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Numerical Simulation of
Relativistic Laser-Plasma

Interaction

Abstract

In this thesis, we consider the numerical simulation of problems arising in relativistic laser-
plasma physics.

In a short introduction to the physical problem we derive the model equations, which turn
out to be nonlinear wave equations and nonlinear Schrödinger equations. In this thesis, we
consider exponential integrators of two different types for the solution of these equations.

First we consider Gautschi-type exponential integrators to solve nonlinear wave equations.
We present a short overview on the theoretical properties of such methods. Then we detail
a one- and two-dimensional implementation for our particular application. To achieve
an efficient implementation, we employ physical properties of the solution. In the one-
dimensional case, we perform extensive comparisons to a standard method and demonstrate
the superior performance of the exponential integrator for this problem. For the two-
dimensional case, we consider different geometries and present a parallelized scheme. The
means of parallelization are tailored to the problem and the different modifications of the
integrator in use. We give some comparisons to a standard method, too. Moreover, we
present a physical application, where our code was used to optimize the setup of a plasma
lens to focus the laser pulse.

In the second part of this thesis, we propose and analyze exponential Rosenbrock-type
integrators for the solution of stiff or oscillatory first order systems of differential equations
such as the Schrödinger equation. For these methods, we present a thorough convergence
and stability analysis in a semigroup framework and study the influence of perturbations
on the method. Moreover, we detail a variable step size implementation employing Krylov
subspace techniques to evaluate the matrix functions times some vectors. We present an
extensive comparison to other methods used for such problems and demonstrate, that our
implementation is competitive. Finally, we solve the nonlinear Schrödinger equation arising
in the laser-plasma context with the exponential Rosenbrock-type integrator.
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Numerical Simulation of
Relativistic Laser-Plasma

Interaction

Zusammenfassung

In dieser Arbeit betrachten wir die numerische Lösung von Problemen aus der relativisti-
schen Laser-Plasma-Physik.

In einer kurzen Einleitung in das physikalische Problem leiten wir die Modellgleichungen
her. Dabei handelt es sich um nichtlineare Wellengleichungen und nichtlineare Schrödinger-
Gleichungen. Zu deren Lösung stellen wir zwei verschiedene Typen von exponentiellen
Integratoren vor.

Im ersten Teil der Arbeit betrachten wir exponentielle Verfahren vom Gautschi-Typ, um
nichtlineare Wellengleichungen zu lösen. In einem kurzen Überblick fassen wir die theoreti-
schen Resultate zu diesen Verfahren zusammen. Dann stellen wir eine ein- und zweidimen-
sionale Implementierung für unsere Anwendung im Detail vor. Um eine effiziente Implemen-
tierung zu erhalten, haben wir uns physikalische Eigenschaften der Lösung zunutze gemacht.
Im eindimensionalen Fall zeigen wir ausführliche Vergleiche mit einem Standardverfahren
und damit die Überlegenheit des exponentiellen Verfahrens für diese Anwendung. Im zweidi-
mensionalen Fall betrachten wir verschiedene Koordinatensysteme und passen die Methode
den verschiedenen Fällen an. Außerdem zeigen wir, wie man das Programm effizient pa-
rallelisieren kann, indem man auch hier die verschiedenen Modifizierungen berücksichtigt.
Dieses Programm vergleichen wir ebenfalls mit einem Standardverfahren. Zum Schluss
zeigen wir Ergebnisse unseres Programms, mit denen eine Plasmalinse zur Fokussierung
eines Laserpulses optimiert wurde.

Im zweiten Teil der Arbeit stellen wir exponentielle Verfahren vom Rosenbrock-Typ vor.
Diese kann man zur Lösung von steifen oder oszillatorischen Systemen von Differentialglei-
chungen erster Ordnung benutzen. Zu diesen gehören unter anderem auch Schrödinger-
Gleichungen. Wir geben eine detailierte Konvergenz- und Stabilitätsanalyse in einem theo-
retischen Rahmen von Halbgruppen an. Zusätzlich wird der Einfluss von Störungen un-
tersucht. Wir zeigen außerdem, wie man diese Methoden mit variabler Schrittweite und
Krylov-Verfahren zur Approximation von Matrix-Vektor-Multiplikationen implementiert.
Diese Implementierung vergleichen wir ausführlich mit anderen Methoden, die für diese
Probleme benutzt werden und zeigen, dass das neue Verfahren konkurenzfähig ist. Zum
Schluss lösen wir die Schrödinger-Gleichung aus der physikalischen Anwendung mit dem
exponentiellen Rosenbrock-Verfahren.
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Preface

The field of relativistic laser-plasma dynamics is for several reasons very interesting and
active at the moment. By shooting a laser on some plasma, physicists gain the possibility
to transfer a very high amount of energy from the laser pulse to other forms, e.g. particle
acceleration of electrons and ions and x-ray generation. The plasma can also be used as a
lens to shape a high energy pulse. For each case there is again a wide range of applications,
e.g. in life science or medicine.

However, for these applications, the physics has to be really well understood and controlled.
This is the point where numerics can help. It is common in physics to analyze models
numerically, since for most problems the model equations are to complicated to be solved
analytically. Numerical solutions are used to study experimental setups, which cannot yet
be realized. In addition, very expensive experimental setups can be optimized theoretically
beforehand, phenomena can often be analyzed more clearly by numerical solutions than
by measurements or they can be used as prediction tools for the experimentalist to know
where to look at.

Therefore, numerics is an essential part of physical research and thus there is a lot of
interest in having good, robust methods, which produce reliable results. It is indispensable
to minimize computational time and storage requirements, since realistic problems are
typically huge.

A major part of this work results from the close collaboration between numerical mathe-
matics and theoretical physics. For a lot of achievements in the implementation of such
methods for real world problems, we use physical properties of the solution. Moreover, the
results have to fit the needs of the physicists, who use the codes. Thus the communication
was essential in many ways. In this thesis, we will present different numerical methods to
efficiently simulate applications from laser-plasma physics. We demonstrate, that there is
a long way from a theoretically understood numerical scheme to an implementation, which
is efficient for a particular for application.

In addition we present numerical schemes, which potentially can be used to further improve
the performance of physical simulations, but up to now have only been subject to theoretical
numerical studies.
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From a numerical point of view, we recall and broaden the theoretical understanding of
different types of exponential integrators, a field of great interest and activity within nu-
merical mathematics. The idea of exponential integrators already exists for quite a while.
Gautschi presented the first trigonometric method for wave equations in 1961. For parabolic
equations the idea of exponential integrators dates back to the middle of the last century,
where Lawson combined the exponential function with Runge–Kutta schemes. Only a bit
later Friedli derived the first nonstiff order conditions by using Taylor series expansion. All
these methods share the motivation via the variation-of-constants formula as well as the
necessity to evaluate matrix functions related to the exponential times some vector, hence
their names. The latter also prevented them from being of practical use for a long time. In
recent years, there was a lot of progress made in the field of matrix functions and motivated
by this, exponential methods returned to researchers’ focus. Theoretically, these methods
are by now well understood. Now, the challenge is to prove their applicability as well as to
identify applications where they are superior to standard methods.

This thesis is organized as follows: in Chapter 1 we outline the physical problem and derive
a set of model equations for laser interaction with a plasma in a fluid description. The
equations turn out to be a nonlinear wave equation coupled to a driven harmonic oscillator
for the plasma response. For the first part of the thesis, these equations will form the main
problem. A further reduction of the model leads to a nonlinear Schrödinger equation, which
is the basis for the second part.

In Chapter 2, we will recall the theory of the Störmer-Verlet or leap-frog method and
Gautschi-type exponential integrators for nonlinear wave equations. In Chapter 3 and 4,
we will present a one-dimensional and two-dimensional, respectively, implementation of the
Gautschi-type integrator for the nonlinear wave equation stated in Chapter 1. We will also
present comparisons with the standard leap-frog method for the same problem.

In Chapter 5 we turn away from the wave equation and look at general stiff or oscillatory first
order differential equations. For this we present a Rosenbrock-type exponential integrator.
We analyze the convergence and stability of such schemes, derive stiff order conditions
and give example schemes. For these we detail a variable step size implementation with a
Krylov-subspace technique for the evaluation of matrix functions times some vectors, that
are always an essential part of exponential integrators. Finally we apply the Rosenbrock-
type exponential integrator to the laser-plasma Schrödinger equation from Chapter 1.

This thesis was supported by the Deutsche Forschungsgemeinschaft through the Transregio-
SFB 18, “Relativistic Laser-Plasma Dynamics”, sub project B3, “Soliton Formation during
Relativistic Laser-Plasma Interaction”.



Chapter 1

Physical problem

1.1 Introduction to laser-plasma physics

The interaction of high-power lasers with plasmas, the “fourth state” of matter, is recently
a very active research field in physics. This is motivated by a multitude of new effects
which could be observed experimentally, such as the generation of higher order harmonics
of the fundamental laser frequency, or were predicted theoretically, such as the generation
of extremely short pulses. For a proper understanding of these effects physicists rely to a
great extend on numerical simulations. Therefore efficient and accurate numerical schemes
are important, in particular for further developments such as applications in medicine or
life science.

The word “laser” stems from Light Amplification by Stimulated Emission of Radiation.
Light in the form of photons can be absorbed as well as it can be emitted by an atom. In
either case an electron is simultaneously transitioning between inner-atomic states, com-
pensating for the energy and momentum of the photon. Usually the emission of a photon
happens spontaneously after some time, but it can be stimulated by another photon of the
appropriate energy, too. The emitted photon then adopts properties such as frequency,
phase, polarization and direction from the original one. This process, which was already
predicted by Einstein in 1917, is used nowadays to generate an intense beam of coherent
light. The laser frequency is determined by the laser medium, since the differences in the
energy levels are unique for the material used. The medium is now “pumped” by an ex-
ternal energy source to create electronic excitation. The photo-induced emission is usually
triggered by a seed beam whose number of photons is subsequently increased.

In principle, arbitrarily intense laser beams can be produced this way. The limiting factor,
however, is the refractive index of the amplifier medium, which becomes nonlinear at high
intensities. The beam begins to focus and thus the nonlinearity increases even more. This
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4 Chapter 1. Physical problem

leads to intensities which potentially cause damage to the laser system. Historically this
happened in particular in the context of amplifying short laser pulses and limited the laser
power for almost two decades.

In 1985 Mourou et al. [35] proposed the technique of “Chirped Pulse Amplification”. They
used the fact, that laser pulses, which are short in time, possess a broad spectrum. For
example using the dispersion of a set of gratings, different components of the spectrum are
reflected at different angles. Thus it is possible to construct an optical setup, where the low
frequency components travel a shorter way than the high frequency components. In this
way, the pulse can be stretched in time by several orders of magnitude. This causes the
pulse to be chirped, i.e. the spectral components of the pulse are spread along the optical
axis. Thus the light intensity is significantly reduced, but the total pulse energy remains
constant. Now it is possible to further amplify the pulse, since the spectral components pass
an amplifier at different times and the peak intensity is much lower. After that, the pulse
is recompressed in time by using another pair of gratings. Employing the CPA-technique
allowed for a rapid progress in laser power.

Whenever a powerful laser pulse is focused onto matter, a plasma is formed by field ioniza-
tion. In this state the electrons are no longer bound to the ions, but both kinds of particles
can move freely. Since they are distributed homogeneously the plasma itself is quasi-neutral.
However, the ions are much heavier and thus react much slower and to a smaller extend to
external forces such as the electric field of the laser beam. They can be assumed to form a
stationary background. The electrons are lighter and thus start to move earlier. Whenever
a charge separation is created inside the plasma, an electrostatic restoring force is created
and the electrons oscillate around the charge neutral position. The frequency of this oscil-
lation is called the plasma frequency, which depends on the electron mass and scales with
the electron number density. The light electrons respond to the part of the Lorentz force
caused by the electric field of the laser pulse and start oscillating perpendicularly to the
propagation direction of the laser pulse. This causes a local charge separation. If the laser
frequency is higher than the plasma frequency, the electrons oscillate in the electric field of
the laser pulse and thus allow the pulse to propagate inside the plasma. In the other case,
the electrons can short-circuit the electric field of the laser pulse and the light is reflected
at the vacuum-plasma boundary.

Since the plasma frequency is essentially coupled to the electron density, a characteristic
density is determined by the equality of laser and plasma frequency, above which the laser
cannot penetrate the plasma any longer. This density is called the “critical density”. In
practice “under-dense” or “over-dense” plasmas are realized by choosing different targets.
Solid targets with many electrons (∼ 1022 electrons per cubic centimeter) such as an alu-
minum foil lead to reflection of the laser pulse while gas targets (∼ 1018 – 1020 electrons
per cubic centimeter) allow laser propagation inside the plasma.

The interaction of the laser with the plasma is called “relativistic”, if the speed of the
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electrons oscillating in the electric field of the laser pulse approaches a sizable fraction of the
speed of light. The interaction then becomes nonlinear due to the relativistic mass increase
of the electrons. The plasma frequency is altered by the mass change and thus is coupled
to the intensity of the laser. In addition, the magnetic part of the Lorentz force gains
importance. It is now strong enough to turn the momentum of the oscillating electrons
into the direction of the laser propagation. Huge electron currents are produced which
lead to enormous electric fields in laser propagation direction due to charge separation.
In this regime high energy electron beams were observed experimentally during laser-gas
interaction (laser wake-field acceleration, [5, 15]). Also ion beams could be produced by
laser interaction with a thin metal foil (target normal sheath acceleration, [14, 32, 6]), since
forces eventually become strong enough to accelerate heavy ions. The general aim of these
experiments is to use the plasma to access and transfer a significant part of the energy
stored in the laser pulse in order to generate intense beams of secondary particles such as
electrons or ions. These new accelerator techniques are a key topic of recent research.

The pulse energy of a laser pulse traveling through under-dense plasma in the weakly rel-
ativistic regime, however, is almost conserved. This situation is ideally suited to use the
laser-plasma interaction to shape the laser pulse itself in space and time. From recent theo-
retical studies it is known that a weakly relativistic pulse can be compressed longitudinally
and focused transversally inside the plasma, see [33, 31]. Even after leaving the plasma
layer, the pulse is still focusing in transversal direction. Combining these two effects, a
plasma can be used as an optical device to gain very short focused pulses with very high
intensities substituting conventional lenses which can be damaged by the intensities con-
sidered here. This scenario is challenging to study experimentally and up to now has only
been described theoretically. For the theoretical studies of instabilities, their control and
the optimization of the compression by stratified plasma-vacuum formations the numerical
methods discussed in Chapter 3 and 4 were used, see [23]. An example for the pulse com-
pression is given in Fig. 1.1, where a pulse propagating through a plasma layer and a stretch
of vacuum is shown at different times. In Section 4.2.4 we explain this in more detail.

1.2 Hydro-dynamic model

We consider a high-frequency, cold-electron fluid-Maxwell model consisting of the Maxwell
equations combined with a continuity and a momentum equation for the particles in the
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Figure 1.1: The squared amplitude of the same pulse at different times is shown. The pulse
travels through a plasma layer and a stretch of vacuum and is compressed.

plasma. The Maxwell equations in cgs units are given by

∇ · E = 4πρ

∇ · B = 0

∇× E = −1

c

∂

∂t
B

∇×B =
4π

c
j +

1

c

∂

∂t
E ,

where E is the electric and B the magnetic field, ρ is the charge density, j is the current
density and c is the speed of light in vacuum.

Within the fluid-dynamical description of a plasma consisting of different particle species s
with charge qs and mass ms, the charge density is given by

ρ =
∑

s

qsns ,
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where ns is the particle density of the species s. The current density takes the form

j =
∑

s

qsnsvs .

In the relativistic case we have the following relation between the velocity vs and the
momentum ps of the particles of species s:

vs =
ps

msγs

, γ2
s = 1 +

1

(msc)2
‖ps‖2 .

The continuity equation for the different species of particles reads

∂

∂t
ns +∇ ·

( ns

msγs

ps

)
= 0 ,

and the momentum balance is given by

d

dt
ps(x, t) =

∂

∂t
ps + (vs · ∇)ps = qs

(
E +

1

c
vs ×B

)
employing the Lorentz force on the right hand side.

It is common to rescale the physical quantities in characteristic units given by the problem.
This results in dimensionless equations. In our case, such units are given by the laser. We
use the carrier frequency ω0 and wave number k0 = ω0/c of the laser pulse in vacuum to
normalize the time and space coordinate respectively,

r̃ =
ω0

c
r , t̃ = ω0t .

Here r is a vector containing the space coordinates for three dimensions. With this normal-
ization, the laser wave-length in vacuum is λ0 = 2π, the duration of a laser cycle in vacuum
is 1/ν0 = 2π, too, and the speed of light is c = 1.

For the plasma charges and masses are measured in terms of the (positive) elementary
charge e and the electron mass m respectively. The particle densities are scaled with the
maximum of the electron particle density of the initial plasma n0. For the electric and
magnetic field this results in a scaling factor ω0mc/e and for the momentum the factor is
mc.

Using the scalings and applying the chain rule to the derivatives, we can write down the
equations in dimensionless form, which we will use from now on. For simplicity, the dimen-
sionless quantities are denoted in the same way as the original ones. The Maxwell equations
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in dimensionless form are given by

∇ · E = Qρ(1.1)

∇ · B = 0(1.2)

∇× E = − ∂

∂t
B(1.3)

∇×B = Qj +
∂

∂t
E ,(1.4)

whereas the plasma equations turn into

∂

∂t
ns +∇ ·

( 1

msγs

nsps

)
= 0(1.5)

∂

∂t
ps +

1

msγs

(ps · ∇)ps = qs

(
E +

1

msγs

ps ×B
)

(1.6)

with

ρ =
∑

s

qsns , j =
∑

s

qsns
1

msγs

ps and γ2
s = 1 +

‖ps‖2

m2
s

.

The constant Q, that appears in several of the equations reads

Q =
4πe2n0

mω2
0

=
ω2

p

ω2
0

=
n0

nc

with the electron plasma frequency ωp. It determines the ratio between the maximum
plasma density n0 and the critical density nc, above which the laser cannot penetrate
the plasma. Thus for under-dense plasmas, which allow the laser to propagation inside,
Q ∈ [0, 1). For the plasma lens application and thus for our numerical investigations we
use Q = 0.3 to avoid Raman instability, which occurs for Q < 0.25.

1.3 Klein-Gordon equation

1.3.1 Vector and scalar potentials

The most general solution of equation (1.2) is given by

(1.7) B = ∇×A
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for a vector potential A. For uniqueness, we choose A to fulfill the Coulomb gauge ∇ · A =
0. Inserting this ansatz into equation (1.3) gives

∇×
(
E +

∂

∂t
A
)

= 0 ,

which also possesses a general solution given by a scalar potential ϕ,

E +
∂

∂t
A = −∇ϕ ,

which is equivalent to

(1.8) E = −∇ϕ− ∂

∂t
A .

Thus by equations (1.7) and (1.8) the magentical and electric field can both be expressed
in terms of the scalar and vector potential ϕ and A and it is sufficient, to solve equations
for them instead of solving the Maxwell equations.

Inserting equations (1.7) and (1.8) into (1.4) we obtain

∇× (∇×A) = Qj− ∂2

∂t2
A− ∂

∂t
∇ϕ .

Using the Coulomb gauge we get

∇× (∇×A) = ∇ (∇ · A)− (∇ · ∇)A = −∆A

for the left hand of the equation. Inserting the current density into the right hand side we
obtain a wave equation,

(1.9)
∂2

∂t2
A−∆A = Q

∑
s

qsns
1

msγs

ps −
∂

∂t
∇ϕ .

