Electron acceleration in
relativistic laser-matter interaction

Inaugural-Dissertation
zur
Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultit
der Heinrich-Heine-Universitit Diisseldorf

vorgelegt von
Vasily Seredov

aus St.Petersburg

Diisseldorf
2008



Printed with permission of the Faculty of Mathematics and Natural Sciences
of Heinrich-Heine University of Duesseldorf

Referee: Prof. Dr. A. Pukhov
Co-referee: Prof. Dr. Georg Pretzler

The day of public defense:



Abstract

The acceleration of charged particles is one of the fundamental problems in high energy
physics. The conventional accelerator technology has nearly reached its natural limit
because the maximum available electric field is bounded by destruction of the acceler-
ating structures. This fundamental limit on the electric field leads to the monstrous
sizes of the modern accelerators. The main advantage of plasma based accelerators is
the possibility to increase the electric field and consequently the accelerating rate by
several orders of magnitude compared to the conventional technology. One of the most
promising ways to employ the plasma acceleration is to use high intensity ultra-short
laser pulses to excite the plasma wake field. The physics of relativistic laser plasma is
highly nonlinear and requires extensive multi-dimensional computer simulations.

The present work is dedicated mainly to the problem of electron acceleration in the
so-called "bubble" regime. The advantage of the bubble regime is the possibility to
generate quasi-monoenergetic electron bunches. The bubble regime was first discovered
in three dimensional particle-in-cell (PIC) simulations. Recently, it was observed in a
number of laser-plasma experiments. One of the central questions in the physics of the
bubble is the problem of particle trapping and trajectories of the relativistic electrons
during the acceleration stage. Because the bubble structure has not only the longitudinal
- accelerating - electric field, but also transverse fields, the electrons runs at curved
trajectories and emit strong betatron radiation in x-ray range. The angular distribution
of these x-rays allows to draw conclusions on the particle trajectories. In this work, a
simplified analytic description of particle trajectories in the bubble fields is suggested.
Further, the bubble is simulated using the 3D PIC code VLPL (Virtual Laser Plasma
Laboratory). The code VLPL has been further developed to allow individual marking
for each particle. Thus, trajectories of individual particles trapped in the bubble can be
traced over the full interaction length.

A simulation done for realistic laser-plasma parameters has shown a reasonable agree-
ment between the simplified theory and the simulations. It is shown that in some cases
the electron trajectories have the form of a helix around the axis of the laser pulse
propagation. In addition, we have stored initial positions of all the trapped particles.
This analysis revealed that the electron trapping in the bubble is not steady, but rather
contains striations. We have discussed the capture of electrons in the bubble for linear
and circular polarization cases. It was shown that the shape of the area of electrons
capture directly depends on the laser pulse polarization.

Finally, the new analytic model for an ultra-short laser beam has been developed.
Although there is a well-known model for an infinite focused laser pulse, it becomes
inexact when applied to an ultra-short laser. The reason is that the ultra-short pulse
contains many frequencies. The analytic model has been implemented in the VLPL3D
code and used to study dependence of electron acceleration by an ultra-short laser pulse
as a function of the focal position in plasma.
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Chapter 1

Introduction

1.1 Overview

The development of the chirped pulse amplification (CPA) [1] technology allows to reach
intensities of the laser pulse up to ~ 102! W/ch. At these energies the corresponding
electric field is E; ~ 10> GV /cm. This laser field is much stronger than atomic fields,
and in laser matter interaction any material is immediately ionized creating plasma.
Then with inevitability any discussion about laser matter interaction comes to laser
plasma interaction.

During the propagation of the laser pulse in underdense plasma, electrons are accel-
erated, wakefields waves are excited, and in some cases a so-called bubble can be formed.
The characteristic picture of interaction is the consequence of the correlation of many
parameters, particularly, laser pulse intensity, plasma density, plasma frequency, some
geometric conditions etc.

Generally at this scale of the pulse intensity electrons gain relativistic energies.
Physics of relativistic plasma is highly non-linear and kinetic. Relativistic laser-plasma
interactions with short laser pulses lead to important physical phenomena appearing in
this regime of high intensity : high acceleration gradient of charged particles, non-linear
evolution of the laser pulse and high harmonics generation. These effects are expected
to have a great impact on a number of applications in high energy nuclear physics, in
material science, ultra fast chemistry, in molecular biology, etc. Particularly accelerated
electrons can be very useful for applications in X-ray microscopy, so-called XFEL (x-ray
free electrons laser) etc. In most of applications accelerated electrons are used indirectly
through synchrotron radiation. As known, charged objects, moving with acceleration,
radiates electromagnetic waves, therefore it is simply enough to curve trajectory of these
electrons by magnetic fields, for producing radiation in X-ray diapason.

However, the using of laser electric field is not straightforward, as the field is fast
oscillating and is perpendicular to the direction of wave propagation. A way to use
longitudinal plasma waves excited by laser beams to accelerate electrons, was proposed
by Tajima and Dawson [4|. When a relativistic intense laser pulse propagates in plasma,
ponderomotive force expels plasma electrons from the regions of the largest intensity.



This initiates the plasma oscillations, the wake field. Charged particles can be acceler-
ated by the electric field of this plasma wave.

The main advantage of the acceleration of electrons by laser is extremely large ac-
celeration gradients. The natural limit for the amplitude of an electron plasma wave is
given by wavebreaking. Parameters of wavebreaking field has been calculated by Akhiezer
and Polovin [5, 6] and is approximately Ew [V /cm] ~ 0.96N./2 [cm ™3], where N, is the
electron density.

To gain energy from the plasma wave, a highly relativistic electron must move along
with the wave at the same speed for increase the time of interaction with this wave.
Recently, 3D acceleration mechanisms were proposed, with the advantage in narrow
energy spread of accelerated electrons|7].

At present on the grounds of experiments [8, 9, 10, 11, 12, 26]are known three most
effective mechanisms of electron acceleration in laser plasma interaction.

e Plasma Beat-Wave Accelerator (PBWA)

The PBWA was the first method, confirmed experimentally, because it can be
done using less powerful lasers, than lasers required in other methods. It was
proposed in [4] as the alternative of LWFA in the absence of technologies able
to provide ultrashort pulses. In PBWA two long laser pulses with two slightly
different frequencies are used. The interference (“beating”) of these laser beams
corresponds to a modulation of the electromagnetic wave envelope, which can act
resonant on the plasma.

If one selects the lasers frequencies w; and wsy in such a way, that they satisfy the
resonance condition w; - wy ~ w, where w, is the plasma frequency, then a high
amplitude plasma wave will be excited.

The first experimental observation of plasma wave generation using PBWA-method
was reported by Clayton et al. [14], and the same group was successful in injected
particles acceleration from 2 MeV to 30 MeV, which corresponds to 3 GV /m accel-
eration gradient [15, 11]. The electrons acceleration to 10M eV without injection
(from thermal background) was reported in [16].

o Laser Wakefield Acceleration (LWFA)

In this way the plasma waves are excited by a single ultrashort laser pulse. The
condition for optimum energy transfer from the pulse to the plasma wave is L
= ), where L is the pulse length and A\, = 27c/w, is the plasma wavelength,
and w, = /47N.e?/m is the plasma frequency. The LWFA was proposed by
Tajima and Dawson [4]. However this experimental demonstration required high
laser intensity with subpicosecond pulse lengths. The first evidences of plasma
wave excitation via LWFA mechanism were reported in [17, 18|, and accelerated
electrons were first observed in [27].

o Self-modulated LWFA (SM-LWFA)



In the self-modulated LWFA regime, an initially long laser pulse, L > A, breaks
on a series of short pulses [12, 26]. This break is caused by the forward Raman
scattering (FRS) and the so-called “sausaging” of the pulse envelope 20, 21, 22, 23].
The FRS instability can grow from the noise. Density perturbations are caused by
the group velocity variations, which lead to a longitudinal bunching of the pulse.
In that way the pulse is dividing on a series of short pulses, with the characteristic
length ~ me¢/w,. Each of these small pulses can be considered as an individual
plasma wave driver (and it satisfies with resonant condition). Such pulse self-
modulation allows to use higher plasma densities, than the standard LWFA.

The first experimental evidence of the self-modulated LWFA has been given in
the work [24], where FRS forward scattering and the electrons acceleration up to
2 MeV were observed. The possibility of electrons acceleration was demonstrated
in the series of experiments |12, 26, 25|. In |26] the observation of background
electrons acceleration to 30 MeV was reported.

There is a significant, physical difference between these three regimes of the wake field
acceleration. The SM-LWFA relies on an instability (the stimulated forward Raman
scattering) for an efficient plasma wave excitation. The PBFA regime also employes a
long laser pulse that is subject of Raman instabilities. In the LWFA regime, however,
the laser pulse is shorter than the plasma period and thus is free from any Raman
instability. It is expected that the LWFA regime will finally lead to a practically useful
plasma-based accelerator.

However, to use the LWFA regime, one needs a very short and relativistically power-
ful laser pulse. It appears that relativistic plasma itself can be considered as a nonlinear
medium suitable for laser pulse compression and short pulse generation.

1.2 Electrons in electromagnetic wave

1.2.1 Plane wave case

We start with some basic definition of the light field, dimensionless amplitude a with
relativistic threshold of intensity a« = 1. A plane light wave can be described by follow
vector potential

A(r,t) = Re{Agexpitp} , (1.1)

where r and ¢ is the space and time coordinate, the laser amplitude Ay = Ay(é,£é,) for
circular polarization with + and - for right- and left-circular polarization correspond-
ingly, and Ay = Ayé, for linear polarization, 1 = kr — wt is the phase. The dispersion
relation in vacuum is

w = ke, (1.2)



where k = |k| = 27 /), where A\ = ¢T' = 2w¢/w and c is the speed of light. Using the
standard Coulomb gauge

divA=0. (1.3)
The expressions for electric field E and magnetic field B take the form
10A
E = ————— 1.4
B = rot A. (1.5)

Using the substitution rules for derivatives: 0/0t — —iwt, 0/0r — ik, they can be
rewritten as

= Re{EAoew} , (1.6)
c
Calculating Poynting vector
c
S=—ExB 1.8
fExB, (1)
one obtains the formula for intensity of the light:
wk o . o
I(¢y) =S| = 8—A0(1 — cos 21)) for linear polarization (1.9)
T
and
wk . .
I(¢y) =S| = 4—A0 for circular polarization, (1.10)
s
what can be written in the form
1) = 18] = LAz ¢ (1.11)
B 8 ° '

where

¢ = { (1 —cos2t) for linear polarization , (1.12)

2 for circular polarization .

When the phase 1 is changed on 2w, the intensity for linear polarization oscillates
twice, but it does not depend on phase for circular polarization. For practical reasons
one usually introduce the intensity averaged over phase:

2
1

Wk
1= /mp)dw =C- g—ﬁAg . (1.13)
0

The factor ( is different for linear polarization and circular polarization:

= 1 for LP
¢= { 2 for CP . (1.14)
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Using Eq. (1.13) and the expression for wave vector, the averaged intensity can be
written as

_ wk)? -
I =(- - Ag:g.icAg. (1.15)

Also for particles of selected specie with known mass m and charge ¢, let we introduce
the relativistic normalized vector potential

qA
= —. 1.16
a=_3 (1.16)
The dimensionless amplitude is
g Ao
ag = |0,0| = 2 . (117)
Using this notation we can rewrite Eq. (1.15) as:
- mm?c®
IN? :g-§ 7 ag . (1.18)
The amplitudes of electric and magnetic fields are correspondingly:
E() = wao s B() = %CLQ . (119)
I |4l
For electrons: ¢ = —e, m = m, and we have:
€A0
ag = @ s (120)
I\ = (- 137><1018W >l ag (1.21)
0 = C . ﬁ,um ag - .

1.2.2 Relativistic electrons case

Initially let us consider relativistic invariants in the electrons motion in plane wave.
The Lagrange function of particle with the mass m and the charge ¢ in prescribed
electromagnetic field with potential ¢ and vector-potential A is

2
L(r,v,t):—m02\/1—2—2+%V-A—q¢. (1.22)

Using the Euler-Lagrange equation
doL 0L

— - — = 1.23
dt Ov  Or ’ (1.23)
we obtain the relativistic equation of motion for the particle
dp (E + 2 x B) (1.24)
m— = — : .
dt 1 c

7



Where p = ymv, is the particle momentum and gamma-factor is given by formula
1

= — . 1.25
S e (1.25)
The canonical momentum
oL A
pc‘m:—:m’yv+q—:p+gA:m(’yv+ca) : (1.26)
ov c c

For a plane light wave, there are exist two symmetry which provide two constants
of motion. Planar symmetry implies 0L/0r; = 0 and therefore the conservation of
canonical momentum in transverse direction

3L/3V:pL—|—gAL = const . (1.27)
c

Second invariant derives from the wave form of A(t — x/c), means the laser pulse

propagates with the constant velocity v,, which in vacuum is equival to c. Making use
the relation dH/dt = —0L/0t for the Hamilton function H(x, p,t) = E(t) (e.g. Landau,
Lifshitz, 1964), which express time-dependent energy of the particle, one obtains

dE 0L oL d OL dps™ dp,.
dt

R TR T e L i Tl (1.28)

taking into account that A, = 0 for plane light wave. From this we obtain second
invariant

E — vppp, = const . (1.29)

Then for electrons initially at rest the kinetic energy is

Eiin = E —mc® = vppp, - (1.30)
In combination with E = mc*y = \/(mc?)? + p? ¢ + p2c?, this leads to

2
Bn = 22 = poe=mc(y— 1) . (1.31)

2m
From Eq. (1.27) we have

pL = —gAL = —mca, , (1.32)
c

and finally kinetic energy in terms of relativistic normalized vector potential

2 2
B = % - %ch . (1.33)
From Eq. (1.33) we can see that E;, ~ mc? for ag ~ 1. The intensity Iy which
corresponds to ag = 1 usually is considered as a relativistic threshold for specified sort
of particles. If we consider the motion of electrons, the amplitude ay = 1 corresponds

to the laser intensity

TIo\* = 1.37 x 10"%Wem ™ 2um?. (1.34)



1.2.3 Trajectory of relativistic particles in plane wave

For an electron in a plane light wave of the finite duration, relativistic equation of motion
can be integrated exactly. For an electron initially at rest, the constants of motion give

eAL
== 1.35
a mc? ( )
A | &0

= — = = O z) ].36
PL me a ( 3 ay7 a ) ( )

. Erin . a
k me b 2 2 (1.37)

An immediate and very important observation at this point is that Ej;, is directly
coupled to the light amplitude a and falls back to zero as soon as the electron leaves
the light field. The electron cannot gain net energy in a plane light wave. It needs
breaking of planar symmetry for net energy gain. This typically occurs in experimental
configuration, e.g. due to finite beam radius or additional interactions.

