snapshots of the the evolution of transverse electromagnetic Weibel fields (Ey and Bx)
and beam filament densities (nb) in transverse geometry during the nonlinear stage at a
time T = 20(2π/ωpe) for comparing four different simulation cases: (a) Cold electron
beam in a collisionless background plasma, (b) cold e-beam in a collisional background
plasma and (c) hot electron beam in a collisionless background plasma and (d) hot
electron beam in a collisional background plasma. The time is in units of 2π/ωpe and
the E and B fields are normalized as eE/mec ωpe and eB/mec ωpe.
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Figure 5.4: Snapshots of the temporal evolution of transverse electromagnetic Weibel fields (Ey

and Bx) and beam filaments in transverse geometry in the simulation case (a) i.e. cold
electron beam in a collisionless background plasma. The time scale and the E and B
fields are normalized as explained in Fig. 5.3.

Fig. 5.3 once again. In the collisionless case (a), the filaments are small, comparable
with the background plasma electron skin depth. In the collisional case (b), the filament
size is bigger. This can be explained as a collisional diffusion of plasma electrons across
the self-generated magnetic fields. Further, collisions in the system tend to reduce
anisotropy there by reducing the available free energy responsible for the growth of the
instability. Hence, we may expect a lower build up of field energies than in the previous
case in the presence of collisions, which is also seen in the simulation results. In the
third panel of the figure, simulation case (c), the electron beam is hot with the transverse
temperature Tb ∼ 70 keV, and the background plasma electrons are collisionless. Here
we see no filament formation. The temperature of the electron beam stabilizes the
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Figure 5.5: Snapshots of temporal evolution of transverse electromagnetic Weibel fields (Ey and
Bx) and beam filaments in transverse geometry in the simulation case (b) i.e. cold
e-beam in a collisional background plasma. The time scale and the E and B fields are
normalized as explained in Fig. 5.3.

Weibel instability. Physically the thermal pressure of the electron beam prevails over
the magnetic pressure in this case. Hence, the magnetic field pinching which actually
drives the instability does not occur resulting in the suppression of the Weibel instability.
We wish to state here that in the longitudinal geometry (explained in 5.4.2) and the
full 3D geometry, the configuration would still be unstable due to coupling with the
electrostatic two-stream instability, which may be considered as a source of “effective
collisionality” in plasmas. The last panel of the figure depicts the filament formation in
the simulation case (d), where the electron beam is hot and the plasma is collisional.
One remarkable result is that although the beam temperature is the same as in the
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Figure 5.6: Snapshots of temporal evolution of transverse electromagnetic Weibel fields (Ey and
Bx) and beam filaments in transverse geometry in the simulation case (d) i.e. hot
electron beam in a collisional background plasma. The time scale and the E and B
fields are normalized as explained in Fig. 5.3.

stable collisionless case (c), the background plasma collisions revive back the instability.
The role played by the collisions here is somewhat paradoxical as one might expect that
the collective effects of both collisions and temperature must kill the instability. Yet,
quite opposite is the case. This paradox could be explained on the basis of instability
caused by collisions in plasmas carrying negative energy waves. This is discussed later
in this chapter. The message of our work is that the complete suppression of the Weibel
instability in the context of FI of Inertial Confinement Fusion targets can be difficult as
even small collisions in the background plasma tend to revive the instability.
Fig.5.7 shows the evolution of electric and magnetic field energies in the four cases
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Figure 5.7: Time evolution of the transverse and longitudinal Weibel E and B field energies (E2
⊥,

B2
⊥,E

2
‖ , B2

‖) for the transverse geometry for four different simulation cases as described
in the previous Fig. 5.3. The horizontal axes represents the time in units of (2π/ωpe)
and the vertical axes represents the field energies, normalized as described in Eq. (5.1).

corresponding to the simulations in Fig.5.3. The energy axises in Fig.5.7 use logarithmic
scales. We see a stage of linear instability, where the field energies build up exponentially
in time. It is followed by a nonlinear saturation. The linear instability stage is present in
the simulations (a), (b) and (d). The simulation (c), where the electron beam had high
temperature and the background plasma was collisionless, shows no linear instability
and no significant build up of the magnetic field energy. This is in compliance with the
results of Fig.5.3. After the linear stage of the instability, filaments start merging into
each other due to the magnetic attraction and the field energies saturate. Some small
fluctuations around the saturated field energies can be seen. A magnified look into these
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Figure 5.8: Fluctuations in the longitudinal electric field E2
‖ corresponding to collective merging

over time of the Weibel filaments in the saturation regime. The figures inset shows the
merging of the filaments corresponding to the fluctuation at that time.

