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Chapter 1

Introduction

1.1 Advent of Non-Linear Optics

The idea to intensify and use light is probably as old as mankind. A

so called “burning-glass”, a large convex lens that can concentrate rays of

sunlight onto a small spot, heating up the area and thus resulting in ignition

of the exposed surface, has been known since antiquity. Legend has it that

Archimedes used a burning-glass1 in 212 BC to focus sunlight onto the

approaching Roman ships, causing them to catch fire, when Syracuse was

besieged by Marcus Claudius Marcellus. The Roman fleet was supposedly

incinerated, though eventually the city was taken and Archimedes was slain

[1].

A breakthrough in the generation of intense coherent light was first

achieved by the combination of geometric optics with quantum mechanics

leading to the invention of the laser around 1960. In the following five years

tabletop lasers already reached a power of 1 GW [2, 3]. However, the attempts

to further intensify the laser light led to no significant progress. Non-linear

effects which started playing a major role at high laser intensities put a

limit on the amplification of intensity impairing the beam quality and even

damaging the components of the amplifying systems.

However, the non-linear effects became not only a major problem of laser

technology but also a subject of excitement in the physics community. In his

Nobel lecture 1981 Bloembergen [4] pointed out that nonlinear optics had

developed into a significant subfield of physics. The availability of tunable

dye lasers made detailed nonlinear spectroscopic studies possible throughout

the visible region of the spectrum, from 0.35 to 0.9 µm. Conversely, nonlinear

1Or more likely a large number of angled hexagonal mirrors
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6 CHAPTER 1. INTRODUCTION

techniques extended the range of tunable coherent radiation. Harmonic

generation, parametric down conversion and stimulated Raman scattering

in different orders extended the range from the vacuum ultraviolet to the far

infrared. As Bloembergen noticed [4], such nonlinear phenomena at optical

frequencies are quite striking and can readily be calculated by combining

the nonlinear constitutive relation with Maxwells equations. He also recalled

that at the beginning of the XXth century Lorentz calculated the electric

susceptibility by modeling the electron as a harmonic oscillator. If Lorentz

had admitted some anharmonicity, he could have developed the field of

nonlinear optics 100 years ago. In his Nobel lecture Bloembergen emphasized

that the soft X-ray region still presented a challenge [4].

1.2 High-Order Harmonics from Gases

Four years after Bloembergen received the Nobel prize for physics laser

technology made a new important step. The problem caused by intense laser

radiation destroying optical elements was circumvented using a technique

now known as “chirped pulse amplification” (CPA) [5]. Tabletop laser powers

increased by factors of 103 to 105 making new classes of non-linear laser-

matter interaction accessible. CPA is the current state of the art technique

which all of the highest power lasers in the world utilize and which has made

the generation of high-order harmonics a routine operation.

High harmonics2 from rare gases were first observed in 1987 at moderate

laser intensities of about 1013W·cm−2 [6, 7]. A semi-classical “three-step”

model for the explanation of this phenomenon was proposed in [8] and later

substantiated in [9].

According to this three-step-model (Fig. 1.1) the effective Coulomb

potential binding valence electrons to the atomic core is temporarily

suppressed around the oscillation peak of the laser electric field. As a

result a valence electron can tunnel through or escape above the potential

barrier formed by the superposition of the atomic Coulomb field and the

instantaneous laser field.

The freed electron is moved away from the atomic core and then driven

back to it by a linearly polarized laser field. The interaction of the returning

electron with its parent ion may trigger several processes, including secondary

electron emission, excitation of bound electrons and emission of a soft X-ray

photon.

2More than 30 multiples of the laser frequency
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Figure 1.1: The three stages of the “three-step” Corkum model. See text for

details.

The trajectory of the freed electron driven by a strong, linearly polarized

optical field is described by the classical Hamiltonian

H =
1

2me

(
π +

e

c
A(t)

)2

, (1.1)

where π is the canonical momentum. Since the electron has zero velocity at

the time ti of its release, one can readily check that the electron returns to

the parent ion at tr given as an implicit function of ti by the equation

A(ti)(tr − ti) =

tr∫
ti

A(τ) dτ. (1.2)

Since the electric field is known, one can solve this equation for ti as a function

of tr. The result for a Gaussian wave packet is presented in Fig. 1.2 a.

Evidently, several roots tr can be found for a single ti depending on how

many oscillations the electron performs around the nucleus. Root branches,

which belong to one half-period of the laser field, are painted in the same

colour.

Due to the absorption of the returning electron by the parent atom at tr,

a photon with energy

~ω =
e2

2mec2
(A(tr)− A(ti))

2 + Ip, (1.3)

is emitted, where the first term in (1.3) is the kinetic energy of the returning

electron, which can be found from Eq. (1.2), and Ip is the ionization potential,

i.e. Eq. (1.3) is simply the energy conservation law. One can easily calculate

this energy for every ti. The result is presented in Fig. 1.2 b.
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Figure 1.2: Solution of Eq. (1.2): (a) roots tr for each ti; (b) photon energy

emitted at time tr: ~ω(t) = e2(A(tr)− A(ti))
2/2mec

2 [10].
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A simulation of the three-dimensional time-dependent Schrödinger

equation (TDSE) [10] gives a very close result to what the classical picture

shows (Fig. 1.3). In the simulations of the TDSE the total current generated

due to the interaction between the hydrogen atom and the laser was

calculated. The function I(t, ω) describing the intensity of radiation within

the spectral interval (ω − ∆ω, ω + ∆ω) (with ~∆ω = 15 eV) at time t is

plotted on the (t, ω)-plane by colour indicating the amplitude of I.

Figure 1.3: Spectral intensity (arbitrary units) vs time in TDSE simulations

[10]: (a) Up = 44 eV; (b) Up = 93 eV. Compare with Fig. 1.2 b.

Eq. (1.3) predicts that for the optical field A(t) = A0 cos(ω0t) the

maximum energy of emitted photons is

~ωmax = 3.17Up + Ip, (1.4)

where Up is the ponderomotive potential

Up[eV] =
e2A2

0

4mec2
= 9.3× 10−14I[W · cm−2]λ2

0[µm2].

A direct application of the high-order harmonics is the generation of

short pulses for high resolution experiments [11, 12]. The current state of

technology allows the generation of pulses of several hundred attoseconds

duration (1as = 10−18s) applying a filter and letting a significant number

of gas harmonics interfere.
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In order to generate even shorter pulses more such harmonics are needed.

Due to the expression (1.4) describing the number of high harmonics

generated from gases, it is evident that the only route to shorter pulse

durations involves higher laser intensities3.

However, at intensities higher than 1016W·cm−2 the electron trajectory

is disturbed by the magnetic field and, as a result, the electron misses the

parent ion on its return. Applying even higher intensities leads to complete

ionization of the gas molecules, thereby stopping any generation of high

harmonics. In other words, a completely new medium is needed in order to

support the interaction of laser radiation with matter at higher intensities.

The plasma state of matter has been identified as such a promising medium,

able to generate sufficient harmonics and to produce attosecond [13] and even

sub-attosecond4 pulses [14].

1.3 Coherent X-rays from Plasma

The first observation of high harmonic generation from plasma was

accomplished in 1981 [15]. A solid target was irradiated by a CO2-laser

and turned into plasma. This resulted in the observation of a number of

harmonics limited by the plasma frequency. A theoretical explanation of this

phenomenon was proposed shortly afterwards [16].

A new range of laser intensities was opened up with the development of

the CPA technique. This revived the interest in high harmonic generation

from plasma. The ultra-short and intense pulses provided by CPA turn a solid

target almost immediately into overdense plasma which starts performing a

complicated motion. The plasma electron fluid experiences huge pressure

from the electromagnetic radiation and starts moving, driven by the Lorentz

force of the laser radiation and the Coulomb attraction to the ions. As a

result, the radiation reflected from the plasma contains a high frequency

component (Fig. 1.4).

The current understanding of high harmonic generation from plasma in

the ultra-relativistic regime emerged as a result of gradual development of

theoretical ideas, analysis of numerical simulations and experimental data.

For this reason it is instructive to take a look at the evolution of ideas

and controversies that prompted the search for new methods and theoretical

approaches.

3or longer wavelengths. The latter is connected with technological difficulties.
4Such pulses are called zepto-second pulses, where 1zs= 10−21s
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Figure 1.4: When a laser pulse of ultra-relativistic intensity irradiates a

planar solid target it almost immediately turns into overdense plasma. The

reflected radiation contains high frequencies.

1.3.1 First Theoretical Approaches to Relativistic

Harmonics

While in classical optics the field amplitude is small enough so that

the electron oscillation velocities are always much less than the speed of

light c, with the advent of laser intensities above 1018W·cm−2, the electron

motion entered the ultra-relativistic regime. As a result, relativistic effects

fundamentally change the electron response to light.

A new approach to the interaction of ultra-short and relativistically strong

laser pulses with overdense plasma was needed and in 1993 such an approach

was proposed [17]. The generation of high harmonics in this regime was

interpreted as due to the Doppler effect produced by a reflecting charge

sheet, formed in a narrow region at the plasma boundary, oscillating under

the action of the laser pulse [17]. This “relativistic oscillating mirror” model

predicts a cutoff harmonic number of 4γ2
max, where γmax is the maximal

relativistic factor of the mirror. However, the “oscillating mirror” cannot

explain the generation of high-order harmonics from plasma in the relativistic

regime for several reasons.

First, despite its name, the plasma mirror is transparent at surprisingly

low γ-factors. In order to see this, let us consider a slab of plasma

with density Ne moving with constant velocity v and relativistic γ-factor
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γ = 1/
√

1− (v/c)2 � 1, which collides with a laser pulse of frequency ω0

and dimensionless vector potential a0 = eA0/mec
2. In the reference frame

co-moving with the plasma the vector potential of the laser pulse does not

change its value a0, the plasma density becomes Ne/γ and the laser frequency

is increased to 2γω0. Consequently, even for a0 � 1 the slab becomes

transparent if
Ne

4γ3Nc

≤ 1, (1.5)

where Nc = meω
2
0/(4πe

2) is the critical density. As a result, the plasma

mirror is opaque only for relativistic γ-factors less than

γtr =

(
Ne

4Nc

)1/3

. (1.6)

Therefore the relativistic Doppler effect could apply to explain the generation

of harmonics from plasma only for harmonic numbers less than

nD = 4γ2
tr =

(
2Ne

Nc

)2/3

. (1.7)

This Doppler cut-off related to plasma transparency is too low in order to

interpret the results of numerical simulations and experimental data. The

numerical simulations in [18] and [19] demonstrated the generation of a

large number of harmonics, exceeding the plasma frequency. More recent

numerical results produced over 1000 harmonics [14], while the current

relativistic laser-matter interaction experiments deliver photons with over

3 keV energies [21, 20].

Secondly, the model of the ideal mirror assumes that the reflection is

linear in the reference frame in which the mirror is at rest. This assumption

is the corner stone in the derivation of the relation between the frequency

of the incoming radiation ωi and the frequency of the reflected radiation

ωr = 4γ2ωi. However, such linear response theory is not applicable to the

plasma mirror for a0 ≥ 1 and, consequently, the relativistic oscillating mirror

model is not applicable to relativistic intensity laser pulses due to the non-

linear reflection in the reference frame of the mirror.

As a final remark let us notice that the relativistic mirror moves with

constant velocity according to its definition and does work against the

pressure of the electromagnetic radiation. For this reason in the laboratory

reference frame the energy of the radiation reflected from the ideal mirror

is 4γ2 times larger than the energy of the incident pulse. This violates the
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energy conservation law for the laser-plasma interaction in which all energy

is delivered into the system by the driving incident laser pulse.

Although the relativistic mirror model is not applicable for the

explanation of high harmonic generation in the relativistic regime, this model

is widespread in the physics community. One reason for this is that in the late

nineties the relativistic mirror model was used in order to fit the spectrum

of reflected radiation obtained by numerical simulations. It was found that

only a couple of modes describing the plasma surface oscillations were needed

to fit the shape of spectra observed numerically for various laser intensities

and plasma densities. The small number of modes that were necessary for a

good fit over rather wide ranges of densities and intensities was considered a

reliable confirmation of the relativistic mirror model.

In reality, it is clear that an arbitrary spectrum can be obtained with a

proper choice of modes. Moreover, as one of its major results, this Thesis

demonstrates that the harmonic spectrum depends only on one parameter

and can be described by a simple function. Therefore it is not surprising that

such single-parametric dependence can be fitted by a small number of modes

for wide ranges of laser intensities and plasma densities.

By the year 2004 a number of experimental [23]–[32] and theoretical

[13], [33]–[37] results on relativistic laser-overdense plasma interaction were

obtained. However, apart from the numerical fit of the spectrum as I(ω) ∝
ω−5 proposed in [18], no theoretical description of the harmonic spectrum was

known. An attempt to calculate the harmonic spectrum was made in 1996.

In [35] the laser-plasma interaction was modeled as reflection from a sharp

plasma boundary (oscillating mirror), the motion of which was considered a

harmonic function of time. This approach led to an analytical expression for

the harmonic spectrum intensity.

The idea that the harmonic spectrum does not depend on a particular

model for the motion of the plasma boundary but is described by a universal

function was announced for the first time in 2004 [14]. Although the

approximation used in [14] did not allow the finding of an exact analytical

expression for this universal function, it suggested that the harmonic

spectrum contains a long region decaying according to a power-law and this

power-law decay was used to fit numerical results. The calculation of the

spectrum in [14] showed that the saddle points defining the spectrum of high

harmonics gain an imaginary part for frequencies exceeding 4γ2
maxω0, where

γmax is the maximal γ-factor of the plasma surface motion. This effect was

interpreted as the end of the power-law decay of the harmonic spectrum.

The present Thesis demonstrates that the power-law decay goes well beyond
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these frequencies.

As a final remark notice that the analytical calculation performed in [14]

relies on the boundary condition E⊥ = 0, where E⊥ is the component of

the electric field tangential to the plasma surface. However, this boundary

condition is not relativistically invariant. Therefore, it is necessary to specify

a particular reference frame in which this condition applies. A qualitatively

new approach to ultra-relativistic laser-overdense plasma interaction was

given in 2006 by the Theory of Relativistic Spikes [38, 39] to which this

Thesis is devoted. This new approach avoids any phenomenological boundary

conditions and obtains relativistically invariant results for the high harmonic

spectrum.

1.3.2 Theory of Relativistic Spikes

Similarity theory for ultra-relativistic laser-plasma interaction was

developed [40] in 2004 in order to derive scalings for the intensity of the

focused harmonic radiation from concave plasmas. This theory5 showed that

the ultra-relativistic electron motion differs qualitatively from the collective

motion of the plasma towards the laser pulse [38]. As a result the similarity

theory evoked the idea of relativistic spikes.

The theory of relativistic spikes is based on the apparent reflection point

formalism. This formalism described in Chapter 2 allows re-formulating

any non-linear reflection as a problem of calculating the radiation emitted

by an abstract moving surface. For ultra-relativistic overdense plasma the

qualitative behaviour of this abstract surface comes from the motion of the

plasma skin layer and demonstrates ultra-relativistic spikes in its γ-factor.

Chapter 3 of this Manuscript examines the ultra-relativistic spikes. As a

brief introduction to this subject, we summarize the basic physical ideas and

results of the theory of relativistic spikes here.

Let us consider a laser pulse, linearly polarized in the y-direction, that is

normally incident onto a slab of overdense plasma with surface in the (y, z)-

plane. It is well known that the transverse momentum of an electron inside

the skin layer is

py =
eAy(t, x)

c
, (1.8)

5The ultra-relativistic similarity theory is applicable to both overdense and underdense
plasmas. For underdense plasmas in the context of electron acceleration this theory was
developed in detail in [41].
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where Ay is the y-component of the vector potential. Consequently, the

x-component of electron velocity is

vx = c
px√

m2
ec

2 + p2
x + (eAy(t, x)/c)2

(1.9)

Ultra-relativistic similarity theory [41] shows that if overdense plasma is

irradiated by a laser pulse of ultra-relativistic intensity and dimensionless

vector potential a0 both the transverse momentum of electrons py = eAy/c

and the momentum perpendicular to the plasma surface px scale as meca0,

provided that the parameter S = Ne/a0Nc is held constant.

It is interesting that both momenta px and py result from apparently

quite different physical processes. The momentum px is due to the radiation

pressure which pushes the electron fluid and forces the Coulomb electron-ion

attraction to start restoring the equilibrium. The momentum py is due to

the surface current that does not allow the incident laser pulse to penetrate

into the plasma. Nevertheless, these two momenta are of the same order of

magnitude meca0.

Consequently the velocity of electrons inside the skin layer is about c and

their relativistic γ-factor scales as a0. However, this ultra-relativistic velocity

is not directed perpendicular to the plasma surface. As a result, the value

of the γ-factor corresponding to the electron motion that is normal to the

plasma surface is

γx =
1√

1− (vx/c)2
=

√
m2
ec

2 + p2
x + (eAy(t, x)/c)2

m2
ec

2 + (eAy(t, x)/c)2
(1.10)

is not usually as large as a0 but is of the order of unity.

However, when the vector potential at the point x passes through zero,

the velocities of the electrons at this point and within a small neighbourhood

are directed along the normal to the plasma surface (Fig. 1.5). Since the

vector potential oscillates with frequency ω0, the vector potential passes

through zero at x according to the scaling Ay ∝ mec
2a0ω0t. Therefore the

electron velocity vx at x is a smooth function reaching the maximum value

c
(
1−O(a−2

0 )
)
. At the same moment when vx reaches its maximum the

corresponding γ-factor γx jumps6 up to a0 and the electrons located at x

emit high frequency photons.

