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Abstract

The diserimination of two mixed quantum states is a fundamental task in quantum state
estimation and quantum information theory. In quantum state discrimination a quan-
tum system is assumed to be in one of two possible — in general mixed — non-orthogonal
quantum states. The discrimination then congiste of a measurement strategy that al-
lows to decide in which state the system was before the measurement. In wnambiguous
gtate discrimination the aim is to make this decigion without errorg, but it is allowed
to give an inconclusive answer. Egpecially interesting are measurement strategies that
minimize the probability of an inconclusive angwer.

A starting point for the analysis of this optimization problem was a result by Eldar
et al. [Phys. Rev. A 69, 062318 (2004)], which provides non-operational necessary and
sufficient conditions for a given measurement strategy to be optimal. These conditions
are recongidered and simplified in such a way that they become operational. The
simplified conditions are the basis for further central results: It is shown that the
optimal measurement strategy is unique, a statement that is e.g. of importance for
the complexity analysis of optimal measurement devices. The optimal meagurement
strategy is derived for the cage, where one of the possible input states has at most rank
two, which was an open problem for many years. Furthermore, using the optimality
criterion it is shown that there always exists a threshold probability for each state, such
that below this probability it is optimal to exclude this state from the discrimination
gtrategy.

If the two states subject to diserimination can be brought to a diagonal structure with
(2 % 2)-dimensional blocks, then the unambiguous discrimination of these states can be
reduced to the unambiguous discrimination of pure states. A criterion is presented
that allows to identify the presence of such a structure for two self-adjoint operators.
This criterion congists of the evaluation of three commutators and allows an explicit
construction of the (2 x 2)-dimensional blocks.

As an important application of unambiguous state discrimination, unamhiguous state
comparison, i.e., the question whether two gtates are identical or not, is generalized and
optimal measurements for this problem are constructed.

If for a certain family of states, a physical device maps the input state to an output
state, such that a second device can be built that vields back the original input state,
guch a map is called reversible on thig family. With respect to state discrimination,
such reversible maps are particularly interesting, if the output states are pure. A
complete characterization of all families that allow such a reversible and purifying map
ig provided. If the states are mapped to pure states, but the map iteelf is not reversible,
upper and lower bounds are analyzed for the “deviation from perfect faithfulnesgs”, a
quantity which meagures the deviation from a reversible mapping.



Zusammenfassung

Die zweifelsfreie Unterscheidung zweier gemischter Quantenzustande gehort zu den
fundamentalen Fragestellungen im Bereich der Quantenzustandsabschitzung und der
Quanteninformationsthecrie. Die Aufgabe bei der Unterscheidung zweier nicht orthog-
onaler gemischter Quantenzustinde besteht darin, durch ein geeignetes Messverfahren
fegtzustellen, in welchem von zwei méglichen — im allgemeinen gemischten — Zustéinden
gich ein Quantensystem befindet. [das Wesentliche bei der zweifelsfreren Zustandsunter-
gcheidung ist, dass bei diesem Verfahren niemals eine falsche Identifikation stattfindet,
aber dafiir einer dritte, “unschliissige” Antwort zugelassen ist. Typischerweise sind
hierbei Verfahren von besonderem Interegse, welche mit moglichst geringer Wahrschein-
lichkeit eine unschliissige Antwort liefern.

Als Ausgangspunkt fiir die Analyse dieses Optimierungsproblems dient ein Ergebnis
von Eldar u.a. [Phys. Rev. A 69, 062318 (2004)], welches hinreichende und notwendige
(jedoch schwer auswertbare) Bedingungen fiir die Optimalitéit eines gegebenen Messver-
fahrens aufetellt. Diege Bedingungen werden nun aufgegriffen und soweit vereinfacht,
dags sie direkt auswerthar gind. I}ese vereinfachten Bedingungen bilden die Grundlage
fiir weitere zentrale Ergebnisse: Eg wird gezeigt, dass das optimal Megsverfahren fiir die
zweifelsfreie Zustandsunterscheidung eindeutig ist; diese Aussage hat z.B. Auswirkun-
gen auf die Komplexitatsanalyse von optimalen Mesgverfahren. Durch die vereinfachten
Optimalitatsbedingungen wird eg auch moglich, die optimale Messung fiir den Fall zu
konstruieren, dass einer der Zustiande Rang 2 hat; ein Problem, welches viele Jahre
lang ungelost war. Des weiteren wird gezeigt, dass es einen Grenzwert fiir die a-priore-
Wahrecheinlichkeit eines jeden Zustands gibt, unterhalb desgen dieser Zustand bei einem
optimalen Messverfahren nicht beriicksichtigt wird.

Falls die beiden zu unterscheidenden Zustande in eine Form mit (2 x 2)-dimengionalen
Blécken gebracht werden konnen, so kann die zweifelsfreie Unterscheidung dieser Zu-
stinde auf die Unterscheidung von reinen Zustanden zuriickgefiihrt werden. Hier wird
nun ein konstruktives Kriterium bestehend aus drei Kommutatoren aufgestellt, welches
es ermoglicht die Existenz solcher Blocke aufzuspiiren und in diesem Falle die Blocke
auch explizit zu konsgtruieren.

Fine wichtige Anwendung der zweifelsfreien Zustandsunterscheidung ist der zweifels-
freie Zustandsvergleich (d.h. die Frage, ob zwei Zustéinde gleich sind). Diese Anwendung
wird verallgemeinert und optimale Mesgverfahren werden hierfiir entwickelt.

Wenn eg fiir eine Familie von Zustinden moglich ist, diese Zustinde mittelg einer
physikalischen Apparatur so auf andere Zustinde abzubilden, dass dieser Vorgang durch
eine weitere Apparatur wieder riickgingig gemacht werden kann, so heifit die erstere
Abbildung reversibel In Hinblick auf die Zustandsunterscheidung ist eine solche Ab-
bildung von besonderem Interesse, falls die resultierenden Zustande rein gind. In der
vorliegende Arbeit werden alle Familien von Zusténden, welche eine solche reversible
Abbildung erlauben, vollstdndig charakterisiert. Es werden obere und untere Schranken
an die Abweichung von der Abhildungstreue fiir Abbildungen aufgestellt, welche zwar

auf reine Zustinde abbilden, jedoch nicht vollstindig reversibel sind.



Arguments against the epistemic interpretation of
quantum states: Shall we adopt, then, the epistemic
interpretation? Not so fast. The epistemic interpretation
is also objectionable. The objections have to do with the
apparent need for a knower. For example: What if the
knower is a physicist who had a martini before trying
to "know"? What if a person who knows just a little
physics learns of the result? What if he had a martini?
Somehow we feel that such questions are irrelevant.

Shimon Malin in "What are Quantum States?”, Quan-
tum Information Processing, Vol. 5, pp. 233-237 (2006)
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1 Introduction

The degcription of nature by means of quantum mechanics is one of the foundations
of modern physics. While the framework of quantum mechanics produces very reliable
predictions for the hehavior of physical systems, the concepts of quantum mechanics
do not possess a direct meaning in our everyday experience. Mayhbe at the heart of this
discrepancy 18 the concept of a quantum state. With the advent of quantum information
theory, the properties of quantum states themselves became a central topic. The states
are congidered ag a concept detached from a specific physical embedding and so new
questions arise, e.g.!, What correlations can be extracted from a composite quantum state
when measuring different degrees of freedom?, If two remote parties share a quantum
state, can they use this state for certain communication primitives?, Which output states
can be achieved by a physical process, given a characterization of possible input states?,
or How can one decide whether o system 1s in state “1” or in state “27%

The first question lead to the result, that correlations between quantum systems can
be stronger than it would be possible with a local classical description [2]. One of
the mogt prominent regults in quantum information theory is an answer to the second
question: quantum mechanics in particular allows secret communication between two
parties over a public channel [3, 9]. The lagt two questions are typical for the field of
state estimation and state discrimination. The main focus in this thesis will be a major
line of research in state discrimination, the unambiguous digerimination of two mixed
states.

A fundamental property of quantum mechanics is, that two quantum states cannot
be distinguished perfectly by any physical device, unless they are orthogonal. However,
imperfect discrimination ig posgible. The most straightforward approach is to build a
device which will distinguigh the states imperfectly, such that the device announces the
wrong state ag rarely as possible. Thig discrimination strategy is called menemum error
descrimanation. But quantum mechanics also allows a different strategy. It iz possible
to huild a device that will never give a wrong identification, but the device will fail with
a non-vanishing probability and in this case no identification at all will be provided.
This idea was introduced by Ivanovic [13] and Dieks [§] and is called uwnambiguous
state discrimenation. The main open problem in unambiguous state discrimination is
to maximize the probability of succegsful identification.

This thesis provides a gystematic analysis of thig optimization problem for the case
of two mixed states. The main results are new classes of optimal measurements and
an affirmative answer to the question whether the optimal meagurement is unique,

1Obviously, this list is biased.



cf? Pub. [E]. As an important application of unambiguous state discrimination, the
unambiguous comparison of quantum states ig analyzed and generalized in Pub. [A].
During the analysis of unambiguous state discrimination, results where achieved which
are relevant also in a more general context: In Pub. [D] a commutator criterion is
derived, which allows to detect a common two-dimensional structure in a pair of zelf-
adjoint operators. In Pub. [B] and Pub. [C] reversible physical maps are analyzed, that

map families of mixed stateg to pure states.

2 Quantum states and quantum operations

2.1 Mixed quantum states and purifications

In a description of an ideal, izolated quantum system, the state of the complete system
can be considered to be a pure quantum state. However, this description does not
corregpond to the most general gituation, in which the system may have been interacting
with other quantum systems. Then, in general, the sygtem under consideration is in a
mixed state, and is conveniently described by a density operator on a Hilbert space®,
i.e., by a positive semi-definite operator of unit trace.

The set of density operators is convex, i.e., if ¢ and ¢’ are density operators, then for
any 0 < p<lalsop=pc+(1—p)o isa density operator. In such a situation, due to
the linearity of quantum mechanics and ag a consequence of Born’s rule, the system can
be considered to be with probability p in state ¢ and with probability 1 — p in state o'
If a state cannot be written ag a convex combination of two different density operators,
then the state is a pure state. (It is also common to use normalized vectors in order
to represent pure states. However, in this thesis the main focug is on mixed states and
hence the description of a pure state in terms of a density operator is preferred.) Since
the complete set of quantum states is the convex hull of all pure states, a mixed state
can always be seen asg a clasgical mixture of pure states.

When a quantum system naturally decomposes into two subsystems 4 and B (i.e,
into two independent degrees of freedom), then the complete system is described by a
density operator g on a tensor product of Hilbert gpaces 5% = 54 ® S5. The state
of subsystem A is described by a density operator pa on .4, where p4 ig given by the
partial troce of p over #g, pa = trg p. The partial trace is defined as trg p = >, {i|p|),
where {|#}} is an orthonormal basis of #5. Even if p is a pure state, p4 in general is not
pure. Convergely, any mixed state can be seen to be the partial trace of a pure state: If

“Pub. [A] - Pub. [E] denote publications which are included in this thesis.
3Throughout this thesis, the dimension of the underlying Hilbert space is always assumed to be finite.
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p is a density operator on #, then there exists a pure state pp,r on an extended Hilbert
space 7 @ .y, such that p = try ppur- 10 this case py,, is called a purification of p.

2.2 Projective measurements

The measurement process is a description of the action of a “macroscopic” measurement
device on a quantum system. This process forms the interface hetween a physical gystem
at quantum level and the observed “clasgical” events at the measurement apparatus.

An ideal measurement apparatus may have outcomes® 1, ..., M, where for each single
measurement exactly one cutcome “u” will occur. The characterization of such an
apparatus at quantum level is given by a projection valued measure (I14,...,TTp),
where I, corresponds to the measurement outcome “u4”. A projection valued measure
(a8 used in this context) is a resolution of unity into a sum of orthogonal projectors,
ie, 3, I, = 1 and I,I1, =TT, = 11},

The probahbility of the measurement cutcome “u” for a system in state p iz given
by Born’s rule, P(u|p) = tr(Il,p). If the system was described by the state p, then
after the meagurement it is degcribed by the state > M I,plIl,. (In this description, the
knowledge of the measurement outcome is ignored.)

2.3 Completely positive maps and generalized measurements

A typical question in quantum state estimation and quantum information theory is,
whether a certain mapping p; +— p} for a family of input states (p1,...,pn) and a
family of output states (p], ..., p/y) can — at least in principle — be realized by a physical
apparatus. (In general the density operators p; and p) act on different Hilbert spaces
A and ' respectively.)

Such a mapping can be realized if and only if the mapping p; — p} can be extended to
amap A on the set of self~adjoint operators, such that A is linear, completely positive,
and trace preserving. A linear map A is positive, if it maps positive semi-definite
operators to positive semi-definite operators, i.e., if ¢ > 0 includes Alg] > 0. A map A
is completely positive, if for any extension 5 ® H# of #, the map (A @ id) again is
positive. A map A is trace preserving if tro = tr Alo].

Analogously, there exists a complete characterization of the most general measure-
ment apparatus. For a measurement apparatus with outcomes o = 1,...,M, such a
generalized measurement is given by a positive operator valued measure (POVM). A
POVM (Ey,...,Ey) is a decomposition of unity into a sum of positive semi-definite
operators, i.e., > " E,=1and E, > 0. Any physically realizable measurement can be

4Tn this theses, only measurements with a finite number of outcomes are considered.
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[Tk

described by a POVM, where for a general state p, the probability of the outcome “4s
is given by P(u|p) = tr(E,p).

3 Quantum state estimation

In many fields of modern physics, quantum mechanics has proved to be a satisfactory
tool in order to make predictions on physical systems. An admissible question is,
to what extent the concepts of quantum mechanics themselves exactly correspond to
the actual situation in nature. The aim in gquanium state estzmation is to explore a
physical system in such a way that a density operator can be announced, which reliable
describes the state of the system. The field of quantum state estimation can be roughly
gplit into three different areas, namely state tomography, parameter estimation, and
state discrimination.

In state tomography one is equipped with a certain (relatively high) number of iden-
tically prepared quantum states. The tomography congists of an unprejudiced strategy
in order to perform measurements on thege gtates and to evaluate the meagurement
data, such that a density operator can be announced, which desecribes the input state
approximately. — Typically, state tomography ig used in order to verify that a certain
quantum state was successfully prepared. But e.g. in quantum key distribution (“quan-
tum cryptography”), it can be used in order to exclude the presence of an eavesdropper
7, 18].

A specialization of state tomography is parameter estimation. Here typically the
input state is known to be from a continuous family (p,) which is parametrized by
z € U C R". Using again a certain number of identically prepared quantum states,
which are all in the same unknown state p, < (p,), measurements are performed and
the data is evaluated in such a way that with respect to a quality function ¢y : U — RE{ ,
the best estimate of = is achieved.

State discrimination deals only with a single copy of the input state. The physical
system subject to discrimination is prepared in one of the states 1,..., 1N, described
by density operators py,...,pn. The preparation is randomly, where the probahility
of occurrence for the state “u” is given by p, > 0 with ZHpH = 1. The task in state
discrimination ig to find a meagurement which can discriminate between these states,
i.e, to find a POVM (Fy, ..., Fy) with M > N, such that the measurement result “p”
corresponds to an identification of state “u”. There exist two main branches of state
discrimination:

In menamum error discremination, there are exactly as many meagurement outcomes

as posgible input stateg, i.e., M = N. The meagurement maximizes the probability of

12



correct identification (and hence minimizes the error), PMEP — >y Putr(Eupy). For

two mixed states, the optimal measurement wag found by Helstregm [11].

In unambiguous state discrimination, no wrong identification is allowed, i.e., tr(F,p, )
=0 for all v # p < N. Unless all states are orthogonal, no perfect discrimination ig
possible and hence there must be an additional measurement outcome (M = N + 1),
which corresponds to an inconclusive result. This additional measurement outcome
is usually labeled by “7". The task is to find an optimal measurement, which again

maximizes the success probability PUSD =57 P S(Eupy)-

3.1 Distance measures on the set of density operators

When focusing on quantum states, a quite natural question ig, How similar are two
density operators p1 and pz? This question is clogely related to quantum state discrim-
ination and surprisingly, there exists no satisfactory answer to this question.

For a distance on the get of density operatorg, there are several reasonable require-
ments. In mathematicg there are three axioms which should apply for a distance, namely
positivity, symmetry, and the triangular inequality: If d(p1, p2) denotes a distance be-
tween two density operators p; and pg, then the axioms are (i)(a) d(p1,p2) € Ry
where (b) d{p1,p2) = 0 if and only if py = pa, (ii) d{p1, p2) = d(pz, p1), and (iii)
d(p1, p2) < d(p1, p3) + d(ps, pz) for any density operator ps.

In physical terms, a distance potentially should represent a measure of “similarity”
or “distinguishability”. In these terms, in particular the axioms (i)(b) and (iii) may
become less important. But from a physical point of view, an additional condition
may become desirable: No physical process should increase the distance of p; and
pz. Assuming, that the distance measure is defined for dengity operators acting on a
Hilbert space of arbitrary dimengion, thig condition can be split into three different
conditions (iv) d(p1, p2) = d(p1 ® o, pz @ o) for all density operators o, (v) d(p1, p2) =
d(UprUT,UpsU1) for any unitary operator U, and (vi) d(trx p1,trx p2) < d(p1, pz) for
any subsgystem X.

Two important distance measures are the trace distance di(p1,p2) = %tr lp1 — p2
and the Bures distance dB(p1,p2)2 = 2 — 2tr|\/p1/pz|, where |A| = vV ATA. Both
distances fulfill all axioms (i)-(vi).

One of the most prominent appearanceg of the trace distance is in the success prob-
ability of minimum error discrimination. For two states py and pg having the same a
priort probability %, the success probability in minimum error discrimination is given
by PMED = 1(1 + dy(p1, p2)). In unambiguous state discrimination, on the other hand,
the Bures distance appears indirectly: An important upper bound on the success prob-
ability is given by PUSP < dp{py, p2)?/2.

SUCC
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3.2 Optimal unambiguous state discrimination of two mixed states

The main topic under investigation in this thesis is unambiguous state discrimination. A
measurement (Ey, Ea, E7), which can unambiguously discriminate between two states py
and py must satisgfy tr(Fyps) = 0 and tr{Fop1) = 0. Let ker A = {|¢} € # | A|é) = 0}
denote the kernel of an operator A and write supp A = (ker A)L (the orthocomplement
of ker A) for the support of A. Then the condition tr{FEpz) = 0 is equivalent to the
condition supp £y C kerps and analogously tr(fhmpq) = 0 is equivalent to supp Fg C
ker p1. These properties in principle allow to construct a non-trivial measurement for
any two states, whenever ker py 2 {0} or ker pz = {0} holds.

The aim in optimal unamhiguous state discrimination is to find a measurement that
maximizes the success probability Fauee = p1tr Fipr + patr Fopa, where pp 18 the a
priort probability of p1 and pg is the a priors probability of ps. For the case where pg
and pg are both pure, the optimal measurement was provided by Jaeger and Shimony
[14].

Surprisingly, most of the optimal solutions for the mixed state case so far utilize
the result for the pure state case. This is possible due to the following reasons. As
shown by Raynal et ol. [20], the part of the Hilbert space which is given by supp p1 N
supp pz cannot be used at all for unambiguous discrimination. On the other hand [20]
a prefect discrimination can always be performed in the subspaces supp p1 Mker p2 and
ker py M supp ps, without decreasing the success probability. Hence it is possible to
reduce the optimization problem in unambiguous discrimination to a new problem pj
and pl, with according a priors probabilities p] and pi, respectively. For this reduced
problem one can achieve that suppp] Nsuppps = {0}, suppgi Nkerps, = {0}, and
ker oy Nsuppp, = {0}. After this reduction the rank of both density operators are
equal, rank p} = rank pl, where rank p] < rankp; and rank g}, < rankps. Hence in
particular the unambiguousg discrimination of a pure state and a mixed state always
reduces to the diserimination of two pure states [5, §].

A second way to utilize the pure state discrimination is a blockwise application.
Assume that p; and ps are composed from mutually orthogonal pairg of pure states,
p1 = Spnfal and py = 30, nhok, where tr[(af + o§)(of + o)) = 0 for all k& #£ ¢, and
nﬁ > 0 with >, n¥ =1 and >k n5 = 1. Since the pairs are mutually orthogonal, it is
posgible to apply the result by Jaeger and Shimony in each block independently [4, 19].
A very similar idea leads to a lower bound on the success probability. For this lower
bound, first a von-Neumann measurement p; +— > oIl is applied to the states,
such that after this measurement, the states are composed from mutually orthogonal
pairs of pure states, as above. An explicit construction of such a strategy (which is, in
general, not optimal) was provided by Rudolph et al. [21].

14



Also the upper bound on the success probability, mentioned at the end of the previous
subsection, is based on the optimal measurement for two pure states [21]. Let p™
and p5™ denote purifications of p; and pg, respectively, such that tram g5 = p1 and
trame /5 = pz. Then the optimal success probability for discriminating the purifications
cannot be lower than the one for the original states, gince the mapping pﬁm — py can
be performed by a physical device. Hence the success probability for discriminating the
pure states is an upper bound on the guccess probability of the original problem.

The analysis of the attainability of this bound leads to the “fidelity form measure-
ment” [12, 19]. The bound can be reached, if and only if certain positivity conditions
are gatisfied [19]. The name “fidelity form meagurement” originates in the fact, that the
measurement operators £y and Fy contain the operators . /\/p1p2+/pr and +/\/p2p1/pz-
The trace of these operators is equal to the Uhlmann fidelity tr |,/p1\/pz].

The optimization problem in unambiguous state discrimination is a typical example
of a convex optimization problem, i.e., an optimization problem of a convex function
over a convex set. This in principle allows an efficient numerical solution. However,
in many examples this turns out to be less reagonable due to the specific structure of
unambiguous state discrimination. More important, a numerical solution will not allow
a deeper ingight into the structure of unamhiguous state discrimination. Important
questiong here concern a clagsification and the possible uniqueness of the optimal mea-
gurement, or the complexity of a measurement with respect to a possible experimental
implementation. But the analytical methods developed for general convex optimiza-
tion allow to give ingight into the gtructure of the optimization problem in unamhbiguous
state discrimination. An important result which is based on such an analysis are the
optimality conditions by Eldar et al. [10]. These conditions roughly state that a given
meagurement in unambiguous gtate diserimination is optimal if and only if a positive
gsemi-definite operator Z can be found, such that a certain set of equations and pogitiv-
ity conditions is gatisfied. However, ag the operator Z is unknown, these results cannot
be used in a constructive way and only a few, very gpecialized applications were known

for thesze optimality conditions.

4 Summary of results

4.1 Optimal unambiguous state discrimination

Ag outlined in Sec. 3.2, the only generic solution known for the optimal unamhbiguous
discrimination of two mixed states was for the cage of a pure state and an arbitrary
mixed state [5, 6]. One of the central results in Pub. [E] is the construction of the
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optimal measurement for a pair of states, where both states have rank two (“solution
in four dimensions” ). Due to the reduction theorems® by Raynal et al. [20], this result
extends to the case of a state of rank two and an arbitrary mixed state.

A first step towards this golution in four dimensions is a general clasgification of the
optimal meagurement, according to the rank of Iy and Es, cf. Pub. [E] (Sec. 3.2): If
r denotes the rank of the states py and pg (after the reductions have been performed),
then the number of different measurement types is given by %(fr + Dy(r + 2), where a
meagurement type is characterized by the rank of F; and Fs. Since the diserimination
task ig symmetric with respect to the interchange of p; and pg, one only has to consider
[(5 +1)?| different measurement classes, where |z| denotes the floor function. It
follows that in the cage of two pure stateg, only two measurement classes exist, while
in the cage of two rank two states, already four classes have to be considered.