fluctuations in the longitudinal field E2
‖ corresponding to the the collective merging of

the Weibel filaments in the saturation regime is shown in Fig. 5.8. We observe a surge
in the Ez field whenever the filaments merge together. The merging of bigger filaments
produces very large fluctuation in the filed. These fluctuations occur due to the collective
merging of the filaments as also discussed Honda et al. [116].

5.4.2 Longitudinal geometry

Snapshots of transverse E and B fields, and the structure of the beam filaments for
longitudinal geometry are shown in Fig. 5.9 for all the four different cases as we studied
in case of transverse geometry in 5.4.1. The beam density filamentation is shown in the
extreme right column in each panel. The filament pattern differs significantly in this
case due to the presence of coupled instabilities. The filamentation process constructs
pipe like structures and the beam electrons get diffused when the fields get saturated.
In the collisionless case (a), filamentation occurs at a slower rate and the fields reach
saturation at larger times than the other three cases. Hence, the snapshots for the case
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Figure 5.9: Snapshots of the the evolution of transverse electromagnetic Weibel fields (Ey and Bz)
and beam filament densities (nb) in longitudinal geometry during the nonlinear regime
for four different simulation cases as described in Fig. 5.3 for transverse geometry. The
top most panel i.e. in case (a), is taken at a time T = 15(2π/ωp) and the other three
at T = 8(2π/ωp). The time scale and the E and B fields are normalized as explained
in Fig. 5.3.
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Figure 5.10: Snapshots of the temporal evolution of transverse electromagnetic Weibel fields (Ey

and Bx) and beam filaments in longitudinal geometry in the simulation case (a) i.e. cold
electron beam in a collisionless background plasma. The time scale and the E and B
fields are normalized as explained in the Fig. 5.3.

(a) are taken at T = 15(2π/ωpe) and the snapshots in the next three panels are at
T = 8(2π/ωpe). For a deeper understanding of the temporal evolution of the fields and
the filament merging process a set of figures Fig. 5.10, 5.11 and 5.12 for four different
simulation cases in the longitudinal geometry has been presented here. Each of these
figures shows snapshots of the chronological growing of the Weibel E and B and merging
of the filaments. The filaments in the collisionless case (a), similar to the transverse case,
are tiny and comparable to the background plasma electron skin depth. On the contrary,
in the collisional case (b), the filament size is bigger and the extent of electron diffusion
is broader. A probable cause of this is the collisional diffusion of plasma electrons
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Figure 5.11: Snapshots of the temporal evolution of transverse electromagnetic Weibel fields (Ey

and Bx) and beam filaments in longitudinal geometry in the simulation case (b) i.e. cold
electron beam in a collisional background plasma. The time scale and the E and B
fields are normalized as explained in the Fig. 5.3.

across the self-generated magnetic fields due to the coupled instabilities. One expects
a lower build up of the field energies than the previous case in presence of collisions in,
which is also seen from the simulation results here. The third panel of Fig. 5.9 shows the
simulation case (c), and one does not see any filament formation similar to the transverse
geometry case. Although, the Weibel instability, which is largely responsible for filament
formation in relativistic conditions, gets suppressed but the two-stream instability still
remains present and contributes to the build up of field energies in the system. The last
panel of the figure depicts the filament formation in the simulation case (d), where the
electron beam is hot and the background plasma is collisional. Evidently, the background
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Figure 5.12: Snapshots of the temporal evolution of transverse electromagnetic Weibel fields (Ey

and Bx) and beam filaments in longitudinal geometry in the simulation case (d) i.e. hot
electron beam in a collisional background plasma. The time scale and the E and B
fields are normalized as explained in the Fig. 5.3.

plasma collisions revive back the coupled instabilities, although the electron beam is hot
with the same temperature as in case (c). One may also note here that, the collective
effect of collisions and temperature don’t suppress the Weibel instability as also observed
in transverse case. Once again at this point the main implication of these simulation
results is that the complete suppression of the coupled Weibel–two-stream instability
in the context of FI scheme of the Inertial Confinement Fusion targets can be difficult
whilst small collisions in the background plasma tend to revive back the instabilities.
Fig.5.13 shows the evolution of the transverse and longitudinal electric and magnetic

field energies for the four cases in the longitudinal geometry. The vertical axes in Fig.5.13
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Figure 5.13: Time evolution of the transverse and longitudinal Weibel E and B field energies (E2
⊥,

