
Augmented Primal-Dual Methods for

Linear Programs and SOC Problems

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Katrin Schmallowsky, M. Sc.

aus

Köthen/Anhalt

Mai 2008

Aus dem Institut für Mathematik

der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Florian Jarre

Koreferent: Prof. Dr. Marlis Hochbruck

Tag der mündlichen Prüfung: 2008/07/02

ii

DEDICATION

I dedicate this thesis in loving memory to my parents. I hope, that

this achievement will complete the dream that you had for me all

those years ago.

iii

Abstract
This thesis deals with linear conic programs

(P) minimize cT x s.t. x ∈ K ∩ (L+ b),

where L is an a�ne set and K is a closed, convex cone. We consider two choices

for the cone K, �rst the case that K is given by the positive orthant, i.e. K = Rn
+

and secondly that K is given as the second order cone K = Qn. These problems

are special cases of convex optimization problems.

In the �rst part, the equivalence of solving a linear program and the minimization

of a convex, di�erentiable function f , which is piecewise quadratic on the space

Rn+m, is discussed. In this approach the a�ne set and the cone Rn
+ are modelled

by the function f . For the minimization of this function a generalized Newton

method is used. To bound the number of iterations for this method, the properties

of the conjugate function of f are exploited.

This approach establishes a basis for the next part of this thesis. By linear

transformations the function f can be converted to a piecewise quadratic function

in the primal-dual space. A closely related version of this function is considered in

later chapters. First, the solution of perturbed linear second order cone programs

is investigated, when the data is subject to arbitrary, but small changes. We then

show that primal and dual nondegeneracy of linear second order cone programs

is equivalent to uniqueness and strict complementarity of the optimal solution.

Furthermore, the augmented primal-dual method is extended to linear second

order cone programs.

In the third part of this thesis the implementation of the augmented primal-dual

method is discussed. For large scale problems we have to observe the limited

memory capacity, hence, a limited memory BFGS method is used. Finally, in an

application of the preceeding results, we consider the cone of completely positive

matrices

C∗n =

{
X ∈ Rn×n|X =

∑
k∈K

vk(vk)T for some �nite {vk}k∈K ∈ Rn
+

}
.

The question, whether a given matrix B is in C∗n or not, is an NP-complete

problem. We propose an algorithm that either computes a certi�cate proving

that B ∈ C∗ or converges to a matrix S̄ in C∗ which in some sense is �close�

to B. We further introduce a regularization approach to improve the algorithm

in cases, where convergence is not satisfactory. The thesis is completed with

numerical results for the algorithms presented here.

Zusammenfassung
Diese Arbeit betrachtet lineare konische Probleme

(P) minimiere cT x s.d. x ∈ K ∩ (L+ b),

wobei L ein a�ner Raum und K ein abgeschlossener, konvexer Kegel ist. Wir
betrachten zwei Beispiele für den Kegel K, zum Einen den positiven Orthanten,
also K = Rn

+ und zum Anderen den second order cone, also K = Qn. Diese Pro-
bleme sind Spezialfälle der konvexen Optimierungsprobleme.
Im ersten Teil wird erläutert, dass die Lösung linearer Programme äquivalent
ist zur Minimierung einer konvexen, di�erenzierbaren, stückweise quadratischen
Funktion f auf dem Raum Rn+m. Die a�ne Menge L und der Kegel Rn

+ sind
dabei durch quadratische Terme in f beschrieben. Zur Minimierung der Funk-
tion f wird ein verallgemeinertes Newton Verfahren verwendet. Die Anzahl der
Iterationen für dieses Verfahren wird beschränkt, indem die Eigenschaften der zu
f konjugierten Funktion ausgenutzt werden.
Dieser Ansatz bildet die Grundlage für den nächsten Teil der Arbeit. Durch li-
neare Transformationen kann die Funktion f zu einer stückweise quadratischen
Funktion auf dem primal-dualen Raum umformuliert werden. Eine eng verwandte
Funktion wird in späteren Kapiteln betrachtet. Zunächst wird die Lösung von ge-
störten linearen second order cone Programmen untersucht, bei denen die Daten
beliebigen, kleinen Änderungen unterliegen. Auÿerdem wird die Äquivalenz von
primaler und dualer Nicht-Entartung und der Eindeutigkeit und strikten Kom-
plementarität der Optimallösung gezeigt. Schlieÿlich wird das erweiterte primal-
duale Verfahren zur Lösung linearer konischer Probleme auf second order cone
Programme ausgeweitet.
Im dritten Teil der Arbeit wird die Implementierung des erweiterten primal-
dualen Verfahrens diskutiert. Für Probleme mit groÿer Dimension muss die be-
grenzte Speicherkapazität berücksichtigt werden. Daher wird ein limited-memory
BFGS Verfahren verwendet. Eine Anwendung der bisherigen Ergebnisse ergibt
sich bei Betrachtung des Kegels der vollständig positiven Matrizen

C∗n =

{
X ∈ Rn×n|X =

∑
k∈K

vk(vk)T for some �nite {vk}k∈K ∈ Rn
+

}
.

Die Frage, ob eine gegebene Matrix B in C∗n enthalten ist oder nicht, ist ein

NP-vollständiges Problem. Es wird ein Algorithmus entwickelt, der entweder

bestätigt, dass B ∈ C∗ oder gegen eine Matrix S̄ aus C∗ konvergiert, die in

einem bestimmten Sinn in der Nähe von B liegt. Des Weiteren wird ein Re-

gularisierungsschritt vorgestellt, der den Algorithmus verbessern soll, wenn die

Konvergenz nicht zufriedenstellend ist. Schlieÿlich werden numerische Ergebnisse

zu den unterschiedlichen hier vorgestellten Algorithmen präsentiert.

Contents

1 Introduction 1

2 Notation and Fundamentals of Linear Conic Optimization 5

2.1 Notation . 5

2.2 Linear Optimization Problems . 6

2.2.1 The Positive Orthant . 8

2.2.2 The Second Order Cone 9

2.2.3 The Semide�nite Cone . 12

3 Linear Programs and Implicit Functions 15

3.1 Newton's method for certain piecewise quadratic functions 16

3.1.1 The generalized Newton path 17

3.1.2 A small example . 20

3.1.3 The conjugate of a di�erentiable, piecewise quadratic, strictly

convex function . 22

3.2 An implicit function derived from the augmented Lagrangian . . . 25

3.2.1 The augmented Lagrangian for linear programs: Basic results 25

3.2.2 The structure of the implicit function ϕ 29

3.2.3 Conjugate functions of the implicit function ϕ 30

4 On the Regularity of Second Order Cone Programs and an Ap-

plication to Solving Large Scale Problems 35

4.1 Known results . 35

4.2 A perturbation theorem . 40

4.3 A reformulation of the conic program 46

i

4.4 Solving (P SOC) and (DSOC) . 47

4.4.1 A small example . 48

4.4.2 A local regularization . 48

5 Application 51

5.1 Completely Positive Matrices . 51

5.1.1 The cp-rank . 52

5.2 Generating a starting point . 53

5.2.1 The diagonal of B . 53

5.2.2 Criteria for the starting point 53

5.2.3 Rescaling to an �all-ones-diagonal� 54

5.2.4 Two speci�c starting points 54

5.3 A Lyapunov type SOC-algorithm 55

5.3.1 Motivation . 56

5.3.2 Reformulation of the second order cone program 56

5.3.3 Solution of the SOC problem 57

5.3.4 Overall algorithm . 59

5.3.5 Matrix completion . 59

5.4 A regularization step . 60

5.4.1 Standard form of the apd-algorithm 62

5.4.2 Recovering the primal variable 64

6 Implementation and Numerical Results 65

6.1 Numerical Examples for Linear Programs 65

6.2 Numerical Experiments for Completely Positive Matrices 69

6.2.1 Quasi-Newton Methods . 69

6.2.2 Limited Memory BFGS 72

6.2.3 Line Search . 74

6.2.4 Numerical Results . 75

7 Summary and Outlook 79

ii

List of Figures

2.1 The second order cone in two and three dimensions 10

3.1 Case 1 . 21

3.2 Case 2 . 21

3.3 Case 3 . 22

4.1 Intersection of K1 with K2 . 46

iii

iv

List of Tables

6.1 Random f as in (3.2) . 67

6.2 f (P),(D) from random linear programs 68

6.3 f (D) from Klee-Minty problems 69

6.4 Results of Algorithm 2 for n = 10 75

6.5 Results of Algorithm 2 for n = 50 76

6.6 Results of Algorithm 2 for n = 200 76

6.7 Results of Algorithm 2 with/without regularization for n = 10 . . 77

v

Chapter 1

Introduction

A general optimization problem is given by

minimize f0(x) s.t. fi(x) ≤ bi for i = 1, . . . ,m. (1.1)

Here, x ∈ Rn is a vector of unknowns, f0 : Rn 7→ R is called objective function

and fi : Rn 7→ R for i = 1, . . . ,m are called (inequality) constraints with limits

bi ∈ R for i = 1, . . . ,m. The goal is to �nd the best choice of x from a set of

vectors that satisfy the constraints, i.e. the vector x with the smallest objective

value. Problem 1.1 is called a convex optimization program if the objective and

constraint functions are convex. A special case of convex optimization programs

are linear programs, where the objective and constraint functions are linear.

Linear programs appear in many applications like engineering, transportation,

telecommunications and other economic situations. In these applications, linear

programs can be used in di�erent procedures like planning, scheduling or routing.

Often, linear programs arise as subproblems in other algorithms and this is also

the case in later chapters of this thesis.

This thesis deals with linear conic programs, where a linear function f is mini-

mized over the intersection of an a�ne set and a closed convex cone K. Obviously,
these problems belong to the class of convex optimization problems. If the cone

K is given as the positive orthant Rn
+, then the constraints x ∈ Rn

+ are linear as

well, so these problems are just the linear programs speci�ed above.

1

2 CHAPTER 1: INTRODUCTION

Linear programs and the solution of the same will be discussed in chapter 3. The

approach uses a reformulation of the linear program as a convex, di�erentiable,

piecewise quadratic minimization problem as well as an augmented Lagrangian

(see e.g. [23, 45]) technique. A survey on this technique will also be given in

chapter 3. The complexity analysis of our approach is based on a generalized

Newton method applied to the piecewise quadratic function f . The number of

steps of the generalized Newton method is bounded by exploiting the properties

of the conjugate function for f .

Augmented Lagrangian approaches have been successfully applied to nonlinear

and non-convex programs, see e.g. [12, 13], and are the subject of ongoing re-

search, see e.g. [18, 47]. The application to nonlinear programs is well understood.

It simpli�es considerably when applied to linear programs. Such an application

is discussed in chapter 3.

The convex, di�erentiable, piecewise quadratic function f , which is to be mini-

mized in chapter 3 represents the set of feasible points for the primal and dual

linear program as well as the duality gap. The latter is given by the di�erence

of the objective function values for the primal and dual problem. More precisely,

this function f determines the sum of the distances of a given point to the set of

primal-dual feasible points and the set of points that have a duality gap of zero.

With this observation, this approach can be generalized to linear conic programs.

These programs can be analogously reformulated as minimization problems with

a certain function in the primal-dual space.

In chapter 4 we pursue this generalization and focus on the solution of linear

second order cone programs. As already mentioned, in a linear second order cone

program a linear function is minimized over the intersection of an a�ne set and

the cartesian product of second order (quadratic) cones, see e.g.[1, 2]. The conic

condition in these programs is not limited to just one cone, it may consist of a

cartesian product of several cones.

First, the perturbation of unique and strictly complementary optimal solutions

of linear second order cone programs when the data is subject to small arbitrary

changes, is considered. This part is an extension of a result given in [17].

3

Using the notion of nondegeneracy given in [1], we then show that the standard

notion of primal and dual nondegeneracy for second order cone programs is equiv-

alent to uniqueness and strict complementarity. While this result is certainly not

surprising, we believe that it has not been rigorously analyzed so far. Based on

these results the augmented primal-dual method for solving conic programs given

in [25] is extended to second order cone programs. In [25] the augmented primal-

dual method is sucessfully applied to large scale semide�nite programs, and we

anticipate that the generalization given here proves to be suitable for large scale

second order cone programs as well.

A link between second order cone programs and semide�nite programs is estab-

lished in [8].

Although we do not treat semide�nite programs, the results obtained in this

thesis together with the results in [25] can be applied to optimization programs

with a mixture of linear, second order cone and semide�nite constraints. A view

on linear, second order cone and semide�nite programs and existing algorithms

to solve these problems is given in chapter 2 below.

Semide�nite programs arise for example from the determination of a maximum

stable set of a graph G. A subset S of the set of vertices in G is called a stable

set, if the nodes in S are pairwise not adjacent to each other. The maximum

stable set problem has a semide�nite relaxation, which was introduced by Lovasz

in 1979 [33]. In this relaxation, the unknown matrix X is, among other con-

straints, asked to be positive semide�nite. In 2003, de Klerk and Pasechnik [30]

replaced the positive semide�nite constraint by a completely positive constraint.

With this substitution, they obtained a sharp relaxation for the maximum stable

set problem. In this context, the question whether a given matrix is completely

positive or not, arised.

The cone of completely positive matrices C∗ is the convex hull of all symmetric

rank-1-matrices xxT with nonnegative entries. This cone is considered in chapter

5. The concept of completely positive matrices has been introduced more than

40 years ago, [21, 34].

4 CHAPTER 1: INTRODUCTION

More recently the interest in completely positive matrices has gained new mo-

mentum in the context of combinatorial optimization problems, [6, 9]. Important

theoretical properties are summarized in [4, 15]. The question `whether or not

a given matrix B is completely positive' does not only belong to the class of

NP-complete problems (see e.g. [39]), but there is also no simple heuristics to

date to approach this problem for matrices of moderate dimension. We introduce

a simple algorithm which � for a given input B � either determines a certi�cate

proving that B ∈ C∗ or converges to a matrix S̄ in C∗ which in some sense is

�close� to B. A normalization of a matrix B � 0 and the computation of a �cen-

tral� starting point in C∗ is discussed and a linearization technique to approach

a given matrix B from within C∗ is presented. The resulting minimization prob-

lem can be written as a linear conic program over the intersection of the positive

orthant and a second order cone and thus, the apd-method presented in chapter

4 can be applied to this program. This approach may stagnate before converging

to B. Therefore, a refactorization-heuristics to recover from such stagnation is

introduced.

The approaches described so far are implemented with MATLAB. In chapter

6, numerical results for the algorithms introduced in chapter 3 and chapter 5 are

presented and the implementation of the apd-algorithm introduced in chapter 4

is speci�ed. As the complexity of the computation of the Hessian for the function

Ψ in chapter 4 gets rather high for large scale problems, a quasi-Newton method

for the determination of the search direction is used; more precisely, we use a

BFGS method. For the solution of large scale second order cone problems the

memory capacity must be handled. Therefore, a limited memory BFGS method

is used, where only few of the recent iterate- and gradient-di�erences are kept

and used for the computation of the next search direction.

Finally, chapter 7 summarizes the results of this thesis and provides an outlook

on future research.

Chapter 2

Notation and Fundamentals of

Linear Conic Optimization

In this chapter we introduce some notation used in this thesis and give a review

on optimization problems. We focus on linear conic problems and present the

main properties for this class of problems when applied to di�erent cones.

2.1 Notation

In the remainder of this thesis the following notation is used. For a di�erentiable

function f : Rn → R we denote the derivative of f at y by the row vector Df(y)

and the gradient by the column vector ∇f(y) := Df(y)T . Second derivatives are

denoted by D2f(y) or ∇2f(y), i.e. we do not distinguish between square matrices

and bilinear forms. If ∇f is di�erentiable almost everywhere, the generalized

Hessian of f at a point x is given by the convex hull of the limits of ∇2f(y)

where y → x such that ∇2f(y) is well de�ned; see e.g. [11]. (This de�nition is

not to be confused with other versions of generalized derivatives by Sobolev or

Lanczos which are based on partial integration.)

When there is a given set of measure zero (e.g. the set where the second

derivative of a given function is not de�ned) we say a point is in general position,

if it does not lie within this set. A point that is generated by some random

process with a continuous density function always lies in general position � with

probability one.

5

6 CHAPTER 2: NOTATION AND FUNDAMENTALS

By E we always denote the matrix of all ones, I the identity matrix, and e

the vector of all ones. The dimensions will always be evident from the context.

The pseudo inverse of a linear operator M is denoted by M †, see e.g. [20]. The

columns of a matrix A ∈ Rm×n are denoted by ai for 1 ≤ i ≤ n, the components

of c ∈ Rn by ci.

By R+ we denote the set of nonnegative numbers, R+ = {t ∈ R | t ≥ 0}. The
inequality X ≥ 0 is used to indicate that the matrix X only has nonnegative

entries; such X is called nonnegative.

The space of real n × n-symmetric matrices is denoted by Sn. By B � 0

we indicate that the symmetric matrix B is positive semide�nite, and write

Sn
+ := {S = ST ∈ Rn×n | S � 0}.

2.2 Linear Optimization Problems

A linear conic optimization program is given by

(P) minimize 〈c, x〉 s.t. x ∈ K ∩ (L+ b).

Here, we have denoted the primal variable by x. The linear set L is given by

L = {x | A(x) = 0}, resp. L+ b = {x | A(x) = A(b) = b̄},

where A is a matrix or some other representation of a linear operator. If the

variable x is a vector, as it is the case in linear and linear second order cone

programming, A can be represented by a matrix. In the above formulation K is

a closed convex cone in a �nite dimensional Euclidean space E and b, c ∈ E are

given data. With these notations, the dual program is given by

(D) maximize 〈b̄, y〉 s.t. c−A∗(y) =: s ∈ KD.

The dual variable is denoted by (y, s). In the dual formulation, KD is the dual

cone of K, i.e.
KD = {s ∈ E | 〈s, x〉 ≥ 0 ∀ x ∈ K}.

With the de�nition of L, the linear set {(y, s)|s = A∗(y)} is the orthogonal

complement of L. Since

〈b, s〉 = 〈b, c−A∗(y)〉 = 〈b, c〉 − 〈b̄, y〉,

SECTION 2.2: LINEAR OPTIMIZATION PROBLEMS 7

the optimal solution of

(D′) minimize 〈b, s〉 s.t. s ∈ KD ∩ (L⊥ + c),

corresponds with the optimal solution of (D). It is easily veri�ed that weak

duality holds, i.e.

〈b, c〉 ≤ 〈c, x〉+ 〈b, s〉 (2.1)

for all x, s that are feasible for (P) and (D).

Furthermore, if (P) (or (D)) satis�es Slaters condition, i.e. there exists a strictly

feasible point x > 0,Ax = b̄ (resp. s > 0,A(y) + s = c), and (P) (resp. (D))

posseses a �nite optimal value, then an optimal solution for (D) (resp. (P)) exists

and strong duality holds, see e.g. [26]. In this case, a point x (resp. (y, s)) is

optimal for (P) (resp. (D)) if, and only if, there exists a point s (resp. x) feasible

for (D) (resp. (P)) with

〈b, c〉 = 〈c, x〉+ 〈b, s〉.

The optimality conditions for a primal-dual pair of linear conic programs are thus

given by

Ax = b,

A(y) + s = c,

〈x, s〉 = 0,

x ∈ K, s ∈ KD.

The �rst two equations ensure that x and (y, s) satisfy the linear constraints of

the primal-dual pair (P) and (D), the third equation is called complementarity

condition and implies that strong duality holds and the last condition guarantees

the ful�lment of the cone constraints.

The cone K is often given as the positive orthant Rn
+, the second order cone

Qn or the cone of semide�nite matrices Sn
+. Observe, that all of these cones are

self-dual, i.e. KD = K. In the sequel we give a short replication of the main

properties of these cones and the corresponding problems.