This means that each point of the ultra-relativistic skin layer contributes

to the high harmonic generation when the zero of the vector potential passes

6These jumps are called ultra-relativistic spikes.
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Figure 1.5: Electron distribution function f(t, x, px) as a function of time, x-

coordinate in direction of laser pulse propagation and corresponding electron

momentum px [14]. Electron bursts towards the laser pulse caused by the

zeros of the vector potential can clearly be observed. At the same moments

of time vx reaches its maximum, the corresponding γ-factor γx jumps up to

a0 and the electrons, located at the zero of the vector potential, emit high

frequency photons.
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through it. As a result, the outcoming radiation is accumulated during the

whole time the zero of the vector potential travels through the skin layer.

To understand this accumulation process one has to notice that the velocity

of the zero of the vector potential coincides with the local phase velocity of

the signal. On the other hand, the velocity of the vector potential’s zero is

the velocity of the radiation source. This means that the phase matching

condition is automatically satisfied in the whole skin layer.

This physical picture has two important consequences. First of all, since

the high harmonics are generated by the whole skin layer due to coherent

emission of different parts at different times, the skin layer can radiate

harmonics that are much shorter than its thickness. Secondly, since the

whole relativistic skin layer is involved in this process, the high harmonic

generation is robust and is not affected by the surface roughness, provided

that it does not destroy the structure of the whole skin layer.

The accumulated radiation manifests itself in the form of electromagnetic

shock waves (a0 → +∞) propagating in vacuum in which the electric field

Er of the reflected wave depends on time as

Er(t, x) = const1 + const2 × (ct− x)1/3 (1.11)

These shock-waves are distinctive in numerical simulations demonstrating the

local steepening of the reflected electric field (Fig. 1.6). This local steepening

according to the power law (ct−x)1/3 is a characteristic feature of the ultra-

relativistic γ-spike mechanism.

Contrary to the relativistic Doppler effect that compresses the pulses

and causes a frequency upshift, a relativistic γ-spike leads to local steepness

without any compression of the incident pulse. It is worth emphasizing that

the compression of the pulse and the upshift of all frequencies makes the

spectrum of the reflected radiation strongly dependent on the spectrum

of the incidence laser pulse. On the other hand, the steepening due to

the electromagnetic shock is a local phenomenon resulting in the universal

spectrum of high harmonics, which can be calculated as the Fourier image

of the electromagnetic shock:

|Er(ω)|2 ∝

∣∣∣∣∣∣
+∞∫
−∞

(ct− x)1/3 eiωtdt

∣∣∣∣∣∣
2

∝ 1

ω8/3
, (1.12)

where Er(ω) =
+∞∫
−∞

Er(t, x) exp(iωt)dt. The electromagnetic shocks are
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Figure 1.6: Numerical simulation with the particle-in-cell code VLPL[47]

performed for the case of a0 = 20 and Ne = 90Nc demonstrates a)

the incoming laser radiation and b) the reflected radiation containing

electromagnetic shocks.

derived and discussed in detail in Chapter 4 of this Thesis.

The relativistic spikes allow us to derive a single analytical formula

describing the whole universal spectrum of high harmonics:

|Er(ω)|2 ∝
(ω0

ω

)8/3

Ai2

(
1

N

(
ω

ω0

)2/3
)
, (1.13)

where N = α1/3ncr/2, ncr = 2/(1 − vs) and vs is the velocity corresponding

to the peak of the γ-spike. The theory of relativistic spikes proves that N

scales as a2
0. Ai is the well-known Airy function:

Ai(x) =
1√
π

+∞∫
0

cos

(
ux+

1

3
u3

)
du, (1.14)

the asymptotic expansion of which confirms Eq. (1.12) and demonstrates

that for ω < ωroll = N3/2ω0 ∝ a3
0ω0 the spectrum decays as

|Er(ω)|2 ∝
(ω0

ω

)8/3

, (1.15)
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while for ω > ωroll the spectrum of high harmonics decays exponentially

|Er(ω)|2 ∝
(ω0

ω

)3

exp

(
− 4

3N3/2

ω

ω0

)
. (1.16)

The high harmonic spectrum predicted by (1.13) can be beautifully

visualized in a numerical simulation (Fig. 1.7).

Figure 1.7: Spectra of the high harmonics generated by laser-overdense

plasma interaction, produced by the particle-in-cell code VLPL [47]. These

numerical simulations clearly demonstrate the power-law decay of the

harmonic spectrum [14].

The origin of the a3
0-roll-over can be illustrated physically using the idea

of ultra-relativistic spikes. Let us estimate the duration of one pulse of high

harmonics emitted at the boundary of a relativistic plasma. Since these

harmonics are generated only during a γ-spike, the first photon is radiated

at time t1 when the position of the plasma surface is x1 and the last one at

time t1 + ∆ts when the position of the surface is x2 (Fig. 1.8 b). However,

since the photon moves with velocity c, which differs from the velocity of the

γ-spike vs, the first photon has come to the position x3. As a result, the

spatial delay between the first and the last photon radiated from the plasma

surface is

∆lpulse = x3 − x2 ≈ (c− vs)∆ts =
c∆ts
γ2
s

,

where γ2
s = 1/(1− (vs/c)

2).
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Figure 1.8: Physical illustration of the a3
0 scaling for the roll-over harmonic

frequency. See text for details.

In order to estimate this delay we calculate the width of the γ-spike. For

this purpose we make use of the fact that the velocity vx is a smooth function

and expand it as a parabola around its maximum vs (Fig. 1.8 b)

vx(t) = vs − cα (ω0t)
2 .

Consequently, the corresponding γ-factor is

γ2(t) =
1

1− (vx(t)/c)2
≈ 1

1− (vs/c)2 + 2α (ω0t)
2 ,

which gives us the width of the γ-spike as

∆ts ∝
1√
αω0γs

,

where γs is the maximal relativistic factor of the γ-spike, which, as we pointed

out previously, is proportional to a0. As a result we obtain for the spatial

duration of the harmonic pulse

∆lpulse ∝
1

a3
0

, (1.17)

which corresponds to a number of a3
0 harmonics in the frequency domain.

Chapter 4 of this manuscript is devoted to the detailed discussion of the

universal harmonic spectrum. Nevertheless, it is worth emphasizing at this
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point that the power law decay, the a3
0-roll-over and the following exponential

decay are all consequences of the same physical phenomenon and are obtained

from the same formula (1.13).

As mentioned earlier the high harmonics from plasma have been identified

as a promising source of ultra-short pulses. Since all high harmonics are

locked in the time domain in the form of an electromagnetic shock, they are

highly coherent. In other words their constructive interference results in the

generation of extremely short pulses, the duration of which is defined by the

harmonic spectrum (1.13). One readily sees that the pulse duration scales as

T ∝ 1

ωroll
∝ 1

ω0a3
0

.

These short pulses are embedded in the low frequency background which

has to be filtered out in order to reveal the high frequency content. As a

result, the structure of the filtered pulses depends on the position of the

filter relative to the position of the roll-over frequency [38]. Moreover, it

is possible to control the development of ultra-short pulses by means of

changing the polarization of the incident laser pulse in order to isolate single

sub-attosecond pulses [39]. Chapter 5 studies these ultra-short pulses in

detail.

Finally, let us point out that shortly after the publication of the major

results of the theory of relativistic spikes, the predictions of this theory were

confirmed experimentally [21, 22].

1.3.3 Experimental Results

The experiments confirming the theory of relativistic spikes were

performed using the Vulcan Petawatt laser at the Rutherford Appleton

Laboratories, which can readily reach peak intensities of about 1021W·cm−2,

delivering up to 600 J on a target in about 500 fs [21, 22]. After applying a

plasma mirror which significantly increases the contrast of the experiment,

the spectrum of the radiation generated by the plasma target was measured

(Fig. 1.9).

The harmonic spectra were taken for two different intensities (1.5±0.3)×
1020W·cm−2 (red trace on Fig. 1.9) and (2.5±0.5)×1020W·cm−2 (blue trace).

It was found that both the power-law decay part of the spectrum as well

as the position of the roll-over frequency ωroll are in agreement with the

predictions of the theory of relativistic spikes. The coherent nature of the

generated harmonics was demonstrated by the highly directional beamed
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Figure 1.9: Power-law scaling in the relativistic limit obtained using

the Vulcan Petawatt laser in the x-ray regime. a) 1200th–3200th order

harmonics, corresponding to wavelengths of 9–3 Å; b) 60th–850th orders,

corresponding to wavelengths of 17–1.2 nm. Figures from [21, 22].
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emission, which for photon energy hν > 1 keV was found to be into a cone

angle ∝ 4o (Fig. 1.10), significantly less than the incident laser cone (20o).

Figure 1.10: Angular distribution of > 1 keV x-ray signal under high contrast

conditions. The signal is emitted into a narrow cone peaked in the specular

direction at 45o(the laser incidence angle is -45o). Figure from [21].

It is interesting to notice that the number of harmonics generated in these

experiments is huge. The wavelengths of the highest harmonics observed

are only a couple of Ångströms. Thus, these harmonics have wavelengths

comparable with the inter-atomic distances in solids. As we explained earlier

in this Section, such high frequency harmonics are generated at the boundary

of the relativistic plasma since the process of high harmonic generation is not

affected by the plasma surface roughness and the whole bulk of the skin layer

efficiently contributes to the generation of even the shortest harmonics. This

point is discussed in detail in Chapter 3.
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1.4 Thesis Structure

This Thesis is organized as follows. Every Chapter contains a brief

introductory part, which points out the key issues considered in that Chapter.

Chapter 2 “Apparent Reflection Point Formalism” presents the new

mathematical tools that are used in this Thesis. The apparent reflection point

formalism introduced here enables one to study the non-linear processes of

reflection. This mathematical approach allows the high harmonic generation

from relativistic plasma to be studied in a relativistically consistent way.

Chapter 3 “Relativistic Spikes” examines the apparent reflection point

dynamics for non-linear relativistic reflection from overdense plasma and

obtains scalings characterizing the most important features of this dynamics.

For the first time the apparent reflection point formalism is combined with

the relativistic similarity theory. This consideration allows the role of the

laser pulse polarization to be taken into account for the case of oblique laser

pulse incidence which is applied in the high-power laser laboratories.

Chapter 4 “High Harmonic Generation” applies the results of the first

two Chapters to derive the universal spectrum of the high harmonics. The

new physical phenomenon of electromagnetic shocks, which is introduced

here, is a distinctive feature of the relativistic laser-plasma interaction. The

analytical description of the electromagnetic shock-waves, which points out

the relation between the shocks and the universal harmonic spectrum, is

obtained in this Thesis for the first time.

Chapter 5 “Ultra-Short Pulses” studies one of the most interesting

applications of the plasma harmonics - the generation of ultra-short pulses.

This Chapter demonstrates the generation of trains of zepto-second pulses

with tunable structure and introduces the mechanism of Relativistic Plasma

Control which allows isolating single zepto-second pulses.

Chapter 6 “Conclusions” contains a brief summary of the main results

obtained here.



Chapter 2

Apparent Reflection Point

Formalism

The theory of high harmonic generation at the boundary of an ultra-

relativistic overdense plasma is based on the concept of an apparent reflection

point (ARP). In this Chapter the notion of an apparent reflection point is

introduced and the ARP formalism is discussed.

The main goal of this formalism is to highlight the connection between

an incident laser pulse and reflection radiation, while hiding the details of

the interaction in the background. This connection is obtained as a pure

consequence of the 1D wave equation in vacuum. For this reason the concept

of ARP is rather general and can be applied to various media. However, this

method unfolds its full power when it is applied to high harmonic generation

from overdense ultra-relativistic plasmas.

The ARP formalism is a new approach to problems concerning laser-

matter interaction. In this Chapter we derive the master equation for

apparent reflection point dynamics and study the properties of this equation

related to Lorentz transformations. The ARP formalism relies on the tensor

properties of the electromagnetic field and enables one to use the ideas of

relativistic invariance in order to simplify the concrete problems of non-linear

laser-matter interaction.

25
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2.1 Wave Equation and Apparent Reflection

Point

Let us consider a slab of matter irradiated by a laser. The specific nature

of the irradiated matter is of no importance, since the formalism which

is developed here is based only on the properties of the wave equation in

vacuum and the universal relation between the current density and the vector

potential following from the Maxwell equations.

Figure 2.1: A slab of matter is irradiated normally by a laser pulse moving

in x-direction. The directions y and z are tangential to the slab.

Choosing the direction of negative x to be the direction of laser pulse

propagation, let us consider the tangential components of the vector potential

of a laser pulse normally incident onto the slab. The vector potential satisfies

the equation

1

c2

∂2A(t, x)

∂t2
− ∂2A(t, x)

∂x2
=

4π

c
j(t, x), (2.1)

where

A(t, x = −∞) = 0 (2.2)

and j is the tangential current density.

For the particular case of linear laser polarization (along the y-axis) we

see that the y component of Eq. (2.1) satisfies the equation1

1

c2

∂2A(t, x)

∂t2
− ∂2A(t, x)

∂x2
=

4π

c
j(t, x), (2.3)

1We skip the indexes and write A = A · ey and j = j · ey for brevity.
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the solution of which is

A(t, x) = 2π

+∞∫
−∞

J (t, x, t′, x′) dt′dx′. (2.4)

Here

J (t, x, t′, x′) = j (t′, x′) (Θ− −Θ+) ,

where we have defined Θ− and Θ+ as

Θ− = Θ (t− t′ − |x− x′| /c) ; Θ+ = Θ (t− t′ + (x− x′) /c)

and Θ(t) is the Heaviside step-function. Due to this choice of J , the vector

potential A(t, x) satisfies both Eq. (2.1) and the boundary condition at x =

−∞. Since the tangential electric field is

E = −1

c

∂A(t, x)

∂t
,

from Eq. (2.4) one readily obtains

E(t, x) =
2π

c

+∞∫
−∞

(j(t− |x− x′|)/c, x′)− j(t+ (x− x′)/c, x′)) dx′, (2.5)

where E = E · ey is the y-component of the electric field.

Note that both terms in Eq. (2.5) have clear mathematical and physical

meaning: the first term is a partial solution of the inhomogeneous wave-

equation, the second term is a solution of the homogeneous wave-equation.

This term is necessary in order to satisfy the physical condition (2.2) of

electromagnetic field decay inside the slab. The current is localized at the

slab boundary, since for large negative x we have |x − x′| = −(x − x′) and

limx→−∞E(t, x) = 0.

A point requiring closer attention is the time dependence of the terms in

Eq. (2.5). The first term always depends on the retarded time. The time

dependence in the second term is quite different. At points located deep

inside the slab the time in the second term is retarded, however in the area

remote from the medium the second term depends on the advanced time.

The non-trivial time dependence of the second term can be understood

physically. Indeed, long before the interaction and far away from the slab,

i.e.
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t→ −∞, x→ +∞

the electromagnetic field coincides with the incident laser pulse. Since for

such t and x the first term in Eq. (2.5) vanishes, the second term

Ei(t, x) = −2π

c

+∞∫
−∞

j(t+ (x− x′)/c, x′) dx′ (2.6)

must represent the incident laser pulse. The source of this field in Eq. (2.6)

is the electron current j, which is a function of the advanced time. In other

words, the incident laser pulse is expressed through the current density which

it is going to generate in the future.

Since the second term in Eq. (2.5) is the incident laser pulse, the first

term is the electromagnetic field generated by the surface current induced in

the medium. As a result, one sees that the reflected radiation in vacuum2 is

Er(t, x) =
2π

c

+∞∫
−∞

j(t− (x− x′)/c, x′) dx′. (2.7)

The physical meaning of Ei and Er just discussed motivates the definition

of the apparent reflection point. Let us introduce the new vector field3

Γ(t, x) =
2π

c

+∞∫
−∞

(j(t− (x− x′)/c, x′)− j(t+ (x− x′)/c, x′)) dx′, (2.8)

which is related to the incoming and reflected electric field in vacuum as

Γ(t, x) = Ei(t, x) + Er(t, x). (2.9)

The ARP is defined as the point X(t), where the field Γ(t, x) equals zero

Γ(t,X(t)) = 0. (2.10)

2In other words, far from the slab, where x→ +∞.
3Note that one obtains the field Γ(t, x) from Eq. (2.5) by dropping out the sign of

modulus inside the current density.
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The zero of Γ is named apparent reflection point, since to an external observer

in vacuum it appears that the reflected radiation originates from the reflection

of the laser pulse at this point.

Note that the field Γ coincides with the electric field E in vacuum4.

However, it should be emphasized that Γ does not coincide with the physical

electric field E inside the matter. Neither does Γ satisfy the Maxwell

equations there. However, one can check by direct substitution that the

field Γ is a solution of the wave-equation in vacuum for all x.

Due to its connection with Ei and Er, the ARP can be used to relate the

reflected and incoming radiation. In order to use this connection efficiently

however, we must first clarify the relativistic properties of the apparent

reflection point.

2.2 Relativistic Definition of Apparent

Reflection Point

Let us see what happens to the apparent reflection point if we change

the frame of reference. For this purpose we consider a reference frame

(t′, x′) moving with constant velocity u in the x direction. The Lorentz

transformation describing this change of reference frame can be written as

x = γ(x′ + cβt′); ct = γ(ct′ + βx′),

where β = u/c and γ = 1/
√

1− β2.