B2
⊥, E2

‖ , B2
‖) of longitudinal geometry for four different simulation cases as described

in the previous Fig. 5.3. The horizontal axes represents the time in (2π/ωpe) and the
vertical axes represents the field energies, normalized as described in Eq. (5.1).

represents the normalized field energies in logarithmic scale whereas the horizontal axes
are for time scaled in 2π/ωpe. Likewise the transverse geometry, here also one notices
a stage of linear instability, where the field energies build up exponentially in time,
and then it is followed by a nonlinear saturation. Unlike the transverse geometry the
linear instability stage is present in all the simulations (a), (b), (c) and (d). A very
small growth of the fields is noticed in the simulation (c), where the electron beam has
high temperature and the background plasma was collisionless. This small growth rate
results from the unsuppressed two-stream instability. Nevertheless the field energies
saturate rapidly and don’t grow to higher magnitudes as in the other three cases. This
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is in conformation with the field snapshots of Fig. 5.3. Afterwards, in the nonlinear
stage of the instability, the filaments merge rapidly with each other due to the magnetic
attraction and the field energies saturate. We also see strong diffusion of the beam
electrons during the merging process in the nonlinear stage. The simultaneous merging
and diffusion continue until the beam electrons get totally diffused in the beam plasma
system. In the cases (b) and (d) this diffusion prevails more widely and the saturation
of the field occur much earlier than the collisionless case. The drops in the fields E‖,
E⊥ and B⊥ in (d) and (d) can be explained due the dominance of collisional diffusion of
the beam electrons over merging of the filament structures. Moreover, a growth of the
longitudinal magnetic field B‖ also occurs due to collisions in the system.

5.4.3 Full 3D simulations

Figure 5.14: Full 3D simulation results in cold electron beam and collisionless background plasma
i.e. case (a). Structure of the beam filaments at a time T 20(2π/ωpe). The filaments
have high density in the central core surrounded by a low density electron cloud.

In addition to the 2D geometries, we also have performed full 3D simulations corre-
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sponding to the model in Fig. 5.2 to fully understand the structure of the filaments and
fields in real three dimensions. In case of 3D simulations the simulation box dimensions
are X × Y × Z = (20λs × 20λs × 20λs). The 3D simulation domain is sampled with
a mesh of 160 × 80 × 20 cells. The evolution of the bulk Weibel E and B fields are
measured in every diagnostic steps summed over all the particles (Np) as∫

S

E2
3d dx dy dz =

∑
Np

(
eε

mec ωpe

)2

NxNyNz, (5.2)

where, Nx, Ny and Nz are the number of x, y and z cells and eε/mecωpe represents
the field normalization. All other simulation initial parameters remain same as the 2D
simulations. Fig. 5.14 shows the structure of the beam filaments at nonlinear regime
in time T = 20(2π/ωpe). A plot of the transverse magnetic field Bx has been shown in
Fig. 5.15. The contour lines on the bottom surface in this figure shows that each of the
filaments is surrounded by strong magnetic fields.
In fact, full 3D simulations for all the other three cases i.e. (b), (c) and (d) have

been performed to understand the effect of collisions on coupled Weibel–two-stream
instabilities, which are always present in 3D geometry. But, at this point we restrict
ourselves to the 3D simulation of the cold beam and collisionless case. A further study
with all the other cases is currently being undertaken as an extension to this work.