From equation (1.1) and the Coulomb gauge we get

(1.10) −∆ϕ = Qρ .

The momentum equation (1.6) remains to be adjusted to the potentials. For this purpose,
we use the following two identities

(ps · ∇)ps =
1

2
∇‖ps‖2 − ps × (∇× ps)

and

∇ γs =
1

2γs

1

m2
s

∇‖ps‖2 .
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to obtain
∂

∂t
ps +∇msγs = qsE +

1

msγs

ps ×
(
qsB +∇× ps

)
from (1.6). Inserting the formulas for B and E and reordering terms then yields

(1.11)
∂

∂t
(ps + qsA) = ∇ (−qsϕ−msγs) +

1

msγs

ps ×
(
∇× (ps + qsA)

)
.

The continuity equation (1.5) remains unchanged.

1.3.2 Reduction of the equation

First of all, we restrict ourselves to a quasi-neutral plasma consisting of electrons (s = e) and
the same number of single-positively charged ions (s = i) only. Thus, the initial density
profiles for electrons and ions are the same. For the charges qs we obtain qe = −1 and
qi = 1. For the masses ms we get me = 1, but the scaled ion mass mi/m is a large number,
since ions are much heavier than electrons. For example, the lightest ions, which are just
protons (nuclei of hydrogen), the mass ratio is approximately 1800. Since we consider the
case of laser propagation in under-dense plasma, the laser-plasma interaction happens on
a time scale where only the light electrons can be moved. The ions are to heavy to be
accelerated on this time scale. Thus, we assume the ions to remain at rest in our model
and solve only the continuity and momentum equation for the electrons. This yields pi ≡ 0
and ni(r, t) = ni(r, 0) =: ni(r). For simplicity, we write pe = p, γ2

e = γ2 = 1 + ‖p‖2 and
ne(r, t) = n(r, t) = ni(r) + δn(r, t). Inserting all this into the equations, we obtain

∂2

∂t2
A−∆A = −Qni + δn

γ
p− ∂

∂t
∇ϕ(1.12)

∆ϕ = Qδn(1.13)

∂

∂t
δn+∇ ·

(n
γ
p
)

= 0(1.14)

∂

∂t
(p−A) = ∇ (ϕ− γ) +

1

γ
p×

(
∇× (p−A)

)
.(1.15)

To further simplify the equations, we split the vector fields u = ucf + udf into a curl-free
part ucf and a divergence-free part udf . Therefore we define projection operators Πcf and
Πdf with the following properties;

Πcfu ≡ ucf , ∇× ucf = 0 ,

Πdfu ≡ udf , ∇ · udf = 0
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and
Πcf + Πdf = 1 .

Clearly, ucf is a gradient field, and udf is a curl field. The operators can be represented as

Πcf = ∇∆ −1∇ · and Πdf = 1−∇∆ −1∇ · .

Applying the projection operators to the momentum balance (1.15) allows to split the
equation into a divergence-free and a curl-free part. The equation

∂

∂t
(pdf −A)− Πdf

(
1

γ
p×
(
∇× (pdf −A)

))
= 0

describes the convective transport of the divergence-free part of the canonical momentum
pcan = p−A. This implies that for the initial condition pdf = A the canonical momentum
stays curl-free for all times, i.e.

pcan = pdf + pcf −A = pcf .

This initial condition simplifies the curl-free part to

(1.16)
∂

∂t
pcf = ∇ (ϕ− γ) .

pcf can be written in terms of a scalar potential, pcf = ∇ψ and the integration of (1.16)
thus leads to

(1.17)
∂

∂t
ψ = ϕ− γ + 1 .

Applying the splitting via Πdf and Πcf to the wave equation (1.12), we obtain for the
divergence-free part

∂2

∂t2
A−∆A = −Q(1−∇∆ −1∇ · )(n

γ
(A +∇ψ))

and for the curl-free part

∂

∂t
∇ϕ = −Q∇∆ −1∇ · (

n

γ
(A +∇ψ)) .

Straightforward manipulations of the right-hand sides lead to

∂2

∂t2
A−∆A = −Q

(
n

γ
A−∆ −1

(
∇ (A · ∇ n

γ
) +∇×

(
(∇ n

γ
)× (∇ψ)

)))
∂

∂t
∇ϕ = −Q

(
n

γ
∇ψ + ∆ −1

(
∇ (A · ∇ n

γ
) +∇×

(
(∇ n

γ
)× (∇ψ)

)))
.
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The direction of laser propagation always locally distinguishes one direction, the longitu-
dinal direction, from the two transversal directions, thus it is reasonable to look at the
parallel direction and the perpendicular direction separately. In the following, the spatial
coordinate z always denotes the direction of the laser propagation.

To further simplify the equations in the weakly relativistic regime, we scale the depen-
dence on the perpendicular coordinates with a parameter α and introduce the smallness
parameters ε, µ, β, %, and δ for the amplitudes of the physical variables:

A(r, t) = εA1(r, t)ε
(
A1
⊥(z, αr⊥, t) + µezA

1
‖(z, αr⊥, t)

)
n(r, t) = ni + βδn1(z, αr⊥, t)

ϕ(r, t) = %ϕ1(z, αr⊥, t)

ψ(r, t) = δψ1(z, αr⊥, t) .

The different smallness parameters are of course interrelated. In the following we justify
some relations between these parameters. From the Coulomb gauge we get

∇ · A = ε(α∇ ⊥ ·A1
⊥ + µ

∂

∂z
A1
‖) = 0

and thus α = µ. The Laplace equation for ϕ yields

%∆ϕ1 = Qβδn1

and therefore % and β are equal. Using the series expansion for γ, the reduced momentum
balance reads

δ
∂

∂t
ψ1 = −%ϕ1 − (γ − 1)

= −%ϕ1 − 1

2
‖A +∇ψ‖2 +O(‖A +∇ψ‖4)

= −%ϕ1 − 1

2

(
ε2‖A1

⊥‖2 + 2εαδA1
⊥ · ∇⊥ψ1 + α2δ2‖∇ ⊥ψ1‖2

+ ε2α2(A1
‖)

2 + 2εαδA1
‖
∂

∂z
ψ1 + δ2(

∂

∂z
ψ1)2

)
+ h.o.t. .

Here, the lowest order terms are those of order δ, % and ε2. If we assume, that the laser
pulse is initially the only driving force for plasma oscillations, we get ε2 = δ = % = β. The
amplitude of the laser pulse scales with ε. Since we are interested in the weakly relativistic
regime inside the plasma, ε� 1. In the parallel direction, the spatial dependence is given
by the carrier wavelength of the laser pulse, which is rather short. In transversal direction
the spatial dependence is smooth compared to the longitudinal direction. Therefore we
assume α� 1.
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Using these relations between the scaling parameters, we can further simplify the equations
and still obtain consistent approximations. For this reason, we will now look at the scalings
of several terms appearing in the equations: first we expand

n

γ
= (ni + ε2δn1)(1− 1

2
ε2‖A1

⊥‖2) + h.o.t.

= ni + ε2(δn1 − 1

2
ni‖A1

⊥‖2) + h.o.t. .

For a sufficiently smooth or piecewise constant density profile we assume ∇ni ≡ 0 and
therefore

∇ n

γ
= ε2(∇ δn1 − 1

2
ni∇‖A1

⊥‖2) + h.o.t. .

We then have
(∇ n

γ
)× (∇ψ) = O(ε4)

and using

A · ∇ = ε(A1
⊥ · (α∇ ⊥) + αA1

‖
∂

∂z
)

we get

A · ∇ n

γ
= O(αε3) .

Note, that the inverse Laplacian does not change the order of the dominating terms since

∆−1 = F−1 1

k2
‖ + α2k2

⊥
≈ F−1 1

k2
‖

(
1− α2k

2
⊥
k2
‖

)
=
( ∂2

∂z2

)−1

+O(α2) ,

where F−1 denotes the inverse Fourier-transform.

Starting with the expansion of the divergence-free part of the wave equation,

ε
( ∂2

∂t2
A1 − ∂2

∂z2
A1 − α2∆ ⊥A

1
)

= −ε
(
Q(ni + ε2δn1)

(
1− ε2

2
‖A1
⊥‖2
)
A1
)

+ h.o.t.

+Q∆ −1
(
∇ (A · ∇ n

γ
) +∇×

(
(∇ n

γ
)× (∇ψ)

))
,

we decide on the order of approximation. We choose the lowest order approximation, that
includes nonlinear effects, thus we have to keep terms of order ε3 or larger. Any higher
order terms are neglected, such as αε3 and α2ε4 as appear in the inverse Laplacian term.
It remains to decide whether a one-dimensional model is sufficient or not. This decision is
based upon the spatial dependence on the perpendicular direction, namely the size of α.
To obtain a one-dimensional model, terms of order α2ε are neglected, otherwise they are
kept. In the three-dimensional case the equation reads

∂2

∂t2
A−∆A = −Q

(
ni

(
1− 1

2
‖A⊥‖2

)
+ δn

)
A .
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From this we can see immediately, that for initial conditions satisfying A‖ = 0, A‖ stays
zero.

Now we expand the continuity equation and apply the same approximations as above.

ε2 ∂

∂t
δn1 = −∇ ·

(n
γ

(A +∇ψ)
)

= −n
γ

∆ψ −A · ∇ n

γ
−∇ψ · ∇ n

γ

= −
(
ni + ε2(δn1 − 1

2
ni‖A1

⊥‖2) + h.o.t.
)
ε2∆ψ1 +O(αε3) +O(ε4)

The only terms left in this equation are those of order ε2,

∂

∂t
δn = −ni∆ψ .

Differentiating once more with respect to t and inserting (1.17) and (1.13) yields

∂2

∂t2
δn = −ni∆

∂

∂t
ψ = −ni∆ (ϕ− γ + 1) = −Qniδn+ ni∆ γ .

Expanding γ and neglecting the higher order terms we get

∂2

∂t2
δn+Qniδn =

ni

2
∆ ‖A⊥‖2 .

For the curl-free part of the wave equation, the approximations lead to the same equation
as above, thus it is omitted.

We now have a consistent system of two coupled equations for the transversal vector po-
tential A⊥ and the electron density variation δn. But it turned out, that results from
simulations involving the complete γ-factor instead of the truncated series expansion only
neglecting the dependence on ψ were closer to one-dimensional PIC-simulations [30]. This
might be due to large constants involved in the higher order terms from the γ-expansion,
which could cause the higher order terms to be more important than others with lower
orders but small constants. The resulting equations are still consistent to the order ε3, but
some higher order terms are also kept.

Due to the initial condition satisfying A‖ = Az ≡ 0, we change notation for ease of presen-
tation and implementation,

a(r, t) = Ax(r, t) + iAy(r, t) .

We end up with a system of two equations, a wave equation for the vector potential,

(1.18)
∂2

∂t2
a−∆ a = −Qn

γ
a
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and the plasma response

(1.19)
∂2

∂t2
δn+Qniδn = ni∆ γ

where
γ2 = 1 + |a|2 and n = ni + δn .

These equations are nonlinear and coupled via the relativistic γ-factor and δn. Note that in
plasma they hold only in the weakly relativistic regime. In vacuum, however, the density is
zero, thus the density equation is obsolete. It remains a linear homogeneous wave equation
for the vector potential, which is exact in vacuum.

1.3.3 Different geometries

As mentioned above, depending on the size of the scaling parameter α, we can further
simplify the equations by reducing the number of space dimensions. Neglecting all terms of
order higher than ε3 there is only the transversal part of the Laplacian left involving α in
its scaling factor. If α is very small, which describes a very weakly focused pulse, where the
spot size is much bigger than the longitudinal length of the pulse, we neglect the spatial
dependence on the transversal coordinates,

∆ =
∂2

∂z2
.

This results in one-dimensional model equations.

If a one-dimensional reduction is too restrictive, we can split α and look at different spatial
geometries separately. If, for example, the pulse is only focused in one transversal direction,
and shows a very small dependence in the other direction, we can look at different scaling
parameters α1 and α2 for the two transversal directions and only neglect the smaller one of
the parameters. This results in two-dimensional Cartesian coordinates:

∆ =
∂2

∂z2
+

∂2

∂x2
.

The third case is an almost circularly shaped pulse in transversal direction. Here, we
choose cylindrical coordinates and assume the scaling parameter for the angle coordinate
to be small enough to be neglected. This leads to

∆ =
∂2

∂z2
+

1

r

∂

∂r

(
r
∂

∂r

)
.

The different geometries are important, since the numerical methods proposed in the follow-
ing are tailored to the problems and thus a change of geometry also requires a modifications
of the method.
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1.4 Schrödinger equation

For the one-dimensional case, we consider a further simplification, which leads to a nonlinear
Schrödinger equation. This is done in two steps. First, we transform into a comoving frame.
Then, we employ a slowly varying envelope approach and neglect derivatives with respect
to the slow variable. In this section, we set the density variation to zero.

1.4.1 Comoving frame

To find the right comoving frame, we have to determine the (group) velocity of the pulse. In
vacuum, the pulse moves with the speed of light, which is normalized to 1. More generally,
the velocity of the pulse is determined by the dispersion relation ω2 = c2k2 +ω2

p. The group
velocity is then defined as

vgr =
∂

∂k
ω
∣∣
k0

=
1

2ω
2c2k

∣∣
k0

=
c2k0

ω0

=
c
√
ω2

0 − ω2
p

ω0

=
√

1−Q = β

and determines the mean velocity of the wave packet. There may be also faster and slower
parts of the pulse, which causes the pulse to change its shape due to dispersion.

We choose the coordinate transformation

ϑ =
z

β
− t

to change into the moving system. Inserting this into the wave equation with constant
density, we obtain

(1.20)
(
1− 1

β2

) ∂2

∂ϑ2
a− 2

β

∂2

∂ϑ∂z
a− ∂2

∂z2
a = −Qni

γ
a .

1.4.2 Slowly-varying envelope approach

Next, we assume, that the solution possesses a slowly varying amplitude, and that only the
real and imaginary components oscillate fast. We define the slowly varying envelope ansatz
as

a(z, ϑ) = ã(z, ϑ)eiϑ+i(β− 1
β

)z

and insert this into equation (1.20) to obtain(
1− 1

β2

) ∂2

∂ϑ2
ã− 2

β

∂2

∂ϑ∂z
ã− ∂2

∂z2
a− 2iβ

∂

∂z
ã = (β2 − 1)

(
1− ni

γ

)
ã .
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Since this transformation removes the fast dependence of a on z from ã to the exponential
term, we can neglect the higher derivatives with respect to z by setting ∂ϑ∂z and ∂2

z to zero.
Thus we obtain a nonlinear Schrödinger equation

(1.21) 2iβ
∂

∂z
ã =

(
1− 1

β2

) ∂2

∂ϑ2
ã+ (β2 − 1)

(ni

γ
− 1
)
ã .
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Chapter 2

Numerical integrators for wave
equations

In this chapter we will recall numerical schemes to solve nonlinear differential equations of
the form

(2.1) y(t)′′ = −Ω2y(t) + g
(
y(t)

)
=: f

(
y(t)

)
, 0 ≤ t ≤ T , y0 = y(t0) , y′0 = y′(t0)

with a symmetric positive definite matrix Ω with arbitrary large norm and ‖g‖, ‖gy‖ and
‖gyy‖ bounded. The set of equations for the laser-plasma interaction derived in the previous
chapter leads to such a system when discretized in space. For a reasonable physical problem,
the total energy is finite, thus we have the physically motivated bound

(2.2) ‖y′(t)‖2 + ‖Ωy(t)‖2 ≤ C .

Solving wave equations numerically is a challenge, because their solution is often highly
oscillatory possibly in space and in time. For standard explicit schemes the large norm of
Ω causes stability problems. To avoid this, the temporal step size has to be chosen roughly
as τ ≤ 1/‖Ω‖. Moreover, error bounds containing derivatives of the solution are useless for
oscillatory problems.

We will first give a short review on the well known Störmer-Verlet or leap-frog method,
which is a classical explicit scheme, see [12] and references therein. Then we will recall
the construction and properties of Gautschi-type exponential integrators in two different
formulations [17, 7, 9, 12].

2.1 Störmer-Verlet leap-frog method

We start with the standard Störmer-Verlet or leap-frog method. Since in physics the name
“leap-frog method” is more common, we will only use this name in the following. For a

19
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second order differential equation of the form (2.1) we use a second order difference scheme
to approximate y′′ and thus obtain the leap-frog method

(2.3) yk+1 − 2yk + yk−1 = τ 2f(yk) .

This yields approximations

yk ≈ y(tk) for tk = t0 + kτ .

For the first step we use

y1 = y0 + τy′0 +
τ 2

2
f(y0) .

If desired, approximations to the derivatives y′k ≈ y′(tk) can be computed from

y′k =
yk+1 − yk−1

2τ
.

There is also an equivalent one-step formulation of the leap-frog method.

This method possesses several desirable properties, such as second order accuracy, symmetry
and symplecticity, see references in [12]. Another important property of a numerical scheme
is, whether it conserves physical quantities such as the total energy. For highly oscillatory
Hamiltonian problems the leap-frog method conserves the total energy up to order τ over
long times. Also the scheme is very easy to implement.

However, there are also some problems with this method. The error bound for the leap-frog
method is of the form

(2.4) ‖y(tn)− yn‖ ≤ Ce(tn−t0)Lτ 2 max
t∈[t0,tn]

‖y′′′(t)‖

where L is the Lipschitz constant of f , which causes problems for oscillatory solutions and
for large Lipschitz constants L ∼ ‖Ω‖.

Investigating the method applied to linear problems, we observe a very stringent step size
restriction due to stability problems. We have to choose step sizes τω ≤ 2 where ω ∼ ‖Ω‖
is the largest frequency of the linear problem. For spatially discretized wave equations,
τω is the Courant-Friedrichs-Lewy number, which is typically chosen as 1. For the energy
conservation usually even τω ≤ 1/2 is required.

If we assume Ω2 to approximate the (negative) Laplacian for the wave equation, ω can be
very large and thus we have to choose very small step sizes to ensure stability and energy
conservation. The constant in the error bound (2.4) is very large, too, see [12].
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Gautschi Gautschi’s method
1961 – two-step

– exact for constant g
– large errors for certain resonant step sizes τ
– energy almost conserved for nonresonant τω

Deuflhard Deuflhard’s method
1979 – two-step

– large errors for certain resonant step sizes τ
– energy almost conserved for nonresonant τω

Garćıa-Archilla, Sanz-Serna, Skeel Mollified Impulse method
1999 – two-step

– order 2 independent of Ω
– energy almost conserved for nonresonant τω

Hochbruck, Lubich Gautschi-type exponential integrator
1999 – two-step
Grimm – order 2 independent of Ω
2005 – exact for constant g

– energy almost conserved for nonresonant τω

Hairer, Lubich Gautschi-type exponential integrator
2000 – one-step

– large errors for certain resonant step sizes τ
– energy conserved up to order τ

Grimm, Hochbruck Gautschi-type exponential integrator
2006 – one-step

– order 2 independent of Ω
– energy conserved up to order τ

Table 2.1: Time line and people involved in the development of Gautschi-type exponential
integrators and the properties of the different versions.

2.2 Gautschi-type exponential integrators

The exact solution of (2.1) is given by the variation-of-constants formula

(2.5)

(
y(t+ τ)
y′(t+ τ)

)
=

(
cos(τΩ) τ sinc(τΩ)

−Ω sin(τΩ) cos(τΩ)

)(
y(t)
y′(t)

)
+

∫ τ

0

(
Ω−1 sin

(
(τ − σ)Ω

)
cos
(
(τ − σ)Ω

) )
g
(
y(t+ s)

)
dσ

applied to the second order problem rewritten as a system of first order differential equa-
tions. Gautschi-type exponential integrators are constructed using (2.5) where only the
function g, which is assumed to be bounded, is replaced by an approximation. Gautschi



22 Chapter 2. Integrators for wave equations

first proposed such a method in 1961. It was constructed to integrate (2.1) with constant g
exactly. In the following years a lot of people worked on this kind of methods, see Table 2.1.