8 CHAPTER 2: NOTATION AND FUNDAMENTALS

2.2.1 The Positive Orthant

If K = Rn
+, then (P) and (D) are given as the usual linear programs

(PLP) minimize cT x s.t. Ax = Ab = b̄, x ≥ 0

and

(DLP) maximize b̄T y s.t. c− AT y =: s ≥ 0.

Here we see, that the dual of a dual linear program is the original primal linear

program. Geometrically, the linear constraints de�ne a convex polyhedron, which

is called the feasible region. Since the objective function is also linear, hence a

convex function, all local optima are automatically global optima.

A linear program can also be unbounded or infeasible. Weak duality (2.1) states

that if the primal program is unbounded then the dual program is infeasible.

Likewise, if the dual program is unbounded, then the primal program must be

infeasible.

The �rst algorithm for solving linear programs, the simplex algorithm, was devel-

oped by George Dantzig [14]. Initially, the simplex algorithm constructs a feasible

solution at a vertex of the polyhedron. It then walks along edges of the poly-

hedron to vertices with successively lower values of the objective function until

the optimum is reached. This algorithm proved to be quite e�cient in practice

and can be guaranteed to �nd the global optimum if certain precautions against

cycling are taken. However, in 1972, Klee and Minty [29] constructed a linear

program, where the objective function is minimized over a deformed simplex.

This problem is given by

max
{ n∑

j=1

εn−jxj

∣∣∣ xi + 2
i−1∑
j=1

εi−jxj ≤ 1 for 1 ≤ i ≤ n, x ≥ 0
}

,

with 0 < ε < 1
2
. For this program, the simplex algorithm can be shown to take

a number of steps exponential in the problem size. To illustrate the performance

of the approach in chapter 3, this problem will appear as a numerical experiment

in chapter 6.

SECTION 2.2: LINEAR OPTIMIZATION PROBLEMS 9

In 1979 Leonid Khachiyan [28] analyzed the ellipsoid method, the �rst polynomial-

time algorithm for solving linear programs. This method either �nds a point in

a polyhedron or observes that the polyhedron is empty. Khachiyan veri�ed, that

a linear program can be solved with this technique. Although the simplex al-

gorithm performed better in almost all linear programs, the ellipsoid method

initiated new lines of research in linear programming with the development of

interior point methods, which can be implemented as a practical tool.

These algorithms have been inspired by Karmarkar's algorithm [27]. The ap-

proach reformulates a linear program as a nonlinear problem and solves the

resulting problem with certain modi�ed Newton methods. In contrast to the

simplex algorithm, which proceeds along points on the boundary of a polyhe-

dral set, interior point methods move through the interior of the feasible region.

The class of primal-dual path-following interior point methods is considered the

most successful. Most implementations of interior point methods are based on

Mehrotra's predictor-corrector algorithm [36].

2.2.2 The Second Order Cone

As a next example we consider the second order cone Qn. Second order cone pro-

grams have received attention in recent studies of optimization because of their

wide applicability and computational e�ciency. Formulating optimization prob-

lems as second order cone programs provides computational advantages. First,

they can be solved with interior point methods and hence in polynomial time.

Secondly, in practice, the number of iterations required to �nd a solution is not

much a�ected by a choice of initial points.

The second order cone (or Lorentz-cone or ice-cream cone) of dimension n is

de�ned by

Qn := {x := (x0; x̄) = (x0, x1, . . . , xn−1)
T ∈ Rn | x0 ≥ ‖x̄‖2}.

Geometrically it looks like the picture below, in two, respectively three dimen-

sions:

10 CHAPTER 2: NOTATION AND FUNDAMENTALS

Figure 2.1: The second order cone in two and three dimensions

A second order cone constraint of dimension n speci�es that the euclidean norm

of n − 1 variables must be less than or equal to the magnitude of the nth vari-

able. A special case is the second order cone of dimension one, which is given by

Q1 = R+.

For vectors u, v ∈ Rn we consider the following multiplication [1]:

u ◦ v :=

(
uT v

u0v̄ + v0ū

)
,

and for vectors u = (u1, . . . , un)T , v = (v1, . . . , vn)T ∈ Rr1 × · · · × Rrn , we set

u ◦ v = (u1 ◦ v1, . . . , un ◦ vn)T .

Associated to these vectors we now consider the cartesian product

Q = Qn1 × · · · × Qnr

of r second order cones of dimensions n1, . . . , nr. Let n := n1 + · · · + nr. Then,

the following canonical partition of some vectors c, x and s ∈ Rn and a matrix

A ∈ Rm×n is obviously associated with Q:

c = (c1; . . . ; cr), where ci ∈ Rni

x = (x1; . . . ; xr), where xi ∈ Qni
,

s = (s1; . . . ; sr), where si ∈ Qni
,

A = (A1, . . . , Ar), where each Ai ∈ Rm×ni .

SECTION 2.2: LINEAR OPTIMIZATION PROBLEMS 11

In this thesis we study linear second order cone programs of the form

(P SOC)

min cT
1 x1 + · · ·+ cT

r xr

s. t. A1x1 + · · ·+ Arxr = b,

xi ∈ Qni
, for i = 1, . . . , r.

Here, we assume that the matrix A = (A1, . . . , Ar) has full row rank m. We use

the dual program as introduced in [1],

(DSOC)

max bT y

s. t. AT
i y + si = ci, for i = 1, . . . , r,

si ∈ Qni
, for i = 1, . . . , r.

The following statement for second order cone programs is shown e.g. in Theo-

rem 4.2.1 in [40] and Theorem 16 in [1].

If (P SOC) or (DSOC) satis�es Slater's condition, then the optimal values of (P SOC)

and (DSOC) coincide. If both problems satisfy Slater's condition, then the opti-

mal solutions x∗ and s∗ of both problems exist and satisfy the complementarity

condition

x∗ ◦ s∗ = 0,

and, with the de�nition of s∗, this means that strong duality holds. Conversely,

if x and (y, s) are feasible points for (P SOC) and (DSOC), respectively, and if

x ◦ s = 0, then x is an optimal solution of (P SOC) and (y, s) is an optimal solu-

tion of (DSOC).

Second order cone programming is a problem class that lies between linear pro-

gramming and semide�nite programming, which will be considered in the next

section. Like linear programs and semide�nite programs, second order cone pro-

grams can be solved very e�ciently by primal-dual interior-point methods.

Below, we give two short examples how to convert di�erent constraints to second

order cone constraints.

• One example of a second order cone constraint that arises frequently in

engineering is the least squares problem with further constraints: Find the

vector x ≥ 0 that minimizes the euclidean norm of Ax − b (where A is a

m× n-matrix and x and b are vectors of appropriate dimensions).

12 CHAPTER 2: NOTATION AND FUNDAMENTALS

If we denote zi := aT
i x− bi, i = 1, . . . , n, the original problem

min{‖Ax− b‖2|x ≥ 0}

can be written as the following second order cone program

min{z0|(z0, z1, . . . , zn) = z ∈ Qn+1, zi = aT
i x− bi, i = 1, . . . , n, x ≥ 0}.

Note, that this is a problem with mixed linear and second order cone con-

straints.

• A quadratic objective xT Qx can be handled by introducing a new variable

t such that xT Qx ≤ t. Taking the Cholesky decomposition of Q = LLT

and de�ning z := LT x, this inequality is equivalent to zT z ≤ t and thus a

minimization problem with a quadratic objective can be written as

min{t|(t, z) ∈ Qn+1, z = LT x},

along with the constraints of the original problem.

In the application in chapter 5 will arise further examples of constraints that can

be handled as second order cone constraints.

2.2.3 The Semide�nite Cone

As a last example we consider the cone of semide�nite matrices Sn
+. Semide�nite

programming can be regarded as an extension of linear programming where the

componentwise inequalities between vectors are replaced by matrix inequalities.

It is therefore not surprising that the theory of semide�nite programming closely

parallels the theory of linear programming. There are some important di�er-

ences. For example there is no straightforward or practical simplex method for

semide�nite programs.

The standard scalar product on the space of n× n- matrices is given by

〈C, X〉 := C •X := trace(CT X).

SECTION 2.2: LINEAR OPTIMIZATION PROBLEMS 13

For given matrices A(i) ∈ Sn, i = 1, . . . ,m, we de�ne a linear map A : Sn 7→ Rm

by

A(X) :=


A(1) •X

...

A(m) •X

 , X ∈ Sn.

The adjoint operator A∗ : Rm 7→ Sn is given by

A∗(y) =
m∑

i=1

yiA
(i), y ∈ Rm.

With these notations, the standard pair of primal and dual linear semide�nite

programs can be stated as follows:

(P SDP) minimize C •X s.t. A(X) = b̄, X � 0

and

(DSDP) maximize b̄T y s.t. A∗(y) + S = C, S � 0.

There are good reasons for studying semide�nite programs. First, positive semidef-

inite constraints arise directly in a number of important applications like di�er-

ential equations, statistics or control theory. Secondly, many convex optimiza-

tion problems, e.g., linear programming and (convex) quadratically constrained

quadratic programming, can be cast as semide�nite programs, so semide�nite

programming o�ers a uni�ed way to study the properties of and derive algo-

rithms for a wide variety of convex optimization problems.

Most importantly, however, semide�nite programs can be solved very e�ciently,

both in theory and in practice. Particularly, interior-point methods are applicable

to semide�nite programs.

14 CHAPTER 2: NOTATION AND FUNDAMENTALS

Chapter 3

Linear Programs and Implicit

Functions

This chapter explores the solution of linear programs based on the minimization

of convex, di�erentiable, piecewise quadratic functions. One of the approaches is

based on an augmented Lagrangian method. The content of the present chapter

is published in [22].

The method introduced in this chapter provides a basis for the approach which

will be presented in the next chapter. While the present method is based on the

solution of linear programs, the next chapter will concentrate on the solution of

linear second order cone programs.

We recall the linear program

(P) minimize cT z s.t. Az = b, z ≥ 0

and its dual

(D) maximize bT y s.t. AT y ≤ c.

For later convenience we have denoted the primal variable by z in this chapter,

all other notation follows the standard conventions, i.e. the data is given by a

matrix A ∈ Rm×n with n > m and the vectors b and c of appropriate dimensions.

Throughout this chapter we assume that the matrix A de�ning the linear program

(P) has full row rank m.

15

16 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

For the remainder of this chapter we make the following assumption:

Assumption 1. We assume from now on that there is no direction y with AT y ≤
0 and bT y > 0.

If there was a y violating Assumption 1 then (D) would not have a �nite

optimal solution and Algorithm 1 below would identify this case.

3.1 Newton's method for certain piecewise quadratic

functions

For a real number α we set α+ = max{0, α} and for a vector z ∈ Rn we denote by

z+ the vector with components (z+)i = (zi)
+ for 1 ≤ i ≤ n. Using the optimality

conditions of (P) and (D), it is straightforward to see that a point (z̄, ȳ) solves

(P) and (D), if, and only if, it minimizes the convex, di�erentiable, piecewise

quadratic function

f (P),(D)(z, y) := (cT z − bT y)2 + ‖Az − b‖2
2 +

n∑
i=1

((aT
i y − ci)

+)2 + ((−zi)
+)2 (3.1)

and satis�es f (P),(D)(z̄, ȳ) = 0. A function that is closely related to f (P),(D) will

be considered in the next chapter in the context of second order cone programs.

Next we consider the minimization of f (P),(D) by a generalized Newton approach

with line search.

To analyze the generalized Newton path we consider certain convex, di�er-

entiable, piecewise quadratic functions f . For simplicity, the function f below

is de�ned on Rm, the transfer of the results for f to f (P),(D) : Rn+m → R is

straightforward.

We say f is piecewise quadratic on Rm if Rm is partitioned into a �nite number

of polyhedra and f is quadratic on each of these polyhedra. In this section we

always consider functions f : Rm → R of the special form

f(y) := q(y) +
1

2

n∑
i=1

((aT
i y − γi)

+)2, (3.2)

where q is a convex quadratic function,

q(y) = bT y +
1

2
yT Hy.

SECTION 3.1: GENERALIZED NEWTON METHOD 17

Other types of convex, di�erentiable, piecewise quadratic functions will be con-

sidered in Section 3.2.1.

The indices i of the �plus-squared� terms in (3.2) are divided into active, weakly

active and inactive indices.

De�nition 1. An index i of (3.2) is called active at y if the i-th component

satis�es aT
i y − γi > 0. It is called weakly active if aT

i y − γi = 0. Otherwise it is

called inactive. Indices are called linearly independent if the associated vectors ai

are linearly independent.

3.1.1 The generalized Newton path

Next, we consider two types of straightforward generalizations of the Newton

step for minimizing f as in (3.2). In (3.3) below, we consider the case where the

Hessian of f exists but may be singular, and in (3.5) below, we consider certain

points where the Hessian is not de�ned. The generalized Newton step ∆ŷ for

minimizing a convex function f starting at a point ŷ is de�ned as follows: When

∇f is di�erentiable at ŷ we set

∆ŷ :=

 limε→0, ε>0−(∇2f(ŷ) + εI)−1∇f(ŷ) if this is �nite

limε→0, ε>0−ε(∇2f(ŷ) + εI)−1∇f(ŷ) else.
(3.3)

(Here I denotes the identity matrix.) Hence, when ∇2f(ŷ) is invertible ∆ŷ is de-

�ned by the �rst case in (3.3) and coincides with the Newton step. When ∇2f(ŷ)

is singular and the gradient of f is not contained in the null space of ∇2f(ŷ),

the generalized Newton step is de�ned by the second case in (3.3). Using the

eigenvalue decomposition of ∇2f(ŷ) it then follows that ∆ŷ is the orthogonal

projection of the negative gradient onto the null space of ∇2f(ŷ). Finally, if

the gradient of f is contained in the null space of ∇2f(ŷ), then the general-

ized Newton step is de�ned again by the �rst case in (3.3) and coincides with

−(∇2f(ŷ))†∇f(ŷ), where † denotes the pseudo inverse.

If f is a quadratic function on all of Rm and the step ∆ŷ is de�ned by the

�rst case in (3.3), the minimum of f is given by the step length tmax(ŷ) := 1; the

point ŷ + tmax(ŷ)∆ŷ is a minimizer of f .

18 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

If f is quadratic on all of Rm and ∆ŷ is de�ned by the second case in (3.3), the

function f does not have a minimum and tmax(ŷ) := ∞.

When ∇2f(ŷ) is not de�ned, the generalized Hessian of f at ŷ contains several

elements. A general analysis of this case is complicated; we only consider the case

when there is exactly one weakly active index î with aT
î
ŷ−γî = 0 and assume that

∇2f(y) is positive de�nite for y near ŷ and aT
î
y − γî =/ 0, say ∇2f(y) =: H̃ � 0

for y near ŷ and aT
î
y − γî < 0. For such y the Newton step ∆y is a well de�ned

function of y. (One could use the notation ∆y = ∆(y) to indicate that ∆y

depends on y.) The rank-1-update formula for inverse matrices then implies that

the sign of the scalar product of aî with ∆y is the same for all y near ŷ with

aT
î
y =/ γî, i.e. sign(aT

î
∆y) ≡ const. Namely, if the gradient of f is denoted by

g = g(y), and a = aî, then

sign(aT (H̃ + aaT)−1g) = sign(aT (H̃−1 − H̃−1aaT H̃−1

1 + aT H̃−1a
)g)

= sign(aT H̃−1g(1− aT H̃−1a

1 + aT H̃−1a
)) = sign(aT H̃−1g). (3.4)

Note that g is a continuous function of y. Hence, if aT H̃−1g =/ 0, then either

aT
î
∆y > 0 for all y near ŷ with aT

î
y =/ γî or aT

î
∆y < 0 for all such y.

This observation shall be used to generalize the Newton step also for such y

near ŷ that satisfy aT
î
y = γî. In the sequel we will minimize a function f by

following the generalized Newton steps. If a Newton step ∆y starts at a point y

with aT
i y =/ γi for all i and crosses the �rst weakly active index aT

î
(y + t∆y) =

γî at some point ŷ = y + t̂∆y with t̂ < tmax(y), then it is easy to see that

aT
î
H̃−1g(ŷ) =/ 0. (If t̂ = tmax(y), the minimum is found and the algorithm stops.)

Hence we assume aT
î
H̃−1g(ŷ) =/ 0 from now on and based on (3.4) we may de�ne

the generalized Newton step ∆ŷ starting at ŷ by

∆ŷ :=

 limy→ŷ, aT
î

y>γî
∆y if sign(aT

î
∆y) = 1,

limy→ŷ, aT
î

y<γî
∆y if sign(aT

î
∆y) = −1.

(3.5)

This generalization allows us to de�ne a piecewise linear continuous path based

on the relation

ẏ+(t) =
∆y(t)

‖∆y(t)‖2

, (3.6)

SECTION 3.1: GENERALIZED NEWTON METHOD 19

where ∆y(t) is the generalized Newton step starting at y(t) and

ẏ+(t) := lim
∆t→0, ∆t>0

y(t + ∆t)− y(t)

∆t
.

Due to (3.5), the one sided derivative ẏ+(t) is de�ned also at points y(t) with

exactly one weakly active index î, as long as the Hessian of f is nonsingular for

y near y(t) and aT
î
H̃−1g(y(t)) =/ 0.

The case when there is exactly one weakly active index at ŷ but ∇2f(y) is not

positive de�nite for y near ŷ is illustrated in Case 2. in Section 3.1.2 below. The

case when there is more than one weakly active index at ŷ is illustrated in Case

1.

We now assume that∇2f(y) � 0 everywhere except for such points y that have

weakly active constraints 1, i.e. for which ∇2f(y) is not de�ned. We consider the

analogue of Newton's method where the generalized Newton direction is updated

repeatedly as we encounter weakly active constraints. We assume that

exactly one weakly active constraint exists at each iterate2. (3.7)

In this case we may de�ne the generalized Newton path y(t) starting from y0

by (3.6). The points on this path form a piecewise linear curve leading from its

initial point y(0) = y0 to the minimizer y∗ of f if it exists. Tracing the path is

simple: Given an initial point in general position the path crosses just one weakly

active index at a time, and the new direction can be computed by a rank-one-

update formula in order m2 operations. The possibility of rank-one-updates for

a Newton path has been observed earlier in [16], for example.

The complexity of following the generalized Newton path depends on the num-

ber of points with weakly active indices that are crossed by the path. Note that

the straight line [y0, y∗] intersects at most n points with weakly active indices.

1This assumption may not be satis�ed for all (z, y) when f is of the form (3.1). Modi�cations

to account for singular Hessians are tedious and are therefore omitted here.
2Assumption (3.7) is generically satis�ed: Let S̃ be the set of points that have two or more

weakly active constraints. Then, S̃ has dimension n − 2. The set of points leading � via the

generalized Newton path � to S̃ therefore has dimension n− 1. A point in general position will

lie outside this set.

20 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

Unfortunately, as we will see next, the generalized Newton path may pass the

same weakly active index multiple times. We indicate an example where the path

contains n2/4 or more points with weakly active indices.

3.1.2 A small example

We return to the function f of (3.2). For illustration we consider the following

function f : R2 → R:

f(y) = −y1 + 2y2 + ((y1)
+)2 + ((y1 − y2)

+)2.

This function has weakly active indices at all points with y1 = 0 or with y1 = y2.

The generalized Newton path starting at y0 := (−1, 2)T leads along y0+t(1,−2)T

for 0 ≤ t ≤ 1 and then continues along the line (0, 0)T + t(−1,−1)T for t ≥ 0.