The two meagurement clasges which occur in the unambiguous digerimination of two
pure gtates can be generalized to arbitrary states. The first class is the case where
rank F/y = rank Bz = r. According to Pub. [E] (Sec. 5.2), the optimal measurement
in this cage is always given by the “fidelity form measurement” [12, 19]. The second
meagurement clags, which can be generalized from the pure state cage are “gingle state
detection measurements”, where either £y = 0 or F5 = 0 holds. A single state detec-
tion measurement with F; = 0 ig optimal if and only if% py(p2pz — prp1)pr = 0, cf.
Pub. [E] (Proposition 12). In particular for any py and pg with supp p1 Nisupp p2 = {0},
there alwayg exist @ priors probabilities pq and p2, guch that the single state detection
measurement with £y = 0 is optimal, typically for p—ll 3 1, cf. Pub. [E] (Eq. (33)). An
analogous analysig holds for Fo = 0.

The hasig for the analysis of the single state detection measurement and also the bagis
for the remaining steps in order to find the solution in four dimensions is a simplification
of the optimality conditions by Eldar et «l.[10], cf. Pub. [E] (Sec. 4). It is possible to
eliminate the unknown operator Z from the original conditions, o that the optimality
conditions can be rephrased as follows, cf. Pub. [E] (Corollary 9): A measurement
(191, Fia, Fi9) is optimal if and only if

(A1 — A2)EBr(papz — prp1) Br (A1 + A2) 2 0
(A1 — Ag)Eq(papz — prp1) Bn(1 — By) = 0,
where Ay 15 the projector onto ker pg and Ay the projector onto ker p1. This result has

geveral congequences. First, in many situationsg from the symmetry of the problem it is
possible to guess an optimal meagurement. This criterion allows to verify the optimality

®These reduction theorems are simplified in Pub. [E] (Sec. 3.1).
“Here it is always assumed that supp p1 + supp gz = 5 holds.
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of this measurement, a result that otherwise may be difficult to achieve, At second it
ig possible to try to find =zolutions for F; from the equations above. In particular the
golution in four dimensions is based on this idea.

A further consequence is more indirect. From the second condition in the optimality
criterion, it is possible to show that given supp E+ of an optimal measurement, one can
reconstruct [ itself, cf. Pub. [E] (Lemma 10 and Eq. (9)). Given E7 on the other hand,
it is always possible to uniquely reconstruct also Fy and Fy, cf. Pub. [E] (Proposition 3.)
Since the rank of E; is given by rank E» = rank(pipz), cf. Pub. [E] (Theorem 4), it
follows from the convexity of the set of all optimal measurements, that the optimal
measurement is unique, cf. Pub. [E| (Proposition 11).

The uniqueness of the optimal measurement itgelf also has important consequences.
One of it concerns the complexity analysis of optimal measurements, e.g. whether a
measurement can be implemented locally by remote parties. Another one is that the
uniqueness helps to construct new solutiong: if it is possible to show, that if a certain
measurement would be optimal, a second measurement would exist with the same
guccess probability, then this is a contradiction to the uniqueness statement and hence
neither of the measurements can be optimal. This type of argument is important in

order to derive the solution in four dimensions.

4.2 Unambiguous state comparison

State comparison wag originally introduced by Barnett et ol.[1] and is is an elemen-
tary task in quantum information procesging. Consider a system composged from two
identical subsystems, where each subgystem ig independently prepared in either of the
pure states w1 or wg, i.e., the composed system is described by either of the four density
operators m & mq, T © T, T2 & wy, O w2 ¥ we. The task is to find the optimal mea-
gurement, that can unambiguously discriminate whether both systems are in the same
state or in a different state, i.e., to distinguish between the set {m1 @ 71,73 @ 72} and
the get {my @ 7, T3 @ 7 }.

In Pub. [A] a natural generalization of this task was defined: Given C' quantum states,
each of them taken from a family of N states (7, ..., 7n) that occur with corresponding
a priori probabilities (q1,...,gn). Unambiguous state comparison “C out of N7 is
performed by doing a measurement, which allows with probability Fae fo decide without
doubt whether all C' states are equal or whether af least one of them s different. The
best probability of success is reached in optimal state comparison.

This problem can be mapped to the (optimal) unambiguous discrimination of two
mixed states, namely with v, = 3. (¢;m)%% and v, = (3. ¢;7;)®% —, to the unambigu-
ous discrimination of p, = 7y, /p, and pp = v4/ps, appearing with a« priori probabilities
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given by p, = try; and pp = tr .

For the case “2 out of 2” with two pure states w1 and 7, this is golved in Pub. [A].
The optimal success probability turng out not to be reachable by any local measure-
ment strategy, i.e., by a strategy where hoth gystems subject to comparison are only
connected by a classical channel. In order to ghow thig, it is proven that the optimal
local gtrategy ig given by the naive approach, to unambiguously distinguish w1 and g
in each system and than compare the measurement results. (Actually it is shown, that
no separable meagurement can be better than this strategy. This results is slightly
stronger, since not all separable meagurements can be realized by a local strategy.)

The solution of the cage “2 out of 2" is baged on the fact, that this comparison task
can be reduced to the discrimination of two pure states. However, as shown in Pub. [A],
the case “2 out of N” for N > 2 corresponds to the unambiguous discrimination of two
mixed states, both having rank N. For the cage where all pure states (7y,...,7y) occur
with the same a priori probability 1/N and all states have the same mutual distance,
di(ms, m5) = sind for all i # j, state comparison “2 out of N” can be simplified to the
N-fold unambiguous discrimination of two pure stateg, ag shown in Pub. [D].

The comparison of a string of ' states, where each state is taken from an alphabet
of two pure states (my, 7o) with a probability distribution (py,p2) can be mapped to
the unambiguous discrimination of a mixed state of rank 2 and a state of rank 2 — 2.
Hence it can be solved by the methods developed in Pub. [E], cf. Ref. [16].

4.3 Common block diagonal structures

In the discussion of unamhbiguous state discrimination in Sec. 3.2 it was mentioned
that the optimization problem reduces to the pure state cage, whenever the two states
can be decomposged into mutually orthogonal pairs of pure states. However, given two
arbitrary states, it is not obvioug whether such a decompogition exists. The main result
in Pub. [D] is an operable criterion in order to detect and construct such decom positions.

More generally, a common block diagonal structure (CBS) of two operators A and
B is a projection valued measure (I1;), such that [A,Il;] = 0 and [B,[1;] = O for all
t. In this cage the map X — >, [[; X11; does not change A and B. Dencting by »
the maximal rank of all II;, such a common block diagonal structure ig called af most
n-dimenstonal. The pairs of states, which possesg an at most fwo-dimensional CBS,
form a superclass of the states that can be decomposged into mutually orthogonal pairs
of pure states, c¢f. Pub. [D] (Lemma 1). However, also for the case of an at most two-
dimensional CBS, the optimal meagurement for unambiguous discrimination reduces to
the pure state case, cf. Ref. [19] and Pub. [D].

The main theorem in Pub. [D] ig a criterion to identify an at most two-dimensional
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CBS: Twe self-adjoint operators A and B on € with ker A + ker B = 3 have an at
most two-dimensional common block diagonal structure, if and only if [A, ABA] = 0,
(A, AB?A| = 0, and [B, BA?B] = 0. This result it significantly simpler than a similar
result due to Laffey [17], which in contrast holds for any pair of positive semi-definite
operators. In addition the proof of the theorem in Pub. [D] ig constructive (while the
one in Ref. [17] ig not), so that an explicit construction of the CBS is possible.

For the application to the unambiguous discrimination of two mixed states, the condi-
tion ker p1 +ker pg = S is no restriction, since it is equivalent to supp p1Nsupp pz = {0}
and this situation can always be achieved by virtue of the first reduction theorem [20].
Indeed, this reduction and also the second reduction [20] can only create, but not de-
stroy any CBS, cf. Pub. [D].

4.4 Purifying and reversible maps

The success probability for the unambiguous digerimination of two mixed states ig upper
bounded by the “fidelity bound” introduced by Rudolph et al. [21]. The bagic idea for
this bound is that by definition, a purification pp,y on 2 ® 2, of a density operator
p on ¥ can physically be mapped to the original state p by taking the partial trace
over the auxiliary system, p = traux ppur. After a physical map, the success probability
of a generalized meagurement cannot be higher than before the map. Hence an upper
bound on the success probability for the unambiguous discrimination of {(p1, pz) is given
by the optimal success probability for unambiguously digcriminating the purification of
both states.

A physical reason that this bound cannot always be attained, lies in the fact that the
partial trace on a family of pure states in general is not reversible. A physical process
ig reversible on a family of states, if the process can be undone by virtue of a second
physical process. That is, a completely positive and trace preserving map A is reversible
on a family of states (p;), if there exists a completely positive and trace preserving map
A, such that (A" o A)[p:] = p; for all 4.

In Pub. [B] and Pub. [C] a complete characterization of all families of states is given,
that allow the existence of a reversible map to a family of pure states. Such a family
roughly consists of a family of pure states (7,) tensored with a common mixed state
g, le, (my & o). For a family with only two members, an operational criterion was
provided in Pub. [B], which allows to verify whether a reversible and purifying map
exists. A pair (py, p2) can be reversibly mapped to a pair of pure states, if and only if
di(p1, p2) = D{p1, p2). Here di(p1, p2) = %tr \p1 — p2| is the trace distance and D{p1, pz)
denotes the worst cage distinguishability as defined in Pub. [B]: For a mixed state p,
denote by &), the set of pure states m, such that p — anr > 0 for some o > 0. Then
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D{p1, p2) = infd; (7, m2), where the infimum is taken over all 7y € Q,, and 72 € Q,,.
(Note, that there is an efficient way to calculate the worst cage distinguishability, cf.
Pub. [B].) This quantity is not a proper distance measure, since it does not satisfy
the axioms (i)(a) and (iii) discussed in Sec. 3.1. But it has a meaning in terms of the
“digtinguisghability” of states, cf. Pub. [C].

Since pure states are much eagier to deal with than mixed states, it might also be
desirable to consider physical processes, that map a pair of mixed states to a pair of pure
stateg, but to allow, that these maps might not be perfectly reversible. For such a map
A, the inequality dq(Alp1], Alp2]) < D(p1, p2) holds and equality can always be achieved,
cf. Pub. [B] and Pub. [C]. As figure of merit for maps, that are not perfectly reversible,
in Pub. [B], the notion of “deviation from perfect faithfulness” was introduced. If a map
A with pure output is perfectly reversible, than one can always achieve, that the output
of the map is a purification of the input state, i.e., p; = tram(Alpi]). The deviation
from perfect faithfulness then is defined as >, pidi (ps, tranc(Ap:])), where p; is the a
priort probability of p;. In Pub. [B] upper and lower bounds on thig deviation were
derived for the cage of two input states.

5 Qutlook

In the unambiguous discrimination of mixed states, there are gtill many open questions.
Although the optimal measurement for the cage of a mixed state of rank two and an
arbitrary mixed state was found, the structure of this solution is rather complicated. It
would be interesting to deepen the analysis of this golution and provide more examples.
On the other hand the next step — the optimal meagurement for a mixed state of rank
three and an arbitrary mixed state — is expected to he even more complicated. From
the gix measurement classes, that will occur in this solution, only the analysig of the
gingle state detection measurement and the analysis of the fidelity form measurement
is complete. Anocther generalization, for which so far almost no results are known, is
the unambiguous discrimination of more than two states. However, due to the methods
developed in Pub. [E|, certain results that are known from the two state case can be
generalized to the many state case [15].

In the analysig of block diagonal structures, the focus was to find structures of dimen-
gion two. One of the main motivations for the analysig of two-dimensional structures
wag the fact, that the general unambiguous digcrimination was only known in two
dimensions. Due to the solution in four dimensions, it now in particular becomes in-
teresting to also identify blocks of dimensions four. With respect to the many-state
cage (and also for general considerationsg) a possible generalization to more than two
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operators should be congidered.

Also in the analysis of reversible and incomplete maps, several question remain open.
If two states cannot be mapped to a pure state in a revergible way, only upper and lower
bounds are known for the best mapping to pure states. The optimization problem in
this case — namely to minimize the deviation from perfect faithfulness — might give a
deeper ingight into the structure of such purifying maps. On the other hand also the
analysis of maps, that are reversible, but do not perfectly map to pure gtates, would be
an interesting physical question.
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6 List of main results

22

The optimal measurement for the unamhbiguous discrimination of two mixed states

ig unique.

An analytic expression for the optimal measurement for the unambiguous dis-
crimination of two mixed states was derived for the case where one of the states
has rank two.

For any two mixed states with non-overlapping support, there exist a certain
threshold probahility for each of the gtates, such that below this a prieri proba-
bility the optimal measurement for unambiguous discrimination will never detect
this state (“single state detection”). Given two states, thig threshold probability

can be calculated explicitly.

Given a measurement for the unambiguous discrimination of two mixed states,
this meagurement is optimal if and only if certain conditions are satisfied. These
conditions are operational.

The optimal meagsurement for the unambiguous comparigon of two states, taken
from a family of two pure states, cannot be implemented by any local measurement
strategy.

For self-adjoint operators A and B with non-overlapping support, the commuta-
tors [A, ABA], [A, AB?A], and [B, BA?B] vanish simultaneously if and only if A
and B have an at most two-dimensional common block diagonal structure. The
reductions in unambiguous state discrimination do not destroy any common block
diagonal structure.

There exist (even continuous) families of mixed states, that can reversibly be
mapped to pure states by a physical device. These families are essentially pure.
For a pair of gtates which is not essentially pure, it can be posgible to map the

states to pure states, such that thig map is close to he reversible.
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We investigate the unambiguous comparison of quantum states in a scenario that is more general than the
one that was originally suggested by Barnett et /. First, we find the optimal solution for the comparison of two
states taken from a set of two pure states with arbitrary a priori probabilities. We show that the optimal

coherent measurement is always superior to the optimal incoherent measurement. Second, we develop a
strategy for the comparison of two states from a set of & pure states, and find an optimal solution for some

parameter range when N=3. In both cases we use the reduction method for the corresponding problem of
mixed-state discrimination, as introduced by Raynal f af., which reduces the problem to the discrimination of

two pure states only for =2, Finally, we provide a necessary and sufficient condition for unambiguous

comparison of mixed states to be possible.

DOIL: 10.1103/PhysRevA.72.032308

L INTRODUCTION

The laws of quantum mechanics do not allow the perfect
discrimination of two nonorthogonal quantum states |) and
|¢n). Consequently, given a set of ncnorthogonal states
{ln2,]4n)1, it is also impossible to find out with probability
one whether two quantum states, drawn from this set, are
identical (namely, the total state is either | iq4q) or [¢his)) or
different (i.e., the total state is either ¢y s} or |4nefy)). What
is the optimal probability of success, when no errors are
allowed? This problem has been introduced by Barnett,
Chefles, and Jex [1] and is called unambiguous quantum
state comparison. It has been solved for the case that the a
prior probabilities for the two ensemble states are equal [1].
The task of determining whether C given states taken from a
set of N pure states with equal a pricsi probabilities are
identical or not has been investigated in Refs. [2,3].

In this paper, we consider the most general case of unam-
biguous state comparison, also admitting mixed states. We
provide sufficient and necessary conditions for which this
task can succeed. Furthermore, the comparison of two states
drawn from a set of N pure states with arbitrary a priori
probabilities is investigated, and an optimal solution is found
for the case N=2, as well as for a range of parameters in the
case N=3, using the reduction techniques for mixed-state
discrimination developed in Ref. [4]. This method is also
applied for general N. We address the question of how much
can be gained in the optimal coherent sirategy (i.e., with
global measurements on the two given states), as compared
to the best incoherent strategy (i.e., consecutive measure-
ments).

Our paper is organized as follows: in Sec. II, we define
the most general state comparison problem, and explain the
connection to mixed-state discrimination, In Sec. III, we find
the optimal solution for comparing two states, drawn from a
set of two states, In Sec. IV, we develop the formalism for
the comparison of two out of N states, and apply it to N=3.

*Electronic address: kleinmann@thphy.uni-duesseldorf.de

1050-2947/2005/72(3)/032308(7)/$23.00
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PACS number(s): 03.67.—a, 03.65.Ta

In Sec. V we derive sufficient and necessary conditions for
the general task of mixed-state comparison to be successful,
before concluding in Sec. VI

II. GENERAL STATE COMPARISON

Let us define the task of state comparison in the most
general way: Given € quantum states of arbitrary dimension,
each of them taken from a set of N possible (in general
mixed) quantum states {77y,..., 7} that occur with corre-
sponding @ priori probabilities {gy,...,4;/- Unambiguous
state comparison “C out of N7 is performed by doing a mea-
surement, which allows with probability P to decide without
doubt whether all C states are equal, or whether at least one
of them is different. The best possible probability of success
Py is reached in optimal state comparison.

A measurement is most generally described as a positive
operator-valued measurement (POVM), i.e., a decomposition
of the identity operator into a set of # positive operators [5],

Fy, ..., F,=0, satisfying > F,=1. (1)
I

The probability for a system in a state 0, to yield the out-
come corresponding to F; is given by p; tr(F,0;), where p; is
the a priori probability for the system being in state ¢;. For
the task of unambiguous state comparison, we need at least
two measurements F, and F, having vanishing probabilities
in the case where the total state is composed of different or
equal siates, respectively. This means that for all (p,,Q,)
e{lgey @ om ® - @m|iy, . ice{l, . NI} we de-
mand

petr(F0) =0 I m: o =72° (2a)

mor

pi (0, > 0 Im: 0= 75" (2b)

However, measurements which satisfy this defining property
will in general not sum up to the identity, thus admitting the
inconclusive measurement F,=1-F_ —F,, which has to be a
positive operator. In order to find an opfimal solution to the

©2005 The American Physical Society
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problem, one has to minimize the probability for the incon-
clusive answer =p; tr(Fs0;), or equivalently maximize the
rate of success given by

P=> putt[(F,+ Fo) o). (3)
k

The problem of finding the optimal measurement for state
comparison can be addressed by considering the optimal so-
lution of a related problem, namely unambiguous state dis-
crimination. Here, two states p, and p, have to be distin-
guished without error, but admitting an inconclusive answer.
In order to see the connection between the two tasks, con-
sider the mixed states

1
Pa= _2 (ini)®cﬂ (43)
o ¢
1 eC Ty
= _(2 QIT‘-I) - Pa (4b)
/AN e

with a priori probabilities
7= 2 g; and 7,= 1~ 77,. (4c)
I

Now, a POVM, which satisfies Eq. (2) also has
FanzoaIld FbPaZO, (5)

and furthermore the probability of success (3) which has to
be optimized can be rewritten as

P= T tr(Fapa) + tr(Fbe)' (6)

These equations are characteristic for unambiguous state dis-
crimination. Thus an optimal solution to the problem of un-
ambiguous discrimination (UD) of p, and pj,, which in addi-
tion satisfies Eq. (2), is also the optimal solution to the
related problem of unambiguous state comparison. The task
of optimal UD of mixed states has been studied in the litera-
ture [4,6-9].

III. STATE COMPARISON “TWO OUT OF TWGO”

We first consider explicitly the most simple case of state
comparison, namely, “two out of two™ with the states subject
to comparison being pure states |4/ and | ¢n), both of which
are vectors in a Hilbert space of any dimension. The two
states may appear with arbitrary (but nonvanishing) a prieri
probabilities g; and ga. The trivial cases where both states
are colinear or orthogonal are not considered. Without loss of
generality the phase between the two states can be chosen to
be real, so that their overlap is determined by their relative
angle 9,

cos &= (Yalyn) € 10,11 (7)

We consider the related UD problem of the corresponding
mixed states, which are according to Eqs. (4a)—idc) given by

1
Pa=;(9%‘ i i Y | +Q§“/f2¢2><‘/f2¢2|)7 (8a)

@
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1
Py = 5(‘ i) (] + i) i), (8b)
appearing with @ priori probabilities

ﬁazcﬁ'“i’% and 17, =2¢14,. (8c)

Note that #,= 7 always holds. In what follows, we con-
struct an optimal solution of this related UD problem and
then show that the POVM of this sclution satisfies Eq. (2),
thus providing an optimal solution of the unambiguous state
comparison task.

A. Reduction to the nontrivial subspace

It has been shown by Raynal, Liitkenhaus, and van Enk
[4] that the optimal UD of mixed states can be reduced to a
subspace of the Hilbert space in such a way that the relevant
density matrices, acting on the reduced space, have equal
rank and their kernels form nonorthogonal subspaces, the
intersection of which is zero. This is achieved in two reduc-
tion steps: In the first reduction step, the Hilbert space is
reduced to its nontrivial part, removing that part of the Hil-
bert space, where no UD is possible at all. We will denote
this reduced space as 7{. It is given by the particular space,
where

S, N8, =0and K, NK, =0 (9)

holds. Here K, is the kernel of p and S, is its support, de-
fined as the orthocomplement to the kernel [12]. Thus H
contains only the direct sum of the support of p, and p;, i.e.,
H=8, &8, .

For our system, we have

Spa=SPan(W1¢’1>,‘¢’2¢2>), (10a)

S, = spanl| i), | dniin)), (10b)

which already satisty S, NS, ={0} due to the linear inde-
pendence of |¢#) and |} For the further calculation it is
convenient to rewrite both supports in an appropriate basis of
‘H. Therefore consider complementary normalized vectors
lgn), |4 = spani|dn), |¢h)), which are in the same plane as
|¢4) and |4, but orthogonal to the correspending vector,
ie., |¢q) L |¢q) and |4} L |is). Then, an orthonormal basis of
H is given by

‘61,2>:ﬁ%(|¢1¢1>i|¢2¢’2>): (11a)
|es 4} = \E%(I dnin) x| o)), (11b)

with n,=v1+cos” 9. In Eq. (11a), the + (—) sign refers to
the index 1 (2) and in Eq. (11b) to 3 (4), respectively.

By this cheice, one immediately has X, =span(|es},|e,))
and [e,) e K . Let us denote by P+=\elgs(e1|+\eg}(eg\(Pf
=|e,){es|+|eyiley]) the projecter onto that subspace, which is

symmetric (antisymmetric) under exchanging |¢q) and |4
Then, due to |dqis) e G
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2 2

v = n_P+|¢’1¢2> = n_P+‘¢’24ff1> & g (12)

must hold, where |y} is normalized and has the components

2 cos 19 sin® &

and |{e3]y)| = (13)

+ n+

[ea] 92 =

Since P_+P, =1y, the second spanning vector of S, has to
be P_|dnuni=—P |4nyq). This vector, however, cannot have
any component in direction of |e,) € }Cpb and therefore has to
be parallel to |e,). Thus we finally write the nontrivial Hilbert
space H as

H=8, ® 8, =span(ley)les)) ® spani|p)leg)). (14)

Due to the particular choice of basis, we further find }CPb
=span(|yt},|es), where |y1) is a normalized vector satisfy-
ing [y') L |y} and P_|y+)=P_|y)=0.

B. Optimal solution

In the second reduction step shown in Ref. [4], one re-
duces the space by those parts, which allow perfect UD.
These parts are given by

Ky =1, NS, and K=K, NS, . (15)
The Hilbert space 7 can then be decomposed into
H=H'o K] &K}, (16)

where 7{’ is conveniently chosen to be the orthocomplement
of K['®@K]' Denoting by Py the projector onto H’, and
further writing £, {; for appropriate normalization constants,
the density matrices

r_ 1 A
Pa.= g_Pﬂ’pQP'H’ and Pr= g_PH’pbPH’ (17)
b

a

are states acting on 7{' and having a priori probabilities

r aga F
7= ﬁg and 7, =1- 17, (18)

where {={_n,+{,7;. Suppose that P’ is the optimal rate of
success for this reduced problem. Then the optimal rate of
success of the complete problem was shown [4] to be

Puy=1-(1-P"){. (19)

In our basis, we immediately find
K0 =spanilesh, ex) 0 S, =span(es)),  (20a)
K =span(|y*),]|ex)) N 8, = spani|e,)), {20b)

since |)l|es) and |y )H|e;) holds.