5.5 Analytical Model

An analytical model based on the linearization of the Maxwell-fluid system of equations
has been developed for the Weibel instability corresponding to the transverse geometry.
We start with the normalized Maxwell-fluid system of equations

∇× E = −∂B
∂t

(5.3a)

∇×B =
∂E

∂t
+
∑

a

Ja (5.3b)

∇ · E = 1−
∑

a

na,
∂na

∂t
−∇ · Ja = 0 (5.3c)

∂pa

∂t
+ (υa · ∇pa) = − (E + υa ×B)− νeipa −

∇Pa

n0,a

, a = p, b, (5.3d)

where the subscripts p and b refer to the background plasma and the beam respectively.
All quantities are normalized by the velocity of light, initial plasma density, and plasma
frequency.
Taking a 1D perturbation of the form F (y, t) = f exp(−iωt+ ikyy), we linearize these

equations and obtain the dispersion relation
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Figure 5.15: Full 3D simulation results. The transverse magnetic fields Bx at the same time. The
contour lines on the bottom surface represents a 2D projections. B fields are normalized
as explained in the Fig. 5.3 .
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np, υp, and nb, υb are the density and the velocity of background plasma and electron
beam respectively. In deriving this formula we have taken the background plasma as
a cold non-relativistic collisional fluid while the electron beam is a relativistic, hot and
collisionless fluid.
We now study this dispersion relation in different limits by setting the appropriate

values of collision frequency and the beam temperature. In cold collisionless and colli-
sional cases (ν̃ei = 0, υth = 0, ν̃ei 6= 0, υth = 0), we recover the same dispersion relations
as in Refs.[113, 114]. Similarly we also recover the dispersion relation for the hot colli-
sionless case (ν̃ei = 0, υth 6= 0) [114]. The growth rates of the Weibel instability for these
cases are shown in Fig.5.16. We see that in the cold collisionless case (subplot (a)),
the most unstable modes in the system have characteristic scale length less than the
electron skin depth, λs. This results in small scale filament formation. The simulation
result Fig.5.3(a) confirms the small scale filamentation of the cold beam propagating in
collisionless plasma.
The influence of collisions in the case of a cold beam is not straightforward. It is seen

from Fig.5.16(b) that the most unstable modes with wavelengths around the plasma skin
depth are weakly influenced by the small collision rate. Their growth rate decreases only
slowly with increase in the collision frequency in agreement with the results of Ref.[114].
At the same time, the growth rate of modes with larger wavelengths grows with collisions.
This leads to formation of larger filaments as seen in the simulation Fig.5.3(b). The third
subplot (c) of the Fig.5.16 shows the hot collisionless case. Evidently, increase in beam
temperature results in the disappearance of the filamentation of the beam. Physically,
it can be attributed to the Debye screening. For a beam temperature υth = 0.4, the
Weibel instability is completely suppressed in sync with the simulation results. The case
of hot electron beam and cold collisional background plasma is fairly complicated for
analytical studies due to the higher order (10th order) of the dispersion relation. So we
further simplify the dispersion relation (5.4) to give a simpler dispersion relation in this
case. As is the case in our simulations, we assume np À nb, υb >> υp and simplify the
dispersion by keeping the lowest order terms in the Eq. (5.4) and write the dispersion
relation in a diffusion-like approximation as

ω2 ≈ 3υ2
thk

2
y −

nb k
2
yυ

2
b

γb(k2
y + np/β)

, (5.5)

where β = (1 + ν̃ei). This dispersion relation is analogous to the one derived by
Molvig [164]. The roles of the magnetic field which stabilizes the Weibel instability
in Molvig’s model is replaced here by the beam temperature which does the same thing
as the magnetic field. A plot of the instability growth is shown in the Fig.5.16(d) for
several values of ν̃ei at the beam temperature Tb = 70 keV (υth = 0.4). The important
result is that even small rate of collisions revives the instability and its growth rate
increases with collision frequency for small collision rates. For higher collision frequen-
cies, ν̃ei >> ωp, the growth will decrease again. Hence collisions play a different role
here. Although the role of collisions in reviving the Weibel instability is mathematically
apparent from Eq.(5.5), it could be understood physically in terms of the unstable neg-
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ative energy waves. It is well known that collisions can sometime drive wave oscillations
unstable in a plasma [165, 166]. The passage of the beam in the plasma actually excites
waves with phase velocity slower than the beam velocity. These can be termed as neg-
ative energy waves as they carry negative energy densities with them. Dissipations act
in a different way on these waves and may drive them unstable. This is also known as
the dissipative instability [167]. When the negative energy waves are driven unstable,
the wave oscillations in plasma are also driven unstable to minimize the total energy of
a beam plasma system, which is always positive.
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Figure 5.16: The growth rates calculated from the dispersion relations Eq.(5.4) for the four cases
(a) cold collisionless case (b) cold collisional plasma (dash-dot line, ν̃ei = 0.1, dash
line, ν̃ei = 1, solid line, ν̃ei = 100)(c) hot electron beam and collisionless background
plasma (solid line, υth = 0.05, dash-dot line, υth = 0.15) (d) hot electron beam and
collisional background plasma (dash-dot line, ν̃ei = 0.001, dash line, ν̃ei = 0.1, solid
line, ν̃ei = 1 ). In all subplots, the vertical axis represents the normalized growth rate,
Γ, and the horizontal axis represents the normalized wave vector, ky. The last subplot
(d) corresponds to the Eq.(5.5). The other parameters for beam and plasma are same
as in the simulation.