Case 1. The derivative of the path is not de�ned at (0, 0)T ; by distinguishing the

four cases y1 ≥ 0 and/or y1− y2 ≥ 0, one easily �nds that the continuation

of the path in (0, 0)T is uniquely de�ned as stated above. Hence, the path

does not pass through the line y1 = 0 but is �re�ected� at this line. As

indicated in (3.4), such a re�ection cannot occur, when there is just one

weakly active index!

Case 2. When the initial point is changed to y0 = (−1, 3)T , the path will lead from

y0 to (0, 1)T , then to (0, 0)T , and then along the line (0, 0)T + t(−1,−1)T

for t ≥ 0.

Case 3. If, in addition, a �prox-term� is added, f(y) −→ f(y) + εyT y, the path will

pass through the line y1 = 0 near (0, 1)T , then through the line y1 = y2,

and will then pass the line y1 = 0 a second time for some y2 < 0. Hence,

we cannot guarantee that the generalized Newton path will cross the same

weakly active index (here y1 = 0) only once.

The above cases are pictured in Figures 3.1 � 3.3. In fact, the negative result

of the previous example can be strengthened: By adding n̂− 1 further ((.)+)2-

terms, the example can be extended to cross the line y1 = 0 exactly n̂ + 1 times

along a zigzag-line.

SECTION 3.1: GENERALIZED NEWTON METHOD 21

Figure 3.1: Case 1

Figure 3.2: Case 2

Then, the term ((y1)
+)2 in the de�nition of f can be replaced by

∑n̂
i=1

1
n̂
((y1 +

εi)
+)2, so that each of these new ((.)+)2-terms is crossed n̂ + 1 times. We thus

obtain a function f of the form (3.2) de�ned with n = 2n̂ �((.)+)2-terms� and

a piecewise linear generalized Newton path that consists of n̂(n̂ + 2) = n + n2/4

linear segments.

To estimate the worst-case-complexity for following the generalized Newton

path, we like to bound the number of linear segments on the generalized Newton

path.

Note that in the situation discussed in Case 1 above, the de�nition of the

generalized Newton path may be di�cult. We therefore consider the case of a

strictly convex function q in (3.2), i.e. H � 0.

22 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

Figure 3.3: Case 3

When applying the generalized Newton method for minimizing f we obtain the

following algorithm:

Algorithm 1 (Minimizing a strictly convex piecewise quadratic f).

1. Let a vector y0 ∈ Rm in general position be given. Set k = 0.

2. Compute the generalized Newton step ∆yk at yk.

3. Determine the smallest number λ̄k ∈ (0,∞] such that yk + λ̄k∆yk contains

a weakly active index. (Then f is quadratic on the line segment [yk, yk +

λ̄k∆yk].)

Determine λk minimizing f(yk + λ∆yk) for λ ∈ (0, λ̄k].

If λk = ∞ then Stop, f does not have a minimum.

4. Set yk+1 := yk + λk∆yk.

5. If ∇f(yk+1) = 0 Stop, else set k := k + 1 and go to Step 2.

Note: The case λk = ∞ in Step 3. cannot occur when H � 0.

3.1.3 The conjugate of a di�erentiable, piecewise quadratic,

strictly convex function

As in the previous example we will minimize a strictly convex, di�erentiable,

piecewise quadratic function f by tracing the generalized Newton path.

SECTION 3.1: GENERALIZED NEWTON METHOD 23

In the gradient space the generalized Newton path is a straight line. The link of

the primal space and the gradient space is established via the conjugate function

f ∗. While f is strictly convex and quadratic on each cell of the primal arrange-

ment, f ∗ is strictly convex and quadratic on each cell of a corresponding dual

arrangement. Since the generalized Newton path is a line segment in the gradient

space, the number of Newton steps needed to minimize f is the number of cells

intersected by the line segment in the dual space. Subsection 3.1.3 studies in

more detail the cell structure.

To simplify the analysis, we assume in this subsection that the function q in

(3.2) is strictly convex 3, i.e. H � 0.

Since f is a strictly convex di�erentiable function, the gradient v = ∇f(y) is

a one to one mapping from Rm to Rm, and the conjugate function f ∗ is a strictly

convex di�erentiable function which is given by

f ∗(v) := max
y∈Rm

{vT y − f(y)}.

The function f ∗ is an implicit function that is closely related to the generalized

Newton path. As shown in Theorem 26.6 in [48] it can also be written as

f ∗(v) = [(∇f)−1(v)]T v − f((∇f)−1(v)).

Strict monotonicity of ∇f , i.e.

[∇f(y)−∇f(x)]T (y − x) > 0, (if y =/ x)

also holds due to strict convexity and di�erentiability of f (Theorem IV.4.1.4 in

[24]). In the sequel, the space {v | v = ∇f(y), y ∈ Rm} is referred to as the dual

space.

For J ⊂ {1, . . . , n} let PJ be the polyhedron

PJ := {y | aT
i y ≥ γi for i ∈ J, aT

i y ≤ γi for i ∈/ J}.

3If not, a regularization term εyT y may be added to f to obtain a regularized function

for which the generalized Newton path is uniquely de�ned. This path may then be used as a

reference path to de�ne the generalized Newton path for f ; however, this approach is somewhat

tedious and does not seem to be of practical or theoretical importance. It is therefore omitted.

24 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

By de�nition f is a quadratic function on each PJ . For y ∈ PJ , ∇f(y) is written

as follows:

∇f(y) = (H +
∑
j∈J

aja
T
j)y + b−

∑
j∈J

γjaj.

We analyze the gradient of f on each PJ and de�ne P̃J as the corresponding

polyhedron of PJ , i.e.

P̃J := ∇f(PJ) = (H +
∑
j∈J

aja
T
j)PJ + b−

∑
j∈J

γjaj.

Therefore, P̃J is a polyhedron, and since ∇f is one to one from Rm to Rm, the

union of the polyhedra P̃J , J ⊂ {1, . . . , n} satis�es⋃
J⊂{1,...,n}

P̃J = Rm.

Obviously, for two sets J, J̄ ⊂ {1, . . . , n}, PJ and PJ̄ are neighbors, if and only if

P̃J and P̃J̄ are neighbors. It is easily seen that f ∗ is a continuous strictly convex

piecewise quadratic function. On each of the P̃J it is a quadratic function.

In the dual space, the path generated by Algorithm 1 is written as

∇f(y(t)) = tv0, (t ∈ [0, 1]),

where v0 = ∇f(y0). The number of P̃J intersected by the path is exactly the

number of steps needed in Algorithm 1. Since P̃J := ∇f(PJ), the number of

polyhedra P̃J is the same as the number of PJ dividing Rm. Since this number

is bounded by 2n, the number of iterations of Algorithm 1 is bounded by 2n. We

summarize the discussion in the following lemma:

Lemma 1. In Algorithm 1, the Hessian of a strictly convex function f can be

updated with order n2 operations at each step if there is only one weakly active

constraint at each iteration. In this case the number of generalized Newton steps

is bounded by at most 2n.

Remark 1. By the footnote to Assumption (3.7) the existence of exactly one

weakly active constraint at each iteration is guaranteed if the starting point y0 is

given in general position.

SECTION 3.2: AN IMPLICIT FUNCTION 25

We note that the computation of a generalized Newton step for weakly convex

f is somewhat more complicated than the computation of a simplex step. We

believe that the upper bound of 2n generalized Newton steps is overly pessimistic,

the worst example we found is given in Section 3.1.2 which obtains an upper

bound of n + n2/4 for even numbers n.

3.2 An implicit function derived from the aug-

mented Lagrangian

The function f (P),(D) of Section 3.1 is closely related to the augmented Lagrangian

function. It does not need any penalty parameter but it depends on n + m

unknowns while the augmented Lagrangian can be written as a function of only

m variables. In this section we derive further theoretical results based on the

augmented Lagrangian.

3.2.1 The augmented Lagrangian for linear programs: Ba-

sic results

In mathematical optimization problems, the method of Lagrange multipliers is a

method for �nding the extrema of a function of several variables subject to one

or more constraints; it is the basic tool in nonlinear constrained optimization. It

reduces �nding stationary points of a constrained function in n variables with m

constraints to �nding stationary points of an unconstrained function in m vari-

ables.

The method introduces a new unknown scalar variable (called the Lagrange mul-

tiplier) for each constraint, and de�nes a new function (called the Lagrangian) in

terms of the original function, the constraints, and the Lagrange multipliers.

The augmented Lagrangian is given as the usual Lagrangian with an additional

penalty term, that penalizes the violation of the equality constraints, i.e.

Λ(y, z, r) := cT z +
r

2
((Az − b +

y

r
)+)T (Az − b +

y

r
)+ − yT y

2r

26 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

for a given penalty parameter r > 0. The augmented Lagrangian for the dual

problem (D) is given by

Λ(y, z, r) := −bT y +
r

2
((AT y − c +

z

r
)+)T (AT y − c +

z

r
)+ − zT z

2r
.

Note: A derivation of the augmented Lagrangian can be found, for example,

in [5], p. 395. There are several variants of augmented Lagrangian functions.

Other (partially) augmented Lagrangian functions use quadratic penalty terms

only for equality constraints and leave simple bounds unmodi�ed. In this case,

inequalities are treated via slack variables. Our approach is based on the (fully)

augmented Lagrangian as given above, where also inequalities are penalized. We

have chosen the dual problem (D) to de�ne Λ so that there is only one type of

constraint.

The gradient of Λ with respect to y and z is given by

∇yΛ(y, z, r) = −b + rA(AT y − c +
z

r
)+

and

∇zΛ(y, z, r) = (AT y − c +
z

r
)+ − z

r
.

The next proposition is well known in a more general context; in the case of linear

programs it can be stated in a slightly stronger and particularly simple fashion:

Proposition 1. For �xed z ∈ Rn the function y 7→ Λ(y, z, r) is convex, and for

�xed y ∈ Rm the function z 7→ Λ(y, z, r) is concave. A point (ȳ, z̄) satis�es

∇yΛ(ȳ, z̄, r) = 0 and ∇zΛ(ȳ, z̄, r) = 0, (3.8)

if, and only if, it is an optimal solution of (D) and (P).

Proof. The convexity with respect to y is evident; concavity with respect to z

follows from a standard argument. Let (3.8) be satis�ed. Relation (AT ȳ − c +
z̄
r
)+ − z̄

r
= 0 implies AT ȳ ≤ c (dual feasibility), z̄ ≥ 0, and z̄i = 0 if (AT ȳ)i < ci

(complementarity). The relation

0 = ∇yΛ(ȳ, z̄, r) = −b + A(r(AT ȳ − c) + z̄)+

implies that (r(AT ȳ − c) + z̄)+ is feasible for (P), and by complementarity it

follows furthermore that (r(AT ȳ − c) + z̄)+ = z̄.

SECTION 3.2: AN IMPLICIT FUNCTION 27

Hence, (ȳ, z̄) is an optimal solution of (D) and (P). Likewise, when (ȳ, z̄) is an

optimal solution of (D) and (P), relation (3.8) follows.

For given (y, z, r) let σ ∈ Rn be de�ned by

σi := σi(y, z, r) :=

{
1 if (AT y − c + z

r
)i ≥ 0

0 otherwise,
(3.9)

and let

Σ := Diag(σ)

be the n×n diagonal matrix with diagonal entries Σii = σi. Let (y, z, r) be given

such that (AT y − c + z
r
)i =/ 0 for all i. Then the function Λ(. , . , r) is twice

di�erentiable at (y, z) and the second derivatives of Λ with respect to y and z are

given by

∇2
yΛ(y, z, r) = rAΣAT � 0

and

∇2
zΛ(y, z, r) = −1

r
(I − Σ) � 0.

(The latter, along with the di�erentiability of Λ, also implies concavity of Λ with

respect to z.)

Let z be �xed arbitrarily. By Assumption 1 the function y 7→ Λ(y, z, r) is

bounded below and due to its piecewise quadratic structure, the solution set

Y (z) of the problem

minimizey∈Rm Λ(y, z, r) (3.10)

is nonempty. (On each of the �nitely many polyhedra on which Λ is quadratic

there exists at least one minimizer y; the ones with the smallest value of Λ solve

(3.10).) Hence, by Assumption 1 there always exists

y ∈ Y (z) := argminy{Λ(. , z, r)}. (3.11)

Conversely, if problem (3.10) has a solution for some z ∈ Rn, then Assumption 1

must hold. This is readily veri�ed: If Assumption 1 does not hold then there is

a vector ∆y with bT ∆y > 0 and AT ∆y ≤ 0. Then for any y and λ > 0 we have

Λ(y + λ∆y, z, r) ≤ Λ(y, z, r)− λbT ∆y
λ→∞−→ −∞,

so that Λ(. , z, r) does not have a minimum. #

28 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

Since for �xed y, the function Λ is concave with respect to z, also

ϕ(z) := Λ(Y (z), z, r) = min
y∈Rm

{Λ(y, z, r)}

is a concave function of z (the minimum of concave functions is concave).

To avoid set-valued functions we de�ne the point

y(z) := argmin{‖y‖2
2 | y ∈ Y (z)}. (3.12)

The constraint y ∈ Y (z) is equivalent to the equation ∇yΛ(y, z, r) = 0. Note that

for �xed z, the set Y (z) = {y | ∇yΛ(y, z, r) = 0} of minimizers of the convex

function Λ(. , z, r) is a convex set. On the other hand, by de�nition of ∇yΛ,

Y (z) = {y | −b + rA(AT y − c +
z

r
)+ = 0}. (3.13)

While it is not evident from representation (3.13) that Y (z) is convex for �xed z,

this representation is certainly piecewise linear. Convexity and piecewise linearity

imply that Y (z) is a convex polyhedron. Hence, it can be written as

Y (z) = {y | Bzy ≤ b̃z},

where the matrix Bz and the vector b̃z depend on z. From (3.13) it also follows

that the constraints of Y (z) are piecewise linear also with respect to z implying

that Bz and b̃z can be written as piecewise linear functions of z. The KKT-

conditions of

y(z) := argmin{‖y‖2
2 | Bzy ≤ b̃z}

imply that y(z) is a piecewise linear function of Bz and b̃z and hence a piecewise

linear function of z. Thus ϕ(z) = Λ(y(z), z, r) is a piecewise quadratic function

of z. Note that continuity of ϕ follows from the concavity of ϕ.

Moreover, for any z ∈ Rn, d ∈ Rn the function y(z) posseses a directional

derivative y′(z, d). It follows that the derivative of ϕ is given by

Dzϕ(z) = DyΛ(y(z), z, r)︸ ︷︷ ︸
=0

y′(z, .) + DzΛ(y(z), z, r) = DzΛ(y(z), z, r). (3.14)

Hence, the following observation holds:

Proposition 2. The function ϕ is di�erentiable everywhere. To solve the linear

programs (P) and (D) it su�ces to �nd a point z such that Dzϕ(z) = 0.

The proposition is evident as Dzϕ(z) = 0 implies DzΛ(y(z), z, r) = 0 and by

de�nition of y(z), also DyΛ(y(z), z, r) = 0. #

SECTION 3.2: AN IMPLICIT FUNCTION 29

3.2.2 The structure of the implicit function ϕ

We consider the case where ∇2
yΛ(y(z), z, r) � 0. In this case, Y (z) = {y(z)}

contains exactly one element, and by the implicit function theorem, its total

derivative Dzy(z) =: ẏ(z) exists. Taking the derivative with respect to z of the

equation ∇yΛ(y(z), z, r) ≡ 0 yields

D2
yΛ(y(z), z, r)ẏ(z) + Dz(∇yΛ(y(z), z, r)) = 0.

The second term on the left hand side is given by Dz(∇yΛ(y(z), z, r)) = AΣ. We

obtain

ẏ(z) = −(D2
yΛ(y(z), z, r))−1AΣ = −1

r
(AΣAT)−1AΣ.

From this and (3.14) we derive

D2ϕ(z) = Dy(∇zΛ(y(z), z, r))ẏ(z) + D2
zΛ(y(z), z, r)

= −1

r
ΣAT (AΣAT)−1AΣ− 1

r
(I − Σ) � 0. (3.15)

The piecewise linear function ∇ϕ is di�erentiable almost everywhere. Whenever

it is di�erentiable its derivative satis�es relation (3.15). This con�rms the earlier

observation that ϕ is concave for all z ∈ Rn and all r > 0.

Due to the piecewise linear-quadratic structure of ϕ it follows that ϕ is unbounded

above when the primal linear program (P) does not have an optimal solution.

(Indeed, if ϕ is bounded above, due to the piecewise quadratic structure it must

have a maximum zopt. Since ∇ϕ(zopt) = 0 it follows that zopt solves (P) which is

a contradiction.)

Observe that ΣAT (AΣAT)−1AΣ = Σ when there are exactly eT σ = m linearly

independent columns ai of A with σi = 1. In this case we obtain

D2ϕ(z) = −1

r
I. (3.16)

For such points, the Powell-update rule (see [45]) for z

zk+1 = zk + r∇ϕ(zk) = zk + r∇zΛ(y(zk), zk, r) = (r(AT y(zk)− c) + zk)+

coincides with the Newton step for maximizing ϕ. When eT σ > m the matrix

D2ϕ(z) is not invertible.

30 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

In this case ΣAT (AΣAT)−1AΣ is a projection matrix and D2ϕ(z) has the eigen-

value zero of multiplicity eT σ−m, and the eigenvalue −1
r
of multiplicity n+m−

eT σ. This in turn implies that the Powell-update ∆z is too short, a line search

minimizing the unknown distance ‖z + α∆z − zopt‖2 would return a step α∆z

with α ≥ 1.

Remark 2. If (3.16) was true for all z ∈ Rn, the Powell-update would return

an optimal solution zopt of (P) in one step. Of course, this is generally not the

case. However, when (P) and (D) have unique optimal solutions zopt and yopt, z

is �xed, and r is su�ciently large, say r ≥ r̄, then y(z) is close to yopt. Then,

each inactive constraint ī of (D) with aT
ī yopt < cī induces an inactive index ī

with aT
ī y(z) − cī + z

r
< 0. The remaining m indices must be active, so that

(3.16) holds at z. In fact, (3.16) holds on the entire line segment [z, zopt] and the

Powell-update does return the optimal solution zopt of (P) in one step.

The closeness of y(z) to yopt follows in a straightforward fashion from Pietrzykowskis

theorem (see [44] or Thm.11.1.5 in [26]) which states that for a constrained prob-

lem with a strict (local) minimizer, the minimizers of the penalty problem con-

verge to the minimizer of the constrained problem. Here, the perturbation z
r
of

the constraints tends to zero for large r, and uniqueness of y, z allows the use of

the implicit function theorem.

We summarize the results of this section in Proposition 3.

Proposition 3. The function ϕ is concave, piecewise linear-quadratic, and dif-

ferentiable for all z ∈ Rn and all r > 0; its second derivative multiplied by �−r�

is an orthogonal projection whenever it is de�ned. (P) has an optimal solution

if, and only if, ϕ has a maximum. The latter is the case if, and only if, ϕ is

bounded above. In this case each maximizer of ϕ is an optimal solution of the

linear program (P).

3.2.3 Conjugate functions of the implicit function ϕ

The Powell update for z is closely related to the Newton step for maximizing ϕ.

As ϕ is piecewise quadratic, the complexity of Newton's method for maximizing

ϕ can again be related to the conjugate function of −ϕ.

SECTION 3.2: AN IMPLICIT FUNCTION 31

We recall the de�nition of the implicit function ϕ,

ϕ(z) = min
y∈Rm

{Λ(y, z, r)}.

We assume for the moment that the set of optimal solutions of (D) is bounded.

To simplify the notation we also assume r = 1 from now on; (this can be done

without loss of generality). We obtain

ϕ(z) = min
y∈Rm

{−bT y +
1

2

n∑
i=1

((aT
i y − ci + zi)

+)2 − z2
i }.