Since the definition of Γ in (2.9) does not depend on the reference frame,

in the moving frame (t′, x′) we have

Γ′(t′, x′) = E ′i(t
′, x′) + E ′r(t

′, x′), (2.11)

where the electric field of the incident and reflected radiation in the moving

frame transforms as

E ′i = rEi; E ′r = Er/r, (2.12)

with the transition factor

r =

√
1 + β

1− β
. (2.13)

4Compare Eqs. (2.5) and (2.8) for x→ +∞.
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In the moving reference frame the ARP X ′(t′) is defined again as the zero

position of the field Γ′:

Γ′(t′, X ′(t′, r)) = 0. (2.14)

In order to study the processes accompanying laser-matter interaction it

is more convenient to work with fields and electric currents in the laboratory

reference frame. Therefore let us notice that the apparent reflection point

X ′(t′, r), defined by Eq. (2.14), is not the image of the ARP X(t) = X(t, 1)

defined in the laboratory reference frame as the zero point of Γ(t, x) (see

Eq. (2.10)). Instead, if X ′(t′, r) is the image of a point X(t, r) obtained by

the Lorentz transformation with the transition factor r, in the laboratory

reference frame X(t, r) satisfies the equation (see Eq. (2.12))

r2Ei(ct+X(t, r)) + Er(ct−X(t, r)) = 0 (2.15)

or equivalently

2π

c

+∞∫
−∞

j(t− (X(t, r)− x)/c, x) dx = −r2Ei(ct+X(t, r)). (2.16)

Thus, each Lorentz transformation (2.16) defines a point X(t, r) which is

characterized by the transition factor r of the Lorentz transformation. As

a result, the whole set of Lorentz transformations defines a pool of points

parametrized by r. These points have a clear physical meaning. According

to Eq. (2.11) it appears to an external observer moving with velocity u, that

the incoming laser radiation is reflected at the point

X ′(t′, r) = γ(X(t, r)− cβt); ct′ = γ(ct− βX(t, r)),

where β = u/c and γ = 1/
√

1− β2.

As we have just seen, the relativistic definition (2.16) of the ARP provides

a pool of apparent reflection points with a free parameter r. However, there

is a relation between these different points X(t, r). In order to formulate

this relation, let us consider two such points X(t1, r1) and X(t2, r2), taken

at such moments of time that the corresponding phases of the reflected field

Ψ(t, r) = ct−X(t, r) coincide

Ψ(t1, r1) = Ψ(t2, r2). (2.17)
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Using Eq. (2.15) one obtains

r2
1

r2
2

=
Ei(ct2 +X(t2, r2))

Ei(2ct1 − ct2 +X(t2, r2))
. (2.18)

We can use Eq. (2.18) in order to calculate t2 as a function of t1, r1 and r2:

t2 = T (t1, r1, r2), (2.19)

and to find the connection between these two points

X(t1, r1) = ct1 − cT (t1, r1, r2) +X(T (t1, r1, r2), r2). (2.20)

Notice that Eq. (2.20) depends only on the shape of the initial pulse and

does not contain any information about the laser-matter interaction leading

to the generation of the reflected signal.

It is worth emphasizing that the free parameter r appears in all

applications of the ARP-formalism. However, we will see that all final results

depend only on invariants of the transformation (2.18) due to the relativistic

invariance of the theory. Since all calculations depend on the reference frame

in which the quantities involved in the formulas are expressed, the presence of

an explicit parameter characterizing the frame of reference allows advantage

to be taken of the Lorentz invariance.

The ARPs defined in this Section are the basis of the ARP-formalism.

Indeed, in what follows we demonstrate that for large enough r the motion

of X(t, r) enables one to reconstruct the reflected radiation Er.

2.3 Basic Properties of Apparent Reflection

Point

In order to see how the reflected radiation can be reconstructed through

the apparent reflection point X(t, r), we study some basic properties of this

point.

2.3.1 Existence of Apparent Reflection Point

First of all let us show that the ARP always exists. This means for Eq.

(2.14) to always have a solution. In order to prove this, let us notice that

since E ′i and E ′r satisfy the wave-equation in vacuum, they describe waves
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propagating towards x′ = −∞ and x′ = +∞ correspondingly. As a result,

the following integral representations are valid

E ′i(t
′, x′) =

∫
E ′i(ω)e−iωt

′−ik(ω)x′dω; E ′r(t
′, x′) =

∫
E ′r(ω)e−iωt

′+ik(ω)x′dω,

where k(ω) = ω/c since E ′i and E ′r are solutions of the 1D-wave equation in

vacuum. From Eq. (2.8) one reads5∫ +∞

−∞
Γ′(t′, x′)dx′ = 0 (2.21)

for all t. Since the integral in Eq. (2.21) equals zero, the function Γ′ changes

sign and passes through zero. In other words Eq. (2.14) has a solution.

Consequently, the apparent reflection points X(t, r) exist for arbitrary r.

It is worth emphasizing that since the physical electric field E satisfies

the Maxwell equations, the integral representation for this field is

E ′(t′, x′) =

∫
E ′(ω, k)e−iωt

′−ikx′dωdk, (2.22)

where ω and k are independent variables. Consequently, although one can

easily demonstrate the existence of zero points for Γ′ if a static electric field

is not present, one cannot prove the existence of zeros for E ′ for all t′.

2.3.2 Reconstruction of Reflected Radiation

The main idea behind the ARP-formalism is to reconstruct the radiation

reflected from the slab. As we saw there is a relation between incoming and

reflected signal provided by the apparent reflection points X(t, r). Moreover,

we demonstrated that the ARPs exist for all r. Yet the existence of X(t, r)

alone does not mean that we can obtain full information about Er.

Indeed, let us rewrite Eq. (2.15) as

Er(Ψ) = −r2Ei(Φ), (2.23)

where

Ψ(t, r) = ct−X(t, r) and Φ(t, r) = ct+X(t, r).

5Since there is no static electrostatic field (ω = 0) parallel to the slab neither in the
incident nor in the reflected pulse.
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Only if Ψ(t, r) changes from −∞ to +∞ when t runs from −∞ to +∞,

Eq. (2.23) can be used in order to restore the reflected pulse for all values

of the phase ψ = ct − x. Since the reflected radiation propagates in 1D

without change of shape or amplitude, Er is defined everywhere, provided

the dependence of Er upon ψ is known.

It is clear that not every ARP lets Ψ(t, r) satisfy this condition. However,

we can readily identify ARPs which do. Indeed, if we choose r large enough6

the apparent reflection point will always be located by a zero point of Ei,

which propagates from +∞ to −∞. Consequently, Ψ(t, r) changes from +∞
to −∞ as well. As a result Er is restored for all phases ψ.

A significant role in the proof of the existence of apparent reflection points

which allow the reconstruction of Er is played by the transformation factor r.

Therefore let us notice at this place that the parameter r arises due to the fact

that the electric field transforms as a component of the electromagnetic tensor

under Lorentz transformations [45]. An alternative consideration using the

magnetic field components instead of the electric field is also possible.

However, an attempt to develop the ARP-formalism on the basis of the

vector potential fails due to its different tensor properties. The Lorentz

transformations do not change the relative values of the vector potential of

the incident and reflected waves, and this results in difficulty proving that

the reflected radiation can be reconstructed for all phases.

2.3.3 Causality Condition

For the apparent reflection points allowing reconstruction of the reflected

radiation we can prove the very important property of causality.

Let us consider the derivative of Eq. (2.23) over time. We obtain

r2

(
c+

dX(t, r)

dt

)
dEi
dΦ

= −
(
c− dX(t, r)

dt

)
dEr
dΨ

. (2.24)

Note that at the moment dX/dt reaches c, dEi/dΦ vanishes. In other

words, the apparent reflection point X(t, r) is then at the local maximum

or minimum of r2Ei. However, this never happens if the parameter r is large

enough. Consequently, the ARP velocity never equals the velocity of light:

dX(t, r)

dt
/= c. (2.25)

6This means β → 1
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Eq. (2.25) is satisfied for all r larger than some threshold value rthresh. In

what follows we restrict our study to the case of r > rthresh.

If the parameter r is chosen large enough one can demonstrate that Ẋ(t, r)

is always less than c. Indeed, from Eq. (2.24) one obtains

Ẋ = c
1 + ∆

1−∆
, (2.26)

where

∆ = r2 dEi/dΦ

dEr/dΨ
.

For large enough r we have |∆| � 1 and consequently the causality condition

dX(t, r)

dt
< c

applies for the phase Ψ of the reflected radiation.

Let us remark that due to the denominator dEr/dΨ, ∆ can pass through

1 for some Ψ, if r is not sufficiently large. However, the causality condition

still applies for the given phase, if we pick the neighbouring zero of Ei, for

which the derivative dEi/dΦ has the opposite sign.

In conclusion let us notice that the change of apparent reflection point

is automatically embedded in a proper parametrization. In order to

demonstrate this, let us rewrite Eq. (2.23) in the form

Er(Ψ) = −r2Ei(2ct−Ψ). (2.27)

In this parametrization it is evident that one can restore the reflected

radiation if for each value of the parameter Ψ one can find t(Ψ) in order

to satisfy Eq. (2.27). The apparent reflection point is now defined as an

implicit function of time as

X(Ψ) = ct(Ψ)−Ψ.

We now demonstrate that Eq. (2.27) has a solution for all Ψ, if r > rthresh.

Notice that if Eq. (2.27) is solved for some Ψ0 and t0 = t(Ψ0) is known, then

to first order Taylor expansion

(Ψ−Ψ0)
dEr
dΨ

= −r2 [2c(t− t0)− (Ψ−Ψ0)]
dEi
dΦ

+O
(
(Ψ−Ψ0)2) .

In other words,
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t(Ψ)− t(Ψ0) = −dEr/dΨ− r2dEi/dΦ

2cr2dEi/dΦ
(Ψ−Ψ0),

X(Ψ)−X(Ψ0) = −dEr/dΨ + r2dEi/dΦ

2r2dEi/dΦ
(Ψ−Ψ0).

This solution exists for dEi/dΦ /= 0, which coincides with our choice of

r > rthresh. For dEr/dΨ = r2dEi/dΦ, which corresponds to ∆ = 1, the

second order of the Taylor expansion must be taken into account. One reads

1

2
(Ψ−Ψ0)2d

2Er
dΨ2

= −2cr2(t− t0)
dEi
dΦ
− 1

2
r2(Ψ−Ψ0)2d

2Ei
dΦ2

+O
(
(Ψ−Ψ0)3) .

In other words,

t(Ψ)− t(Ψ0) = −d
2Er/dΨ2 + r2d2Ei/dΦ2

4cr2dEi/dΦ
(Ψ−Ψ0)2,

X(Ψ)−X(Ψ0) = −d
2Er/dΨ2 + r2d2Ei/dΦ2

4r2dEi/dΦ
(Ψ−Ψ0)2 − (Ψ−Ψ0),

and thus the solution (X(Ψ), t(Ψ)) exists for all phases Ψ.

2.4 Apparent Reflection Point and Boundary

Conditions

In this Chapter we introduced the apparent reflection point formalism

and examined its general properties. This advance was necessary in order

to develop tools for the examination of relativistic laser-matter interactions

without applying any phenomenological boundary conditions.

One reason to avoid such boundary conditions lies in the complexity of the

non-linear interactions and the restrictions enforced by relativistic invariance.

Not only are boundary conditions for such problems difficult to state but

the ultra-relativistic laser radiation significantly perturbs the electron fluid

density, which makes even the notion of a plasma boundary quite obscure.

Yet the major reason is that in our study of ultra-relativistic laser-matter

interaction we are looking for universal relations. In other words, if we apply

a boundary condition it has to be universal as well. The difficulty in finding
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such boundary conditions is immense. To resolve this problem the idea of

boundary conditions is replaced by the new theoretical approach - apparent

reflection point formalism - introduced in this Chapter.

In conclusion we notice an interesting analogy between the presented

ARP-formalism and the S-matrix formalism well-known from quantum

mechanics [42]. The S-matrix connects the incident free particles with the

outcoming ones obtained due to collision. Here we applied similar logic to the

problem of laser-matter interactions and found the relation (2.23) between

the incident laser pulse Ei propagating in vacuum and the reflected radiation

Er at a large distance from the reflecting matter.

In quantum mechanics the efficiency of the S-matrix formalism is revealed

by two quite different types of applications. The S-matrix hides the details

of the particle collision and often allows results of physical importance to

be expressed through a limited set of parameters that can be measured

experimentally. On the other hand, in order to express these parameters

through the characteristics of the particle interaction, dynamic equations

must be studied. However, if the parameters that are relevant to the problem

have been calculated, postulated or derived from the experimental results,

one can apply the S-matrix as a black-box, thus obtaining general results

without having to give attention to how the parameters entering the theory

relate to the microscopic Hamiltonian.

The same logic applies to the ARP-formalism. In the next Chapter

we consider laser-matter interactions on the microscopic level in order to

express the parameters characterizing the important features of apparent

reflection point motion. Then we describe the non-linear relativistic reflection

from overdense plasma through these parameters. We demonstrate how the

combination of universal features of relativistic plasma dynamics with the

ARP-formalism and the fundamental restrictions following from relativistic

invariance lead to an understanding of the physics of non-linear relativistic

reflection as a new class of universal phenomena.



Chapter 3

Relativistic Spikes

The apparent reflection point (ARP) formalism introduced in Chapter 2

allows general expressions to be obtained for the structure of the radiation

reflected from the plasma as a result of laser-overdense plasma interaction.

These expressions are based on the motion of a single point - the apparent

reflection point.

Due to its importance for the reconstruction of the reflected radiation, this

Chapter is given over to the derivation of scalings describing the dynamics

of the apparent reflection point in relativistic laser plasma interactions. For

this purpose the dynamics of a plasma driven by a laser pulse of relativistic

intensity is analyzed.

The interaction of an intense laser pulse with a plasma is accompanied by

a variety of complex non-linear phenomena and a number of instabilities [43].

When the laser pulse intensity is relativistic, strong relativistic non-linearities

start playing an important role and evoke fascinating phenomena. There are

several ways to approach this new physics. Firstly, due to sustained increase

in computer power and corresponding reduction in the cost of computer

resources, numerical simulations of relativistic laser plasma interaction have

become available in many research laboratories and universities. Secondly,

simplified theoretical models which can be studied analytically provide

valuable clues to the understanding of relativistic plasma physics.

Apart from these obvious approaches there is a third one. As has recently

been noticed, similarity theory can be developed in order to treat relativistic

laser plasma interactions [40]. Relativistic similarity theory happens to be

an efficient tool for the study of both underdense [41] and overdense [40]

plasmas. In its generality this approach does not rely on artificial simplifying

assumptions and often allows the derivation of scalings efficiently collating

37
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experimental data and theoretical results. The similarity scalings are rigorous

mathematical results representing intrinsic symmetry properties of the laser-

plasma interaction [44].

In this Chapter we first apply similarity analysis in order to describe

qualitatively the ARP motion. The thorough consideration given to the topic

below shows that both the relativistic similarity theory itself and the first-

order correction to it are of importance for the ARP motion. We demonstrate

that the plasma dynamics is characterized by sharp, so called relativistic

spikes in the relativistic γ-factor and smooth velocity. The microscopic

analysis performed here connects the motion of the plasma electrons with

the ARP dynamics. It is shown that the characteristic relativistic spikes

determine the dynamics of the apparent reflection point at relativistic laser

intensities, for both normal and oblique laser incidence. The ARP motion is

demonstrated by numerical simulations.

3.1 Relativistic Similarity for Collisionless

Plasma

In what follows we concentrate on laser plasmas involved in high-order

harmonic generation (HHG). The standard way to generate high harmonics

from overdense plasma is to expose a solid target to the focused radiation of

a femtosecond laser (see Fig. 1.4). The target almost immediately turns into

overdense plasma with MeV-range energy electrons and density around the

solid state density. For these laser plasmas Coulomb collisions are negligible.

Indeed, for T ≤ mec
2 the collision frequency is

ν ∝ ωpe

(
e2n

1/3
e

T

)3/2

ln Λ, (3.1)

where ωpe is the plasma frequency, T is the electron energy and ln Λ ≈ 15

is the Coulomb logarithm. Since the laser pulse duration is τ ∝ 2π/ω0, for

T ∝ mec
2 Eq. (3.1) gives rise to

τν ∝ 2π
ωpe
ω0

(
e2n

1/3
e

T

)3/2

ln Λ ≈ 10−5 � 1 (3.2)

for a laser wavelength of 800 nm and typical solid state density (e2n
1/3
e ≈ 4

eV). Consequently on the time scale of the laser we can neglect the Coulomb
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collisions and use a collisionless description by means of the relativistic Vlasov

equation. Notice that for the case of interest the kinetic energy of the

electrons is much larger than mec
2 and so the role of collisions is even less

than estimated by Eq. (3.2).

For this reason, in order to derive the basic scalings of the relativistic

similarity, we consider collisionless laser-plasma dynamics. Due to the short

duration of the laser pulse, we neglect the ion motion in what follows.

In this work we apply a 1D3V -description of the laser-plasma interaction.

This means that the electron distribution function f(t,x,p) does not depend

on y and z, but only the x-coordinate, corresponding to the direction of laser

propagation. In other words there is transitional symmetry in the plasma

plane. Of course, the y- and z-components of electron momentum play an

important role in the electron dynamics and therefore are taken into account.