The methods involve trigonometric functions of the matrix Ω. The applicability of such
methods thus depends to a great extent on an efficient computation of matrix functions
times some vectors. For our applications, we will detail this in Chapters 3 and 4. For more
general problems, a Krylov approximation to trigonometric matrix functions times vectors
is proposed in [10].

In this thesis, we only consider wave equations with constant Ω. For problems, where Ω
depends on time or on the solution, there is an extension of exponential integrators, see [8].

2.2.1 Two-step formulation

First, we consider the two-step formulation of the Gautschi-type exponential integrator
proposed by Hochbruck and Lubich in [17]. For the construction, we use (2.5) for tk±1 to
see, that the exact solution of (2.1) satisfies

(2.6)

y(tk+1)− 2 cos(τΩ)y(tk) + y(tk−1)

=

∫ τ

0

Ω−1 sin
(
(τ − σ)Ω

)(
g
(
y(tk + σ)

)
+ g
(
y(tk − σ)

))
dσ .

For constant g(y(t)) ≡ g we integrate exactly and obtain Gautschi’s method

y(tk+1)− 2 cos(τΩ)y(tk) + y(tk−1) = τ 2ψ(τΩ)g

with

ψ(ξ) = 2

∫ 1

0

ξ−1 sin
(
(1− σ)ξ

)
dσ = 2

1− cos(ξ)

ξ2
.

For non-constant g Gautschi proposed to approximate g
(
y(t+ σ)

)
+ g
(
y(t− σ)

)
≈ 2g(yk),

where yk ≈ y(tk). However, it turned out, that for certain resonant time steps the error of
the method was large. In [17], Hochbruck and Lubich proposed to use g

(
ϕ(τΩ)yk

)
instead

of g(yk) with a real function ϕ, which is bounded on the positive real axis and satisfies

ϕ(0) = 1 , ϕ(k2π2) = 0 for k = 1, 2, 3, . . . and |ϕ(ξ)| ≤ 1 for ξ ≥ 0 .

ϕ can for example be chosen as

ϕ(ξ) = sinc2(ξ)
(
1 +

1

2

(
1− cos(ξ)

))
.

The scheme then reads

(2.7) yk+1 − 2 cos(τΩ)yk + yk−1 = τ 2ψ(τΩ)g
(
ϕ(τΩ)yk

)
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or equivalently

yk+1 − 2yk + yk−1 = τ 2ψ(τΩ)
(
−Ω2 + g

(
ϕ(τΩ)yk

))
.

For the two-step method, a second starting value is computed by

y1 = cos(τΩ)y0 + τ sinc(τΩ)y′0 +
τ 2

2
ψ(τΩ)g

(
ϕ(τΩ)y0

)
and approximations to the derivatives of y can be obtained by

y′k+1 = y′k−1 + 2τ sinc(τΩ)
(
−Ω2yk + g

(
ϕ(τΩ)yk

))
.

Hochbruck and Lubich proved almost second order in [17]. Here, the error bound involved
a term, which slowly grows with the number of time steps and the size of the system. In [7],
Grimm completed the proof of the following

Theorem 2.1. The numerical solution obtained by (2.7) fulfills the error bound

‖yk − y(tk)‖ ≤ Cel(tk−t0)τ 2

where l is the Lipschitz constant of g. The constant C only depends on the norms of g, gy

and gyy and the energy bound (2.2), but is independent of derivatives of y, the norm of Ω,
k, τ and the size of the system.

A similar bound
‖y′k − y′(tk)‖+

∥∥Ω(yk − y(tk)
)∥∥ ≤ Cel(tk−t0)τ

holds for the derivatives.

For higher regularity of the solution, such as bounded ‖Ω2y(t)‖ and ‖Ωy′(t)‖, the approxi-
mations to the derivatives are of second order accuracy.

2.2.2 One-step formulation

The one-step formulation is directly motivated by the variation-of-constants formula (2.5).

(2.8)
yk+1 = cos(τΩ)yk + τ sinc(τΩ)y′k +

τ 2

2
ψ(τΩ)gk

y′k+1 = −Ω sin(τΩ)yk + cos(τΩ)y′k +
τ

2

(
ψ0(τΩ)gk + ψ1(τΩ)gk+1

)
with gk = g

(
ϕ(τΩ)yk

)
. Here, the approximation of the derivative of y is directly included.

We assume the functions ψ0 and ψ1 to be even and to satisfy ψ0(0) = ψ1(0) = 1. The
method is symmetric if and only if

ψ(ξ) = sinc(ξ)ψ1(ξ) and ψ0(ξ) = cos(ξ)ψ1(ξ) .



24 Chapter 2. Integrators for wave equations

To get a symplectic method, we have to choose

ψ(ξ) = sinc(ξ)ϕ(ξ) .

In [11], Hairer and Lubich proved linear energy conservation up to order τ , if the functions
satisfy

ψ(ξ) = sinc2(ξ)ϕ(ξ) .

Obviously, these methods cannot be symplectic and have good energy conservation at the
same time. However, for physical applications, the energy conservation is considered more
important.

To obtain a method, which is of second order independent of Ω, in [9] Grimm and Hochbruck
derived the following set of criteria for the functions:

max
ξ≥0

|χ(ξ)| ≤ C1 for χ = ψ, ψ0, ψ1, ϕ

max
ξ≥0

∣∣∣ϕ(ξ)− 1

ξ

∣∣∣≤ C2

max
ξ≥0

∣∣∣ 1

sin(ξ/2)

(
sinc2(ξ/2)− ψ(ξ)

)∣∣∣≤ C3

max
ξ≥0

∣∣∣ 1

ξ sin(ξ)

(
sinc(ξ/2)− χ(ξ)

)∣∣∣≤ C4 for χ = ψ0, ψ1, ϕ

To obtain first order accuracy for the derivatives of y we need additional conditions:

max
ξ≥0

|ξψ(ξ)| ≤ C5

max
ξ≥0

∣∣∣ ξ

sin(ξ/2)

(
sinc2(ξ/2)− ψ(ξ)

)∣∣∣≤ C6

max
ξ≥0

∣∣∣ 1

sin(ξ/2)

(
sinc(ξ/2)− ψi(ξ)

)∣∣∣≤ C7 for i = 0, 1

Theorem 2.2. The numerical solution obtained by (2.8) employing functions that satisfy
the bounds given above, for the problem (2.1) fulfills the error bounds

‖yk − y(tk)‖ ≤ Cτ 2 and ‖y′k − y′(tk)‖ ≤ Cτ

where the constants in are independent of Ω, the size of the system, k, τ and the derivatives
of y.

Hochbruck and Grimm also proposed a choice of functions,

ψ(ξ) = sinc3(ξ) and ϕ(ξ) = sinc(ξ) .

These functions combined with the conditions for symmetry and energy conservation result
in a set of functions ψ, ψ0, ψ1 and ϕ satisfying the conditions for the error bounds. We
follow their choice for our implementation, see Chapter 4. In contrast to the two-step
method, this scheme only solves problems with g ≡ 0 exactly.



Chapter 3

Numerical simulation of
one-dimensional laser-plasma
interaction

In this chapter, we return to the physical problem described in Chapter 1. For several
reasons, it is interesting to study the “simple” one-dimensional case first. It is necessary to
get acquainted with the physics of the problem. Moreover, the one-dimensional problem is
small enough to try several methods and find out, what works best. We identify physical
properties of the solution, which can be exploited to speed up our integrator. The small-
ness of the problem permits us to extensively compare our new method with the leap-frog
method, which is the standard integrator for such problems.

This work was done in close collaboration with theoretical physics and was published in
[24].

3.1 Physical example in one space dimension

The one-dimensional wave equation reads

(3.1)
∂2

∂t2
a− ∂2

∂z2
a = −Qn

γ
a

and the plasma response is given by

(3.2)
∂2

∂t2
δn+Qniδn = ni

∂2

∂z2
γ

25
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Figure 3.1: Pulses (red) at different times moving through the plasma (black)

with
γ2 = 1 + |a|2 and n = ni + δn .

For our test problem we choose z ∈ [0, 1000λ0]. Recall that λ0 = 2π is the normalized wave
length of the laser pulse in vacuum. We set Q = 0.3 and choose the initial density profile
ni(z) = 1 for z ∈ [105λ0, 805λ0]. At the borders of the plasma we either assume a density
jump to zero or linear increase or decrease over a stretch of 5λ0. As an initial condition for
the vector potential we choose

(3.3) a(z, t) = a0e
− (z−z0−t)2

w2
0 ei(z−z0−t) ,

where z0 = 35λ0 is the initial position of the center of the pulse, w0 = 10λ0 the initial width
of the pulse and a0 = 0.1 or a0 = 0.12 is the initial amplitude of the pulse. The initial
condition is basically a Gaussian pulse multiplied with a term oscillating with the carrier
frequency. In vacuum, (3.3) is an exact solution of (3.1).

An overview of the pulse moving through a plasma layer for the initial amplitudes a0 = 0.1
(top) and a0 = 0.12 (bottom) is given in Fig. 3.1. The same pulse is shown at different
times (red). The density profile ni is drawn in black. In both cases, first a compression
and then a widening of the pulse can be observed. If we calculate the amplitude for the
single soliton state of the Schrödinger model for a sech(z/w0) pulse with w0 = 10λ0 (see
[33]), we get a0 ≈ 0.038. A simulation of such a pulse verifies that the soliton state of our
model equations is close to this. For the two amplitudes above, this implies that we are
well within the nonlinear regime. It also suggests that the initial condition with a0 = 0.1 is
close to a bound two-soliton state, while for a0 = 0.12 it is clearly above. In the latter case
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the pulse compresses more and earlier, and more energy is radiated away from the core of
the pulse after the compression.

3.2 Numerical schemes

3.2.1 Spatial discretization

Due to the finite energy assumption on the physical solution it is possible to consider
periodic boundary conditions for the discretization as long as the simulation box is big
enough and one takes care of the reflected parts of the pulses at the boundaries. For long
time simulations this can be combined with a moving window technique. This is explicited
for the two-dimensional case in Section 4.1.5.

Semi-discretization in space is done by a pseudo-spectral method with N Fourier modes on
a space interval z ∈ z0 + [−L,L]. This leads to the following system of coupled ordinary
differential equations in time (the prime denotes time derivative):

a′′ + Ω2
1a = g1(a, δn) , g1(a, δn) = −Q(ni + δn)

1

γ
a ,(3.4)

δn′′ + Ω2
2δn = g2(a) , g2(a) = −niΩ

2
1

√
1 + |a|2 .(3.5)

Here, Ω2
1 = −D2

N with DN = F−1
N DNFN , where FN is the discrete Fourier-transform

operator, and

DN =
iπ

L
diag(−N

2
, . . . ,

N

2
− 1)

and Ω2
2 = Qni. The jth component of the vectors a(t) and δn(t) are approximations to

a(zj, t) and δn(zj, t) at zj = z0 + j 2L
N

.

3.2.2 Time discretization

In general, these equations can be written in the form (2.1) with the properties stated in
Chapter 2. Here Ω = diag(Ω1,Ω2) is a block diagonal matrix containing the linear parts of
the two equations in the diagonal blocks. For this kind of systems we discussed Gautschi-
type exponential integrators in Section 2.2. Note, that the block diagonal structure of Ω is
inherited by the matrix functions of the exponential integrator. We propose to solve these
equations with a modification of the two-step Gautschi-type exponential integrator from
Section 2.2.1. We will use

(3.6) ak+1 = 2ak − ak−1 + τ 2ψ(τΩ1)
(
−Ω2

1ak + g1

(
ϕ(τΩ1)ak, δnk

))
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with

ψ(ξ) = 2
1− cos(ξ)

ξ2
and ϕ(ξ) = sinc2(ξ)

(
1 +

1

2

(
1− cos(ξ)

))
,

and if desired

(3.7) a′k+1 = a′k−1 + 2τ sinc(τΩ1)
(
−Ω2

1ak + g1

(
ϕ(τΩ1)ak, δnk

))
for the vector potential equation (3.4), where ak, a

′
k and δnk, δn

′
k are approximations to the

vectors containing the coefficients of the spatial discretization and their time derivatives of
the vector potential and the density variation, respectively.

The accuracy of the integrator may be further improved if approximations to the inhomo-
geneity are available at additional times. This is only true if we solve the equations (3.5) for
the density variation because there the inhomogeneity only depends on a. If we solve the
equation for a first, we have approximations aj ≈ a(tj) for j = k−1, k, and k+1. We then
replace g2(a) by an interpolation polynomial of degree two interpolating in (tk−1, g2(ak−1)),
(tk, g2(ak)), and (tk+1, g2(ak+1)). Note that we consider the circular polarized case, in which
g2 is a smooth function. Using this interpolation polynomial instead of g(y(t± σ)) in (2.6)
yields

δnk+1 = 2δnk − δnk−1 + τ 2ψ(τΩ2)
(
−Ω2

2δnk + g2(ak)
)

+ τ 4χ(τΩ2)
(
g2(ak+1)− 2g2(ak) + g2(ak−1)

)(3.8)

for (3.5), where

χ(ξ) = 2
cos ξ − 1 + 1

2
ξ2

ξ4
.

The scheme (3.8) is of order four, if aj, j = k− 1, k, k+ 1 are exact or sufficiently accurate
approximations of a(tj). However, the coupled scheme (3.6), (3.8) cannot be better than
second order.

Since the spatial discretization was done with a pseudo-spectral method, Ω1 can be di-
agonalized via fast Fourier transforms and the matrix functions can be computed for the
diagonalized matrix. Ω2 is already diagonal, thus for (3.8) the computation of the matrix
functions is straight forward.

3.2.3 Choice of operators

For solving (3.4) the obvious choice would be using (3.6) with Ω1 from the previous sec-
tion. By construction, the Gautschi-type integrator then solves equations of the form
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Figure 3.2: Spectrum of the vector potential while entering the plasma, κ =
√

1−Q.

y′′ = −Ω2y + g with constant g exactly. Due to the special form of the nonlinearity g, we
can enlarge the part which is integrated exactly by writing

g1(a, δn) = −αa + g̃1(a, δn)

and setting Ω̃2
1 = −D2

N +α for a suitable α. If the pulse is inside the plasma, the dominant
term of g1 is −Qnia and is thus linear in a. However, for a nonconstant plasma profile
ni, this cannot be simply added to Ω1, since it would destroy the favorable diagonalization
property. We suggest to choose α = Q if the pulse is inside the plasma. Outside the plasma
(where ni = 0) the nonlinearity is negligible so that one should set α = 0. For varying
background densities, a medium value can be used. Thus we can still use fft’s to evaluate
the matrix functions.

3.2.4 Quasi-envelope approach

The motivation behind the quasi-envelope approach (QEA) is illustrated by the numerical
result shown in Fig. 3.2: the spectrum of the vector potential splits into two parts. The
important part is concentrated around a certain characteristic wave number depending on
whether the pulse propagates inside or outside of the plasma. In addition there is another
peak resulting from reflection which is not of interest to our physical application. Therefore,
it is sufficient to resolve the main pulse only. The number of spatial grid points required can
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be reduced significantly by shifting the spectrum appropriately, i.e. we rewrite the vector
potential a as

a(z, t) = ã(z, t)eiκz

and solve (3.1) for ã instead of a. This yields

∂2

∂t2
ã− ∂2

∂z2
ã− 2iκ

∂

∂z
ã+ κ2ã = −Q(ni + δn)

1

γ
ã , γ2 = 1 + |ã|2 .

In Section 1.4 we used a similar ansatz to derive the nonlinear Schrödinger equation. Note
that in contrast to the “classical” slowly-varying envelope approximation we do not neglect
higher derivatives of the slow variables for the QEA. In the spatially discretized equation
(3.4), D2

N has to be replaced by (DN + iκ)2. The value of κ can be varied for different
positions of the pulse (inside/outside of the plasma or at the boundary), so we choose
κ =

√
1−Q or κ = 1 or the mean value of both.

3.2.5 Multilevel approach

Obviously, the spatial grid size is determined by the necessity of resolving reflections arising
at jumps of the plasma density. If we have a sharp jump (for instance in the case of a
rectangular density profile shown in Fig. 3.1), then the reflections require small spatial step
sizes only when the pulse enters or leaves the plasma. This can be exploited in a standard
way by using two (or more) different grids. In our case we used a fine grid in transitions
between vacuum and plasma and a coarse one in the remaining simulation. Switching
between coarse and fine grid is done by interpolation and from the fine to the coarse
grid by restriction (both in Fourier space). Note that this switch requires to recompute
the differential operator and hence the matrix operators required for the Gautschi-type
integrator.

3.2.6 Overall numerical method

We suggest to combine the strategies described above. This requires the computation of
three or more sets of operators: one in vacuum (αv = 0, κv = 1, coarse grid), one in plasma
(αp = Q, κp =

√
1−Q, coarse grid), and one in the transition region (αt = Q/2, κt = 0,

fine grid), and possibly additional sets if the pulse becomes too steep to be resolved on
the coarse grid in plasma due to nonlinear pulse compression. If the background density
is small (so that the difference between vacuum and plasma wavelength is also small) and
the density profile has no sharp jump (so that no reflection occurs), it may be sufficient to
use the same set of operators for both the transition region and the plasma region on the
same coarse grid, with a κ equal to the mean of vacuum and plasma wave number. Recall
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that in vacuum, there is no nonlinearity, and thus the Gautschi-type integrator solves the
problem exactly for arbitrary time steps. Obviously, it is not necessary to compute filter
functions in this case.

3.3 Exemplary results

3.3.1 Description of the simulated problem

We consider the example setup from Section 3.1 for our numerical experiments.

For runtime comparisons we chose the piecewise linear density profile. In this case, the
multilevel approach is not necessary, because nearly no reflections occur at the plasma
boundaries. To further simplify the problem for the runtime comparisons, for methods
with the QEA, only one set of operators is used with a mean value of vacuum and plasma
wavelength. With an additional set of operators for the plasma part, the results discussed
below would be even better. But for a low background density like Q = 0.3, which we
used, the results are already very good. For denser plasmas (e.g. Q = 0.6), switching
of operators between vacuum, plasma boundary and plasma parts of the density profile
becomes a necessity. For the multilevel tests we used a rectangular density profile starting
at 105λ0 and ending at 805λ0, cf. Fig. 3.1, and we included the different operators discussed
in Section 3.2.6.

As benchmarks for the accuracy of the different numerical schemes, we used two physically
relevant error measures, namely the position error and the amplitude error of the maximum
of the pulse with an emphasis on the latter. Since we do not have an analytical solution
of the nonlinear model equations, we computed a reference solution on a very fine grid
(N = 217) with very small time steps. We then used it to measure the error in maximum
amplitude squared (amplitude error) and its position (phase error) at different times of
the simulation results. Since the simulations were computed on coarser grids (especially
the QEA solutions) we first Fourier interpolated to the same number of grid points as the
reference solution.