Since ϕ is concave the convex conjugate function of −ϕ is given by

(−ϕ)∗(z̃) = max
z∈Rn

{z̃T z + min
y∈Rm

{−bT y +
1

2

n∑
i=1

((aT
i y − ci + zi)

+)2 − z2
i }}. (3.17)

For a given z̃ ∈ Rn we de�ne the function l = lz̃ of the variables y and z by

l(y, z) = z̃T z − bT y +
1

2

n∑
i=1

(((aT
i y − ci + zi)

+)2 − z2
i).

As noted before, l is convex with respect to y and concave with respect to z. Since

the set of optimal solutions of (D) is bounded, there does not exist a y =/ 0 with

bT y ≥ 0 and AT y ≤ 0. This implies that lim‖y‖→∞ l(y, z) = ∞. Now assume that

z̃ is given such that there exists a y0 with AT y0 < c− z̃. Assume AT y0 ≤ c− z̃−εe

for some ε > 0. Then, when zi → +∞, the i-th component in l can be bounded

above by

z̃izi +
1

2
(((aT

i y − ci + zi)
+)2 − z2

i)

= z̃izi +
1

2
((aT

i y − ci + zi)
2 − z2

i)

≤ 1

2
(aT

i y − ci)
2 − εzi → −∞.

For zi → −∞, the i-th component in l tends to −∞ as well.

Hence, lim‖z‖→∞ l(y, z) = −∞. Hence, assumptions (H1) to (H4) of Theorem

VII,4.3.1 in [24] are satis�ed, and there exists a saddle point of l = lz̃ so that the

order of the minimization and the maximization may be interchanged. We then

obtain from (3.17)

(−ϕ)∗(z̃) = min
y∈Rm

{−bT y + max
z∈Rn

{z̃T z +
1

2

n∑
i=1

((aT
i y − ci + zi)

+)2 − z2
i }}. (3.18)

32 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

Let ĉ = ĉ(y) := AT y−c. The inner maximization in (3.18) with respect to z then

implies

z̃ = z − (ĉ + z)+,

or, equivalently,

zi =


z̃i if z̃i < −ĉ(y)i,

≥ z̃i if z̃i = −ĉ(y)i,

unde�ned if z̃i > −ĉ(y)i.

Hence, the maximum is �nite if, and only if, ĉ(y) ≤ −z̃. Note that in case of

ĉ(y)i = −z̃i we have

z̃izi +
1

2

(
((aT

i y − ci + zi)
+)2 − z2

i

)
=

1

2
z̃2

i

for all zi ≥ z̃i. Hence, we may replace zi = z̃i for all i, and the function (−ϕ)∗

reduces to

(−ϕ)∗(z̃) = min
y: AT y−c≤−z̃

{−bT y + z̃T z̃ +
1

2

n∑
i=1

(((aT
i y − ci + z̃i)

+)2 − z̃2
i)}

= min
y: AT y−c≤−z̃

{−bT y +
1

2
z̃T z̃} (3.19)

=
1

2
z̃T z̃ − max

y: AT y≤c−z̃
{bT y}. (3.20)

This function is piecewise quadratic, but not di�erentiable everywhere since −ϕ is

not strictly convex (see again Theorem 26.3 in [48]). Note that the optimal value

(not the optimal solution) of the maximization problem in (3.20) is a continuous

function of the data (A, b, c, z̃) whenever it is �nite.

The conjugate function of (−ϕ)∗ in (3.20) is given by

(−ϕ)∗∗(z) = max
z̃

{zT z̃ − 1

2
z̃T z̃ + max

y
{bT y | AT y ≤ c− z̃}}

= −min
z̃,y
{−bT y − zT z̃ +

1

2
z̃T z̃ | AT y ≤ c− z̃}.

We thus obtain another representation of (−ϕ)∗∗(z) = −ϕ(z) as a solution of a

convex quadratic program with linear constraints.

Since ϕ is not convex but concave, the segment [0, z̃0] on which the gradient

of ϕ∗ corresponds to the generalized Newton path of ϕ is given by

−z̃0 = ∇ϕ(z0) = (AT y(z0)− c + z0)+ − z0 ≥ AT y(z0)− c.

SECTION 3.2: AN IMPLICIT FUNCTION 33

We write this as AT y(z0) ≤ c − z̃0. By our assumption, AT y ≤ c has a feasible

solution and by convexity, AT y ≤ c− tz̃0 has a feasible solution for t ∈ [0, 1], so

that formula (3.20) is applicable along the line tz̃0 for t ∈ [0, 1].

We consider the polyhedra (in the z̃-space) in which ϕ∗ is quadratic. These

polyhedra are bounded by the manifolds at which the active indices of strictly

complementary solutions y of maxy: AT y≤c−z̃ {bT y} in (3.20) are changing. Un-

fortunately, there may be exponentially many points along the line c − z̃ where

ϕ∗ changes the quadratic representation.

Let z ∈ Rn be given in general position such that

(P1) minimize (c + z)T x s.t. x ∈ P

has a �nite optimal solution, i.e. such that

(D1) maximize bT y s.t. y ∈ D1 := {y | AT y ≤ c + z}

is feasible. In this case, (P1) and (D1) also have a unique optimal primal dual

solution.

Consider the function φ : [0, 1] → R de�ned by

φ(t) := min{(c + tz)T x | Ax = b, x ≥ 0}︸ ︷︷ ︸
(Pt)

= max{bT y | AT y ≤ c + tz}︸ ︷︷ ︸
(Dt)

. (3.21)

As indicated, we refer to the parameterized problems by (Pt) and (Dt). The

function φ is concave and piecewise linear.

Concavity follows directly from the de�nition of (Dt); if y(t) is an optimal

solution for (Dt), then λy(t1) + (1 − λ)y(t2) is feasible for (Dλt1+(1−λ)t2), and

hence the optimal value φ(λt1 + (1− λ)t2) is at least λφ(t1) + (1− λ)φ(t2). #

Following the generalized Newton path for ϕ is identical to following the path

of φ, and as shown in [3], this path may have an exponential number of linear

segments.

From the approach introduced in the present chapter the conception arose to

equate solving a primal-dual pair of linear conic programs with minimizing a

certain function. The function f̂ in the present chapter consists of terms that

describe the duality gap and terms that describe primal and dual feasibility.

34 CHAPTER 3: LINEAR PROGRAMS AND IMPLICIT FUNCTIONS

The function value of f̂ measures the distance of a given point from the set of

feasible points and the set of points that have a duality gap of zero.

In the next chapter this approach is generalized to linear second order cone pro-

grams. The primal-dual feasible set together with the equation for a duality

gap of zero will be partitioned into an a�ne space K1 and a closed convex cone

K2. Thus, solving the primal-dual pair of linear conic programs is equivalent to

minimizing the sum of the distance functions of points (x, s) to K1 and K2.

Chapter 4

On the Regularity of Second Order

Cone Programs and an Application

to Solving Large Scale Problems

We now consider optimization problems over the cartesian product of second

order cones. Of central importance is the nonsingularity of the standard primal-

dual system for second order cone programs. Assuming Slater's condition and

uniqueness and strict complementarity of the optimal solution we establish non-

singularity. This result is applied to the analysis of the augmented primal-dual

method for solving linear programs over second order cones. The content of this

chapter is published in [49].

4.1 Known results

We recall the de�nition of the second order cone of dimension n

Qn := {x := (x0; x̄) = (x0, x1, . . . , xn−1)
T ∈ Rn | x0 ≥ ‖x̄‖2}

and the primal-dual pair of linear second order cone programs

(P SOC)

min cT
1 x1 + · · ·+ cT

r xr

s. t. A1x1 + · · ·+ Arxr = b,

xi ∈ Qni
, for i = 1, . . . , r

35

36 CHAPTER 4: REGULARITY OF SOC PROGRAMS

and

(DSOC)

max bT y

s. t. AT
i y + si = ci, for i = 1, . . . , r,

si ∈ Qni
, for i = 1, . . . , r.

For the second order cone, let

bd Qn := {x ∈ Qn | x0 = ‖x̄‖2 and x =/ 0}

denote the boundary of Qn without the origin 0 and let

int Qn := {x ∈ Qn | x0 > ‖x̄‖2}

denote the interior of Qn.

The second order cone is selfdual, i.e.

QD
n = {s ∈ Rn | 〈x, s〉 ≥ 0 ∀ x ∈ Qn} = Qn,

where 〈·, ·〉 denotes the standard scalar product on Rn, given by

〈c, x〉 = cT x.

We remind of the multiplication ” ◦ ” [1]:

u ◦ v :=

(
uT v

u0v̄ + v0ū

)
.

Lemma 2. For vectors u and v ∈ Qn the following statements hold:

i) u ◦ v = 0 ⇔ uT v = 0

ii) u ◦ v = 0 ⇔ u = 0 or there exists α ≥ 0 such that

v0 = αu0 and v̄ = −αū for u ∈ bd Qn.

For a proof of this Lemma see Lemma 15 in [1].

For a vector x ∈ Rn the arrow-shaped matrix Arw(x) is given by

Arw(x) :=

(
x0 x̄T

x̄ x0I

)
,

see e.g.[1]. It is easily veri�ed that

x ∈ Qn(x ∈ int(Qn)) i� Arw(x) � 0(Arw(x) � 0).

SECTION 4.1: KNOWN RESULTS 37

This holds due to the fact that the eigenvalues of Arw(x) are given by x0 with

multiplicity n− 2 and x0 − ‖x̄‖2 and x0 + ‖x̄‖2, each with multiplicity one.

Observe the following identity for x ∈ Rn, x̄ =/ 0:

x =
1

2
(x0 + ‖x̄‖2)

(
1
x̄

‖x̄‖2

)
+

1

2
(x0 − ‖x̄‖2)

(
1

− x̄
‖x̄‖2

)
. (4.1)

Thus, de�ning w := 1
2

(
1
x̄

‖x̄‖2

)
and w′ := 1

2

(
1

− x̄
‖x̄‖2

)
, relation (4.1) simpli�es

to

x = (x0 + ‖x̄‖2)w + (x0 − ‖x̄‖2)w
′.

Here, w = Rnw
′ with

Rn :=


1 0 · · · 0

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1

 ∈ Rn×n.

Note that w and w′ lie on the boundary of Qn. If x ∈ bd Qn, equation (4.1)

reduces to

x =
1

2
(x0 + ‖x̄‖2)w.

Furthermore, note that w ◦ w′ = 0 and therefore also wT w′ = 0. Thus, (4.1) is

an orthogonal decomposition of x.

In the following we will use the de�nition of nondegeneracy as given in [1].

De�nition 1. Let Tx be the tangent space at x to Qn. Then a primal-feasible

point x is primal nondegenerate if

Tx + Ker(A) = Rn;

otherwise x is primal degenerate.

Here, Ker(A) denotes the kernel of the matrix A, i.e. Ker(A) = {x : Ax = 0}.
The de�nition of nondegeneracy states that Q and the a�ne set A := {x : Ax =

b} intersect transversally at x, i.e. the tangent spaces at x to A and Qn span Rn.

Let x be given in a cartesian product of second order cones.

38 CHAPTER 4: REGULARITY OF SOC PROGRAMS

We assume without loss of generality that all blocks xi with xi ∈ bd Qni
are

grouped together in xB; all blocks xi with xi = 0 are grouped together in xN ; and

all blocks xi with xi ∈ int Qni
are grouped together in xI , i.e. x = (xB; xI ; xN).

We partition the matrix A in the same manner, that is A = (AB, AI , AN).

We assume further that xB and AB have p blocks, i.e. xB = (x1; . . . ; xp) and

AB = (A1, . . . , Ap) and that the dimensions of xI and xN are given by nI and

nN . When i ∈ {1, . . . , p}, we call xi a boundary block.

For xi ∈ int Qni
, the tangent space to Qni

is all of Rni . For xi = 0, the

tangent space is {0}. Now, for x ∈ bd Qni
we can write xi = αiwi with

αi = xi0 + ‖x̄i‖2 = 2xi0. Here, the tangent space is given by the ni − 1 di-

mensional space {z : w′T
i z = 0}, where w′

i = Rni
wi. Primal nondegeneracy

then means that

(TxB
× TxI

× TxN
) + Ker((AB, AI , AN)) = Rn.

As shown in [1], primal nondegeneracy is equivalent to

(((α1w
′

1)× · · · × (αpw
′

p))× {0} × RnN) ∩ Span((AB, AI , AN)T) = {0}. (4.2)

For any x = αiwi + α̃iw
′
i (with α̃i = xi0 − ‖x̄i‖2), let Q̂i ∈ Rni×(ni−2) be a matrix

whose columns are orthonormal and orthogonal to wi and w′
i. Then, the columns

of the orthogonal matrix

Qi = (
√

2w′
i, Q̂i,

√
2wi)

are the eigenvectors of Arw(xi). For a boundary block xi and when si ∈ bd(Qni
)

and xi◦si = 0 then xi = αiwi and si = βiw
′
i, where w′

i = Rni
wi, αi = xi0+‖x̄i‖2 =

2xi0 > 0 and βi = si0 + ‖s̄i‖2 = 2si0 > 0. In this case (see also Theorem 6 in [1]),

the matrices Arw(xi) and Arw(si) commute and share a system of eigenvectors,

namely setting Qi = (
√

2w′
i, Q̂i,

√
2wi), we may write

QT
i Arw(xi)Qi =


2xi0 0 0

0 xi0I 0

0 0 0


and

QT
i Arw(si)Qi =


0 0 0

0 si0I 0

0 0 2si0

 .

SECTION 4.1: KNOWN RESULTS 39

Recalling the decompositions AB = (A1, . . . , Ap) and xB = (x1; . . . ; xp), we repeat

Theorem 20 from [1] without proof.

Theorem 2. For each boundary block xi = αiwi let Qi = (
√

2w′
i, Q̂i,

√
2wi) =:

(
√

2w′
i, Q̄i) be the matrix of eigenvectors of Arw(xi). Then x = (x1; . . . ; xp; xI ; xN)

is primal nondegenerate if and only if the matrix

(A1Q̄1, . . . , ApQ̄p, AI)

has linearly independent rows.

Likewise, we de�ne dual nondegeneracy:

De�nition 3. A dual feasible point (y, s) is dual nondegenerate if

Ts + Span(AT) = Rn;

otherwise (y, s) is dual degenerate.

We partition the dual variable s into three parts s = (sB̃; sÑ ; sĨ) and the matrix

A accordingly (A = (AB̃, AÑ , AĨ)), where the dimensions of the blocks sB̃, sÑ and

sĨ are given by nB̃, nÑ and nĨ and B̃ contains the indices of the boundary blocks

of s, while si = 0 for i in Ñ and si ∈ int(Qni
) for i in Ĩ. Then, this de�nition is

equivalent to

(TsB̃
× TsÑ

× TsĨ
) + Span((AB̃, AÑ , AĨ)

T) = Rn. (4.3)

Note that B = B̃, N = Ĩ and I = Ñ holds for strictly complementary solutions

(x; s). Assume that sB̃ and AB̃ consist of q blocks, i.e. sB̃ = (s1; . . . ; sq) and AB̃ =

(A1, . . . , Aq). For each boundary block si we may write si = βiw
′
i, i = 1, . . . , q

with βi > 0. Taking as in [1] the orthogonal complement of (4.3), a solution is

dual nondegenerate i�

((β1w1)× · · · × (βqwq)× RnÑ × {0}) ∩Ker((A1, . . . , Aq, AÑ , AĨ)) = {0}. (4.4)

Let n1, . . . , nq be the dimensions of the blocks s1, . . . , sq. We repeat Theorem 21

from [1] without proof.

Theorem 4. The dual feasible solution (y, s) with s = (s1; . . . ; sq; sN ; sI) is dual

nondegenerate if and only if the matrix

(A1Rn1s1, . . . , AqRnqsq, AÑ)

has linearly independent columns.

40 CHAPTER 4: REGULARITY OF SOC PROGRAMS

4.2 A perturbation theorem

In this section we give a proof of the analogue of Theorem 1 in [17] for the

case of second order cone programs. In the following Lemma we �rst show,

that uniqueness of the optimal solution (x∗; s∗) implies already primal and dual

nondegeneracy. The reverse is shown in Theorem 22 in [1].

Lemma 3. For the pair of second order cone programs (P SOC) and (DSOC) the

following inclusions hold:

1. If a primal optimal solution x∗ = (x∗B; x∗I ; x
∗
N) of the linear second order cone

program (P SOC) is unique, then the dual optimal solution s∗ = (s∗
B̃
; s∗

Ñ
; s∗

Ĩ
)

is nondegenerate.

2. If a dual optimal solution y∗, s∗ of the linear second order cone program

(DSOC) is unique, then the primal optimal solution x∗ is nondegenerate.

Note that strict complementarity is not needed to establish nondegeneracy.

Proof.

We prove the contrapositive of both statements.

1. Assume that s∗ is dual degenerate. Then, according to (4.4), there exists

z̃ ∈ ((β1w1)× · · · × (βqwq))× RnÑ × {0} ∩Ker((A1, . . . , Aq, AÑ , AĨ))

with z̃ =/ 0. Therefore z̃ ∈ Ker(A) and hence, A(x∗ + z̃) = b. Furthermore,

since wT
i w

′
i = 0, s∗ and z̃ obviously satisfy (s∗i)

T z̃i = 0 for all i = 1, . . . , r.

Therefore we have (s∗)T z̃ = 0. Now, observe that

cT (x∗ + z̃) = cT x∗ + cT z̃ = cT x∗ + (AT y∗ + s∗)T z̃

= cT x∗ + (y∗)T Az̃ + (s∗)T z̃ = cT x∗.

Since x∗ + εz̃ ∈ Qn for ε > 0 small enough, (x∗ + εz̃) and s∗ satisfy

the complementarity condition (x∗ + εz̃) ◦ s∗ = 0, which is equivalent to

(x∗i + εz̃i) ◦ s∗i = 0 for all i = 1, . . . , r. Therefore x∗ + εz̃ is another op-

timal solution for the primal linear second order cone program (P SOC) in

contradiction to uniqueness of the primal optimal solution.

SECTION 4.2: A PERTURBATION THEOREM 41

2. Now assume that x∗ is primal degenerate. Then, according to (4.2), there

exists

z ∈ ((α1w
′

1)× · · · × (αpw
′

p))× {0} × RnN) ∩ Span((A1, . . . , Ap, AI , AN)T)

with z =/ 0. Therefore z ∈ Span(AT) and thus there exists a vector ỹ such

that AT ỹ = z, more precisely AT
i ỹ = zi for i = 1, . . . , r. Then, (y− ỹ, s∗+z)

satis�es AT
i (y∗ − ỹ) + s∗i + zi = ci for all i = 1, . . . , r. Furthermore, since

wT
i w

′
i = 0, x∗ and z obviously satisfy (x∗i)

T zi = 0 for all i = 1, . . . , r and

therefore we have (x∗)T z = 0. Now, observe that

bT (y∗ − ỹ) = bT y∗ − (Ax∗)T ỹ = bT y∗ − (x∗)T AT y∗

= bT y∗ − (x∗)T z = bT y∗.

Since s∗ + εz ∈ Q for ε > 0 small enough, x∗ and s∗ + εz satisfy the

complementarity condition x∗ ◦ (s∗ + εz) = 0, which is equivalent to x∗i ◦
(s∗i + εzi) = 0 for all i = 1, . . . , r. Therefore (y∗ − εỹ, s∗ + εz) is another

optimal solution for the dual linear second order cone program (DSOC) in

contradiction to uniqueness of the dual optimal solution.

We make the following assumption for the remainder of this chapter.