Now the optimization problem can be reduced to H'
=span(|e;},|es}). Since the remaining problem is two dimen-
sional, it can be considered as the well-known discrimination
of pure states. Indeed, the problem reduces to the UD of

, 1
Pa= _P+paP+ = |el><el|’ (213)

Za
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; 1
po=—"P, psP, =y (21b)

Z
Calculating the normalization factors f,=r{Pypy) and &
=ir(P,p,), one obtains {,=¢,= =§n+ and thus the a:pnon

probabilities of the reduced problem remain unchanged, 7,
=y, and 7, = ;. Jacger and Shimony have derived [10] the
optimal UD of two pure states with an unbalanced probabil-
ity distribution. Using their result for the discrimination be-
tween |e;; and |y}, the optimal rate of success for UD of p,
and p, calculates to

1=2ym,meos & if (Cy)
P = 2 (22)
oFt (1 — i 19) else,
ne . 2
where (C;) is the condition
cos ¥ < ﬂ%(l b . (227
e Ha

Further, the optimal POVM of the reduced problem is
given by

Fl=aly" }y| and F} = fles){es|. (23)
In the region, where (22') holds,

- \f erl)

" TedgP =)

1= | 22)(ey| )
Wy

[lesn®

and a=1, £=0 elsewhere. The optimal measurement of the
full problem is then given by

A= (24b)

F,=Fj+Ped and Fy = Fy+ Pyn, (25)

where P;Cﬁf|e2>(e2| and P,Cﬂf\e4}(e4\ The fact that the
projectors |e2}(ez\ and |e, ey ‘have to be part of the optimal
POVMs F, and I, respectively, was already obvious from
the structure of the kernels and supports, since |e,) and |e,)
are orthogonal and part of either S, or &, .

Now one easily verifies that Condltlon {2) holds for this
measurement, by noting that |(gyun | e =[{¢nin|e)*=>0
and |(dr o] ey)?=|(inin|ey))?>> 0. Thus we have found the
optimal solution for unambiguous two-dimensional state
comparison. Furthermore, as we discuss in the following,
this solution is always better then a separable measurement
on both states, which becomes manifest by the fact that F,
and F are not separable, i.e., the partial transpose fails to be
positive semidefinite.

C. Discussion

In the literature, an optimal solution for the problem of
state comparison has only been found for the case of equal
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L

FIG. 1. Contour plot of the gain P,— P, where higher gain
corresponds to brighter shade. White stands for a gain value of 0.25,
black for a value of 0.0125, and each contour line corresponds to a
step of 0.0125. The dashed lines divide the set of parameters into
regions where both (22') and (27’) hold (lower left), neither of both
condition holds (top right) and (27') holds, but (22') does not (re-
maining small stripe).

probabilities. Barnett, Chefles, and Jex [1] showed that in
this case the optimal rate of success is given by P=1
—cos ¥, which is our result for q1=q2=%. This particular
result was also obtained by Rudolph, Spekkens, and Turner
[7], by providing a general upper and lower bound for the
rate of success of an UD of mixed states. Their upper bound
matches our result only in situations where (22') holds. On
the other hand, their lower bound turns out to match our
optimal result for all parameters and thus our calculation has
proven that their lower bound is indeed optimal for the UD
of p, and py,.

Let us compare our result with the naive incoherent strat-
egy, where both states are measured consecutively. The

straightforward approach of the optimal POVM {F,,F,, F,}
for unambiguous discrimination between |¢;) and |¢,) leads
to

erp=ﬁ1®i1+i2®i‘2, (263)

Fiep=?1®i2+i2®ﬁl. (26b)

This naive method is indeed the optimal separable measure-
ment, as shown in the Appendix. It has a rate of success
given by the square of the success probability for unambigu-
ous discrimination of |¢) and |¢), i.e., [10],

(1 = 2Vgygacos 9)? if (Cy)

Poo= (27
P g sin® O else, |

where ¢, is the maximum of ¢; and ¢,, and (C,) is the

condition
1- max
cos O << 4/ _q.
q

max

(27')

In Fig. T we show the gain P, — P, which of course is
always positive or zero. This gain has its absolute maximum
of i at q1=% and O=/3. While for fixed angles the maxi-
mum gain is always at q1=%, one finds for fixed a priori
probabilities that at some regions there are two maxima. The
maximum in low values of cos ¢ appears, where (27') holds

PHYSICAL REVIEW A 72, 032308 (2005)

FIG. 2. Rate of success for state comparison “two out of two”
with qlzé (upper graph) and ¢;— 1 (lower graph). The solid line is
the optimal result, and the dashed line corresponds to the best sepa-
rable measurement.

without having (22') satisfied. Also note that the gain func-
tion is asymmetric in cos 9, while it is symmetric in g;. In
Fig. 2, the gain of the coherent vs the incoherent strategy is
illustrated for the parameters q1=% and g;— 1.

IV. STATE COMPARISON “TWO OUT OF N”

Next, we investigate the problem of unambiguous state
comparison “two out of N for pure states. As shown by
Chefles et al. [2] for equal probabilities and in Sec. V for
arbitrary probabilities, this can only work if all N states are
linearly independent, thus spanning an N-dimensional Hil-
bert space. Again this unambiguous state comparison is re-
lated to the UD of

N
1

Pa= ;2 ql'2|¢iwi><¢i¢i : (28a)

1 N
pp=—2 qq,| bbb, (28b)

Mo i)

having a priori probabilities

77a=2 qiz’ 77b=2 q4;- (28¢)

i#j

We immediately obtain
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S,, = D span(|yg)), (29)

Sy, = D span(|yp)) = D span(lyiys) = |y)).
=j

i#j i
(29b)

Due (o linear independence S, N Spf{o} holds and thus the
first reduction step yields H=Spa ® Spb' Note that the dimen-
sion of &, is now in general much smaller than the one of
S because dim S, =N while dim S =N?-N. In what fol-
1ows we show in a constructive way that the N-dimensional
state comparison in general is related to such an UD of
mixed states, which cannot be reduced to UD of pure states.

The second reduction step can be performed as follows.
The antisymmetric subspace H™=®,-; span(|;y;)—|¢;4)
is part of Kj'=K, NS, , since

S, LH and S, DH". (30)

Further, S, is part of the symmetric subspace H*
=0, span(Tcﬂiijiji)) and thus, due to H-LH*, we

have the orthogonal decomposition
K=k k) (31)

with K[ :=="H" and K" ==H*N K, . In order to obtain K",
let C;;: =] tﬁ,) be the Hermitian overlap matrix and A;; be a
lower triangular coefficient matrix. Then lCQ* is given by all

vectors X Ay ([ +|¢;), which satisfy

k(| 2 Ayl + ) =0,

i>j

&V k2 CAiCy=0,

i>j

&V k[CACT],=0. (32)

This set of linear equations may eliminate up to N out of

N(N-1)/2 coefficients A;;, thus

The space K, =K, NS, on the other hand is given by all
vectors out of S, , Wthh ‘are orthogonal to |¢l¢]>+|¢1¢> for
all i>j. With a dlagonal coefficient matrix B this yields

Thus, we have

MO} .

N=dim K} = max{ )

Since the dimension of the reduced Hilbert space is given as
dim H'=dim H—(dim K~ +dim K["*)~dim £}, we finally
arrive at the main result of this section,

PHYSICAL REVIEW A 72, 032308 (2005)

FIG. 3. Bounds for the probability of success for state compari-
son “two out of three,” with equal a priori probabilities and relative
angles. The solid lines are an upper [9] and a lower bound [7], while
the dashed line corresponds to the separable measurement.

0 < dim H’ 2 ifN=2 (36)
= =
o ON ifN>2.

The case N=2, considered in Sec. III, turns out to play a
special role, since here always dim ICQ>O holds, cf. Eq.
(35). We point out that these bounds are tight. This can be
directly verified by considering a system of states with equal
overlap, i.e., a system with

(g e [010  V i#]. (37)

Then for the trivial case (i.e., d=m/2) dim H’'=0 holds,
while the upper bound is reached whenever &<<ar/2. Thus
state comparison for two out of three states may already lead
to a nontrivial UD problem, as illustrated in the following.

cos O :=

A. Example: “Two out of three”

As an example of a case, where state comparison does not
reduce to UD of pure states, N=3 is considered. We special-
ize to the case where the states |¢), |¢»), and [i5) subject to
comparison satisfy Eq. (37) with 0 <$<7/2 and assume all
a priori probabilities to be equal, q1=q2=q3=%.

The previous discussion of the related UD problem
showed that this related problem can be reduced to a Hilbert
space ‘H' of dimension dim H'=dim S,  +dim S, =3+3.
Since N=3 this has the consequence that iCm—le ={0}.
Thus ‘H' exactly consists of the symmetric subspace of ‘H
=S, @S - ie., H'=H*. However, for the remaining UD
problem no general optimal solution is known and we thus
calculate the tightest upper and lower bounds for the rate of
success known so far, i.e., the lower bound provided by Ru-
dolph et al. [7] and the upper bound shown by Raynal and
Liitkenhaus [9]. These bounds together with the rate of suc-
cess for the separable measurement are shown in Fig. 3.
Again, the incoherent measurement is always worse than the
measurement used to construct the lower bound. In addition

one finds that for
-\
2-2

(i.e., ¥/ m=0.375) the lower and upper bound coincide, re-

cos = (38)
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vealing the opfimal solution of UD of p, and p; in that region
to be

8
Py=1- g(él- cos & —cos® 9). (39)

One can also show that in this region the optimal measure-
menti saiisfies the defining property (2) and thus also solves
the problem of optimal state comparison.

V. MIXED-STATE COMPARISON

In this section we investigate in what situations a mea-
surement can exist, which satisfies the defining property (2).
We have the following:

Proposition 1. Unambiguous state comparison “C out of
N for a set of mixed states {77y, ..., 7} with arbitrary but
nonvanishing a priori probabilities can be realized if and
only if ¥ i,

& & X8 (40)

kFi

Proof. For the if part it is enough to show that there is a
POVM, given by {Fy, ..., Fy, Fa}, such that

t(Fm) > 0ei=. (41)

In order to construct such a POVM, denote by P, the projec-
tor onto the orthocomplement of XS, . Then from Eq.
{40} it follows that there is at least one vector |¢) < 8., such
that |¢h):=P/ @) satisfies (] @#)=1. These vectors |¢;) by
construction satisfy {¢|w|¢;>0 for each i, while

(@] |d;)=0 for all j#i. The choice F,=(1/N)| ) p/] satis-

fies (41) and further has Fo=1-3,F,=0. Indeed, for any |
out of the complete Hilbert space,

B = -SSP =0 (@)

holds by virtue of the Cauchy-Schwarz inequality.

For the only i part we use that any unambiguous state
comparison measurement solves (not necessarily in an opti-
mal way) the related unambiguous state discrimination prob-
lem. However, assuming that for some i

8 € Xy (43)
ki
we show, that no UD measurement can satisfy tr(F a‘JTi®C)
=1{), thus being a confradiction to Eq. (2a).
In order to show this contradiction, note that for positive
operators A and B,

Sag=84+ 85, (44a)

SA®B:8A®SE" (44}3)

Further we use a lemma, shown by Raynal, Liitkenhaus, and
van Enk in Ref. [4], which states that tr(4B)=0, if and only
if §, | Sy Now, assuming Eq. (43), it follows that

PHYSICAL REVIEW A 72, 032308 (2005)

8,00=8,2C 8, ©8,°Vcs,. @5
ki

However, by the Lemma of Ref. [4], the requirement
tr(F,p,)=0 [cf. Eq. (5)] is equivalent to Sy L8, . This
implies Sy L Sﬂ!@oc or equivalently tI'(Fa’.ITI®c):0 and com-
pletes the proof. |

For the comparison of qubits this proposition implies that
unambiguous comparison “C out of N7 can only be realized
for N=2 and puie states. For unambiguous state comparison
“C out of N7 of pure states in any dimension, Proposition 1
reduces to the result of Chefles er @l. [2]. They found that
state comparison can only be realized for linearly indepen-
dent states. Another direct consequence from Proposition 1 is
the fact that density matrices which contain a proportion of
the identity (e.g., by being sent through a depolarizing chan-
nel, or by adding white noise in an experiment) can never be
compared unambiguously.

V1. CONCLUSIONS

We have addressed the question of unambiguous state
comparison with general a priori probabilities. Our method
consists of reducing the corresponding problem of unam-
biguous mixed-state discrimination to a nontrivial subspace
[4]. We analytically solve the case for comparing two states
drawn from a set of two states, finding the optimal POVMs
and the optimal rate of success. There is a considerable gain
of the optimal coherent strategy over the best incoherent
strategy. While this case reduces to the discrimination be-
tween two pure states, the comparison of two states drawn
from a set of three states is shown to lead to a nontrivial
mixed-state discrimination task. So far, the optimal solution
is only found for certain parameter ranges.

The more general task of comparing two states from a set
of N states is exceedingly difficult. No general solution to
this problem exists. Here, we have presented an upper bound
for the dimension of the reduced Hilbert space. This bound is
shown to be reached for states with equal overlap. We have
also provided a necessary and sufficient condition for unam-
biguous comparison of mixed states to be possible.

Note added: Recently, we learned about related work by
Herzog and Bergou [11], who found the same expression as
Eq. (22) for optimal unambiguous state comparison of two
states drawn from a set of two states.
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APPENDIX: OPTIMAL SEPARABLE MEASUREMENT
“TWO OUT OF TWO”

This appendix is dedicated to show that with the naive
measurement given in Eq. {26}, indeed the optimal separable
solution was found. That is, the optimal separable unam-
biguous state comparison measurement for two states drawn
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from a set of two pure states {|¢n},|4)} is solved in an
optimal way by performing optimal unambiguous state dis-
crimination in each subsystem.

A general element of a separable POVM {F,} is of the
form

Fx = 2 Cx,ijFJ(c? @ ng)’ (Al)
Ly

where the non-negative coefficients ¢, ;; account for the rela-
tive contribution of each of the terms containing the positive
local POVM elements Ff?

First we show that in our case no measurement cutcome
of either subsystem can be used to adapt the measurement of
the other. Consider without loss of generality that a measure-
ment first takes place in subsystem 1 and yields with prob-
ability pill) the outcome (x,f). This measurement is applied to
the global state pi=7ap,+ 7ppp=(q1[ ) (Y| + ol )i )*2
and yields in subsystem 2

tfl[(ng) @ Dp] :P;(:z)(%wﬁ}( dal + gl o)),

which is, up to the factor pj(clz) , independent of the outcome

{x,7). Thus the local measurements can be optimized in each
subsystem separately, and one is free to choose the same
{optimal) measurement in both systems due to the symmetry
of p, and p,. Therefore we can drop the upper label (k) on
the local measurement elements in the following.
Furthermore, one is forced to choose these measurements
to be UD measurements. Indeed, tr{F,p,) =tr(F5p,) =0, only
if for each x e {a,b} and for all 1, either tr(F, | ¢ )(4y|)=0 or
tr(#,. | 4 ){ 4|} =0. We prove this statement by contradiction:
Suppose that at least one term (¢, F,,© F, ) of F, contains
at least one local POVM element F,,, (where m e {i,j}),
having a nonvanishing expectation value for both states, i.e.,

<¢1|Fa,m| "7&1) >0 and <¢2‘Fa,m|df2> = 0. (A3)
It follows that

(A2)

] e B, 0,7 O {(A4)

and

PHYSICAL REVIEW A 72, 032308 (2005)

tr[(cx,yFa,z ® Fa,j)pbj > O’ (A5)

which is in which is in contradiction to triF p,)=0. An
analogous argument holds for .

Without losing any information, an UD measurement can
always be reduced to have the measurement elements
F1.Fy, Fof, with {go|Fyf ) ={in|F)=0. Tn order to
make this a valid choice for the local measurements of un-
ambiguous state comparison, in addition the conditions {2)
have to be satisfied, i.e.,

a == {in|Filg) > 0 and B = (4| Fa|¢n) > 0.

From the consideration above, we find that £, and ¥}, are
of the form

(A6)

F,=F, @ Fi+F, & F,, (A7)

Fb:F1®F2+F2®F1. (AS)

The optimal separable state comparison corresponds to £

=F, and F»=F, as defined in Eq. (26). Thus we have shown
that in this case the optimal separable unambiguous state
comparison strategy is indeed given by consecutive optimal
UD measurements.

Let us mention that for the optimal UD measurement the
conditions &> 0 and 8> 0 do not always hold: in those situ-
ations, where condition (27') is not satisfied, =0 or 8=0.
But changing @ and A (under the constraint 1-F;—F,=0)
infinitesimally, affects the probability of success only infini-
tesimally. In this limit, we consider the optimal unambiguous
state discrimination measurement as a valid choice for F;
and F,.

We conjecture that also in the more general scenario of
unambiguous state comparison of “C out of N states, the
best separable measurement is given by performing unam-
biguous state discrimination in each subsystem. However,
the proof by contradiction given above for “two out of two”
cannot be generalized in a straightforward way for the op-
erator I, We leave the generalization as an open question
for future work.
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We introduce the concept of a physical process that purifies a mixed quantum state, taken from a set of
states, and investigate the conditions under which such a purification map exists. Here, a punfication of a
mixed quantum state is a pure state in a higher-dimensional Hilbert space, the reduced density matrix of which
is identical to the original state. We characterize all sets of mixed quantum states, for which perfect punfication
18 possible. Surprisingly, some sets of two noncommuting states are among them. Furthermore, we investigate

the possibility of performing an imperfect purification.

DOI: 10.1103/PhysRevA.73.062309

I. INTRODUCTION

A fundamental entity in quantum mechanics and quantum
information is a mixed quantum state. A mixed quantum
state can be either understood as a statistical mixture of pure
quantum states, or as being part of a higher-dimensional,
pure state—a purification of the mixed state. Formally, given
the decomposition p==.py,}{x)|, where p,=0 and Zp,=1,
an example for a purification of p is given by |4
=S| x)|a), with the auxiliary states |a;) being mutually
orthogonal. This abstract point of view was, so far, the main
impetus for discussing purifications of a single, krown quan-
tum state [1,2].

In this paper, we consider the purification of an unkrown
quantum state. More precisely, we introduce the fundamental
question whether there exists a physical process (i.e., a com-
pletely positive map) that takes any state of a given set to
one of its purifications. (We remind the reader for clarity that
there exists a different notion of “purification” in the litera-
ture, referring to the process of performing operations on
several identical copies of a given state, such that the purity
of some of them is increased; a typical application is en-
tanglement distillation.) Our aim is to characterize all sets of
states for which a purifying map exists. The existence of
such a process implies a nontrivial physical equivalence be-
tween certain sets of mixed and pure quantum states.

Let us introduce our concepts and outline the structure of
this paper. As already pointed out above, a purification of a
mixed state has to satisfy two characteristic properties: first,
it has to be pure, and second, tracing out the auxiliary system
has to yield back the original state. We call the second prop-
erty faithfulness and name a process a perfect purifier for a
mixed state, when the output achieves both properties. It is
straightforward to prove that the linearity of quantum me-
chanics does not allow the existence of a perfect purifier for
a completely unknown quantum state, i.e., a state taken from
the set of all states. However, will dropping the condition of
faithfulness er the one of purity allow nontrivial purification
processes for an unknown quantum state? It will be shown in
Theorem 1 that this is not the case. Consequently, in Sec. 111
we will restrict the set of possible input states, and investi-
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1050-2947/2006/73(6)/062309(5)

062309-1

PACS number(s): 03.67.—a, 03.65.—w

gate the properties of purifying maps acting on the most
simple nontrivial set, namely a set of only two mixed states.
While keeping the condition of purity, we will find that the
deviation from perfect faithfulness depends on a purely geo-
metric quantity of the two inputs. This result will allow us to
derive lower and upper bounds on the achievable faithful-
ness. Since these bounds do not exclude perfect faithfulness
for certain pairs of states, we then, in Sec. TV proceed to
investigate the existence of a perfect purifier in general.
Theorem 2 completely characterizes all sets of states that can
be purified perfectly. Finally, we will provide an operational
test for a given pair of states that allows to check whether a
physical purification is possible.

II. THE GENERAL PURIFICATION TASK

In the following we will denote by M a given set of
mixed states, represented by density operators that act on a
finite-dimensional Hilbert space H. The elements p; € M are
allowed to have unbalanced a priori probabilities 7,0, sat-
isfying 2,7,=1. We consider deterministic physical pro-
cesses represented by completely positive and trace preserv-
ing [14] linear maps A that take any density operator acting
on H to a density operator acting on H ® H 5, where H,
denotes an auxiliary space of unspecified dimension. We re-
fer to such a physical process as a perfect purifier if for each
p;c M, the output Alp;] is pure as well as faithful, ie.,
tramAl 2] =p;. If these conditions are not met, we will mea-
sure the average output purity by p==,u,tr A[p,]> and the
average faithfulness by f=1-Z,1)|p—tras Alp;]|. Here,
||p\/—_0H;%tr|p— o| denotes the trace distance, where |A]
=+vATA, The trace distance is a good measure for the distin-
guishability of two states as it vanishes for identical states
and is equal to one for orthogonal states. In particular, the
success probability for the minimum error discrimination
procedure [3.4] of two states having equal a priori probabil-
ity depends linearly on the trace distance of the states. We
call any deterministic process a purifier of M, if it does not
decrease the average purity of M.

For the universal case where the set M contains all pos-
sible density operators acting on a given Hilbert space, nei-
ther relaxing the condition of purity nor relaxing the condi-
tion of faithfulness allows nontrivial purifiers.

Theorem 1. (i} Any universal purifier with perfect output

©2006 The American Physical Society
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purity is a constant map. (ii) A universal purifier with perfect
faithfulness does not increase the purity of any state.

Proof. We prove (i) by coniradiction. Suppose there exists
a purifier A such that A[p] is pure for any state p, and with
the property that at least for two states p; and ps, Alp]
# Al p-] holds. But for the state p3=(p;+p2)/2, the purity of
Alpsl=(Alp]+A[p]) /2 requires Alp]=A[p,].

Proof of statement (ii): perfect faithfulness of a universal
purifier requires that any pure state |$) ¢ is mapped onto
the state | (| @ oy for some state o acting on H gy For
any state p we find with the spectral decomposition p
=Zp,a (A that due to linearity tr A[p]*=tr(Zp,|r {3/
@ O'M)ZZELDIZtr criszpfztr p’, ie, no stale can become
purer by the action of A. O

Let us mention that there is some similarity of the argu-
ments given in the proof above with the no-cloning theorem
[5-7]. Tn both scenarios, linearity of quantum mechanics for-
bids the existence of some physical process, when the input
set contains all states. Even when the set of input states is
restricted to two pure states, perfect quantum cloning is im-
possible, as follows from unitarity. Tt was furthermore shown
that broadcasting (a natural generalization of quantum clon-
ing to mixed input states) is possible for a set of two mixed
states, if and only if the states commute [8]. The same crite-
rion does net apply for purification maps: a pair of orthogo-
nal or identical states can, of course, be purified perfectly—
but in any other case of commuting states we will show that
perfect purification is impossible. Yet for some noncommut-
ing states, a perfect purification process exists.

ITI. TWO-STATE PURIFIERS WITH PURE OUTPUT

In this section we will focus on the case of two input
states and perfect output purity, i.e., a deterministic process
which takes any state from the set M ={p,p'} to a pure state.
A characteristic quantity for purification will turn out to be
the warst-case distinguishability D(p, p’), which denotes the
trace distance of the two closest states that may appear physi-
cally in the ensembles of p and p’, ie.,

Dip,p") = min || x}{x =[x ¥, (1)
[xhlx"y

where |y) and |y} are normalized vecters in the range of p
and p’, respectively. (We point cut that this quantity can be
calculated by taking the sine of the smallest canonical angle
[9] between the range of p and the range of p’.) The notion
of distinguishability here refers to the success probability of
a minimum error discrimination, as explained above.

Although at first sight the worst-case distinguishability
resembles a distance, mathematically speaking it is nomne:
The triangular inequality does not hold, and D(p,p’)=0 is
true for some p# p'. Note that any two states with overlap-
ping ranges have, in fact, a vanishing worst-case distinguish-
ability, On the other hand, TX(p, p')=1 is equivalent to p and
p’ being orthogonal, i.e., |p—p’[|=1. Thus commuting states
are either orthogonal or have a vanishing worst-case distin-
guishability.
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A. Characterization of two-state purifiers

We are now in the position to study the general conse-
quences of perfect output purity. Suppose that A is a purifier
of p and p" with perfect output purity. As a defining property
of any normalized vector |y} in the range of p one can write
p=alx x|+ A7 with positive numbers « and £, and positive
semidefinite p. Using the same convexity argument as in the
proof of Theorem 1 (i}, it fellows that A[|x){x|]=Alp]. An
analogous argument holds for all vectors |y') in the range of
p'. Thus we have [A[p]-Alp'lI=Al)OAT=AlX XX
=Xl = ' ¥x'|ll, where in the inequality we used that a
deterministic physical process A cannot increase the trace
distance between two states [10], By choosing for | y){y| and
|x"»{x’| the states with minimal distance [cf. definition in Eq.
(1)], we have shown that for maps A where A[p] as well as
Alp'] are pure,

Dip,p’) = ||Alp] - Alp'l (2)

must held.