From Eq. (1.35) we obtain the equations of motion

R v dx

Pe =0 = P a’/2 (1.38)
R v dy

Py =8y = =ay (1.39)
R vdz

p. =0, = i a, . (1.40)

Since v = 1 + a?/2, we obtain for a > 1
6 _ ad?)2 1 o ay 0 o a, 0
x 1+a2/2 - 7ﬁy - 1+a2/2 - 7ﬁz - 1+a2/2 — U,

and also tanf = pL/p” — 0. This means that the electron, though oscillating trans-
versely for low field srength |a|] < 1, moves more and more in the direction of light
propagation for relativistic laser intensity with |a|] > 1.

Integration Eq. (1.38) for a given light pulse a(t — z/c) is straightforward in the
variable 7 =t — z(t) /¢, for which

d _ drd _ _ldz\d __ a2 a®\d _ d
Vi =Vae=11-5)r=0+4% 5 )a = 4o

and therefore dr = dt/~, such that the equations of motion obtain the simple form

dx a?
d
d—i = cay , (1.42)



— =ca, . (1.43)

For circular polarization with
a(r,t) = Re{ag(é, £ é,)e ™'}

the electron motion is of particular simplicity. Since a® = az +a?=ak/2,y=1+d2/2
and therefore Ej;, = a2/2 depends on time only through the envelope function ag(7),
but not through the rapidly oscillating phase 1) = —w7 of the laser pulse. For constant
ap, we obtain from Eq. (1.41) with 7 = ¢/~ the trajectory

x(t) = (cag/2) T = %ct : (1.44)
y(t) = C;ﬂsin (wt/7) (1.45)
2(t) = :|ch;ﬂ cos (wt/v) ; (1.46)

it describes an electron moving with constant speed on a helix.

For linear polarization, electron motion is more complex. Considering a box-shaped
pulse with a, = ag cos(wt) for 0 < 7 < N(27/w), a. =0, a* = a} = a cos*(wr) and an
electron initially at rest and located at x+ = y = 2z = 0, the trajectories obtained in the
form

2 2 1
(t) = %/0082 (wF) dF = % |:T + %sin (2w7')1 , (1.47)
0
r - - cag .
y(t) = cao/cos (wT)d7 = - sin (wT) (1.48)

0

where parameter 7 is determined implicitly by 7 = ¢ — 2(t)/c. Apparently, the motion
consists of an overall drift in z-direction:

2
Qg
z4(t) =

at +4

and superimposed a figure-8 trajectory in the drift frame:

ot (1.49)

ky = agpsin (wt) , k(x — z4) = % sin (2wT) . (1.50)

The self-similar electron trajectory shows that the transverse oscillation amplitude
is proportional to the laser amplitude ag, while the longitudinal scale is proportional
to ag. Thus, with small amplitude ay < 1, the electron moves mainly in transverse

direction, while for relativistic amplitudes ay > 1, the motion occurs predominantly in

10



laser direction. It should be understood that the electron can gain energy from laser
field only through the transverse electric field and that the role of magnetic v x B force
consist in the turning the orbit into forward direction without adding energy.

1.2.4 Non-plane electromagnetic waves

As it is well known, if relativistic particle is interacting with infinite electromagnetic
wave in vacuum, if one neglects non-linear effect, the total particle acceleration is null
(Lawson-Woodward theorem [28, 29]).

In real experiments the laser pulse cannot be described by plane wave by the reason
that it is focused. But at a first approximation we can use relations obtained above even
for a finite laser beam. Using Eq. (1.31), (1.33) we can estimate the scattering angle for
a single electron outgoing from the laser focus:

2
2
tan?f =22 = = (1.51)
Dj v—1

This result has been verified experimentally in [30].
For the next oder of approximation, near the focal plane we can write:

A = A(¢y, 1) exp(kipn) (1.52)

where
Yph =2 — Uppt ;. Ygr = 2 — Vgt . (1.53)

The phase velocity v,, > c and the group velocity vy < c. Using the Coulomb gauge
condition Eq. (1.3), we can conclude, that focused electromagnetic wave has the longi-

tudinal component A:
8ZAZ - _VJ_AJ_ . (154)

There is no exact analytical theory for particles motion in the focused pulse. But if
we suppose that the wave amplitude varies slowly respectively to the phase averaged
over fast oscillations it can be performed. If we consider particle momentum, averaged
over laser period p for low intensity a < 1, the relativistic ponderomotive force can be
introduced: . _2

foond = d—IZ = —ch% , (1.55)
(see for details [31]).

From Eq. (1.55) we can see that particles should be expelled from the region of
high intensity. One can also observe that the relativistic ponderomotive force is pro-
portional to o< Va?/2 and does not depends from the laser polarization. In |32, 33] it
was shown that the relativistic ponderomotive force model is still valid even for higher
a and Eq. (1.55) takes the form:

= = V7. (1.56)



In [33] it was shown that the scattering picture depends on dimensionless parameter
a =ko/(l —v,/c). If @ < 1 the scattering is ponderomotive. If o > 1 the particle
motion is more complicated and polarization asymmetries appear.

Also the laser pulse can be described as pulsed Gaussian beam. Let we start the
considering with a light beam of the form

a(r,t) = Re{ag(r,t) exp [i(kr — wt)]} , (1.57)

and let us assume that the amplitude ag(r,?) varies much less with r and ¢ than the
phase factor, i.e.

|0ap/0t| < |wag|, [0ag/0z| < |kag] . (1.58)

The wave equation in vacuum (V2 — (1/¢%)9%/0t?)a = 0 can then be reduced to the
envelope equation

(V3 +2ikd/02)ag(r,z) =0, (1.59)

where we have neglected second derivative relative to first derivative terms and have
used the dispersion relation w? = k?c?. Also we have restricted ourselves to an infinitely
long, cylindrical beam. The radial coordinate is r with V2 = 9?/9r? + (1/r)d/dr, and
the axial coordinate z is chosen to comove with the pulse such that the envelope function
is independent of time.

For a Gaussian beam with ao(r, z) = exp (P(z) — Q(2)(r/ro)?) it is straightforward
to derive the functions P(z) and @(z) satisfying the envelope equation, and one obtains

6—T2/(T(2)(1+Z2/L3)) . z . r 2 Z/LT-
ag(r,z) = = exp { —iarctan I + 4 w) TraE( (1.60)
Here the front factor describes a hyperbolic envelope, where ¢ is the focus radius at
z=0and L, = kr2/2 is the Rayleigh length, determining the length of the focal waist.

The phase factor describes spherical phase fronts of the incoming and outgoing wave
with a phase jump of m when passing focus.

1.3 Wayves in plasma

1.3.1 Electromagnetic waves in plasma

The interaction of very intensive laser pulses with dense matter is a much more compli-
cated problem than the interaction with single particles. At the intensity of 10'8W/cm?
and more, the material ionized within one laser cycle, and a dense electron plasma
formed which interacts collectively with the laser fields. The time scale of the electron
dynamics is set by the plasma frequency

w2 = 4we’ No/m (1.61)

12



which is comparable to frequency of light, while ions are almost static because of their
higher mass and can be viewed as a uniform background with charge density ZN; = Nj.
To the extent that the light can penetrate the plasma, all plasma electrons acquire rela-
tivistic energies and as a consequence collision cross-section become negligible, at least
during the subpicosecond interaction times. Plasma interactions then occur exclusively
through E and B filds, those of the laser light, but also huge plasma field generated due
to charge separation and laser-driven electric currents. Thermal pressure forces then
can be neglected compared to ponderomotive forces, and this leads to the cold plasma
approximation.

The cold plasma equations describe the plasma essentially as zero temperature elec-
tron fluid for which density N(r,t) and velocity u(r,t) are functions of space and time.
The current density is given by J = —eNu = —eNP/m~, where P = m~yu is the
momentum and v = /1 + p? the relativistic factor. Here and following, we use dimen-
sionless variables:

eA ep P . N

a— —— e —— —_

= = — . 1.62
m ° T me’ me’ Ny (1.62)

The wave equation describing the light propagation in plasma is then obtained from
Maxwell‘s equations in the form

V?a — (1/c¢*)0%a/ot* = (1/c)OV /0t 4+ (w2 /c*)np /7 ,
(1.63)
Vi = (wi/c)(n—1) .

Here the source terms on the right-hand side consist of time-dependent space charge
fields, expressed by the electrostatic potential ¢ and currents. The equation of motion
for cold plasma is taken as

d u

where pressure terms proportional to plasma temperature are neglected. With
B=VxA, (1.65)

E=-V¢— (1/c)dA/0t . (1.66)

the Coloumb gauge V - A = 0 and the time derivative d/dt = 0/0t +u - V, we find
from Eq. (1.64)

0 10A u

Switching to dimensionless variables and making use of the relations

1
Vy=VyV1+p?= %VpQ, (1.68)

13



and
uxVxp=V_y(u-p)—(u-V)p=cVy—(u-V)p, (1.69)

where V_,, operates only on p, we finally obtain the central relativistic equation of
motion

1 0
cot P
A basic solution is p = a, for which V(¢ —¢) = 0. In this case the electrostatic force
V¢ just balances the ponderomotive force Vy = V4/1 + p? = V1 + a2 = (27)"'Vd>
For example, it describes how plasma electrons are pushed forward in the front of a laser
pulse exiting plasma waves or the pressure equilibrium in a self-focused laser channel in
which the ponderomotive force expels electrons building up a radial electrostatic field.
The creation of strong electrostatic fields of same order as the laser electric field is a key
feature of relativistic laser plasma interaction. These electrostatic fields accelerate elec-
trons and in particular ions to multi-MeV energies. It is convinient to consider circular
polarized light beams

—a)—uxVx(p—a)=V(p—1). (1.70)

a= R,e{(exj:ey)ao r,z,t)e “"}

with r = /22 +y%,¢ = kz — wt, and |a®| = ai(r, z,t), varying slowly in time and
space. Under these conditions and p = a, also v = \/1 +p? = \/1 + a3 and @ vary
slowly in space and time, just as the envelope function aZ. In this case, the wave equation
Eq. (1.63) can be written in the form

19%a  w2na
Via—-—— =225 1.71
AT e T @ y (1.71)

1.3.2 Instabilities

The main quantity, which defines the time scale for plasma processes is the plasma
frequency. The natural oscillation frequency of the electron plasma is the electron plasma
frequency

42N,
Wpe = W; , (1.72)

As the electrons are the lightest particles in the plasma we will mainly use this
frequency and call it sometimes the plasma frequency w, = wy.. Usually in relativistic
case we have the mass correction: m, — m.(y), where () is the relativistic gamma-
factor, averaged locally over mainly electrons.

From the dispersion relation

w? = w2 + k*¢ (1.73)

is easy to see that with condition w < w, we have imaginary wave vector, so the laser
pulse can not propagates in the plasma. The liminal frequency value w = w, defines the

14



maximum plasma density, through which pulse with specified frequency can penetrate.
It is critical plasma density, which given by formula

2

= e (1.74)
T dme? '
Plasma can be considered as a medium with the refraction index
N
Ner () (1.75)

where N, is defined by Eq. (1.74). From Eq. (1.75) we can see that the threshold for
plasma non-transparency is N ~ (y) N.. At relativistic intensities (y) depends on the
local intensity I (approximately (y) ~ I'/2), and a bunch of non-linear optics effects
appears. This dependence of plasma frequency on v and through it on the laser radiation
intensity has deep consequences for light propagation in plasma.

The condition of electromagnetic wave passing through the plasma is that the wave
length of the wave vector k is the real number. Using Eq. (1.73), it can be rewritten as
W > Wp.

When an ultra-relativistically intense laser pulse propagates in plasma, we can use
for the locally averaged electrons y-factor the estimation:

Qo

<>~ (1.76)

([34]). Using this equation one can easily obtain the condition of relativistic transparency

Ne
2 . 1.
a > N (1.77)

The first results in nonlinear plasma optics were obtained from the identification
of so-called parametric instabilities. They were investigated in terms of wave-wave in-
teractions, when an incident electromagnetic wave with frequency wy decays into two
sidebands: the Stokes wave with the frequency wy — wpoq and the anti-Stokes one with
the frequency wo+wmeq. The frequency wy,.q corresponds to the modulation of refraction
index. This technique was first applied in the papers [36, 37, 38|. Using this formal-
ism, various instabilities were investigated, including Brillouin and Raman scattering,
Compton scattering, filamentation /self-focusing and self-phase modulational instabili-
ties [39, 36, 37, 38, 40, 41].