Assumption 2. We assume that (P SOC) and (DSOC) are strictly feasible and

that there is a unique and strictly complementary solution z∗ = (x∗; s∗) of (P SOC)

and (DSOC) satisfying x∗ + s∗ ∈ int(Q).

The condition

x∗ + s∗ ∈ int(Q)

is called strict complementarity condition. This condition is equivalent to x∗i +s∗i ∈
int Qni

for all i = 1, . . . , r. As shown in Corollary 24 in [1], strict complementar-

ity for problems (P SOC) and (DSOC) holds i� for all blocks either both x∗i and s∗i

are in bd Qni
, or if one is zero and the other is in the interior of Qni

.

Now we present our result on the perturbation of strictly complementary so-

lutions of pairs of linear second order cone programs of the form (P) and (D).

42 CHAPTER 4: REGULARITY OF SOC PROGRAMS

Theorem 5. Let matrices Ai ∈ Rm×ni , i = 1, . . . , r with n1 + · · ·+ nr =: n, A :=

(A1, . . . , Ar) and vectors b ∈ Rm, ci ∈ Rni , i = 1, . . . , r with c := (c1; . . . ; cr) be the

data of a pair (P SOC) and (DSOC) of primal and dual linear second order cone

programs. Under Assumption 2, i.e. for x∗, y∗, s∗ with

Ax∗ = b, AT y∗ + s∗ = c, x∗ ◦ s∗ = 0, x∗ ∈ Q, s∗ ∈ Q, x∗ + s∗ ∈ int Q,

(4.5)

the following statements hold.

If the data of (P SOC) and (DSOC) is changed by su�ciently small perturbations

∆A, ∆b and ∆c, then the optimal solutions of the perturbed second order cone pro-

grams are di�erentiable functions of the perturbations. Furthermore, the deriva-

tives

ẋ := DA,b,cx
∗[∆A, ∆b, ∆c], ẏ := DA,b,cy

∗[∆A, ∆b, ∆c]

and ṡ := DA,b,cs
∗[∆A, ∆b, ∆c],

of the solution x, y, s at x∗, y∗, s∗ satisfy

Aẋ = ∆b−∆Ax∗,

AT ẏ + ṡ = ∆c−∆AT y∗,

ẋ ◦ s∗ + x∗ ◦ ṡ = 0,

(4.6)

and system (4.6) is nonsingular.

First of all, we repeat De�nition 26 and Lemma 27 from [1].

De�nition 6. Let

J =



0 0 BT
1 I 0

0 0 BT
2 0 I

B1 B2 0 0 0

V1 0 0 U1 0

0 V2 0 0 U2


,

where the �rst, second, third, fourth and �fth block rows and columns have di-

mensions m, n −m, m, m and n −m, respectively. We say J is a primal-dual

block canonical matrix (PDBC matrix for short) if

1. B1 ∈ Rm×m is a nonsingular matrix,

SECTION 4.2: A PERTURBATION THEOREM 43

2. V2 ∈ R(n−m)×(n−m) and U1 ∈ Rm×m are symmetric positive de�nite,

3. V1 ∈ Rm×m and U2 ∈ R(n−m)×(n−m) are symmetric positive semide�nite,

4. V1 and U1 commute and likewise V2 and U2 commute.

Lemma 4. Every primal-dual block canonical matrix is nonsingular.

For a proof of Lemma 4 see [1].

Proof of Theorem 5.

We �rst observe that uniqueness of x∗ and y∗ implies that rank(A) = m. In-

deed, assume that rank(AT) = rank(A) < m. Then, there exists a vector

∆y ∈ Rm, ∆y =/ 0, such that AT ∆y = 0. If bT ∆y = 0, then y∗ + ∆y is also an

optimal solution of (DSOC) in contradiction to the uniqueness of y∗. If bT ∆y =/ 0,

then (DSOC) does not have a �nite optimal solution, which is again a contradic-

tion.

Slater's condition states that

∃ y, x0 > ‖x̄‖2, s0 > ‖s̄‖2 : Ax = b, AT y + s = c.

By continuity and the observation that rank A = m, Slater's condition is also

satis�ed for all su�ciently small perturbations of the problem data. Hence, the

perturbed problem possesses optimal solutions x∗ + ∆x, y∗ + ∆y and s∗ + ∆s.

The optimality conditions of the perturbed problem are given by

(x∗ + ∆x)0 ≥ ‖x̄∗ + ∆x̄‖2, (s∗ + ∆s)0 ≥ ‖s̄∗ + ∆s̄‖2,

and
(A + ∆A)(x∗ + ∆x) = b + ∆b,

(AT + ∆AT)(y∗ + ∆y) + s∗ + ∆s = c + ∆c,

(x∗ + ∆x) ◦ (s∗ + ∆s) = 0.

(4.7)

Substracting from these equations the �rst three equations of (4.5) yields

(A + ∆A)∆x = ∆b−∆Ax∗,

(AT + ∆AT)∆y + ∆s = ∆c−∆AT y∗,

∆x ◦ s∗ + x∗ ◦∆s = −∆x ◦∆s.

(4.8)

44 CHAPTER 4: REGULARITY OF SOC PROGRAMS

The left-hand side of (4.8) represents a system of N := m+2n+2 linear equations

for the N unknowns ∆x, ∆y and ∆s. Since the existence of ∆x, ∆y and ∆s fol-

lows from Slater's condition, it su�ces to verify uniqueness and di�erentiability.

Neglecting the second-order terms in (4.8), we then obtain the result claimed in

(4.6).

We show that (4.6) has a unique solution. We replicate the proof of Theorem 28

in [1], as there are some confusing typos in the proof given there.

The homogeneous version of equation (4.6) is given by

A∆x = 0

AT ∆y + ∆s = 0

∆x ◦ s∗ + x∗ ◦∆s = 0.

(4.9)

The �rst two equations in (4.9) imply that x∗ + ∆x and y∗ + ∆y, s∗ + ∆s satisfy
A(x∗ + ∆x) = b and AT (y∗ + ∆y) + s∗ + ∆s = c.
In block notation the Jacobian of (4.9) is given by

J :=



0 · · · 0 0 0 AT
1 I

...
. . .

... 0 0
...

. . .

0 · · · 0 0 0 AT
p I

0 · · · 0 0 0 AT
I I

0 · · · 0 0 0 AT
N I

A1 · · · Ap AI AN 0 0 · · · 0 0 0

S1 0 X1

. . .
...

. . .

Sp 0 Xp

SN 0 XI

SI 0 XN



. (4.10)

Here, Si := Arw(si), Xi := Arw(xi), i = 1, . . . , p, SI and SN are block diagonal

matrices, where the i-th diagonal block is given by Si = Arw(si) for i in I,

respectively i in N . Likewise, XI and XN are block diagonal matrices, where the

i-th diagonal block is given by Xi = Arw(xi) for i in I, respectively i in N . Note

that SN = 0, XN = 0 and SI and XI are symmetric positive de�nite matrices.

As mentioned before, Arw(xi) and Arw(si) commute and thus share a system of

eigenvectors.

SECTION 4.2: A PERTURBATION THEOREM 45

We de�ne P as the block diagonal matrix

P := (Q1 ⊕ · · · ⊕Qp ⊕ I ⊕ I)⊕ I ⊕ (Q1 ⊕ · · · ⊕Qp ⊕ I ⊕ I),

where Qi = (
√

2w′
i, Q̂i,

√
2wi) is the matrix containing the eigenvectors of Arw(xi)

for boundary blocks xi for i = 1, . . . , p.

Now, we form the matrix P T JP . Uniqueness of the dual optimal solution implies

primal nondegeneracy, i.e. the matrix

Â = (A1Q̄1, · · · , ApQ̄p, AI)

has linearly independent rows. Uniqueness of the primal optimal solution implies

dual nondegeneracy, i.e. the matrix

Ǎ = (A1Rn1s1, · · · , ApRnpsp, AI)

has linearly independent columns. Strict complementarity implies that xi =

αiRni
si for i = 1, . . . , p and hence also the matrix

Ǎ′ = (A1x1, · · · , Apxp, AI)

has linearly independent columns. Now, we take all p+nI columns of Ǎ′ together

with some m− p− nI columns of Â and form an m×m nonsingular matrix B1.

The remaining n −m columns of Â form a matrix B2. We sort the columns of

the last n = nB + nI + nN rows of P T JP according to the decomposition of B1

and B2.

Thus, we obtain matrices V1 ∈ Rm×m, V2 ∈ R(n−m)×(n−m) and U1 ∈ Rm×m,

U2 ∈ R(n−m)×(n−m). Note that V2 and U1 contain the blocks of SI , respectively

XI , and, furthermore, the columns of diagonal matrices arising from QT
i SiQi,

respectively QT
i XiQi, for i = 1, . . . , p with columns corresponding to their zero

eigenvalues removed. Thus, the matrices V2 and U1 are symmetric positive def-

inite. The remaining columns of QT
i SiQi and QT

i XiQi together with SN , re-

spectively XN , are assigned to V1 and U2. Then, these matrices are symmetric

positive semide�nite. Observe, that V1 and U1 commute and likewise do V2 and

U2. Hence, the matrix P T JP is a PDBC matrix and thus nonsingular. Therefore,

J is nonsingular and thus (4.6) has a unique solution.

46 CHAPTER 4: REGULARITY OF SOC PROGRAMS

We have shown that system (4.6) has a unique solution. Therefore, the implicit

function theorem can be applied to the system (4.5). As we have just seen, the lin-

earization of (4.5) at x∗, y∗, s∗ is nonsingular, and hence (4.5) has a di�erentiable

and locally unique solution.

4.3 A reformulation of the conic program

Below, we follow the concept of [25]. In [8] it is shown that regularity concepts

do not translate in a straightforward way from semide�nite programs to second

order cone programs, and here, as well, some of the necessary modi�cations are

not straightforward.

We assume that (P SOC) and (DSOC) have feasible solutions and that (P SOC) or

(DSOC) satis�es Slater's condition. In this case, �nding an optimal solution for

(P SOC) and (DSOC) is equivalent to �nding z = (x; s) ∈ K1 ∩K2, where

K1 := (L+ b)× (L⊥ + c) ∩ {(x; s) | 〈c, x〉+ 〈b, s〉 = 〈b, c〉}

and

K2 := Qn+1 ×QD
n+1.

Here, K1 and K2 are closed and convex, more precisely, K1 is an a�ne subspace

and K2 a pointed, closed, convex cone with nonempty interior.

K2

K1

Figure 4.1: Intersection of K1 with K2

SECTION 4.1: SOLVING (P SOC) AND (DSOC) 47

For a closed set C and a vector ũ we denote the distance of ũ to C by

d(ũ, C) := min{‖u− ũ‖2 | u ∈ C}.

This distance is given by

d(ũ, C) = ‖ũ− ΠC(ũ)‖2,

where ΠC(ũ) denotes the projection of ũ onto the set C. The projection onto the

second order cone is given by (see section 4.2 in [43])

ΠQn(x) =


1
2

(
1 + x0

‖x̄‖2

)
(‖x̄‖2; x̄) if |x0| < ‖x̄‖2,

(x0, x̄) if x0 ≥ ‖x̄‖2,

0 if − x0 ≥ ‖x̄‖2.

A discussion regarding the computation of the projection onto K1 is given in [25].

We just recall that the projection of x onto L+ b is given by

ΠL+b(x) = x− AT (AAT)−1A(x− b)

and that the projection of s onto L⊥ + c can be computed via

ΠL⊥+c(s) = s− (I − AT (AAT)−1A)(s− c).

Now, solving (P SOC) and (DSOC) is equivalent to �nding z such that

φ(z) :=
1

2
(d(z, K1)

2 + d(z, K2)
2) = 0,

i.e. such that φ is minimized. Function and gradient evaluations of φ can be

computed e�ciently analogously to [25], and the minimization of φ is possible by

cg- or limited memory BFGS-type algorithms.

4.4 Solving (P SOC) and (DSOC)

The a�ne space K1 can be decomposed into K1 = z(0) + N1 where z(0) is any

�xed vector in K1 and N1 is a linear subspace. Following the approach in [25],

we restrict φ to K1 and de�ne the function φ̃ by

φ̃(z̃) :=
1

2
‖d(z̃, K2)‖2

2 for z̃ ∈ K1.

48 CHAPTER 4: REGULARITY OF SOC PROGRAMS

The function φ̃ is not de�ned outside K1. For linear programs, i.e. for the case

K2 = (Q1)
n this is a di�erentiable, convex, piecewise quadratic function similar

to the function considered in chapter 3.

In the next subsection we give an example with a unique and strictly comple-

mentary optimal solution z∗ of (P SOC) and (DSOC) such that there are directions

∆z ∈ N1, such that φ̃(z∗ + λ∆z) grows in the order of λ4 and other directions

∆̃z ∈ N1 such that φ̃(z∗ + λ∆̃z) grows in the order of λ2.

4.4.1 A small example

In this subsection we give a small example of a pair of second order cone programs

(P SOC) and (DSOC) satisfying Assumption 2 such that the (generalized) Hessian

of φ̃ has an unbounded condition number for z near z∗.

Let A = [1, 0, 1], b = [1; 0; 0] and c = [1; 0; 0] be the data of a primal-dual

pair of second order cone programs. The primal-dual optimal solution (x∗; s∗) =

((1
2
; 0; 1

2
); (1

2
; 0;−1

2
)) is unique and strictly complementary. The space N1 :=

L × L⊥ ∩ {(∆x; ∆s)|cT ∆x + bT ∆s = 0} is given by

N1 = {∆z = (∆x; ∆s) = ((β; α;−β); (−β; 0;−β)) | α, β ∈ R}.

By construction, z∗+∆z ∈ K1 for ∆z ∈ N1. For small |α|, |β| it is easily veri�ed

that

d(z∗ + ∆z, K2) = O(α2) if β = 0, d(z∗ + ∆z, K2) = O(|β|) if α = 0.

Thus, for directions z∗ + λ∆z the function φ̃ grows in the order of λ4 when

β = 0 and in the order of λ2 when α = 0. Minimizing φ̃ by some conjugate

gradient scheme would result in a very slow algorithm. Therefore we derive a

regularization of φ̃.

4.4.2 A local regularization

Let

f̂((x; s)) := ‖x ◦ s‖2
2.

Then, f̂ is minimized at the optimal solution z∗ = (x∗; s∗).

SECTION 4.1: SOLVING (P SOC) AND (DSOC) 49

(P SOC) and (DSOC) can be solved in two stages (cf.[25]), the �rst one minimizing

φ̃ for z̃ ∈ K1, and when convergence of this stage is slow, starting a second stage

minimizing φ̃ + f̂ for z̃ ∈ K1. Note: In the following we will only consider points

in K1. The restriction of φ + f̂ to K1 will be denoted by Ψ,

Ψ(z) := φ(z) + f̂(z), for z ∈ K1.

The gradient of Ψ is not everywhere di�erentiable. However, as stated in the

next lemma, it satis�es some weaker smoothness properties. For the de�nition

of semismoothness and the relevance of semismoothness for Newton-type algo-

rithms, see e.g. [37, 46].

Lemma 5. The gradient of Ψ is strongly semismooth and the generalized Hessian

is positive de�nite at z∗.

Proof. First, we prove strong semismoothness of the gradient of Ψ. Proposition

4.3 in [10] states that the projection of a vector x onto the second order cone

is strongly semismooth. For i = 1, . . . , r let fi(x) be the projection of a vector

x = (x1; . . . ; xr) onto the second order cone for the i-th component of x and the

projection onto the zero vector for the remaining components of x. Then, the

projection of x = (x1; . . . ; xr) onto the second order cone can be written as a sum

of r projections, namely f1(x) + · · · + fr(x). Theorem 5 in [37] states, that the

sum of semismooth functions is semismooth and so is the gradient of Ψ.

Let a perturbation ∆z = (∆x; ∆s) with z∗ + ∆z ∈ K1 and ‖(∆x; ∆s)‖2 = 1 be

given. It su�ces to show that there exists a σ > 0 independent of ∆z such that

1

2
d(z∗ + λ∆z, K2)

2 + f̂(z∗ + λ∆z) ≥ λ2σ. (4.11)

As shown in Theorem 5, the following system for the unknowns (∆x; ∆y; ∆s):

A∆x = p,

AT ∆y + ∆s = q,

x∗ ◦∆s + ∆x ◦ s∗ = r,

(4.12)

is nonsingular. We eliminate the variable ∆y from the second equation of (4.12).

To this end let F : Rn → Rn−m be a linear operator of full rank such that

F(AT y) = 0 for all y ∈ Rm.

50 CHAPTER 4: REGULARITY OF SOC PROGRAMS

Let q̃ := F(q). Straightforward calculations show that the two systems (4.12)

and

M

(
∆x

∆s

)
:=


A∆x

F(∆s)

∆x ◦ s∗ + x∗ ◦∆s

 =


p

q̃

r

 (4.13)

are equivalent and thus system (4.13) has full rank as well.

Note that ‖(p; q̃; r)‖2 := ‖M(∆x; ∆s)‖2 ≥ 1
‖M−1‖2 , since ‖(∆x; ∆s)‖2 = 1. Given

that z∗ +∆z ∈ K1 , it follows that p = 0 and q̃ = 0. Hence, ‖r‖2 ≥ 1
‖M−1‖2 which

means that

f̂(z∗ + λ∆z) ≥ σλ2,

where σ = 1
‖M−1‖22

.

By Theorem 3.2 in [46], Lemma 5 implies local quadratic convergence of New-

ton's method for minimizing Ψ. Note that in contrast to the analysis in [25] the

function φ̃ is not needed to show the positive de�niteness of the (generalized)

Hessian of Ψ when considering second order cone programs.

Chapter 5

Application

In this chapter we present an application of the primal-dual method of the previ-

ous chapter. Our experiments deal with the cone of completely positive matrices.

This cone and it's dual will be introduced �rst. Then, we will explain how the

problem of deciding whether a given matrix is contained in the set of completely

positive matrices can be related to a second order cone program and - in some

cases - be solved via the primal-dual method. We provide an algorithm that

either proves that a given matrix B is in C∗ or converges to a matrix S̄ that is

`close to' C∗. Moreover, a regularization step is presented to improve convergence

of this algorithm, whenever it stagnates.

5.1 Completely Positive Matrices

The cone of copositive matrices is given by

Cn = {X ∈ IRn×n|X = XT , yT Xy ≥ 0 ∀ y ∈ IRn
+}.

The dual cone of Cn is the cone of completely positive matrices

C∗n =

{
X ∈ IRn×n|X =

∑
k∈K

vk(vk)T for some �nite {vk}k∈K ∈ IRn
+

}
.

Both, Cn and C∗n are closed, convex cones of full dimension.

The dimension n will always be clear from the context, so the subscript will be

dropped from now on.

51

52 CHAPTER 5: APPLICATION

With the de�nition of these cones, we may write the linear conic program over

the cone of copositive matrices and it's dual as

(PCOP) minimize cT x s.t. x ∈ C ∩ (L+ b)

and

(DCPP) maximize b̄T y s.t. c− AT y =: s ∈ C∗ ∩ (L⊥ + c).

As for the problems considered in chapter 2, if Slater's condition is satis�ed for

(PCOP) or (DCPP), then the duality gap of the optimal values of (PCOP) and

(DCPP) is zero. Note, that in contrast to the cones considered in chapter 2, the

cone of copositive matrices is not self-dual.

5.1.1 The cp-rank

By de�nition, for any B ∈ C∗ there exists a natural number p and a n×p-matrix

X ≥ 0 such that B = XXT .