It is important that there always exists a map which
reaches equality in Eq. (2). In order to see this, one con-
structs a canonical basis [9] of the ranges of both states, i.e.,
an orthonormal basis {| y;)} of the range of p and {| v/} of the
range of p’, such that i addition {y;|x;»=0 holds for all 1
#j. One can show that there always exists a map, which
decreases the distance of two pure states by an arbitrary
value. Such a map is now applied in each of the orthogonal
subspaces spanned by {|x.),|x/}}, such that the distance
e Cvd =xi ¥l decreases to be Dip,p'). The composed
map has the property, that if applied to p and p’, an ortho-
normal eigenbasis for both output states exists, such that all
nonorthogonal eigenvectors {one of the output of p and one
of p) have a distance D{p,p"). Now a map can readily be
found, which maps the output states to pure states having a
distance Dip,p’). The fact that one can always reach the
equality in Eq. (2) completes the characterization of the out-
put of a general process, which maps two input states p and
p' to two pure states.

B. Bounds on two-state purifiers

As an application of the result in Sec. IIl A we now esti-
mate the faithfulness of a purifier with perfect output in the
case of two input states. For this purpose we assume that the
siate p (p') occurs with a priori probability 7 ('), where
7' = 5 without loss of generality. We denote the deviation
from perfect faithfulness by &, ie.,

8= gl — traAlpll + 7'l = trauxAlp' ]l (3)
Using the triangular inequality for the trace distance,
lp=p'll = llp = trawALp ]l + ltrasALp] = traweALp"]
+ leransALP ] = Pl
holds, and we obtain due to Eq. (2) the lower bound
8= 7o - p'll-Dlp,p’)]. )

A straightforward upper bound on & for the optimal pro-
cess (i.e., minimal &) can be obtained by considering a con-

062309-2



PHYSICAL PURIFICATION OF QUANTUM STATES

0 | ‘—F‘ I |

0 /8 /4
2]

3n/8 /2

FIG. 1. Example for lower and upper bounds on the optimal
deviation from perfect faithfulness & of a two-state purifier with
pure output. See main text for explanation.

stant purifier that produces a perfect purification of p’. This
leads to the first upper bound

5opt$ 77||P_P,|| (5)

A more sophisticated upper bound on & is given by using the
map which reaches the equality in Eq. (2). One chooses the
output of p’ to be a purification of p’ and the output of p to
be a pure state, which is as close as possible—according to
Eq. (2)—to a purification of p. Since the maximal overlap of
all purifications for two states p and p’ is given by the Uhl-
mann fidelity F(p,p')=tryvpp'Vp [11,12], we find with
sin a=D(p,p’) and cos B=F(p,p’) the second upper bound

5opt = 7 Sin(ﬂ - a) . (6)

Let us give an explicit example for these bounds. We
consider the states p=%(|0)(0|+|1)(1|)® [0)0] and p’
=%|0)(O| ® |+)(+|+§|1)(1|® | 6) (9], which appear with
equal a priori probability, where |@)=cos §]0)+sin 0]1) and
|+)=(|0)+[1))/+2. In Fig. 1 the bounds for the optimal de-
viation from faithfulness & are shown: the lower bound as
given in Eq. (4), the first (dashed line) and second upper
bound, cf. Eq. (5) and (6). At #=0 the ranges of both states
share the vector |1) ©|0) and thus the worst-case distinguish-
ability vanishes and the optimal faithfulness is given by the
upper bound in Eq. (5). The second upper bound and the
lower bound almost coincide at f=7/4 with 0.0050<§8
<20.0072. Note that the upper bounds cross each other, i.e.,
depending on the input state, either the first or the second
upper bound is tighter.

An interesting question in this context is the following:
given two quantum states, does a better distinguishability (in
the sense of minimum error discrimination) imply a better
faithfulness? The surprising answer is no: in the example
given above, the trace distance of the two states monotoni-
cally increases from 6=0 to #=r/2, while the deviation
from faithfulness has its minimum at 0=m/4. The examples
illustrates that the worst-case distinguishability is indeed an
important quantity for purifying processes. This is remark-
able, as the worst-case distinguishability is purely deter-
mined by the geometric features of the states, whereas the
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statistical weights in the ensembles do not play any role.
Note that a related, but not purely geometric quantity
Fi(p,p') was introduced in [13].

IV. SETS THAT CAN BE PURIFIED PERFECTLY

Finally, our focus turns to the general analysis of perfect
purifiers. The existence of a perfect purifier for a set M has
far-reaching implications, as it is possible to convert all
states in M to pure states in a reversible way. An investiga-
tion of the property of reversibility indeed turns out to be the
key for understanding perfect purification: Suppose that we
have a purifier A of a set M with perfect output purity (but
not necessarily perfect faithfulness), and some completely
positive and trace preserving map A’, such that for any p;
e M this map is the reverse map of A, i.e., A'[A[p]]l=p;
The action of any completely positive and trace preserving
map can always be formulated as appending a (pure) ancilla
state, performing a unitary rotation and finally tracing out an
appropriate subsystem. We write A’ in this manner and apply
everything, apart from tracing out, to the output of A. For

this composed map we write the shorthand notation A. The

output of A is still pure for any state in M and the remaining
step of the map A’, namely the trace over the subsystem,

yields back the original state, thus A is a perfect purifier of
M.

In order to further approach the characterization of sets
that can be purified perfectly, we call a set of states essen-
tially pure, if every state from the set can be globally rotated
into a tensor product of a pure state and a common mixed
contribution, or in more technical terms: A set of states M is
called essentially pure, if one can find states w,,, and op, a
unitary transformation U, and a set of pure states P,, such
that for all p;e M there is a corresponding pure state

|¢l><¢l| (S PA Wlth
Pi ® Wayx = U(|¢x><¢z| @ O-B)m~ (7)

Note that the tensor product symbol on the two sides of this
equation, in general, denotes different splits of the composite
system: on the left-hand side one sees the composition of the
original system and an auxiliary system, while on the right-
hand side the composition refers to some system A and some
system B. Essentially pure sets can be purified perfectly: A
process which appends w, to p;, performs UT and traces out
system B produces a pure state for any state in M. On the
other hand a process, which appends o to |} &, performs
U and traces out the auxiliary system, undoes the action of
the purifying map. Thus, a perfect purifier of M exists. Of
course, a union of essentially pure sets, where any two states
taken from different sets are orthogonal, can also be purified
perfectly. We call such a union an orthogonal union of es-
sentially pure sets.

Theorem 2. For a set of states M, the following state-
ments are equivalent: (i) A perfect purifier of M exists. (ii)
There exists a completely positive and trace preserving map,
which maps any state in M to a pure state and does not
change the trace distance of any two states in M. (iii) M is
an orthogonal union of essentially pure sets.
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Proof. Our motivation for the definition of orthogonal
unions of essentially pure sets was indeed that this property
mmplies the existence of a perfect purifier. Thus, we have
already shown that (iii) implies (i). Furthermore, from the
fact that no process can increase the trace distance, together
with the existence of a reversible map, (ii) is a direct conse-
quence of (i). Thus it only remains to show that (i) implies
{iii): If (ii) holds for an M that is a union of mutually or-
thogonal subsets, there exist maps that satisfy (ii) for each
subset. Therefore, we can assume without loss of generality
that one cannot split the set A4 into orthogonal parts.
With |a){a| being a pure auxiliary state and U7 a
unitary transformation, we can write the action of A
as p=trglUT(p@|a){a|)U, where B denotes an appropriate

PHYSICAL REVIEW A 73, 062309 (2006)

subsystem. Since the output of A for a state p;e M is a
pure state (represented by a projector @), we have
Utlp,©la){a))U=D;® o, with o; a state in subsystem B.
The final step is now to show that o=, holds. For any two
states p;, p; = M, due to the assumption (ii},

@, =@/ =lp;— o)l =|®; © 0, - D, @ | (8)

holds. A minimum error discrimination [3,4] in subsystem B
on the right-hand side can be written as o,— g;/0{0]+(1
—g)|1){1] and o;— (1-g)|0){0| +¢,[1)(1|, where (g;+q,)/2
=(1+|o;—c[}/2 is the success probability for the optimal
discrimination measurement. We find

|, ® o=, @ O'Jin = [[lg@, - (1 =g )@ + (1 - g) ;- %‘Dﬂuz = |, —‘Dj”z + o - er||2tr((bz‘(bj)a 9)

where in the first step we used, that the discrimination pro-
cedure cannot increase the trace distance. The second in-
equality follows from a lengthy but straightforward calcula-
tion. From a comparison with Eq. (8) either o;=a; or
tr(®,®) =0 (or both) must hold. The latter case implies p; to
be orthogonal to p;, ie., if o;% o; for two states, then one
can split M into two orthogonal sets, in contrast to our as-
surmption. g

This Theorem completely characterizes all sets of states
that can be purified perfectly, cf. also Eq. (7). It is surprising
that one can even purify a set of confinuous states, meaning
that the set may contain infinitesimally close neighbors. It is
also worth mentioning that all states in an essentially pure set
share the same spectrum and pairwise have a completely
degenerate set of canonical angles [9]. What is the lowest
dimension, in which perfect purification is possible for non-
orthogonal mixed states? This cannot happen unless the di-
mension of the Hilbert space is at least four: In two and three
dimensions, only pure states can have identical spectra with-
out having an overlapping range.

Although essentially pure sets can be characterized in a
explicit manner and have a lot of straightforward features,
there is no obvious method to verify whether a given set is of
the structure as specified in Eq. (7). However, for the case,
where M consists of only two states, there exists a compult-
able test: From the lower bound on & derived in Eq. (4) it
follows that [|p—p'|=Dip,p’') is a necessary condition for
the existence of a perfect two-state purifier. It is also a suf-
ficient condition: For any two states p and p’ there is a map
A such that [A[p]-Alp']|=Dlp,p"), thus if [p—p/|
=PD{p,p’), this map satisfies part (ii) of Theorem 2, ie., p
and p’ can be purified perfectly. Note, that it is also straight-
forward to prove that the upper bound on &y in Eq. (6)
vanishes if and only if there is a perfect purifier of p and p'.

Y. CONCLUSIONS

In summary, we have introduced the concept of purifica-
tion as a physical map, and studied its properties: without
any prior knowledge of the input state a perfect purifier can-
not exist. Relaxing one of the two characteristic properties of
a purifier, purity and faithfulness, does not lead to a non-
trivial universal process either. We have investigated the case
when the input set contains only two states and found a
characterization of the cutput of any map, which takes both
states to a pure state. Using this tool, we derived bounds on
the deviation from perfect faithfulness (i.e, the distance of
the partial trace of the output state and the original state). We
also completely characterized all sets of states that can be
purified perfectly. Roughly speaking, any such set can be
globally rotated into a set of pure states, tensored with a
common mixed contribution. Surprisingly, we found that
some sets of noncommuting states can be purified, in con-
trast to the situation of broadcasting. For the case of sets with
only two states, we provided an operational test to check
whether perfect purification is possible.

In this paper we have presented some of the basic prop-
erties of purifying completely positive maps. Several ques-
tions remain open. One direction of future work is to con-
sider the maximal possible purity of a purifier in the case of
perfect faithfulness. Furthermore, the analysis of purifiers for
sets with more than two states will be the subject of further
research.
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ABSTRACT Starting from the observation that reversible pro-
cesses cannot increase the purity of any input state, we study
deterministic physical processes, which map a set of states to
a set of pure states. Such a process must map any state to the
same pure output, if purity is demanded for the input set of
all states, But otherwise, when the input set is restricted, it is
possible to find nen-trivial purifying processes. For the most
restricted case of only two input states, we completely char-
acterise the output of any such map. We furthermore consider
maps, which combine the property of purity and reversibility on
a set of states, and we derive necessary and sufficient conditions
on sets, which permit such processes.

PACS 03.67.-a; 03.65.-w

1 Introduction

The notion of a pure quantum state plays a special
role in quantum information theory. Many problems, such as
separability or the existence of a particular quantum proto-
col can easily be solved if one restricts the problem to pure
quantum states only. However, mixed states endow quantum
systerns with many properties (such as bound entanglement),
that cannot be found for systems described by pure states.
In our contribution we investigate physical processes which
transform a given set of mixed states to a set of pure states.
If such a process exists, then it may for example be possible
to infer from the properties of the pure output states some
properties of the input states. Such a kind of conclusion is par-
ticularly powerful, if the purifying map can be chosen to be
reversible, since then one can consider the set of pure output
states and the set of input states as physically equivalent.

We consider deterministic physical processes, i.e., pro-
cesses which map any possible input quantum state with the
probability of one to a corresponding output quantum state.
The states of the input quantum system are represented by
density operators oy € By (Hp), i.e., positive semidefinite
operators with trace one acting on the finite-dimensional com-
plex vector space Fi. Analogously g € 81 (Hoy) shall
represent the set of states of the output quantum system.

B Fax: +49 221 81 11337, E-mail: kleinmann@ thphy.uni-duesseldorf.de

Lasers and Optics

Purifying and reversible physical processes

Institut fiir Theoretische Physik, Heinrich-Heine-Universitit Diisseldorf, 40225 Diisseldorf, Germany

Any deterministic physical process can be written as a com-
pletely positive and trace preserving linear (CPTP) map A :
B (Hin) — B(Hout), where B (Hin o) denotes the space of
linear operators on i, out. In this language, the trace preserv-
ing condition reflects the fact that we restrict our considera-
tions to deterministic processes. In Sect. 3 we will argue that
this restriction is indeed necessary to have a proper definition
of a purifying map.

A reversible process is a physical process, where the ac-
tion of the process on any physical state can be undone by
another physical process, i.e., a CPTP map A is reversible if
one can find an inverse map A’ which is also CPTP and satis-
fies (A’ © A)[@in] = 04, for any density operator g;,. The most
common example are unitary processes Ey : X — U XUT,
where U is aunitary transformation, UU T = 1. Here obviously
the inverse map is given by (Ey) — Ep+. Another class of
reversible processes that is important for our purposes is de-
scribed by

Bt B(Hin) — B(Hin® Hax): X 1> X Qo (1)

where o £ B, (Hyyy) is some arbitrary density operator. The
inverse map for this process is the partial trace over the aux-
iliary system, (E,) — tryx. A remarkable property of this
inverse map is, that it does not depend on ¢ and hence can-
not be reversible. Note that neither the action of Ey nor the
one of E, increases the purity tr(p?) of any density opera-
tor g. Indeed a process, which is reversible on the set of all
states cannot increase the purity of even a single state: Let us
first consider reversible maps, for which the reverse map is the
partial trace (e.g. E,). For such a reversible map A, the out-
put of any pure state I, = |} (| mustbe A[{] ] =, ®
o, for some state o,. For any state g, we find with the
spectral decomposition g = Y ; pi[d}s,; that due to linearity,
tr(Ales]Y) = 3 p?tr(o}i) < tr(p), i-e., no state can become
purer by the action of A. Now consider a general reversible
map A. For the reverse process A’, by virtue of Stinespring’s
dilation theorem [1, 2] one can write the most general form of
a CPTP map,

A X s e U6 @ Hane)UT. (2)
Fromthis we define
FA’,A;\am) B (Hin) — B(Hin @ Haux)

1% U(ALX] © Manep) U7 (3)
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The inverse map of 'y 4 obviously is (Iy/ 4) = trax and
by construction, tr(I'y alem]®) = tr(Algn]®) holds for all
oin- Using the previous result, we find tr(I, A[Q,-n]z) =
tr(Algin]®) < tr(od), ie., no state can become purer by the
action of a reversible process.

Since a process that is reversible on all states cannot im-
prove the purity of any state, one would guess that a process
which maps all states to a pure state cannot be reversible
for any state. Such a process is called a purifying process,
i.e., a CPTP map A is purifying, if tr(A[ei]%) = 1 holds for
any input state g;p. The action of such a map, indeed, has to
map any state to the same pure output state: suppose A[o1] #
Algz2]. Then for g3 = (p1+ 02)/2 we find Alpz] = (Alg1]l+
Alp2])/2, which only can be pure, if Alp1] = Alp2] in con-
tradiction to our assumption. Thus a purifying process must
destroy any information of the input state and cannot be re-
versible at all.

So, the properties of reversibility and output purity are
completely incompatible for a physical process, if one de-
mands these properties to hold on all possible input states.
Our approach now is to require these properties only on a cet-
tain subset of states M C &, (Hin). In Sect. 2 we analyze the
properties of maps, which map at least two mixed states to
pure states. The result of this investigation will completely
characterize any such map. As an application of this result
we will provide a lower bound on the trace distance of any
two product states p1 ® o1 and g2 ® 2. In a brief excursion in
Sect. 3 we will show that, if we allow probabilistic processes,
non-trivial examples of reversible and purifying processes can
easily be constructed. But we will also show that the defin-
ition of a probabilistic process to some extent contradicts the
properties of a purifying process. In Sect. 4 we will then char-
acterize any set of states, for which a deterministic reversible
and purifying map exists and discuss in some detail the strue-
ture of such sets. Finally, we conclude in Sect. 5.

2 Purifying processes of two states

In the previous analysis we ruled out the possibil-
ity of a non-trivial process, which takes all states B, (FHy)
to a corresponding pure state in By (Hout). So the question
arises, to what extent this also holds if one demands a pure
output only for a subset of states M C B, (H,). More tech-
nically, for a CPTP map A, let us write pur(A) = {gpn €
B (Hm) | tr(Alpi]?) = 1) for the set of states which gets pu-
rified by the action of A. For a purifying process of M we
demand M C pur(A). In this section we will only deal with
the most simple non-trivial case where only two states g and
o2 are to be mapped onto a pure state, i.e., M = {g1, 02} C
pur{A). Let us consider the case where we already have two
purifying maps A4 and Ap acting on 91 and g2, and without
loss of generality assume

d(Asleil, Aalo:]) = dAgler], ApleaD) - )

(Here, d(p, ¢) = ltr\@—cﬂ with | X] = +/ X X T denotes the
trace distance of p and ¢.) Then there exists a CPTP map 2,
such thatup to a global unitary transformation, Ag[o;] = (§2 0
Aa)loi] for i =1, 2: for two pure states [1},,, and Iy, one
can reduce the angle defined by sin# = d{Jfy, [{jy,)) to an

arbitrary angle ¢ < @ via the CPTP map

3

2oyt X Y AL XAL (5a)
a=1

with A, being the Kraus operators [3]

Av= 19 (W] + alvi) (i, (5b)

Ay = (V1—B2 ) + Vb2 —a? |y ) {wi ] (5¢)

Az=1— () (| — 1)UL, (5d)

where a — tanecot®, & — sing/sin+, and Hfff‘) c

span{|vr, [¥2}} is a normalised vector orthogonal to [r).
Now let [1y,, = Aale;] and choose sing = d{Aglo1],
Apl[p2]). Then, up to a global unitary transformation, Ap[o;]
= (824 |y, 193 © A a)[or 1holds. Since we can mimic the action
of Apon p; and g7 by using the map A 4, we would always
prefer A4 in favor of Ap. Thus among all purifying processes
of two states we are most interested in those which maximize
the trace distance of the corresponding output states.

This trace distance of the output of a purifying map A is
upper bounded by a geometric quantity depending on p; and
o2, namely by the worst case distinguishability 2> (p102) [4],

d(Alen], Alez2l) < D(er, 02) - (6)

We now want to give a physical interpretation of this inequal-
ity. In quantum mechanics, an ensemble of pure states f1},
with probabilities p; > 0 (where »  p; = 1) is described by
the mixed state p = Zj Pifl|y)- In general, many different
ensembles lead to the same density operator g, and it is a pre-
diction of quantum mechanics that it is impossible to phys-
ically distinguish between such different ensembles. Having
said that, for a given mixed state g, a pure state 7|, may phys-
ically appear if and only if [1},, canbe part of anensemble that
is represented by g, i.e., if and only if a positive number p ex-
ists, such that o — p[fT, is positive semidefinite. Let us denote
the collection of all such pure states I1; by

o=y |3p=0: 0— pll, = 0}
=iy | |} € supp o}, (7

where supp o is the support of g, i.e., the orthocomplement
of the kemel of p. The worst-case distinguishability is now
defined as

Dieen)= | inf, A (Mg, Miyy)

o) SCg;
= min(sin %), (3)

where #; denote the Jordan angles [5] between supp o1 and
SUpp @2-

Let us continue the physical motivation of (6). The max-
imal success probability for distinguishing two mixed states
viaa measurement (‘minimum error discrimination”) is given
by [6,7]

Pyep (01, 02) = (1 +d(o1, 02))/2, 9
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where we assumed that both states have equal a priori prob-
abilities. Hence Pymp is the average success probability for
distinguishing the ensemmble of pure states denoted by g1 and
02. In a physical experiment, each single measurement is per-
formed on a pure state out of the ensembles, i.e., the task of the
discrimination measurement is to distinguish between a state
in @,, and a state in @,,. The optimal success probability to
distinguish between such two pure states in the worst case is
given by

inf
My g,

={1+D0o1, 02))/2.

Pyop = Pyvep (H gy, T gy)

(10)

Since no deterministic process can increase the trace distance
between two states [2], a purifying process of g1 and oo must
not deterministically increase the distance between any pair
of pure states [1),,, € @, and IT},,;, € &,,. This may serve as
a physical motivation for the inequality in (6).

Can the bound in (6) always be achieved by some purify-
ing process A7 The answer is affirmative, but in order to verify
this to a satisfactory level there is no way to avoid the awk-
wardness of an explicit construction of a map which reaches
equality in (6).

Let us first briefly recall the concept of Jordan bases
and Jordan angles (sometimes also called canonical bases
and canonical angles) [3, 8] of two subspaces A C # and
Ay C F. Orthonormal bases |¢%) of 41 and |¢4) of A, are
called Jordan bases, if

(W¥yd) =
(¥ |k = cos ity

fork #£1,
for k < min dim A;.
H

(11a)
(11b)

Such bases always exist and ¥; are called the Jordan angles
between A; and As.

The first step in the construction of the purifying map is to
apply the distance-decreasing map 2, defined in (5 a}-(5d)on
each pair of Jordan vectors |1jf1 ) € supp oy and h!fz) £ supp o2,
such that the distance is reduced to 2 (g1, ¢2): We define the
Kraus operators A"{ and Ag for k& < min; rank g; analogously
to (5b) and (5¢) and choose sin g = D{E102). In order to
complete the set of Kraus operators We in addition define the
projector A3 = 1— 3, ATk — 5~ 48T A% and write

$2: B(Hin) — B(Hin)
X Y ARXATT Y Af Al Agal.
k k

(12)

Let [1},,,, be an arbitrary pure state in &, . One finds that
SollTy) = D b0y T )S200T ]
k

+ A3MT, AL (13)

By construction, I7, Vil .Q[HW;{ ]is again pure with (y’fk|y’f }
=0 fork #l and d(ﬂlwk Ij‘wk ) = D{p1, 02). Furthermore
Azl A # Oonly ifrank o; > rank p; for j #1.

Using the above properties of £2, it is straightforward to
findaCPTPmap E: #jy — Hin ® Hax, such that the vectors

kY| g1} diagonalise (E o £2)[p1] and the vectors |k)|g) diag-
onalise (E o §2)[e2], where (k|l) = 8y and d(I|,,y, My,) =
D (o1, 02). Thus the map trj, o Eofisa map which reaches
the bound in {(6), i.e.,

D (o1, @2) =maxd(Ale1], Ale2D) , (14)
where the maximum is taken over all CPTP maps A satisfying
{01, 02} < pur(A). Furthermore, as already discussed in ad-
vance, due to (14), the maximizing map try, o £ o £2 together
with the distance-decreasing map £2,, allows mimicking of the
action of any purifying map of the states g1 and 2.