The most important instabilities for a short laser pulse interaction with plasma are:

FRS Forward Raman scattering (wmod = Wpe)
SF Relativistic self-focusing / filamentation (wimeq < Wpe)

SPM Relativistic self-phase modulation (wyeq < Wpe)-
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An alternative formalism to consider the instability was proposed in [42, 43, 44]. In
these papers, modulations of the laser intensity were considered in terms of physical
phenomena, which appear from modulations of the refraction index. The index of re-
fraction (as well as the group and phase velocities) can be altered by modulations of (i)
plasma density N, (ii) laser amplitude a, (iii) laser frequency wy. Therefore, the index
of refraction may be expanded on this three perturbations

1 ON. (a®) _dwp
—1--(1 S 1.
" 2( TN, T2 w ) (1.78)

(see for details [34, 35]).
From the equation for conservation of the photons number

(a®Ywor?L = const , (1.79)

where r is the laser spot size, L is initial length of longitudinal pulse, and (a?) is
the square of dimensionless amplitude(the laser intensity), which is averaged over fast
oscillations. We can see that laser intensity can be modulated by changes in

e [, e.g., due to the longitudinal bunching
e 7, due to the transverse focusing

e wy. due to the photon acceleration

Let us consider the laser beam propagation in underdense plasma. Two key mech-
anisms responsible for relativistic self-focusing exist. The first one is the relativistic
mass increase of plasma electrons, which cause plasma frequency decrease according to
wrh ~ (7)~'. The second mechanism is the electrons expelling out of the focal spot by
ponderomotive force push. Such electrons expulsion from the pulse region diminishes the
local electrons frequency N, and therefore the local plasma frequency. As a result of such
local decrease of the plasma frequency we have the increasing of the plasma refraction
index, and the plasma acts as a positive lens. The process of relativistic self-focusing
was investigated theoretically in [37, 45, 3, 47| and experimentally in [48, 49].

Let us first consider a < 1. If we investigate low-intensity laser beam a < 1, the
plasma density can be considered as undisturbed N, ~ Ny, and electrons can be treated
as non-relativistic particles with v ~ 1. With the amplitude increasing, first gamma-
nonlinearity appears, v &~ 1 + a?/4, while the density perturbations contribute in the
higher oder. Then the wave equation in envelope approximation can be used

0 w? |a?
<Vi + 2@1@%) a= —C—§Ta : (1.80)

The term V3a disperses the beam, the term w’|a|?a/(4c®) compresses it and at the
threshold intensity they should balance each other. For Gaussian envelope approxima-
tion a(r, z) ~ ag(z) exp(—r?/R*(z)) the critical power is given by formula

2 2.5
P, =2 (i) Py where Py = 2= =87 QW , (1.81)
wp €

16



One should note, that then the power approaches to P.., contraction of the beam leads to
the increase of light intensity on the axis and ponderomotive expulsion of the electrons.
This leads to plasma channel formation with reduced electron density. Numerical in-

vestigations performed in paper 45| give approximately the same value for self-focusing
threshold )
P, ~ 17 (i> GW . (1.82)
Wp

From this value the laser pulse becomes relativistically focused. An analysis in
envelope approximation, which was performed in [46], shows that the picture of self-
focusing depends on laser pulse and plasma parameters. The first possibility is that
the self-focusing of the whole laser pulse leads to single channel production. But if
the laser power exceeds the value P,.. by a few oder of magnitude, instead of single
channel, the multiple channels can be produced. This effect is known as the relativistic
filamentation(]46]).

Let us consider now theory of self-focusing at @ > 1. The Lorentz force (e¢/c)v x B
drives the electrons forward in the pulse propagation direction. In this regime the
radiation drives currents of relativistic electrons in the direction of pulse propagation.
This currents create a strong magnetic field, which significantly change the picture of
pulse interaction with plasma.

Let us consider a simplified model of this process. Each filament carries a strong
current, which can be estimated as —feN.c, where f < 1 and N, is the background
density. This currents magnetize the plasma. Quasi-static magnetic field, generated
by such current at the distance 7 from the axis is B} = 27r(feN.). Under certain
conditions, this field can reach the value of the light magnetic field B; = aBy, By =
mecw/e &= 107 MG. The ratio of these fields can be rewritten as

B* 1fN.nr
B a N, )\’

where \ is the laser wavelength, N.. = mm.c?/(eX)?.

This very complex situation was investigated in 2D and 3D PIC simulations in papers
[50, 51]. Tt was shown, that the quasistatic magnetic field is strong enough to pitch the
electrons, and therefore to direct the light deflection. As a result the current and light
filaments can merge into the single channel, which contains a significant part of incident
laser power. The physical reason of this merging is the attraction of electric currents
inside the filaments. In 3D PIC simulation [51] it was shown, that the incident beam
first propagates through an unstable filamentary stage and then collapses into the single
channel with a width one-two .

(1.83)

1.3.3 Electron plasma waves

Let we consider now the plasma in one-fluid approximation, i.e. as electron fluid. In
that way we will use the electrons density N(r,t) and the velocity v(r, ) for the plasma
description. The equation of motion and the set of Maxwell equations will be used to
follow plasma evolution.
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To investigate electron density oscillations we will consider the Poisson’s equation:

V-E = —4ne(N — Ny) , (1.84)
together with the equation of motion:
dv 1
e— =—eE— —=VP, 1.
Me e NV (1.85)
and continuity equation:
ON

We will use isothermal approximation, so P = NkgT is the thermal pressure.
Let us designate is the uniform background density as Ny. We will consider small
density perturbations |N — Ny| < Ny. Then one can write
N(I’,t) = No—f—Nl(ZL‘,t) s ( )
viz,t) = wvi(z,t) ex, (1.88)
E(z,t) = Ei(z,t) ex, ( )
P(xut) = P0+Pl<x7t) ( )
We will search for the plane wave solutions for which
{TLI, U1, El, Pl} X ei(km—wt) . (191)

So in Eq. (1.87)-(1.90) we can substitute 0; — —iw, 0, — ik.
Let us first consider cold plasma with P = 0. When we have a set of algebraic
equations

ZkEl = —47T€N1 y
—iwmevl = —€E1 y (192)
—in1 + ikN(ﬂ)l =0.
This system has a non-trivial solution if
,  Ame’Ny
=

w

=w? . (1.93)

This solution describes oscillations of the electron fluid with the plasma frequency
w, for arbitary wave vector k.

Laser pulses, which have the dispersion relation w} = w? 4 k*c¢* and propagating
with group velocity vé‘jf’
with the laser pulse. Their phase velocity v, equals to the group velocity v,
pulse, leading to 3, = v,/c ~ v!% /e = ¢[1 — (w,/wr)?]/2. In the context of non-linear
plasma waves and of the wakefield acceleration to be discussed below, the ~-factor of
the plasma wave

= [l — (wp/wr)?]/? in plasma, excite plasma waves which trail
las of the laser

1 wr Nerit

Vp = =— = : (1.94)
Lo - B2 wy ng

plays a central role; as it turns out, -, is completely determined by the electron density

no and the critical density n..;; at which the plasma frequency (1.93) equals to the laser

frequency.
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Chapter 2

Theory of electron acceleration

2.1 Direct electron acceleration in plasma channel

2.1.1 Betatron frequency

In this part described mechanism of DLA (direct laser acceleration) in self-focused laser
plasma channels. Electrons propagating along the channel axis may interact resonant
with the laser field travelling in same direction. The magnetic wiggler, causing the
electron to make transverse oscillation and to couple it to the transverse electric field of
the light wave in the free electron configuration, is replaced in the present situation by
the quasi-static electric and magnetic fields of the plasma channel. Net energy transfer
from the laser wave to the electron occurs at relative phase just opposite (shifted by 7)
to that in FEL. In this sense it may be called inverse free electrons acceleration (IFEL)
mechanism.

Let us initially derive basic expressions for quasi-static electric and magnetic fields of
the plasma channel. For this purpose, we consider a stationary cylindrical laser plasma
channel with uniform electron density n. = fng. The factor f(0 < f < 1) accounts
for electron expulsion from the channel due to the ponderomotive pressure of the laser
pulse; other hand the ion density n; = ng is uncharged. The corresponding net charge
density (1 — f)ng then creates the radial electric field

(2.1)

—eE, = (1= f)mw2/2-r . (2.2)

The light propagating in the channel drives the electrons in forward direction at al-
most the velocity of ligth, producing a current density —e fngc which creates an azimutal
magnetic field

—eB, = fmw2/2-r. (2.3)

Solving the equation of radial motion of an electron in the channel,
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myd®r/dt? = —eE, — (—eB,) = —mw?/2 1, (2.4)

we find that oscillation betatron frequency is

wh = wl/27. (2.5)

We conclude that electric and magnetic fields of the channel cooperate in such a way
that electrons moving mainly in axial direction feel a harmonic oscillator potential in
radial direction which causes them to oscillate radially with wg.

2.1.2 Acceleration in plasma channel

Analytically electron acceleration inside a plasma channel can be obtained from the
single-electron equations describing electrons simultaneously exposed to the laser fields
Er,BL and to the quasistatic channel fields Ec, Bc. Here we restrict ourselves to
planar (z,y) geometry with a linear polarized laser field Er, = Ere, = Eyey, cosw(t —
z/v,), Br = Ere,/[,, having phase velocity §, = v,/c in plasma, and the channel fields
Ec = Ecey = kpyey, Bc = Bee, = kpye,. Using dimensionless variables

p — p/me, 5 — v/c,t — wt,

x— aw/c, B — eF/mwe, B — eB/muw, (2.6)
we find
dpr ﬁy
=-—-——F;,—3,B 2.
dt 61; L ﬁy C ( 7)
dpy Ba
Py _(1-Z)\E,— Es+ B.Bo 2.8
dy ( ﬁp) - o+ b (28)
dy
o = ~Bu(Er+ Ec) . (2.9)

The energy integral Eq. (1.29), derived above for the laser field alone, can be gener-
alized to the channel situation and gives

(v + ¢) = Bpps = const , (2.10)

where ¢ = (kg + v,kp)y?/2 is the channel potential and v = /1 + p2 + p2. Though an
exact analytical solution of Eqs. (2.7)-(2.9) is not possible, they can help to understand
the mechanism of acceleration. Equation (2.8) for the transverse motion

Py dy\* B\ | B | (dy\* key
- =[(=Z) —(1-=2) ]| =2+ (2) 22 2.11
o= (@) (-3 2@ en
describes a driven oscillator with the frequency
wh = (kg + Buokp) /7 , (2.12)
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corresponding to betatron oscillations in the static E- and B¢ field. The driving force
on the right-hand side Eq. (2.11) hits the resonance when

W = 1- ﬁx/ﬁp . (213)

This resonance condition states that when an electron makes one oscillation, the
electromagnetic wave which propagates with 3, > 1 overtakes it exactly by one period.
It appears that the resonant electron energy v is not a monotonic function of kr and
kp. At a given (3, > 1, the resonance can only be reached for a sufficiently strong
self-generated electrostatic field satisfying the condition

ke > %[50, +4 = 38,1/ (8} +8)]/(25,) , (2.14)

where the resonant energy

Yo = V2B /(82 +8) — 32— 2], (2.15)

Po=[=Bp+ /(B3 +8)]/2. (2.16)

or

2.1.3 Synchrotron oscillations

Let us now consider longitudinal electron motion in the channel. As it turns out,
Eq. (2.11) becomes much simpler in the ultra-relativistic limit v > 1. Then wg changes
slowly on the time scale of one betatron oscillation and for the transverse motion of the
electron we may write:

py = P, coslj

s = (2.17)

where P, is the amplitude of the oscillating transverse momentum. The maximum
transverse displacement of the electrn is yp = P,/wg. The laser field at the electron
position is E, = Eycos(t — x/f,). Using Eq. (2.9) we write down the final set of IFEL
equations:

d, <7 + kEzyz) = —EO%(COS\I/ + cosv)) (2.18)
Body U = wj — (1 - &) , (2.19)

Br

B = -
wdetp =w+ (1= ) (2.20)

where U is the slowly oscillating ponderomotive phase of an electron in the bucket
produced by the laser wave, while the fast phase 1 rotates with 2wgt.
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According to Eq. (2.18), electrons are accelerated for ponderomotive phases, satis-
fying m/2 < U < 37/2, and are deccelerated otherwise. The maximum acceleration
is achieved when the betatron oscillations are exactly in counterphase with the laser
electric field, by the reason of negative electron charge. This mean that when the elec-
tron moves with its highest transverse velocity near the channel axis, the electric field
of the laser pulse is also at its maximum and has the accelerating direction. When the
electron reaches the turning point at the channel boundary the laser field vanishes. As
the electron reverses its transverse motion, the direction of the laser electric field also
reverses direction, and the electron continues gaining energy.

The continuous growth of v leads to a corresponding decrease of wg and detun-
ing according to Eq. (2.19). The electron then dephases, and acceleration eventually
stops. To describe this effect quantitatively, we use Eq. (2.18)-(2.19) and obtain for the
ponderomotive phase ¥ the usual IFEL nonlinear pendulum equation [52]:

>V = EO% sinawcos W . (2.21)
Y

Here, « is the angle under which the electron intersects with the channel axis, such
that sina = P, /v, and we have neglected smaller terms of the order of ~ y73. After
many synchrotron rotations in bucket, electrons mix in phase space; also different elec-
trons run at different angles o to the channel axis, and as a consequence the electron
energy spectrum acquires a thermal-like distribution. As we see from Eq. (2.18), the

electron energy gain is proportional to the laser pulse electric fild Ej, which in turn is
~ JY/2,

2.2 Non-linear physics of acceleration

2.2.1 Non-linear relativistic plasma waves

In this part we derive basic properties of the non-linear regime, making use of the one-
dimensional quasi-static approximation. In this case, the relativistic one-dimensional
equations for the fluid velocity u in the z-direction are

E + %(nu) =0 s (2.22)
o) %) B 1 Jpe
(a + ua—gg) (ymu) = —eF — s (2.23)
OF
= dme(ng —n) , (2.24)

with § = w/c and v = 1/4/1 — [32. We look for wave solution on n(z,t),u(z,t)
and E(z,t) that depend only on 7 = w,(t — x/v,). Since 9/0t = w,d/dr,0/0x =
—(wp/vp)d/dr, one finds
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=1/1-=p5/B,), (2.25)
(1— ﬁ/ﬁp)%ﬁv =-F, (2.26)

dE/dr = B/(1—B/B,) | (2.27)

where we have introduced dimensionless variables 7 = n/ng, 8, = v,/c, E = eE/(mwc),
and cold plasma is assumed with p. = 0. Combining the second and the third of these
equations, we can write

dE  d - d dvy
E— = —(E?/2) = — =1 2.28
and obtain the integral R
E(y) =V2(m—7) (2.29)

where 7, is the integration constant corresponding to maximum fluid velocity w,, with
Bm = upm/c and v, = 1/4/1 — B2,. For v = ~,,, the electric field E vanishes, while the
maximum field R

is obtained at location, where ©u =0 and v = 1.