Finally, comparisons of analytical and simulation growth rate of the linear Weibel
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instability for the transverse geometry in various cases is shown in the Table 5.1, which
highlights a good agreement between the simulation and the theory.

Γ k−1
y (in c/ωpe)

Cases Numerical Analytical Numerical Analytical
(a) 0.19 0.20 0.70 0.50
(b) 0.18 0.20 0.50 0.50
(c) ≈ 10−4 No Growth - -
(d) 0.12 0.025 3.00 2.50

Table 5.1: Comparison of linear growth rates (Γ) and scale lengths of filaments formation (k−1
y ) for

transverse geometry for both numerical simulations and analytical calculation. The rows
(a), (b), (c) and (d) represent the same cases as in the Fig. 5.3.

The analytical theory for the longitudinal geometry is still under development. The
comparison of the simulation results for the longitudinal geometry case will be reported
elsewhere later. Here we proceed to tabulate briefly the linear growth rates (Γ) in
Table.5.2 for the four different cases as the transverse geometry.

Cases Γ (Numerical) k−1
y (Numerical) (in c/ωpe)

(a) 0.161 ≈ 0.50
(b) 0.115 ≈ 0.75
(c) 0.025 ≈ 0.00
(d) 0.117 ≈ 4.16

Table 5.2: Linear growth rates (Γ) for longitudinal geometry for numerical simulations. The rows
(a), (b), (c) and (d) represent the same cases as in the Fig. 5.3.

The linear growth rates for the longitudinal geometry i.e. coupled Weibel–two-stream
instability, show that due to collisions the growth rates increase and the temperature
cannot kill the instabilities fully. This is a consequence of the structure of fields and fila-
ments in Fig. 5.9. Moreover, it is evident that simultaneous effects of beam temperature
and plasma collisions have the similar effects like the transverse geometry. The scale
lengths for filament formation for the longitudinal geometry also proves that collisions
increase the size of filaments. Additionally, temperature and collision simultaneously
increases these scale lengths drastically. These observations can be explained with an
interplay between electrostatic waves and collisions. The electrostatic waves produced
by the two-stream intability could act potentially as a boost to the effective collisions.
These electrostatic waves, as a ponderomotive force, replaces the electron-ion collision
in the case (b). Hence, the instability cannot be suppressed even with a high beam tem-
perature. Because the frequency spectrum of these electrostatic waves is very narrow,
almost at the ambient plasma frequency, the resulting ponderomotive force is static, i.e.
very similar to electron-ion collisions. On the other hand, the spatial spectrum of these
waves (in kx and ky) is rather broad. Again, exactly as it is the case with the electron-ion
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collisions. So, one can conclude that the addition of the two-stream instability in case
of longitudinal geometry destabilizes the otherwise suppressed Weibel intability.