For a given matrix B � 0 the algorithm of the present chapter aims at gener-

ating a matrix X ≥ 0 such that B = XXT holds true. If the algorithm succeeds

then the matrix X provides a certi�cate for the statement B ∈ C∗. The dimen-

sion p of the n × p matrix X is discussed next. Evidently, when B ∈ C∗ ⊂ Sn
+,

the Cholesky factor L ∈ IRn×p of B = LLT can be computed with p ≤ n. (p < n

when B has zero eigenvalues.) On the other hand, even when B ∈ C∗, the matrix

L typically is not nonnegative, and, as discussed next, the choice p ≤ n is not

suitable in general.

Given a matrix B ∈ C∗ the minimal number p for which there is a n×p-matrix

X ≥ 0 such that B = XXT is called the cp-rank of B, see e.g. [4].

Let E be the l × l all-ones matrix and I the l × l identity matrix. Then, it is

straightforward to verify that

Ŝ :=

(
lI E

E lI

)

has cp-rank l2. Thus, for even numbers n there exist n×n-matrices B ∈ C∗ with

cp-rank n2/4.

SECTION 5.2: GENERATING A STARTING POINT 53

In fact, also matrices nearby Ŝ have a large cp-rank: Let Uε(Ŝ) := {S = ST |
‖S − Ŝ‖F ≤ ε}. Then, for su�ciently small ε > 0, all matrices in C∗ ∩ Uε(Ŝ)

have a cp-rank of at least l2. As intuitively clear and con�rmed by preliminary

numerical experiments in Section 6.2.4 it is di�cult to generate a C∗-certi�cate

for such matrices with high cp-rank.

When n is not even, there also exist matrices with cp-rank ≥ bn2/4c. On the

other hand, by Caratheodorys theorem, the cp-rank of a matrix B ∈ C∗ always

satis�es p ≤ n(n + 1)/2.

Remark 3. For 1 ≤ p < bn2/4c the set C∗
p := {XXT | X ∈ IRn×p, X ≥ 0} of

matrices with cp-rank ≤ p is not convex.

Proof. The proof is a trivial consequence of the observation that there exist ma-

trices with cp-rank > p. Let S be one such matrix, then S is a convex combination

of positive rank-1-matrices each of which is contained in C∗
p .

This simple observation has implications on the selection of p in Algorithm 2

below.

5.2 Generating a starting point

5.2.1 The diagonal of B

The question under consideration is whether a given symmetric matrix B is in

C∗. When B has a negative eigenvalue (or a negative matrix entry), then trivially

B ∈/ C∗. Hence, we assume B � 0 in this chapter. If the positive semide�nite

matrix B has a zero diagonal element then the corresponding row and column

of B is zero and the task of �nding X ≥ 0 with XXT = B can be reduced to a

smaller dimensional problem. We therefore assume that B has strictly positive

diagonal entries.

5.2.2 Criteria for the starting point

In this section a starting point X0 ∈ IRn×p, X0 ≥ 0 is de�ned such that S0 :=

X0(X0)T ≈ B. The algorithm in Section 5.3 generates iterates Sk = Xk(Xk)T

where Xk ≥ 0 and Sk lie in a neighborhood of the line segment [S0, B].

54 CHAPTER 5: APPLICATION

To faciliate the computation of Xk at each iteration the matrix S0 is chosen in

the interior of C∗ (implying that the entire line segment [S0, B) is in the interior

of C∗ whenever B ∈ C∗). In a certain sense, S0 is chosen �central� to C∗.

For a �xed matrix S0, the choice of X0 ≥ 0 with X0(X0)T = S0 is far from

unique. The particular choice of X0 may be crucial in determining the e�ciency

of the algorithm in Section 5.3:

• When X0 has two or more identical columns, these columns will remain

identical throughout the algorithm. (This will only increase computation

time.) Below we generate nonnegative columns that have pairwise a �large

angle� to each other.

• When X0 does not have full rank, the matrix S0 = X0(X0)T lies on the

boundary of C∗. To guarantee that S0 ∈ (C∗)◦ the matrix X0 below is

generated such that it contains a strictly positive n × n submatrix whose

smallest singular value is �large�.

• The quality of the approximation X0(X0)T ≈ B is less crucial; it is the goal

of the algorithm to improve this approximation.

5.2.3 Rescaling to an �all-ones-diagonal�

Let D be the positive de�nite diagonal matrix such that D−2 coincides with the

diagonal of B. Given a nonnegative factorization DBD = X̃X̃T , it is trivial

to recover the nonnegative factorization B = (D−1X̃)(D−1X̃)T . Hence when

de�ning a starting point X0 such that X0(X0)T ≈ B we may rescale B := DBD

to have a diagonal of all ones. When B ∈ C∗ this implies that Bi,j ∈ [0, 1] for all

i, j.

5.2.4 Two speci�c starting points

We consider two possible choices of p:

1. When n is large a choice of p ≥ n2/4 may be infeasible due to limitations in

storage and computation time. In this case it may su�ce to �nd an approx-

imation XXT ≈ B that improves the initial decomposition X0(X0)T ≈ B.

SECTION 5.3: A LYAPUNOV TYPE ALGORITHM 55

We then choose n < p ≤ 2n and a starting point X0 is evaluated by the

following steps:

By symmetric permutations the columns of B are reordered in increasing

norm, B̃ := ΠT BΠ. Then, a Cholesky factorization B̃ = LLT is com-

puted (when B̃ is singular, L has less than n columns). When L ≥ 0 stop

(B ∈ C∗); else project L onto the set of nonnegative matrices. Finally, the

rows of L are permuted back; L := ΠL. Let e ∈ IRn be the vector of all

ones and ei be the i-th unit vector for 1 ≤ i ≤ n. The �rst n columns of X0

are set to 1
2n

e + 1√
n
ei (1 ≤ i ≤ n). The remaining p− n columns are set to

the �rst p−n columns of L. (Reduce p when L has less than p−n nonzero

columns.) Let D̂ be the diagonal of X0(X0)T . To match the diagonal of B

and X0(X0)T we set X0 := D̂−1/2X0.

2. Second, p = n(n + 1)/2. This second option is feasible only for small sizes

of n, say n ≤ 50. In this case, the following procedure generates a matrix

X0(X0)T in the �center� of C∗:

As above, the �rst n columns of X0 are set to 1
2n

e + 1√
n
ei (1 ≤ i ≤ n). The

remaining n(n−1)/2 columns are set to 1
n2 e+ 1

n
(ei +ej) (1 ≤ i < j ≤ n). It

is easy to see that X0(X0)T = λeeT +ρI where I is the identity matrix and

λ, ρ are positive scalars. When changing the factors 1
2n

, 1√
n
, 1

n2 ,
1
n
to other

positive values, the numbers λ, ρ will change. X0(X0)T is in the interior of

C∗ if, and only if, λ > 0 and ρ > 0. Normalizing X0(X0)T to diagonal of

all ones is simply achieved by setting X0 := 1√
λ+ρ

X0.

Whether or not the matrix B is scaled back B := D−1BD−1 (and likewise X0 :=

D−1X0) before starting Algorithm 2 in the next section depends on the norm in

which we would like to measure the distance between XXT and B.

5.3 A Lyapunov type SOC-algorithm

Given a symmetric matrix B ∈ IRn×n we wish to minimize ‖S−B‖ for S ∈ C∗. As

indicated in Section 5.2 we assume that B � 0 and that an initial approximation

X = X0 ≥ 0 is given such that XXT ≈ B and XXT is in the interior of C∗.

56 CHAPTER 5: APPLICATION

5.3.1 Motivation

The quadratic factorization heuristics of [7] can be adapted to the problem of

generating a certi�cate of complete positivity: If B is in C∗, then there exists a

matrix ∆X∗ such that

(X + ∆X∗)(X + ∆X∗)T = B (5.1)

and X + ∆X∗ ≥ 0. Neglecting the second order term ∆X∗(∆X∗)T in (5.1) we

obtain the linearized equation yielding an approximation ∆X for ∆X∗:

X∆XT + ∆XXT = B −XXT . (5.2)

For a given B ∈ C∗ the set of ∆X∗ satisfying (5.1) contains more than one

element. The fact that the linearization error in (5.2) depends on ‖∆X‖F suggests

to determine an approximation ∆X for ∆X∗ based on the linearized problem

minimize ‖∆X‖F | X∆XT + ∆XXT = R, X + ∆X ≥ 0, (5.3)

where R = B − XXT . Problem (5.3) is the basis for an iterative process with

repeated updates of the form X 7→ X + ∆X.

Problem (5.3) is a second order cone program (SOC problem) with np variables

and n(n + 1)/2 equality constraints. To be able to handle problems of the form

(5.3) with a large number of variables and constraints, a specialized approach is

discussed next.

5.3.2 Reformulation of the second order cone program

Problem (5.3) can be reformulated as

minimize x0 | x0 ≥ ‖x1‖2, x2 ≥ 0, A(X1) = R, −X1 + X2 = X, (5.4)

where X1 := ∆X, x1 := vec (X1), X2 := X + ∆X, x2 := vec (X2), and

A(∆X) := X∆XT + ∆XXT

depends on the current iterate X. With the above notations we may also write

problem (5.4) as

minimize x0 | x = (x0, x1, x2)
T ∈ K ∩ (L+ R̄). (5.5)

SECTION 5.3: A LYAPUNOV TYPE ALGORITHM 57

Here, K is the cone K = Qnp+1 × Rnp
+ with

Qnp+1 := {x := (x0; x1) ∈ R× Rnp | x0 ≥ ‖x1‖2}

being the second order cone of dimension np + 1. The linear set L in (5.5) is

given by L := {x | Âx = 0}, where

Âx =

[
0 A 0

0 −I I

]
x0

x1

x2

 .

Here, A represents the linear operator A such that Ax1 = vec (A(X1)) for x1 =

vec (X1). The linear equations of problem (5.5) can be written as

Âx =

[
vec (R)

vec (X)

]
=: r̂ =: Âr̄

for some suitable vector r̄. This de�nes the element R̄ = mat (r̄) ∈ R× Rn×p ×
Rn×p in (5.5). Problem (5.5) is given in the standard form of the apd-approach

[25]. Note, that for problem (5.5) the apd-method is applied to a linear optimiza-

tion problem with mixed cone constraints as pointed out in the beginning of this

thesis.

5.3.3 Solution of the SOC problem

For small size problems, the subproblems (5.5) can be solved by interior-point

approaches. However, due to the large number of equality constraints, another

approach was used for the numerical results in Section 6.2.4:

As the correction X1 = ∆X is subject to a linearization error (resulting from

(5.2)), the subproblems (5.5) are not solved up to full precision in the implemen-

tation in Section 6.2.4. Instead, these subproblems are solved iteratively, and

when the accuracy obtained for the subproblem is of the same magnitude as the

linearization error, the algorithm for solving the subproblem is stopped.

Since the projection of a given iterate onto the cone K is trivial, the main

computational e�ort in the apd-approach for solving (5.5) is the repeated com-

putation of the projection of the current iterate onto the linear set L.

58 CHAPTER 5: APPLICATION

As detailed below, this projection is computationally cheap as well. Moreover, as

the required accuracy of the approximate solution of (5.5) is low, the apd-method

in [49, 25] seems to be very well suited for solving the subproblems (5.5).

The projection of a point x onto L is given by

ΠL(x) = x− ÂT (ÂÂT)−1Âx.

Multiplications by Â and ÂT are cheap, the only critical part in the computation

of this projection is the solution of a linear equation of the form

ÂÂT g = h (5.6)

for a given right hand side h = (h1, h2)
T ∈ Rn2+np. Equation (5.6) is given by[

AAT −A

−AT 2I

][
g1

g2

]
=

[
h1

h2

]
(5.7)

and its solution is obtained from

AAT g1 = 2h1 + Ah2 =: ĥ.

(Trivially, g2 = 1
2
(h2 + AT g1).) Writing this equation in operator notation (with

n× n matrices G1 := mat (g1) and Ĥ := mat (ĥ)) leads to

AA∗(G1) = Ĥ,

which is precisely the following Lyapunov equation

XXT GT
1 + G1XXT = Ĥ. (5.8)

Below, we discuss the solution of the above Lyapunov equation for the case that

X has full row rank: To this end let

XXT = UΣUT

be the eigenvalue decomposition of XXT , i.e. U ∈ IRn×n is an orthogonal matrix,

and Σ is an n× n positive de�nite diagonal matrix.

Denoting G̃1 := UT G1U and H̃ := UT ĤU , equation (5.8) is equivalent to

ΣG̃1

T
+ G̃1Σ = H̃. (5.9)

The solution of this system is given by G̃1i,j = H̃/(Σii + Σjj) for 1 ≤ i, j ≤ n.

This yields the solution G1 = UG̃1U
T of (5.8).

SECTION 5.3: A LYAPUNOV TYPE ALGORITHM 59

5.3.4 Overall algorithm

Now, we summarize an algorithm based on (5.5):

Algorithm 2. [Lyapunov type LP algorithm]

1. Input: A matrix X0 ≥ 0 of full row rank and a matrix B � 0.

Set k := 0, S0 := P 0 := X0(X0)T .

2. Set R̂k := 1
2
(B + P k)− Sk.

3. Solve problem (5.5) for X = Xk and determine a step size αk such that

‖(Xk + αk∆X)(Xk + αk∆X)T −B‖ < ‖Sk −B‖.

4. Set Xk+1 := Xk + αk∆Xk, Sk+1 := Xk+1(Xk+1)T , and compute the projec-

tion P k+1 of Sk+1 onto the straight line connecting S0 and B.

5. Set k = k + 1 and go to Step 2.

In order to limit the e�ect of the linearization error, Step 2. aims not at the

full step from Sk to B but only �half the way�. More precisely, as the matrix X0

can be chosen such that S0 is a �central point� in C∗, Step 2. aims back towards

a point on the straight line connecting B and S0.

5.3.5 Matrix completion

We point out that Algorithm 2 can be used with minor modi�cations to (approx-

imately) solve the completely positive completion problem: �Given an index set

I ⊂ {1, . . . , n}2 and a symmetric matrix B ∈ IRn×n, �nd a matrix S ∈ C∗ such

that Si,j = Bi,j for all (i, j) ∈ I.� In this case, the equality constraints in prob-

lems (5.3) or (5.4) that correspond to index pairs not in I are simply dropped.

Unfortunately, the constraints then do not lend themselves any longer to the

application of the apd-algorithm; the inverse of AAT is not given by (5.8). For

small size problems, of course, interior-point algorithms could be used in place of

the apd-approach.

60 CHAPTER 5: APPLICATION

5.4 A regularization step

For a given matrix S ∈ C∗ of cp-rank ≤ p the set

Ξp(S) := {X ∈ IRn×p | X ≥ 0, XXT = S}

contains more than one element (unless p = 1). As shown in [15], for any S ∈
(C∗)◦, there exists a representation S = XXT satisfying

X = [X1, X2], 0 < X1 ∈ IRn×n, and X1(X1)T � 0. (5.10)

On the other hand, even when S ∈ (C∗)◦ there may also exist representations

XXT of S that violate (5.10). For example, S = I + (n + 2)E has the represen-

tations

S = XXT = X̂X̂T with X = [E + I, 0] and X̂ = [I,
√

n + 2e].

The representation X̂X̂T not only violates (5.10), but, as will be detailed next,

it is also less suitable for the computation of corrections ∆X̂:

Let us de�ne the perturbation ∆S with entries ∆Si,j = 0 for all i, j except

from ∆S1,2 = ∆S2,1 = −1. We consider corrections ∆X̂ and ∆X such that

X̂ + ∆X̂ ≥ 0 and X + ∆X ≥ 0 satisfy the linearized equations

∆X̂X̂T + X̂∆X̂
T

= ∆S and ∆XXT + X∆XT = ∆S. (5.11)

Straightforward calculations show that the minimum norm solution ∆X̂ of (5.11)

has a norm of about
√

2n− 4. On the other hand, for any ∆S of norm
√

2

(including the above perturbation ∆S), the minimum norm solution ∆X of (5.11)

is bounded by
√

2. In this example, the zero entries in X̂ restrict the choice of

corrections ∆X̂.

As the linearization error ∆X∆XT increases with ‖∆X‖ the representation

XXT appears to be more suitable as a starting point for linearized corrections

X → X + ∆X than the representation X̂X̂T . This suggests to prefer strictly

positive matrices X for starting the correction step of Algorithm 2. Below we

present a heuristics for generating matrices X ∈ Ξp(S) whose smallest entries are

as large as possible.

SECTION 5.4: A REGULARIZATION STEP 61

Let S = Xk(Xk)T denote a certain iterate of Algorithm 2. Goal of this section

is to compute a �central� element X̄ of Ξp(S) in the sense that X̄ − ρ̄E ≥ 0 for

a large value of ρ̄. Here, E is the `all-ones-matrix'. (When ρ̄ > 0 and ∆X is

given arbitrarily, this allows a correction X̄ 7→ X̄ + ε∆X for some ε > 0 without

violating the nonnegativity constraints.) The regularization step can be applied

after each iteration of Algorithm 2 replacing Xk with a �more central� matrix

X̄k.

The following proposition is used to generate such a �central element�.

Proposition 4. Given S � 0 with distinct eigenvalues λi > λi+1 for 1 ≤ i ≤ n−1

and X, X̄ with XXT = S = X̄X̄T then X̄ = XV̂ for some unitary matrix V̂ .

Proof. Let X = UΣV and X̄ = ŪΣ̄V̄ be the singular value decompositions of

X and X̄ where the singular values Σi,i = Σ̄i,i =
√

λi are arranged in decreasing

order. Comparing XXT and X̄X̄T one obtains

UΣΣT UT = ŪΣ̄Σ̄T ŪT ,

i.e. ΣΣT = UT ŪΣ̄Σ̄T ŪT U . As ΣΣT = Σ̄Σ̄T is a diagonal matrix with strictly

decreasing diagonal entries and UT Ū is unitary, it follows that UT Ū = I, i.e.

U = Ū . De�ning V̂ := V T V̄ the claim of the proposition follows.

Remark 4. When the eigenvalues of S are not pairwise distinct there might be

additional degrees of freedom in the selection of X and X̄. This possibility is not

exploited in this chapter.

Proposition 4 shall be used to change a given matrix X ∈ Ξ(S) to a slightly

`more central' matrix X̄. The change will be based on a �linearization� of the

matrix V̂ , so that the equality XXT ≈ X̄X̄T only holds approximately.

By $ we always denote a skew symmetric matrix, $ = −$T . For small ‖V̂ − I‖
it follows that there exists a skew symmetric matrix $ such that

V̂ = I + $ + O(‖$‖2).

(This equation de�nes the �linearization� referred to above.)

62 CHAPTER 5: APPLICATION

Given a matrix X ∈ Ξ(S) we search for a small correction of the form

X 7→ X̄ := X(I + ε$) (5.12)

such that X̄ ≥ ρ̄E for a large value of ρ̄. To this end the matrix $ is determined

by the linear program

maximize ρ | X(I + $) ≥ ρE

which can be written in the dual form

maximize ρ | ρE −X$ ≤ X. (5.13)

Whenever the optimal solution to (5.13) has an optimal value that is larger

than mini,j Xi,j an update of the form (5.12) with ε ∈ (0, 1) will increase the

lower bound mini,j X̄i,j � at the expense of a second order perturbation to XXT .

The solution of (5.13) can also be computed by the apd algorithm, and as in

Section 5.3, the accuracy of the solution of the subproblems can be adjusted

according to the linearization error and the distance of XXT to B.

5.4.1 Standard form of the apd-algorithm

Let the mapping A∗ be given by A∗($) = X$. A∗ maps the space of skew

symmetric p× p-matrices to IRn×p. Its adjoint is given by

A(Z) =
1

2
(XT Z − ZT X)

for Z ∈ IRn×p. With this notation, the primal of (5.13) is given by

minimize X • Z | E • Z = 1, A(Z) = 0, Z ≥ 0.

Note that Z0 := X/(E •X) is feasible for the primal problem.