This result characterizes the output of any process, which
maps two input states to pure output states. For example one
immediately finds that two states with overlapping support
have a vanishing worst-case distinguishability and thus such
states only can be mapped to identical pure states by a puri-
fying process. In [4] the problem was investigated, how close
the pure output states of a purifying map can get to a purifica-
tion [9, 10] of the input states. The deviation from the optimal
quality of such a purifying map was found to be limited by
the difference d(p1, 02) — £ (o1, 02). Furthermore the result
in (14) turned out to be the key for the analysis of sets which
can be mapped perfectly to their purifications [4].

In addition, the result in (14) can also be used as a gen-
eral tool in quantum information theory, since results for pure
states often are much simpler to obtain than results for mixed
states. As an example, we provide a lower bound on the trace
distance of any two product states g1 ® o1 and g2 @ o2:

dio1 ® o1, 02 ®02)* >

1—(1—Die1, 00"l —dlor, 0207 . (15)

(Fromthis inequality in particular d(p1, ¢2) = (o1, 02) fol-
lows by setting o1 = o2.) This inequality follows by applying
a map for which

01 @01 iy @ (gulloy + (1 — g0 y) ,
02 @02 = ), @1 —g2lloy+g20)1) .

(16)
17

Such a mapping can be implemented by a CPTP map for ap-
propriate g1, g2 satisfying g1 + g2 = 14-d{o1, 02) and 11,
satisfying d(I1),3, I1p,)) = (01, 02), since then for the first
systern one applies the purifying map trj, o E ¢ §2 and for the
second system one applies a minimum error discrimination of
o1 and 2. Now using the fact that a CPTP map cannot increase
the trace distance, it is straightforward to obtain (15).

3 Probabilistic purifying processes

Although we want to concentrate on determinis-
tic processes, in this section we wish to briefly discuss the
properties of probabilistic purifying processes. We exclude
probabilistic processes A from our considerations, for which
trA[p] = O for some ¢ € .M, i.e., we call a process probabilis-
tic on .M, only if for any state in .M the success probability of
the process is non-zero.

A simple example of a probabilistic purifying process is
a process, which first performs an unambiguous state discrim-
ination [8, 11] between the possible input states and then uses
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the unambiguous information to create a purification of the
input state. In the language of probabilistic processes, unam-
biguous state discrimination of a set of states p; is a proba-
bilistic map which maps o; to p;f1;), where p; is the success
probability of unambiguously identifying o; and {|j) = &;.
In [12] it was shown, that a probabilistic unambiguous state
discrimination process for a set .M exists, if and only if

suppo; ¢ ) _suppe;,  Yei € M.
i

(18)

Hence, if one applies unambiguous state discrimination on
such a set .M, in case of a successful discrimination one can
map each state [1); to a purification 1),y of g;. This map
is purifying as well as reversible on M (with the reversible
map being the partial trace over the purifying system) and it
is successful, whenever the unambiguous state discrimination
process succeeds.

However, there is a good reason not to deepen the analy-
sis of probabilistic processes as a proper variant of purifying
processes: physically, the information of a successful appli-
cation of a probabilistic map is provided as a bit of classical
information. Thus for a probabilistic purifying map A one can
equivalently write the deterministic map
A: X A[X]+ @X —trA[X DTy, (19)
where 19, is a state that is orthogonal to all output opera-
tors A[X]. However, the output of A isnot pure, unless Als
already deterministic and purifying.

4 Purifying and reversible processes

We now want to combine the purifying property
of a deterministic process with the feature of reversibility.
Since we already noticed that processes which are reversible
on all states cannot increase the purity of any state (although
it is possible to decrease the purity, e.g. using the map E,
defined in (1)), in the fashion of Sect. 2 we demand reversibil-
ity only on a subset of states A{. We call a CPTP map A
reversible on A if one can find a CPTP map A’, such that
(A o A)[en] — o for all gy, £ M. Let us again formalize
this property. For a CPTP map &5: B({#Hy) — B(Hy), let
ID(E) = {pin € B, (Hn) | Elein] = 0in} be the set of states
that are unchanged by the action of & Thus for a reversible
map A on M, we demand that one can find a CPTP map A’,
such that M < ID(A’ o A). Note, that A" does not need to be
unique. Now a map A is purifying and reversible on .M, if
and only if one can find a map A’, such that M C pur(A)N
ID(A’ o A). Tt is possible to completely characterize any such
set A

Theorem 1. A reversible and purifving process for a sel
of states M Z B (Hy,) exists, if and only if for appropri-
ate vector spaces H\, F and Hy, satisfying Hi, @ K =
Hy & K, one can find mixed states oy € B, (Hy) and o), €
£+(J€é), and unitary transformations U;, such that M =
(U Miwith M; L My, i £ jand

lo®al|oe M} C
Uiy ©a)UT | @) € #4). (20)

In Theorem 1, Af; L M; if tr(go) =0 for all p € M; and
o € M;. Sets M;, which satisfy (20) are called essentially
pure, i.e., a reversible and purifying process for M exists, if
and only if .M is an orthogonal union of essentially pure sets.
Furthermore, note that basically, essentially pure sets are such
sets which are generated by applying the map Ey o E, onaset
of pure states.

Proof(Theorem 1 ). In [4] it was shown, that .M is an ortho-
gonal union of essentially pure sets, if and only if a per-
fect purifier of M exists. A perfect purifier is a CPTP map,
which maps any state in M to one of its purifications in
B (Hn @ Hax ). Hence a perfect purifier A of A in par-
ticular satisfies M C pur(A) and M C ID(fryy o A), 18, itis
purifying and reversible.

For the converse assume that a reversible and purifying
map A for M exists. Then .M C pur(A) and one can find
a CPTP map A’, such that M C ID(A" 0 A). The map Iy 4
defined in (3) thus satisfies pur(f 'y, 4) = pur(A) & A and
ID(tra 0 Iyr 4) = ID(A 0 A) D A andhence Iy 4 is a per-
fect purifier of .M. Using again the result in [4], it follows that
M is an orthogonal union of essentially pure sets. g

Although Theorem 1 completely characterizes all sets for
which areversible and purifying process exists, it is in general
not straightforward to test whether a set is of the structure as
specified in (20). Only for the case where A consists of only
two states, an operational necessary and sufficient criterion is
known [4]: the set M = {p1, 02} is essentially pure or o1 L o2
if and only if D (g1, @2) = d(1, @2). In the general case only
some necessary operational conditions can be derived. The
most obvious necessary criterion is, that in an essentially pure
set all states must share the same spectrum. Another example
of a necessary criterion is, that the Jordan angles between the
support of any two states taken from an essentially pure set
have to be completely degenerate. But these two properties
are not sufficient for an essentially pure set, as the following
simple counter-example demonstrates:

(21a)
(21b)

o1 = ploy+ (11— p)dy
Q2 — pIY\v+) + (]' - p)Hh)_) 5

where [vE) = 2(£|0) + 1) £[2) +[3)) and 0 < p < 3.

As a final remark let us note that it is possible to sim-
plify the definition of essentially pure sets. A set of states
M C By (FHyy) with go € M is essentially pure if and only if
one can find a unitary transformation U on #Hy, @ Hayyy and
normalised vectors |g) € Hyy corresponding to each g £ M,
such that for each ¢ < M,
0@ Mg = Ulgo ® MU' (22)
holds. From the proof of Theorem 1 in [4] it is clear that in
(20) one always can choose w¢ to be pure. Now the dimen-
sion of the kernel of each element on the left hand side of
(20)1s given by dim(#,) dim(F¢ ) — rank o while ontheright
hand side we find dim{7s) dim(Fg) — rank o. One readily
extends #¢ and #p such that dim #p is an integer multiple
of dim(.#;,). Then after a suitable rotation U’ on #4 & #p,
one has U'(ITj; ® op)U'T = (go © Mygy) @ I,y Identifying
oy & I, with 1), finishes the proof of (22).
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5 Conclusions

In summary we have analysed deterministic phys-
ical processes which are reversible or purifying, with par-
ticular focus on the combination of both properties. First we
have shown that the properties of reversibility and purity of
a physical processes are completely incompatible, as long as
reversibility or purity is required to hold for any input state.
For certain restricted sets, however, one can combine these
properties. We investigated the case, where only two input
states are mapped to pure states. It turned out that the trace
distance of the output states of such a map is limited by
the worst-case distinguishability of the input states. A map
was provided, which always reaches this bound. Some ap-
plications of this result in quantum information theory were
presented. For probabilistic processes we used unambiguous
state discrimination to build a non-trivial example of a purify-
ing and reversible process. We finally characterised all sets of
states, for which a deterministic purifying and reversible pro-
cess exists and it turned out that such sets have to be pure up
to a common mixed contribution. Despite this result and the
existence of an operational criterion for such essentially pure
sets in the case, where the set consists of only two states, no
operational necessary and sufficient condition for larger es-

sentially pure sets was provided. Such criteria will be subject
to further research. Furthermore, although some properties of
reversible processes where presented here, another direction
of future work will be to deepen the understanding of such
processes.
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Abstract

We present a criterion, based on three commutator relations, that allows us to
decide whether two self-adjoint matrices with non-overlapping support are
simultaneously unitarily similar to quasi-diagonal maftrices, i.e., whether
they can be simultaneously brought into a diagonal structure with (2 x 2)-
dimensional blocks. Application of this criterion to unambiguous state
discrimination provides a systematic test whether the given problem is reducible
to a solvable structure. As an example, we discuss unambiguous state
COMN pAarisorn.

PACS numbers: 03.67.—a, 03.65.—w, 02.10.Yn

1. Introduction

The commutator of two self-adjoint operators, which act on a Hilbert space, is a fundamental
concept in quantum mechanics: two observables can be measured without uncertainty if
and only if their commutator vanishes. This physical interpretation is comnected to the
mathematical fact that two Hermitian matrices can be diagonalized simultaneously if and only
if their commutator is zero. A natural question to ask is when two Hermitian matrices can be
simultaneously brought into a block-diagonal structure with blocks of the lowest non-trivial
size, namely size 2 x 2. Such structures are known as quasi-diagonal form and criteria for
existence have been studied in [1, 2]: Watters [1] showed that a family of normal matrices
can be simultaneously brought into a quasi-diagonal form if and only if each member of the
family commutes with the squared commutator of an element of the family with any element
from the algebra generated by the family. (Thus, testing this criterion requires us to show that
infinitely many commutators vanish.) Laffey [2] studied a family with two members only. He
showed that when the matrices in the family are positive semi-definite, they are simultaneously
unitarily similar to quasi-diagonal matrices if and only if six certain commutators vanish.

1751-8113/07/360871+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK F871
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The question of simultaneous quasi-diagonalizability has a physical application in
unambiguous discrimination of quantum states (see the next paragraph). In that context,
it is sufficient to deal with positive semi-definite operators with non-overlapping supports (the
support of an operator is the orthocomplement of its kernel). As we will show, this restriction
leads to simpler commutator criteria. In this paper we will give a constructive proof that,
given two self-adjoint operators with non-overlapping supports, they have a common block
diagonal structure of dimension 2, if and only if a set of only three commutators vanishes.
These commutators are also easier to calculate than those given in [2], as the latter are of
maximal order 7, while the former are of maximal order 5.

Unambiguous state discrimination (USD) is a strategy for distinguishing non-orthogonal
quantum states without being allowed to make an error. As it is impossible to discriminate
non-orthogonal quantum states with unit probability, the measurement has to have inconclusive
outcomes. The optimal UUSD strategy is the one that maximizes the success probability (i.e.,
minimizes the probability to get an inconclusive result). A different possibility to discriminate
quantum states is called minimum error discrimination, where one minimizes the probability
of making an error in the state identification.

In this contribution we want to focus onto the first strategy, namely unambiguous state
discrimination. For two density operators, o and oo, acting on the Hilbert space H of
finite dimension, this task is described by a positive operator-valued measure (POVM) on H,
consisting of three positive operators, Fq, > and Ey, with 1 + E> + Ey = 1. In order to
make the discrimination unambiguous, the probability of wrong identification must vanish,
ie r(Eym) = 0 and tr(Esp) = 0. It is natural to allow py and p» to have a priori
probabilities p; and po, respectively, where py > 0, p» > 0, and p; + po = 1. The open
problem in USD is to find a POVM { £, E,, E,} which maximizes the success probability
Psuce = P1IT(E101) + potr(Enpm).

While the optimal solution for minimum error discrimination of two mixed states is
already known for more than three decades [3], the optimal solution for unambiguous state
discrimination has been found only for the pure state case [4] and certain special cases of mixed
states [5-13]. A partial solution for unambiguous discrimination of mixed states is provided
via the reductions of the density operators by the space where perfect and/or no USD is
possible [8]. Otherwise, known optimal USD measurements for mixed states mainly belong
to the class, where the problem can be decomposed into several pure state discrimination tasks
[5,9, 11]. A general representation of such states was recently discussed by Bergou ez af [11].

It is not obvious how to decide whether the given density operators possess such a
structure. In this contribution we present a method that allows us to systematically identify if
the optimal USD of two mixed states can be simplified to the pure state task.

The paper is organized as follows. Insection 2 we introduce the concept of common block-
diagonal structures of two operators. We specifically consider the case of two-dimensional
blocks, as the optimal measurement in two dimensions is well known. Simple commutator
relations are presented to check for the existence of such a structure. In section 3 we discuss
whether the block structures are preserved by the reductions. Finally, we study the example
of unambiguous state comparison [7, 9, 14-16] to illustrate the power of the commutator test.

2. Block-diagonal structures

2.1. Independent orthogonal subspaces in USD

In [5] Bennett ef o/ analyzed the parity check for a string of qubits, i.e., the question whether
a sequence composed of states that are either |} or |1}, with O < [{¥fs|1)| = 1, contains
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an even or odd number of occurrences of | }. This task is equivalent to the unambiguous
discrimination of two certain mixed states. After a suitable (symmetric) choice of a basis
these mixed states turned out to share the same block-diagonal shape, with each block B
symbolizing a 2 x 2 matrix:

= ™ ; mes | ™ : (1)

The authors of [3] argued that due to this structure an optimal solution to the discrimination
problem can be obtained by the simple composition of the optimal solutions in each block.
The optimal solution in two dimensions is known, since only in the case of two pure states the
solution is not obvious and this case was solved by Jaeger and Shimony [4].

Our aim is to provide a systematic method for finding such structures. We start with a
formal definition of a block-diagonal structure: For a set of operators O, a common block-
diagonal structure (CBS) is a projection-valued measure {I1;} such that all operators in O
commute with any IT;. In other words, if the operators in @ have a CBS, they can be
simultaneously decomposed in orthogonal subspaces, and a von-Neumann measurement {1}
projects onto these subspaces. Having the measurement outcome ‘%", the support of the
states is reduced to IT;H (the image of I1;). Thus one can focus on performing the optimal
measurement in this subspace.

A common block-diagonal structure is at most n-dimensional if the rank of all T is at
most n. In particular, the existence of an at most one-dimensional CBS for a set ( of normal
operators (a normal operator is an operator that commutes with its adjoint) is equivalent to
the existence of a common basis, in which all operators in @ are diagonal. It is well known
(cf, e.g., chapter IX, theorem 11 in [17]) that for normal operators this is possible if and only
if all operators n @ mutnally commute. We will present a commutator criterion to verify
whether two operators have an at most iwo-dimensional CBS (2D-CBS). This criterion, which
is simpler (from an operational point of view) than the one introduced by Laffey [2], is valid
in the case of non-overlapping support only, but is sufficiently general in order to detect any
two-dimensional block structure in the case of USD.

2.2. Diagonalizing Jordan bases: definition and existence

Let us first relate the idea of a 2D-CBS to a concept that is widely used in the analysis of USD,
namely the concept of Jordan (or canenical) bases of subspaces (cf, e.g., [18]): let P4 and Pg
be self-adjoint projectors. Then by virtue of the singular value decomposition, one can find
orthonormal bases {|«;}} of P4H and {|8;)} of PzH, such that

o £} = (a;|PaPp|f;} =0 for i 4, (2a)
while for i <X min{rank P, rank Pz},
{1 By) = (0| PaPp|f;) = costh; =2 0 (2h)

for some 0 ¢ & < /2. The bases {|o;}} and {|8;)} are called Jordan bases of the subspaces
PyH and PpH and {9} are the corresponding (unique) Jordan angles. The first equation
expresses the bi-orthogonality of the Jordan bases. Note that in the case of degenerate Jordan
angles (i.e., not all Jordan angles are different) or if |rank Py — rank Pg| = 2, the Jordan bases
are not unique.

For the analysis of USD, it turns out to be fruitful to consider density operators, which are
diagonalized by a pair of Jordan bases [11]. For two normal operators A and B, diagonalizing
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Jordan bases are Jordan bases of supp A and supp B, which diagonalize A and B, respectively.
Of course, such diagonalizing Jordan bases do not always exist. As mentioned in [19], the
existence of such bases implies the presence of a 2D-CBS, since the pairs {|«;}, |5;}} span
mutually orthogonal two-dimensional subspaces. However, the converse is in general not
true. It is possible that already in two dimensions no pair of diagonalizing Jordan bases exists.
Consider the positive semi-definite matrices

10 11
A:(O 2) and B:(1 1). (3)

Then up to some complex phases, the only orthonormal basis of supp A that diagonalizes A is
the canonical basis {(1, 0), (0, 1)} while supp B is spanned by (1, 1). But (1, 1) is orthogonal
to neither (1, 0) nor (0, 1), i.e., no diagonalizing Jordan bases exist,

The exact relation between 2D-CBS and diagonalizing Jordan bases is given by the
following

Lemma 1. Let A and B be normal operators acting on 'H. Then diagonalizing Jordan bases
of A and B can be found if and only if a 2D-CBS of A and B exists and [A, ABA] = 0 and
[B,BAB]=0.

Proof. Assume that diagonalizing Jordan bases of A and B exist. Then their structure readily
provides an appropriate 2D-CBS. Furthermore, by writing A and B in diagonalizing Jordan
bases,ie, A = ¥, a;|o; ;| and B = Z,‘ b;|8,) B;], and using equations (2), it is easy to
verify that [A, ABA] =0 and [B, BAB] = 0 holds.

For the contrary it is enough to prove the assertion in each subspace [1;H, where
([} is a 2D-CBS of A and B. Since A and B commute with all projectors T1x, in each
subspace the operators Ay = Tz ATl; and B; = [1;BIl; are again normal. First suppose
that 4; has a maximal rank, ie., rank 2. Since A, has full rank in [1;H, the condition
0 = TIg[A, ABAIl; = Ag[Ax, B:]Ar is equivalent to I1.[Az, By]lly = [Ax, B:] = 0,
i.e., both operators can be diagonalized simultaneously and hence in particular diagonalizing
Jordan bases exist. (An analogous argument holds if By has a maximal rank.) The remaining
non-trivial case is that both operators have rank 1, in which case the diagonalizing Jordan
bases are given by the vector spanning the support of each operator. [l

Note that commutators of the form [A, AXA] can always be rewritten as A[A, X]A,
i.e., in the above lemma one could equivalently write the conditions A[A, B]A = 0 and
B[A,B]B =0.

2.3. Construction of diagonalizing Jordan bases

It is a simple observation that if diagonalizing Jordan bases for two normal operators A and
B exist, then necessarily all commutators of the structure [4, ABA], [A, AB?A] and so forth
vanish (see the proof of lemma 1). In the following lemma we will state that certain of these
commutators already suffice to explicitly construct a pair of diagonalizing Jordan bases.

Lemma 2. Let A and B be self-adjoint operators on 'H with [A, ABA] = 0, [A, AB%4A1=10
and [B, BA’B)] = 0. Furthermore, denote by {|k)} an orthogonal basis of supp A which
simulianeously diagonalizes A, ABA and AB”A.

Then there exists vectors {|v) |, such that (up to normalization) { Ak} and {BAk) 1 U { vy}
are diagonalizing Jordan bases of A and B.
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Proof. First note that all vectors BA|k) are mutually orthogonal (or trivial), since the basis
{|k}} diagonalizes ABBA. Now consider the following expression:

w,B(BA|k)) = BBA(ABA|K)
— BA’BBA|k) (4)
= v BAlk),

where w; denotes the eigenvalue of ABA for |k} and v, denotes the eigenvalue of AB*A
for |k). In the second step we used [B, BA’B] = 0. The right-hand side can only
vanish if BA|k) = 0. Hence due to equation {(4), BAlk) € supp B is either trivial or is
an eigenvector of B. Furthermore, one readily finds eigenvectors |v; < supp B of B that
complete the orthogonal basis of supp B. These vectors are also orthogonal to all A|k}, since
by construction &, (v|Alk} = {v|BAk) = 0, where b, # 0 is the eigenvalue of B for |v). It
remains to verify that {A|k)} and {BA|k)} are bi-orthogonal. But this follows from the fact
that {|k}} diagonalizes ABA. ]

Note that it is straightforward to extend this lemma to normal operators. However, we are
mainly interested in application for USD and hence specialize the results of this section in the
following form:

Theorem. For two self-adjoint A and B operators on a Hilbert space of finite dimension with
supp A Nsupp B = {0} the following statements are equivalent: (i) A and B have @ 2D-CBS,
{ii) diagonalizing Jordan bases of A and B exist; {iii) [A, ABA] = 0,[B,BA’B] = 0 and
[A, AB2A] = 0.

Proof. Remember that (ii) = (i) follows from the structure of Jordan bases (see lemma 1), and
also (ii) = (iii) is a consequence of the properties of Jordan bases (i.e., that all commutators
of the structure [A, ABA]. [A, ABA] and so forth vanish). The implication (iii) = (ii)
was proven in lemma 2. It remains to show that from (i) follows (ii). Due to lemma 1 this
reduces to showing that [A, ABA] = 0 and [B, BAB] = 0 for the case where (i) holds and
supp A M suppB = {0}. The condition of non-overlapping supports implies, together with
(1), that rank (A ) + rank(B;) < 2, where A, = [1,All; and B, = [1,BTIl;, and {I1;} is a
2D-CBS of A and B. If either rank(A;) or rank(By) is zero, the commutators [Az, ArBrAr]
and [By, By ApB;] vanish trivially. They are also equal to zero for the remaining case of
rank(A,) = 1 = rank(B;). 1

As soon as the supports of A and B overlap, in general, none of the commutators in
the above theorem vanishes. But in such a situation one can make use of the fact that in
two dimensions, the square of all commutators of the form [Ag, By, [Ag, Bf | and so forth
is proportional to the identity operator. Laffey [2] showed that for positive operators the
following set of commutators, given below, are already sufficient to prove the existence of a
2D-CBS.

Twa positive semi-definite operators A and B have a 2D-CBS if and only if [2]
[[4, BF, Al =0, [[B, AT, Bl =0,
[[A, BT, A1 =0, [[B,A*T, B] =0, (5)
[[4% BF,A]=0,  [[B* AP, B]=0.
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3. Application to USD

We now want to apply the above analysis to utnambiguous discrimination of two mixed states
p1 and po. We denote the combination of the density operator and the according a priori
probability by y, = puog. suchthattry, < 1 (u = 1,2). For technical reasons {see the map
Ty below) we also allow that the @ priori probabilities do not sum up to 1, tr(yy) +tr(pn) < 1.

3.1. Preservation of block structures under reduction of USD

In the above theorem the density operators need to satisfy the condition supp 1, M supp . =
{0}, which in general is not the case. The first reduction theorem in [8], however, shows how to
reduce any USD problem tothat specific form. But one could imagine that this reduction might
destroy an already present 2D-CBS, so that the combination of the first reduction theorem
together with the above theorem would fail to detect certain block-diagonal structures. As we
will see here, this is not the case and the application of any of the reductions in [8] preserves
any CBS.

We repeat the reductions of [8] in the language of projectors. For a pair of positive
semi-definite operators (yq. 32), let 7y be the (nonlinear) mapping

0t (v, 12) > (vs 1), (6)

where yﬁ (with 4 = 1, 2) is the projection of y, onto (ker y; + kery»). In a similar fashion
we define 7,: (y1, ¥2) > (37, ¥) (with v = 1, 2) where

}/ﬁ = vy#Pv+(]1—Pv)y#(]1—Pv), (7)

Here, P; is the self-adjoint projector onto (kery; + suppyn) and P the projection onto
(ker y» + supp y1). The reduction theorems in [ 8] now read as follows.