5.6 Conclusion

In summary, we have carried out detailed 2D simulations with two different geometries
on the Weibel instability and coupled Weibel–two-stream instabilities of an electron
beam in two-dimensional geometry, in a parameter regime which is relevant to the
FI scheme. Additionally, a set of full 3D simulations have also been performed to
understand the system more realistically. We have studied the effects of various factors
such as electron beam temperature and collisions in the return plasma current separately
as well as collectively. The finite temperature of the electron beam tends to suppress
the Weibel instability but the coupled two-stream instability remains unsuppressed.
However, collisions in the return plasma current plays a paradoxical role and revive back
the Weibel instability. This paradoxical role of collisions is attributed to the instability
of negative energy waves which can be present in such type of beam plasma systems.
Thus it seems that the Weibel and two-stream instabilities are difficult to suppress and
will play a dominant role to in the Fast Ignition scheme.
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6 Conclusion
In conclusion, we summarize all the principal results of the works presented in this thesis.
First of all, the mechanism of electron acceleration in vacuum with radially polarized
ultra-intense ultra-short laser beam has been studied. It is shown that single-cycle laser
pulses efficiently accelerate a single attosecond electron bunch to GeV energies. When
multi-cycle laser pulses are used, one has to employ ionization of high-Z materials to
inject electrons in the accelerating phase at the laser pulse maximum. In this case,
a train of highly collimated attosecond electron bunches with a quasi-monoenergetic
spectra is produced. Moreover, it is shown that the radially polarized laser pulses are
superior to the Gaussian pulse, both in maximum energy gain and in the quality of the
produced electron beams. Additionally, hot electron and x-ray production from high-
contrast laser irradiated polystyrene-spheres have been studied. A sphere-size scan of
the x-ray yield and observation of a peak in both the x-ray production and temperature
at a sphere diameter of 0.26 µm, indicates that these results are consistent with Mie
enhancements of the laser field at the sphere surface and multipass stochastic heating of
the hot electrons in the oscillating laser field. The PIC simulation results have matched
well with the experimental findings [41].
Secondly, electron acceleration from solid target surfaces by a sub-10-fs laser pulses

of focused intensity ∼ 1016 W/cm2 has been successfully studied. It has been demon-
strated, that these electrons have a very narrow angular distribution and their observed
energies are much higher than expected from the usual ponderomotive acceleration. It
is shown that this boost in electron energies is not due to collective plasma effects, but
comes mainly from the laser field due to a repeated acceleration in the vacuum after
scattering in the solid.
Thirdly, we presented a new one-dimensional fully electromagnetic relativistic hybrid

plasma model. The fully kinetic particle-in-cell (PIC) and hydrodynamic model have
been combined in the single hybrid plasma code H-VLPL (hybrid virtual laser plasma
laboratory). The semi-implicit algorithm allows us to simulate plasmas of arbitrary
densities via automatic reduction of the highest plasma frequencies down to the numer-
ically stable range. At the same time, the model keeps the correct spatial scales like
the plasma skin depth. The new mathematical method allows to overcome the typical
time step restrictions of explicit PIC codes. This hybrid code will be very efficient in
studying ultra-high intensity laser-solid interaction experiments and the Fast Ignition
(FI) scheme of Inertial Confinement Fusion (ICF).
Lastly, transport of a relativistic electron beam in Fast Ignition (FI) plasma has been

studied to understand the effects of background plasma collisions and beam tempera-
ture on coupled instabilities. The roles of collisions and beam temperature has been
investigated separately as well as collectively during the linear and nonlinear stages of
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the instabilities. We have showed that collisions in the return plasma current plays
a paradoxical role and revive back the Weibel and two-stream instabilities. Hence, in
summary to this work, the Weibel and two-stream instabilities are difficult to suppress
and they play the dominant role in the FI scheme.

112



A Particle-in-cell (PIC) Simulation
Codes

The laser-plasma interaction physics is now-a-days concentrated mainly in the ultra-
relativistic regime of short laser pulses, where the dynamics of the electrons as well as
ions are heavily non-linear. This is obvious that, the relativistic gamma factor of these
particles are much larger, γ À 1 and the analytical models are not always very efficient
and straightforward. Hence, numerical simulations, using particle-in-cell (PIC) [91, 92,
168, 169] or other technique are extremely essential. As a matter of fact, in past decade
PIC methods emerged to be very successful, reliable and versatile tool for kinetic plasma
simulations. Here, we briefly present the basics of PIC simulation added by a discussion
on the code VLPL [95], used for all the simulations presented in this thesis.

In reality PIC codes are very analogous to the actual plasma, which in reality, is an
ensemble of many electrons and ions, interacting with each other by the self-consistently
generated fields [11]. The code efficiently models the real plasma with a difference that
the number of of numerical particles, called ‘macroparticles’ in PIC methods, may be
significantly smaller [11] than real number of particles. Each numerical macroparticle,
or more technically the Finite Phase Fluid Elements (FPFE), of the PIC methods rep-
resents a certain assembly or cloud of many real particles. The PIC method allows
the statistical representation of general distribution function in phase space [99]. A
‘macroparticle’ occupy a finite volume in phase space and represents the velocity of the
real electrons or ions. Further, the charge-to-mass ration of these numerical particles
are same as real electrons or ions. The fundamental equations of the PIC methods, in
most of the cases, contain the full non-linear effects, and other collective effects can very
well be incorporated self-consistently via the source terms [99]. Moreover, addition of
relativistic effects is also a very significant feature of PIC methods. In short, PIC codes,
utilize very fundamental equations including all the basic physics.