Explict expressions for velocity, density and electric field as function 7 can be ob-
tained in the non-relativistic limit 8, < 1 and v, = 1+ 37 /2. We find from Egs. (2.26)
and (2.29)

(1= 5/6,)d(By) (1= B/Bp)d(B/Bm)

+dr = ~ (2.31)
2(’7m - 7) (1 - (5/6771)2
and after integration
+(7 — 19) = arcsin((8/6m)) + (B8/6p) /1 — (B/Bm)? . (2.32)

From this we can find 3(7) and thereby n(7) and E(7), using Egs. (2.25) and (2.29).
For small wave amplitudes ,, < ,, Eq. (2.32) can be inverted, and we recover the
linear wave result

B = Bpsin(t — 1) , (2.33)
n= ﬁ =1+ (Bn/By)sin(r — 1) , (2.34)
E =/ — 2 = Bm cos(T — 7o) - (2.35)

Extremum of 3(7),7(7) and the zeros of E(7) dont shift in 7 when increasing 3,
while the zeros of §(7),n(7) and the extremum of E(7) are shifted in such a way that,
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in the non-linear high-amplitude regime, velocity and density develop sharp wave crests
with wide troughs in between, while the electric field acquires a sawtooth shape. In the
half-waves with negative E(T), electrons can be accelerated. This is the basic principle
of plasma wave accelerators.

The non-linear solution derived above exists only as long as the fluid velocity [ stays
below the phase velocity 3, of the plasma wave. For 3 = (3,, the plasma wave develops
cusps at the wavecrests moving with phase velocity; they have infinite density according
Eq. (2.25). For 3, > [3,, the density peaks move faster then the wave and start to
overtake other fluid elements. Then a multi-velocity regime develops, and this is calle
wave breaking. This regime cannot be described within the approximate picture of a
plasma fluid. The maximum electric field achievable in a cold plasma at the point of
wave breaking [5] is given by Eq. (2.27):

Ewp/Eo=/2(7p— 1) , (2.36)

where FEy = mcw,/e and v, = 1/,/1 — 32 is the y-factor of the plasma wave. For
B, < 1, we recover the non-relativistic result (|6])

EWB = EOﬁp = mvap/e . (237)

The wave breaking limit is of central importance for laser wakefield acceleration,
because it sets the scale for the maximum energy to which a particle can be accelerated in
the wave. Apparently, the cold relativistic value of Ey g exceeds any limit for sufficiently
large 7, which can be obtained for small enough plasma density. Relativistic effects tend
to prevent wave breaking because fluid velocities cannot exceed the velocity of light. On
the other hand, thermal effects on the wave breaking strongly interfere and set an upper
limit.

2.2.2 Wake field acceleration

The plasma waves can be exited by laser pulses. Here we consider the case of oa intense
laser pulse with amplitude ay propagating in underdense plasma and with group velocity
vles = ¢y/1 — (wp/w)?. Its ponderomotive force pushes electrons at the front in laser
direction, thus exiting a plasma wave which trails the laser pulse. The ~y-factor of the
plasma wave has been given already in Eq. (1.94), showing that 7, ~ n&lm. High ~,
can be reached for low plasma density ng.

Here we restrict ourselves to laser pulses with a duration shorter than a plasma
oscillation such that the laser pulse fits into the first bucket of the plasma wave. The
balance between light pressure and plasma pressure is obtained from Eq. (1.70) requiring
V(¢ —v) = 0. Combining the plasma electric field £ = (mc?/e)Vp, the file unit Fy =
mcw, /e, and y-factor of the plasma electrons for circular polarized light v = /1 + |a|?,
we find

c
— = —_V~y=——V]d|*. 2.38
Ey Wp i 27 wp |a| ( )
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Approximating Vl]a|* ~ 2k,|al?, where k, = w,/c, and applying Eq. (2.38) at the
location of maximum fields, we obtain

Emaw
Ey

This holds for circular polarization; in the case of linear polarization, a2 has to be
replaced by a2/2. A more rigorous derivation of this result was given e.g. by [53] et al.
and [43] et al.

In 1979 Tajima and Dawson proposed to use high-amplitude plasma waves for the
particle acceleration, in particular using laser pulses to exite plasma waves. This seed
paper has triggered a new field of plasma-based accelerators, and an excellent review
was given by |2| et al., containing a comprehensive list of references.

Following [2] et al., we estimate the energy that an electron can gain when traapped
in the wakefield as

~ai/\/1+ad . (2.39)

eW ~ eE,Lq , (2.40)

where I, is the maximum electric field and L, is the dephasing length, which is the
maximum distance over which the electron can experience the accelerating field. Let us
consider a plasma wave with v, ~ ¢ such that 7, > 1 and a trapped electron which is
also moving close to ¢ such that the acceleration time is given by t; = Lg/c. The phase
distance of the accelerating half-wave is then AT = w,(Lg/v, — tq) = 7 and determines

the dephasing length
T c

wp (¢/vp = 1)
using (c¢/v, — 1) ~ 1/(272) and A\, ~ 27¢/w,. Having Ly, we find for the maximum
energy gain approximate result

Ld = ~ )‘d7§ s (241)

Wi = 2072 (En/ E)me” . (2.42)

The energy gain can be obtained more precisely using the non-linear cold plasma
solution. At this point, we calculate the gain first in the frame of the wave, running
with phase velocity v, in 2-direction. The Lorentz transformation into the moving frame
(dashed quantities ) reads for space and time coordinates

ceex’ = y,(x —vy/c),
2.43
t' =y, (t —vyx/c?), (2.43)
and for the electric filed [54]

2
Tp
‘E) . 2.44
bl B) (2.44)
In the present case with B = 0 and both E and 3, in a-direction, we find that the
longitudial F-field is a Lorentz invariant:

E' =7 (E+ 3, xB) -

E.=E,. (2.45)
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We can therefore calculate the energy gain in the moving frame

~

W' = —e/E_fde’ = e/Ex(’ypvp/wp)dT = 5p7pmc2/E(T)d7' : (2.46)

making use of ' = —(,v,/w,)7. The electric field eE,(7)/(mew,) = E(7) has already
been derived in laboratory frame. Using Eq. (2.26) we find

+Bm

[ Bar= [ @ 818m)d(3) = 28 (2.47)

_ﬁm
when integrating over the half-wave from (,, to —(,, which corresponds to maximum
acceleration. The maximum energy gain of the electron in wave frame is then

W?ilax = ’y/mCQ = 2(5p’7p)(6m7m>m02 . (248)

Again we consider the case of interests for electron acceleration with the phase ve-
locity 8, ~ 1 and 7, > 1. On the other hand, we allow for arbitrary wave amplitudes
G, and corresponding 7,,, though satisfying IV > 1 such that the electron is finally in
an ultra-relativistic state. The energy gain seen in laboratory system then is

Winaz = Yo (Winaw + UpWinao/€) 2= 479 (B ym)me? . (2.49)
Recalling Boym = (72 — 1)/2 = E,(1 + E2 /4)'/2, we find

Em/EO for Em < Eo

B /E2/2 for By > By (2.50)

Wonaw = élfyzimc2 { (

These results were first obtained by [55]. At the point of wave breaking ~,, =
Yp, they imply Wi, >~ 4y3mc®. This is remarkable result. It indicates that already
plasma waves with 7, = 10, corresponding to a plasma density of 10Y¥em =3, could
accelerate electrons, injected at y,mc? ~ 5MeV, to an energy of 2GeV over distance
of Lqy = v2Anp = v*/?X, & 3mm. To reach the wave breaking field in a cold plasma,
Ewgs/Ey = [2(7, — 1)]"/? ~ 4.2, one would need an ultra-short (=~ 10fs) laser pulse of
linear polarization with a3 = 10.

The analytical one-dimension wave analysis given above provides a basic under-
standing if wakefield acceleration in non-linear plasma waves. However, it is restricted
to regimes below wave breaking and cannot describe the physics of wavebreaking itself,
which is of kinetic nature and essentially multi-dimensional.

As it turns out, wakefield acceleration is not limited by wave breaking. On the con-
trary, new schemes of wakefield acceleration emerge in the broken-wave regime, where
the proccess of continuous wave breaking leads to abundant self-trapping of electrons
and efficient generation of high-current electron bunches. For laser pulses longer than a
plasma wavelength, self-modulated laser wakefield acceleration occurs, and experiments
in this regime were most successful in terms of both high energies and large number of
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accelerated electrons [26] et al.. For laser pulses shorter then the plasma wavelength, an-
other very interesting regime was found recently by Pukhov and Meyer-ter-Vehn (2002).
At sufficiently high laser intensities, the wakefield is driven so strongly that it breaks
completely after the first plasma oscillation and solitary wakefield bubble forms, which
is essentially void of background plasma electrons, but which traps continuosly electrons
at the breaking point on the rear side and accelerates them efficiently.

2.2.3 Acceleration in the "bubble" regime

Here, we restrict us by short generally description of the "bubble" regime, the main
features of which are the following:

e a cavity free from electrons is formed behind laser pulse instead of plasma wave;
e a dense bunch of relativistic electrons is self-generated;

e the laser pulse propagates many Rayleigh lengths witout significant spreading.

The electron dynamics is defined by the ponderomotive force and the electromagnetic
fields of bubble density patterns. The most important three are following:

e the electron plasma cavity with the large ion charge;
e the electrons sheath around the cavity forming the bubble boundaries;

e the bunch of accelerated electrons growing behind laser pulse in the cavity.

The density of electrons sheath peaks at the head of laser pulse and at the base
of the cavity. These density peaks are formed by relativistic electrons with velocity
v =~ vy, where vy is the velocity of bubble. The bubble base is the source of electrons,
which get trapped and accelerated to y > o, where 9 = /1 — v3/c? is the relativistic
gamma-factor of the bubble.

The phenomenological theory of electrons dynamics and acceleration mechanism in
the "bubble" regime we will discuss more detailed in the next chapter.
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Chapter 3

Numerical sstmulation

3.1 Trajectories of electron in the Bubble

3.1.1 Introduction

In relativistic laser plasma interaction, electrons can be simultaneously accelerated and
wiggled in a plasma cavity to emit an intense beam of x-rays, the so-called betatron
radiation. Consisting in radiation from charged particles, the features of the betatron
source are directly linked to electron trajectories. In this chapter we show how an image
of electrons orbits in the bubble can be directly presented from numerical simulation
with VLPL3D PIC-code. Using the postprocessing, we have characterized electrons
trajectories into the bubble and have shown that most of electrons can follow similar
transverse trajectory.

3.1.2 Phenomenological theory

Before considering the relativistic cavity moving in plasma we summarize the results for
field within ionic sphere. The electromagnetic field of the uniformly charged sphere at
rest is purely electrostatic

r R? r?

E—37 B =0, <p—1—|—6 G

where R is the radius of sphere with charge density |e|ng and we choose that the potential
is equal to unity at the sphere boundary.

Here we use dimensionless variables, normalized time to wp_l, lengths to ¢/w,, velocity

to ¢, electromagnetic fields to mcw,/|e| end electrons density n to background density

ng. The ionic sphere runs with relativistic velocity vg >~ 1 in z-direction have inside

fields

(3.1)

E,

0,E,=B,=y/2,
B, =0,

Y

E,=—-B,=2z/2, (3:2)

o |l
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where the terms proportional to 752 = 1 — v2 < 1 are neglected. The Lorentz force on
relativistic electrons moving inside the sphere with velocity v = —vg = —ey is

szo,Fy:_Ey_Bz:_ya

Fz:_Ez+By:_Z7 (3.3)

where it is negligible for electron with v = v = ex because of relativistic compensation
of the electrostatic force by the self-magnetic force [56].

For the fields inside spherical electron cavity, contrary to the case discussed above,
the ions are immobile in the cavity while while it runs with relativistic velocity. The ions
dynamics is neglected because the cavity radius is assumed to be smaller than the ion
response length ~ ¢/w’", where ion plasma frequency w'®" = 4rwe’*ng/M;o,. We rewrite

P P
the Maxwell equations in terms of potentials using the following gauge:

A, =—¢. (3.4)
We get

(1P (22 1o (9 _ 90
AD =1 n<1 7)+<(%+ax>(v A) + at(at ax><1>, (3.5)

2
VxVxAJrnEJrQ(aA—VCD)
v o Ot

Here we use wakefield potential ® = A, — ¢ instead of the scalar one, p is electron
momentum.

Then we use approximation assuming that all quantities depend on x = = — vyt
instead of x and t. Equations reduce to the form

~0. (3.6)

3 pe. 10
| 0P
VIA +V. (V. -A))= n% +3Vig0 (3.8)

where terms proportional ;2 are neglected. With electron density n = 0 inside cavity
we have

3 10
Al =g - 56—X(V¢ AL, (3.9)
1 09
ViAL - Vi(Vi-A) =5V 50 (3.10)

The solution of Egs. (3.9) and (3.10) with spherical symmetry is

R r? )
p—1-" 4l 4" A -0, 11
1 T p=5A1=0 (3.11)

where R is the radius of cavity, r* = x® + y? + 2% and integration constant ®(R) = 1.
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Therefore, electromagnetic fields in the cavity are:

Ex:X/ZaEy:_Bz:y/4

B,=0,E,=B,=z/4. (3.12)
The Lorentz force acting on electrons inside the cavity is
e
F,=-%2=-E.—-B,=-2/2.