For v € {19, 71, 2}, the pair (y1, y2) and the reduced pair T(y1, w) can be unambiguously
discriminated with the same success probability [8].

What is relevant for our considerations is the fact that no reduction can destroy any CBS,
i.e., a CBS {II;} of (31, p2) is also a CBS of (1, ) for all 7 € {7y, 71, 72}. In order to
see this, it is enough to show that any of the projectors Fy, Py and P, (with P, denoting the
projector onto ker 1 + ker y») commutes with all TT;. But this follows from the fact that the
range of each of the projectors is the support of an operator that commutes with all T, (namely,
PoH = supp(21 — Gy — Go), PyH = supp(ll — G + Gy) and PyH = supp(l — Go + G1),
where G, is the projector onto supp ;). Note, however, in contrast, that a CBS of z(y4, y2)
is not necessarily a CBS of (y, ), thus a reduction may give rise to new block-diagonal
structures.

In order to check for a 2D-CBS it is necessary to first apply the reduction 7p. If
the reductions 7, and  are—from an operational point of view—feasible, then it is also
worthwhile to apply those, since new 2D-CBS may arise.

3.2. Example: state comparison

We consider a special case of unambiguous state comparison ‘two out of N as defined
in [16]. A source emits pure states {|i), ..., |n )}, each of which appears with equal
a priori probability % We further assume that all states have the same (real) mutual overlap,
(|} = cosd fori # j. Giventwo of these pure states, the aim is to decide unambiguously
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whether the states are identical or not. This task is equivalent to the discrimination of

1 N

V1= o D VWK e ®)
k=1
1 N

v =5 D eyl ©
k=l

From the definition it follows that supp 31 M supp » = {0}. Thus we candirectly apply the
theorem of section 2.3, i.e., we test whether it is true that [y, 132011 = 0, [y1, viysv1] = 0

and [y, yayiy| = 0. For the first two commutators, it is sufficient to verify that
wy; = (Wpde|[---1|dy) = 0 for any & and /. Here, [-- -] stands for any of the first two
commutators. Obviously we have wy; — —(wy)* for all k and /, and since all overlaps are
real, ey = 0. Due to the high symmetry, all e; with & # I must be equal. In particular,
wy; = wg = — (wp)*, and again due to reality of the overlaps, ay; — 0 must hold.
It remains to test whether [ys, yayi32| = 0. This is equivalent to showing that

va[y2 + v1, 7|2 = O or to showing that

v A y0¥iva = Y |t N Asy g (10)

Ling

is self-adjoint. Fori # j and also p # ¢, we have

Aij,pq = Z Cikcjlcknclncznmcmpcmm (11)

klnm

with ¢;; = (¢ |tr;) = cos? + (1 — cos?)d;;. Otherwise, A;; ,, = 0. First we find

Zcikcfm o By + s (12)

x

with some constant . Also, for p £ g,

D ConCrpCmg & Sug+8up + 0, (13)

where o is another constant. Hence for ¢ £ j and p # g we have

Aijipg Y i+ )10+ 1) By + 80y +0) »

o 8y + 834 + 8, + 8, + const.

In particular, A;; ,; = Ay = (Ap,;)* holds, which demonstrates that y» (32 + y1)¥y is
self-adjoint and therefore ¥2[y + y1, ¥ |32 = 0.

Thus we have shown that the symmetric state comparison ‘two out of N7 can be reduced
to pure state discrimination. Note that this statement is in general not true for state comparison
“Cout of N, with ' > 2, i.e., the question whether  states taken from a set of N states
(with equal overlaps) are identical or not. In this case the third commutator does not vanish
before the reductions, and the corresponding state discrimination problem is not necessarily
simplified to the pure state case.

4. Conclusions

In many practical situations of unambiguous state discrimination (USD) the pair of states
that one wants to discriminate has a high symmetry which naturally gives rise to a two-
dimensional common block-diagonal structure (2D-CBS) [5, 9, 11]. In this situation the
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optimal USD measurement has the very same 2D-CBS [11], where each block basically is
given by the pure state solution of Jaeger and Shimony [4].

Here, we provided a tool to systematically identify whether a given USD task possesses
such a structure. With the commutator relations presented in this paper it is easy to test
whether a 2D-CBS for two self-adjoint operators with non-overlapping support exists. In
order to derive these commutator relations, we studied the connection between the existence
of a 2D-CBS and of diagonalizing Jordan bases. This also led to an explicit construction
procedure for such bases.

We showed that the reduction method [8] for USD can only generate, but not destroy a 21D-
CBS. Thus, applying the reductions as a first step ensures that the condition of non-overlapping
support of the two operators is fulfilled.

We demonstrated the strength of the simple commutator relations by considering
unambiguous state comparison [7, 9, 14-16], where it is easy to show that in completely
symmetric situations for the specific case ‘two out of N” a 2D-CBS exists.

Quilook. Note that the commutator relations in the theorem of section 2.3 are not symmetric
in both operators (i.e., the missing commutator [BAR, B] already vanishes). It would be
interesting to understand the reason for this asymmetry. Furthermore, it would be useful to
extend this concept to be applicable to more than two operators and also to the detection of
larger block-diagonal structures (withrespect to USD, e.g., four-dimensional structures would
be interesting). In order to be operational, this would mean to extend the work by Watters [1]
and Shapiro [20] (generalization to blocks of arbitrary dimension) and finding a finite set of
commutators with possibly low order.
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We analyze the optimal unambiguous discrimination of two arbitrary
mixed quantum states. We show that the optimal measurement is unique
and we present this optimal measurement for the case where the rank of
the density operator of one of the states is at most 2 (“solution in 4 di-
mensions”). The solution is illustrated by some examples. The optimality
conditions proven by Eldar et el. [Phys. Rev. A 69, 062318 (2004)] are
simplified to an operational form. As an application we present optimality
conditions for the measurement, when only one of the two states is de-
tected. The current status of optimal unambiguous state discrimination
is summarized via a general strategy.
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1 Introduction

Among the subtleties in quantum information processing and in quantum com-
munication protocols are the properties that originate from the fact that in
quantum mechanics non-orthogonal states cannot be discriminated perfectly.
In the most nalve approach to quantum state discrimination — the minimum
error discrimination {(cf. Ref. [1, 2]) — this leads to the fact, that the identifica-
tion of a state might be erroneous with some finite probability. Ivanovic [3] and
Dieks [4] showed that one can avoid erronecus measurement results and that a
measurement with a conclusive state identification is possible. In the case of
non-orthogonal states, this strategy cannot work with a success probability of
one. Peres showed in Ref. [5] how the optimum of this success probability can
be achieved in the caze of pure states, both having the same a priori probability.
The discussion of the optimal unambiguous discrimination of two pure states
was completed by Jaeger and Shimony in Ref. [6]. They derived the optimal
solution for arbitrary a prior: probabilities.

Although it was long ago stated to be an interesting problem [7], the unam-
biguous discrimination of mized states did not attract much attention for a long
time. This changed with an example introduced by Sun et al. in Ref. [8] and
the first general analysis of the unambigucus discrimination of mixed states by
Rudolph et al. in Ref. [9]. After that, several general results and special classes
of optimal solutions were found, cf. Ref. [10, 11, 12, 13, 14, 15, 16]. While
Bergou et ol. derived in Ref. [10, 12] the optimal measurement for the unam-
biguous discrimination of a pure state and an arbitrary mixed state, no analysis
so far did succeed to produce a general solution for the simplest instance of gen-
uine mixed state discrimination, the discrimination of two mixed states where
both density operators have a rank of 2. Also the simple question whether the
optimal measurement in general is unique remained unanswered.

The answers to these two questions are among the central results of this
contribution. The uniqueness of the optimal measurement is stated in Propo-
sition 11 and the general sclution for rank 2 density operators is presented in
Sec. 6.

A valuable tool to approach both questions turned out to be a result by
Eldar et al. in Ref. [17]. They showed necessary and sufficient conditions for
a given measurement to be optimal. However, these conditions are difficult to
verify, since the criterion implies the proof of the existence or non-existence of
an operator with certain properties. In Corollary 9 we reformulate this criterion
in such a way, that it can be directly applied to a given measurement. As a
further immediate consequence of this Corollary we will be able to provide simple
optimality conditions for a very special type of measurement: The measurement
which only detects one out of the two states, of. Sec. 5.1. Tt will also become
possible to provide a simple proof and a deeper insight into the fidelity form
measurement [13, 14], cf. Sec. 5.2.

Before we arrive at these results, we first provide an analysis of unambiguous
state discrimination (USD), beginning in Sec 2, where we derive general results
and continuing in Sec. 3, in which we specialize to the optimal caze.

An analysis of the structure of the optimal measurement In particular yields
Theorem 4. This Theorem is a cornerstone in order to prove the uniqueness
of the optimal measurement and also provides a simple proof of the “second
reduction” shown by Raynal et al. in Ref. [11]. We summarize and deepen the



analysis carried out in Ref. [11] in Proposition 3, Proposition 6, and Lemma 7.
In Sec. 7 we will provide a generic scheme in order to approach a given
optimization problem for USD. We conclude in Sec. 8.

2 Defining properties of USD

2.1 Main definitions

In quantum state discrimination of n quantum states it is usually assumed that
the density operators p1,..., p, of all possible input states are known, together
with the probability p1,...,p, of their occurrence. For 1 < p < n, the a
prieri probability p, > 0 and the corresponding density operator g, > 0 with
tr{p,) = 1 naturally combine to a weighted density operator vy, = p,p,. Hence
the trace of a weighted density operator 7, is the a prioré probability of the state,
tr(vy,) = pu. Using this notation, the input states are represented by a family
of positive semi-definite operators & = (vy,). For a meaningful interpretation
in terms of probability, we clearly need to have 3, tr(y,) = 1. However, we
will not require this normalization, as the subsequent definition and analysis is
independent of it, and for certain statements (cf. e.g. Proposition 2) it will be
useful to explicitly allow 3, tr(v.) < 1.

In the following we will only consider the case of two input states, ie.,
o =1,2. We restrict our analysis to finite-dimensional quantum systems, such
that any possible quantum state of the system can be represented by a density
operator which acts on a Hilbert space #° of finite dimension. We will use
the formalism of generalized measurements in which a physical measurement
with M possible outcomes is described by a positive operator valued measure
E=(F1,...,Ep) on #, 1e., by a family of M positive semi-definite operators
which sum up te the identity, >, Fy = 1.

Let us introeduce our notation. We denote by ker A = {|k) € #7 | Ak} =0}
the kernel of an operator A, and we write A% = {A|¢} | |¢} € #} for its
image. The support of a positive semi-definite operator p is written as supp p =
{I¢} € 47 | o = 0: p— a|di¢| > 0}. Note, that the support of p is the
orthocomplement of its kernel, supp g = (kerp)* and since g is self-adjoint,
25 = supp p holds.

By a projector we always mean an orthogonal projector, unless we explicitly
state that the projector iz oblique (cf. Lemma 18 in Appendix A). We use upper
case Creek letters for orthogonal projectors, Xt = 3 = 32, The symbols “C”
and “37 are used such that they also include equality, i.e., & = % if and only
if of C % and o O P.

For a pair of weighted density operators & = (1, 2), we abbreviate

supp S = supp(y1 + v2) = supp y1 + supp Ja, (1)

for the collective support of &, which is the physically relevant subspace for the
discrimination task and kerS for the common kernel of &, which then is the
trivial subspace,

ker 8 = ker(v; + v2) = ker v M ker 5. (2)

The task of optimal unambiguous discrimination of two mixed states is defined
as follows.



Definition 1. A positive operator valued measure £ = (Fq, o, By) is called
an unambiguous state discrimination (USD) measurement of o pair of weighted
density operators 8 = {v1,7v2) of tr{Eavy,) = 0 and tr(E17) = 0. The success
probability Pauee of £ of & is given by

Face(&; 8) = tr(Brm) + tr(Eavye). (3)

A USD measurement £ of § is optimal if it has mazimal success probability,
i.e., if for any USD measurement &' of 8, Payee(E;8) 7 Paee(E'; 8) holds. A
USD measurement £ of & is called proper if supp(Fq + F2) Csupp S.

The condition tr(F2v1) = 0 iz equivalent to supp Fo C ker vy and tr(Eyve) =
0 is equivalent to supp Ey < kerya. Thus if (ker v, + ker v5) is not trivial, it is
simple to write down some non-trivial USD) measurement for a given pair §. In
the next section we will see, that it is sufficient to consider proper USD measure-
ments. But the set of proper USD) measurements in particular iz compact (cf.
remark after Proposition 3) and hence there always exists at least one proper
USD} measurement, which maximizes the success probability.

2.2 Trivial subspaces

For any USD measurement £ = (Fy1, Fa, Fy) of & = (1,72) one readily con-
structs a proper USD measurement &' = (B}, B}, E}) with the same marginal
probabilities, i.e., tr(F1y1) = tr(E{v) and tr(Fay2) = tr{Fy2). For that the
most straightforward approach is to choose £f and ) to be the projection of
£ and Fs onto supp & and to set By =1 — £] — L.

As an important feature of proper USD measurements we will show that
the optimal proper USD measurement is unique (cf. Proposition 11). Such a
statement of uniqueness clearly can only hold if we require that the measurement
is proper. For illustrative reasons let us provide an example of an optimal USD
meagurement, which is not proper and where the measurement operators do not
even commute with the projector onto supp &: We consider two non-orthogonal
pure states with

=g, e = g, 4)

where |+) = (|0} + \l))/\/ﬁ and the measurement £ = (Fy, Fe, 1 — Ey — Ea)
with

E,=(- 3/\@\%)(%\; (5)
where |e1) = (|0} — |1} — |2))/\/§ and |es) = (\/§|0) + \2))/\/§ It is straightfor-

ward to verify, that this measurement iz a USD measurement and has a success
probability of Fiyee = 1 — 1/\/§ as given by the optimal solution due to Peres
[5].

The subspace ker § cannot play any role in USD, since the support of 4
and 79 is orthogonal to this space. Similarly, the subspace supp-; N supp ¥z
necessarily is orthogonal to the support of I and Es, since supp £y < ker o and
supp Fo C keryy. The following proposition is a consequence of this observation:

Proposition 2 (cf. Theorem 1 in Ref. [11]}. Let 8 = (v,v) be a pair of
weighted density operators. Denote by Ily the projector onto (ker v1 + ker +y2)
and write ST = (Hyva Iy, Myyelly) for the projected pair. Let ¢ = 0.

Then & is a proper USD measurement for 8 with P, (E;8) = g if and only
if £ is a proper USD measurement for ST with Payeo(£;81) = ¢.



(Note, that (ker v, +ker s} is the orthocomplement of {supp 71 Msupp v2), which
can be considered to be the “parallel” part of the support of 1 and ~s.)

Proof. If £ is a USD measurement of S, we have 11y F, Ty = F,, and so clearly
tr(L,y.) = tr(£, Iy ITy) holds. We have that supp E,, < supp S and supp E,, ©
(ker y1 + kery2). Due to supp St = supp S N (kery; + ker ), it follows that &£
is also proper for S'.

For the converse, since £ is proper for S we have in particular My, Ty =
E,, and hence tr(E, 11}y 11y) = tr(E.v.). Furthermore we have supp E, C
supp St = supp & N (ker v + ker o), Le., £ is proper for 8. O

2.3 The role of E;

For the discussion of USD) measurements it is useful to note that the measure-
ment operator corresponding to the inconclusive result, Iy, already completely
determines a proper USD} measurement.

Proposition 3. For an operator By and a pair of weighted density operators
& = (71, v2) there exist operators Fy and Lo, such that £ = (B, Ea, B) is
a proper USD measurement of &, if and only if B acts as identity on ker S,
£y 20, 1 — Er 20 and w1 (1l — Es)vye =0.

Given Ey, the proper USD measurement £ of § is unique.

Proof. Tt is straightforward to see that the conditions are necessary. The proof
of sufficiency and uniqueness is constructive: Let us write (Jq for the bijective
oblique projector from ker vz Msupp & to supp 1 N (ker vy + ker +2) (for a brief
introduction to bijective oblique projectors cf. Lemma 18 in Appendix A). Then
we have for any proper USD measurement F,(}; =0 and Ey = E{ Q. Hence

By = QUEL + E)Qy = QL1 — )y (6)

is the only candidate for Fy, given Fy. Due to 1 — E; > 0, this construction
ensures that Fy > 0. An analogous construction holds for Fs.
It remains to show that £y + £y — (1 — £7) = 0. We decompose the Hilbert

space into the sum
H =ker & @ (supp 1 + supp v2). (N

With II, the projector onto ker &, we have L,II) = 0 and since B» acts as
identity on ker &, also (I — £2)II; = 0 holds. Using, that by construction
v Euve =0, we furthermore have

YilEL + By — (1 — Eo)lye = — (1 — B}y = 0. (8)

From v (1 — E)y = 0 and 11 — E» = 0 it follows that with I the projector
onto supp ¥ Nsupp ¥z, we have (1 — Ep)Ij = 0. Furthermore, one verifies that
@1y1 = (I — I )» and hence v (E1 + E2)yn = viFaim = n(ll — E2)yi. A

similar argument for v, finishes the proof. O

Due to this Proposition 3 we sometimes refer to an operator E; as a proper
USD measurement if it satisfies the conditions of the Proposition. From here
it is also easy to prove, that the set of proper USD} measurements is compact



(e.g. using the operator norm induced by the inner product {4, B} = tr(ATB)):
We only need to show the compactness for the set of operators which satisfy
the conditions of Proposition 3. Obviously this set is bounded. It only remains
to show that its complement (in the set of self-adjoint operators) is open. This
follows from the necessary and sufficient properties provided by Proposition 3.

A proper USD measurement is already uniquely defined by E7(va — v1) E%
{(as it will turn out below, in the optimal case this operator is in some sense
much simpler than £ itself). Namely, with 11, the projector onto ker & and
{71 + 72)~ denoting the inverse of (1 + 72} on its support we have the identity

E =TI +(n+ %) {mye+rn
VA VD2 — Brle — 1) Bl vV
vy VR — Brn — ) Bl vy

Hom +72) ™
In order to see this, first note that using \/77(1 — E7),/7 = 0 and E» > 0 the

term in curly brackets can be rewritten as

)

(714 7)° =% — 7 + vy (Ve )2V + el (10)

Then due to (y1+72)” (11 +72) = 1 —T1 and once more v (I — E%)ye =0 we
see that the right hand side of Eq. {9) is given hy

i+ (n )" n+ )M — (I — Bl + )y +y2)”
:HL«F(H—HL)E?(]I —HL) (11)

This expression is equal to L%, since for a proper measurement F,I1, = IT)
holds.

Using the forthcoming Lemma 10, Eq. (9), and Proposition 3, it will become
possible to reconstruct the optimal measurement given only the projective part
of F9. This projective part is given by ker(ll — E). It has a very specific
structure, which originates in the condition v; (1—FE?)ys = 0. Let IT, denote the
projector onto supp <y, and [1; denote the projector onto ker §. For any proper
measurement these projectors satisfy II; (1 — £7)1ly = 0 and (Il — &£2)I1, =0,
and hence Lemma 17 (Appendix A) applies, i.e., for any proper measurement,

ker(1 — £5) = {ker(l — F2) Nsuppn}
+ {ker(1 — £2) Nsuppy2+ + ker & (12)

holds. Although this result may seem to be quite technical, in certain situation
it turns out to be a quite powerful tool.

3 Simple properties of optimal measurements

The following theorem makes a simple but fundamental statement. about the
structure of optimal measurements. [t basically states that no vector, that is in
the kernel of 4y or in the kernel of 42 must be in the support of E;. This clearly



gives an upper bound on the rank of Fy. On the other hand the condition
(1 — E2)ve = 0 provides a lower bound on the rank of E;. The second part of
the Theorem states that in the optimal case these bounds coincide and fix the

rank of £».

Theorem 4. Let £ = (Fy, Ea, E2) be an optimal USD measurement for o pair
of weighted density operators & = (y1,72). Then (supp £y nker 1) = (supp £+N
ker ys).

If £ in addition is proper, then supp E; NMkery, = ker & and rank B, =
rank v + dimker §.

(Remember, that the rank of an operator 4 is given by dim(A45#) = dim .# —
dim ker 4, i.e., the number of strictly positive eigenvalues of ATA.)

Proof. Let |¢) € supp &7 Nkery;. Then due to |¢) € supp £y there exists an
a > 0 such that Ey — «|é)}¢| > 0. We define a new USD measurement by
& = (B, Es + a|d¥d|, By — a|did]). From the optimality condition for &,
Le, Faee(E,8) € Fael€,8), we find a{p|y|é) < 0 which only can hold if
~z2|¢y = 0. Since |¢) € supp F?, (supp Fr Mkery1) C (supp - N ker vy2) follows.
An analogous argument holds for the “27 part and finishes the proof of the first
assertion.

From this result by intersection with (ker 71} one immediately finds (supp £+N
kerv) = (supp #7 MkerS). In the case of a proper measurement, however,
supp £y O ker § and hence (supp F» Mker 1) = ker & follows.

Let Ef denote Ey projected onto supp &. Since the measurement is proper,
By — B is the projector onto ker & and supp £v = supp £} & ker §. From the
previous results we have L7 Nker yo = {0} and Ejv# Nker v, = {0}. Then
due to Lemma 16 (Appendix A) if follows ker(yo £5) = ker £} and ker(v; £52) =
ker(E}vs). Hence,

dimker E} = dimker(1:E%) = dim ker (£ ;)
= dim ker(y1 E}2) = dim ker(y1v2),

(13)

where we used that dimker A = dim ker A" for any operator A and that v (1 —
Ef)ye = m(ll — Er)ye = 0. O

3.1 Orthogonal subspaces
An Important consequence of the first part of Theorem 4 is the following

Lemma 5. Let £ = (Eq, Ea, E?) be an optimal USD measurement for o pair
of weighted density operators 8§ = (v1,72). Suppose that 11 is a projector with
TL3# < (ker-yy Msupp &).

Then EN11 =0 if and only of EsIl =11.

Proof. The “if" part follows directly from 0 < IIEII = —IIELII. For the
converse we have supp Fr O EpT137 = (11 — EoID) 5% C ker vy and thus due to
Theorem 4, E,IL# < ker §. But since ker § is orthogonal to IL#, we have
IIE;II = 0. Thus 0 = E>II = II — E5IL O

In particular let ¥; denote the projector onto ker vy Msupp v2. Then neces-
sarily for any USD} measurement 1% = 0 and hence by virtue of Lemma 5,



for any optimal measurement F3*; = Y3 holds. With »4 denoting the pro-
jector onto ker~ys Msupp v we obtain F1¥; = ¥ in an analogous way. These
observations are at the core of the following

Proposition 6 (cf. Theorem 2 in Ref. [11]}. Let 8§ = (vy,2) be a pair of
wetghted density operators. Denote by lgyew the projector onto (ker y14supp v2)N
(ker 2 4 supp v1) and write SV = (Takew 71 Hskews Hakew o Ilskew ) for the pro-
jected pair. Let By and Effkew be two operators satisfying E?kew =L+ (1 -
Hskew)-

Ther Er is an optimal and proper USD measurement for 8, if and only if
EEkov o an optimal and proper USD measurement for S=hev

 In this case, the failure probability for £ of S is the same as for £ of
Sskew}

tr(’h + 72) - PSUCC(Sa S) = tr[HskBW(71 =+ 72)} - PSUCC(SSkeW: SSkew)' (14)

(Note, that (kery1 4+ supp~y2) N (ker 42 4 supp 1) is the orthocomplement of
(311 + ¥9).#°. For the projected pair S#e% the spaces supp (Takew¥1 Tskew) and

supp (Mskewv2skew) are skew, where two spaces o/ and &% are called skew, if
dNBEE={0} =Znwt)

Proof. Due to the discussion leading to the Proposition, for any optimal mea-
surement £ we have £¢lew = £ and hence Mg (1 — £ 1 Tgpew = 11— E?kew.
It follows that 1 — E?ke“’ > 0 and that Maewy1 Hakew (11 — E'?Skew)ﬂskew’ygﬂskew =
0. Furthermore we find due to [Iyew## = ker & that

ker SFV — ker[(v1 + Y2 ) Hakew] = ker Tggow E ker S, (13)

where both terms in the direct sum are orthogonal. This shows that E'?Skew
acts as a projector onto ker S¥. Since obviously E'?Skew > 0 we have shown
that E?Skew is a proper USD measurement for S¥¢%, The converse, namely that
B = E'?Skew — (I — T gew) is a proper USD measurement of S, in fact holds
for any proper measurement F5¥ of $%¢%, This follows from Eq. (15) and by
noticing that for £5kew = (Egkew pekew pekewy the measurement defined by
is given by & = (E5FY 4 31, BEke™ 43 Fy).