A.1 The Basic Equations

Let us now consider the master equations for the relativistic electromagnetic kinetic
simulation. The Maxwell’s equations for field in CGS units are
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rot B =
1

c

∂E

∂t
+

4π

c
J (A.1a)

rot E = −1

c

∂B

∂t
(A.1b)

div E = 4πρ (A.1c)
div B = 0 (A.1d)

where c is the speed of light in vacuum and ρ is the local charge density, and for the
motion of the particles, both electrons and ions,

dp

dt
= eE +

e

c
(v ×B) (A.2)

dx

dt
=

p

γm

The E and B fields evolve through the first two time-dependent Maxwells’ equa-
tions A.1a and A.1b with the source term in the form of current density J, which is
produced due to the self-consistent motion of the system of particles. Now, one can
argue that, the third equation of Eq. A.1, i.e., Eq.A.1c is satisfied automatically during
the evolution of the system, if the charge density always satisfies the continuity equation

∂ρ

∂t
+∇ · J = 0 . (A.3)

Moreover, as we do not have any magnetic charges, fourth field equation Eq. A.1d
also remains valid taking the symmetric considerations. Therefore, from the four field
equations in Eq. A.1, we can reduce the system of equations to only the first two very
significant equations Eq. A.1a and A.1b considering the Eq. A.1c and A.1d as merely
the initial conditions. This approximation is very feasible, as well as fruitful. The
numerical particles’ motion is calculated according to the equations of motion A.2. The
charge density at each grid point (see [91]) in the PIC domain is determined by assigning
particles to the grid according to their positions and the weighting scheme. The scheme
of a PIC computational cycle is shown on Figure A.1. A detailed discussion can be
found in [91, 92].
Lately, there has been several modifications, to this simple PIC algorithm. A dis-

cussion on this can be found on Chapter. 1 and Chapter 4 of this thesis. A number
of physical processes, such as binary collisions, ionizations, etc., can be incorporated to
PIC methods efficiently. A particle-in-cell method merged with Monte Carlo collision
(MCC) calculations was described in [133]. For a detailed discussion on the implemen-
tation of collision and ionization modules we refer to the Chapter. 2 and Chapter 3,
repectively, of this thesis.
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Figure A.1: Flow schematic for the PIC scheme with a Monte Carlo Collision (MCC) module in one
single time-step (Figure adopted from [99]).
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Plasma or neutral gas
(Barrier Suppression
 Ionization)

Figure A.2: The usual simulation geometry of the VLPL

A.2 The Code VLPL

All the kinetic simulations discussed in this thesis have been performed with the three di-
mensional relativistic PIC (3D-PIC) code Virtual Laser Plasma Laboratory (VLPL) [95],
initially created by Pukhov et al. VLPL is a relativistic energy conservative fully elec-
tromagnetic particle-in-cell (PIC) code and runs on massively parallel processors (MPP)
exploiting Message Passing Interface (MPI) and domain decomposition methods. VLPL
is written in C++ following the object-oriented technology. Presently, 1D (1D3V) and
3D (3D3V) versions of the code are maintained. The code has also been equipped with
ADK tunneling ionization (Chapter. 2) and binary collision (Chapter. 3) modules by
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the author of this thesis. These implementations allow us to study the effects of ion-
ization, collisions and collisional ionizations in a vast range of laser plasma-interaction
physics. PIC simulations performed with this code have been able to successfully re-
produce the real experiments. Moreover, the basic interface of the newly developed
implicit PIC-hydrodynamic hybrid simulation code HVLPL [55] is adopted from the
VLPL code. The usual simulation geometry and the class structure of the code VLPL
have been shown in Fig. A.2 and Fig. A.3, respectively. Lastly, most of the simulations
presented in this thesis have been performed with the parallel Dual-Core IBM Linux
cluster ‘NOVAGIGA’ of 70 Xeon-Processors, and some of the simulations demonstrated
in Chapter. 5 have been done in the Dell Dual-Core Linux cluster ‘LONESTAR’ of the
Texas Advanced Computing Center, USA [170].

Figure A.3: UML Class and interface description of the 3D PIC code VLPL.
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