3.3.2 Effect of different time integration schemes

If the vector potential is held in Fourier space and only transformed back for the evaluation
of the nonlinearity/inhomogeneity, one has to compute four fast Fourier transforms per time
step for the leap-frog method (two for the nonlinearity of the wave equation and two for the
inhomogeneity of the plasma response). There is one more Fourier transform needed for
the Gautschi-type integrator since in each step the filtered as well as the nonfiltered vector
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Figure 3.3: Maximum amplitude and phase error versus runtime (a0 = 0.1) for varying τ for
leap-frog (solid blue), Gautschi (solid red), leap-frog + QEA (dashed blue) and Gautschi
+ QEA (dashed red). We used N = 212 for methods without the QEA and N = 211 for
methods with the QEA (see also Table 3.1).

potential is required in real space. In addition, one has to compute the products with
the matrix functions ψ, ϕ, χ and possibly sinc. Obviously computing a single time step
with the Gautschi-type integrator is more expensive than one time step with the leap-frog
method. But it turns out that the Gautschi-type method allows larger time steps in order
to achieve the same accuracy.

In Fig. 3.3 and Fig. 3.4 the maximum relative amplitude error (left) and the maximum
phase error in λ0 (right) are plotted over computational time. Each curve represents one
integrator on one spatial grid with different time steps.

For a given tolerance for the relative amplitude error the leap-frog method (solid blue)
needs two times smaller time steps than the Gautschi-type integrator (solid red) on the
same spatial grid (N = 212). In our examples this reduces the computational time by a
factor of 1.5 (see Table 3.1). If the phase error is taken into account, too, the gain in
computational time is even greater.
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Figure 3.4: Same as Fig. 3.3, but for a0 = 0.12.
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Figure 3.5: Amplitude and phase error plotted over the time-step size τ for the Gautschi-
type integrator including quasi-envelope approach with and without the variant described
in Section 3.2.3. Phase (solid) and amplitude (dashed) error with α = 0 (red) and α = Q
(blue) within the plasma for a0 = 0.1.

3.3.3 Effect of choice of operators

The effect of the choice of operators is illustrated in Fig. 3.5 for the case a0 = 0.1. It is
observed that the choice of α = Q within the plasma reduces the phase error significantly
while the error in the amplitude is only slightly larger. However, for a0 = 0.12 switching
between the operators did not pay off. The reason for this might be the increased density
variation compared to the smaller amplitude. The results in Fig. 3.5 were computed includ-
ing the QEA of Section 3.2.4, but the method showed the same behavior when combined
with other variants described above. The phase error is given in terms of λ0 whereas the
amplitude error is given relatively compared to the reference amplitude. In both cases the
error is averaged over pulses at 100 different positions spread evenly over the computation
interval.

3.3.4 Effect of quasi-envelope approach

By applying the QEA to the leap-frog method as well as to the Gautschi-type integrator,
the number of spatial grid points can be significantly reduced without loss of accuracy
(see curves with and without the QEA in Fig. 3.3 and 3.4). Since the major part of
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a0 = 0.1 a0 = 0.12
N τ time/min. N τ time/min.

LF 212 0.1 2:10 212 0.04 5:07
LF + QEA 211 0.1 1:03 211 0.05 1:57
Gautschi 212 0.2 1:32 212 0.12 2:28
Gautschi + QEA 211 0.2 0:44 211 0.12 1:10

Table 3.1: Runtimes for maximum one percent relative amplitude error. N is the number
of spatial grid points, τ is the time-step size. Computational details: Pentium 4, 3.0 GHz,
Intel C++ 8.1, FFT routines from Intel Math Kernel Library 7.2.

computational time is spent on fast Fourier transforms, which cost O(N logN) operations,
the reduction of grid points by a factor of 2 again leads to a saving in computational time of
more than a factor of 2. Another reason for a more than linear reduction in computational
time is that smaller arrays are more likely to fit into the cache of the processor. For small
enough arrays, a whole time step can run from CPU cache. We observed that the QEA
is more effective in reducing the amplitude error, while the Gautschi-type method is more
effective in reducing the phase error.

The parameters for the discretization needed to achieve a maximum relative amplitude
error of 10−2 are summarized in Table 3.1. Exemplary runtimes for one specific hard-
ware/software setup are also given.

If one compares the standard leap-frog method to the new variant of the Gautschi-type
integrator combined with the QEA, the computational time is reduced by a factor of 3 in
the first and even by a factor of 4.5 in the second example. If we set a bound lower than
10−2 for the amplitude error, we see that without the QEA this error bound cannot be
reached by only reducing τ . This is because the error due to the coarse spatial resolution
limits the accuracy that can be reached. Thus a finer grid is needed, which results in a
corresponding increase of computational time, while the discretization for the QEA can
stay the same (see Fig. 3.6).

3.3.5 Effect of two-level approach

The benefit of the two-level approach suggested in Section 3.2.5 is illustrated in Fig. 3.7.
The reference solution as well as the simulation results are shown at t = 700 · 2π for a
plasma jump and a0 = 0.12. It can be seen that in this case it is possible to work on a
coarse grid (N = 211) in the major part of the simulation but it is not possible to do the
whole simulation on the coarse grid. In the transition we interpolated to 213 grid points.
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Figure 3.6: Maximum amplitude error versus runtime (a0 = 0.12) for constant N and
varying τ for leap-frog with N = 213 (blue solid), leap-frog with N = 212 (blue dashed) and
Gautschi + QEA with N = 211 (red).

Figure 3.7: Results of simulations using the two-level approach compared to a one-level
simulation on the (same) coarse grid only for a0 = 0.12. Black: reference solution, blue:
solution computed on a coarse grid only, red: two-level approach (curve coincides with the
solid one).
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Figure 3.8: Relative difference in maximum intensity to the reference solution of the reduced
model for a0 = 0.1 (left) and a0 = 0.12 (right). Gautschi + QEA (see Table 3.1, red) and
PIC (blue) with N = 2 · 105, τ = ∆z(N) and 3 particles per cell, runtime around 5 : 30 h.

3.3.6 Comparison with PIC

Finally, we compare our results with PIC simulations performed with VLPL [30]. Since
PIC simulates E and B instead of A, we base our comparison on intensities, calculated by

I =
1

2

(
|E|2 + |B|2

)
=

1

2

(∣∣ ∂
∂t

A
∣∣2 +

∣∣ ∂
∂z

A
∣∣2) .

For the Gautschi-type method, one has to use (3.7) for the time derivative, and for the QEA
we replace ∂/∂z by ∂/∂z+ iκ. The difference in amplitudes between the reference solution
for the reduced model and PIC are of the same order than the error of the Gautschi-type
method with the QEA for the parameters given in Table 3.1, see Fig. 3.8. This implies
that, even with a relatively coarse discretization, the error of the simulations with our
fastest solver is within the accuracy of the reduced model, which seems to be at the border
of applicability at a0 = 0.12.

We also noticed, that there is a systematic difference in group velocity between PIC solutions
and ours. To understand whether this is due to numerical error in PIC and/or our solvers, we
made simulations with both for a very small amplitude (a0 = 0.0001). The combination of
small amplitude and a cold plasma allows to test the phase error of the numerical simulations
against the known linear analytical solution. The results in Fig. 3.9 show that PIC (blue)
produces a slight error in group velocity even on a fine grid, whereas Gautschi + QEA (red)
with coarse discretization is close to the exact solution.
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Figure 3.9: Phase-difference to the exact linear solution for PIC (blue) and Gautschi +
QEA (red), both with a0 = 0.0001.

Figure 3.10: Phase-difference to the exact linear solution for PIC (a0 = 0.12: blue solid and
a0 = 0.0001: blue dashed) and Gautschi + QEA (a0 = 0.12, red), difference between PIC
and Gautschi + QEA for a0 = 0.12 (black).
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In Fig. 3.10 we compare the phase shift (with respect to the exact linear solution) of VLPL
(blue solid) and the Gautschi + QEA simulation from Table 3.1 (red) in the nonlinear case
(a0 = 0.12). The difference between the two (black) is consistent with the linear phase
error of PIC (blue dashed). This shows that the difference in phase between nonlinear PIC
and Gautschi + QEA is mostly linear phase error of PIC, which could also influence the
accuracy of the amplitude calculation.
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Chapter 4

Numerical simulation of
two-dimensional laser-plasma
interaction

In Chapter 3 we demonstrated that we successfully implemented a Gautschi-type expo-
nential integrator combined with the QEA for the one-dimensional Klein-Gordon equation
coupled to a plasma response. Now we extend the implementation to the two-dimensional
case. Here we consider Cartesian and cylindrical geometries. It will be shown, that the
ideas of Chapter 3 can be used for the two-dimensional case, too. However, we also need
new ideas, that are specifically developed for the two-dimensional case, also with regard to
parallelization of the code. We will again use physical properties of the solution to efficiently
realize a two-dimensional code.

Again, this work was a collaboration with theoretical physics. The results were published
in [25].

4.1 Numerical schemes

4.1.1 Gautschi-type exponential integrator for time-discretization

Similar to the one-dimensional case semi-discretization in space (cf. Sec. 4.1.3) leads to a
system of second order ordinary differential equations of the form (2.1). For the solution

41
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we now suggest the one-step Gautschi-type integrator, described in Section 2.2.2,

yk+1 = cos(τΩ)yk + τ sinc(τΩ)y′k +
τ 2

2
ψ(τΩ)g

(
ϕ(τΩ)yk

)
y′k+1 = −Ω sin(τΩ)yk + cos(τΩ)y′k +

τ

2

(
ψ0(τΩ)g

(
ϕ(τΩ)yk

)
+ ψ1(τΩ)g

(
ϕ(τΩ)yk+1

))
with

ψ(ξ) = sinc3(ξ) , ϕ(ξ) = sinc(ξ) ,

the condition for symmetry,

ψ(ξ) = sinc(ξ)ψ1(ξ) and ψ0(ξ) = cos(ξ)ψ1(ξ)

and the energy conservation condition

ψ(ξ) = sinc2(ξ) .

Note, that linear problems with g ≡ 0 are solved exactly by this scheme. This allows to use
arbitrarily large time steps for the propagation in vacuum. For the propagation inside of
the plasma layers, smaller time steps have to be used to obtain the desired accuracy. Note
that this change of time steps would be much more complicated for the two-step method
discussed in the one-dimensional case.

4.1.2 Implementation of exponential integrators

For a Gautschi-type time integration scheme, the main effort per time step is the evaluation
or approximation of the products of certain matrix functions of the discretized Laplacian
Ω with vectors. It is indispensable to do this in an efficient way. The computational cost
of each time step is thus closely related to the spatial discretization.

For one-dimensional problems with periodic boundary conditions, the method of choice is
using pseudo-spectral spatial discretization, in which case the matrix Ω is diagonalizable via
one-dimensional Fourier transformations. The computational cost of these transformations
is O(Nz logNz) operations for Nz spatial grid points.

The situation is slightly different in two space dimensions. Recall that a two-dimensional
Fourier transformation on a grid consisting of Nz ×Nx grid points can be evaluated using
O(NzNx(logNz + logNx)) operations. For large grids, this may become too expensive. In
addition, on parallel machines, such transformations become inefficient due to the large
communication effort.

In general, the diagonalization of a large matrix Ω resulting from a finite difference or finite
element discretization is impossible. An alternative is to use Krylov subspace methods such



4.1. Numerical schemes 43

as the symmetric Lanczos process [3, 16]. However, for the applications considered here
such techniques were not competitive to the methods that are implied by the solution itself.

Therefore, we propose to use different spatial discretizations in different regimes depending
on physical properties of the solution. Moreover, we alter the splittings in (2.1) during the
time integration, i.e. we move parts of the discretized Laplacian into the function g. This
allows for an efficient evaluation of the matrix functions.

4.1.3 Spatial discretization

We consider the Laplacian in Cartesian coordinates as well as in cylindrical coordinates.

In the Cartesian case we assume periodic boundary conditions in both directions. This is
possible as long as reflected waves are taken care of at the boundaries, since the physical
solution satisfies a finite energy condition.

For the cylindrical case, we impose periodic boundary conditions only for the longitudinal
direction and homogeneous Dirichlet boundary conditions for r = R.

For both geometries we solve the density equation and evaluate the γ-factor only on grid
points which are inside the plasma.

Cartesian coordinates in vacuum

In vacuum we only need to solve the linear wave equation

(4.1)
∂2

∂t2
a− ∂2

∂z2
a− ∂2

∂x2
a = 0 .

For periodic boundary conditions the semi-discretization in space is done by a pseudo-
spectral method with Nz Fourier modes on the interval z ∈ z0 + [−Lz, Lz] in propagation
direction and Nx modes on the interval x ∈ [−Lx, Lx] in perpendicular direction.

Let a = a(t) ∈ CNz×Nx and a′ = a′(t) ∈ CNz×Nx be complex matrices containing approxi-
mations to the vector potential and its time derivative on the grid,

ai,j ≈ a(xj, zi, t) , a′i,j ≈
∂

∂t
a(xj, zi, t) .

The Laplacian is approximated by

∆a ≈ F−1
Nz
D2

zFNza + aFT
Nx
D2

xF−T
Nx
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where

Dk =
iπ

Lk

diag

(
−Nk

2
, . . . ,

Nk

2
− 1

)
, k = x, z ,

and FN denotes the discrete Fourier transform for N Fourier modes.

Formally, the matrices a and a′ can be reorganized by writing them column-wise into
long vectors. Then the spatially discretized equation (4.1) can be written as a system
of differential equations (2.1), where Ω is a matrix which can be diagonalized via two-
dimensional fast Fourier transforms and g ≡ 0. However, for the implementation, the
matrix notation is more efficient.

In the first time step, where the initial data is given in the spatial domain, we start by
performing a two-dimensional Fourier transform by applying fast (one-dimensional) Fourier
transforms to all columns and rows of a and a′. Then we evaluate the functions arising
in the Gautschi-type integrator at the diagonalized operator. The resulting operator can
be applied to the matrices a and a′ by pointwise multiplication. (If desired, subsequent
time steps in vacuum can be computed in frequency space by diagonal operations only.) At
times, where the solution is required in the spatial domain, inverse Fourier transforms have
to be applied to all rows and columns of a and a′ again.

Due to the Gautschi-type integrator being exact in vacuum, in the best case we only have to
compute one time step. The total cost amounts to two two-dimensional Fourier transforms
and in addition four scalar multiplications per grid point. Storage is required for two arrays
for a and a′ plus four arrays for the diagonalized matrix functions of the same size. If
a reduction of storage is necessary, the matrix functions can be computed on demand.
From the computational point of view, this is a rather small overhead compared to the
two-dimensional Fourier transforms.

Cartesian coordinates in plasma

In plasma layers we have to solve the full, nonlinear system of equations

∂2

∂t2
a− ∂2

∂z2
a− ∂2

∂x2
a = −Qni + δn

γ
a ,(4.2a)

∂2

∂t2
δn+Qniδn = ni∆γ .(4.2b)

After space discretization, the linear part is represented by a 2× 2 block diagonal matrix,
whose upper diagonal block contains the discretized Laplacian and whose lower diagonal
block contains the linear operator of the second equation, which is already diagonal. Hence,
the matrix operators required for the time integration scheme can be computed separately
for both equations. Note that due to the nonlinearity, we need to compute (and store) more
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Figure 4.1: Left: The spatial distribution of the real part of the solution in longitudinal
direction through the center of the pulse is highly oscillatory. Right: The spatial distri-
bution of the real (blue) and imaginary (red) part of the solution in transversal direction
through the maximum of the pulse is smooth.

matrix operators than in vacuum. The main cost of one time step in frequency domain
amounts to two two-dimensional Fourier transformations.

Due to the nonlinearity, the time integration scheme does not solve the discretized system
exactly anymore. However, the time step size is only limited by accuracy, not by stability,
see Section 2.2.

This straightforward implementation turns out to be quite expensive with respect to com-
putational cost and storage. Fortunately, it is possible to increase the efficiency considerably
by exploiting properties of the solution.

In the left graph of Fig. 4.1 we show the longitudinal distribution of the real part of the
vector potential a along the optical axis of the pulse. On the right, we show the transversal
distribution of the real (blue) and the imaginary (red) part of a at the point z, where the
maximum of the pulse is attained. The transversal distribution is obviously much smoother
than the longitudinal. Therefore, we can discretize the transversal direction on a much
coarser grid. Moreover, we propose to split the Laplacian and only treat the longitudinal
part of it exactly (Ω1 ≈ ∆‖) whereas the transversal part is added to the nonlinearity.
To avoid the expensive two-dimensional Fourier transformations, we propose to use fourth
order finite differences in this direction,

∂2

∂x2
a(xj, zi, t) ≈

1

12∆x2

(
−aj−2,i(t) + 16aj−1,i(t)− 30aj,i(t) + 16aj+1,i(t)− aj+2,i(t)

)
with the spatial grid size ∆x in transversal direction.
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Due to this splitting, the longitudinal part of the Laplacian, can be diagonalized by Nx one-
dimensional Fourier transforms (of length Nz). Moreover, we only have to compute (and
store) matrix operators of length Nz. For the computation we keep the vector potential
and its derivative in Fourier space only in longitudinal direction. In transversal direction
the arrays are not transformed.

For the density equation the application of the exponential integrator is straight forward
in the spatial domain. Since the density profile only depends on z here the storage require-
ments are again only of the order of vectors of length Nz. The inhomogeneity contains the
Laplacian of the relativistic factor γ which depends on the absolute value of the vector po-
tential. This is a smooth function for circularly polarized laser beams. Thus it is sufficient
to use fourth order finite differences in both directions to approximate the inhomogeneity
of the density equation.

Cylindrical coordinates

For the equations formulated in cylindrical coordinates

∂2

∂t2
a− ∂2

∂z2
a− 1

r

∂

∂r

(
r
∂

∂r
a

)
= −Qni + δn

γ
a(4.3a)

∂2

∂t2
δn+Qniδn = ni∆γ(4.3b)

we basically use the same ideas as for Cartesian coordinates in plasma regions, i.e., we use
Ω ≈ ∆‖ and treat the transversal direction as part of the nonlinearity. For the longitudi-
nal direction, we use pseudo-spectral discretization while for the transversal direction, we
suggest to use second order finite differences.

Since in cylindrical coordinates it is hard to diagonalize the complete Laplacian in a fast
and stable way we use the same implementation in vacuum as within the plasma. Note,
that for this discretization, we do not obtain the exact solution in vacuum any more. Thus,
we have to choose small time steps in vacuum, too.

Quasi-envelope approach

The quasi-envelope approach (QEA) is motivated by the fact that the important part of
the spectrum of the operator in longitudinal direction is concentrated around a certain
characteristic wave number depending on whether the pulse propagates inside or outside
of the plasma, see Fig. 4.2, left. The idea of QEA is to shift the spectrum appropriately,
see Section 3.2.4. In the two-dimensional case, the situation in longitudinal direction is
exactly the same as in the one-dimensional case but no shift is necessary for the transversal
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Figure 4.2: The spectrum of the longitudinal spatial distribution (left) is not centered
around 0, other than that of the transversal spatial distribution (right).

direction, as can be seen in Fig. 4.2, right. Note, that this only reduces the number of
grid points needed to resolve the solution, but the large norm of the approximation of the
parallel part of the Laplacian remains unchanged, thus the Gautschi-type time integrator
is still essential.

Here again, we replace the vector potential a by

a(x, z, t) = ã(x, z, t)eiκz ,

which leads to a new equation for ã

∂2

∂t2
ã−

(
∂

∂z
+ iκ

)2

ã−∆⊥ã = −Qni + δn

γ
ã , γ2 = 1 + |ã|2 .

The value of κ is chosen depending on the position of the pulse, namely κ =
√

1−Q or
κ = 1 or the mean value of both.