In order to show that given Fe, the measurement E'?Skew is optimal, suppose,
that E?ke“” is proper and has a higher success probability than E?ke“’. Then
it is easy to see that E} = Effkew" — (Il — Tgkew ) would yield a higher success
probability for & than Es, in contradiction to the assumption.

On the other hand, since F:ll ey = Fr, any optimal and proper E; mini-
mizes tr{ £y Mapew (71 + Vo) Hskew ). Bub this is minimal for optimal E'?Skew, since
E? - ‘?kewnskeW' O

Proposition 2 and Proposition 6 can be used independently from each other,
in contrast to the original result in Ref. [11]. Proposition 2 and Proposition 6
provide a method to obtain all optimal measurements® for a given pair S by
considering a different pair &’ where dimsupp S > dimsuppS’. This is in
particular useful, if dimsupp &’ < 4, since in Section & we will provide an ana-
lytical solution for any such pair. If dimsupp &' < 2, then the general solution

In the original work [11] it was only shown that one may choose the measurements in that
specific way. Here we showed that all optimal measurements st have this structure.



can already be obtained due to the result by Jaeger and Shimony [6]. Also
the pair &’ might possess a two-dimensional common block diagonal structure
which was not present in the original pair & and allows a solution of the prob-
lem {cf. Ref. [18]; for a simple criterion to detect such structures, cf. Ref. [19]).
Apart from that, using both propositions all optimal measurements can be found
by just considering pairs of states which do not possess any orthogonal (like
supp 1 Mker v2) or parallel (supp 1 N supp 42} components.
The following property simplifies actual calculations.

Lemma 7. With the notations of Proposition 2 and Proposition € let 7y denote
the (non-linear) mopping from S to St and analogously Tawew the mapping from
S to S¥keV,

Then TH o TH == TH; Tskew © Tskew — Tskew and Teskew © TH == TH O Tskew -

Sketch of Proof. We abbreviate 7[8], for v, after the application of 7, ie,
(7[8]1, 7[8)2) = 7[8]. One verifies

supp ) [S], = supp v, Nsupp Iy, (16)
and

SUPP Tekew[S] = supp(ll — )5, (1 — 3y,) (1
= supp v, N ker 4.

From the first equation we immediately get ker 7y[S]; + ker 74[S]2 = #7, i.e.,
7y is acts as identity on 7y [5]. In order to show that Tykew is idempotent one
verifies that supp Tekew[S]1 M ket Taew [S]2 = {0}

Due to supp 74[S]1 Nker 74[S]z = supp y1 M ker v it follows that

(Tskew o TH)[S] = (E’YlE: EFYQE)ﬁ (18)

where 2 = Tlikew !y = Ijllaew. Analogously due to ker Takew [S]1+Hker Tugew [S]2 =
ker v; + ker y5 we have

(TH o Tskew)[S] = (EleEu Ef}’QE): (19)
and thus the third assertion holds. O

As an Important consequence one can apply the mappings 7 In any order
and in particular due to (Tagew © TH,)OQ = Tekew © T}, & second application of both
mappings is never necessary.

The action of 7y on & = (y1,¥2) is non-trivial, if and only if rank(y; +72) <
ranky; + rank~ys. Similarly, the action of 7Tgew is non-trivial if and only if
rank y; > rank-yive or rankye > rankyive. We call a pair of states & strictly
shew, if (Tagew © 7)[S] = 8.

Let us briefly mention a convenient way to construct the mapping Tekew © 7.
As shown in the proof of Lemma 7, we can write

[1]

)y (20)

with 2 = 1 — Il — ¥ — ¥g. Now let (|s1:)) and (|sg;;) be Jordan bases (cf.
Appendix C) of suppvy; and supp-ys, le., orthonormal bases of suppy; and
supp 7z, respectively, such that {six|sax} > 0 and (s15]s9;) = 0 for ¢ # j. Then

8 = (Tekew © TH)[S] = (EE, B



I = >ien Istadsas| and Xy = 3 iy [surfsunl, with &' = {k | {s1p|sox) = 1},
yl = {’L ‘ V_j‘ <812"82j> = 0}j and yg = {_j‘ ‘ i <8h"82j> = 0}

Summarizing Proposition 2 and Proposition 6, if & = (£, £, E}) is an
optimal and proper USD measurement of 8" = (Tugew © 7y)[S], then & = (] +
Y, BL 4+ 2o, Bf — 34 — Eb) is an optimal and proper USD measurement of §.
The optimal success probability computes to

Fauce(8;8) = Fauce(& 8) + tr[(Tn + Do) (11 + 72)]. (21)

3.2 Classification of USD measurements

We want to introduce a classification of the different types of optimal measure-
mentg for USD. Given the dimension of supp &, the classification is according to
the rank of the measurement operators. For a Hilbert space of dimension d, we
consider the optimal and proper USD} measurements £ = (Fq, Fa, F») for pairs
of weighted density operators & = (y1,72). We restrict the analysis to the case,
where Tuew and 7 act as identity on 8, ie., to the case of stricily skew pairs.
Then rank y1v2 = rank~ys = rank~y; = 7 and dimkerS = d — 2r holds. All
optimal measurements with rank 1 = ey and rank I = &3 will be considered
as one type of measurement, denoted by (e1,e2). As we will see in subsequent
sections, the construction method of the known optimal measurement mainly
depends on the type of the measurement. The symmetry of USD for exchanging
the label of 4 and 49 makes it only necessary to develop a construction proce-
dure for the case where e.g. &1 < e3. Thus a measurement class [a,b] with a < b
denotes both measurement types (a,b) and (b,a). We now count the number of
measurement types and measurement classes.

Since we consider proper measurements, we have supp £1 Msupp £z = {0}
and hence e;+e2 = rank({F;+ E») and e, < 7. Let us denote by d the dimension
of the projective part of £, Le, § = dimker(ll — £%). Then e; + €3 +6 = d and
4 < rank F». From Theorem 4 we have that rank £y = r + (d — 2r). On the
other hand, at least ker(1 — E») O ker §,i.e.,d = d— 2r. In summary we arrive
at the constraints

e1<v, e <7, and r<e +e<2n (22)

From the situation where v and 2 have a two-dimensional block diagonal struc-
ture, one can see that for any possible 7 and e which satisfy the constraints
in Eq. (22), one can find a pair & = (y1, 72) such that an optimal measurement
is of the type (21, e2).

Counting the possible combinations to satisfy the conditions in Eq. (22), one

finds
#types = 2(r+ 1)(r+2) and iclasses = | (£ +1)%], (23)

where #types denotes the number of measurement types and #classes the num-
ber of measurement classes. Here we used the floor function, || = max{k €
Z|k<z}

Measurements of the type (21, e2) with e14+e2 = r actually are von-Neumann
measurements. (Obviously there are always 7 such measurement types.) This
can be seen, since then d — v = rankFy > 6 = d —e) —ea = d — 1, e,
rank By = dimker{1l — £%) and hence £» is projective. But then tr £y + tr By =
tr(l — F;) = r = e; + e3 holds. Due to the positivity conditions E, > 0 and



1— E, >0, all eigenvalues of Ey and Es are in the interval [0, 1], and thus in
our situation all eigenvalues are either 1 or 0. This proofs the assertion.

As we will see in Sec. 5.1 and Sec. 5.2, only two measurement classes are
known in the general optimal case — the class [r, ] and the special von-Neumann
class [0,7]. These clagses may oceur for any r > 1 and thus in particular solve the
two-dimensional case {r = 1) and “half” of the four-dimensional case (r = 2).
The remaining two classes {one of which is von-Neumann) in four dimensions
are solved in Sec. 6.1 and Sec. 6.2.

4 The optimality conditions by Eldar, Stojnic &
Hassibi

Eldar, Stojnic, and Hassibi provided in Ref. [17] necessary and sufficient condi-
tions for the optimality of a USD measurement®:

Theorem 8 (Eldar, Stojnic & Hassibi [17]). Let £ = (Fy1, Fa, E¢) be o proper
USD measurement for a pair of weighted density operators 8 = {(y1, 12). Denote
by Ay the projector onto ker~s Nsupp & and by As the projector onto kerv; N
supp&. This measurement is optimal, if and only if one can find an operator Z
such that for p=1,2,

220, ZE, =0, (24a)
AZ —y)AN, 20, and A7 —v,)E, =0. (24h)

In Ref. [17], this statement was only proven for the case ker & = {0}. How-
ever, the generalization presented in Theorem 8 follows immediately from the
original statement.

In Theorem 8 necessary and sufficient conditions for optimality where pre-
sented. However they are not operational, as the existence or non-existence of
Z is difficult to prove. We show in Appendix B, that the unknown operator Z
can be eliminated, and the above conditions can be re-expressed as follows:

Corollary 9. With the preliminaries and notations as in Theorem 8, a proper
measurement £ of § is optimal if and only if

(Ar — Ao) Er (e — 7)) Br (A1 + A2) 2 0 (25a)
(Al — AQ)E? (’}fg — "}’]_)E?(]]. — E?) =0 (25b)

The conditions for an optimal USD measurement are now expressed as a
series of equations and positivity conditions on only E%. Remember the fact
that E» already completely determines a USD measurement (cf. Proposition 3).

The first condition in the above Corollary 9, Eq. (25a), relies on the fact,
that a positive semi-definite operator in particular has to be self-adjoint. Thus,
the condition in Eq. {25a) is only a compact notation for the three conditions

A Fr(ya —y1)FrAy 2 0, (26a)
A Br(y1 — y2)ErAg 2 0, (26b)
A1 Er(ya — y1) B g = 0. (26c)

“Indeed Eldar et al. proved conditions for the optimality of a USD measurement for an
arbitrary number of states.
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{Obviously these conditions are sufficient for Eq. (25a). The necessity follows
from multiplication of Eq. (25a) by QL from the left and &), from the right. Here
@, are the bijective oblique projectors as defined in the proof of Propoesition 3.)

The second equation, Eq. (25b), in Corollary 9 makes a statement about the
projective part of . This is the content of the following

Lemma 10. Let E; be an optimal and proper USD measurement of a pair of

wetghted density operators 8 = (y1,7v2) with supp v Neuppvs = {0}. Denote

by Tlp the projector onte supp Fe and by A the projector onto ker(1l — £4).
Then Er(v2 — y1) B = T2 (42 — 7)1l = A(ye — 11)A.

Proof. Let I1] denocte the projector onto ker &. Then due to supp 1 Nsupp y2 =
{0}, we have (A — Ag)# = (1 —I1, ). Due to II| By, =0, the optimality
condition in Eq. (25b) hence reads £7{ve — v )£ (1 — £2) =0 or

By — ) By = Ey(ya — 1) E2°. (27)

For the first equality we multiply this equation from the right by the inverse (on
its support) of E; and in a second step from the left and obtain the equations

By (e — y)Ile = Er(y2 — m) &, (28a)
2 (y2 — yi)llz = Tz (2 — v1) B2 (28b)

Since the right hand side of the first equation is self-adjoint, the assertion follows.

For the second equality we have E» A = Aand N = E»(11-A) = Fr— A with
NA =0. Thus £, (1—F;) = N{I1-N). But ker(Il - N) = ker(1—E>,+A) = {0}
and hence the optimality condition in Eq. (25b) reads £% (42 — 71 )V = 0. Thus

Er(ya = m)Er = Er(2 —m)A (29a)
Alyz = m)Er = Alye —m)A (29b)

holds, where in the second step we multiplied the first equation by A from the
left. O

Lemma 10 is the key to prove the uniqueness of the optimal and proper
USD} measurement, since due to the identity in Fq. (9) we have seen that any
USD measurement is solely defined by £%{v2 — v1)F7. Hence in the case of
supp 1 Nsuppy2 = {0}, the optimal and proper USD) measurement can be
uniquely determined, given IT;, the projector onto the support of E,. But
since the set of optimal and proper USD measurements of & is by virtue of
Proposition 2 equal to the set of optimal and proper USD) measurements of St
having suppy; Msuppye = {0} (cf. also Lemma 7), it remains to show that
the support of E7 is unique. This follows from the fact that the rank of Es is
fixed by virtue of Theorem 4, together with the convexity of optimal and proper
meagurements. Namely, for any two optimal and proper USD measurements F+
and E‘?, also %(E? +E?) is an optimal and proper USD measurement. But since
E; and B> are positive semi-definite, rank(F»> + E‘?) = rank E; = rank £ can
only hold if supp E» = supp E. Thus we have proven the following

Proposition 11. For a given pair of weighted density operators, there exisits
exactly one optimal and proper USD measurement.
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5 Two special classes of optimal measurements

5.1 Single state detection

For certain pairs of weighted density operators & = (y1,7v2) it may be advan-
tageous to choose tr(Fv) = 0, e.g. if tr{v;) is much smaller than tr(v;). We
refer to this situation as single state detection of vo. In the classification scheme
proposed in Sec. 3.2, the zingle state detection measurements can be identified
with the class [0, 7], where r = dim ##/2.

For a proper measurement, tr(F1v1) = 0 can only hold if already Fy = 0.
If the measurement is optimal then due to Lemma 5, Fy = 0 implies Iy = As.
It follows that B = 1 — Ey — Fs = 11 — Ay is a projector and hence satisfies
the optimality condition in Eq. (25b). Thus the measurement is optimal if and
only if Eq. (25a) holds, i.e.,

A Ey (’yg — ’yl)E?Al = 0. (30)

Let us now assume that supp 71 Nsupp v, = {0}. Then (1 — Ag)A 157 = v.57
and we arrive at the following

Proposition 12. Let £ = (Fy, Es, Br) be an optimal USD measurement for a
pair of weighted density operators & = (v, ve). Then tr{F1y1) = 0 if and only
if y1{ve — 1)1 = 0.

In this case the success probability is given by Fauce(&; 8) = tr(Asye), and if
& is proper, then & = (0,Ag, 1l — A2). (A2 is the projector onto ker v Msupp S.)

Proof. Assume, that & is optimal and satisfies tr(#1v;) = 0. Then also for
the corresponding proper measurement £ = (£, B%, Ef) (cf. Sec. 2.2) we have
tr(F{v1) = 0 and hence v (y2a — w)y = 0 follows. For the contrary, we have
already shown that the if 1 (2 —v1)71 > 0 holds, then the proper measurement
£ =(0,Az, 1 — Ag) is an optimal measurement. But due to Proposition 11, this
is the only optimal and proper measurement. Let now & = (Ey, B, B7) be some
optimal measurement, that is not proper. Then if the projection £, of E; onto
supp S satisfies tr(f1v1) = 0, then necessarily also tr(E1v1) = 0 holds. O

Let us consider the situation, where the success probability for the states
o and pa (both having unit trace) is analyzed in dependence of the a priori
probabhility 0 < p1 < 1 of the state py, while the a priori probability of pg is
pz = 1 — p1. Then the optimality condition in Proposition 12 is satisfied, if and
only if for any |¢) € supp p1,

(1 = p1){elpzle) 2 prielele). (31)

If there exists a |} € supp p1 M ker po with |¢) £ 0, then this condition cannot
be satisfied for any p1 > 0. But if we assume supp p1 Nker po = {0}, single state
detection of peps i optimal if and only if O < p; < £y, where £ is given by

(with |@) € supp p; and {plp) = 1)

i | #leele) XM
gl_lw{(sol(erﬂz)lso)} T h (32

where (,/p1 ~ denotes the inverse of \/p1 on its support)

M = min (VA pavT 1) (33)
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The minimum in the expression for A1 Is given by the smallest non-vanishing
eigenvalue of the operator \ /1~ pe./p1 ~ (remember, that we assumed supp g1 N
ker po = {0}). Note that A; > 0 and hence there always exists a finite parameter
range for p;, where single state detection of % is optimal.

An analogous construction yields €5, such that single state detection of v is
optimal if and only if 0 < py < 5.

5.2 Fidelity form measurement

An upper bound on the optimal success probability of USD was constructed
by Rudolph, Spekkens and Turner in Ref [9]. Let |v,Xv.| be a purification
[20, 21] of =, l.e., a positive semi-definite operator of rank1 acting on an ex-
tended Hilbert space 4 @ 5%, such that the partial trace over 4%, vields
back the original weighted density operator, traux [, 4v.| = ¥u- Since the par-
tial trace can be implemented by physical means, the optimal unambiguous
discrimination of & = (v1,72) cannot have a higher success probability than
SPY = (v ){v1l, |v2Hv2]). But SPUF is a pair of pure states, for which the op-
timal success probability is known due to the result by Jaeger and Shimony
[6]. The map from & to SP™, on the other hand, can only be performed phys-
ically in very special situations [22] and hence the success probability of SPU
in general only ylelds an upper bound. This bound is strongly related to the
Uhlmann fidelity tr|,/p1,/p2| of ;1 = v/ tr(y) and pa = va/tr(y2) (23, 24].
The Uhlmann fdelity is the largest overlap between any purification of both
states g1 and pa. Dhue to this relation the bound was named fidelity bound [13].
In Ref. [13, 14], necessary and sufficient conditions for the fidelity bound to be
optimal where shown and the optimal measurement was constructed. In this
section we summarize and extend these results.

We continue to assume supp v Msupp y2 = {0}. Herzog and Bergou showed
in Ref. [13] that the fidelity bound can be reached only if E7{v — v )E, = 0.
(From Corollary 9, it is obvious that any such measurement is optimal.) But
due to FEq. {9) we find that any measurement with Fo(ve — v1) £ = 0 is given

by

By =TI+ (m+72) " {nve + % + v + vy ez (n 4+ 1)~
=1-(n JF’Y?)_{\/'H(% — B+ ey — FQ)\/’E}(’}@ + 7)),
(34)

where we abbreviated Fy = ./, /A172/71 and Fy = |/, /7271./72- The converse

is alzo true:

Lemma 13. Let & = (y1,72) be a pair of weighted density operators with
supp 1 Nsuppye = {0} and let £ = (F1, Fa, Fy) be a proper USD measure-
ment of S. Then Eryoll; = Eyyvi By if and only if E» is given by Eq. (34).

[{34

Proof. It remalns to show the “if”7 part. First we multiply the identity

m+r)n+r) n=nn (35)

from left by @1 as defined in the proof of Proposition 3, ie., )1 is the bijec-
tive oblique projector from ker v M supp & to supp 1. We then obtain due to
Lemma 18 (cf. Appendix A) that v1{v1+72)"v1 = v1 and thus v {y1+7) "7 =

13



0. (One can show that v1(v1 + v2)~ = @1.) From the polar decomposition of
V12, it furthermore follows, that there exists a unitary transformation U,

such that /1Yl = I (and hence U, /77,/72 = F», cf. also Ref. [14]). Thus

Erym =+ 727 0+ v2vn + vVnlVnvel) + 0}
= (n + 1)~ WeUvivE' + 1yl (36)
- E?\/%Ua

i.e., we have Foy By = Foya Es. O

We refer to the measurement characterized by Lemma 13 as fidelity form
measurement due to the appearance of the operators F; and Fs, which satisfy
tr|\/Fi/T2l = trIh = trFy. According to the classification in Sec. 3.2, the
fidelity form measurements are a (strict) superset of the measurement class
[r,7], with » = dim ##/2. (This can be seen from Lemma 10: in the class [r,7]
we have dim ker{1l — £»} =0 and hence in particular £ (va — 71 )Er = 0.)

Unfortunately, it is very rare that the operator given by Fq. (34) is part
of a valid USD measurement. The following Proposition states necessary and
sufficient criteria.

Proposition 14 (cf. Theorem 4 in Ref. [14]). Let & = (v1,7v2) be a poir of
weighted density operators with suppy; Nsuppye = {0}. Then there exists a
proper USD measurement & = (B, Ea, £2) of § with Yy given by Eq. (34) if
and only if y1 — \//1v2/ 7 2 0 and 2 — /e /e > 0.

If the measurement exists, it is optimal and the success probability is given

by Paueo(£,8) = 1 — 24| /A1 /72l

Proof. Due to the properties shown in the proof of Lemma 13, for E; given by
Eq. (34) we have v (11— E» )y = Oand | /A (1—E7), /7y = vu—F). Furthermore,
one can write By = I1| 4+ AA" with (cf. Ref. [14])

A=(ntm) (Vi -+ v RU)V, (37)

where U/ 1s a unitary transformation originating from the polar decomposition
V72U = Fi (cf Lemma 13).

Due to these properties, the necessary and sufficient conditions on % shown
in Proposition 3 reduce to the assertion of the current Proposition. O

If the criterion in Proposition 14 is not satisfied, then the optimal measure-
ment cannot, be of the form as given by Eq. (34). Thus by virtue of Lemma 13,
£4(vo —71)F2 # 0 holds and using Lemma 10 we have that ker(1 — F») 2 ker 8.
But due to Eq. (12) it follows that ker(ll — E%) contains at least one vector
either In supp ¥; or in suppyz (cf. Corollary 1 in Ref. [16]).

Similar to the discussion of the single state detection measurement in Sec 5.1,
we ask for the values of the a prior: probability 0 < p1 < 1 of py, for which
the fidelity form measurement is optimal. The first condition in Proposition 14,
v — F) = 0, is satisfied if and only if for any |} € supp 1,

prielpile) 2 /p1(1 — pr){elRile) (38)
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holds, where we abbreviated 1 = /,/p1p2+/p1. Thus v1 — F1 > 0 if and only

if my < p1 < 1, where my is given hy

%
= 39
ey 1+ M%: ( )
with g the maximal eigenvalue of /o7 ~ H1./p1 —. With an analogous construc-
tion we get that v — Fp > 0 if and only if mg < pa =1 — p1 < 1. Then

myp < p1r <1 —mg (40)

is the region where the fidelity form measurement iz optimal. Note, that this
region 1s empty when mq + mo > 1.

In summary, single state detection is optimal if and only if {(v% — FZ < 0) or
(v2 — F2 < 0)}, while the fidelity form measurement is optimal if and only
if {(p —F1 = 0) and (v2 — F2 > 0}. The situations, where the optimal
measurement Is neither a single state detection measurement nor a fidelity form
measurement seems to be related to the gap between “A > B” and “A? < B#”
for positive operators 4 and B. In the pure state case, however, 4 and B are
of rank 1 and hence this gap does not exist. Indeed, in the pure state case,
p3 = pi = tr{p1p2) = A = Az (where A, and #,, were defined at the end of
Sec. 5.1). Thus ¢; =my and f3 = ms and hence either the single state detection
or the fidelity form measurement is always optimal. This is exactly the solution
for the pure state case, as given by Jaeger and Shimony in Ref. [6].

6 Solution in four dimensions

In this section we reduce the candidates for an optimal and proper USD) measure-
ment for the case where dimsupp § = 4 to a finite number. These candidates
are obtained by finding the real roots of a high-order polynomial.

Due to Proposition 2 and Proposition 6, it is sufficient to discuss the case of
strictly skew pairs & = (v, 72) with ker & = {0}, i.e,,

supp y1 Msuppyz = {0}, keryy NMkerye = {0},
suppy; Nker~s = {0}, and ker~y Maupp v = {0}

(41)

Then, following the discussion in Sec. 3.2, there are six types of optimal USD
measurements which differ in the rank of the measurement operators Eq and
E5. We list these possible types in Table 1.

The measurements of the class [0,2] and the class [2, 2] where already ex-
tensively discussed in Sec. 5.1 and Sec. 5.2, respectively. For the class [1,2], the
kernel of {1 — £») is one-dimensional. We will consider this class in Sec. 6.1. In
the remaining case, where rank Iy = 1 = rank Fg, the measurement is a von-
Neumann measurement (cf. Sec 3.2). An example of this kind of measurement
was first found in Ref. [16]. Sec. 6.2 is devoted for a general treatment of this
class.