Now we describe the cavity shape. The transverse size of the cavity reaches maximum
near the middle which passes through cavity center. In the area where this plane cuts
the boundary of cavity the electron sheath contain a return current carried by weakly
relativistic electrons. On these electrons acts the Lorentz force (3.13), which is nearly
balanced by the ponderomotive force. The transverse radius R of the cavity can thus
be estimated from the equation

%(1—1@):%:Fpond:%\/l%—aQ(R) : (3.14)

where we assume the spherical symmetry for the ion cavity and circularly polarized laser
pulse [57].

When the force from the bunch becomes stronger than the ponderomotive force,
cavity shape determined by the bunch. The bunch density n; is much higher than the
plasma density, then we can refer to the theory of relativistic electron beam in plasma
in ion-focused regime [58] and use it to estimate the bubble transverse radius. The
equilibrium at the interface near the middle plain is provided by the balance of the
Lorentz forces from the cavity (3.13) and from the bunch electrons. The transverse
radius in bunch dominated regime is

rb\/n_b < R < rpv/2ny , (315)

where the lower and upper limits are from a bunch with the weak current nymri < 1 and
strong current nymr? > 1 correspondingly. Plasma electrons flow along the interface in
direction opposite to the laser pulse propagation and form the return current sheath.
In case of weak the bunch current the width of return current sheath is about ¢/w, and
electron energy v ~ 1 is small. At opposite limit ny7r? > 1 the sheath electrons gains
relativistic energies v > 1 and sheath width increase ~ |/yc/w,.

In terms the laser pulse is circularly polarized, propagating in z-direction and az-
imuthal part of electrons trajectories of electrons is neglected (trajectories lies in plain
z = 0) the average motion in slowly varying bubble fields is defined by averaged Hamil-
tonian [59, 57| :

H=+/1+ (Pcan - A)2 + a2+, (3.16)
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where P is canonical electron momentum, A and ¢ are slowly varying vector and
scalar potentials and a is vector potential of laser field. Fast electron oscillations are
averaged out.

Changing variables in this Hamiltonian

r—x=x—vt P, — P, =P, (3.17)

by a canonical transformation with generating function S = (z — vot) P, we have

sz—von—goz\/1—|—(P°an—|—A)2—|—a2—von—g0. (3.18)
Therefore, equations of motion are given by

dP,  0A,  0A, 9y

i oy oy + Dy (3.19)
‘%:&_Uozvx_vo, (3.21)
% _ % _—— (3.22)

The laser pulse, cavity and electron sheath run with the velocity vg; the relativistic
gamma-factor of electron bunch is much higher 7, > 9. Potentials of Hamiltonian
(3.18) depend on x and slowly change with z and t due to ultra-relativistic electron
bunch. If we neglect the time-independent corrections order of (v, — vg) =~ ty,2/2 < 1
the Hamiltonian is the integral of motion, where v, &~ 1 — 1/2+¢ is the bunch velocity.

The necessary condition for electrons trapping in the cavity is the existence of the
point of return where dx/dt = 0. From Eq. (3.21) follows that at this point p, = vy7.
Then integral of motion (3.18) can be rewritten

H=v—vp,—P=0, (3.23)

where we assume the initial conditions are p = A| = a = 0 and ® = 1. The relations
for p, and Hamiltonian can be expressed at the return point in the form

P = V0707 = V0% ® (3.24)

where 77 = 1+ p? 4 a*>. The area in phase space where the electrons are trapped
can be defined as

Pz > V0Y0YL = VoYa® . (3.25)

To obtain analytical results on the trapping we approximate the bubble by a sphere.
The electron sheath around the cavity screens the ion field in the surrounding plasma.

32



Radial Lorentz force acting on relativistic electrons from this structure can be modeled
as

r

F:rS(r—R):—Z (tanhT;R—l) : (3.26)

where R is sphere radius, d is the width of electron sheath and r? = y? + y? + 22. The
potential of this structure is

R N1 ,
¢:1+%—%—1rdln (1+¢%) ~ S Liy (%) . (3.27)

In the limit d — 0 function S(r) reduces to step function and Eq. (3.27) reduces to
Eq. (3.11).

From p, = vyYv7L = voe® follows that trapping most likely occurs on the sphere
surface, where ® ~ ®,,,,,, ~ 1. Then trapping condition takes form

Pz
Vo0

=7~ . (3.28)

To be trapped electron must be accelerated so that p; ~ 7, and p, ~ 2. Integrating
numerically Eqs. (3.19)-(3.22)for the potential (3.27) can be found that the cavity can
trap electrons initially at rest if

From Fig. (3.1) seen that only the electrons, whose trajectories run through the wave-
breaking region become trapped. Therefore get trapped only small portion of electrons
which are initially located in electron sheath near the middle plain. Let we introduce the
trajectory divergence 7. If initially the average range between electrons in the sheath
in middle plain was dp then it becomes 1dp in wavebreaking area. Hence electron in a
narrow layer with the width D/n < ¢/w, located inside sheath become trapped. Then
cross-section o for electrons trapping can be estimated as

D
o~ 2rRns— . (3.30)
n

where ng is the electron density. The bulk of the plasma electrons, which collide with
the laser pulse, enter the sheath with width d. The sheath density can be estimated as
the ratio between the area of the circle with radius R and that of the ring with radius
R and width d.

R
2d’
where 7 ~ 1 in the sheath assumed. Making use of Egs. (A.3), (3.30) and (B.10)

we finally obtain the estimates for the trapping cross-section as function of the cavity
radius:

s (3.31)
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Figure 3.1: Typical electron trajectories in the bubble in the plane z = 0. The coordi-
nates are given in c¢/w,.
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o~ g (m %) o (3.32)

3.1.3 Analysis of wakefield electrons orbits in plasma wiggler

In the bubble regime the plasma wave period is of the order of the laser pulse duration.
In that case, the first plasma wave period consists on an ion cavity almost free of
background electrons in the bubble. The cavity acts, because of its intense electrostatic
fields structures, as an electron accelerator and as an electron wiggler. Within the cavity
the electron motion consists of a relativistic longitudinal acceleration combined with a
transverse oscillation around the cavity axis. So far, none experimental technique has
allowed to look into the cavity and probe the electron trajectories. By measured the
spatial properties of the x-ray radiation produced by the relativistic electrons as they
propagate within the cavity (betatron radiation), [60].

We have simulated the mechanism of Betatron radiation by considering a test par-
ticles model in which electrons are accelerated and oscillate in a cylindrical uniformly
charged ion channel. The forces experienced by the electrons in the channel are electro-
static and time independent. The channel axis corresponds to the X axis. As initial con-
ditions, we consider an electron entering the channel at initial position (¢, yo, 20 = 0).
The channel axis (zg = yo = 0). The initial momentum is p,,, Py, Ps- In the channel,
the electron is submitted to the transverse restoring force due to the ions (obtained from
Gauss law) and to the longitudinal electrostatic field representing the wakefield. The
equation of motion is then:

dp mewy,
7 Ug

dt

—mwf,rl/? +

where m is the electron mass, 7| the transverse position of the electron and w, =
(nee?/meg)'/? the plasma frequency, with n, the plasma electron density, e the electron
charge, and w, the unit vector in the channel axis direction X. Here, considering an
electron density of 10 em™3, the longitudinal accelerating field and the transverse
fields are respectively of the order of 300 GeV/m and 100 GeV/m for 1 pm excursion.
At the first order, we can consider an already relativistic electron at an energy 7, and
neglect the acceleration term. The equation of motion then reduces to an harmonic
oscillator. The electron motion is then an combination of a drift at constant velocity
and an oscillatory motion at the betatron frequency ws = w,/v/270.

The complete equation of motion has been integrated numerically to take into ac-
count the acceleration. Fig. (3.2) represents a three dimensional and a two dimensional
transverse representation of the trajectory of one electron for two typical sets of initial
conditions. On figure (1a), initial conditions are zyp = 2.5 pum, yo = 0 pym, p,, = 0,p,, =
2,pz, = 10; on figure (1b) 2o = 2.5 pym, yop = 0 pm, p,, = 0,p,, = 0,p,, = 10. We will
choose p,, = 0 and yo = 0. Indeed, a case with p,, # 0 and/or yo # 0 can be reduced
to a case with p,, = 0 and yy = 0 with an appropriate change of reference frame. For
both, the motion consists on a transverse oscillatory motion at the Betatron frequency
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Figure 3.2: Three dimensional and transverse electrons orbits for, (a) z¢ = 2.5um, yo =
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0, Py = 0, P2 = 10,1, = 10%cm™3. The electron is accelerated up to 150 MeV
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combined with a drift in the longitudinal direction X. From rest, the electron is accel-
erated to relativistic energies ( about 150 MeV here), its effective mass (ym,.) becomes
larger and it results in a reduction of the amplitude of the transverse motion and the
betatron frequency. This variation of amplitude reduces as the electron becomes more
and more energetic. It clearly appears on the transverse orbits graphs; the trajectory is
helical. The difference between figure (1a) and figure (1b) relies on the excursion in the
Y direction (on figure 2a, the motion is restricted to a a 2D orbit in the Z, X plane; it
is 3D on figure (2b)). This depends on the initial transverse momentum p,,,. The initial
transverse momentum given to the electron results in an elliptical transverse orbit. Note
that, due to the weaker mass of the electron, the importance of p,, is stronger as it is
imposed at the early stages of acceleration.

Betatron radiation is a synchrotron like radiation emitted by the relativistic electrons
as they execute oscillations in the channel. The properties of the radiation are described
by the formulae of the radiation from a relativistic moving charge. The radiation features
directly depend on the electron trajectory. In particular, the critical energy grows as
v3/R, and the radiated energy as v!/R. where 7 is the electron energy and R, the
instantaneous radius of curvature of the orbit. In our parameter regime (interaction
at an intensity ~ 10" W /cm? and a helium plasma at n, ~ 10 em™3), the radiation
consists on a bright x-ray beam (10° photons/pulse) with a divergence of a few tens milli
radians and a broad band energy spectrum extending up to about 10 keV. The spatial
distribution of the radiation (which is measured by placing a detector in the x-ray beam)
represents a signature of the electron motions and can reveal the electron orbits discussed
above. A straightforward link exists between the orbits and the radiation. Indeed, the
energy radiated in a direction of observation 77, obtained by integrating the radiated
energy over the frequencies, has a (1 — (¢//c).71)~! dependence (where ¥ is the electron
velocity). This implies that the Betatron radiation is emitted in the direction of the
electron velocity. The profile of the Betatron x-ray radiation, measured in the far field,
is therefore an image of the transverse momentum of the oscillating relativistic electron.

For a single electron in one period of oscillation, Figure (3.3) illustrates schemati-
cally the correspondence between the electron trajectory (A), its momenta (B), and the
distribution of the emitted radiation(C) for the general case of an elliptical transverse
trajectory. On figures A and B, symbols (white circle and blue circle) represent an ar-
bitrary position in space and phase space of an electron along its trajectory. The lines
sections on figure C represent the corresponding emission as it could be observed onto
a detector placed in the beam. From the measurement of Betatron profiles together
with measurement of electrons energies (), can be obtained: (p,,p.) and (y,z) of the
electrons in the ion cavity.
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Figure 3.3: The correspondence between the electrons transverse trajectory, the trans-
verse momentum and the distribution of betatron radiation. On (a) the symbols (circles)
correspond to an arbitrary position. On figure (b), the same symbols correspond to the
momenta. On figure (c) the line sections are the corresponding angular directions of the
radiation emitted.
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3.2 3D PIC simulation

3.2.1 Simulation parameters

In correspondence with the experiments performed at the Laborotorie d’Optique Ap-
pliquee |60] we carry out the computer simulation of laser plasma interaction using the
particle-in-cell (PIC) code framework VLPL3D.

We assume that the laser wavelength \g = 27/ky = 0.820um. We use a simulation
box of dimension (60 x 88 x 88)\¢ volume (zx,y, z) cartesian geometry. It corresponds
to the size of (49um x 72um x 72um). The direction of propagation is the z-axis. The
number of gridpoints is 600 x 176 x 176 = 1.8 - 107. The resolution in the transverse
direction is k,,Ay = 0.26, resolution in longitudinal direction is k, Az = 0.05, where
kpy = Wpo/C, ko/kp, = 11.95, and w2 = 4me*ng/m. We use eight macroparticles / cell.

Parameters for numerical simulation were chosen in correspondance with values of
physical parameters in the performed experiment. The laser pulse is linearly polarized
in the Y-direction, it is duration of 7cp4 = 30fs and intensity [ = 3 - 10'8W/cm?
which corresponds to the normalised vector potential ag = eA/mc®> = 1.5. The laser
pulse is Gaussian in the transverse direction. In the longitudinal direction it has the
cosinusoidal profile. Focused spot size is 9um. The plasma density is ng = 7-1073-ng.; =
1.16 - 10¥em=3 .

The transverse plasma profile is uniform. The longitudinal plasma profile has density
increasing from zero to ng over 60 — 670 wavelengths, then density is uniform ng =
10"¥cm =3 till 3110 wavelengths, then decreasing to zero at 3720 wavelengths.
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Figure 3.4: Graphical view of numerical simulation at time 7" = 900. The figure shows electron density(ne), intensity of
the laser(/), magnetic field in Y-direction(by) and electric field in X-direction(ex) in planes (X —Y) and (X — Z). All
coordinates given in the laser wavelengths .
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Figure 3.5: Graphical view of numerical simulation at time 7" = 1000. The figure shows electron density(ne), intensity of
the laser(/), magnetic field in Y-direction(by) and electric field in X-direction(ex) in planes (X —Y) and (X — Z). All
coordinates given in the laser wavelengths .
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Figure 3.6: Graphical view of numerical simulation at time 7" = 1500. The figure shows electron density(ne), intensity of
the laser(/), magnetic field in Y-direction(by) and electric field in X-direction(ex) in planes (X —Y) and (X — Z). All
coordinates given in the laser wavelengths .



ev

Time=2000.01

0.1] ne 0.01

1978 x 203 0 1978 % 20380.1 1978 % 2038 0 1978 % 203801
10

10

) :',ﬂmmw |

| 1978 X 2038 0| 1978 % 20380-1] 1978 X 2038 0| 1978 % 20380.1

Figure 3.7: Graphical view of numerical simulation at time 7" = 2000. The figure shows electron density(ne), intensity of
the laser(/), magnetic field in Y-direction(by) and electric field in X-direction(ex) in planes (X —Y) and (X — Z). All
coordinates given in the laser wavelengths .