This 1D3V -consideration is justified by the size of the laser beam spot

R. Indeed, since the laser pulse cannot be focused to a spot size smaller than

the laser wavelength λ0, we can always assume that

k0R =
2π

λ0

R� 1.

We start our analysis with consideration of the case of normal laser

incidence. The case of oblique incidence is subject of Section 3.6.

Due to the transitional symmetry in the plasma plane, the tangential

canonical momentum

π⊥ = p⊥ − eA⊥/c (3.3)

is conserved. For this reason we have

p⊥ =
eA⊥
c
, (3.4)

where A⊥ = (Ay, Az) is the vector potential tangential to the plasma, and

p⊥ = (py, pz) is the corresponding electron momentum. Eq. (3.4) follows

from the fact that π⊥= 0 before the arrival of the normally incident laser

pulse. Consequently, the kinetic state of the plasma is described by the

electron distribution function f(t, x, px), the evolution of which is given by

the relativistic Vlasov equation1

∂f

∂t
+

∂

∂x
(vxf) +

∂

∂px
(Fxf) = 0. (3.5)

1For the derivation of this equation see Appendix 1.
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Here vx is the relativistic electron velocity in the x-direction

vx =
pxc√

m2
ec

2 + p2
x + (eA⊥/c)

2
, (3.6)

Fx is the Lorentz force acting on the electrons

Fx = −e (Ex + vyBz/c) = e

(
∂φ

∂x
− v⊥

c
· ∂A⊥
∂x

)
, (3.7)

φ is the electrostatic potential and v⊥ = (vy, vz) is the tangential relativistic

electron velocity

v⊥ =
eA⊥√

m2
ec

2 + p2
x + (eA⊥/c)

2
. (3.8)

In order to obtain a closed system of equations for the electromagnetic

potential, we add the Poisson equation for φ and the wave equation for A⊥
[45]

∂2φ

∂x2
= 4πe(Ne − ρ) (3.9)

1

c2

∂2A⊥
∂t2

− ∂2A⊥
∂x2

=
4π

c
j⊥. (3.10)

Here Ne is the background ion density, coinciding with the unperturbed

electron density, and

ρ =

∫
f(t, x, px)dpx; j⊥ = −e

∫
v⊥f(t, x, px)dpx. (3.11)

Just before entering the plasma the vector potential of the laser pulse is

A⊥(t = 0) = Re
(
a(x/cτ0)e−ik0x

)
, (3.12)

where k0 = ω0/c is the wavenumber.

If one fixes the initial laser envelope a(x), which means that incident laser

pulses always have the same shape, the laser-plasma dynamics depends on

three dimensionless parameters: the laser amplitude

a0 = max

∣∣∣∣ eamec2

∣∣∣∣ ,
the pulse duration ω0τ0 and the plasma density ratio Ne/Nc, where
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Nc =
meω

2
0

4πe2

is the critical density.

The basic idea of ultra-relativistic similarity is that in the ultra-relativistic

limit (a2
0 � 1), the number of independent dimensionless parameters reduces

to two: ω0τ0 and S, where the similarity parameter S is defined as

S =
Ne

a0Nc

. (3.13)

In order to demonstrate this key property of ultra-relativistic dynamics we

introduce new dimensionless variables

t̂ = S1/2ω0t, x̂ = S1/2k0x, p̂x = px/meca0, (3.14)

Â⊥ =
eA⊥
mec2a0

, φ̂ =
eφ

mec2a0

, Ê⊥ =
eS−1/2E⊥
mecω0a0

and the new distribution function f̂ , defined as

f =
Ne

meca0

f̂
(
t̂, x̂, p̂x, a0, S, τ̂

)
, (3.15)

where

τ̂ = S1/2ω0τ0. (3.16)

The function f̂ satisfies the equations

∂f̂

∂t̂
+

∂

∂x̂
(v̂xf̂) +

∂

∂p̂x
(F̂xf̂) = 0 (3.17)

∂2φ̂

∂x̂2
= 1−

∫
f̂dp̂x; (3.18)

∂2Â⊥

∂t̂2
− ∂2Â⊥

∂x̂2
= −

∫
v̂⊥f̂dp̂x, (3.19)

where
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v̂x =
p̂x√

p̂2
x + Â2

⊥ + a−2
0

; v̂⊥ =
Â⊥√

p̂2
x + Â2

⊥ + a−2
0

(3.20)

F̂x =
∂φ̂

∂x̂
− v̂⊥ ·

∂Â⊥
∂x̂

.

The initial condition for the vector potential becomes

Â⊥(t̂ = 0) = â (x̂/τ̂) cos
(
S−1/2x̂

)
. (3.21)

Here a is a slowly varying envelope such that max |â| = 1.

Eqs. (3.17) and (3.18) together with the initial condition (3.21) still

depend on the initial laser polarization, which is assumed fixed2, and on the

dimensionless parameters τ̂ , S and a0. However, the parameter a0 appears

only in the expression for the electron velocity Eq. (3.20). In the limit a2
0 � 1

one can write

v̂x =
p̂x√

p̂2
x + Â2

⊥

; v̂⊥ =
Â⊥√
p̂2
x + Â2

⊥

. (3.22)

Notice that in this limit the normalized distribution function f̂ describing

the interaction of the given laser pulse with the plasma does not depend on

a0. Moreover, for relativistic amplitudes a2
0 � 1, the laser-plasma dynamics

does not depend on a0 and Ne/Nc separately. They merge into the single

similarity parameter S instead.

This result has the following physical meaning. When the plasma density

and the laser amplitude change simultaneously so that S = const, the laser-

plasma dynamics remains similar. In particular, this basic relativistic scaling

states that for different interactions with the same S = const, the plasma

electrons move along similar trajectories and their momenta px scale as

px ∝ a0. (3.23)

Since p⊥ ∝ a0 as well (see Eq. (3.4)), both electron momentum components

are of the same order of magnitude.

The parameter S characterizes the transparency3 of a laser driven

relativistic plasma. If S ≥ 1 the laser radiation does not penetrate the

plasma, yet the plasma becomes transparent for S ≤ 1 [41].

2The role of polarization will be studied later in Chapter 5
3The parameter S is the only non-trivial parameter describing relativistic laser-plasma
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3.2 Relativistic Spikes and Skin Layer

Motion

The general similarity scaling (3.23) obtained in Section 3.1 leads to

an intriguing physical picture of the electron fluid motion. In order to

understand the qualitative features of this motion we consider a linearly

polarized laser pulse for which Ay = A and Az = 0.

The scaling (3.23) shows that when we increase the dimensionless vector

potential a0 of the incident wave but keep the plasma overdense so that

S = const, both px and py grow as a0. This means that although inside the

plasma the velocity of the electron fluid

v = c

√
p2
x + p2

y

m2
ec

2 + p2
x + p2

y

= c(1−O(a−2
0 )) (3.24)

is about the speed of light at all times, the collective plasma motion in the

direction of the laser pulse observed from outside the plasma is qualitatively

different.

Let us project the electron motion in the laser pulse propagation direction

and consider the electron fluid at point x. From Eqs. (3.4) and (3.23) it

follows that the momentum of these electrons can be represented as

px(t, x) = meca0p̂x(S, t̂, x̂); (3.25)

py(t, x) = meca0p̂y(S, t̂, x̂), (3.26)

where p̂x and p̂y are universal functions, the detailed description of which is

of no importance for us here. For the electron collective velocity βx(t) and

γ-factor γx(t) in the skin-layer motion one obtains

βx(t) =
px(t)√

m2
ec

2 + p2
x(t) + p2

y(t)
=

p̂x(t)√
p̂2
x(t) + p̂2

y(t)
+O(a−2

0 ), (3.27)

γx(t) =
1√

1− β2
s (t)

=

√
1 +

p̂2
x(t)

p̂2
y(t)

+O(a−2
0 ). (3.28)

interaction. It automatically takes into account that the plasma is driven by the laser
pulse and treats the penetration of the radiation into the plasma dynamically and
self-consistently. As a result the self-consistent transparency condition S ≤ 1 differs
significantly from the “moving mirror” model predictions; compare Eqs. (1.6) and (3.23)
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It now becomes evident that when a0 gets large, the relativistic γ-factor

of the electrons increases and their velocities approach the speed of light

(see Eq. (3.24)). However, the collective dynamics of the plasma boundary

is significantly different. For large a0 the plasma boundary motion does not

enter the ultra-relativistic regime and its relativistic γ-factor γx(t) is generally

of the order of unity (see Eq. (3.28)). Yet there is one exception. If at the

moment ts it happens that

py(ts, x) = 0, (3.29)

we have

γx =
1√

1− β2
x

=

√
p2
x +m2

ec
2

m2
ec

2
∝ a0. (3.30)

So, the relativistic γ-factor of the electron fluid at point x jumps to γx(ts) ∝
a0 and the duration of this relativistic γ-spike is

∆t ∝ 1/(a0ω0). (3.31)

One can find in just the same way that the velocity of the electron fluid

element smoothly approaches the velocity of light as βx(ts) = (1− O(a−2
0 )).

Fig. 3.1 visualizes this behaviour.

One could suppose that this characteristic spikey behaviour is transferred

to the motion of the apparent reflection point as well. Yet this picture is

convincing only for a thin skin layer. Otherwise the thickness of the skin

layer must be taken into account and the fact that different points of the skin

layer get the spikes at different times would have to be examined carefully.

The microscopic theory developed in the following sections of this Chapter

addresses the finite thickness skin layer problem.

3.3 Theory of Apparent Reflection Point

Motion

In order to start the analysis of the ARP dynamics one must choose the

apparent reflection point which will be examined. In other words, we have to

specify a value of the parameter r in Eq. (2.15). The final results concerning

the reflected radiation are not affected by this choice, yet the difficulty in

the derivation of the results can be reduced immensely by making the proper

choice.
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Figure 3.1: a) Tangential electron momentum; b) collective plasma skin-layer

velocity and c) γ-factor. At the time when py(ts, x) = 0 the γ-factor has a

sharp spike, while the velocity vx is a smooth function.



46 CHAPTER 3. RELATIVISTIC SPIKES

The ultra-relativistic similarity theory presented in Section 3.1

demonstrates that the ratio between the incident and reflected radiation

does not depend on a0 but is defined by S and τ̂ instead. As a result one

can choose a threshold value rthresh of r depending only on S, τ̂ in order

to guarantee that Eq. (2.15) has a solution enabling one to reconstruct the

reflected radiation. We are not interested in the value of rthresh, yet we are

going to consider r as an independent parameter satisfying the inequality

r > rthresh.

Let us start from the definition of the ARP position given as a solution

of Eq. (2.16) which we re-write as

+∞∫
−∞

j
(
t−, x

)
dx = −cr

2

2π
Ei(ct+X(t, r)) (3.32)

where

t− = t− X(t, r)− x
c

.

Differentiation of Eq. (3.32) with respect to t leads to

dX(t, r)

dt
= c

1 + ∆

1−∆
, (3.33)

where

∆ =
c2r2

2πD

dEi
dΦ

, (3.34)

Φ = ct+X(t) and the denominator D is

D =

+∞∫
−∞

∂

∂t−
j(t−, x) dx.

According to Eq. (3.33), dX/dt approaches the speed of light c only if

∆ → 0. Since we can always choose r large enough in order to guarantee

that the value of Ei(ct + X(t, r)) is close to zero, the value of dEi(ct +

X(t, r))/dΦ can be considered as a constant. Consequently, the value of

dX/dt can approach the speed of light only if D becomes large.

In order to examine the value of D notice that the current density is

j(t−, x) = −e
∫
vy(t

−, x, px)f(t−, x, px)dpx, (3.35)
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where

vy =
eAy(t

−, x)√
m2
ec

2 + p2
x + e2A2(t−, x)/c2

.

In what follows we will denote the denominator of this expression as

P (t−, x, px) =
√
m2
ec

2 + p2
x + e2A2(t−, x)/c2

and the dimensionless quantity px/P as

ξ(t−, x, px) = px/P (t−, x, px).

Differentiation of Eq. (3.35) yields

D = I1 + I2,

where

I1 = −e2

∫ +∞

−∞

Ay(t
−, x)

P

∂f(t−, x, px)

∂t−
dpxdx

I2 = −e2

∫ +∞

−∞
f(t−, x, px)

∂Ay(t
−, x)

∂t−
m2
ec

2 + p2
x

P 3
dpxdx.

Making use of the Vlasov equation (3.5) and integrating by parts, one

obtains4

D = D1 +D2 +D3 +D4,

where

D1 = −e2

∫ +∞

−∞
(1 + ξ)cpx

dK(t−, x)

dx
µM(t, x, px)dxdpx (3.36)

D2 = −e2

∫ +∞

−∞

dFx
dpx

K(t−, x)PµM(t, x, px)dxdpx (3.37)

D3 = −e2

∫ +∞

−∞
(1 + ξ)FxKµM(t, x, px)dxdpx (3.38)

D4 = −e2

∫ +∞

−∞

∂Ay
∂t−

m2
ec

2

m2
ec

2 + (eAy/c)2

µM(t, x, px)

P
dxdpx, (3.39)

4See Appendix 2 for details
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using the notation

K(t−, x) =
Ay

m2
ec

2 + (eAy/c)2

µ =
1

1− vx/c
=

P 2

m2
ec

2 + (eAy/c)2
(1 + ξ)

dFx
dpx

=
e2

c
A
∂A

∂x

px
P 3
.

Finally, M(t, x, px) is the electron counting function

M(t, x, px) =
∑
i

δ (px − pi(ti)) δ (x− xi(ti)),

with

ti = t− X(t, r)− xi
c

.

Since
∫
M(t, x, px)dpx related to the electron density scales as a0, one can

estimate the behaviour of D1,2,3,4 according to the similarity scalings. Let us

consider, for example, D4. If the vector potential A has no zero point inside

the plasma skin-layer one applies the scaling A ∝ a0 to obtain D4 ∝ a−1
0 .

If A has a zero point, the vicinity of the zero point in which |A| ≤ mec
2

gives the main contribution to the integral estimated as

D4 ∝ a3
0∆l, (3.40)

where ∆l is the typical length on which |A| ≤ mec
2. Thus, ∆l is at least of

the order of a−1
0 and, consequently, D4 is at least as large as a2

0.

The scalings for ∆l and D4 will be stated more precisely later in Section

3.4 of this Chapter. For now it is important to draw the conclusion that as

a consequence of Eq. (3.33) the velocity of the ARP approaches c as a0 goes

to infinity:

lim
a0→+∞

vs = c,

where vs is the velocity of the apparent reflection point at the time of its

local extremum. The asymptotic behaviour of γARP for a0 is examined in the

next Section.
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3.4 Relativistic Motion of Apparent Reflection

Point

As we have just seen, in the ultra-relativistic limit a0 →∞ the velocity of

the apparent reflection point vs approaches the speed of light c. In order to

find the exact scaling for vs when a0 is large, we develop perturbation theory

for the ARP dynamics.

For this purpose we use Eqs. (3.17) and (3.18) describing this dynamics.

The perturbation theory we intend to develop presents the difference between

the velocity of light and vs as an expansion over 1/a2
0.

The zero-order approximation corresponds to a0 = ∞ and the ARP

position X̂(0)(t̂, r) is found from the following zero-order (over 1/a2
0) equations

∫
v̂(0)
y (t̂−0 , x̂)f̂ (0)(t̂−0 , x̂, p̂x)dx̂dp̂x = −2r2Êi(t̂+ X̂(0)(t̂, r))

∂f̂ (0)(t̂, x̂, p̂x)

∂t̂
+

∂

∂x̂

(
v̂(0)
x f̂ (0)(t̂, x̂, p̂x)

)
+

∂

∂p̂x

(
F̂ (0)
x f̂ (0)(t̂, x̂, p̂x)

)
= 0

∂2φ̂(0)

∂x̂2
= 1−

∫
f̂ (0)(t̂, x̂, p̂x)dp̂x

∂2Â(0)

∂t̂2
− ∂2Â(0)

∂x̂2
= −

∫
v̂(0)
y f̂ (0)(t̂, x̂, p̂x)dp̂x,

where

v̂(0)
y =

Â√
p̂2
x + Â2

; v̂(0)
x =

p̂x√
p̂2
x + Â2

; F̂ (0)
x =

∂φ̂(0)

∂x̂
− v̂(0)

y

∂Â(0)

∂x̂

and

t̂−0 = t̂− X̂(0) + x̂.

Note that the zero-order in the perturbation theory which we develop

coincides with the ultra-relativistic similarity from Section 3.1. However

for our purpose we need to go beyond the similarity theory and analyze the

first-order approximation over 1/a2
0.