To apply the apd-algorithm [25] to this LP we denote

L := {Z | E • Z = 0, A(Z) = 0}.

The primal problem can thus be written as

minimize X • Z | Z ∈ (L+ Z0) ∩ IRn×p
+ .

SECTION 5.4: A REGULARIZATION STEP 63

Here, the iterate X is given data (it is the goal ot this LP to increase the minimum

entry of X) and Z is the dual variable. We recall that the apd-algorithm is based

on the availability of cheap projections onto L. These will be discussed next. (The
authors were not able to provide equally cheap solutions for the linear systems

that arise in interior-point approaches for this problem.)

The KKT conditions for the projection ∆Z of a matrix Z onto L can be

written as follows: There exists a ρ ∈ IR and a skew symmetric $ such that

ρE • E + E • A∗($) = E • Z

ρA(E) +A(A∗($)) = A(Z).

In the sequel the brackets as in A(E) will be omitted and we simply write AE.

The solution of the above system can be obtained via

ρ =
Z • (E −A∗(AA∗)†AE

E • (E −A∗(AA∗)†AE

$ = (AA∗)†A(Z − ρE).

Note that E is not contained in the range of A∗ and hence, ρ is well-de�ned. (If E

was contained in the range of A∗ the linear program (5.13) would be unbounded.)

We brie�y discuss the least squares solution of the system AA∗$ ≈ R for some

given skew symmetric right hand side R ∈ IRp×p. (This least squares solution

coincides with $ = (AA∗)†R.)

Observe that AA∗$ = 1
2
(XT X$ + $XT X). We obtain the equation

2AA∗$ = XT X$ + $XT X ≈ 2R

for the unknown matrix $. We assume that the singular value decomposition of

X is given, X = UΣV with unitary matrices U and V of suitable dimensions.

Using the singular value decomposition and setting $̃ = V $V T this is equivalent

to

ΣT Σ$̃ + $̃ΣT Σ ≈ 2R̃ := 2V RV T .

The matrix $̃ is skew symmetric as well, and the above unitary transformations

do not change the least squares solution.

Here, ΣT Σ is a p × p diagonal matrix, only the leading n diagonal entries of it

being nonzero (when X has maximum rank, else there are r < n nonzero entries).

64 CHAPTER 5: APPLICATION

Solving this system for $̃ in a least squares sense is trivial, yielding the desired

solution $ = V T $̃V . Above computations require about O(p3) operations. Note

that AA∗ maps the skew symmetric p×p matrices into themselves; the inversion

of a general map IRp×p → IRp×p may take O(p6) operations.

5.4.2 Recovering the primal variable

If problem (5.13) is solved by the apd-method, the last step of the algorithm

can be chosen as the projection onto the a�ne hull of the primal dual feasible

solutions. We obtain a primal dual solution in the apd-format satisfying all

equality constraints. The dual solution N is a matrix in IRn×n such that there

exist variables $ and ρ with

ρE −X$ = R := X −N.

(Ideally, when also the primal dual inequalities are satis�ed then N ∈ IRn×n
+ , but

due to the last projection this cannot be guaranteed.) We are then interested in

the values of $ and ρ. Speci�cally, we need to solve a system of the form

ρE − UΣV $ = R

where UΣV is the singular value decomposition of X. (For general R this system

may not have a solution, but by our assumption that the apd method terminates

with a projection on the primal dual feasible equations a solution must exist.)

Setting Ẽ := UT EV T , $̃ := V $V T , and R̃ := UT RV T , this system is equivalent

to

ρẼ − Σ$̃ = R̃.

Let Σ = [D, 0]. By the assumption XXT ∈ (C∗)◦ it follows that X must have

full rank and thus D is an n× n positive de�nite diagonal matrix. We obtain

ρD−1Ẽ − [I, 0]$̃ = D−1R̃.

Note that $̃ is skew symmetric and thus has a zero diagonal. Hence we may

determine ρ such that D−1(R̃ − ρẼ) has a zero diagonal. (In the presence of

rounding errors a least squares solution ρ may be used.) Once ρ is given, the

computation of $ is straightforward.

Chapter 6

Implementation and Numerical

Results

In this chapter numerical results of the algorithms in chapter 3 and 5 are pre-

sented. We also explain basic elements of the implementation. First of all,

numerical results for Algorithm 1 in chapter 3 are presented. Then, the im-

plementation of the apd-algorithm introduced in chapter 4 for the application

presented in chapter 5 is discussed. To this end we repeat the main results on the

(limited memory) BFGS method. Afterwards, we brie�y discuss the step size con-

trol used here. We conclude this chapter with numerical results for Algorithm 2

in chapter 5.

6.1 Numerical Examples for Linear Programs

We start our numerical examples with a Newton-type method for minimizing the

piecewise quadratic functions in chapter 3. We have implemented Algorithm 1

with MATLAB in order to test the program for functions of the form (3.2) and

(3.1). Here, our goal was not to �nd a competitive numerical algorithm for solving

linear programs, but to obtain a better understanding of how many weakly active

indices will be intersected by the generalized Newton path minimizing f of the

form (3.2) or (3.1). To obtain some intuition about the worst-case behavior, we

tested a large number of random examples and limited ourselves to small size

problems.

65

66 CHAPTER 6: IMPLEMENTATION AND NUMERICAL RESULTS

The function f (P),(D) in (3.1) is not strictly convex. When the Hessian of f is

singular, the generalized Newton path runs parallel to weakly active constraints,

and, as seen in Section 3.1.2, it will typically run into points with more than

one weakly active index. At such points a generalized Newton step is di�cult

to compute. We therefore added a perturbation εI to ∇2f(y) whenever ∇2f(y)

was nearly singular. Unfortunately, the numerical results are biassed by rounding

errors; the distinction of which constraints are active, weakly active, or inactive

becomes unreliable.

In several examples the algorithm ended up with very short steps zigzagging

between two weakly active indices, a behavior that cannot occur when exact

arithmetic is used. In order to obtain a numerical implementation that might

be competitive to other algorithms, one would not only need to control rounding

errors but also use suitable rank-one update formulae when crossing weakly active

indices.

For all numerical experiments we therefore used an exact line search along the

(generalized) Newton direction. Since the function f is smooth, it is unlikely

that the minimizer of the line search lies at a point with weakly active indices.

(The zig-zagging was now indeed reduced to very few cases among 100000 test

problems.) The exact line search can be carried out in order nm arithmetic

operations. We counted both, the number of iterations (Newton steps) used and

the total number of weakly active indices intersected along this path.

For our �rst set of examples we chose the function (3.2), where all data vectors

b, ai and γ are uniformly distributed in [−0.5, 0.5], and the Hessian H of q as the

product of a matrix Q and its transpose, Q having uniformly distributed entries

in [0, 1]. The starting point is chosen uniformly distributed in [−50, 50].

In Table 6.1, the results of the algorithm for such f are listed. We kept the

dimension �xed at n = 30 and increased m by a factor of 3/2 for each row. In

each row the results are listed for 10000 random examples. The �rst column

displays the values of m. In the second column we list the average number of

Newton steps, in the third column the maximum number of Newton steps, in the

fourth column the average number of weakly active constraints intersected along

the Newton path, and �nally, in the last column we list the maximum number of

weakly active constraints that were crossed along the path.

SECTION 6.1: LINEAR PROGRAMS 67

m aver. Newt. max. Newt. aver. cross. max. cross

4 3.45 16 2.63 8

6 3.53 15 4.26 12

9 3.58 16 6.63 17

14 3.80 24 10.58 24

21 4.03 11 15.80 35

32 4.22 8 23.89 46

48 4.36 8 35.12 61

72 4.38 7 50.09 81

108 4.33 7 72.07 100

162 4.23 6 102.41 137

Table 6.1: Random f as in (3.2)

The algorithm stopped when the norm of the gradient was less than 10−12 or

when the Newton direction was not a descent direction. We note that in the �rst

two rows the maximum number of Newton steps was higher than the number of

intersections with weakly active constraints. This was due to rounding errors in

the �nal iterations.

Note: Table 6.1 summarizes the results of a total of 100000 test problems. In

none of the examples, the number of intersections of weakly active constraints

exceeded 2m. We do know, however, that m2/4 or more intersections are possible

for problems that are designed as in Section 3.1.2.

For our second set of examples we used functions f (P),(D) arising from random

linear programs that have primal and dual feasible solutions. Whenever the

Hessian of f (P),(D) had a condition number of more than 1012, a regularization

term εI was added to f (P),(D). The resulting step is a Levenberg-Marquardt step

for the convex function f (P),(D). Table 6.2 lists the results with 1000 random

examples for each row. Each problem (P) has 2m variables and m linear equality

constraints. The resulting primal-dual function f (P),(D) has 4m �plus-squared�-

terms. Again, the maximum number of crossing weakly active indices during the

generalized Newton method is less than twice the number of �plus-squared�-terms.

68 CHAPTER 6: IMPLEMENTATION AND NUMERICAL RESULTS

m aver. Newt. max. Newt. aver. cross. max. cross

4 3.44 9 4.96 16

6 5.34 11 10.72 27

8 6.66 13 16.06 32

10 8.32 22 23.51 72

12 9.60 23 29.61 63

14 11.35 23 37.95 72

16 12.55 24 44.48 84

18 14.51 28 54.46 104

20 15.80 29 61.20 115

Table 6.2: f (P),(D) from random linear programs

Finally, in Table 6.3 we list the results for Klee-Minty problems of the form

max
{ n∑

j=1

εn−jxj

∣∣∣ xi + 2
i−1∑
j=1

εi−jxj ≤ 1 for 1 ≤ i ≤ n, x ≥ 0
}

,

where ε = 0.45.

We have implemented both a primal-dual version and a dual-only version min-

imizing a function f (D) with 2n + 1 �plus-squared�-terms using the information

that the optimal value of the above problem is 1. We list the results for the �dual-

only� version since this version allowed problems of slightly larger dimension that

were not biassed by rounding errors. Here each row lists the results with 1000

di�erent starting points.

The Klee-Minty problems were designed speci�cally to trick a method of com-

pletely di�erent nature (the Simplex method). As expected, one would need to

�nd other examples to embarrass the generalized Newton approach as considered

here.

Note: For functions f = f (P),(D) arising from linear programs the observations

are very similar as for general f of the form (3.2). While we do not know whether

there might be exponentially many intersections in the worst case, the results

indicate that the average number of intersections might be fairly small.

SECTION 6.2: COMPLETELY POSITIVE MATRICES 69

n aver. Newt. max. Newt. aver. cross. max. cross

4 7.48 10 15.72 23

6 9.23 19 21.63 40

8 10.24 23 27.52 58

10 11.88 29 33.07 84

12 13.96 30 40.28 92

14 15.35 28 44.94 79

Table 6.3: f (D) from Klee-Minty problems

6.2 Numerical Experiments for Completely Posi-

tive Matrices

In this section numerical results for Algorithm 2 in chapter 5 are presented. This

algorithm was implemented with MATLAB. For the computation of the search

direction we used the limited memory BFGS method. First, a description of this

method is given in sections 6.2.1 and 6.2.2 below. Then, a discussion regarding

the line search that is used here is provided. Finally, this section is concluded

with numerical results for the regularization step in section 5.4. As we are not

aware of other approaches for solving the problem introduced in chapter 5 for

matrices of moderate dimensions we cannot present comparisons with existing

approaches.

6.2.1 Quasi-Newton Methods

The basic Newton iteration for the determination of a minimum of a convex

function f : Rn 7→ R is given as the Newton iteration for the gradient of f ,

F (x) := ∇f(x), i.e.

xk+1 = xk − (∇F (xk))−1F (xk),

where k is the iteration number and xk is the actual iterate. Since the determi-

nation of the Hessian ∇2f(xk) causes high computational costs in each iteration,

our goal is to �nd a matrix Bk that approximates ∇2f(xk), respectively a matrix

Hk that approximates the inverse of ∇2f(xk).

70 CHAPTER 6: IMPLEMENTATION AND NUMERICAL RESULTS

The quasi-Newton methods are used especially for problems, where the Hessian

is a dense matrix. In such problems, a Cholesky factorization of the Hessian of f

is computed, i.e. ∇2f(xk) = LLT . The Cholesky-factor L can thus be corrected

in O(n2) operations to a Cholesky-factorization of Bk+1.

So, in quasi-Newton methods, we have to compute the next iterate by

xk+1 = xk − λk(B
k)−1 · f(xk),

resp. xk+1 = xk − λkH
k · f(xk),

where λk denotes the step size. For the remainder of this chapter we make the

following assumptions.

Assumption 3.

• The function F is continuously di�erentiable on D ∈ Rn.

• D is convex and open.

• There exists x∗ ∈ D with F (x∗) = 0 and ∇F (x∗) is nonsingular.

• ∇F (x∗) is Lipschitz-continuous, i.e.

‖∇F (x)−∇F (x∗)‖ ≤ L‖x− x∗‖ for all x ∈ D.

With the de�nition of sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk) we re-

peat Theorem 6.6.3 from [26] to present a convergence result for quasi-Newton

methods.

Theorem 1 (Dennis, Moré). Let the following assumptions be ful�lled for a

sequence of quasi-Newton iterates:

• Bk is nonsingular for all k.

• λk = 1 for all k.

• lim xk = x∗, xk =/ x∗ and xk ∈ D for all k.

Then, the following statements are equivalent:

SECTION 6.2: COMPLETELY POSITIVE MATRICES 71

• limk
‖xk+1−x∗‖
‖xk−x∗‖ = 0,

• limk
‖(Bk−∇F (x∗))sk‖

‖sk‖ = 0,

• limk
‖Bksk−yk‖

‖sk‖ = 0.

The �rst property states that the convergence of the iterates in a quasi-Newton

method is Q-superlinear, what implies that for large k the new iterate xk+1 is

much closer to the zero x∗ than the last iterate xk. To preserve this convergence,

we have to ful�ll the following quasi-Newton condition

Bk+1sk = yk.

One important quasi-Newton method is the BFGS method (Broyden, Fletcher,

Goldfarb, Shanno), where the next approximation Bk+1 is given by

Bk+1 = Bk +
yk(yk)T

(sk)T yk
− Bksk(sk)T Bk

(sk)T Bksk
,

respectively

Hk+1 = Hk +
(sk −Hkyk)(sk)T + sk(sk −Hkyk)T

(sk)T yk
− (sk −Hkyk)T yk

((sk)T yk)2
sk(sk)T .

These formulae are rank-2-updates for the matrices Bk, respectively Hk.

In view of convergence, quasi-Newton methods outperform steepest descent meth-

ods in most cases. The convergence of steepest descent methods often is nonsat-

isfactory and so-called zigzagging may occur. Both types of algorithms, namely

steepest descent and quasi-Newton, require only �rst derivatives, and both re-

quire a line search. The quasi-Newton algorithms require slightly more operations

to calculate the search direction and somewhat more storage, but in almost all

cases, these additional costs are outweighted by the advantage of superior con-

vergence.

For large scale problems there arises a problem of memory storage, since the stor-

age of the old approximation Hk exceeds the memory capacity. As the matrix Hk

is symmetric, it is necessary to have n(n+1)
2

storage locations only for the approx-

imation of the Hessian. Since our problems, when written as second order cone

programs, become very large in n, we use the limited memory BFGS method.

72 CHAPTER 6: IMPLEMENTATION AND NUMERICAL RESULTS

6.2.2 Limited Memory BFGS

In this section, we �rst repeat the general BFGS algorithm. Then, we explain

the idea of the limited memory BFGS method and the advantages of the same.

The BFGS method generates a sequence of iterates {xk} according to the fol-

lowing algorithm.

Algorithm 3. [BFGS]

1. Input: a starting point x0 and an initial approximation H0 � 0. Set k = 0.

while ‖∇f(xk)‖ > 0 do

2. Compute the search direction dk+1 = −Hk∇f(xk).

3. Determine the step length αk = argmin
α>0

f(xk + αdk).

4. Set xk+1 = xk + αkd
k and compute Hk+1 by the BFGS update formula.

5. Set k = k + 1 and go to Step 2.

Now, if we had to save the approximation Hk of the Hessian of f , this would

exceed the storage capacity in large scale problems. Hence, we have to save

memory, and for this purpose we do not store the matrix Hk+1 in each step of

algorithm 3, but compute the product in Step 2. in algorithm 3 from the most

recent m di�erence pairs {si, yi}.
When m � n, this leads to a signi�cant reduction in memory usage. If k < m,

the method uses the k di�erence pairs it has available.

Note, that in our implementation we save only m = 5 di�erence pairs while

in our problems there are about n = 30.000 unknowns, so the reduction of mem-

ory usage is tremendous.

With the de�nition of ρk = 1
(yk)T sk , see below the two-loop formula for the com-

putation of the matrix-vector product r = Hkv (see [19]).

Note, that for a sparse matrix Hk
0 the memory usage within this algorithm is

considerably lower. We determine the matrix Hk
0 as stated below.

SECTION 6.2: COMPLETELY POSITIVE MATRICES 73

Algorithm 4 (Limited Memory BFGS Update).

1. Set q = v.

2. for i = k − 1 : −1 : k −m

µi = ρi(s
i)T q

q = q − µiy
i

end

3. Set r = Hk
0 q.

4. for i = k −m : k − 1

β = ρir
T yi

r = r − (β − µi)s
i

end

For Hk
0 , we use the scaling suggested in [32], i.e. we determine the diagonal

matrix Dk, that minimizes

‖DkY k−1 − Sk−1‖F . (6.1)

Here, Y k−1 = [yk−1, . . . , yk−m], Sk−1 = [sk−1, . . . , sk−m] and ‖ · ‖F denotes the

Frobenius norm of a matrix, i.e.

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

a2
ij

for the n× n- matrix A. The minimal argument of (6.1) is given by the diagonal

matrix Dk = diag(di
k) with

di
k =

si
k−1y

i
k−1 + · · ·+ si

k−myi
k−m

(yi
k−1)

2 + · · ·+ (yi
k−m)2

for i = 1, . . . , n.

As recommended in [32], this formula is used only if the denominator is greater

than 10−10, and if all the diagonal elements satisfy di
k ∈ [10−2γk, 102γk]; otherwise

we set di
k = γk. Here, γk is given by

γk =
(yk)T sk

‖yk‖2
2

.

74 CHAPTER 6: IMPLEMENTATION AND NUMERICAL RESULTS

Note, that if k < m we use Hk
0 = γkI.

In the general BFGS method, the positive de�niteness of Hk is preserved, if

(yk)T sk > 0. This observation can be copied to the limited memory BFGS

method. To guarantee the condition (yk)T sk > 0, a suitable line search is neces-

sary. In the next section we present the line search that is used in our implemen-

tation.

6.2.3 Line Search

Several line search methods are available for the determination of the step length

αk in Step 3. in algorithm 3. The best-known line search conditions are the Wolfe

conditions.

Let f : Rn → R be a smooth objective function, and dk be a given search

direction. A step length αk is said to satisfy the Wolfe conditions if the following

two inequalities hold.

i) f(xk + αkd
k) ≤ f(xk) + c1αk(d

k)T∇f(xk),

ii) (dk)T∇f(xk + αkd
k) ≥ c2(d

k)T∇f(xk),

with 0 < c1 < c2 < 1. Inequality i) is known as the Armijo condition (or Goldstein

condition, or Goldstein-Armijo condition) and ii) as the curvature condition.

Condition i) ensures that αk decreases f 'su�ciently', and ii) ensures that the

slope of the function φ(α) = f(xk + αdk) at αk is greater than c2 times than at

α = 0.

In [26] it is shown, that the curvature condition

(yk)T sk > 0

is satis�ed if condition ii) is ful�lled and thus, the BFGS-update Hk+1 of Hk is

symmetric and positive de�nite.