Figures (3.4)-(3.7) represent simulation results of laser pulse propagation in the
plasma. Time is measured in the laser pulse period, 7 = 27 /w. Tt is seen that bubble
was formed at time 7' = 900 laser periods. There are typical parts of bubble: front
part of the bubble, sheath of electrons, wavebreaking area at back of the bubble and
dense bunch of relativistic electrons in the middle of the bubble. It is seen from the
Figures (3.4)-(3.7) that the front part of the electron bunch participates in betatron
resonance with the laser pulse.

3.2.2 'Trajectories of high energetic electrons

Using modification of VLPL PIC-code we have got more detailed information about the
bubble evolution. Parameters of each particle for each time step were analyzed. The list
of parameters contains: (phase, x,y, z, px, py, pz, number, xq, yo, z), where phase is the
time step, number is the unique label of particle, xg, yo, 29 are the initial coordinates of
particle.

Using postprocessing of described data we obtain directly the image of electrons
trajectories. Electrons with the highest energies were chosen. Fig. (3.8) represents
examples of trajectories of electrons. Direction of laser pulse propagation is the X-axis.
Trajectories are given in projection on the plane (Y — Z). The form of trajectories is
comparable with the theoretically predicted form (3.2). The stretch of trajectories in the
Y -direction corresponds to the laser pulse polarization along the Y-axis. All coordinates
are given in laser wavelengths.

Further we restrict the data for postprocessing by the area in the middle of bubble
where the electron bunch is positioned. At the time T" = 2000 laser periods, the electron
bunch is located in volume (1998 — 2018)A x (41 — 47)\ x (41 — 47)\, where A is laser
wavelength. By initial conditions the background plasma density is n, = 7 - 10 3nei =
10%em =3, therefore the simulation area contains about 102 electrons. The volume which
contains the electron bunch measured in laser wavelength is Viu,ecn = 10X\ X 8\ x 8.
The volume of simulation measured in laser wavelength is Vi, = 60X\ X 88\ X 88A.

‘/bunch/‘/total ~ 10_3 . (333)

The density of the electron bunch is greather than the average plasma density, therefore
the electron bunch contains not less than 10° electrons. The part of electron bunch
which remains behind the laser pulse is located in volume (1998 —2008) A x (41 —47)\ X
(41 — 47)A. The part of electron bunch which is in betatron resonance with the laser
pulse is located in volume (2008 — 2018)A X (41 —47)\ x (41 — 47)\. Further this areas
are postprocessed separately.

The Figures (3.9)-(3.10) represent some typical trajectories of electrons. All trajec-
tories are given in projection on plane (Y — Z). Figure (3.9) represents trajectories of
electrons only from back part of electron bunch. Trajectories shown in this Figure have
form which is close to circle. Figure (3.10) represents trajectories of electrons only from
the front part of the electron bunch. Trajectories shown in this Figure have elliptical
form strongly strethed in the Y-direction. The reasons of such form are the betatron
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Figure 3.8: Trajectories of some electrons from group of particles with highest energy
over all area of simulation.
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resonance and the laser polarization along Y -axis.

The Figures (3.11)-(3.12) represent trajectories of the electrons in three dimensions.
Using unique labels of each particle, the Figures show trajectories of exactly the same
electrons from previous Figures (3.9)-(3.10). All coordinates are given in laser wave-
lengths.

The condition for producing the stream of data about each particle is liminal energy
of this particle. It means that the information about a particle is accessible only with
the condition that the energy of this particle is greater than 150MeV. For this reason
each trajectory has the start point at a definite x-coordinate from which the energy of
the electron exceeds the energy limit 150/ eV . The simulation has finished at the time
T = 2000 of laser periods. For this reason any trajectory can not finish in the point with
coordinate greater than x = 2000 laser wavelengths. The area of simulation has sizes
88\ in both directions which are perpendicular to the direction of the laser propagation.
In Figures the axis in the middle of the simulation area corresponds to the point with
coordinates (y = 44, z = 44).

The Figure (3.11) represents trajectories of electrons from the back part of the elec-
tron bunch, where betatron resonance is not presented. The trajectories have the form of
a helix around the axis of laser pulse propagation in accordance with the Figure (3.2, A).

The Figure (3.11) represents trajectories of electrons from the front part of the
electron bunch, where the betatron resonance occurs. The trajectories become flat in
the Z-direction and stretched in the Y-direction in accordance with the Figure (3.2,
A). The decreasing of the amplitude of electrons trajectories along the Z-direction is
explained by the linear polarization of the laser pulse. The axis of the laser pulse
propagation corresponds to the axis (z,44,44) in shown Figures. Tt is seen from the
Figures that electrons are moving around the axis of the laser pulse propagation.

3.2.3 Distribution of electrons capture

Changes in the VLPL3D PIC-code allow us to produce information about each elec-
tron which is in the simulation box. One block of the data contains tvelve vari-
ables: (phase,x,y, 2, Py, Py, P2 N, To, Yo, 20), where phase is time measured in the laser
periods(7), (x,y, z) are current coordinates of the particle, (p,, py, p.) are momentum of
the particle, unique,umber is the unique label of the particle, (o, yo, z0) are initial co-
ordinates of the particle. Such the group of parameters can be defined for each particle
in the simulation area at any moment of time. However we do not need to describe all
particles. In the VLPL3D PIC-code we can restrict the information stream by electrons
which are energetic enough. Only the electrons with energy greater than 150M eV were
processed. The simulation was performed with MPI(message passing interface) with
partitioning 12 x 4 x 4 in X —,Y —, Z—axis correspondingly.

Therefore there are 192 subvolumes of the area of numerical simulation. For each
subvolume there is a stream of data which is saving in the file with the name corre-
sponding to the number of the subvolume.

For further postprocessing of data from the VLPL3D PIC-code we have developed
the program on C++4 on the Linux platform. The program contains three group of
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Figure 3.11: Trajectories of some of the most energetic electrons from the back part of
the electron bunch.

49



1500
X 2000 35
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functions.

The first group of functions is responsible for correct work with files. The program
automatically determines the number of files. The structure of the block of reading can
be changed in dependence of the structure of the block of data from the VLPL3d PIC-
code. The quantity of blocks for the one time processing depends from the available
computer memory. By default the number of blocks of reading is 10 millions.

The second group of functions is responsible for work with the volume of data.
Different functions using various kinds of the sorting and transformation of blocks of the
data to produce several distributions. The function for the calculation of the trajectories
of particles stays separately in this group. This function has been constructed with using
the unique label of the particle.

Third group of functions is responsible for producing the final results. The result is
files in standard format which can be further processed by any mathematical software.
In the case of the calculation of the particles trajectories corresponding function is
responsible for the selection of data which describe only marked particles from the
volume of data.

The Figure (3.13) represents the picture of the capture of electrons in three dimen-
sional form. The Figure has been made with using described program. The program has
determined initial coordinates for each electron with the energy which is greater than
150M eV at the moment of time 7" = 2000 of laser periods. The "initial" coordinates of
a particle means the point where the acceleration of the electron has started.

It is seen from the Figure that area of the capture of electrons has the form of a
dilative funnel with the axis along the Z-direction. It is demonstrating that particles,
which are located in the electron bunch, initially were moved into wavebreaking area
from the electron sheath of the bubble. The form of the area of capture corresponds
to the form of bubble in the Figure (3.7). This picture of the capture of electrons is in
accordance with conclusions of the phenomenological theory, the Figure (3.1).

From projections on planes (X —Z) and (X —Y') we can conclude that the asymmetry
of the area of capture is explained by the horizontal polarization of the laser pulse.

After the bubble has formed, the laser pulse and the wavebreaking area became
separated in space. The size of the area of capture increases along the Z-direction with
time because the laser polarization is losing influence on the process of capture.

The Figures (3.14)-(3.16) represent the distribution of the gamma-factor of captured
electrons in dependence from the zg-coordinate of capture at three different moments
of time. It seen from the Figures that at the moment of time 7" = 1000 the capture of
particles with energy above 150MeV starts at the x-coordinate about 600 laser wave-
lengths.

To the moment of time 7" = 1500 (Figure (3.15)) the large number of electrons from
the group of particles, which were captured in the initial period( zo, = (600 — 1000)
of laser wavelengths), decrease the energy less than 150MeV. The largest number of
electrons is located in the area zo = (1200 — 1300) of laser wavelengths. It is seen
from the Figure (3.15) that for the moment of time 7" = 1500 of laser periods electrons
with the initial xg-coordinates till 1300 of laser wavelengths are presented. Therefore
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Figure 3.13: Initial positions of accelerated electrons. The X-axis is the direction of the
laser pulse propagation. Zeros of perpendicular coordinates correspond to the axis of
the laser pulse propagation, the middle of the simulation area. The picture was taken
at the moment of time 7" = 2000 laser periods.
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Figure 3.14: The distribution of the gamma-factor of electrons in the dependence from
the z-coordinate of the capture. Only particles which have the energy above 150MeV
are included in distribution. The distribution taken at the moment of time 7" = 1000 of
laser wavelengths. The Figure is presented for the case of linear polarization.

electrons have been accelerated up to 150MeV during the range about 200 of laser
wavelengths. For the next hundred of laser wavelengths the considerable part of electrons
get additional energy about 100MeV. Some part of electrons which are shown on the
Figure, has the energy about 300 — 450MeV . Electrons which have been accelerated
during about 500 of laser wavelengths have the maximum of the energy about 450MeV .
The averaged acceleration rate is ~ 1MeV/A.

The Figure (3.16) represents the distribution of the gamma-factor of captured elec-
trons in the dependence from the zy-coordinate of the capture at the moment of time
T = 2000 laser periods. It is seen from the Figure (3.16) that at the moment of time
T = 2000 there are no electrons with the xg-coordinate of the capture, which is greater
than xy = 1500 laser wavelengths. In the period of (1300 — 1800) laser wavelengths the
process of capture of electrons has been stop.

The Figure (3.17) represents the distribution of current z-coordinates of electrons in
the dependence from the xy-coordinate of capture at the moment of time 7" = 2000. It
is seen from the Figure that the majority of particles is located in the area which can be
approximated by a line. The line describes defined relation between the coordinate and
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Figure 3.15: The distribution of the gamma-factor of electrons in the dependence from
the x-coordinate of the capture. Only particles which have the energy above 150MeV
are included in distribution. The distribution taken at the moment of time 7" = 1500 of
laser wavelengths. The Figure is presented for the case of linear polarization.
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Figure 3.16: The distribution of the gamma-factor of electrons in the dependence from
the z-coordinate of the capture. Only particles which have the energy above 150MeV
are included in distribution. The distribution taken at the moment of time 7" = 2000 of
laser wavelengths. The Figure is presented for the case of linear polarization.
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Figure 3.17: The distribution of current xz-coorginates of electrons in the bubble in the
dependence from the coordinate of the capture. The data were taken at the moment of
time T" = 2000 of laser wavelengths.

the point of capture of a particle. Electrons which were captured at early times, have
greater current coordinates. Therefore inside the electron bunch particles are moving
from the back part to the front part. The angle of slope of this approximation line shows
the velocity of the moving of electrons inside the electron bunch. Also from the Figure we
can conclude that by the moment of time 7" = 2000 the majority of electrons which are
presented in the electron bunch was captured in the area of the z-axis (1200 — 1500) of
laser wavelengths. The electron bunch has approximately size of 15 of laser wavelengths
along the z-axis, what corresponds to the Figure (3.7).

The Figure (3.32) represents the dependence of the number of captured electrons
from the location of the point of the capture at three different moments of time. Reso-
lution along z-axis is 0.5 of the laser wavelength.

The x-axis was separated on ranges of 0.5 of the laser wavelength. For each of ranges
the Figure (3.32) represents the number of electrons which were captured in this range
of the z-coordinate.

The distribution shown in the Figure includes only electrons with energy above
150MeV. Three graphs, shown in the Figure at three different moments of time, are
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Figure 3.18: The distribution of the number of captured electrons in the dependence
from the z-coordinate of the capture. The distribution shown at three different moments
of time: T" = 1000 of laser period (blue), 7" = 1500 of laser periond (green) and 7" = 2000
of laser period (red). The Figure is presented for the case of linear polarization. For
each of three cases were taken only those particles which had the energy above 150M eV
at corresponding moment of time.

not completely identic in the area (500 — 1300) of laser wavelengths. Unsignificant
difference in graphs in range of (500 — 1300) of laser wavelengths is explained by changes
in energies of electrons. The Figure demonstrates complicated and unregular dynamics
of the process of capture of electrons.

3.3 The case of circular polarization

3.3.1 Trajectories of particles

The additional numerical simulation was performed for the understanding improvement
of the evolution of the bubble.

With exception of the kind of polarization all other initial conditions are equal to
parameters of the previous simulation. The kind of polarization has been changed from
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linear on circular polarization.