The first-order perturbation is a result of taking into account the finite

value of 1/a2
0. In other words we look for X(t, r) as
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X̂(t̂, r) = X̂(0)(t̂, r) + X̂(1)(t̂, r),

where X̂(1) is due to the change in the velocity by

v̂(1)
y = − 1

2a2
0

Â(
p̂2
x + Â2

)3/2
; v̂(1)

x = − 1

2a2
0

p̂x(
p̂2
x + Â2

)3/2
,

as well as to corrections to the distribution function f̂ (1), the electrostatic

potential φ̂(1) and the vector potential Â(1). One easily obtains that these

first-order corrections satisfy the following equations

∫
v̂(0)
y (t̂−0 , x̂)f̂ (1)(t̂−0 , x̂, p̂x)dx̂dp̂x−X̂(1)SX = −

∫
v̂(1)
y (t̂−0 , x̂)f̂ (0)(t̂−0 , x̂, p̂x)dx̂dp̂x,

(3.41)

where

SX =

∫
∂t̂−0

(
v̂(0)
y (t̂−0 , x̂)f̂ (0)(t̂−0 , x̂, p̂x)

)
dx̂dp̂x − 2r2∂t̂Êi(t̂+ X̂(0)),

∂f̂ (1)

∂t̂
+

∂

∂x̂

(
v̂(0)
x f̂ (1)

)
+

∂

∂p̂x

(
F̂ (0)
x f̂ (1)

)
= − ∂

∂x̂

(
v̂(1)
x f̂ (0)

)
− ∂

∂p̂x

(
F̂ (1)
x f̂ (0)

)
,

(3.42)

where

F̂ (1)
x =

∂φ̂(1)

∂x̂
− v̂(0)

y

∂Â(1)

∂x̂
− v̂(1)

y

∂Â(0)

∂x̂
,

and

∂2φ̂(1)

∂x̂2
+

∫
f̂ (1)dp̂x = 0 (3.43)

∂2Â(1)

∂t̂2
− ∂2Â(1)

∂x̂2
+

∫
v̂(0)
y f̂ (1)dp̂x = −

∫
v̂(1)
y f̂ (0)dp̂x. (3.44)

Let us take a closer look at the structure of Eqs. (3.41)–(3.44). One

immediately observes that the source terms for the first-order corrections

are proportional to a−2
0 , and consequently so are X̂(1) = a−2

0 X̂1, f̂ (1), φ̂(1) and

Â(1). Moreover, since a0 only appears in the form of the factor 1/2a2
0, the
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typical time scale on which X̂, f̂ , φ̂ and Â change does not depend on a0,

but is defined by the laser frequency ω0.

It is interesting to observe that the perturbation theory always gives a

solution for X̂(1) if the value of r is chosen large enough in order to ensure

that the coefficient SX does not vanish. Let us therefore remember at this

point that we have already met this choice of r in Section 3.3.

We can now formulate the basic properties of the ultra-relativistic ARP

motion. Taking into account the O(1/a2
0) corrections, the ARP follows the

trajectory

X(t, r) = S−1/2k−1
0

(
X̂0

(
t̂, r, S, τ̂

)
+ a−2

0 X̂1

(
t̂, r, S, τ̂

))
. (3.45)

Consequently, the vs reaches the velocity of light according to the scaling

vs = c(1− F (ts, r, S, τ̂)a−2
0 ), (3.46)

where F does not depend on a0, and t̂s is the moment of local extremum.

We can also observe that the function X̂(1), which is a solution of Eq. (3.41),

is smooth. Therefore, around the time t̂s, the ARP velocity can be expanded

as

dX

dt
= vs − cα(ts, r, S, τ̂)ω2

0(t− ts)2, (3.47)

where Fα > 0, due to Eq. (2.25). This expansion is valid for all t in the time

interval

|t− ts| � 1/ω0, (3.48)

the duration of which does not depend on a0 but can be affected by S, r and

τ̂ .

The expansion (3.47) provides a direct estimation of the γ-factor of the

ARP. One immediately sees from Eq. (3.47) that the height of the γ-spike

scales as

γARP ∝ a0 (3.49)

and the duration of this γ-spike is

∆tγ ∝
1

a0ω0

. (3.50)
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Thus, while the characteristic time of velocity change around the maximum

does not depend on a0, the characteristic width of the γ-spike scales

proportional to 1/a0.

Let us now return to the results for the γ-spike scalings of the electron

skin-layer motion that were obtained in Section 3.2. One sees that the

scalings (3.27) and (3.28) describing the collective plasma skin-layer dynamics

coincide with the scalings we have just obtained for the formally defined

apparent reflection point. Although surprising at first glance, this result is

physically clear. Since the reflection from overdense plasma is related to the

vicinity of the critical surface (with n = a0ncr), the ARP motion comes about

from the skin-layer oscillations.

3.5 Microscopic Spike Scalings

The γARP scaling (3.49) should also be present in the microscopic ARP

dynamics we studied in Section 3.3, i.e. in Eq. (3.33). Yet in order to estimate

the precise scaling of the integral D in Eq. (3.34) one needs to understand

the behaviour of the vector potential inside the plasma skin layer.

We saw from the scaling for D4 (see Eq. (3.40)) that the ARP moves

towards the incident laser pulse with velocity close to the velocity of light

when the function A(t−, x) goes through zero5 inside the plasma. On the

other hand, the perturbation theory we developed shows that vs is close to

c only for a very short time ∆tγ ∝ 1/a0. This means that the zeros of the

function A(t−, x) move in the plasma with velocity of the order of ca0, since

they cover a length of 1/k0 according to similarity6, during the time ∆tγ.

This observation allows us to obtain the correct scaling for γARP.

If Q(t) is the coordinate of a point at which A(t−, x) has a fixed value

one reads

(
1− 1

c

dX(t, r)

dt

)
∂A(t−, Q(t))

∂t−
+
dQ(t)

dt

(
1

c

∂A(t−, Q(t))

∂t−
+
∂A(t−, Q(t))

∂x

)
= 0,

(3.51)

which follows from the differentiation of A(t−, x) = const with respect to

time. However if the constant is of the order of or less than mec
2, then

dQ/dt ∝ ca0 and

5Or, more exactly, gets a value of the order of mec
2

6We are interested in scalings over a0 and therefore skip the multipliers depending on
S and τ̂ .
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dA(t−, x)

dx
=

1

c

∂A(t−, Q(t))

∂t−
+
∂A(t−, Q(t))

∂x
= O

(
1

a2
0

)
(3.52)

at x = Q(t). This means that the full derivative of A(t−, x) is in essence

zero at all points where A(t−, x) is of the order of mec
2. From here one

readily obtains that A(t−, x) is not only small simultaneously in the whole

skin layer but also has the same (up to corrections of the order of O(a−2
0 ))

value throughout the layer.

Now we can find the exact scaling for D1,2,3,4 (see Eqs. (3.36)-(3.39)).

The integrals D1 and D2 scale as a2
0 and are of no interest for the question

at hand. The value of D4 scales as a3
0 since ∆l does not depend on a0 (see

3.40). The main contribution to D3 when Ay is of the order of mec
2 inside

the relativistic skin layer can be written as7

D3 =
4eAy

(m2
ec

2 + (eAy/c)2)2

∫
Θ(px)pxM(t, x, px)∂xφ(t−, x)dpxdx, (3.53)

where Θ(px) is Heaviside’s function. From Eq. (3.53) one reads that D3

scales as a4
0 and changes its sign when Ay passes through zero. However,

if the major term changes between large positive and negative values, this

would mean that the ARP velocity jumps from −c to almost c during a time

interval of the order of 1/ω0a0. Yet this contradicts the scalings obtained

from the similarity theory. For this reason the integral in Eq. (3.53) equals

zero.

Consequently, the γARP scaling (3.49) is also present in the microscopic

ARP dynamics.

3.6 Oblique Laser Incidence

Until now we have considered the interaction of a laser pulse with

overdense plasma in the case of normal laser incidence. This approach let us

concentrate on the dynamical features of relativistic laser plasma interactions

and ignore the geometrical issues of the problem, such as the role of the angle

of incidence Θ and the difference between P - and S-polarization. In a realistic

laboratory experiment however, the case of oblique incidence is the most

7In order to derive Eq. (3.53) we take into account that Ay(t−, x) can be considered
as a constant inside the skin layer.
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common one. Therefore, in what follows, we derive incidence angle scalings

which allow the results obtained for normal incidence to be transformed into

those for the oblique case.

Geometrically it is clear that oblique incidence can be reduced to normal

one by changing the frame of reference. Indeed, this can be done by applying

the Lorentz transformation corresponding to the reference frame moving with

velocity

v = c sin Θ. (3.54)

However, this transformation causes a change in the values of parameters

of the plasma as well as in those of the laser pulse. In the new reference

frame the plasma density is n/ cos Θ and the electrons and ions move with

velocity −v until the laser pulse disturbs their motion. The laser pulse

frequency transforms into ω0 cos Θ, while the laser vector potential a0 remains

unchanged for both S- and P -polarized laser pulses.

The transformation of the reference frame results in a change in the

equations describing the plasma dynamics. In the moving frame not only

the current produced by the laser-driven electrons, but also a constant ion

current

ji = −enic tan Θ ez (3.55)

must be taken into account. Moreover, the plasma electrons now have initial

momentum

p0 = −mec tan Θ (3.56)

in the direction of the Lorentz transformation. The presence of the ion

current does not allow us to reduce the problem of oblique incidence to

the case of normal laser incidence in a straightforward way. However, this

reduction can be done for both P - and S-polarizations by means of a special

approach discussed below.

3.6.1 Oblique Incidence Equations

Let us write down all equations describing the laser-plasma interaction

in the moving reference frame8 for arbitrary laser polarization. The Vlasov

8According to the common notation, in relativistically transformed equations all
transformed quantities are marked with ′. In what follows we drop out ′ for brevity.
This causes no confusion.
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equation in the new reference frame is9

∂f

∂t
+

∂

∂x
(vxf) +

∂

∂px
(Fxf) = 0, (3.57)

where

Fx = e

(
∂φ

∂x
− v⊥ ·

∂A⊥
∂x

)
; vx =

cpx
P (t, x, px)

(3.58)

and

P (t, x, px) =

√
m2
ec

2 + p2
x + (eAy/c)

2 + (p0 + eAz/c)
2.

The Maxwell equations in this reference frame can be written as

∂2φ

∂x2
= 4πe(Ne − ρ), (3.59)

1

c2

∂2A⊥
∂t2

− ∂2A⊥
∂x2

=
4π

c
(ji + j⊥) , (3.60)

where ji is the ion current density (3.55) and

j⊥ = −e
∫

v⊥f(t, x, px)dpx,

with

vy =
eAy

P (t, x, px)
; vz =

cp0 + eAz
P (t, x, px)

. (3.61)

Since the effects of the Lorentz transformation occur in two quite different

places, in the Maxwell equations through the ion current ji and in the Vlasov

equation through p0, the treatment of the equation of motion in this form is

difficult.

However, it is clear that these two effects, despite their different

appearance, have the same origin. The problem is in the inconvenient

representation. The major difficulty is related to the ion current. The value of

this term is large and this makes direct comparison with the normal incidence

case impossible. Another obstacle is that the ion current is significant even

far from the skin layer. In other words this current is not negligible far from

the region where the physical processes take place.

9For derivation see Appendix 1.
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In order to resolve the ion current problem and to represent the laser-

plasma dynamics uniformly10 we take the following approach. We introduce

a new set of variables Π and E⊥ defined as

Π = −1

c

∂φ

∂t
, E⊥ = −1

c

∂A⊥
∂t

. (3.62)

The Maxwell equations can now be rewritten in the following form

∂φ

∂t
= −cΠ, ∂A⊥

∂t
= −cE⊥, (3.63)

∂2Π

∂x2
= 4πeR, (3.64)

1

c2

∂2E⊥
∂t2

− ∂2E⊥
∂x2

=
4π

c
J⊥, (3.65)

where

R =
1

c

∂ρ

∂t
= −1

c

∫ (
∂vx
∂x

f + vx
∂f

∂x

)
dpx,

J⊥ = −1

c

∂j⊥
∂t

=
e

c

∫
∂v⊥
∂t

fdpx +
e

c

∫
v⊥

∂f

∂t
dpx.

Rewriting Maxwell’s equations as Eqs. (3.63)–(3.65) gives significant

advantages. Firstly, Eqs. (3.63)–(3.65) explicitly show that only the skin layer

region is important in order to calculate the electromagnetic field generated

by the plasma. Secondly, in their standard form the Maxwell equations

contain infinite electron and ion currents in the plasma. Since these currents

have opposite signs, the infinite magnetic fields they generate cancel each

other, giving a finite result. Eqs. (3.63)–(3.65) exclude these infinite currents

and work with the finite values from the very beginning. Thirdly, note

that Maxwell’s equations rewritten with Π, φ, A⊥ and E⊥, together with

the Vlasov equation provide us with a closed set of equations of motion

in which all effects of the Lorentz transformation enter through the initial

conditions. The information about the ion current, which compensates the

electron current until the laser pulse hits the target, is hidden in the initial

conditions for Π, φ, A⊥, E⊥.

10In other words our procedure reduces the effect of the Lorentz transformation only to
that on the Vlasov equation.
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We can now study the problem of transformation to normal laser

incidence. The case of oblique incidence could be reduced to the normal

one if, despite the additional electron momentum p0, we are still able to

recover the characteristic ARP motion which we derived in Section 3.4.

In what follows we separately consider the cases of P - and S-polarized

light and show that in the ultra-relativistic regime a2
0 cos2 Θ� 1 the problem

of laser-plasma interaction under oblique laser incidence is equivalent to the

case of normal incidence.

3.6.2 P -polarized Laser Pulse

Let us consider first the case of P -polarized light. The initial conditions

for this geometry, set at a time just before the laser pulse hits the plasma

are

φ(t = 0) = 0, Π(t = 0) = 0

Ay(t = 0) = 0, Ey(t = 0) = 0

Az(t = 0) = Re
(
a(x/τ0)e−ik0x

)
Ez(t = 0) = Re

(
(iω0a(x/τ0)/c− ȧ(x/τ0)/(cτ0)) eik0x

)
.

To take advantage of this representation of the Maxwell-Vlasov equations

let us examine the zero and first orders of these equations over the small

parameter 1/(a2
0 cos2 Θ).

Notice that Ay = Ey = 0 for all times which follows from the equations

of motion. This means that P -polarization does not change due to the

reflection. In order to find the dimensionless equations for all values involved

in Eq. (3.63)–(3.65) one applies the following scalings

Π ∝ a0, φ ∝ a0, Ez ∝ a0, Az ∝ a0, (3.66)

which can readily be checked by direct substitution into Eqs. (3.63) and

neglecting terms of the order of 1/(a2
0 cos2 Θ).

The zero-order approximation corresponds to the relativistic similarity

theory, since all terms due to the new reference frame vanish in the equations

for Π, φ, A⊥, E⊥ and f . This means that in the zero order approximation

over 1/(a2
0 cos2 Θ) the ARP motion coincides with that for normal incidence

with a rescaled value of the similarity parameter
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SΘ =
S

cos3 Θ
. (3.67)

Just as in the perturbation theory we developed in Section 3.4 the first-order

approximation over 1/(a2
0 cos2 Θ) gives corrections to the ARP velocity which

enable one to calculate11 the velocity vs. One easily obtains

vs = c

(
1− F

a2
0 cos2 Θ

− tan Θ

a0

C − tan2 Θ

a2
0

CP

)
, (3.68)

where the function F (ts, r, SΘ, τ̂) coincides with the function F , which enters

the ARP dynamics for normal laser incidence (see Eq. 3.22), C and CP are

universal functions depending on the same variables as does F , τ̂ = S
1/2
Θ ω0τ0.

Due to the causality property of the ARP motion the constant C must

vanish and we obtain for the motion of the apparent reflection point12

X(t) = X(ts) + c(1− FPa−2
0 )(t− ts)− cα(ts, r, SΘ, τ̂)ω2

0

(t− ts)3

3
, (3.69)

with

FP =
F

cos2 Θ
+ CP tan2 Θ. (3.70)

Eq. (3.69) demonstrates that we retain the same characteristic ARP motion

as in the case of normal laser incidence. In other words, by means of a

Lorentz transformation, we reduced the oblique to normal incidence in the

ultra-relativistic regime a2
0 cos2 Θ� 1.

3.6.3 S-polarized Laser Pulse

In analogy to P -polarized laser light, we can now examine the S-

polarization. The initial conditions for this geometry, set at a time just

before the laser-plasma interaction, are

11Note that for P -polarization the first-order approximation over tan Θ/a0 causes the
generation of even-order harmonics. Even-order harmonic generation from a different
perspective is discussed in [19].

12Otherwise the term tan Θ/a0 can change sign, and since α is a function of cos Θ only,
FP and FPα change sign as well. However, if FPα becomes negative, the ARP velocity
equals the speed of light at some moment of time t. This violates Eq. (2.25).
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Π(t = 0) = 0, φ(t = 0) = 0,

Az(t = 0) = 0, Ez(t = 0) = 0,

Ay(t = 0) = Re
(
a(x/cτ0)e−ik0x

)
,

Ey(t = 0) = Re
(
(iω0a(x/cτ0)/c− ȧ(x/cτ0)/(cτ0))e−ik0x

)
.

In order to obtain the zero-order equations over 1/(a2 cos2 Θ) we assume

Π ∝ a0, φ ∝ a0, Ay ∝ a0, Ey ∝ a0 (3.71)

with Az = Ez = 0 which satisfies the initial conditions and happens to be

correct in the lowest order of the perturbation theory. As a result, we come

to the similarity theory equations describing the normal incidence with the

dimensionless parameter SΘ (see Eq. (3.67)).

The specific feature of S-polarizations reveals itself in the first order of

the perturbation theory in which the terms of the order of tan Θ/a0 are taken

into account. One sees that in the first order of the perturbation theory Ez
obeys the following equation

∂2Êz

∂t̂2
− ∂2Êz

∂x̂2
= Ĵz, (3.72)

where

Az =
mec

2 tan Θ

e
Âz, Ez =

S1/2mec tan Θ

e
Êz,

Ĵz =

∫ (
(1 + Âz)ÂyÊy − Êy

P 3
0

f̂ (0) − 1 + Âz
P0

(
∂x̂(v̂

0
xf̂

(0)) + ∂p̂x(F̂ 0
x f̂

(0)
))

dp̂xdx̂,

where P0 =

√
1 + p̂2

x + Â
(0)2
y .