4.1.4 Adaptivity

In order to apply all the different variations of our scheme at the appropriate time we have
to determine the location of the pulse. This is done by physically motivated means. At
the beginning we know the location of the maximum amplitude and the exact width of the
pulse. Additionally we know the approximate group velocity of the pulse at any time. This
allows to determine the approximate speed of the maximum of the pulse and to estimate
the time when the pulse hits the next region of the simulation domain.
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With this method we can switch between the different integration schemes in vacuum and
plasma for Cartesian coordinates as well as adapt the values of κ for the QEA. The latter
can be done by a simple shift in the position of the Fourier coefficients which also ensures
periodicity of the shift function eiκz with regard to the box length 2Lz.

Additionally we can change the spatial grid, which becomes necessary for very narrow pulses
as they occur in the simulation of pulse compression. Also for hard plasma boundaries,
where reflections are no longer negligible, it becomes necessary to interpolate to a finer grid
and invert the QEA shift, as was already shown for the one-dimensional case in Chapter 3.
For pseudo-spectral discretization this only requires a larger array in Fourier space where
extra entries are filled with zeros. Since the computation is much more expensive for the
finer grid, interpolation is avoided unless absolutely necessary. Therefore, we also use a
rather tight estimate for the pulse to be nonzero.

4.1.5 Moving simulation window

There are a lot of interesting applications where the full simulation domain is very large
and it is not at all feasible to use the complete spatial domain during the whole simulation.
To avoid this we use a moving window technique.

Using the group velocity as described above we estimate the time when the pulse comes
close to the right boundary of the simulation box. For this purpose we slightly overestimate
the domain on which we consider the pulse to be nonzero. This increases robustness while
the computational overhead is negligible.

The shift is implemented by transforming the vector potential to physical space, cutting off
the left part and extrapolating to the right by adding zeros for a and δn. ni is calculated
from the known profile function.

There are two difficulties to be mentioned in this context due to the periodic boundary
conditions. First, if reflections occur at plasma boundaries we have to cut them off entirely
when shifting the simulation box. Secondly, in vacuum this limits the time-step size be-
cause otherwise the pulse would move periodically through the box instead of moving on
continuously. This would result in spatial shifts of the solution.

4.1.6 Parallelization

Even though we already reduced computational costs significantly, for large problems it can
be useful to have a parallel version of the method. Here we have to tailor the means of
parallelization to the different cases described above.
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Figure 4.3: Example parallelization scheme for two processors, Cartesian coordinates in
plasma, periodic boundary conditions and 20 grid points in transversal direction. The
colored columns have to be communicated between the processors for the evaluation of the
transversal Laplacian with finite differences and are stored twice.

Vacuum

For Cartesian coordinates in vacuum we first distribute the columns of the arrays uniformly
over the processors to perform the one-dimensional fast Fourier transforms for each column.
We then do a parallel transposition of the array and distribute the rows over the processors
for the second part of the two-dimensional Fourier transform1. Of course the application of
the matrix function is also spread over the processors involved.

Plasma

In plasma we basically use the same strategy for parallelization for both kinds of geometries.
Here we again distribute all the columns of the arrays over the processors. But since we only
need one-dimensional Fourier transforms we can avoid transposing the arrays and therefore
save a lot of communication time between different processors.

The only communication between processors is due to the transversal part of the Laplacian,

1We use the MPI based transpose routine from FFTW version 2 and serial FFT routines from FFTW
version 3.
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which is discretized by fourth and second order finite differences in plasma for Cartesian
and cylindrical coordinates, respectively. Thus we have to exchange at most two columns
at each side of the distributed array slices. In Fig. 4.3 this is demonstrated for a matrix
divided to two processors for Cartesian coordinates and periodic boundary conditions. In
this case we have to store four extra columns per processor which are copied from the
neighboring array.

Each processor first sends the boundary columns to the neighboring processors. Then the
next time step is performed for the inner part of the array. At the end, the information sent
from the neighboring arrays is used to calculate the finite difference approximation at the
boundaries. This results in a parallelization which hardly suffers from communication over-
head between processors, because latencies and transmission times are almost completely
hidden by the asynchronous communication.

4.2 Exemplary results

4.2.1 Laplacian splitting

In this section we will demonstrate, that the error introduced by the splitting of the Lapla-
cian is negligible. For this, we use a rather small example, where it is possible to have a
high resolution reference solution to compare with. We also reduce the model and only
consider the wave equation with constant density and cubic nonlinearity

(4.4)
∂2

∂t2
a−∆a = −Q(1− 1

2
|a|2)a , Q = 0.3 .

This is sufficient, since the splitting only affects the wave equation and does neither depend
on the kind of nonlinearity nor on the density equation.

The initial conditions are chosen from

(4.5) a(x, z, t) = a0e
−(z−z0−k0t)2

l20 e
−x2

w2
0 ei(k0z−z0−t)

where a0 = 0.15 is the initial amplitude, z0 = 35λ0 the initial pulse position in longitudinal
direction, l0 = 10λ0 the length, w0 = 100λ0 the width of the pulse and k0 =

√
1−Q the

plasma wave length.

Equation (4.4) is solved for Cartesian coordinates (x, z) ∈ [−300λ0, 300λ0] × [0λ0, 300λ0]
and t ∈ [0/ν0, 300/ν0]. We use 1024 grid points in z-direction and 512 grid points in x-
direction. The time-step size is chosen as 0.2∆z for the spatial grid size ∆z in longitudinal
direction. For the reference solution we use twice as many points in both spatial directions,
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Figure 4.4: The relative error of the maximum squared amplitude is shown in the upper
picture and the absolute error of the position of the maximum in wave lengths is drawn in
the lower picture. The curves marked by blue circles are the errors of the Gautschi-type
method applied to the full Laplacian, the red squares are the errors of the splitted method
with Fourier spectral discretization in both directions and the green diamonds are those for
the splitted method with finite differences in transversal direction.
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whereas for the time discretization we choose one fourth of the original time step. For the
error calculation we Fourier interpolate the solutions to the finer grid.

In Fig. 4.4 we can see the error in two different measures, in the upper picture the relative
error in the maximum squared amplitude is shown and the lower one shows the absolute
error of the position of the maximum in wave lengths. For each type of error there are
three different curves. The blue circular marks show the error of the Gautschi-type method
applied to the full Laplacian, discretized via Fourier spectral method in both directions.
The red square marks illustrate the errors of the Gautschi-type method applied to the
parallel Laplacian only and the transversal part treated as nonlinearity. Here we still use
Fourier spectral methods for the discretization in both directions. The green diamond
marks represent the error of the splitting method, but this time with fourth order finite
differences in transversal direction. We can see, that the three error curves are nearly
indistinguishable, which indicates that the splitting does not degrade accuracy.

4.2.2 Effect of different time integration schemes

We next compare our new implementation of the Gautschi-type integrator with the leap-frog
scheme, which is the standard scheme used for the solution of second order wave equations.

Here, we solve the full system of equations for the two-dimensional Cartesian case (4.2).
The density layer starts at 250λ0 with a linear increase up to Q = 0.3 over 5λ0, then it
stays constant over 500λ0 until there is a linear decrease between 755λ0 and 760λ0 again.

The initial conditions are again taken from (4.5) with a0 = 0.12, z0 = 150λ0 and k0 = 1,
since the pulse starts in vacuum. The remaining coefficients are the same as above.

The simulation is run up to t = 1240/ν0, thus the pulse propagates through the plasma
layer and travels through vacuum afterwards for some time. For the runtime comparisons
we used the moving window technique, since the simulation domain is quite long.

The solution for this example can be seen in Fig. 4.5.

In vacuum there is no need to compare the leap-frog scheme with the exact solution which
the Gautschi-type integrator computes, thus we include only the time steps done inside of
the plasma in the runtime comparison.

As a measure for the quality of the solution we choose the relative error of the maximum
amplitude. As a sensible error threshold we use a value of 1%. Since the reference solution
was computed on a finer grid, we interpolated the solution to the reference grid and then
computed the maximum amplitude.

In Fig. 4.6 the amplitude error of the Gautschi-type method (red) and the leap-frog method
(blue) is plotted against computation time spent in plasma regions. The dashed line repre-
sents a coarse spatial discretization with 1024 grid points in longitudinal direction, where ∆z
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Figure 4.5: Example solution for the runtime comparison. The pulse is shown at different
times of the computation.

is chosen to be 0.352λ0 and 400 grid points in transversal direction with ∆x = 2λ0. The con-
tinuous line gives the errors for a fine spatial discretization with Nz = 2048, ∆z = 0.176λ0,
Nx = 800 and ∆x = λ0. In both cases the resulting simulation box of approximately 360λ0

in longitudinal direction and 800λ0 in transversal direction is moved along with the solution.

For the same error the temporal step size for the leap-frog method has to be about twice
as small as for the Gautschi-type integrator. This is in agreement with the results in the
one-dimensional case from Chapter 3. Moreover, in the two-dimensional case the advantage
of the leap-frog method in terms of computational time per time step is smaller than in
the one-dimensional case, because simulation times are more strongly affected by memory
bandwidth limitations, see Fig. 4.7. Thus it is even more efficient to invest in a more
sophisticated algorithm and benefit from the larger time steps.

4.2.3 Parallelization

To demonstrate the efficiency of the parallelized version of our code we simulated the same
problem as for the runtime comparison with one, two, four, six and eight processors on a
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Figure 4.6: The relative error in the maximum amplitude is plotted over the runtime in min-
utes. Red: Gautschi-type integrator. Blue: leap-frog. Dashed: coarse spatial discretization.
Solid: fine spatial discretization. Along each curve the value of τ varies.

Figure 4.7: For the Gautschi-type method (blue, solid) and the leap-frog method (red,
dashed) the runtime between outputs (i.e. 228 time steps, except for vacuum steps with
the Gautschi-type method) is shown. The space- and time-step size is the same for both
schemes except in vacuum.
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Figure 4.8: The upper three pictures show the full time (red), pure number crunching
time (cyan), data receive time (blue) and synchronization time (green) per time step for
two, four and eight processors respectively. The fourth picture shows the accumulated full
integration time for one, two, four and eight processors (curves from top to bottom).



56 Chapter 4. 2D Simulation

cluster of single CPU P4 nodes with standard Gigabit Ethernet interconnects. We used the
finer one of the two spatial discretizations.

In the upper three pictures of Fig. 4.8 full time (red), pure number crunching time (cyan),
data receive time (blue) and synchronization time2 (green) per time step for two, four and
eight processors, respectively, is shown. In each case we can distinguish between three
different behaviors of the code. First of all there is the vacuum step region. Here, the
crunching time is quite low, since we neither evaluate the nonlinearity nor solve the density
equation. However, due to the matrix transpositions the communication time is rather
long.

The other two cases are the plasma and the transition regions. The only difference is
the spatial resolution which is higher in the transition region. However in both cases the
full equations are solved and the Laplace splitting is applied. The first results in higher
crunching times whereas the latter reduces the communication time significantly.

Another nice property is the very short synchronization time given by the middle gray
curves. Thus independent of the number of processors used, the work is evenly balanced
over the processors.

In comparison we can see, that a single vacuum time step takes longer than a single time
step for the full equations, even with the higher spatial resolution in transition regions. This
is compensated by the fact that the time steps in vacuum are 200 times larger than the time
steps we use for solving the full set of equations. We illustrate this in the fourth picture of
Fig. 4.8, where the accumulated full integration time is shown for a single processor and for
two, four and eight parallel processors (curves from top to bottom). The strongest increase
of computational time is in the transition region, where we use the higher spatial resolution
followed directly by the plasma regions. We can also see, that the integrator spends hardly
any time in vacuum regions. Note, that the length of the time steps in vacuum is only
limited by points of data output and the shifting of the simulation box.

The runtime per output step is shown in Fig. 4.9. Here again the different regions of the
simulation are visible. The drop in simulation time towards the end of the plasma region is
due to the remaining length of the plasma layer inside the simulation box, since the density
equation is only solved on those grid points which lie inside the plasma.

Another point to emphasize is the good scaling of the accumulated full integration times
with the number of processors used, even for this relatively small problem. Using two
processors reduces the runtime by a factor of 1.97. The runtimes for four, six and eight
processors scale with 3.88, 5.65 and 7.08 respectively (see Fig. 4.10).

2The synchronization time is due to MPI Barrier() calls after each time step.
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Figure 4.9: The runtime per output step for two, four, six and eight processors (red, green,
blue and cyan curves) respectively compared to single processor runtime (black).

Figure 4.10: Speedup factor for 2, 4, 6 and 8 processors (blue) versus ideal scaling (red).
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4.2.4 Example for a physical application

One physical application for our code is the simulation of layered plasma-vacuum structures
to study the longitudinal compression and especially the transversal focusing properties
of such structures. For a controllable and efficient longitudinal compression, the laser
amplitude has to be subrelativistic, i.e. a2

0 < 1 (where a0 = 1 corresponds to 1018W/cm2),
otherwise the energy loss inside the plasma would be too large. Moreover, the spot size
has to be much larger than the pulse length, otherwise the pulse would directly show
collapse behavior. This implies that a high power laser pulse has to be only weakly focused
initially to be in the right amplitude and spot size range. Inside the plasma the pulse is
longitudinally compressed from ten or more wave-lengths to just one or two cycles [33]. To
reach high subrelativistic or even relativistic intensities, the pulse has to be transversally
focused as well. Fortunately the plasma induces a negative curvature of the phase front of
the pulse, which leads to focusing of the pulse behind the plasma layer [31]. This focusing
can be enhanced by slicing a plasma layer of optimal length for longitudinal compression
into multiple shorter layers with vacuum sections in between.

An example for two layers with different lengths is shown in Fig. 4.11; the amplitude curve
and the radial profiles at different times are shown in Fig. 4.12. In the vacuum regions
between the layers additional transversal focusing occurs and thus the transversal focusing
potential of the pulse can be fully exploited.

This leads to a much smaller spot size in the focus behind the last plasma layer (Fig. 4.14).
Furthermore the pulse enters the next layer with a higher amplitude and thus the nonlinear
self interaction is enhanced, too. As can be seen in Fig. 4.13, both effects combined lead
to a much larger achievable intensity that increases with the number of layers. But the
optimum configuration seems to be two layers, where the second layer is much thinner than
the first.

An additional advantage of a layered structure is the control of transversal filamentation
[33]. For this more than two layers can be necessary. Results on filamentation control and
a thorough review of the focusing properties of multiple plasma layers can be found in [23].
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Figure 4.11: An initially (in both directions) Gaussian pulse with a0 = 0.1, L0 = 10λ0 and
W0 = 150λ0 propagates through two plasma layers of density Q = 0.3 and different lengths.
The first layer is 330λ0 long and the second 125λ0 with 1500λ0 vacuum in between.
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Figure 4.12: Plots of the radial profile of Fig. 4.11 at six different times/locations, marked
with red squares in the plot of the maximum amplitude (top). Time evolution from left to
right, top to bottom.
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Figure 4.13: Maximum amplitude of the same initial pulse as in Fig. 4.11 as it propagates
through one to four plasma layers of density Q = 0.3. The curves show the maximum
amplitude for one layer (460λ0, black), two layers (227λ0 each, red solid), three layers
(150λ0 each, green), four layers (112λ0 each, blue) and again two layers (355λ0 and 100λ0,
red dashed). In each case there is a total of 2100λ0 vacuum between the layers.

Figure 4.14: Spot size of the same initial pulse as in Fig. 4.11 propagating through the
same plasma / vacuum configurations as in Fig. 4.13.
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Chapter 5

Exponential Rosenbrock-type
methods

Now we leave the wave equation and turn to first order systems of differential equations.
We propose a new class of numerical methods for the time integration of large systems of
stiff or oscillatory differential equations

(5.1) u′(t) = F (t, u(t)) , u(t0) = u0 .

Such equations typically arise from spatial discretizations of nonlinear time dependent par-
tial differential equations such as the Schrödinger equation, see Chapter 1.4

This chapter is based on [21] and [22].

5.1 Exponential integrators for first order systems

In this section we consider the time discretization of (possibly abstract) differential equa-
tions in autonomous form

(5.2) u′(t) = F (u(t)) , u(t0) = u0 .

The precise assumptions on the problem class will be stated in Section 5.2 below. The
numerical schemes considered are based on a continuous linearization of (5.2) along the
numerical solution. For a given point un in the state space, this linearization is given by

u′(t) = Jnu(t) + gn(u(t)) ,(5.3a)

Jn = DF (un) =
∂F

∂u
(un) , gn(u(t)) = F (u(t))− Jnu(t)(5.3b)

with Jn denoting the Jacobian of F evaluated at un, and gn the nonlinear remainder,
respectively. The numerical schemes will make explicit use of these quantities.
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5.1.1 Method class

Let un denote the numerical approximation to the solution of (5.2) at time tn. Its value at
t0 is given by the initial condition. Applying an explicit exponential Runge–Kutta scheme
[20] to (5.3a), we obtain the following class of explicit one-step methods

Uni = eciτnJnun + τn

i−1∑
j=1

aij(τnJn)gn(Unj) , 1 ≤ i ≤ s ,(5.4a)

un+1 = eτnJnun + τn

s∑
i=1

bi(τnJn)gn(Uni) ,(5.4b)

which henceforth will be called exponential Rosenbrock methods. Here, τn > 0 denotes a time
step, and un+1 is the numerical approximation to the exact solution at time tn+1 = tn + τn.

The method is built on s internal stages Uni that approximate the solution at tn + ciτn.
The real numbers ci are called nodes of the method. The method is fully explicit and does
not require the solution of linear or nonlinear systems of equations. As usual in exponential
integrators, the weights bi(z) are linear combinations of the entire functions

(5.5) ϕk(z) =

∫ 1

0

e(1−σ)z σk−1

(k − 1)!
dσ , k ≥ 1 .

These functions satisfy the recurrence relations

(5.6) ϕk(z) =
ϕk−1(z)− ϕk−1(0)

z
, ϕ0(z) = ez .

The coefficients aij(z) will be chosen as linear combinations of the related functions ϕk(ciz).
Without further mentioning, we will assume throughout the paper that the methods fulfill
the following simplifying assumptions

(5.7)
s∑

j=1

bj(z) = ϕ1(z),
i−1∑
j=1

aij(z) = ciϕ1(ciz), 1 ≤ i ≤ s.

Note that (5.7) implies c1 = 0 and consequently Un1 = un.

Proposition 5.1. Exponential Rosenbrock methods (5.4) satisfying the simplifying assump-
tions (5.7) preserve equilibria.

Proof. We consider an initial condition u0 = u? satisfying u(t) ≡ u? for all t > t0 and hence
F
(
u(t)

)
≡ 0. Since U11 = u0 = u? induction and the simplifying assumptions yield

U1i = eciτ1J1u? + τ1

i−1∑
j=1

aij(τ1J1)
(
F (u?)− J1u

?
)

= eciτ1J1u? − τ1ciϕ1(ciτ1J1)J1u
? .
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Using the recurrence relation for ϕ1 we obtain U1i = u?. Now we can repeat the calculation
for u1 and obtain the desired result.

Methods that satisfy the simplifying assumptions (5.7) possess several other interesting
features:

• The methods allow a reformulation for efficient implementation (Section 5.1.2).

• The inner stages have small defects and this leads to simple order conditions for stiff
problems (Section 5.2.1).

• The methods can easily be extended to non-autonomous problems (Section 5.5).

5.1.2 Reformulation of the method

For the implementation of an exponential Rosenbrock method, it is crucial to approximate
the multiplication of matrix functions and vectors efficiently. In contrast to the implemen-
tation of the Gautschi-type methods of the previous chapters, we cannot rely on the use
of Fourier-transforms, since the linearization may lead to more complicated Jacobians than
the discretized Laplacian. Moreover ideas such as the Laplacian splitting cannot be applied
here, since the convergence analysis shows the necessity to use the complete linearization.
Otherwise order reduction will arise.