The forming and the evolution of the bubble are shown in Figures (3.19)-(3.22). The
bubble has similar form in both of two planes (X—Y") and (X—Z2). It is seen from Figures
that formed bubble has greater sizes along all axis of coordinates. Circularly polarized
laser pulse has two times greater energy in comparison with the linearly polarized laser
pulse. The size of bubble, how it is seen in the Figure (3.22), has increased on ~ 30%
along each of three dimensions in comparison with the previous case with the linear
polarization. Therefore it can be concluded that size of the bubble is proportional to
the energy of the laser pulse.
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Figure 3.19: Graphical view of numerical simulation at time 7" = 900. The figure shows electron density(ne), intensity of
the laser (I), magnetic field in Y-direction(by) and electric field in X-direction(ex) in planes (X —Y) and (X — Z). All
coordinates given in the laser wavelengths.
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Figure 3.20: Graphical view of numerical simulation at time 7" = 1000. The figure shows electron density(ne), intensity of
the laser (I), magnetic field in Y-direction(by) and electric field in X-direction(ex) in planes (X —Y) and (X — Z). All
coordinates given in the laser wavelengths.
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Figure 3.21: Graphical view of numerical simulation at time 7" = 1500. The figure shows electron density(ne), intensity of
the laser (I), magnetic field in Y-direction(by) and electric field in X-direction(ex) in planes (X —Y) and (X — Z). All
coordinates given in the laser wavelengths.
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Figure 3.22: Graphical view of numerical simulation at time 7" = 2000. The figure shows electron density(ne), intensity of
the laser (I), magnetic field in Y-direction(by) and electric field in X-direction(ex) in planes (X —Y) and (X — Z). All
coordinates given in the laser wavelengths.



Figures (3.23)-(3.24) represent trajectories of electrons in the plane (Y — Z). We
consider separately the part of the electron bunch which is located behind of the laser
pulse. The Figure (3.23) represents trajectories of electrons from the back part of the
electron bunch in the plane (Y —Z2). The Figure (3.24) represents trajectories of electrons
from the front part of the electron bunch, which participate in the betatron resonance.
Trajectories shown in the Figure (3.23) have greater sizes in the perpendicular directions.
Here trajectories of electrons from the front part of the electron bunch keep the form
which is comparable with a circle. It confirms that the kind of the polarization have the
main influence on the form of trajectories. The selection of the most energetic electrons
was performed at the moment of time T° = 2000 of laser periods. All coordinates are
given in laser wavelengths. In Figures (3.23)-(3.24) the location of the axis of the laser
pulse propagation corresponds to the point (y = 44, z = 44).

Figures (3.25)-(3.26) represent trajectories of same electrons in three dimensions.
The Figure (3.25) corresponds to the back part of the electron bunch. The Figure (3.26)
corresponds to the front part of the electron bunch. Particles from the front part of the
electron bunch have energies above 150M eV during longer time period in the comparison
with electrons from the back part. Trajectories of electrons which are shown on the
Figure (3.26) are more unregularly. The selection of the most energetic electrons was
performed at the moment of time 7" = 2000 of laser periods. All coordinates are given
in laser wavelengths. On Figures the axis in the middle of simulation area located at
values of perpendicular coordinates (x,44,44).

3.3.2 The capture of electrons in the bubble

The Figure (3.27) represents the picture of the capture of electrons which is analogous
to the Figure (3.13). The difference is only in the kind of polarization, the Figure (3.27)
corresponds to the circular polarization of the laser pulse. In the Figure are shown only
those electrons which were presented at the moment of time 7" = 2000 with the energy
above 150MeV. The area of capture of electrons has greater perpendicular sizes in the
correspondence with increased sizes of the bubble. It is seen from the Figure that the
area of capture has cylidrical form. In the correspondence with analytical description
the capture of electrons occurs in the area of electrons sheath of the bubble. The process
of capture has been stoped during ~ 400 of laser wavelengths from z ~ 1300 of laser
wavelengths till x ~ 1700 of laser wavelengths. The process of capture occurs only with
the condition which we can see in the graphical part of the numerical simulation of
the laser pulse propagation. The capture of electrons occurs until the dense electron
bunch is not located directly in front of wavebreaking area. Only with the area of free
space between the wavebreaking area and the back of the electron bunch the process of
capture takes place.

Figures (3.28)-(3.30) represent the distribution of the gamma-factor of captured elec-
trons in the dependence from the xg-coordinate of capture at three different moments
of time. These Figures correspond to times 7" = 1000, 7" = 1500, T" = 2000 of laser
periods. From Figures we can conclude that the capture and acceleration of electrons
occur unregularly.
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Figure 3.23: Trajectories of some of the most energetic electrons from the back part of

the electron bunch.
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the electron bunch.
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Figure 3.25: Trajectories of some of the most energetic electrons from the back part of
the electron bunch.
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Figure 3.26: Trajectories of some of the most energetic electrons from the front part of
the electron bunch.
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Figure 3.27: The distribution of initial positions of accelerated electrons. The X-axis is
the direction of the laser propagation. Zeros of perpendicular coordinates corresponds
to the axis of the laser pulse propagation, the middle of the simulation area. On the
Figure are shown all electrons which were presented at the moment of time 7" = 2000
with the energy above 150MeV. The case of the circular polarization.
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Figure 3.28: The distribution of the gamma-factor of electrons in the dependence from
the xg-coordinate of the capture. Only those particles were included which have the
energy above 150MeV. The distribution was taken at the moment of time 7' = 1000 of
laser periods. The case of the circular polarization.

The front of distribution shown on the Figure (3.28) represents that the capture
has begun at zy ~ 600 of laser wavelengths, further has stoped at xq ~ 720 of laser
wavelengths and further has restarted at xy ~ 820 of laser wavelengths.

To the moment of time 7" = 1500 of laser periods( Figure (3.29)) the picture has
changed. The process which has restarted at xg ~ 820 of laser wavelengths has been
reducing intensity till g ~ 900 of laser wavelengths and further has begun increasing
intensity again, untill o ~ 1000 of laser wavelengths. At the moment of time 7" = 2000
of laser periods( Figure (3.30)) the distribution shows that the capture of electrons has
stoped at xg ~ 1380 of laser wavelengths and has started again at xy ~ 1720 of laser
wavelengths. This dynamic of the capture of electrons corresponds to the information
from the graphical part of simulation.

The Figure (3.17) represents distribution of current z-coordinates of electrons in
dependence from xp-coordinate of capture at the moment of time Time = 2000.
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Figure 3.29: The distribution of the gamma-factor of electrons in the dependence from
the xg-coordinate of the capture. Only those particles were included which have the
energy above 150MeV. The distribution was taken at the moment of time 7' = 1500 of
laser periods. The case of the circular polarization.
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Figure 3.30: The distribution of the gamma-factor of electrons in the dependence from
the xg-coordinate of the capture. Only those particles were included which have the
energy above 150MeV. The distribution was taken at the moment of time 7" = 2000 of
laser periods. The case of the circular polarization.
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Figure 3.31: The distribution of current z-coorginate of electrons in the bubble in de-
pendence from coordinate of capture. The data were taken at phase 7' = 2000.

It is seen from the Figure that majority of particles is located in area which can be
approximated by one line. A line describes defined relation between coordinates and
the point of capture of a particle. The electrons which were captured at more early
times have greater current coordinate. Therefore the particles inside the electron bunch
are moving from back part to the front part. The velocity of moving inside electron
bunch is determined by the slope of the approximation line. Also from the Figure we
can conclude that by the moment of time 7" = 2000 the majority of electrons which are
presented in the electron bunch was captured in area of xz-axis 1200 — 1500 wavelengths.
The electron bunch have approximately size 15 wavelengths on z-axis what confirms the
graphical information from Figure (3.7).

The Figure (3.32) represents the dependence of the number of captured electrons
from location of capture point at three different moments of time. Resolution along z-
axis is half laser wavelength. The numbers shown on graphs are quantities of electrons
which were captured in one-wavelength area along x around the corresponding z-value.
Not complete similarity of the form cross area of the graphics explained by loss of the
energy of particle with time. It means for each time shown on the Figure only high
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Figure 3.32: The distribution of the number of captured electrons in dependence from
the z-coordinate of the capture. Distribution shown at three different moments of time:
T = 1000 of laser period (blue), T' = 1500 of laser periond (green) and 7" = 2000 of
laser period (red). The laser pulse have circular polarization. For each moment of time
were taken only those particles which had the energy greater 150MeV at corresponding
moment of time.

energetic( > 150MeV) electrons are presented.
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Chapter 4

Ultra-short gaussian pulse

4.1 Introduction

Due to rapid advances in the generation of femtosecond laser pulses [61], the study of
their spatiotemporal behavior on propagation in free space [62]-[67] and plasma has be-
come a subject of interest. It is novadays well established [68], [69] that the propagation
of femtosecond laser pulses cannot be assimilated to that of longer quasimonochromatic
pulses, but the spatial and temporal characteristics interact with each other during
propagation. In free space, spatiotemporal couplings such as pulse time delay, pulse
broadening, and frequency lessening toward the beam periphery have been reported in
several papers for different initial conditions.

In this chapter we find a pulsed Gaussian beam using the saddle-point method and
some simple physical considerations and show the results of realization of described
method in the VLPL3D PIC-code. We consider construction of the electromagnetic
field and the propagation of pulsed Gaussian beam in free space and in propagation
plasma. Numerical simulations of pulsed Gaussian beam in the plasma with different
initial conditions are shown.

4.2 Analytic description

We start with the vector-potential in the form of the integral:
a(t,r) = /exp(—iwot +ikr) - §(ky — \/wi — k2 = k2) - f(ky, k.)dk,dkydk, . (4.1)

where the first multiplyer under sighn of integral corresponds to the standard wave
description, the second multiplyer means that the dispersion relation must be satisfied,
and the third multiplyer describes the profile of pulse; wg > 0. To be specific the pulse,
we take profile to be Gaussian:

fky k) = exp(—0®(k + k2)/2),woo > 1 . (4.2)
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Rewriting (4.1) as

ky + k2 *(ky + k2
a(t,r) = exp(iwgt + iwor) /exp <—z% +ikyy +ik,z — w dk.dk, .
wo
(4.3)

The integral (4.3) is Gaussian. It is known that the values of Gaussian integrals can
be presented as the value of the integrand at a stationary point of the exponential
multiplied by a factor depending on the determinant of the matrix constructed from the
second derivatives of the exponential.

In order to find the stationary point of the exponential we write

O, S = O, S =0, (4.4)
where 2 2k 4 )
Ry + R . . o + K
S=—i y2w0 x + tkyy + ik, z — yT . (4.5)
The calculation of (4.3) gives
wWo 3 . w0r2
a(t, I') = const - m exp —iwol 4w — m s (46)

where 72 = y? + 22, The numerator in Eq. (4.6) describes the propagation of the wave
fronts. The denominator is responsible for change the amplitude.
Let us construct the Gaussian wave packet in which the amplitude of each harmonic

is proportional to
1 Wy — Q 2

where AQ ~ 1/7; 7 is the pulse duration. This means that the integral

Notice that the value of o(wg) in Eq. (4.6) can depend on wy. We choose Z =
woo?(wy) = const for all wy in order to simplify calculations. This choice means that
the Rayleigh length is the same for all frequences.

For this particular choice of o(wy) we read

A 1 6/6 _1 wy — §2 2 o it i B wor? J
“zrzor) P\ T2\ TAn A T T e 1 2y )

(4.9)
The time derivative in front of the integral in Eq. (4.9) is introduced in order to exclude
the factor wp in Eq. (4.6). This is necessary in order to convert the integrand of (4.9)
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into a Gaussian integral. From Eq. (4.9) we find

Q—iAQ? (t—x)—AQ%r2 /(2(ix+2))
ir+2

A = const -
exp (—iQt +1iQx — —2(3f2)> (4.10)
2
exp (0.5 (z’AQ(t — )+ 2(?3:22)) ) '

Notice that in the area where the pulse has a significant amplitude the correction
IAQA(t — ) + AQ*r?/(2(ix + Z)) = O(AQ/Q)Q (4.11)

is not very small for short laser pulses and should be taken into account.
Eq. (4.10) is not valid for large y. In fact it is valid only in area

2 Q

o /1 LI
vl < V2\[1+ G5 3g0

(4.12)
This restriction results from the fact that Eq (4.3) is not valid for wy o« 1/0. However
this frequency domain is present in the spectrum given by Eq. (4.7). The waves in this
frequency area are very small. As a result, Eq. (4.10) is valid unless A is very small.
Since the field decays very fast as one goes to large y, this area of very small fields is
not far away from the axis.

Using the known perpendicular components of vector-potential we find the longitu-
dial part. For the vector-potential /T(F, t) = A€, + Aye, + A.e, we demand

divA =0, (4.13)
rewriting (4.13)
0, Ay + 0,A, +0.A, =0. (4.14)
we have 94 94
A, =— | —2d “dzx . 4.15
ay T+ / 5, 0% (4.15)
Perpendicular parts can be written in form
A=A, =" F | (4.16)
where
F = const - Q—iAQ? (t—x)—AQ?r?/(2(iz+2))
wr+Z
: Qr?
exp (—th - 2(z'a:+Z>> (4.17)

2
exp (0.5 (iAQ(t — )+ %)
In order to simplify calculations we assume that

wx aF wx 8F
Az:—/e dx-a—y—i-/e dx 9 (4.18)
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because only e™* gives the largest impact in the growth of functions A, and A,.

Further we have to consider the influence of the polarization factor and of relative
phase between the fields. The polarization factor appears in each perpendicular vector-
potential like usual multiplier. The phase fields appears like an additional item in the
argument in exponential function. Finally we can write
w—i(Aw)? (t—x)—(Aw)?1? /(2(ix+7Z))

ix+7Z

exp (—iwt + twx — Q(fx—’fz) + inhase) (4.19)

2
exp (0.5 <iACU(t —z)+ 2(?;12)) ) ’

w—i(Aw)? (t—x)—(Aw)?r? /(2(ix+7Z))

A, = const - Lol

A, = const - Yo

ix+7
exp <—zwt + wx — 2(:;—:?2) + inhase) (420)
2
exp (0.5 (iAw(t —x)+ 2@;::22)) ) '
1 0A, 0A,
P Ty 4.21
zw( 0z * dy ) ( |

where 7 = \/y? + 2%, w is the frequency, Aw = w/27 is inversely proportional to the
wave packet duration, o corresponds to the radius of the focal waist and Z = wo?.