One can see that the change of the polarization is given by the following

scaling (
Ez
Ey

)2

=
tan2 Θ

a2
0

W (SΘ, ω0τ0) , (3.73)

where W is a universal function of SΘ and ω0τ0.



60 CHAPTER 3. RELATIVISTIC SPIKES

Repeating the perturbation procedure in analogy with the case of P -

polarization, one obtains the characteristic ARP motion once again. One

sees that the parameter F defining vs is rescaled as

FS =
F

cos2 Θ
+ CS tan2 Θ. (3.74)

Thus we come to the conclusion that in the ultra-relativistic regime, when

a2
0 cos2 Θ� 1 the problem of oblique laser incidence can be reduced to normal

incidence by means of a Lorentz transformation. As a consequence of that,

the subsequent studies by means of the ARP formalism will be based on the

assumption of normal laser incidence.

3.7 Numerical Simulations of Relativistic

Spikes

In order to conclude this Chapter on ultra-relativistic spikes, we finally

demonstrate that one can also study the motion of the apparent reflection

point numerically and visualize the analytical results we obtained so far.

For this one needs to record the incident and the reflected electric fields at

some point in vacuum (“external observer” position) at a series of moments.

Being solutions of the wave-equation in vacuum, these fields can then be

easily traced to arbitrary x and t. If we take the position of the external

observer to be located at x = 0, then to find the ARP position xARP, we

solve numerically the implicit equation defining xARP:

Ei(ct+ xARP) + Er(ct− xARP) = 0, (3.75)

where Ei and Er are the tangential components of the incoming and reflected

electric field respectively, at the position of the external observer (x = 0).

Here the incoming field is an input and the outgoing one is calculated

as a result of the laser-plasma interaction by a 1D particle-in-cell code

[47]. In all simulations a laser pulse with a Gaussian envelope a =

a0 exp (−t2/τ 2
0 ) cos (ω0t), duration ω0τ0 = 4π and dimensionless vector

potential a0 is incident onto a plasma layer with a step density profile. The

plasma slab is initially positioned between xR = −1.5λ0 and xL = −3.9λ0,

where λ0 = 2π/ω0 is the laser wavelength.

In Fig. 3.2 one can see the results of a simulation for the case of laser

pulse amplitude a0 = 20 and plasma density Ne = 90Nc. Fig. 3.2 a) shows

the oscillatory motion of the apparent reflection point. The corresponding
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Figure 3.2: 1D particle-in-cell simulation results for the parameters a0 = 20

and Ne = 90Nc, simulated with the particle-in-cell code VLPL [47]. a)

Oscillatory motion of the ARP, b) Velocity vARP(t) = dxARP(t)/dt; only the

negative velocities are shown. Notice that the ARP velocity is a smooth

function around its maxima. c) The corresponding γARP contains sharp

spikes, which coincide with the velocity extrema.
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Figure 3.3: 1D particle-in-cell simulations with the code VLPL [47] allow

the study of the γ-factor and the velocity of the apparent reflection point for

three different sets of parameters with fixed S = 4.5: a) and b) a0 = 10, c)

and d) a0 = 20, e) and f) a0 = 30.



3.7. NUMERICAL SIMULATIONS OF RELATIVISTIC SPIKES 63

Figure 3.4: Numerical simulation with the 1D particle-in-cell code VLPL

[47] shows the scaling (3.49). Here are depicted the maximal γ-spike vs. a0

for S = 4.5

velocity vARP (Fig. 3.2 b) and γ-factor γARP (Fig. 3.2 c) are calculated

from the trajectory of the ARP motion by direct differentiation over time.

Since only the ARP motion towards the laser pulse is of importance for the

reflection, we cut out the positive ARP velocities and calculate only the

negative ones. Notice that the ARP velocity is a smooth function around

its maximum. At the same time, the γ-factor γARP(t) contains sharp spikes,

which coincide with the velocity extrema.

In Fig. 3.3 one can see the results of three simulations for laser pulse

amplitudes of a0 = 10, 20, 30 and plasma densities Ne = 45Nc, 90Nc, 135Nc

respectively, so that the similarity parameter S = 4.5. The results for the

ARP velocities are presented in Fig. 3.3 a, c and e. The corresponding γ-

factors γARP(t) = 1/
√

1− v2
ARP(t)/c2 are presented in Fig. 3.3 b, d and f.

The dependence of the γ-spike height upon the laser amplitude a0 for the

three sets of simulation parameters is presented in Fig. 3.4. One can observe

with good accuracy the linear scaling γARP ∝ a0 obtained analytically from

the similarity theory (see Eq. (3.49)) and the microscopic theory for the

motion of the apparent reflection point.
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Chapter 4

High Harmonic Generation

With the new formalism developed in Chapters 2 and 3 we can now

analyze the radiation reflected from the plasma. Indeed, the electric field

irradiating the slab and the reflected one are unambiguously connected

through the apparent reflection point, the motion of which was described

quantitatively in Chapter 3.

In this Chapter we apply the ARP-formalism and the knowledge about

the ARP motion to show that the radiation reflected from the plasma

contains coherent high harmonics (high frequency radiation), the intensities

of which decay as I(ω) ∝ ω−8/3. This power-law decay rolls over into

exponential decay at frequencies proportional to a3
0.

These harmonics form electromagnetic shock waves propagating in

vacuum. A thorough investigation of the harmonic spectrum demonstrates

its universality and results in an analytical expression for the intensity and

phase of all high harmonics.

This Chapter demonstrates that the generation of high harmonics from

relativistic plasma is not a result of the relativistic Doppler effect (so called

“relativistic oscillating mirror” model) and provides the physical mechanism

leading to the radiation of high harmonics.

As we have already seen in Chapter 3 oblique incidence is equivalent to

normal incidence for ultra-relativistic laser intensities. Therefore, we consider

only the normal geometry for the sake of brevity.

65



66 CHAPTER 4. HIGH HARMONIC GENERATION

4.1 Electromagnetic Shock Waves

In this Section we examine how the reflected radiation looks in the

time domain. For this purpose we combine the information about the

dynamics of the apparent reflection point with the restrictions following from

the relativistic invariance. In order to emphasize the distinction between

dynamic information and relativistic invariance we separate the consideration

of these two issues. First, we use the dynamic information in order to describe

the time structure of the reflected radiation. Then we demonstrate that the

results we obtained are relativistically invariant.

4.1.1 Generation of Electromagnetic Shock Waves

Let us first apply the ARP formalism in order to analyze the reflected

electric field. Eq. (2.23) implies the following relation between the field

derivatives

dEr(Ψ)

dΨ
= −r2 c+ Ẋ(t, r)

c− Ẋ(t, r)

dEi(Φ)

dΦ
. (4.1)

In the vicinity of an ultra-relativistic γ-spike we use Eq. (3.47) in order to

obtain for the ARP position X(t) and the reflected phase Ψ(t)

X(t, r) = X(ts) + c(1− Fa−2
0 )(t− ts)− cαω2

0

(t− ts)3

3
(4.2)

and

Ψ(t) = Ψ(ts) + cFa−2
0 (t− ts) + cαω2

0

(t− ts)3

3
. (4.3)

Note that for

|Ψ(t)−Ψ(ts)| �
(

3F 3

α

)1/2
c

a3
0ω0

(4.4)

the linear term in Eq. (4.3) is negligible. The change of phase δΨ = Ψ(t)−
Ψ(ts) corresponds to the time change

t− ts =
(
3δΨ/cαω2

0

)1/3
. (4.5)

During the short time interval of the relativistic γ-spike the field of the

incident pulse remains nearly unchanged. Substituting its value Ei(Φ(ts))

in Eq. (4.1) one reads
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dEr(Ψ)

d(δΨ)
=

2r2

α1/3

(
c

3ω2
0δΨ

)2/3(
dEi(Φ)

dΦ

)
Φ=Φ(ts)

. (4.6)

Integration of this ordinary differential equation gives the reflected electric

field

Er(Ψ) = −r2Ei(Φ(ts))−
(

3r2c2

αω2
0

)1/3(
dEi(Φ)

dΦ

)
Φ=Φ(ts)

× (δΨ)1/3 . (4.7)

Since the phase dependence of the 1D-wave describing the reflected wave

propagating in vacuum is known, one can see that after the relativistic γ-

spike, the reflected radiation gets the (quasi)singularity

Er(x, t) = const1 + const2 × (ct− x)1/3. (4.8)

Figure 4.1: Numerical simulation with the particle-in-cell code VLPL [47]

demonstrates the electromagnetic shocks. a) Incoming laser radiation. For

the vector potential a0 = 20 and electron density Ne = 90Nc one obtains b)

reflected radiation with shocks.
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This means that the relativistic γ-spike turns the reflected electromagnetic

field into an electromagnetic shock wave, in which the electric field has

(almost) infinite derivatives at some points.

The possibility of developing electromagnetic shock waves as a result of

the interaction of an electromagnetic field with a non-linear media is discussed

in [46]. However, the width of the shocks presented in [46] is much larger

than the laser wavelength. On the contrary, the width of the ultra-relativistic

electromagnetic shocks discussed here is much less than the wavelength which

allows their consideration as a new physical phenomenon.

The shock-wave behaviour of the reflected electric field can be observed in

a numerical simulation. After the interaction of the incoming pulse (Fig. 4.1

a)) with the plasma slab, the particle-in-cell code VLPL[47] calculated the

reflected signal. Fig. 4.1 b) demonstrates the resulting electromagnetic shocks

propagating in vacuum.

Eq. (4.8) is valid for const×λ/a3
0 � |ct−x| � λ, where the first inequality

is due to Eq. (4.4). The second inequality is connected with the range of

validity of the expansion (3.47).

Therefore it is possible to study the contribution of the ultra-relativistic

shock wave to the spectrum of the reflected radiation in the frequency domain

ω0 � ω � a3
0ω0/const. (4.9)

The harmonic spectrum is given by

Er(ω) =

∫
Er(x, t)e

−iωtdt. (4.10)

Consequently, applying Eq. (4.8), one obtains for the harmonic intensity

|E(ω)|2 ∝
∣∣∣∣∫ (ct− x)1/3e−iωtdt

∣∣∣∣2 ∝ 1

ω8/3
. (4.11)

Note that the spectrum (4.11) applies to a large number of harmonics.

According to Eq. (4.9) this number is proportional to a3
0.

4.1.2 Relativistic Invariance of Shock Waves

A closer look at Eq. (4.8) shows that the coefficients of the shock wave

depend on the relativistic transition factor r. However, this dependence is

only apparent. In reality this expression is relativistically invariant to the

ARP transformation (2.18). In order to demonstrate this, we study the

different terms in Eq. (4.8).
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We first notice that if r → +∞ the apparent reflection point approaches

the zero of the incident electric field Ei that is located at the value of the

phase Φ0. However, r2Ei(Φ(ts)) remains unchanged since it equals Er(Ψ(ts))

and the phase Ψ(ts) of the reflected wave is not affected by the ARP

transformation. At the same time the value of dEi(Φ(ts))/dΦ approaches

the value of Ei’s derivative at its zero point1.

It remains to prove that the coefficient r2/α1/3 is invariant under the ARP

transformation. Since we are interested in the case when the ARP is close

to the zero point of Ei with the phase Φ0, one can expand the incident field

near Φ0 and rewrite Eq. (2.18) as

r2

r2
0

=
ct0 +X(t0, r0)− Φ0

2ct− ct0 +X(t0, r0)− Φ0

. (4.12)

Eq. (4.12) defines t0 as a function of t, r0 and r. We are interested in

this solution at those times when the ARP has a large relativistic γ-factor.

According to Eq. (4.2) the derivative of the function

Ψ(t0, r0) = ct0 −X(t0, r0) = ψ0 (4.13)

over time is negligible2 and, as a result, it can be considered constant for this

time interval. Consequently, one finds

t0 =

(
r

r0

)2

t− τ0, (4.14)

where

τ0 =
1

2c

(
1−

(
r

r0

)2
)

(ψ0 + Φ0)

The substitution of the ARP motion given by Eq. (4.2) for both apparent

reflection points X(t, r) and X(t0, r0) in Eq. (2.17) gives rise to the following

invariants of the ARP transformation. The relativistic factors for both points

γ0 and γ and the respective curvatures of the velocity around its maximum

α0 and α satisfy the following equalities

rγ = r0γ0, (4.15)

r6α = r6
0α0.

1If Ei and its first derivative happen to vanish simultaneously one can choose a phase
that differs from Φ0 in order to avoid the degenerate case.

2We recall that we have ∂t0ψ(t0) ∝ a−2
0 in the neighbourhood of the spike.
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The scalings in Eqs. (4.15) demonstrate that the coefficient r2/α1/3 in

Eqs. (4.7) and (4.8) is invariant under the ARP transformation and thus

the whole expression of the shock wave is invariant.

4.2 Relativistic Doppler Effect

As we have just seen in Section 4.1.1 a large number of harmonics is

present in the radiation reflected from the plasma. Since these harmonics

result from reflection at the boundary of a moving medium it seems

plausible that they occur due to the relativistic Doppler effect. The main

idea of this explanation is that due to reflection from an ideal mirror

moving with relativistic velocity v and corresponding relativistic factor

γ = 1/
√

1− (v/c)2, the frequency ω0 of the incoming laser pulse is up-shifted

to

ωrefl = r2ω0, (4.16)

where r is the transition factor defined by Eq. (2.13)3. In just the same

way, the whole spectrum of the laser pulse gets a 4γ2-upshift, while the pulse

duration shortens by the same factor.

As already discussed in Chapter 1, the Doppler effect scheme has several

critical drawbacks. Among these is the fact that the relativistic mirror gets

transparent for surprisingly low γs and the linear reflection used to derive

Eq. (4.16) is not applicable for relativistic intensities (a0 ≥ 1).

However, in what follows we apply the ARP formalism to this toy model

ignoring its drawbacks. A reason for this consideration is that in the direct

comparison between the electromagnetic shocks and the Doppler effect one

can identify the physics of the shock formation. This comparison highlights

the difference between the oscillating mirror relying on the Doppler effect

and the processes resulting in high harmonic generation at boundaries of

real plasmas.

Let us consider the reflection of a laser pulse from an ideal conductor

moving with constant velocity v towards the laser pulse. The boundary

condition describing this interaction is4

Ay(t, x = vt) = 0, (4.17)

3This expression is usually written in the limit γ → +∞ in which r2 ≈ 4γ2.
4This boundary condition is invariant under Lorentz (x, t)-transformation.
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where x = vt is the position of the mirror at time t.

This boundary condition has a clear physical meaning. To see this let us

calculate the total derivative of Eq. (4.17) over time

∂Ay
∂t

+ v

(
∂Ay
∂x

)
x=vt

= 0, (4.18)

which can be rewritten equivalently as

(Ey + vBz)x=vt = 0. (4.19)

The last expression gives the Lorentz force acting on the electrons. In the

ideal conductor the finite Lorentz force would generate an infinite current.

In order to apply the ARP formalism to the Doppler-effect scenario one

has to characterize the motion of the ARP. This motion can be described

in an arbitrary reference frame convenient for the calculation and then be

transformed to the laboratory reference frame. Note that in the reference

frame moving with velocity v Eq. (4.19) can be rewritten as

Ey(t, x = 0) = 0. (4.20)

Eq. (4.20) shows that in the reference frame, in which the conductor is at

rest, the electric field equals zero on the surface of the conductor. In order to

apply the ARP formalism one needs to know the position of the zero points of

the field Γ′ defined in Section 2.2. However, Ey coincides with Γ in vacuum.

Since in this reference frame the mirror is at rest, so is the apparent reflection

point. As a result, in the laboratory reference frame the coordinate of the

ARP, corresponding to the reference frame in which the conductor is at rest,

moves as

X(t, r) = vt. (4.21)

where

r =

√
c+ v

c− v
.

Note that in the frame in which the conductor is at rest, the position of the

apparent reflection point coincides with the position of photon generation.

This is not the case in the laboratory frame, where the photons are generated

by the surface current at the point moving with constant velocity v, while

the ARP is involved in a rather complicated motion. The reason for this is
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that the point lying on the mirror surface is the one where Ay = 0, while the

ARP makes Γ vanish (see Eq. (2.8)).

Let us now use the apparent reflection point from Eq. (4.21) in order to

calculate the radiation reflected from the mirror. From Eq. (4.1) one obtains

dEr
dΨ

= −r4dEi
dΦ

. (4.22)

Integrating this ordinary differential equation one easily derives

Er(Ψ) = −r4

∫
dEi
dΦ

dΨ

dΦ
dΦ = −r2Ei(Φ) (4.23)

and finally

Er(Ψ) = −r2Ei(r
2Ψ). (4.24)

The derivation of Eq. (4.24) gives important clues about the difference

between the mirror model and the shock wave formation. Indeed, the

relativistic Doppler Effect is a consequence of the integration of dEi/dΦ,

while (c + Ẋ)/(c − Ẋ) is constant. On the other hand the shock formation

is the result of the integration of (c+ Ẋ)/(c− Ẋ), while dEi/dΦ is constant.

The Doppler effect causes shortening of the pulse by a factor of r2, as

one can clearly see from Eq. (4.24). This shortening leads to the up-shift

given by Eq. (4.16). On the contrary, the high harmonics inside the shock

waves are the result of the local steepening of the electromagnetic field. The

manifestation of this steepening is the harmonic spectrum of Eq. (4.11).