For large matrices where fast diagonalization is not possible the method of choice is Krylov-
subspace approximation. We therefore suggest to express the vectors gn(Unj) as

gn(Unj) = gn(un) +Dnj , Dnj = gn(Unj)− gn(un) , 2 ≤ j ≤ s .

Due to the simplifying assumptions (5.7), the method (5.4) is equivalent to

Uni = un + ciτnϕ1(ciτnJn)F (un) + τn

i−1∑
j=2

aij(τnJn)Dnj ,(5.8a)

un+1 = un + τnϕ1(τnJn)F (un) + τn

s∑
i=2

bi(τnJn)Dni .(5.8b)

The main motivation for this reformulation is that the vectors Dni are expected to be
small, usually O(τ 2

n). When computing the application of matrix functions to these vectors
with some Krylov subspace method, this should be possible with very few Krylov steps.
Consequently, only one computationally expensive Krylov approximation will be required
in each time step, namely that involving F (un). A similar idea has also been used in [36]
and in [18] to make the code exp4 efficient. A detailed description of the implementation
is given in Section 5.7.
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5.2 Analytic framework and preliminary error analysis

For the error analysis of (5.4), we work in a semigroup framework. Background information
on semigroups can be found in the textbooks [4, 29]. Here, we only recall the elementary
definitions.

Definition 5.2.

1. A strongly continuous or C0-semigroup on a Banach space X is a one-parameter
family Γ(t), 0 ≤ t <∞, of bounded linear operators from X into X such that

• Γ(0) = I is the identity operator on X,

• Γ(t+ s) = Γ(t)Γ(s) for every t, s ≥ 0 and

• ‖Γ(t)x− x‖ → 0 as t↘ 0 for all x ∈ X.

2. The infinitesimal generator J of a C0-semigroup Γ is defined by

Jx = lim
t↘0

1

t

(
Γ(t)− I

)
x

whenever the limit exists. The semigroup is then denoted by eJt.

3. The domain of J , D(J), is the set of x ∈ X for which this limit exists.

Remark. Let J be the infinitesimal generator of a C0-semigroup Γ(t) = eJt. There exist
constants ω ≥ 0 and C ≥ 1 such that

(5.9) ‖Γ(t)‖X←X ≤ Ceωt for 0 ≤ t <∞ .

Here ‖ · ‖X←X denotes the norm of an operator from X to X.

Let

(5.10) J = J(u) = DF (u) =
∂F

∂u
(u)

be the Fréchet derivative of F in a neighborhood of the exact solution of (5.2). For our
analysis we consider the following assumptions.

Assumption A.1. The linear operator J is the generator of a strongly continuous semi-
group etJ on a Banach space X. More precisely, we assume that there exist constants
C ≥ 1 and ω ≤ 0 such that (5.9) holds uniformly in a neighborhood of the exact solution of
(5.2).
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Recall that the analytic functions bi(z) and aij(z) are linear combinations of ϕk(z) and
ϕk(ciz), respectively. These functions are related to the exponential function through (5.5).
Assumption A.1 thus guarantees that the coefficients bi(τnJ) and aij(τnJ) of the method
are bounded operators. This property is crucial in our proofs.

In the subsequent analysis we restrict our attention to semilinear problems

(5.11) u′(t) = F (u(t)) , F (u) = Au+ f(u) , u(t0) = u0 .

Then J takes the form

(5.12) J = J(u) = A+
∂f

∂u
(u) .

This restriction simplifies the assumptions considerably, especially the stability of discrete
evolution operators (c.f. Lemma 5.6 and Theorem 5.9 below) in case of variable step sizes
would be more complicated to proof in general. In many cases this assumption is not really
a restriction, since problems arising form discretized parabolic partial differential equations
often involve a large linear part A and a rather well behaved nonlineartity f . Nevertheless
it is necessary to work with the full Jacobian.

For our case this implies that (5.3b) takes the form

(5.13) Jn = A+
∂f

∂u
(un) , gn(u(t)) = f(u(t))− ∂f

∂u
(un)u(t) .

Our main hypothesis on the nonlinearity f is the following:

Assumption A.2. We suppose that (5.11) possesses a sufficiently smooth solution u :
[0, T ] → X with derivatives in X, and that f : X → X is sufficiently often Fréchet
differentiable in a strip along the exact solution. All occurring derivatives are supposed to
be uniformly bounded, ‖ · ‖ denotes the norm on X.

By Assumption A.2, the Jacobian (5.12) satisfies the Lipschitz condition

(5.14) ‖J(u)− J(v)‖X←X ≤ C‖u− v‖

in a neighborhood of the exact solution.

Remark. If the semigroup generated by J is even analytic, more general nonlinearities
can be analyzed. To keep our presentation simple, we restrict ourselves for the moment to
strongly continuous semigroups and sketch the possible extensions to analytic semigroups
in Section 5.10.
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5.2.1 Defects

For brevity, we write Gn(t) = gn(u(t)). Inserting the exact solution into the numerical
scheme gives

u(tn + ciτn) = eciτnJnu(tn) + τn

i−1∑
j=1

aij(τnJn)Gn(tn + cjτn) + ∆ni ,(5.15a)

u(tn+1) = eτnJnu(tn) + τn

s∑
i=1

bi(τnJn)Gn(tn + ciτn) + δn+1(5.15b)

with defects ∆ni and δn+1. The specific form of the defects is calculated by expressing the
left-hand side of (5.15) by the variation-of-constants formula

u(tn + ciτn) = eciτnJnu(tn) +

∫ ciτn

0

e(ciτn−σ)JnGn(tn + σ) dσ

and expanding then Gn into a Taylor series at tn. This yields

∆ni =

∫ ciτn

0

e(ciτn−σ)JnGn(tn + σ) dσ − τn

i−1∑
j=1

aij(τnJn)G(tn + cjτn)

=

q∑
k=0

(∫ ciτn

0

e(ciτn−σ)Jn
σk

k!
dσ − τn

i−1∑
j=1

aij(τnJn)
(cjτn)k

k!

)
G(k)

n (tn) + ∆
[q+1]
ni

=

q∑
k=0

τ k+1
n

(
ck+1
i

∫ 1

0

e(1−σ)ciτnJn
σk

k!
dσ −

i−1∑
j=1

aij(τnJn)
ckj
k!

)
G(k)

n (tn) + ∆
[q+1]
ni

=

q∑
k=0

τ k+1
n ψk+1,i(τnJn)G(k)

n (tn) + ∆
[q+1]
ni(5.16)

with

(5.17) ψk,i(z) = ϕk(ciz)c
k
i −

i−1∑
j=1

aij(z)
ck−1
j

(k − 1)!

and remainders

∆
[q+1]
ni =

∫ ciτn

0

e(ciτn−σ)Jn

∫ s

0

(σ − s)q

q!
Gn(tn + s) ds dσ

− τn

i−1∑
j=1

aij(τnJn)

∫ cjτn

0

(cjτn − s)q

q!
Gn(tn + s) ds .
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Small defects in the internal stages facilitate our convergence proofs considerably. This
gives a further reason for requiring (5.7) which implies ψ1,i(z) ≡ 0. Unfortunately, explicit
methods cannot have ψ2,i(z) ≡ 0 for all i. Nevertheless, the second term on the right-hand
side of (5.16) turns out to be small. This is seen from the identity

G′n(tn) =
∂gn

∂u

(
u(tn)

)
u′(tn) =

(
∂f

∂u

(
u(tn)

)
− ∂f

∂u
(un)

)
u′(tn) ,

which itself is a consequence of linearizing at each step, cf. (5.13). By Assumption A.2 this
relation implies

(5.18) ‖G′n(tn)‖X←X ≤ C‖en‖

with en = un − u(tn). ∆
[2]
ni satisfies

(5.19)
∥∥∆[2]

ni

∥∥ ≤ Cτ 3
n .

and the defects of the internal stages thus obey the bound

(5.20) ‖∆ni‖ ≤ Cτ 2
n‖en‖+ Cτ 3

n .

Similarly, we get for the defects δn+1 at time tn+1

(5.21) δn+1 =

q∑
k=0

τ k+1
n ψk+1(τnJn)G(k)

n (tn) + δ
[q+1]
n+1 ,

with

(5.22) ψk(z) = ϕk(z)−
s∑

i=1

bi(z)
ck−1
i

(k − 1)!

and remainders δ
[q]
n+1 satisfying

(5.23)
∥∥δ[q]

n+1

∥∥ ≤ Cτ q+1
n .

Again, small defects are desirable. Due to (5.7), we have ψ1(z) ≡ 0. To obtain higher order
bounds for δn+1 first observe that the τ 2-term in (5.21) is small due to (5.18). Additional
terms vanish if ψj = 0, j ≥ 3.

All conditions encountered so far are collected in Table 5.1. They will later turn out to be
the order conditions for methods up to order 4.

Lemma 5.3. If the order conditions of Table 5.1 are satisfied up to order p ≤ 4, we obtain

(5.24) ‖δn+1‖ ≤ Cτ 2
n‖en‖+ Cτ p+1

n .

Proof. This follows at once from (5.21).
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No. condition in defect order condition order

1 ψ1(z) ≡ 0
∑s

i=1 bi(z) = ϕ1(z) 1

2 ψ1,i(z) ≡ 0
∑i−1

j=1 aij(z) = ciϕ1(ciz), 2 ≤ i ≤ s 2

3 ψ3(z) ≡ 0
∑s

i=2 bi(z)c
2
i = 2ϕ3(z) 3

4 ψ4(z) ≡ 0
∑s

i=2 bi(z)c
3
i = 6ϕ4(z) 4

Table 5.1: Stiff order conditions for exponential Rosenbrock methods applied to autonomous
problems.

5.2.2 Preliminary error bounds

Let
en = un − u(tn) and Eni = Uni − u(tn + ciτn)

denote the differences between the numerical solution and the exact solution. Subtract-
ing (5.15) from the numerical method (5.4) gives the error recursion

Eni = eciτnJnen + τn

i−1∑
j=1

aij(τnJn)
(
gn(Unj)−Gn(tn + cjτn)

)
−∆ni ,(5.25a)

en+1 = eτnJnen + τn

s∑
i=1

bi(τnJn)
(
gn(Uni)−Gn(tn + ciτn)

)
− δn+1 .(5.25b)

In the following we will derive bounds for these errors.

Lemma 5.4. If Assumption A.2 is satisfied, we have∥∥∥∂gn

∂u

(
u(tn)

)∥∥∥
X←X

≤ C ‖en‖ ,(5.26a)

‖gn(un)−Gn(tn)‖ ≤ C ‖en‖2 ,(5.26b)

‖gn(Uni)−Gn(tn + ciτn)‖ ≤ C
(
τn + ‖en‖+ ‖Eni‖

)
‖Eni‖ ,(5.26c)

as long as the errors Eni and en remain in a sufficiently small neighborhood of 0.

Proof. The bound for (5.26a),

∂gn

∂u

(
u(tn)

)
=
∂f

∂u

(
u(tn)

)
− ∂f

∂u
(un) ,

is a direct consequence of the linearization and a Lipschitz condition.
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Using Taylor series expansion at u(tn + ciτn), we get

gn(Uni)−Gn(tn + ciτn) =
∂gn

∂u

(
u(tn + ciτn)

)
Eni

+

∫ 1

0

(1− σ)
∂2gn

∂u2

(
u(tn + ciτn) + σEni

)
(Eni, Eni) dσ .

Setting i = 1 and using (5.26a) proves (5.26b) at once. To derive (5.26c), we expand the
first term on the right-hand side once more at tn,

∂gn

∂u

(
u(tn + ciτn)

)
Eni =

∂gn

∂u

(
u(tn)

)
Eni

+

∫ 1

0

ciτn(1− σ)
∂2gn

∂u2

(
u(tn + σciτn)

)(
u′(tn + σciτn), Eni

)
dσ ,

and use (5.26a) again to finally prove (5.26c).

Using this result, we can establish an error bound for the internal stages.

Lemma 5.5. Under Assumptions A.1 and A.2 we have

‖Eni‖ ≤ C ‖en‖+ Cτ 3
n ,

as long as the global errors en remain in a bounded neighborhood of 0.

Proof. The assertion follows from (5.25a). For i = 1 we have

‖En1‖ = ‖en‖ .

This yields
‖En2‖ ≤ C‖en‖+ Cτn‖en‖2 + Cτ 2

n‖en‖+ Cτ 3
n .

For i = 3, . . . , s we insert ‖Enj‖ recursively and obtain

‖Eni‖ ≤ ‖eciτnJnen‖+ τn

i−1∑
j=1

∥∥∥aij(τnJn)
(
gn(Unj)−Gn(tn + cjτn)

)∥∥∥+ ‖∆ni‖

≤ C‖en‖+ Cτn

i−1∑
j=1

(
τn + ‖en‖+ ‖Enj‖

)
‖Enj‖+ Cτ 2

n‖en‖+ Cτ 3
n

≤ C‖en‖+ Cτ 3
n

using Lemma 5.4 and (5.20).
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5.2.3 Stability bounds

In order to establish convergence bounds, we have to solve recursion (5.25b). For this
purpose, stability bounds for the discrete evolution operators are crucial. In a first step we
will show stability along the exact solution.

We start with two auxiliary results.

Lemma 5.6. Let the initial value problem (5.11) satisfy Assumptions A.1 and A.2, and let

Ĵn = DF (u(tn)). Then, for any ω̂ > ω, there exists a constant CL independent of τn−1 such
that

(5.27)
∥∥et bJn − et bJn−1

∥∥
X←X

≤ CLτn−1e
eωt , t ≥ 0 .

Proof. Applying the variation-of-constants formula to the initial value problem

v′(t) = Ĵnv(t) = Ĵn−1v(t) +
(
Ĵn − Ĵn−1

)
v(t)

with v(0) = v0 yields

v(t) = et bJnv0 = et bJn−1v0 +

∫ 1

0

et bJn−1(1−σ)
(
Ĵn − Ĵn−1

)
v(σt) dσ .

This implies the representation

(5.28) et bJn − et bJn−1 =

∫ 1

0

te(1−σ)t bJn−1
(
Ĵn − Ĵn−1

)
eσt bJn dσ .

The required estimate now follows from (5.14) and the smoothness of u(t).

Lemma 5.7. Under the assumptions of Lemma 5.6, the relation

(5.29) |||x|||n = sup
t≥0

e−eωt
∥∥et bJnx

∥∥ , x ∈ X

defines a norm on X for any n = 0, 1, 2, . . .. This norm is equivalent to ‖ · ‖ and satisfies
the bound

(5.30) |||x|||n ≤ (1 + CLτn−1) |||x|||n−1 , n ≥ 1 .

Proof. Obviously, we have

‖x‖ = e−eω·0∥∥e0· bJnx
∥∥ ≤ sup

t≥0
e−eωt

∥∥et bJnx
∥∥ = |||x|||n .
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On the other hand, the bound (5.9) yields |||x|||n ≤ C ‖x‖. Thus, the two norms are
equivalent.

For arbitrary x ∈ X, we have

|||x|||n = sup
t≥0

e−eωt
∥∥(et bJn − et bJn−1 + et bJn−1

)
x
∥∥

≤ |||x|||n−1 + sup
t≥0

e−eωt
∥∥et bJn − et bJn−1

∥∥
X←X

‖x‖

≤ (1 + CLτn−1) |||x|||n−1

by Lemma 5.6 and the equivalence of the norms.

The following lemma proves the stability of the discrete evolution operators along the exact
solution.

Lemma 5.8. Under the assumptions of Lemma 5.6, there exists a constant C such that

(5.31)
∥∥eτn

bJn · . . . · eτ0 bJ0
∥∥

X←X
≤ C ebω(τ0+...+τn)

with ω̂ = CL + ω̃.

Proof. By (5.29) and (5.9) we have∣∣∣∣∣∣∣∣∣eτn
bJn · . . . · eτ0 bJ0x

∣∣∣∣∣∣∣∣∣
n

= sup
t≥0

e−eωt
∥∥et bJneτn

bJn · . . . · eτ0 bJ0x
∥∥

= sup
t≥0

e−eωt
∥∥et bJneeωτne−eωτneτn

bJn · . . . · eτ0 bJ0x
∥∥

≤ C sup
t≥0

e−eωt
∥∥et bJneeωτneτn−1

bJn−1 · . . . · eτ0 bJ0x
∥∥

= eeωτn

∣∣∣∣∣∣∣∣∣eτn−1
bJn−1 · . . . · eτ0 bJ0x

∣∣∣∣∣∣∣∣∣
n

≤ eeωτn(1 + CLτn−1)
∣∣∣∣∣∣∣∣∣eτn−1

bJn−1 · . . . · eτ0 bJ0x
∣∣∣∣∣∣∣∣∣

n−1
,

where the last inequality follows from Lemma 5.7. Thus, the estimate 1 +CLτn−1 ≤ eCLτn−1

together with an induction argument proves the lemma.

We now turn our attention to the operators Jn = DF (un) that result from the lineariza-
tion process (5.3). These operators constitute an essential component of the numerical

scheme (5.4). We now repeat the above estimations with Jn in the role of Ĵn to state the
following stability result for the discrete evolution operators on X.
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Theorem 5.9. Let the initial value problem (5.11) satisfy Assumptions A.1 and A.2. Then,
for any ω̃ > ω, there exist constants C and CE such that

(5.32)
∥∥eτnJn · . . . · eτ0J0

∥∥
X←X

≤ Cebω(τ0+...+τn)+CE

Pn
j=1 ‖ej‖

with ω̂ = CL+ω̃. The bound holds as long as the numerical solution un stays in a sufficiently
small neighborhood of the exact solution of (5.11).

Proof. By (5.14) we have

‖Jn − Jn−1‖X←X ≤ C‖un − un−1‖ .

The triangle inequality shows that

(5.33) ‖un−un−1‖ = ‖un−u(tn)+u(tn)−u(tn−1)+u(tn−1)−un−1‖ ≤ Cτn−1+‖en‖+‖en−1‖ .

Following the proof of Lemma 5.6 with Jn−1 and Jn instead of Ĵn−1 and Ĵn, we have∥∥etJn − etJn−1
∥∥

X←X
≤ CL(τn−1 + ‖en‖+ ‖en−1‖)eeωt , t ≥ 0 .

Obviously |||·|||n with respect to Jn instead of Ĵn is still a norm which is also equivalent to
‖ · ‖. Only the last estimate of Lemma 5.7 changes to

|||x|||n ≤ (1 + CL(τn + ‖en‖+ ‖en−1‖)) |||x|||n−1

which in turn leads to the modified stability estimate for the discrete evolution opera-
tors along the numerical solution using the same induction argument as in the proof of
Lemma 5.8.

The stability bound (5.32) requires some attention. Strictly spoken, stability is only guar-
anteed if the term

∑n
j=1 ‖ej‖ is uniformly bounded in n for t0 ≤ tn ≤ T . This condition can

be considered as a (weak) restriction on the employed step size sequence, see the discussion
in Section 5.3 below.

5.3 Error bounds

We will now show that the conditions of Table 5.1 are sufficient to obtain convergence up
to order 4 under a mild restriction on the employed step size sequence.
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Theorem 5.10. Let the initial value problem (5.11) satisfy Assumptions A.1 and A.2.
Consider for its numerical solution an explicit exponential Rosenbrock method (5.4) that
fulfills the order conditions of Table 5.1 up to order p for some 2 ≤ p ≤ 4. Further, let the
step size sequence τj satisfy the condition

(5.34)
n∑

k=1

k−1∑
j=0

τ p+1
j ≤ CT

with a constant CT that is uniform in t0 ≤ tn ≤ T . Then, for CT sufficiently small, the
numerical method converges with order p. In particular, the numerical solution satisfies the
error bound

(5.35) ‖un+1 − u(tn+1)‖ ≤ C

n∑
j=0

τ p+1
j

uniformly on t0 ≤ tn+1 ≤ T . The constant C is independent of the chosen step size sequence
satisfying (5.34).