Since the function evaluations in our implementation are cheap, we use an exact

line search, i.e. in each iteration of algorithm 3 we determine the minimizer

αk = argmin
α>0

f(xk + αdk).

It is obvious that for the exact line search, condition ii) is satis�ed and thus the

BFGS curvature condition (yk)T sk > 0 is ful�lled in each step of algorithm 3.

SECTION 6.2: COMPLETELY POSITIVE MATRICES 75

6.2.4 Numerical Results

Algorithm 2 was tested for random examples with p = 2n and n = 10, 50, 200.

The matrix B was generated as B = WW T where W was chosen as a random

(uniformly distributed entries in (0, 1)) matrix of dimension n× k. For k < n it

follows that B ∈ ∂C∗.

We observe signi�cantly longer solution times for the case k < n with less accu-

racy in the �nal solution. The solution times re�ect that the subproblems to be

solved with the apd-method tend to require a higher number of iterations; the

number of overall (outer) iterations does not vary to such extent.

It is somewhat surprising that the �nal accuracy reached for the �large scale�

problems (n = 200) is higher than for the smaller problems.

The results of the algorithm without regularization step are given in Tables

6.4, 6.5, 6.6. The running times refer to a 1.6GZ PC (from 2003).

n = 10 k = n
2

k = n k = 2n

minimal ‖B −X0(X0)T‖F 5.62 · 10−2 4.78 · 10−2 6.03 · 10−2

maximal ‖B −X0(X0)T‖F 1.06 · 10−1 6.47 · 10−2 6.39 · 10−2

minimal ‖B −Xend(Xend)T‖F 3.44 · 10−6 1.06 · 10−12 4.36 · 10−13

maximal ‖B −Xend(Xend)T‖F 1.04 · 10−4 1.85 · 10−12 8.71 · 10−13

minimal number of iterations 10 34 37

maximal number of iterations 30 39 38

average running time 78.8s 5.8s 3.4s

Table 6.4: Results of Algorithm 2 for n = 10

The e�ect of the regularization step

For B =

(
lI E

E lI

)
the results without regularization step were disappointing.

As pointed out, this matrix has cp-rank n2/4. To have any chance to prove

complete positivity for this choice of B we applied Algorithm 2 with the expensive

choice p = n(n + 1)/2. The example was tested �rst with Algorithm 2 without

regularization.

76 CHAPTER 6: IMPLEMENTATION AND NUMERICAL RESULTS

n = 50 k = n
2

k = n k = 2n

minimal ‖B −X0(X0)T‖F 6.46 · 10−2 3.74 · 10−2 1.62 · 10−2

maximal ‖B −X0(X0)T‖F 7.94 · 10−2 5.02 · 10−2 2.28 · 10−2

minimal ‖B −Xend(Xend)T‖F 2.08 · 10−8 4.23 · 10−14 2.05 · 10−14

maximal ‖B −Xend(Xend)T‖F 1.19 · 10−7 7.94 · 10−14 3.43 · 10−14

minimal number of iterations 27 41 40

maximal number of iterations 34 44 42

average running time 764.5s 123.7s 34.2s

Table 6.5: Results of Algorithm 2 for n = 50

n = 200 k = n
2

k = n k = 2n

minimal ‖B −X0(X0)T‖F 1.04 · 10−1 6.74 · 10−2 2.80 · 10−2

maximal ‖B −X0(X0)T‖F 1.13 · 10−1 7.09 · 10−2 3.02 · 10−2

minimal ‖B −Xend(Xend)T‖F 1.10 · 10−10 4.05 · 10−15 2.41 · 10−15

maximal ‖B −Xend(Xend)T‖F 1.86 · 10−10 4.99 · 10−15 2.49 · 10−15

minimal number of iterations 35 50 57

maximal number of iterations 41 54 68

average running time 27609.6s 1595.4s 1858.1s

Table 6.6: Results of Algorithm 2 for n = 200

Due to slow convergence we stopped the algorithm after 260 iterations with a

residual of 1.56 · 10−2. For this example we also tested the regularized approach,

allowing 10 regularization steps after each iteration. (Each regularization step

solves a linear program with p(p − 1)/2 variables and is thus very expensive.)

After 65 iterations the regularized approach obtained an accuracy of 4.85 · 10−5.

Since the results of Algorithm 2 for n = 10 and k = n/2 were disappointing,

we also tested the regularized approach for these examples. The corresponding

results for the regularized approach in comparison with the approach without

regularization are given in Table 6.7.

SECTION 6.2: COMPLETELY POSITIVE MATRICES 77

n = 10 with regulariz. without regulariz.

minimal ‖B −X0(X0)T‖F 5.62 · 10−2

maximal ‖B −X0(X0)T‖F 1.06 · 10−1

minimal ‖B −Xend(Xend)T‖F 4.38 · 10−8 3.44 · 10−6

maximal ‖B −Xend(Xend)T‖F 3.25 · 10−7 1.04 · 10−4

minimal number of iterations 17 10

maximal number of iterations 29 30

Table 6.7: Results of Algorithm 2 with/without regularization for n = 10

The approach without regularization was stopped whenever the algorithm stag-

nated or the iteration number exceeded twice the iteration number of the regu-

larized approach.

The algorithm with regularization performs better when the constant ε in the

regularization step is chosen in dependence of the distance of the current iterate

Xk(Xk)T to B with smaller values of ε > 0 when Xk(Xk)T is close to B.

78 CHAPTER 6: IMPLEMENTATION AND NUMERICAL RESULTS

Chapter 7

Summary and Outlook

This thesis deals with linear conic programs. We equated the solution of linear,

respectively linear second order cone programs, with the minimization of a cer-

tain function.

In chapter 3, we recalled the equivalence of minimizing a certain convex, di�eren-

tiable, piecewise linear function f with the problem of solving a linear program.

We de�ned a generalized Newton path for minimizing f . This path is piece-

wise linear. The gradient ∇f(z) of this path forms a straight line from ∇f(z0)

to zero. We therefore considered the convex conjugate function f ∗ of f . The

number of piecewise quadratic segments of the implicit function f ∗ along a given

line therefore corresponds to the number of (generalized) Newton steps with line

search for minimizing f . Closely related is another implicit function de�ned by

the augmented Lagrangian. This function has a slightly di�erent structure, and

there are known examples where Newton's method for minimizing this function

may take an exponential number of steps. While the discussion in chapter 3

concentrated on linear programs, similar considerations seem possible for convex

quadratic objective functions.

In generalization of this approach, we considered linear second order cone pro-

grams in chapter 4. We started the analysis of second order cone programs by

proving the equivalence of uniqueness of the optimal solution and nondegeneracy

of the optimal solution for linear second order cone programs.

79

80 CHAPTER 7: SUMMARY AND OUTLOOK

We have also shown that the solutions of linear second order cone programs with

small perturbations in the data are di�erentiable functions of the perturbations

and that the standard primal-dual system for second order cone programs is non-

singular under uniqueness, strict complementarity and Slater's condition.

Based on these results, we extended the augmented primal-dual algorithm intro-

duced in [25] to second order cone programs. Within this apd-method a certain

function is minimized. This function is, as well as the function f̂ considered

in chapter 3, closely related to the augmented Lagrangian introduced in section

3.2.1.

This generalization can also be combined with the approach in [25] in order to

solve programs with both, semide�niteness and second order constraints. Such

programs arise, for example, when transforming a semide�nite program with a

convex quadratic objective function into a conic program with a linear objective

function.

Semide�nite programs arise, for example, as a relaxation for the determination of

a maximum stable set. When replacing the semide�nite constraint in this relax-

ation by a completely positive constraint, a strengthened relaxation is obtained.

In this context the problem of deciding whether a given matrix is completely

positive or not is of wide interest.

In chapter 5 we presented an application on completely positive matrices for the

apd-method introduced in chapter 4. Within this chapter, the quadratic fac-

torization heuristics � proposed in a di�erent context in [7] � is used for the

generation of a certi�cate of complete positivity of a given matrix B; or for com-

pletely positive completion problems.

The algorithm generates iterates that are determined by approximate solutions

of certain subproblems. These subproblems can be reformulated as second order

cone programs. Due to a linearization error, the exact solution of the subproblems

does not generate the desired certi�cate but merely determines a step towards

the next iterate. Because of this linearization error the implementation solves the

subproblems only up to a precision of same the magnitude as the linearization

error. For such approximate solutions the apd-method [25, 49] is well suited.

81

Both approaches were implemented with MATLAB. Numerical experiments and

special features of the implementation are given in chapter 6.

Our numerical results for Algorithm 2 show a very promising convergence behav-

ior of the algorithm for matrices B in the interior of C∗ and of low cp-rank. The

convergence slows down signi�cantly, when B is on the boundary of C∗ or when B

has a large cp-rank. To accelerate the algorithm for this case we propose a novel

regularization step after each iteration aiming at making all matrix entries of the

current factor Xk as large as possible without changing the product Xk(Xk)T .

Numerical examples illustrate the positive e�ect of this regularization. It was

possible to test this regularization � and to establish its positive e�ect on the

overall algorithm � for small size problems. Due to limits in computation time,

the application to large problems remains the topic of future research.

At this point I would like to thank some people who contributed to the suc-

cess of this thesis.

First, I want to thank my supervisor Prof. Dr. F. Jarre whose help, stimulat-

ing suggestions and encouragement helped me in all the time of research for and

writing of this thesis.

Special thanks go to my husband Thomas. This thesis is the result of your sup-

port, patience and love. Thanks must also go to my immediate family for being

a constant source of love, support and strength all these years.

Particularly, I want to thank all former and current members at the Chair of

Mathematical Optimization and the Chair of Applied Mathematics in Düsseldorf

for the kind athmosphere during the time of my PhD studies.

82

Bibliography

[1] Alizadeh, F.; Goldfarb, D. (2001), Second-Order Cone Program-

ming,Technical Report 51-2001, RUTCOR, Rutgers University.

[2] Alizadeh, F.; Schmieta, S. (2000), Symmetric Cones, Potential Reduction

Methods and Word-by-Word Extensions, in: Wolkowicz, H.;, Saigal, R.;

Vandenberghe, L. (Eds.), Handbook of Semide�nite Programming: Theory,

Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, pp.

195�233.

[3] Amenta, N.; Ziegler, G. (1996), Shadows and slices of polytopes, Proceedings

of the Twelfth Annual Symposium on Computational Geometry, Association

for Computing Machinery, Philadelphia Pennsylvania, pp. 10�19.

[4] Berman, A.; Shaked-Monderer, N. (2003), Completely positive matrices,

World Scienti�c, Singapore.

[5] Bertsekas, D.P. (1999), Nonlinear Programming (2nd edition), Athena Sci-

enti�c.

[6] Bomze, I.M.; Dür, M.; de Klerk, E.; Roos, C.; Quist, A.J.; Terlaky, T.

(2000), On Copositive Programming and Standard Quadratic Optimization

Problems, Journal of Global Optimization 18, pp. 301�320.

[7] Bomze, I.M.; Jarre, F.; Rendl, F. (2007), A quadratic factorization heuristics

for copositive programs, Preprint, in preparation.

[8] Bonnans, J.F.; Ramirez C., H. (2005), Perturbation analysis of second-order

cone programming problems, Math. Prog., vol. 104, pp. 205�227.

83

84 BIBLIOGRAPHY

[9] Burer, S. (2007), On the copositive representation of binary and continuous

nonconvex quadratic programs, Preprint, Univ. of Iowa, available at

http://www.optimization-online.org/DB_HTML/2006/10/1501.html.

[10] X. D. Chen, D. Sun and J. Sun (2002), Complementarity Functions and

Numerical Experiments on Some Smoothing Newton Methods for Second-

Order-Cone Complementarity Problems, Comp. Opt. and Appl., vol. 25, pp.

39�56.

[11] Clarke, F.H. (1990), Optimization and nonsmooth analysis (2nd edition),

Classics in Applied Mathematics 5, SIAM, Philadelphia.

[12] Conn, A.R.; Gould, N.I.M.; Sartenaer, A.; Toint, P.L. (1996), Convergence

properties of an augmented lagrangian algorithm for optimization with a

combination of general equality and nonlinear constraints, SIAM J. Opt. 6,

pp. 674�703.

[13] Conn, A.R.; Gould, N.I.M.; Toint, P.L. (1991), A globally convergent aug-

mented Lagrangian algorithm for optimization with general constraints and

simple bounds, SIAM J. Numerical Anal. 28, pp. 545�572.

[14] Dantzig, G.B. (1963), Linear Programming and Extensions, Princeton Land-

marks in Mathematics and Physics series, Princeton University Press.

[15] Dür, M.; Still, G. (2007), Interior points of the completely positive cone,

preprint, Universität Darmstadt.

[16] Ferris, M.C.; Munson, T.S.; Ralph, D. (2000), A Homotopy Method for

Mixed Complementarity Problems Based on the PATH Solver, D.F. Grif-

�ths and G.A. Watson (eds.), Numerical Analysis 1999, Research Notes in

Mathematics, London: Chapman and Hall, pp. 143�167.

[17] Freund, R.W.; Jarre, F. (2004), A Sensitivity Result for Semide�nite Pro-

grams Oper. Res. Letters, vol. 32, pp. 126�132.

[18] Friedlander, M.P.; Saunders, M.A. (2005), A globally convergent linearly

constrained Lagrangian method for nonlinear optimization, SIAM J. Opt.

15 (3), pp. 863�897.

85

[19] Frimannslund, L.; Steihaug, T. (2006), A class of Methods Combining L-

BFGS and Truncated Newton, reports in informatics, report no 319.

[20] Golub, G.H.; Van Loan, C.F. (1989), Matrix Computations, 2nd Edn., The

John Hopkins University Press, Baltimore, Maryland.

[21] Hall Jr., M.; Newman, M. (1963), Copositive and Completely Positive

Quadratic Forms, Proceedings of the Cambridge Philosophical Society 59,

pp. 329�339.

[22] Hauk, K.; Jarre, F. (2007), Linear Programs and Implicit Functions, Paci�c

J. of Opt., Vol. 3, No. 1, pp. 53�72.

[23] Hestenes, M.R. (1969), Multiplier and gradient methods, J. of Opt. Theory

and Appl., vol. 4, pp. 303�320.

[24] Hiriart-Urruty, J.B.; Lemarechal, C. (1996), Convex analysis and minimiza-

tion algorithms, Volume 1, Springer.

[25] Jarre, F.; Rendl, F. (2007), An Augmented Primal-Dual Method for Linear

Conic Programs, Preprint, Univ. of Klagenfurt, available at

http://www.optimization-online.org/DB_HTML/2007/04/1628.html to ap-

pear in: SIAM Journal on Optimization.

[26] Jarre, F.; Stoer, J. (2004), Mathematische Optimierung, Springer.

[27] Karmarkar, N. (1984), A new polynomial-time algorithm for linear program-

ming, Combinatorica 4, pp. 373�395.

[28] Khachiyan, L.G. (1979), A polynomial algorithm in linear programming,

Soviet Mathematics Doklady 20, pp. 191�194.

[29] Klee, V.; Minty, G.J. (1972), How Good is the Simplex Algorithm?, in: O.

Shisha, editor, Inequalities III, Academic Press, New York, pp. 159�175.

[30] de Klerk, E.; Pasechnik, D.V. (2002), Approximating the stability number

of a graph via copositive programming, SIAM Journal on Optimization,

Volume 12, Number 4, pp. 875�892.

86 BIBLIOGRAPHY

[31] Kojima, M.; Megiddo, N.; Mizuno, S. (1992), Theoretical convergence

of large-step primaldual interior point algorithms for linear programming,

Math. Prog. 59, pp. 1�21.

[32] Liu, D.C.; Nocedal, J. (1989), On the Limited Memory BFGS Method for

Large Scale Optimization, Math. Prog. 45, pp. 503�528.

[33] Lovasz, L. (1979), On the Shannon capacity of a graph, IIIE Transactions

on Information Theory 25, pp. 1�7.

[34] Max�eld, J.E.; Minc, H. (1962/1963), On the Matrix Equation X ′X = A,

Proceedings of the Edinburgh Mathematical Society, 13, pp. 125�129.

[35] Megiddo, N. (1984), Linear programming in linear time when the dimension

is �xed, J. ACM 31, pp. 114�127.

[36] Mehrotra, S. (1992), On the implementation of a primal-dual interior-point

method, SIAM J. Optim., vol. 2, pp. 575�601.

[37] Mi�in, R. (1977), Semismooth and Semiconvex Functions in Constrained

Optimization, SIAM Journal on Control and Optimization, vol. 15, pp. 957�

972.

[38] Monteiro, R.; Tsuchiya, T. (2003), A variant of the Vavasis-Ye layered-step

interior-point algorithm for linear programming, SIAM J. Opt. 13 Nr. 4, pp.

1054�1079.

[39] Murty, K.G.; Kabadi, S.N. (1987), Some NP-Complete Problems in

Quadratic and Linear Programming, Mathematical Programming 39, pp.

117�129.

[40] Nesterov, Y.; Nemirovskii, A. (1994), Interior-Point Polynomial Algorithms

in Convex Programming, SIAM, Philadelphia.

[41] Nocedal, J. (1980), Updating Quasi-Newton Matrices With Limited Storage,

Mathematics of Computation, Volume 35, Number 151, pp. 773�782.

[42] Nocedal, J.; Wright, S. (1999), 'Numerical Optimization', Chapter 17.

87

[43] Pang, J.-S.; Sun, D.; Sun, J. (2002), Semismooth Homeomorphisms and

Strong Stability of Semide�nite and Lorentz Complementarity Problems,

Math. Oper. Res., vol 28, pp. 39�63.

[44] Pietrzykowski, T. (1970), The potential method for conditional maxima in

the locally compact metric spaces, Numer. Math. 14 Nr. 4, pp. 325�329.

[45] Powell, M.J.D. (1969), A method for nonlinear constraints in minimization

problems, Fletcher, R. (ed), Optimization, Academic Press, New York, pp.

283�298.

[46] Qi, L.; Sun, J. (1993), A nonsmooth version of Newton's method, Math.

Prog., vol. 58, pp. 353�367.

[47] Rendl, F. (2004), Solving Semide�nite Programs using Bundle Methods and

the Augmented Lagrangian Approach, Plenary talk at Veszprem Optimiza-

tion Conference: Advanced Algorithms (VOCAL), Veszprem, Hungary, De-

cember 13-15, 2004.

[48] Rockafellar, R.T. (1970), Convex analysis, Princeton mathematical series 28,

Princeton University Press.

[49] Schmallowsky, K. (2008), On the Regularity of Second Order Cone Pro-

grams and an Application to Solving Large Scale Problems, to appear in:

Mathematical Methods of Operations Research.

[50] Tardos, E. (1986), A strongly polynomial algorithm to solve combinatorial

linear programs, Oper. Res. 34 Nr. 2, pp. 250�256.

[51] Vavasis, S.; Ye, Y. (1996), A primal dual accelerated interior point method

whose running time depends only on A, Math. Progr. 74, pp. 79�120.

[52] Ye, Y.; Todd, M.J.; Mizuno, S. (1994), An O(#nL)-iteration homogeneous

and self-dual linear programming algorithm, Math. of Oper. Res. 19, pp.

53�67.

88

Statement of Originality

Die hier vorgelegte Disseration habe ich eigenständig und ohne unerlaubte Hilfe

angefertigt. Die Dissertation wurde von der vorgelegten oder in ähnlicher Form

noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen

Promotionsversuche unternommen.

I do herewith declare that the material contained in this dissertation is an original

work performed by me without illegitimate help. The material in this thesis has

not been previously submitted for a degree in any University.

Düsseldorf, den 27.05.2008

Katrin Schmallowsky