4.3 Universal Spectrum

So far we have seen that the radiation reflected from the plasma contains

harmonics with very high frequencies. As we have just demonstrated, this

harmonic generation does not result from the relativistic Doppler effect,

which compresses the incoming signal. Far more is it due to local steepening

of the reflected field propagating in vacuum in the form of electromagnetic

shock waves (Fig. 4.1). The shocks gave an idea about the form of the

harmonic spectrum (see Eq. (4.11)). In this Section we want to obtain

an analytical expression describing the harmonic radiation and explain the

physical processes inside the ultra-relativistic plasma, which lead to the

generation of this radiation.
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4.3.1 Invariant Derivation of Harmonic Spectrum

For this purpose we again apply the ARP-formalism, which provides a

connection between the incident and reflected electric fields at the apparent

reflection point (see Eq. (2.27)):

Er(Ψ) = −r2Ei(2ct−Ψ), (4.25)

where

Ψ = ct−X(t, r).

We find that the Fourier spectrum of the electric field Er(t, x = 0) is

Er(Ω) = − r2

c
√

2π

+∞∫
−∞

Re

[
E

(
ct+X(t, r)

cτ0

)
e−iω0t−iω0X(t,r)/c)

]
e−iΩΨ/cdΨ,

(4.26)

where E is the slow envelope of the incident laser pulse. Note that since

X(t, r) enters directly the integrand in Eq. (4.26), profound knowledge of the

ARP dynamics is needed in order to calculate the spectrum of the reflected

radiation.

We proceed by rewriting Eq. (4.26) in dimensionless units using the

parameters τ = ω0Ψ/c, τ ′ = ω0t, n = Ω/ω0 and x(τ ′) = (ω0/c)X(t, r).

For the evaluation of Eq. (4.26) let us notice that the investigation of Er(Ω)

is equivalent to the investigation of the function

f(n) = f+(n) + f−(n), (4.27)

where

f± =

∫
g(τ ′ + x(τ ′))e±i(τ

′+x(τ ′))−inτ dτ (4.28)

and

g(τ ′ + x(τ ′)) = − r2

2c
√

2π
E

(
ct+X(t, r)

cτ0

)
. (4.29)

We recall that, for the physical parameters we investigate, the envelope E,

and consequently the function g, are both changing slowly5. Making use of

the retardation relation we re-write Eq. (4.28) as

5In other words |dg(τ ′)/dτ ′| � 1.
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f± =

∫
g(τ ′ + x(τ ′))eiτ

′(−n±1)+ix(τ ′)(n±1) (1− x′ (τ ′)) dτ ′. (4.30)

Since we are interested in describing the spectrum of high harmonics we wish

to examine the integral (4.30) for very large n. Note that for large harmonic

numbers n the exponent in the integrand oscillates rapidly. Therefore, the

main contribution to this integral comes from the extremal points of the

phase

Θ(τ ′) = τ ′(−n± 1) + x(τ ′)(n± 1). (4.31)

The phase derivative dΘ/dτ ′ changes sign in the vicinity of those moments

τ ′s for which the ARP velocity x′(τ ′s) ≈ 1 (Fig. 4.2 a).

Figure 4.2: ARP dynamics and path integration in (4.30). a) Velocity x′(τ ′)

of the ARP; x′n = (n − 1)/(n + 1) are the saddle points corresponding

to dΘ/dτ ′ = 0. b) The integration path is shifted from the real axis to

the complex plane everywhere except in the neighbourhoods of τ ′s (dashed

regions).

These points will be denoted τ ′s in what follows since they coincide with the

moments of γ-spiking in the ARP-dynamics. For all τ ′ that are not too close

to one of the τ ′s, we can now shift the path over which we integrate to the

complex plane everywhere except in the neighbourhoods of τ ′s (Fig. 4.2 b).

The contributions of the parts remote from the real axis are exponentially
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small. We can shift the path to the complex plane till the derivative equals

zero or we find a singularity of the phase Θ.

To calculate the contribution of the τ ′s-neighbourhoods to the integrals

in Eq. (4.30) we can now apply the knowledge about the ARP-dynamics

acquired in Chapters 2 and 3. According to Eq. (3.47) at the vicinity of the

spiking points τ ′s, the following expansion of x(τ) is applicable

x(τ ′) = x(τ ′s) + vs(τ
′
s)(τ

′ − τ ′s)−
α(τ ′s)

3
(τ ′ − τ ′s)3. (4.32)

Substitution of Eq. (4.32) into f±(n) yields

f±(n) =
∑
τ ′s

f±(τ ′s, n), (4.33)

where the sum is over all times τ ′s,

f+(τ ′s, n) = g (τ ′s + x(τ ′s)) exp(iΘ+(τ ′s, n))F (τ ′s, n), (4.34)

f−(τ ′s, n) = g (τ ′s + x(τ ′s)) exp(iΘ−(τ ′s, n))F (τ ′s,−n), (4.35)

F (τ ′s, n) =
4
√
π

α1/3(τ ′s)n
4/3
Ai

(
n− ncr(τ ′s)
Nn1/3

)
, (4.36)

Θ±(n) = ±(τ ′s + x(τ ′s)) + n(x(τ ′s)− τ ′s). (4.37)

Here ncr = 2/(1− vs) and N = α1/3ncr/2. In Eq. (4.36) Ai is the well-known

Airy-function, defined as

Ai(x) =
1√
π

+∞∫
0

cos

(
ux+

1

3
u3

)
du. (4.38)

Note that due to the scaling in Eq. (3.47) N scales proportional to a2
0.

At this point we can use the relativistic transformation for the apparent

reflection point in order to simplify Eq. (4.34). First of all, we choose r to be

large enough and locate the ARP by a zero point of the incident laser pulse.

Since the slow envelope is a real valued function this means that

τ ′s + x(τ ′s) = π/2 + πk, (4.39)

where k is an integer number. For the harmonic phase one obtains from

Eq. (4.37)

Θ(n) = n(x(τ ′s)− τ ′s). (4.40)
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Two things about the harmonic phase Θ(n) are worth emphasizing. First

we notice that this phase is invariant under the ARP transformation. And

second, since the phase depends linearly on n, all high harmonics are in

phase.

Note that ncr and α transform as r−2 and r6 respectively. As a result, the

coefficient r2/α1/3 on the right-hand side of Eq. (4.34) is invariant as also is

N . The term related to ncr in the argument of the Airy function gives a non-

invariant contribution that decays as r−2 as r goes to +∞. This means that

this term is a non-selfconsistent contribution of high-order terms and must

be dropped out in order to keep the leading order self-consistent. The fact

that the ncr related term gives only high-order corrections to the spectrum

and can be dropped out can be checked also by a direct expansion of the

Airy function without consideration of relativistically invariant perturbation

theory6.

Having combined Eqs. (4.33)–(4.39) one obtains the desired analytical

expression for the spectrum of radiation generated by the plasma. For the

intensity of the nth harmonic we obtain

In ∝
∣∣F (n) eiΘ(n)

∣∣2 = F 2(n), (4.41)

where the harmonic phase is given by Eq. (4.40) and

F (n) =
8
√
π

n4/3
Ai

(
n2/3

N

)
. (4.42)

Fig. 4.3 represents the spectrum calculated numerically according to

Eq. (4.41). One can notice that the spectrum contains two qualitatively

different parts and a transition region. In order to demonstrate explicitly

these two quite different laws of high harmonic intensity decay, we apply

asymptotic representations of the Airy function.

For n < N3/2 we can substitute the value of the Airy function7 at x = 0

in Eq. (4.41), and obtain

In ∝
1

n8/3
. (4.43)

For n > N3/2 Eq. (4.36) can be rewritten as

In ∝
r2

α1/3

N1/2

n3
exp

(
− 4n

3N3/2

)
. (4.44)

6This approach was used in [38].
7Ai(0) =

√
π/(32/3Γ(2/3)) = 0.629, Ai′(0) = −31/6Γ(2/3)/(2

√
π) = −0.459
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In other words the high harmonic intensity decays according to a power-law

(4.43) and at frequencies

ωroll = N3/2ω0 (4.45)

rolls over into exponential decay (4.44).

Figure 4.3: Spectrum of radiation calculated according to Eq. (4.41) for

N = 100.

Eqs. (4.41) and (4.43) take into account the contribution of only one

spike. If there are many spikes, the slow envelope of the spectrum remains

unchanged, yet destructive interference among harmonics from different

spikes may cause even order harmonics vanish. This effect is not due to

the specific features of the relativistic laser-plasma interaction, but rather

results from the symmetry of the equations of motion. In Section 3.6 we

saw that even-order harmonics are generated for P -polarization [19]. The

amplitude of even harmonics diminishes if the intensity of the incident laser

pulse grows. In the case of S-polarization only odd harmonics are present in

the harmonic spectrum [19].

4.3.2 The Concept of Universality

The most important feature of the high harmonic spectrum is its

universality. This means that the shape of the spectrum depends on the

single parameter N that encapsulates information relevant to non-linear

ultra-relativistic reflection causing the generation of high harmonics.



78 CHAPTER 4. HIGH HARMONIC GENERATION

In order to understand this concept let us return to the calculation of the

spectrum from Eq. (4.30). Due to the observation that the main contribution

to the spectrum comes from the spiking times τ ′s when the ARP velocity

approaches the velocity of light, we applied the expansion (4.32), which led to

the Airy-expression for the harmonic spectrum. It is essential to understand

that we actually only made use of the fact that the ARP-velocity is a smooth

function around its extremum. Since the harmonics are generated only during

a very short interval of time at the γ-spiking, the precise shape of the ARP-

velocity is irrelevant. This shape depends on the details of the laser-plasma

interaction. Yet the behaviour around the velocity extremum is universal – all

smooth functions resemble parabolas if zoomed at their extrema. Therefore,

the high harmonic spectrum is universal (Fig. 4.3).

It is important to understand that the apparent reflection point formalism

is intentionally designed to speak about the physics of high harmonic

generation from plasmas in simple terms. The physics discussed in the

next Section gives insight into the fascinating processes that result in the

generation of high energy photons inside ultra-relativistic skin layers.

4.4 Physical Picture of High Harmonic

Generation

As we saw in Section 4.2 high harmonic generation from relativistic

plasmas yielding the universal harmonic spectrum depicted in Fig. 4.3 cannot

be explained by the toy model of relativistic oscillating mirror. In order to

conclude this Chapter addressing high harmonic generation, we discuss the

physical processes which cause the radiation of harmonics from relativistic

plasmas.

We demonstrated in Chapter 3 that the spikes in the γ-factor of the

apparent reflection point are due to the zeros of the function A(t−, x), where

t− = t − (X(t, r) − x)/c and X(t, r) is the ARP position. In order to

advance our understanding of high harmonic generation we have to study

the dynamics of these zeros.

Let Z(t) be the coordinate of a zero point of the function A(t−, x). In

other words

A(t−, Z(t)) = 0. (4.46)

Differentiating Eq. (4.46) with respect to t we obtain
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∂A(t−, Z)

∂t−

(
1− 1

c

dX

dt
+

1

c

dZ

dt

)
+
∂A(t−, Z)

∂Z

dZ

dt
= 0, (4.47)

where t− = t−X(t)/c+ Z(t)/c, which means that

dZ

dt
= − c− dX(t, r)/dt

1 + c∂ZA(t−, Z)/(∂t−A(t−, Z))
.

The scalings for dZ/dt ∝ ca0 and c − dX/dt ∝ a−2
0 obtained in Chapter 3

yield

c∂ZA(t−, Z)

∂t−A(t−, Z)
= −1 +O(a−3

0 ), (4.48)

or, in other words,

dZ

dt−
= −∂t

−A(t−, Z)

∂ZA(t−, Z)
= c(1 +O(a−3

0 )). (4.49)

Eq. (4.49) demonstrates that the zero of A(t, x) moves inside the ultra-

relativistic skin-layer with the velocity of light. This means that if

A(t, xA=0(t)) = 0 inside the ultra-relativistic skin layer, then

dxA=0

dt
= c

(
1 +O(a−3

0 )
)
. (4.50)

Before discussing the consequences of Eq. (4.50) notice that this result is due

to the fact that the γ-factor of the ARP gets large if the zero of the vector

potential is in rather dense ∝ a0 ultra-relativistic plasma. This follows from

the scaling for D4 derived in Section 3.5. Consequently in the diluted pre-

plasma and non-ultrarelativistic plasma behind the skin layer that contribute

to D4 negligibly, the velocity of xA=0 can differ from c significantly.

Eq. (4.50) has two interesting consequences. First, one sees that when

the zero of the vector potential xA=0 approaches an electron with px > 0,

px � mec the electron starts moving with vx ≈ c. This means that the

electron and the zero of the vector potential start running together until the

Coulomb attraction makes px become non-ultrarelativistic and subsequently

change sign. As a result the cloud of fast electrons leave the skin layer and fly

towards the incident laser pulse. This effect visualizes the ultra-relativistic

spikes in numerical simulations (Fig. 1.5).

Secondly, one sees that a narrow band localized at xA=0, the width

of which is proportional to 1/(k0a0), moves towards the laser pulse and

radiates. Since the velocity of this band coincides with the speed of light,
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different portions of the whole skin layer radiate coherently. Indeed, the

phase matching condition is satisfied automatically, since the phase velocity

of the radiation coincides with the velocity of the vector potential zeros. This

phase matching condition can be seen from the scaling for D4 in Chapter 3

which shows how the whole bulk of the skin layer contributes to the integral.

It is interesting to notice that the zero of the vector potential runs through

the whole skin layer since the sign of the vector potential changes at each

point. As a result, the emitted radiation is due to effects in the whole skin

layer and is not influenced by the surface roughness.

Moreover, since the different parts of the ultra-relativistic skin layer

coherently radiate at different times with the proper retardation, the duration

of pulses that can be produced from the reflected radiation is not limited by

the skin layer thickness. We examine the physics of these pulses in the the

next Chapter.

In conclusion, let us recall that the formulas derived for the spectrum of

high harmonics depend on the similarity parameter S defined in Chapter 3.

We saw that the initial state of the laser-plasma system is characterized by

the dimensionless similarity parameter S = Ne/a0Nc. However, the laser-

plasma interaction diffuses the plasma boundary and, as we have just seen,

clouds of fast electrons can leave the skin layer moving towards the incoming

laser light (Fig. 1.5).

As a result the physical processes we discuss do no relate to the initial

state of the system directly, but are connected with the area and the state of

the plasma where the laser radiation is reflected. It is worth emphasizing that

the location of this area is coupled with the unperturbed plasma density, but

the properties of the plasma in the area of reflection are mainly dictated by

the incident radiation. The generation of high harmonics occurs in the area

with density8 Ne ∝ a0Nc, since the vector potential cannot have running

zeros in dense plasma regions and the incident radiation is not able to

reach the denser plasma parts. Finally, although the geometrical position

of the reflection point depends on S, the process of reflection is only weakly

dependent on the similarity parameter. For this reason we can expect that

the dependence upon S in experimental conditions is weak as well. This

looks especially plausible for laser installations generating not too short laser

pulses.

8Notice the so called “local” S-parameter is about 1 in the region of reflection.



Chapter 5

Ultra-Short Pulses

In the previous Chapters we developed a self-consistent theory describing

the generation of high frequency radiation in the laser-overdense plasma

interaction. We demonstrated the equivalence between the normal and

oblique incidence cases in the relativistic limit and, therefore, restricted our

consideration to the case of normal incidence for brevity. This approach

brought our studies as far as to get a grip on the physical mechanism behind

the harmonic generation process and to derive an analytical expression

describing the universal spectrum of radiation.

Our analysis showed that the thickness of the relativistic skin layer does

not restrict the duration of the high frequency pulses that can be extracted

from high frequency radiation produced at the boundary of a relativistic

plasma. It became evident that the surface roughness does not prevent the

generation of high harmonics. This means that HHG at plasma surfaces

is a promising candidate for advanced time-resolved metrology, an area in

particular need of ultra-short pulses of high intensity.

In this Chapter we examine the generation of ultra-short (sub-attosecond)

pulses. We demonstrate the generation of trains of pulses with tunable

structure and derive scalings for the pulse duration and intensity. The

understanding we have developed concerning the short time intervals and

physical conditions prevailing when high harmonic generation occurs, in

turn provides a mechanism for efficient managing of the pulse generation.

This Relativistic Plasma Control allows the isolating of single intense sub-

attosecond pulses.
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5.1 Pulse Generation

In Fourier-analysis it is well-known that a large number of coherent

frequencies sum up to form short pulses in the time domain. In fact if

all harmonics are of equal intensity1 and have the same phase2 the Fourier

transformation returning the signal to the time domain produces a delta-

function, a pulse of infinitely short duration. So long as either the harmonics

are not coherent or their intensities differ, the resulting pulse will be of finite

duration.

The high harmonics generated due to the interaction of a relativistically

intense laser pulse with a slab of overdense plasma fulfill the first requirement:

as demonstrated in Chapter 4 these harmonics are highly coherent.

Moreover the frequencies which can be generated are unprecedentedly high.

Consequently, the constructive interference of these harmonics could lead to

the generation of unprecedentedly short pulses.

In order to generate such pulses one typically filters out the low order

harmonics. However two competing effects have to be taken into account.

Applying filters of too short a bandwidth leads to broadening of the pulses.