Proof. From (5.25b) we obtain the error recursion

(5.36) en+1 = eτnJnen + τn%n − δn+1 , e0 = 0

with

%n =
s∑

i=1

bi(τnJn)
(
gn(Uni)−Gn(tn + ciτn)

)
.

Solving this recursion and using e0 = 0 yields

(5.37) en+1 =
n∑

j=0

τje
τnJn · . . . · eτj+1Jj+1

(
%j − τ−1

j δj+1

)
.

Employing the Lemmas 5.3, 5.4 and 5.5, we obtain the bound

‖%j‖+ τ−1
j ‖δj+1‖ ≤ C

s∑
i=1

(
τj + ‖ej‖+ ‖Eji‖

)
‖Eji‖+ Cτj‖ej‖+ Cτ p

j

≤ C
(
τj + ‖ej‖+ C‖ej‖+ Cτ 3

j

)(
C‖ej‖+ Cτ 3

j

)
+ Cτj‖ej‖+ Cτ p

j

≤ C
(
τj‖ej‖+ ‖ej‖2 + τ p

j

)
.

Inserting this into (5.37) and using the stability estimate (5.32) yields

(5.38) ‖en+1‖ ≤ C

n∑
j=0

τj
(
τj‖ej‖+ ‖ej‖2 + τ p

j

)
.
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The constant in this estimate is uniform as long as

(5.39)
n∑

j=1

‖ej‖ ≤ CA

uniformly holds on t0 ≤ tn+1 ≤ T . The application of the discrete Gronwall Lemma 5.12
below to (5.38) then shows the desired bound (5.35).

It still remains to verify that condition (5.39) holds with a uniform bound CA. This follows
now recursively from summing over (5.35) for k ≤ n,

n∑
k=1

‖ek‖ ≤ C
n∑

k=1

k−1∑
j=0

τ p+1
j ,

and our assumption on the step size sequence (5.34) with CT sufficiently small.

Lemma 5.11. (Gronwall-Lemma) Let ϕ be a continuous function with

ϕ(t) ≤ α+ β

∫ t

t0

ϕ(x) dx , t0 ≤ t ≤ t1

and constants α, β ≥ 0, then

ϕ(t) ≤ αeβ(t−t0) .

Proof. For

ψ(t) = α+ β

∫ t

t0

ϕ(x) dx

we have ψ′(t) = βϕ(t) and using the assumption on ϕ we obtain

ψ′(t) ≤ βψ(t) .

From this we can deduce (
ψ(t)e−βt

)′
= e−βt

(
ψ′(t)− βψ(t)

)
≤ 0 .

The monotonic decrease of ψ(t)e−βt then yields

ϕ(t)e−βt ≤ ψ(t)e−βt ≤ ψ(t0)e
−βt0 = αe−βt0

which is the desired inequality.
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Lemma 5.12. (Discrete Gronwall-Lemma) Let {εn}n≥1 and {τn}n≥1 be sequences of
non negative numbers satisfying

εn+1 ≤ α+ β
n∑

k=1

τkεk

and constants α, β ≥ 0, then
εn+1 ≤ αeβ

Pn
k=1 τk .

Proof. For this proof, we choose a piecewise linear function ϕ(t) satisfying the assumptions
of Lemma 5.11, ϕ(T ) = εn+1 for T = t0 +

∑n
k=1 τk and∫ T

t0

ϕ(x) dx =
n∑

k=1

τkεk .

For tk = t0 +
∑k

j=1 τj, k = 1, . . . , n, Tk = min{τk−1, τk}/2, k = 2, . . . , n − 1 and T0 =
min{τ1, τn}/2 the function

ϕ(t) =


εk, tk−1 + Tk−1

2
≤ t ≤ tk − Tk

2
εk+1−εk

Tk
(t− tk) + εk+1+εk

2
, tk − Tk

2
≤ t ≤ tk + Tk

2
2(εn+1−εn)

T0 (t− t0) + ε1 + εn+1 − εn, t0 ≤ t ≤ t0 + T0
2

2(εn+1−εn)
T0 (t− T ) + εn+1, T − T0

2
≤ t ≤ T

can be used.

In the remainder of this section, we discuss the encountered restriction (5.34) on the step
size sequence.

Lemma 5.13. If the step size sequence fulfills one of the following conditions, then (5.34)
holds.

1. For constant step size τj = τ (5.34) holds with

CT =
τ p−1

2
(tn+1 − t0)

2 .

2. For a quasi-uniform step size sequence where the ratio C between the maximal and
minimal step length is uniformly bounded (5.34) holds with

CT = Cp+1 τ
p−1
min

2
(tn+1 − t0)

2 .
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3. For sequences with increasing step sizes τ0 ≤ τ1 ≤ . . . ≤ τn−1, condition (5.34) is
fulfilled with

CT = (tn+1 − t0)
2τ p−1

n−1 .

Since p ≥ 2, CT tends to zero for n → ∞ in cases 1 and 2. In the third case CT is still a
constant.

Proof.

1. For constant step size τj = τ (5.34) takes the form

n∑
k=1

k−1∑
j=0

τ p+1 =
n(n+ 1)

2
τ p+1 ≤ (n+ 1)2

2
τ p+1 =

τ p−1

2
(tn+1 − t0)

2 .

2. For a quasi-uniform step size sequences, we have τj ≤ Cτmin, which yields

n∑
k=1

k−1∑
j=0

τ p+1
j ≤

n∑
k=1

k−1∑
j=0

Cp+1τ p+1
min =

n(n+ 1)

2
Cp+1τ p+1

min ≤ Cp+1 τ
p−1
min

2
(tn+1 − t0)

2 .

3. For sequences with increasing step sizes τ0 ≤ τ1 ≤ . . . ≤ τn−1, we have

n∑
k=1

k−1∑
j=0

τ p+1
j ≤

n∑
k=1

k−1∑
j=0

τjτ
p
k−1 ≤ (tn+1 − t0)

n∑
k=1

τ p
k−1

≤ (tn+1 − t0)
n∑

k=1

τk−1τ
p−1
n−1 ≤ (tn+1 − t0)

2τ p−1
n−1 .

In cases 1 and 2, the step size involved in CT tends to zero for infinitely many steps.

In practice, a problem with (5.34) might occur when the step size suddenly drops by several
orders of magnitude. In that case, however, it is possible to modify the above stability
analysis and to relax the condition on the step sizes. We shortly explain the idea, but we
do not work out all details. If the error at time tj, say, is large compared to the actual step
length, one should rather compare the numerical solution with a smooth trajectory that
passes closeby uj. Although uj might be a non-smooth initial value, such trajectories exist.
Then the previous stability proof can be applied once more. As long as one does not switch
too often between trajectories, stability in (5.32) is still guaranteed.
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5.4 Methods of order up to four

The well known exponential Rosenbrock–Euler method is given by

(5.40)
un+1 = eτnJnun + τnϕ1(τnJn)gn(un)

= un + τnϕ1(τnJn)F (un) .

It is computationally attractive since it requires only one matrix function per step. The
method obviously satisfies Condition 1 of Table 5.1, while Condition 2 is void. Therefore,
it is second-order convergent for problems satisfying Assumptions A.1 and A.2. A possible
error estimator for (5.40) is described in [1].

From the order conditions of Table 5.1, it is straightforward to construct pairs of embedded
methods of order 3 and 4. For our variable step size implementation, we consider (5.4b)
together with an embedded approximation

(5.41) ûn+1 = un + τnϕ1(τnJn)F (un) + τn

s∑
i=2

b̂i(τnJn)Dni

which relies on the same stages Uni. The methods given below were first introduced in [21].
They will be used in the numerical experiments in Section 5.8.

The scheme exprb32 consists of a third-order exponential Rosenbrock method with a
second-order error estimator (the exponential Rosenbrock–Euler method). Its coefficients
are

c1
c2 a21

b1 b2
b̂1

=

0
1 ϕ1

ϕ1 − 2ϕ3 2ϕ3

ϕ1

.

The scheme exprb43 is a fourth-order method with a third-order error estimator. Its
coefficients are

c1
c2 a21

c3 a31 a32

b1 b2 b3
b̂1 b̂2 b̂3

=

0
1
2

1
2
ϕ1

(
1
2
·
)

1 0 ϕ1

ϕ1 − 14ϕ3 + 36ϕ4 16ϕ3 − 48ϕ4 −2ϕ3 + 12ϕ4

ϕ1 − 14ϕ3 16ϕ3 −2ϕ3

.

Note that the internal stages of the above methods are just exponential Rosenbrock–Euler
steps. This leads to simple methods than can cheaply be implemented.

Evidently, the order conditions of Table 5.1 imply that the weights of any third-order
method have to depend on ϕ3, whereas that of any fourth-order method depend on ϕ3 and
ϕ4 (in addition to ϕ1).
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5.5 Non-autonomous problems

The proposed method can easily be extended to non-autonomous problems

(5.42) u′ = F (t, u) , u(t0) = u0

by rewriting the problem in autonomous form

(5.43a) U ′ = F(U) , U =

(
t
u

)
, F(U) =

(
1

F (t, u)

)
with Jacobian

(5.43b) Jn =

(
0 0
vn Jn

)
, vn =

∂

∂t
F (tn, un) , Jn =

∂

∂u
F (tn, un) .

In order to apply our method to this autonomous system, we have to compute matrix
functions of Jn. Using Cauchy’s integral formula and exploiting the special structure of J ,
we get

ϕ(τJ ) =

(
ϕ(0) 0

τ ϕ̂(τJ)v ϕ(τJ)

)
, ϕ̂(z) =

ϕ(z)− ϕ(0)

z
.

For the particular functions in our method, we obtain from (5.6) the relation

(5.44) ϕ̂i(τJ) = ϕi+1(τJ) .

In our formulation, we will work again with the smaller quantities

Dnj = gn(tn + cjτn, Unj)− gn(tn, un)

where

(5.45) gn(t, u) = F (t, u)− Jnu− vnt .

Applying method (5.8) to the autonomous formulation (5.43), we get

Uni = un + τnciϕ1(ciτnJn)F (tn, un) + τn

i−1∑
j=2

aij(τnJn)Dnj + τ 2
nc

2
iϕ2(ciτnJn)vn(5.46a)

un+1 = un + τnϕ1(τnJn)F (tn, un) + τn

s∑
i=2

bi(τnJn)Dni + τ 2
nϕ2(τnJn)vn .(5.46b)

Thus, the only difference between the exponential Rosenbrock method for non-autonomous
problems and the original scheme is the definition of gn in (5.45), where we now use the full
linearization also with respect to the time, and the additional correction terms involving
ϕ2(·)vn in (5.46).
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5.6 Error bounds for perturbed methods

In general the implementation of such a method introduces perturbations resulting from
Krylov approximations to the matrix functions multiplied with vectors or from approxima-
tions to the Jacobian. Therefore, it is essential to understand the influence of such errors
to our method. We consider general perturbations first. Then we study the influence of an
approximated Jacobian in more detail.

5.6.1 General perturbations

We will now investigate the error of the exponential Rosenbrock method

(5.47)

Ũni = eciτnJnũn + τn

i−1∑
j=1

aij(τnJn)gn(Ũnj) + Pni , 1 ≤ i ≤ s

ũn+1 = eτnJnũn + τn

s∑
i=1

bi(τnJn)gn(Ũni) + pn+1

with small perturbations Pni and pn+1 which for example can result from the approximation
of the matrix functions by Krylov methods.

Theorem 5.14. Under the assumptions of Theorem 5.10 the solution of (5.47) satisfies
the error bound

‖ũn+1 − u(tn+1)‖ ≤ C
n∑

j=0

(
τ 2
j

s∑
i=1

‖Pji‖+ ‖pj+1‖
)

+ C

n∑
j=0

τ p+1
j

uniformly on t0 ≤ tn+1 ≤ T . The constants C are independent of the chosen step size
sequence.

Proof. We expand the error,

‖ũn+1 − u(tn+1)‖ ≤ ‖ũn+1 − un+1‖+ ‖un+1 − u(tn+1)‖ ,

where the second term on the right hand side is the error of the exact method known from
Theorem 5.10. For the difference of the perturbed and the unperturbed method we obtain
the recursion

εn+1 = ũn+1 − un+1 = eτnJnεn + τn

s∑
i=1

bi(τnJn)
(
gn(Ũni)− gn(Uni)

)
+ pn+1
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which is of a similar form as the error recursion above. Analogously we define the differences
at the internal stages,

εni = Ũni − Uni = eciτnJnεn + τn

i−1∑
j=1

aij(τnJn)
(
gn(Ũnj)− gn(Unj)

)
+ Pni .

Using Taylor-series expansion we obtain

gn(Ũni)− gn(Uni) =
∂gn

∂u
(Uni)εni +

∫ 1

0

(1− σ)
∂2gn

∂u2
(Uni + σεni)(εni, εni) dσ

and the special form of gn yields

∂gn

∂u
(Uni)εni =

(∂f
∂u

(Uni)−
∂f

∂u
(un)

)
εni

=

∫ 1

0

(1− σ)
∂2f

∂u2

(
un + στn

i−1∑
j=1

aij(τnJn)gn(Unj)
)(
τn

i−1∑
j=1

aij(τnJn)gn(Unj), εni

)
dσ .

Thus we can state the following estimate,∥∥gn(Ũni)− gn(Uni)
∥∥ ≤ C

(
τn + ‖εni‖

)
‖εni‖ .

Using this, we obtain recursively

‖εni‖ ≤ C‖εn‖+ τnC
i−1∑
j=1

∥∥gn(Ũnj)− gn(Unj)
∥∥+ ‖Pni‖

≤ C‖εn‖+ τnC

i−1∑
j=1

(
τn + ‖εnj‖

)
‖εnj‖+ ‖Pni‖

≤ C‖εn‖+ ‖Pni‖+ τ 2
n

i−1∑
j=1

‖Pnj‖ .

Solving the recursion and using ε0 = 0 yields

εn+1 =
n∑

j=0

τje
τnJn · . . . · eτj+1Jj+1

(
%̃j − τ−1

j pj+1

)
with

%̃j =
s∑

i=1

bi(τjJj)
(
gj(Ũji)− gj(Uji)

)
.
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Figure 5.1: The error of the exprb43 method with different types of perturbations are
plotted versus the step size. Left: Only the final stages are perturbed with pj+1 = O(τ l),
Pji = 0. Right: Only the internal stages are perturbed with Pji = O(τ l), pj+1 = 0. In
both pictures l = 1, 2, 3 and 4 for the blue, red, green and cyan curves, respectively, where
the squares represent the worst case perturbations and the circles the random perturbation.
The black curve with stars is the error of the unperturbed solution. The black lines represent
order curves (solid: order 1, dashed: order 2, dash-dotted: order 3, dotted: order 4).

Combining the stability result from Theorem 5.9 with the previous estimates and again
applying the Gronwall-Lemma 5.12 bounds the difference of the perturbed and the unper-
turbed method to

‖εn+1‖ ≤ C
n∑

j=0

(
τ 2
j

s∑
i=1

‖Pji‖+ ‖pj+1‖
)
,

which yields the desired result.

This estimate is a worst case estimate. If we consider a linear parabolic problem, we have

εn+1 =
n∑

j=0

e(τn+...+τj+1)Apj+1 ,

hence most perturbations are damped.

To demonstrate this, we consider the test equation

∂

∂t
u =

∂2

∂x2
u+

1

1 + u2
+ k(t) , x ∈ [0, 1] , t ∈ [0, 0.5]

with homogeneous Dirichlet boundary conditions and k(t) chosen such that the exact solu-
tion is

u(t, x) = x(x− 1)et .
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Figure 5.2: The error of the exprb43 method with different types of perturbations Pji,
pj+1 = O(τ l) in the inner as well as the final stages are plotted versus the step size. In
both pictures l = 1, 2, 3 and 4 for the blue, red, green and cyan curves, respectively, where
the squares represent the worst case perturbations and the circles the random perturbation.
The black curve with stars is the error of the unperturbed solution. The black lines represent
order curves (solid: order 1, dashed: order 2, dash-dotted: order 3, dotted: order 4).

The problem is discretized in space by finite differences with 200 nodes and solved with
exprb43 employing constant step sizes.

In the left picture of Fig. 5.1, we choose Pji = 0 and pj+1 = τ lrj for a normalized random
vector rj (curves with circles) and pj+1 = τ lwj, where wj is the eigenvector to the largest
eigenvalue of the discretized linear operator plus a small perturbation (curves with squares),
l = 1, 2, 3 and 4 for the blue, red, green and cyan curves, respectively. In the right picture,
we perturbed the inner stages in the same way as above and do not change the final stage.
It can be seen, that for the random perturbation, we almost always obtain better results
than the estimate predicts. In the worst case, where the perturbations are chosen to be the
eigenvector to the largest eigenvalue of the linear part plus a random perturbation of the
size of the machine precision, the errors are not damped, but sum up in the predicted way.
In Fig. 5.2 results are shown where the inner stages and the final stages are perturbed. The
errors show the same behavior than the errors of the method with perturbations only in
the final stage. As predicted by Theorem 5.14, it is more important to compute the final
stage more accurately than the inner stages.
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5.6.2 Inexact Jacobian

It might be convenient to use the scheme with an inexact Jacobian, for instance if it is
computed via numerical differentiation. Replacing Jn = DF (un) by an approximation J̃n

yields

(5.48)

Uni = eciτn
eJnun + τn

i−1∑
j=1

aij(τnJ̃n)g̃n(Unj) , 1 ≤ i ≤ s

un+1 = eτn
eJnun + τn

s∑
i=1

bi(τnJ̃n)g̃n(Uni) .

The function g̃n is given by

g̃n

(
u(t)

)
= F

(
u(t)

)
− J̃nu(t) .

Theorem 5.15. Let the assumptions of Theorem 5.10 be satisfied. Let ∆J̃n = Jn − J̃n be
sufficiently small and

(5.49)
n∑

j=0

( j−1∑
k=0

(
τ 2
k‖∆J̃k‖X←X

)
+ ‖∆J̃j‖X←X

)
≤ CJ .

If J̃n also satisfies Assumption A.1, the solution of (5.48) satisfies the error bound

‖un+1 − u(tn+1)‖ ≤ C
n∑

j=0

(
τ p+1
j + τ 2

j ‖∆J̃j‖X←X

)
uniformly on t0 ≤ tn+1 ≤ T .

The analysis follows the lines of Sections 5.2 and 5.3.

Proof. For a representation of the new defects, we apply the variation-of-constants formula
to

u′(t) = J̃nu(t) + G̃n(t) ,

where G̃n(t) = g̃n(u(t)). This combined with equation (5.18) yields the estimate

‖G̃′n(tn)‖X←X ≤ ‖∆J̃n‖X←X + ‖G′n(tn)‖X←X ≤ ‖en‖+ ‖∆J̃n‖X←X

which leads to the following estimates for the new defects,

‖∆̃ni‖ ≤ Cτ 2
n

(
‖en‖+ ‖∆J̃n‖X←X

)
+ Cτ 3

n ,

‖δ̃n+1‖ ≤ Cτ 2
n

(
‖en‖+ ‖∆J̃n‖X←X

)
+ Cτ p+1

n .
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Next, we adjust the estimate from Lemma 5.5,

‖Eni‖ ≤ C‖en‖+ Cτn

i−1∑
j=1

(
τn + ‖en‖+ ‖Enj‖

)
‖Enj‖+ ‖∆̃ni‖

≤ C‖en‖+ Cτ 3
n + Cτ 2

n‖∆J̃n‖X←X .