Using known relations for electromagnetic field

10A4;

E; == (4.22)
. Tk
B =rotA=-|0, 0, 0, |, (4.23)
A, Ay A,
we can write 9A
E, :Re{—a—tx} , (4.24)
0A
E, = Re{—a—ty} : (4.25)
A,
E, = Re{—aa—t}, (4.26)
0A, O0A,
0A, 0A
By :Re{— Ox +E}, (428)
A A
B. — Re{a_xy _ a@y"} . (4.29)

Using standard mathematical software we obtained the final result for the 6 compo-
nents of electromagnetic field. The verbatim of field components takes too much place
for showing here, but these results were included in the VLPL3D PIC-code in the form
of the expressions of fields.
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4.3 Realization

In the VLPL3D PIC-code new Gaussian fields were added and few parameters were
included in the file with initial configuration of the computer simulation. The parameter
IsDipole = 2 switches the Gaussian kind of the laser pulse. Also in the configuration
file were added the following parameters: FocusRadius, FocusCenter, FocusLength,
which correspond to the radius of the focal waist, the position of the focus and the
range between the focus point and the point of initialization of Gaussian pulse. By
parameters Y pol, Zpol we set kind of the polarization of laser pulse. The parameter
Length is responsible for the length of the pulse at the focal waist when the kind of
pulse is set to be Gaussian. All geometric parameters are measured in wavelengths of
the laser pulse.

The Figure (4.1) represents evoluton of the pulsed Gaussian beam in the numerical
simulation of laser propagation in vacuum. Fields shown in the Figure were taken at
five different moments of time: T'= —18, T'= —6, T'=0, T = +6, T = +18. Time is
measured in the laser periods. At the zeroth moment of time the pulsed Gaussian beam
is at the focal point. Negative values of time correspond to moments of time before
the point of the focus. Each column which is shown on the Figure (4.1) represents
three different fields of the Gaussian pulse at defined moment of time: E,, B, and E;.
The color scale for the fields is shown in the left from each frame. The zero of the
perpendicular coordinates along the Y- and the Z-axis corresponds to the axis of the
propagation of pulsed Gaussian beam. All coordinates are given in laser wavelengths.
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Figure 4.1: The pulsed Gaussian beam in the VLPL3D PIC-code simulation in free space.




Figure 4.2: Fieds of pulsed Gaussian beam which were taken analytically with condi-

tions T' = 0,y = 0,z = 1: E,(red), E,(blue), E,(yellow), B,(green), B,(light-blue),
B, (orange).

Results of the numerical simulation were compared with the analytical ones. Using
mathematical software we made graphics of fieds at different conditions.

The Figure (4.2) represents two-dimensional graph of all six fields of the pulsed
Gaussian beam at the moment of time 7' = 0(time of the focus), at coordinates
(y = 0,z = 1)(z was taken equival to one by the reason that exactly on the axis of
propagation longitudial fields are vanish). In the Figure (4.2) shown the difference
between amplitudes and phases of different fields.

The Figure (4.3) represenrs three from six fields of the pulsed Gaussian beam(E,, B,, E,)
at the moments of time 7" = —18,7 = —6,7 = 0,7 = 46,7 = +18 in the (Y — Z) plane
which is perpendicular to the propagation direction, X-axis. Each column corresponds
to one from moments of time.
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Figure 4.3: The pulsed Gaussian beam expressed in the mathematical software in the (Y — Z) plane.



The Figure (4.4) represents fields of the pulsed Gaussian beam which were taken
analytically in the form which is similar with (4.1). Fieds which are shown on the
Figure (4.4) were taken at moments of time: 7= —16,7 = —6,7 = 0,7 = 46,7 =
+18. One column corresponds to one moment of time, where the fields F,, B, and E,
are shown.

83



78

S

-0.32 —ZD: =20 ] =] i
X
0.30

I ) |
=200 1 L L
-0.30 s ey axl =10
X
0.031
- ; ‘
||I 10F q
il
& of \ 1
A\
“l —-10F 1
—200L 1 L 1
0.031 i -20 i ] .

- TH
| >
B

Ey

-0.65

- T
3
g

Bz

|
=
o
]

0.064

Ex

0.064

20

20

—20

20

—20

({0

=l 1

=10

i
A

_ ©
g

Ey

-0.97

- [N
oo
g

Bz

p‘
.

2 5

E B

Ex

0.089

20

—20

20

=20

20

-20

LR

xo

{110

L
mn

*xo

T
= ~
3

Ey

— |
NN © - EEEe
=i ~ ~

B

Bz

o |
- S
= NI
a R

0.073

o

—20

20

o

—20

20

—20

i

I

A
i

Figure 4.4: The pulsed Gaussian beam expressed in the mathematical

20

[ 5
Z
g

W

] o
I -20 ! L !
-0.36 10 15 20 L3
X
035
||| 20 T T
] ok
] & of ‘)i>),ﬁ
] ol
I b L L 1
-0.35 10 15 20 25
X
0.035
I 20
] R
, o AW
W)
9 —10f
=20 L L L
0.035 10 b 20 25
X
software.




The Figure (4.5) represent fields E,, B, and E, at the moment of time 7" = 0
in analytic form and fields which were taken directly from the file of the numerical
simulation. It is seen that we have good agreement between the result of computer
simulation and the analytic form of fields.

By all Figures which were presented in this section it can be concluded that the pulsed
Gaussian beam in the VLPL3D PIC-code have good accordance with the analytic form.
In further it can be used for any kind of the numerical simulations of the propagation of
pulsed Gaussian beam and interaction of described laser pulse type witch the plasma.

4.4 The influence of the focal position on the electron
spectra

A number of computer simulations has been performed with the constructed pulsed
Gaussian beam. The laser wavelength was taken Ao = 0.82um. We use a simulation
box of dimension (60 x 60 x 60)A volume what corresponds to the size (49 x 49 x 49)um.
The number of gridpoints is 800 x 86 x 86 = 5.9 - 10°. The resolution in the transverse
direction is k,, Ay = 0.36, the resolution in longitudinal direction is k,, Az = 0.04, where
kpy = wp/c, ko/ky, = 11.95, w, = 4me*ng/m. We use two macroparticles / cell. The
plasma density is ng = 0.1 - ng; = 1.16 - 10, The laser pulse is pulsed Gaussian beam,
which is circularly polarized and has the length at focus Length = 3\. The pulsed
Gausian beam has the focal waist 0 = 5 laser periods. The focal positions were taken
at 5 different distances from the plasma front.

The Figure (4.6) represents the electron spectra in computer simulation with the
different initial conditions. The position of the focal waist of pulsed Gaussian beam
was varied relatively of the plasma beginning. It means the pulsed Gaussian beam
was focused at positions of 75\, 50\ and 25\ before the plasma, and at distances of
25X, 50\ and 75\ inside the plasma and exactly at the border of the plasma. Using the
postprocessing we obtained electrons spectra for each numerical simulation. Resolution
along thez-axis is 2MeV| Figure (4.6).

We can conclude that the spectra of electrons has insignificant dependence from the
position of the focal waist of the laser pulse relatively of the plasma boundary. In all
the cases the spectra have peak around 70MeV. The dependence from the position
of the focal waist occurs only in small part of electrons which has energies in range
(140 — 200) M eV ..
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Figure 4.5: Fields E,, I/, B, of the pulsed Gaussian beam at the moment of time 7" = 0.
The solid line shows the field which was taken analytically. Points correspond to values
of the field which were taken results of computer simulation.
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Chapter 5

Conclusions

In Conclusion we have studied in details the electron trapping and acceleration inside
the electron bunch in the bubble regime of the laser-plasma interaction. Because of the
complex nature of the ultra-relativistic laser-plasma interactions, our analysis contains a
phenomenological part. We were able to trace trajectories of single electrons inside dense
electron bunch which is generated in the the "bubble" regime. Calculated trajectories
are in a good agreement with the theoretically predicted ones. Statistical distributions of
particles in the electron bunch are determined by the energy and the polarization of the
laser pulse. We have provided the estimation of properties of the electrons acceleration
on the grounds of statistical consideration of the groups of particles in different areas of
the bubble. Electrons in the generated dense electron bunch in PIC simulations gains
the energy up to 450 M eV with the value of acceleration estimated as ~ 1MeV/\.

Using PIC simulations we have demonstrated images of electron trajectories inside
the dense electron bunch. The electron trajectories have the form of a helix around the
axis of laser pulse propagation. The energy of electrons exceeds the level of 150MeV
during the time not less than 500 laser periods. We have presented the dynamics of the
electron spectra and have described the process of electron captures into the generated
electron bunch structure. On the grounds of the performed group of numerical PIC
simulations we have concluded that the electrons acceleration occurs unregularly.

The new analytic model for an ultra-short laser beam has been developed. We
have included the pulsed Gaussian beam in the PIC simulation with using additional
physical parameters of laser pulse. Using the saddle-point method we have considered
the algorithm of the pulsed Gaussian beam construction. We have compared the pulsed
Gaussian beam in the computer simulation with the analytic form and obtained good
agreement between the form and amplitudes of all component fields of the beam in
the both cases. We have performed a set of PIC simulations using new pulsed Gaussian
beam and determined the influence of the focus position related to the plasma boundary
on the electron spectra of formed bubble. The constructed pulsed Gaussian beam is
the additional tool for PIC simulation which can be applyed in any further numerical
simulations performed with using of the VLPL3D PIC-code.
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Appendix A

Size of the Wavebreaking Area

At the beginning of interaction the wavebreaking region is located on the x-axis, where
ponderomotive potential is low and can be neglected. Using the one-dimensional cold
fluid approximation we estimate the scale of this region. The one-dimensial approach
as an estimation can be used here because p; ~ dp, /0r, ~ E| ~ 0E,/0r; ~ 0 at
this axis. The hydrodynamic approach fails when the wavebreaking accurs. However we
assume thet the structure of the nonlinear plasma wave is not yet strongly destroyed at
the beginning of the onteraction. The equation for the potential of the one-dimensional
nonlinear plasma wave is | Akhizer and Polovin, 1956, Sprangle et al., 1990, Teychenne
et al., 1993]

e —c1> P2 — ~°
- il To (A1)

D @ )+
where p; = p, = 0 is assumed.

An analysis of Eq.(A.1) shows that @,,;, < ® < ®,,4,, where ®,,;,, ~ @, ! in the
limit ®@,,,,, > 1 [Teychenne et al., 1993]. The singularity appears in the right-hand side
of Eq. (A.1) in the limit ®,,, = Y. This means the plasma wavebreaking and the
failure of the cold fluid approach [Teychenne et al., 1993, Sprangle et al., 1990]. We
assume that the bubble velocity is close to the group velocity of the laser pulse vy ~ 13
at the at the beginning of interaction. It follows from Eq. (3.9) that ®,,,, = R?/4. The
first integral given by Eq. (A.1) in the limit 1 < 1/® ~ Ppr and & < 1, 9 > 1

reduces to the form
dCID 1 1
~ S— A2
Integrating Eq. (A.1) from 1 to ®,,;, we find of the wavebreaking region
D/2~ & 12 (A.3)

We get D ~ 0.6 for R ~ 7 from Eq. (A.4) that is about two times smaller than the
value of the pattern width observed in the PIC simulation at [;,; = 25. It follows from
the Hamiltonian that

T= 70@71’1,}193 (1 - 1- cbgnax’.}/OQ) . (A4)
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Eq. (A.1) gives 7 o~ 7 that is two times smaller than 7, ~ 13. To derive a more accurate
estimation for D and < one needs a solution of a three-dimensional nonlinear equation
on the plasma wave [Lotov, 1998|.
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Appendix B

Trajectory Divergence

The potential ® is almost constant in the electron sheath and we use the equipotential
approximation to analyse the electron motion in the sheath. We get from Eq. (3.24)

v — vopr = P =~ const . (B.1)
Then, Egs. (3.19) and (3.21) reduces to the form

~ e X (B.2)

d - o
_X = —p — Vg =~ ——UO s (BS)
dt D+ VoPx D+ VoPx

where we the Lorentz force is taken in the form (3.18) and p, < 4@ is assumed. The

obtained system of equations has the first integral
X’ — X3
220~ PIn(® + vop) , (B.4)

where the initial conditions —y = —xo > 1,y = yo and p, = 0 are assumed and P is of
the order of unity in the electron sheath and outside of the wavebreaking pattern.
Using Eqgs. (B.1) and (B.4) we get
2

2
X — X
’VzeXp( 15 °> Py 2 =/ 207, (B.5)

where v > 1 is assumed. Eq. (3.22) can be rewritten in the form

dy _dy (N _ [ (B.6)
dy dt \ dt Pr— vy V@ '

Integrating the obtained equation in the limit |xf — xo| < |xo| we find the shape of
plasma cavity from the point, where the return current is over (x = xo), to the cavity
base (x = xy) in the limit v > 1

Xo(y — %) | _ Xo(X — Xo)
n{ W 1_ 15 ) (B.7)
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Making use of Eq. (B.7) the distance between between two electrons can be evaluated
4./2 1 - ad
SR~ \/7< _Xs 2X0>_5p’
Xo \2V® 49 J dy

where dp < 1 is the initial distance between two electrons. As ® ~ 1 and 0®/dy =
F' ~ —xy the trajectory divergence can be estimated as

(B.8)

n:‘(g—};‘g4\/ﬂ(1nﬁ—1/2). (B.9)

Then the trajectory divergence between the point x = Yo in the electron sheath, where
p, = 0, and the wavebreaking pattern (x = x) is

n~2RIn (2—\%) . (B.10)

Here we have used v =~ ®,,,,/2 ~ R?/8. This follows fromEq. (A.4) in the limit
07 < 1.
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