On the other hand, due to the power-law decay of the spectrum, the low

frequency harmonics are the most intense. Therefore, if too broad a filter is

applied, the dominating signal occurs in the low harmonic range, which again

results in broadening of the generated pulses. As a result, proper filtering has

to balance these opposing trends in order to find a trade-off corresponding

to short pulses of optimal duration.

A numerical example for the generation of a sub-attosecond pulses by

filtering the reflected radiation is shown in Fig. 5.1. It is interesting to notice

that the short pulses appear as a pulse train, twice per laser period. As we

saw in Chapter 3 the reason for this effect is that the harmonic generation

occurs at those moments of time, when the tangential vector potential A⊥
vanishes. For the generation of harmonics from plasma driven by a linearly

polarized laser pulse, this happens twice per laser period.

Since the harmonic intensities are not constant but decay according to

the law (4.41) derived in Chapter 4, the shape of the harmonic spectrum

determines the properties of ultra-short pulses such as duration, structure

and intensity. In what follows we analyze these properties.

1This corresponds to a perfectly flat spectrum in the frequency domain
2or linearly shifted phase φ = const× ω
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Figure 5.1: Numerical demonstration of ultra-short pulse generation. The

applied filter (highlighted region in a)) lets through only frequencies greater

than Ωf [38]. The train of short pulses generated is given in b). The

simulation is performed with the particle-in-cell code VLPL [47] for laser

vector potential a0 = 20 and plasma density Ne = 90.
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5.2 Duration and Intensity of Ultra-Short

Pulses

Let us estimate the minimal pulse duration, determined by the high

harmonic spectrum. The broad spectrum band up to ωroll corresponds to

a generated pulse duration scaling as

T ∝ 2π

ωroll
∝ 2π

ω0

1

N3/2
. (5.1)

Since N is proportional to a2
0 we obtain

T ∝ 1

a3
0

. (5.2)

Thus the relativistic high harmonics allow the production of pulses with very

favorable duration scaling, due to the high spectrum roll-over.

Magnifying the plotting scale for the ultra-short pulses reveals their

duration. For the parameters of the interaction (a0 = 20, Ne = 30Nc) the

pulse in Fig. 5.2 is only 300 zeptoseconds long (1 zs = 10−21 s). The possibility

of generating pulses of such unprecedented duration was suggested for the

first time in [14].

The intensity of the filtered ultra-short pulses depends on the filter

position and width. Now we are going to estimate the energy and peak

intensity of the optimal duration pulse. This pulse contains ∆n (∆n ≤
nroll = N3/2) harmonics. All of these harmonics are coherent which means

that in order to estimate the peak intensity of the pulse one has to add up the

electric fields3 rather than the intensities as is done for incoherent radiation.

For this reason one finds the following scalings for optimal pulse energy W ,

peak intensity Ip and duration T

W ∝ ∆n

n
8/3
roll

I0

ω0

, Ip ∝

(
∆n

n
4/3
roll

)2

I0, T ∝ W

Ip
∝ 1

∆n

1

ω0

. (5.3)

where I0 the intensity of the incident laser pulse.

From the scaling for T one sees that the best choice of ∆n is to be chosen

of the same order of magnitude as nroll. This choice gives rise to

Ip ∝ ω2
0, W ∝ ω4

0/I
3/2
0 . (5.4)

3This is the central idea of coherent harmonic focusing that can be used in order to
reach the Schwinger limit [49].
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Figure 5.2: Zeptosecond pulse train obtained with the particle-in-cell code

VLPL [47]: a) temporal structure of the reflected radiation, (b) zeptosecond

pulse train seen after spectral filtering, (c) one of the zeptosecond pulses

drawn against an expanded time-scale; its FWHM duration is about 300 zs

[14].
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The surprising feature of Eq. (5.4) is that the intensity of the optimal

duration pulse depends only on the laser frequency.

5.3 Ultra-Short Pulse Structure

Not only the duration and intensity but also the structure of the filtered

ultra-short pulses depends on the high harmonic spectrum. In order to

demonstrate this effect let us apply a high-frequency filter that suppresses

all harmonics with frequencies below Ωf and study how the relative position

of Ωf and the spectrum roll-over frequency ωroll (see Eq. (4.45)) affects the

duration of the resulting (sub)attosecond pulses.

According to Eq. (4.41), the electric field of the pulse after the filtration

is

E ∝ Re

+∞∫
Ωf/ω0

F (n)eint dn. (5.5)

The structure of the filtered pulses depends on the position of the filter

threshold Ωf . In the case 1 � Ωf � ωroll, we use Eq. (4.43) and rewrite

Eq. (5.5) as

E ∝ Re

+∞∫
Ωf/ω0

eint

n4/3
dn =

(
ω0

Ωf

)1/3

Re [P (Ωf t)] , (5.6)

where the function P

P (x) =

+∞∫
1

eiyx

y4/3
dy (5.7)

gives the slow envelope of the pulse.

It follows from expression (5.6) that the electric field of the filtered pulse

decreases very slowly with the filter threshold as

E ∝ 1

Ω
1/3
f

. (5.8)

The pulse duration decreases as 1/Ωf . At the same time, the fundamental

frequency of the pulse is Ωf . Therefore the pulse is hollow when Ωf � ωroll,

i.e. its envelope is not filled with electric field oscillations. One possible
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application of these pulses is to study atom excitation by means of a single

strong kick.

The pulse structure changes significantly when the filter threshold is

placed above the spectrum roll-over. For Ωf � ωroll we use Eqs. (4.44)

and (5.5) to obtain

E ∝
(
ω0

Ωf

)3/2

exp

(
− 2

3N3/2

Ωf

ω0

)
Re

[
eiΩf t

−2/ (3N3/2) + iω0t

]
. (5.9)

The amplitude of these pulses decreases rapidly when Ωf grows. However,

the pulse duration ∝ 1/a3
0ω0 does not depend on Ωf . Since the fundamental

frequency of the pulse grows as Ωf , the pulses obtained with an above-ωroll

Figure 5.3: The structure of the ultra-short pulses depends on the position Ωf

of the filter. The figures present this dependence for a0 = 20 and Ne = 90Nc

and filter positions: a) Ωf = 20ω0, b) Ωf = 40ω0, (c) Ωf = 100ω0, d)

Ωf = 200ω0; ∆ω = 2ω0 [38].
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filter are filled with electric field oscillations. Therefore, these pulses are

suitable to study the resonance excitation of ionic and atomic levels.

This idea about the tunable pulse structure can be visualized numerically.

Using the particle-in-cell code VLPL [47] one can study the structure of the

generated pulses in its dependence on the filter position. We apply a filter

with the filter function f(ω) = 1 + tanh ((ω − Ωf )/∆ω). It lets through

frequencies above Ωf and suppresses the lower ones. The results are presented

in Fig. 5.3. One can see clearly that if the applied filter is set before the

spectrum roll-over, the ultra-short pulses are hollow (Fig. 5.3 a). As the

position of the filter is shifted to higher frequencies (Fig. 5.3 b,c) the pulse

structure changes till finally the pulse is filled with oscillations when only

above-ωroll harmonics are allowed through the filter (Fig. 5.3 d).

5.4 Relativistic Plasma Control

Figure 5.4: Geometry for relativistic plasma control of attosecond plasma

surface dynamics. The polarization of the high intensity driving pulse is

prepared in such a way that A⊥ vanishes only once. The high harmonics

are generated only at this moment. As a result after proper filtering of the

reflected radiation, a single ultra-short pulse can be isolated.

The generation and properties of the attosecond pulses just discussed

are consequences of the properties of the high harmonics spectrum. These

properties were obtained in the framework of the theory of relativistic spikes.

Yet the observation that the high harmonics are generated only during a
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γ-spike not only leads to an analytical derivation of the high harmonic

spectrum, but also provides a powerful tool for control of the plasma motion.

This control is based on the intrinsic connection between the plasma electron

dynamics and the laser pulse, which drives this dynamics.

Indeed, as we noticed in Chapter 3, the moment of γ-spiking and,

consequently, of high harmonic generation, corresponds to a zero of the

tangential vector potential A⊥. In other words, controlling the polarization

of the laser pulse leads to efficient control of the harmonic generation. In

particular, if the polarization of the laser allows only one zero of A⊥ per laser

pulse, we can produce an isolated ultra-short pulse. This tool for control of

the laser-driven plasma dynamics was presented for the first time in [39] and

named Relativistic Plasma Control.

Figure 5.5: Demonstration of relativistic plasma control. Linearly polarized

laser pulse with a0 = 20 a) generates a train of ultra-short pulses b),

appearing twice per laser period. Polarization-managed pulse c), with mixed

polarization (y-polarization with ay = 20 and frequency ω0, z-polarization

with az = 6 and frequency ωz = 1.25ω0, the phase shift between both

polarizations is ∆φ = π/8), generates an isolated ultra-short pulse d).
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The relativistic plasma control can be demonstrated numerically by a 1D

particle-in-cell simulation with the code VLPL [47]. The plasma density for

this simulation is Ne = 90Nc. For a linearly polarized pulse (Fig. 5.5 a)

the filtered radiation contains a train of sub-attosecond pulses (Fig. 5.5 b)

as already discussed in Section 5.1. However, if the polarization is changed,

so that the vector potential crosses the zero-axis only once (Fig. 5.5 c), the

reflected radiation contains only one sub-attosecond pulse (Fig. 5.5 d). This

pulse is generated at the moment of the γ-spike corresponding to the zero of

the vector potential.

It is important to notice, that the light pressure acting on the plasma slab

in the case of a linearly polarized pulse (Fig. 5.5 a) differs only slightly from

the light pressure in the case of the laser pulse with a single crossing A⊥ ≈ 0

(Fig. 5.5 c). However, the harmonic output as well as the whole plasma

electron dynamics changes significantly. In other words, the high harmonic

generation is not a result of the light pressure acting on the plasma, but

rather the result of the relativistic spikes.

To conclude, let us observe that relativistic plasma control is a general tool

for managing the relativistic plasma dynamics. The generation of harmonics

and ultra-short pulses depends on the number of zero points of A⊥. In

particular, the choice of elliptical laser polarization, for which A⊥ does not

vanish, provides no opportunity for harmonic generation.
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Summary

The theory of relativistic spikes developed in this Thesis presents a new

physical mechanism of high harmonic generation at the boundary of an

overdense relativistic plasma. This is the first time, the laser plasma theory

has proposed both a physical mechanism and an analytical approach that

predict the universal power-law decay and the scaling for the roll-over of the

high harmonic spectrum generated in relativistic laser–plasma interactions.

These theoretical advances of the theory of relativistic spikes have been

confirmed experimentally.

The theoretical foundation of this work is sufficient to demonstrate

the robustness of the high harmonic generation process, which prevails in

practical experiments where various imperfections occur. Indeed, this Thesis

shows that the high harmonic emission caused by the relativistic spikes is

not sensitive to surface roughness. This fact has enabled the experimental

observation of high harmonics of unprecedentedly high frequencies in

agreement with the theoretical predictions.

The relativistically invariant apparent reflection point formalism,

developed in this work, encapsulates the features of ultra-relativistic laser-

plasma interaction relevant to the generation of high energy coherent

photons. This formalism puts the analytical theory of high harmonic

generation on a firm mathematical footing and states that the relativistic

γ-factor of the apparent reflection point has sharp ultra-relativistic spikes.

These spikes originate from the electron motion inside the skin layer and are

due to zeros of the vector potential.

Each ultra-relativistic spike causes the generation of an electromagnetic

shock wave, which is a (quasi)singularity in the electric field of the reflected

radiation
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Er(x, t) = const1 + const2 × (ct− x)1/3.

These shock waves contain coherent high harmonics with the universal power-

law spectrum

I(ω) ∝ 1/ω8/3,

describing the intensity I(ω) of the harmonic with frequency ω. The power-

law scaling for I(ω) continues up to a roll-over frequency ωroll

ωroll ∝ I
3/2
0 /ω2

0,

where I0 and ω0 are the intensity and frequency of the incident laser pulse.

The spectrum of the high harmonics is universal and depends neither on

the shape of the incident laser pulse nor on the subtle details of the ultra-

relativistic laser-plasma interaction, which leads to generation of harmonics.

The full analytical description of the spectrum including the power-law decay

and the exponential decay above the roll-over is obtained.

The theory of high harmonic generation at the boundary of relativistic

plasmas predicts that the whole skin layer is in a coherent state, thereby

enabling it to generate high harmonics with wavelengths that are much

shorter than both the size of the surface roughness and the skin layer

thickness. A mechanism to control the generation of high harmonics and

produce single ultra-short pulses is proposed. Consequently, relativistic

spikes resulting in high harmonic generation from plasma surfaces are a

promising physical phenomenon that can be used in order to develop X-ray

time-resolved metrology.

In conclusion, the main result obtained in this Dissertation is the

theoretical prediction and examination of a new physical phenomenon: ultra-

relativistic γ-spikes developing in ultra-relativistic laser-plasma interaction.

This new physical phenomenon provides us with a robust mechanism to

generate coherent radiation and even isolated ultra-short X-ray pulses in

the soft and hard X-ray regions.



Appendix A

Vlasov Equation

In this Appendix the one-dimensional Vlasov equation (3.5) for the case

of planar symmetry is derived. We start from the standard relativistic 3-

dimensional Vlasov equation

(∂t + v · ∂r + F · ∂p)F(t,p, r) = 0, (A.1)

where F is the Lorentz force

F = −e(E + v ×B/c) (A.2)

and the electron distribution function F(t,p, r) depends on all 3 coordinates

x, y, z and momenta px, py, pz. Due to

∇p · F = −e
c
∇p · (v ×B) = −e

c
B · (∇p × v) +

e

c
v · (∇p ×B) = 0 (A.3)

we can re-write Eq. (A.1) in the following convenient form

∂F
∂t

+
∂

∂r
· (vF) +

∂

∂p
· (FF) = 0. (A.4)

Let us now consider the particular case of planar symmetry, for which F
does not depend on y and z. Eq. (A.4) can be written in the form

∂F
∂t

+
∂

∂x
(vxF) +

∂

∂p
· (FF) = 0. (A.5)

Integration of Eq. (A.5) over py and pz gives

∂

∂t
If +

∂

∂x
Iv +

∂

∂px
IF = 0, (A.6)
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where

If =

∫
F dpydpz; Iv =

∫
vxF dpydpz; IF =

∫
FxF dpydpz.

note that in order to derive Eq. (A.6) we made use of the fact that∫
∂

∂py
(FyF) dpydpz = 0;∫

∂

∂pz
(FzF) dpydpz = 0.

In order to simplify Eq. (A.6) we now use the integrals of motion due to

the transitional symmetry in the plasma plane

π⊥ = p⊥ − eA⊥/c = const. (A.7)

As a result, the electron distribution function is

F(t, x,p) = f(t, x, px)δ(p⊥ − π⊥ − eA⊥/c). (A.8)

Substituting Eq. (A.8) into Eq. (A.6) we obtain an equation for the 1D

electron distribution function f(t, x, px).

In the case of normal laser incidence we have π⊥ = 0 and as a result we

obtain that the 1D electron distribution function satisfies

∂f

∂t
+

∂

∂x
(vxf) +

∂

∂px
(Fxf) = 0, (A.9)

where vx and Fx are defined by Eqs. (3.6) and (3.7).

In the case of oblique laser incidence we perform a Lorentz transformation

to a moving reference frame. As a result π⊥ = p0ez, where p0 is defined by

Eq. (3.56) as discussed in Section 3.6. Consequently, one readily obtains

Eq. (3.57).

It is important to emphasize that, although the electron distribution

function f does not depend on p⊥, the electron dynamics is still three-

dimensional. The tangential components of the electron momentum enter

the Vlasov-Maxwell equations through A⊥.

Finally, let us notice that the Vlasov equation (A.9) can easily be derived

if one keeps in mind that this equation is a continuity equation in the (x,px)-

space. Indeed, the number of particles in a fixed volume dxdpx can change

only due to a flow of particles in the x-direction with velocity vx or due to a

flow in the px-direction with velocity Fx.
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Practicalities

The derivation of Eqs. (3.36)-(3.39) makes use of the Vlasov equation

(3.5) in order to express the time derivative of the distribution function as

∂f

∂t−
= − ∂

∂x
(vxf)− ∂

∂px
(Fxf).

Our goal is to obtain expressions which contain only f , rather than its

derivatives. In order to do this we integrate the term ∂px(Fxf) by parts.

For the term ∂x(vxf) we make use of the transformation1∫
g(t−, x)

∂

∂x
f(t−, x, px)dpxdx =

−
∫
f
d

dx

(
g(t−, x)

1− vx/c

)
dxdpx −

∫
f
d

dpx

(
g(t−, x)

1− vx/c
Fx
c

)
dxdpx.

Notice that since t− depends on x, one must distinguish between the total

derivative d/dx and the partial one ∂/∂x.

In order to estimate the behavior of the final results it is not convenient

to have integrals of the form
∫
g(t−, x)f(t−, x, px)dxdpx, since the function

f(t−, x, px) =
∑
i

δ
(
px − pi(t−)

)
δ
(
x− xi(t−)

)
counts one and the same particle many times. Instead, we rewrite our

integrals using the electron counting function

M =
∑
i

δ (px − pi (t−X(t)/c+ xi/c)) δ (x− xi (t−X(t)/c+ xi/c))

1Here g(t−, x) is a probe function.
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as ∫
g(t−, x)f(t−, x, px)dxdpx =

∫
g(t−, x)M(t, x, px)µdxdpx,

where µ = 1/(1− vx/c).
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