Since we use J̃n to evaluate the matrix functions, we have to derive a stability bound for
the discrete evolution operator involving J̃n instead of Jn. Therefore we repeat the proof
of Theorem 5.9 for the approximate Jacobian. Here we have

‖J̃n − J̃n−1‖X←X = ‖J̃n − Jn + Jn − Jn−1 + Jn−1 − J̃n−1‖X←X

≤ ‖∆J̃n‖X←X + ‖Jn − Jn−1‖X←X + ‖∆J̃n−1‖X←X

≤ C
(
τn + ‖en‖+ ‖en−1‖

)
+ ‖∆J̃n‖X←X + ‖∆J̃n−1‖X←X

which leads to∥∥∥e−t eJn − e−t eJn−1

∥∥∥
X←X

≤ CL

(
τn−1 + ‖en‖+ ‖en−1‖+ ‖∆J̃n‖X←X + ‖∆J̃n−1‖X←X

)
eeωt

and ∥∥eτn
eJn · . . . · eτ0 eJ0

∥∥
X←X

≤ Cebω(τ0+...+τn)+CE

Pn
j=1(‖ej‖+‖∆ eJj‖) .

Solving the error recursion and applying the modified stability bound yields the desired
bound. The constant depends on

n∑
j=0

(
‖ej‖+ ‖∆J̃j‖X←X

)
≤

n∑
j=0

(n−1∑
k=0

(
τ p+1
k + τ 2

k‖∆J̃k‖X←X

)
+ ‖∆J̃j‖X←X

)
,

which is bounded uniformly using (5.34) and (5.49).

It is obvious that ‖∆J̃j‖X←X ≤ Cτj should be satisfied. Otherwise stability cannot be

guaranteed any more. To get the same order as for the exact Jacobian, ‖∆J̃j‖X←X has to
be of the order of τ p−1

j .

For the same example as in the previous section, the errors of the perturbed method are
shown in Fig. 5.3. We can see, that the order is reduced in the predicted way.

5.7 Implementation

5.7.1 Step size control

We have implemented the exponential Rosenbrock methods exprb32 and exprb43 for au-
tonomous as well as non-autonomous problems in Matlab with adaptive time stepping.
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Figure 5.3: The errors of the exprb43 method with ∆J̃j = O(τ l
j) are plotted versus the

step size for l = 1, 2 and 3 for the blue, red and green curves, respectively. The black curve
with stars is the error of the unperturbed solution. The black lines represent order curves
(dashed: order 2, dash-dotted: order 3, dotted: order 4).

For the step size control we used the embedded methods (5.41) to estimate the local error
in each time step,

ên+1 = τn

s∑
i=2

(
bi(τnJn)− b̂i(τnJn)

)
Dni .

A time step is accepted if the scaled norm satisfies

‖ên‖sc =

(
1

d

d∑
i=1

∣∣∣∣ ên(i)

sc(i)

∣∣∣∣2
) 1

2

≤ 1 , sc = ATol + max{|un|, |un−1|}RTol .

We then employed a combination of a classical error estimation and a Gustafsson method
to select a new step size using factors

(5.50) fC = ‖ên+1‖
1
p
sc

and

fG =
τn
τn−1

(
‖ên‖sc

‖ên+1‖2
sc

) 1
p

.

The new time-step size is then determined by

τn+1 = τn max
{
min{fsfC, fsfG, fmax}, fmin

}
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for an accepted time step and in case of rejection by

τn+1 = τn max
{
min{fsfC, fmax}, fmin

}
with a safety factor fs = 0.9. The factors fmin = 0.2 and fmax = 5 prevent the method from
changing the step size to fast. For details see [13].

5.7.2 Matrix functions

Our implementation involves two different options for dealing with the matrix ϕ-functions:
for small examples, we employ diagonalization for the explicit computation of the matrix
functions. For large problems, Krylov subspace methods are used for approximating the
product of the matrix functions with the corresponding vectors. We use a standard Arnoldi
algorithm to compute the basis of the Krylov space and then again use diagonalization for
the evaluation of the small matrix functions, see [27] and references therein.

We use the results from Section 5.6.1, to construct a stopping criterion for the Krylov
process. For now, we omit the indices of Jn and τn to avoid confusion with the Krylov
indices. In the mth step of the Arnoldi-Krylov process for J ∈ CN,N and a starting vector
v = ‖v‖v1 we have the relation

JVm = VmHm + hm+1,mvm+1e
T
m

with an upper Hessenberg matrix Hm of size m×m and Vm ∈ CN,m with unitary columns
vk forming the basis of Km(J, v) = span{v, Jv, . . . , Jm−1v}. The matrix function is then
approximated by

ϕ(τJ)v ≈ ‖v‖Vmϕ(τHm)e1 .

A popular stopping criterion is based on the generalized residual defined as

resm = τ‖v‖hm+1,m

(
ϕ(τHm)

)
m,1
vm+1 ,

see [18]. Using the reformulation of the method (5.8), the perturbation in the new stage is
then given by

pn+1 =
(
‖τnF (un)‖V (1)

m(1)ϕ1(τnH
(1)

m(1))e1 − τnϕ1(τnJn)F (un)
)

+
s∑

i=2

(
‖τnDni‖V (i)

m(i)bi(τnH
(i)

m(i))e1 − τnbi(τnJn)Dni

)
where V

(1)

m(1) and H
(1)

m(1) result from the Krylov space Km(1)(Jn, F (un)) and V
(i)

m(i) and H
(i)

m(i)

from Km(i)(Jn, Dni), 2 ≤ . . . ≤ s. To obtain an error of the same order of the method, the
perturbation has to be of order τ p+1

n or smaller.
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We now use the stopping criterion

‖resm‖sc ≤ τn .

The scaled norm ensures that the perturbation is of the desired tolerance. If we ask this
to be smaller than τ , we do not loose accuracy even if the perturbations sum up. We use
the same Krylov spaces for the inner and the outer stages, thus we always use the same
stopping criterion.

For autonomous problems, we use the reformulation (5.8), which requires one Krylov sub-
space with the vector F (un) and s− 1 Krylov subspaces with the vectors Dni, i = 2, . . . , s.
Due to ‖Dni‖ = O(τ 2

n), these approximations can be computed in very low-dimensional
subspaces since the norm of the starting vector enters the stopping criterion. For non-
autonomous problems, the format (5.46) requires one additional Krylov subspace with the
vector vn. Since the term involving vn is multiplied by τ 2

n (compared to τn for the other
vectors), this subspace will be low-dimensional, as well.

We also included a maximum dimension for the Krylov spaces. If the desired tolerance is
not reached within these steps, the time-step size is reduced.

5.8 Numerical Experiments

Example 1. As a first example we consider a two-dimensional advection-diffusion-reaction
equation for u = u(x, y, t)

(5.51)
∂

∂t
u = ε

( ∂2

∂x2
u+

∂2

∂y2
u
)
−α

( ∂
∂x
u+

∂

∂y
u
)

+ γu
(
u− 1

2

)
(1− u) , (x, y) ∈ (0, 1)2

with homogeneous Neumann boundary conditions and the initial value

u(x, y, 0) = 256
(
(1− x)x(1− y)y

)2
+ 0.3 ,

where ε = 1/100, α = −10, and γ = 100. The spatial discretization was done with finite
differences using 101 grid points in each direction.

This example is taken from [1], where Fortran implementations of exprb43, combined
with the real Leja point method [2], and of the Runge–Kutta–Chebyshev method RKC

from [34] were compared. Here we compare Matlab implementations of RKC, exprb43,
exp4 from [18], and Krogstad’s method [26]. The latter three make use of Krylov subspace
approximations. To improve the efficiency of the Krogstad method, we reused information
from previously computed Krylov subspaces, an approach proposed in [19]. Since an adap-
tive step-size control based on embedding is not possible for Krogstad’s method, we ran
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Figure 5.4: Step sizes for the advection-diffusion-reaction equation (5.51) for t ∈ [0, 0.08]

Figure 5.5: Number of time steps versus accuracy (left) and CPU time versus accuracy
(right) for the advection-diffusion-reaction example (5.51) for t = 0.08

this method with constant step size. For this particular example, the step-size control of
the other schemes also lead to almost constant steps sizes, see Fig. 5.4. All simulations
achieved a final accuracy of about 0.004 at t = 0.08. It can be seen that, due to the large
advection part, the exponential methods can take much larger steps than RKC with exprb43

taking the largest ones. In total, exprb43 takes only 18 steps, Krogstad’s method takes 27
steps, exp4 takes 119 steps, while RKC uses 383 steps.

In Fig. 5.5, we compare the performance of the Krylov implementations of exp4, exprb43
and Krogstad’s method with a Matlab implementation of RKC. Our implementations of
exp4 and exprb43 allow a maximum dimension of the Krylov subspaces of 36. The codes
were run with tolerances ATol = RTol = 10−4, 10−4.5, . . . , 10−6.5 (except for Krogstad’s
method, which was used with constant step size). In the left diagram, we plot the achieved
accuracy as a function of the required number of steps. It turns out that, for a given
accuracy, the exponential Rosenbrock method exprb43 uses significantly larger time steps
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Figure 5.6: Number of time steps versus average number of Krylov steps (left) and Number
of Krylov steps versus accuracy (right) for the advection-diffusion-reaction example (5.51)
for t = 0.08

than exp4 and RKC. The number of time steps required for Krogstad’s method is about the
same as for exprb43.

The situation changes, if we consider the achieved accuracy as a function of the required
CPU time, cf. Fig. 5.5. It can be seen that for moderate tolerances, exp4 is faster than
exprb43 while for more stringent tolerances exprb43 requires less CPU time. This can be
explained by considering the number of Krylov steps used by these methods. In the left
diagram in Fig. 5.6 we plotted the average number of Krylov steps over the total number of
time steps. Since exprb43 uses significantly larger time steps, we know from the convergence
analysis of Krylov subspace methods [3, 16] that this requires more Krylov steps. The right
diagram of Fig. 5.6 shows the achieved accuracy versus the total number of Krylov steps.
Since the Krylov approximations dominate the computational cost, this explains the right
diagram of Fig. 5.5. Note that it is impossible to give a reformulation of Krogstad’s method
in such a way that only one expensive Krylov subspace is required in each step. The gain
achieved by reusing previously computed Krylov subspaces [19] does not compensate this
disadvantage. Moreover, Krogstad’s method has four stages and uses even more matrix
functions than exprb43.

Example 2. As a second example, we consider the one-dimensional Schrödinger equation
[18] for ψ = ψ(x, t)

(5.52a) i
∂

∂t
ψ = H(x, t)ψ

with the time dependent Hamiltonian

(5.52b) H(x, t) = −1

2

∂2

∂x2
+ κ

x2

2
+ µ(sin t)2x .
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Figure 5.7: Step sizes taken by exp4, radau5, and exprb43 for the laser example (5.52) for
t ∈ [0, 3]

We used the parameter values κ = 10 and µ = 100. The initial value was chosen as ψ(x, 0) =
e−
√

κx2/2, which corresponds to the ground state of the unforced harmonic oscillator. Semi-
discretization in space was done by a pseudo-spectral method with 512 Fourier modes on
the interval [−10, 10] with periodic boundary conditions.

It was shown in [18] that the Matlab implementation of exp4 outperforms Matlab’s
standard nonstiff ode45 method and matrix-free implementations of the stiff solvers radau5
and ode15s. We refer to [18] for details. Here, we use exactly the same spatial discretization
but run the simulation until t = 3.

In Fig. 5.7, we display the step sizes chosen by the adaptive step-size control for exp4,
radau5, and exprb43. The tolerances were set in such a way that all methods achieved
a final accuracy of about 0.05. As illustrated in Fig. 5.7, exprb43 advances with larger
step sizes than the other two methods. In total exprb43 uses 256 steps, exp4 uses 1906
steps, and radau5 uses 537 steps. In our implementation of radau5, the linear systems
arising within the Newton iteration are solved directly while exp4 and exprb43 are used
with Krylov subspace approximations. Therefore, the radau5 code takes more than 10
times longer than exprb43. Since it has been shown in [18] that a much more efficient
W-version of radau5 was still slower than exp4, we did not include radau5 into our run
time comparisons.

In Fig. 5.8, we compare the performance of the Krylov implementations of exp4 and
exprb43. Both codes were run with tolerances ATol = RTol = 10−4, 10−4.5, . . . , 10−6.5.
The diagrams show that the exponential Rosenbrock method exprb43 uses significantly
larger step sizes than exp4. Moreover, it is also much faster in terms of total CPU time.
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Figure 5.8: Number of time steps versus accuracy (left) and CPU time versus accuracy
(right) for the laser example (5.52) for t = 3

5.9 Nonlinear Schrödinger equation

Now, we return to the laser-plasma application and solve the Schrödinger equation (1.21)
from Section 1.4 with the exponential Rosenbrock-type method. As in Chapters 3 and 4
we choose Q = 0.3. The initial conditions are computed via (3.3). We apply the same
transformations to (3.3) as in Section 1.4 to derive the Schrödinger equation. Then we see,
that the initial condition takes the form

ã(ϑ) = a0e
(βϑ−z0)2

w2
0 e−z0

for β =
√

1−Q and a0 = 0.1. We choose ϑ ∈ [−50/ν0, 50/ν0] and periodic boundary
conditions. The problem is discretized in space via a speudo-spectral method. Then, we
integrate from z = 0λ0 to z = 500λ0. The result is shown in Fig. 5.9. We can see a similar
behavior of the solution to that of the top picture of Fig. 3.1. In the Schrödinger case, we
start the simulation at the plasma boundary. We can see, that the pulse compresses and
develops the pre and post pulses of the two-soliton state similar to the pulse from the full
wave equation. However, the slowly varying envelope approach breaks down in the regime
of sub-cycle pulses, where the pulse length is only one or two λ0.

5.10 Analytic semigroups

So far we restricted our attention to strongly continuous semigroups. This framework,
however, limits the class of possible nonlinearities due to Assumption A.2. If the semigroup
is even analytic, we can allow more general nonlinearities. In this section we sketch how
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Figure 5.9: Solution of the nonlinear Schrödinger equation (1.21) computed with the expo-
nential Rosenbrock-type method exprb43.

to extend our analysis to this case. We first recall the basic definitions. For the theoretical
background of analytic semigroups, we refer to [4, 29].

Definition 5.16. Let ∆ = {z : ϕ1 < arg(z) < ϕ2, ϕ1 < 0 < ϕ2} and for z ∈ ∆ let Γ(z) be
a bounded linear operator. The family Γ(z), z ∈ ∆ is an analytic semigroup in ∆ if

• z → Γ(z) is analytic in ∆,

• Γ(0) = I and lim
z→0
z∈∆

Γ(z)x = x for all x ∈ X and

• Γ(z1 + z2) = Γ(z1)Γ(z2) for all z1, z2 ∈ ∆.

Remark. An analytic semigroup is an extension of strongly continuous semigroups to
sectors in the complex plane containing the positive real axis.

Assumption A.3. The linear operator A in (5.11) is the generator of an analytic semi-
group.

Without loss of generality, we can assume that A is invertible (otherwise we shift it by an
appropriate multiple of the identity). Therefore, fractional powers of A are well defined.
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We choose 0 ≤ α < 1 and define V = D(Aα) ⊂ X. The linear space V is a Banach space
with norm ‖v‖V = ‖Aαv‖.

Our basic assumptions on f are the following:

Assumption A.4. We suppose that (5.11) possesses a sufficiently smooth solution
u : [0, T ] → V with derivatives in V , and that f : V → X is sufficiently often Fréchet
differentiable in a strip along the exact solution. All occurring derivatives are supposed to
be uniformly bounded.

A consequence of Assumption A.3 is that there exist constants C and ω such that

(5.53)
∥∥etJ

∥∥
V←V

+
∥∥tαetJ

∥∥
V←X

≤ Ceωt , t ≥ 0

holds in a neighborhood of the exact solution.

With these assumptions at hand, we derive once more the bounds of Section 5.2. Instead
of (5.20), we now get

(5.54) ‖∆ni‖X + τα
n ‖∆ni‖V ≤ Cτ 2

n‖en‖V + Cτ 3
n,

and (5.24) is replaced by

(5.55) ‖δn+1‖X + τα
n ‖δn+1‖V ≤ Cτ 2

n‖en‖V + Cτ p+1
n .

The same arguments as in the proofs of Lemma 5.4 and 5.5 show the following refined
estimates.

Lemma 5.17. Under Assumptions A.3 and A.4, we have∥∥∥∂gn

∂u

(
u(tn)

)∥∥∥
X←V

≤ C ‖en‖V ,(5.56a)

‖gn(un)−Gn(tn)‖X ≤ C‖en‖2
V ,(5.56b)

‖gn(Uni)−Gn(tn + ciτn)‖X ≤ C
(
τn + ‖en‖V + ‖Eni‖V

)
‖Eni‖V ,(5.56c)

and

(5.56d) ‖Eni‖V ≤ C‖en‖V + Cτ 3−α
n ,

as long as the errors Eni and en remain in a sufficiently small neighborhood of 0.

Further, Assumption A.4 implies

(5.57) ‖Ĵn − Ĵn−1‖X←V ≤ Cτn−1 , n ≥ 1
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with a constant C that is independent of τn−1. The same arguments as in the proof of
Lemma 5.6 with (5.9) replaced by (5.53) now show that

(5.58) ‖et bJn − et bJn−1‖V←V ≤ CLτn−1e
eωt .

This implies the desired stability estimate in V . For the convergence proof, we need an
additional stability result that reflects the parabolic smoothing.

Lemma 5.18. Let the initial value problem (5.11) satisfy Assumptions A.3 and A.4, and

let Ĵn = DF (u(tn)). Then, for any ω̃ > ω, there exists a constant C independent of τn−1

such that

(5.59)
∥∥eτn

bJn · . . . · eτ0 bJ0
∥∥

V←X
≤ C

ebω(τ0+...+τn)

(τ0 + . . .+ τn)α
,

with ω̂ = CL + ω̃ and CL from (5.58).

Proof. Using the same arguments as in [28, Sec. 5] shows this bound.

We are now in the position to state the convergence proof for exponential Rosenbrock
methods in the framework of analytic semigroups. For notational simplicity, we formulate
the result for constant step sizes only.

Theorem 5.19. Let the initial value problem (5.11) satisfy Assumptions A.3 and A.4 and
consider for its numerical solution an explicit exponential Rosenbrock method (5.4) with
constant step size τ . Assume that the order conditions of Table 5.1 hold up to order p with
p = 2 or p = 3. Then, for h sufficiently small, the numerical method converges with order p.
In particular, the numerical solution un satisfies the uniform error bound

‖un − u(tn)‖V ≤ Cτ p .

The constant C depends on T , but it is independent of n and τ for 0 ≤ nτ ≤ T − t0.

Proof. We proceed as in the proof of Theorem 5.10. Due to (5.55) and (5.56), we can bound

(5.60) ‖%n‖X + τ−1‖δn+1‖X ≤ C
(
τ‖en‖V + ‖en‖2

V + τ p
)
.

By the stability estimate, we now have

‖en‖V ≤ C

n−1∑
j=0

τ

(tn − tj+1)α

(
τ‖ej‖V + ‖ej‖2

V + τ p
)
.

The desired error bound thus follows from the application of a discrete Gronwall lemma
with weakly singular kernel.
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Remark. For p ≥ 4, the analysis is much more delicate. Due to (5.56d), the bound (5.60)
now contains a term of the order τ 4−α. Under additional assumptions on f , this order
reduction can be avoided. For exponential Runge–Kutta methods, this has been detailed
in [20]. We do not elaborate this point here.
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