6.1 The measurement class [1,2]

In this class the dimension of ker{1l — £7) is 1. According to kq. (12), this kernel
is either contained in suppy; or in supp-ys. Here we focus on ker(ll — £») <
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Table 1: Possible ranks of the measurement operators of the optimal USD mea-
surement in four dimensions {cf. also Sec. 3.2).

rank Fy | rank Fo | rank > | dimker(ll — F») | class | of Sec.
0 ) ) 7 0.2] | 51
1 2 2 1 2] | 61
2 2 2 0 (2, 2] 5.2
1 1 2 2 1.1 | 62
2 1 2 1 [1,2] 6.1
2 0 2 2 0,2 | 5.1

Supp 71, i.e., to the measurement type (1,2); the case of ker{ll — F¢) < supp o
follows along same lines. Thus there exists an orthonormal basis (|4}, [¢)) of
supp 1, such that

By = vinn| + |$)él, (42)

with |n) some normalized vector, orthogonal to |¢} and 0 < v < 1.

6.1.1 The necessary and sufficient conditions

Drue to Proposition 3, the operator in Eq. (42) is a valid USD measurement, if
and only if v (1 — Er)ve =0, ie.,

KT ve = vy |ndnlye (43)

holds. This Is equivalent to
nln) = amlét) and  yaln) = belét). (44)

where a = (¢ |n) and b = (v{n|¢")) 1. Remember, that due to Theorem 4 we
have |n} ¢ ker v, ie., {n|¢') # 0. On the other hand, from v < 1 it follows
ab® > 1 and thus |n} ¢ span{|¢L}}, ie, |n} & suppy1. Given |¢), we choose
the phase of |#) such that {n|¢') > 0.

The conditions in Corollary 9 can now be reduced to simple relations. By
multiplying Eq. (25b) from the left with |- Y& (A1 — A2) 1, this first leads to

{nfy2 = ln} = 0. (45)

Now it is straightforward to see that the conditions in Eq. {(23) are equivalent
to

Eo(y2 — 1)) =0, and (46)
{¢l72 — 1l¢y = 0. (47)
By virtue of Eq. (44), we can re-express Eq. (46) in terms of |¢) and |¢+),

vielding
@ mlt) gt [val ) = o/ (e rele ) (@t malé),  and (48)

_ <¢’Lh’2‘¢i> (49)

b\ el mlety
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The last equation enables us to construct v|n}n| from

Vilnd = Vol + ) T + ed|n)
= Vil + 1) Moy + bye)|¢h) (50)
- K‘QBJ_)a

where In the last step we used +/abr = 1 and we abbreviated
K=(n+yw! (\/ a/by + b/a’YQ)- (31)

But due to Eq. (49), +/a/b is given in terms of |¢) and |¢1). Note, that K has
full rank and hence ensures v = {¢-|KTK|¢1) > 0.
We summarize: The optimal USD measurement is of type (1,2) if and only if

there exists an orthonormal basis (|}, |¢)) of supp i, such that the conditions
in Eq. (47), in Eq. (48) and {¢|KTK|¢t) < 1 are satisfied.

6.1.2 Construction of a finite number of candidates for F-

In the following we will show, that already Eq. (48) reduces the possible can-
didates of span{|#}} to a finite number and hence the remaining positivity
conditions can be easily checked. Hq. (48) is a complex equation. Thus the
absolute value and the phase of the left hand side and the right hand side have
to be identical. This leads to

(Blrald™ Y eld) (@ Imleh) = (gmld He nlg) e ele), (32
(& albidlnlet) = 0. (53)

Let {|s1},[s2}) be an orthonormal basis of supp 71, such that v1|s;) = g15/s;)
with g11 > g12 > 0. We abbreviate g2; = {s;|v|s:} > 0, g, = g1 — gue, and
a3 = {s1]7a|s2). We ensure go3 > 0 by choosing a proper global phase of |s3}.
In the case g1 = 0 we use a basis where g2z = 0.

First we consider, whether |s1) or |s2) is a candidate for |¢). In either case,
Fq. (48) can only be satisfied, if gos = 0. From Eq. (47) we find that |s1) is a
candidate only if go1 > g11 and analogously, |s2} only if gag > g15.

We now assume that neither of the above two cases 1s optimal. Then any of
the remaining bases (apart from global phases) are parametrized by

|6 = (1+ 227 (|s1) + 26¥s2)), (54a)
) = (1422 (ze sy} — |s2)), (54b)

where z £ 0 is real and —% < & < 3.
Using these definitions, Eq. (53) can be written as

g1gassind =0 and  zgy(zgs + gas(z® — 1)) = 0. (55)

Let us first discuss the case where gos #£ 0. In this situation we get® from
FEq. (55) the phase @ = 0. The solutions of Eq. (52) are given by the real roots
of the polynomial of degree six in z,

5929% (332921 + go2 — 23g93) — (292 + (592 - 1)923)2(592911 +g12) = 0. (56)

SRemember, that we chose our basis such that goz # 0 implies g # 0.
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(Since g33g12 > 0, this polynomial cannot be trivial.)
It now remains to conszider the special case, where gos = 0, but neither

|¢} = |s1) nor |¢) = |so} is optimal. If go3 = 0, then Hq. (52) reads
2*(gigo1 — g3011) = o012 — Gi G20 (57)

Agsume that this equation has some solutions where z is real (there might be

infinitely many). None of these solutions leads to an optimal measurement,

as we exclude by the following argumentation. Neither Eq. (47) nor Eq. (53)

depend on #. From the necessary and sufficient conditions for optimality (cf.

end of Sec. 6.1.1), only the condition v = {¢+|KTK|¢) < 1 remains to be

satisfied. Since Eq. (49) does not depend on @, also K is independent of 4.
Thus v as a function of # is of the form

v() = (1+2%) 7 (2611 — 2z Re(e Prya) + r2a) (38)

where we defined #;; = <si|KTK|sj). In particular this function is continuous
in 9. Assume, for a given z # 0 (satisfying Eq. (47) and Eq. (48)), there exists
some —w/2 < ¢ < 7/2, such that v(#) < 1. Then there exists an ¢ > 0, such
that also 94-¢ < 7/2 and v(¥+¢) < 1. Hence for # as well as 94-¢ all optimality
conditions would be satisfied. But for both values, we get a different vector |4}
and hence there would be two different operators F:, both being optimal. This
is a contradiction to Proposition 11. Tt follows that for gas = 0, only ¢} = |s1)
and |¢) = |s2} can yield an optimal solution.

6.1.3 Summary for measurement type (1,32)

Let us briefly summarize the algorithm to obtain the optimal measurement F+
for the case where rank F1 = 1 and rank £5 = 2.

We construct some basis (|s1},|s2)) of supp 71 as described in the paragraph
below Eq. (53). Tn a next step, we construct candidates for the basis (|¢}, [¢1)).
There are two cases:

(i) gas = 0. If goy > gu1, then {|¢) = |s1),|¢) = |s2)) is a candidate. If
gao 7 19, then (|¢) = |sa), |¢5L> =|s1}) is a candidate.

(i) gos #£ 0. For any real root = # 0 of the polynomial in Eq. (56), the basis
(|, |p1}) as defined in Fq. (54) is a candidate, where 9 = 0. A candidate
in addition has to satisfy the second part of Fq. {55} and Eq. {47).

For any of the candidate bases (if any), we construct ,/v|n) using Eq. (50).
At most one of the bases will satisfy v = \/v{n|n)/v < 1. If such a basis exists,
the optimal measurement is given by Eq. (42).

6.2 The measurement class [1,1]

In Sec. 3.2 we have already seen, that if rank #; + rank £5 = rank v (= rank v},
then both £} and s are projectors. Hence there are orthonormal bases (|21}, |41 ))
of ker o and (|2}, [15)) of keryq such that

By = |[p1)br] and  Ep = |2 }tal. (59)
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Since Il — £ — F5 > 0, necessarily {¢1]¢s) = 0 must hold. Using this notation,
Fq. (26) is equivalent to

([ oho) | (al o) = (ot o) (602)
o) | (| by > (b eabd) (60b)
(g [obr ) (b |y [Wa) = {walbi) (aba | elaf), (60c)

while Fq. (25b) is satisfied identically. (Note that these equations only follow if
all vectors are normalized.)

6.2.1 Construction of a finite number of candidates for F-

Let (|k1:)) and (Jk2:}) be Jordan bases (ef. Appendix C) of ker+; and ker s, i.e.,
{|k1:)) and (|ks;)) are orthonormal bases of ker v and ker o, respectively, such
that (kq;|kos) > O and for ¢ # 7 one has (k1:|k2;} = 0. Due to our assumptions in
Eq. (41) we have 0 < {k14|kos} < 1. We choose (k11|k21) = {k12|kez). In case of
degenerate Jordan angles (i.e., (k11]ke1) = {k13|kaz2)), these bases are not unique
and we then choose bases, such that (ka1|y1|ke2} = 0. We abbreviate

gui = (kailmalkas), g2 = (FaelvelFrs),
915 = [{kar|7alka2)], 923 = [ (k1 ralkua)], @)
Gp = Gul — Gu2,

and choose the global phases of the vectors [k12) and |ksz) in such a way that
still <k12“ﬂ22> >0 but also glgew = (kgl"‘}’l‘k22> and 923672(‘0 = (kll"‘}’g‘k12>,
with 0 < ¢ < m. Welet ¢ = 0 if g13 = 0 or gog = 0. Finally we define
¢ = {kia|koz)/ (k11| ko).

After choosing the Jordan bases, let us first consider the case where |91} =
|kz1). Then one has (fixing the phases) |2} = |kia), [0} = |kao), and |z ) =
|k11}. Eq. (60c) reduces to ages = g13 and sing = 0. Analogously, in the case
|11} = |kaa}, we obtain eg1s = ges and sing = 0.

We now consider the case, where |31} is not one of the basis vectors |ke;).
We fix the global phases of |¢,) and |7,bi‘> and choose the paramstrization

1) = (1 + 22)7% ([ + 2™ |kean)),
by = (1+ 2%~ 2 (i’«"e”ﬂ|k2'1> — |kaz}), (62)
|tha} = (14 8212)77(7167“96%11) + | k12)),

) = (1+ 2% 3 (—[kn1) — 26¥ | k1a)),

with the real parameters ¢ #£ 0 and —7/2 < @ < 7/2.
Using these definitions, Fq. (60c) reads

(z*c +1)° (9391 — ! gy 4 932671'(?”"0)913) =
c:(s*:2 + 1)2 (sccgg — ei(ﬂ_“o)ggg + zgcge_i(ﬁ_"o)g%) (63)
The imaginary part of this equation gives

(5':202 + 11+ 332)
(@2 + D sin(@ + @)g1s — (1 +2) sin(d — @)egos] =0, (64)
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which can only hold if already the term In square brackets is zero. This is the
case if and only if

Aisind = A cosd, (65)

where
A = (0(1‘2 + 1)gas — (33202 + 1)g13) cos g, (66a)
Ay = (c(z® + Dgos + (2%¢% + 1)g13) sin . (661)

In order to get the solutions of Eq. (63), we consider now its real part,

(5':202 + 1)2(1‘91 + cos(? 4 ©)g13 (332 —1)) =
c(s':2 + 1)2(5':092 + cos(¥ — (10)923(55‘262 —1)). (67)

Using the abbreviations

By = (22 +1)%zg; — e(a® + 1) zegs,
By = [(33262 + 1)2913(1‘2 1) - c:(:n:2 + 1)2923(1‘202 — 1)] cos @, (68)
By = {(:L"Qc2 + 1)2913(552 1)+ c(a:2 + 1)2923(55‘262 — 1)] sin ¢,

we get the equivalent expression
By = Bssin® — Bacos . (69)

Taking the square of this equation, multiplied by (A% + 42), we obtain due to
Eq. (65) the polynomial (with a degree of at most 8 in #2)

B3(A3 + A2) — (A1Ba — A2 B3)* = 0. (70)

This polynomial is trivial if and only if g13 = gos = 0. (In order to see
this, we consider the highest and lowest order term, which only can vanish,
if —(cqis — g23)?cos @ = (cg1s + go3)?sin® @ and if —(cges — g13)% cos® @ =
(cgas + g13)° sin” ¢, respectively. But due to our particular choice of the bases,
this can only hold if already g15 = g2z = 0.) It is straightlorward to see, that in
this case none of the conditions in Eq. (60) depend on ¢. Now suppose there is
a solution of these conditions with z £ 0. Then any poszible value of ¢ leads to
a. different, but optimal measurement, in contradiction to Proposition 11.

In any other situation we get from Eq. (70) a finite number of real solutions
x # 0. The corresponding value for 9 can be obtained as follows. Tf 4; £ 0,
then from kq. (65) we have ¢ = arctan(4s/4;), while if 43 = 0 and A5 £ 0,
then ¢ = —w /2. If 43 = As =0, then sinp =0 and

1 _
22— 1cgas 913J (71)
g1 — 423

where from 2 > 0 it follows that (cgas — g13)(cg13 — ge3) > 0. From Eq. (69)
we have

2cos? 13023 (6923 - 913) = 10(93391 — 9%392): (72)

which can be used in order to obtain 9.
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Figure 1: Optimal success probability of the states given in Fq. (73), depending
on the relative probability p; of the occurrence of p; (solid line). The dashed
lines denote the success probability of single state detection (lower bound) and
the dotted line corresponds to a simple upper bound. In brackets we denote the
measurement types as defined in Sec. 3.2.

6.2.2 Summary for measurement class [1,1]

In a first step we construct Jordan bases as described in the first paragraph of
Sec. 6.2.1. Then we collect candidates for the bases (|2;), [2b:)):

(i) If sing = 0 and cgas = @13, then (|91} = |ka1), [¥1) = |ke2}) and (|2he) =
\k12), [4ba) = |k11)) is a candidate.

(ii) Ifsing = 0 and cg13 = ges, then (|¢h1) = |kao), [¥97-) = |ko1}) and (|ahe) =
\k11), |[4ba) = |k12)) is a candidate.

(iii) For any root x # 0 of Eq. (70), we get a unique value for ¢ from Eq. (65)
(if A1 #£0or As #0) or from Eq. (72) (if Ay =0and 4; =0). If 4; #0
or A # 0, then in addition Eq. {69) has to hold. For each (z,d), we
obtain the candidates from Eq. (62).

At most one of the candidates will satisfy Fq. (60a) and Fq. (60b). If such

a candidate exists, the optimal measurement is provided by Eq. (59).

6.3 Examples

We want to discuss a few examples of USD in four dimensions, which demon-
strate the structure of the previous results. We consider three examples which
belong to case (vi) in the flowchart (Fig. 3), i.e., the considered states are strictly
skew. In Fig. 1 the optimal success probability of the two states

1 000 11 10 12 10

1{o 2 0 0 1 (10 10 10 10
m=zl0 00 o] 2 =712 10 14 10| (73)

000 0 10 10 10 10

is given in dependence of the a priori probability of p; of py (solid line). Follow-
ing the results of Sec. 5.1 and Sec. 5.2 we can directly calculate the probability
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Figure 2: Optimal success probability depending on the relative probability py
of the ocourrence of p]. (A): A “random” example (B): An asymmetric example,
cf. Eq. (74). In brackets we denote the measurement types as defined in Sec. 3.2.
For details see text in Sec. 6.3.

range where single state detection (class [0,2]) and the fidelity form measure-
ment are optimal (roughly class [2,2]). The remaining optimal measurements
belong to the classes [1,2] or [1,1] which are chtained by following Sec. 6.1
or Sec. 6.2, respectively. We alzo plotted the “bound triangle” which can be
easily calculated for any pair of density operators. The lower bounds corre-
spond to single state detection (dashed lines) and the upper bound connects
the points where single state detection stops being optimal (dotted line). The
latter one is an upper bound due to the convexity of the success probability
function Fayee(p1).

The next example (Fig. 2 (A)) was found by generating “randomly” pairs of
density operators. The data of the states is available as supplemental material.
This example shows that the measurement types (1,1), {1,2), and (2,1) can
appear in more than one probability range. This is not possible for the other
meagurement types. It is also an example for a pair of states, where all possible
measurement types can be optimal in some probability range.
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Figure 3: Flow chart of a generic strategy to solve/reduce the USD of two mixed
states. For details see text in Sec. 7.

The lagt exarmple (Fig. 2 (B)), given by

= (g + 2—52) jox0l + (g - 2—52) 11,

5 41
.'} _ .
oy = —46|’U><’U| + 4—6|w><w|, with

) = 575 (0 (VB +20B0) + (VE -2vB)D)) +2vT5(2) +2)

[y = == (((~1)4/24)*]0) + (~L)17/24[1) + 2v/2(~1)/%]2))

(74)
iz devoted to show that there is no deeper general structure which optimal mea-
surement classes can be connected with each other. Here, the fidelity form mea-

surement directly follows the single state detection measurement. This example
alzo shows a high asyrmetry in the success probability function FPoy..(pi ).

7 (eneral strategy

In this section we want to surmmarize the known results for the unambiguous
digcrimination of two mixed states by suggesting a strategy in order to find the
optimal success probability, of. Fig, 3.

In step [i] we check whether the pair of weighted density operators & =
(y1,72) s strictly skew. A pair & is called strictly skew, if supp 1 Nsupp 2 = {0}
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and suppy; Mkerv = {0} = kery; M suppye. If the pair fails to be strictly
skew, one can use the reduction method described in the discussion of Lemma 7
(Fig. 3 [ii]). After this reduction, it suffices to find the optimal measurement &’
of the strictly skew pair &'.

From now on we assume that the states are strictly skew. In the next step
(Fig. 3 [iii]) we check with the commutator criteria shown in Ref. [19] whether the
two states have an at most two-dimensional common block diagonal structure.
If this is the case in Ref. [19] it was shown how to construct diagonalizing Jordan
bases, which then can be used to compose the optimal measurement from the
pure state case (Fig. 3 [iv]), as shown in Ref. [18, 19].

For states without an at most two-dimensional common block diagenal struc-
ture, optimality of one of the two generally solved measurement claszes, i.e., sin-
gle state detection (Proposition 12) or the fidelity form measurement {Propo-
sition 14), can be checked (Fig. 3 [v]). Otherwise the optimal measurement
can be calculated if the two states act on an effective four-dimensional Hilbert-
space {dimsupp S = 4). Here the optimal measurement of the two remaining
measurement classes [1,2] and [1,1] can be calculated and checked according
to Sec. 6.1 and Sec. 6.2, respectively (Fig. 3 [vi]). In principle one could also
find optimal measurements of states which have a four-dimensional common
block diagonal structure, because the four-dimensional solution (Sec. 6) in each
block would lead to the optimal measurement. Unfortunately, there is so far
no known constructive method to identify such blocks. This question is left for
further investigations.

The last possibility 1s to check optimality of upper and lower bounds on
the optimal success probability (Fig. 3 [vii]). Examples of such bounds were
presented e.g. in Refl [0, 13, 14, 25]. For some of these bounds, optimality
conditions are known, while in the remaining cases one can use Corollary 9 in
order to check for optimality.

If the procedure sketched here faills to deliver the optimal solution then there
is up to now no systematic method known to find an analytic expression for the
optimal USD) measurement.

8 Conclusions

We analyzed the unambiguous discrimination of two mixed states g1 and pg and
the properties of an optimal measurement strategy. We first showed (cf. Propo-
sition 3) that any unambigucus state discrimination measurement is completely
determined by the measurement operator Iy, the operator which corresponds
to the Inconclusive measurement result. A further analysis for optimal mea-
surements showed (cf. Theorem 4) that the rank of E: iz determined by the
structure of the input states, rank ¥y = rank p1ps.

This fact leads to one of our main results, namely, that the optimal measure-
ment for a given pair of mixed states and given a priorz probabilities Is unique
{(cf. Proposition 11). This uniqueness might have interesting consequences, e.g.
in the analysis of the “complexity” of the optimal measurement. Interest-
ing questions here are whether the optimal measurement is von-Neumann or
whether the optimal measurement is non-local, ag e.g. discussed in Ref. [26].

Eldar et al. in Ref. [17] provided necessary and sufficient conditions for a
meagurement to be optimal, but in many situations this result was not opera-
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tional. We simplified these optimality conditions in Corollary 9, which now can
be applied directly to a given measurement.

As an application of this result, we analyzed the single state detection case,
where the measurement only detects one of the two states. Although this mea-
surement may seem to be pathological, it turns out to be always optimal for a
finite region of the a priori probabilities of the states. We derive an analytical
expression for the bounds of this region.

Finally, we constructed the optimal measurement for the unambiguous dis-
crimination of two mixed states having rank p; = 2 = rank ps (due to a results
by Raynal et al. in Ref. [11], this construction can be extended to the case where
one of the density operators has rank 2 and the other state has arbitrary rank).
The solution splits into 6 different types. Although in principle this sclution is
analytical, in certain cases the roots of a high order (up to degree 8) polynomial
are needed. Due to the complicated structure of this solution It may turn cut
to be quite difficult to analyze the next step, namely the discrimination of two
mixed states with rank p; = 3 = rank p3.

It would be interesting to find strategies in order to detect symmetries
and solvable substructures in unambiguous state discrimination, e.g. to find
4-dimensional common block diagonal structures, analogously to the result for
2-dimensgional common block diagonal structures in Ref. [19]. Also, there are
only a few results on the optimal unambiguous discrimination on more than
two states [27, 28, 20, 30, 17]. We think that several concepts presented in this
contribution may also generalize to the discrimination of many states.
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A Appendix: Technical statements

The following two Lemmas are very basic. We put them here for completeness,
but without a proof.

Lemma 15. Let of, % and € be subspaces of 2 with o 1| € and & 1 %.
Then o N(B+%) == NAE.

Lemma 16. Let A and B be operators on # with B# Nker A = {0}. Then
ker AB =ker B.

The useful Eq. (12) is based on the following

Lemma 17. Let X be an operator and (1) be a family of projectors with
ker(37, I1x) = {0}. For k # 1, assume that 11, X1I; = 0. (Note that 1111; # 0
is allowed.). Then ker X =37, (ker X NII;5).

Proof. The 37 part is obvious. For the contrary let |$) € ker X. Then there
exist vectors |@r) € Ilx S such that |$) = 37, |wr). We have

D X |ew) = e X|pg) = T X|B) = 0. (75)
7
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Since >, Iy has a trivial kernel, it follows that X|eg} = 0, Le., |¢r) € ker X.
O

The following Lemma lists properties of non-orthogonal projectors, i.e., idem-
potent operators which are not sell-adjoint. Such operators where considered
e.g. in Ref. [31, 32]. Our notion here differs slightly from the original definition,
as we require the projector to be one-to-one. Kach of the statements (i) — (iv)
is a valid definition for the bijective oblique projector, where (ii) is the formal
definition, (iii) is an explicit construction and (iv) are the central properties for
our purposes.

Lemma 18. Let A and 11 be two (self-adjoint) projectors on ' with A## N
()L = [0} and (A#)E NT1# = [0}, For an operator @ the following

statements are egquivalent;
(i) Q is the {unigue) bijective oblique projector from A% to T157.
(i) Q? = Q, Qi =114 and ker @ = ker A,

{wi) () is the Moore-Penrose inverse of AIL

(tv) QA =Q, TIQ = Q, AQ = A and QI =1I.

Proof. (i) formally defines (i). In order to show that (iii} follows from (ii),
we write (J in its singular value decomposition, ¢ = > g;|m;¥As| with ¢; > 0
and (|7} and (|A;}) an appropriate pair of orthonormal and complete bases of
I15# and AS#, respectively. Then Q% =  is equivalent to {Ag|ms) = qk_l and
{(Adlmsy =0 for i # j. Since All =37, g;l\)\i)(mh it immediately follows that Q
is the Moore-Penrose inverse of ATl

From the explicit form of the Moore-Penrose inverse, Q = 3, Ol sy Al
one easily verifies the properties in (iv).

We have from (iv) that Q# = [IQ# C IL# = QIL# C Q# and hence
QA = IL# and analogously ker Q@ = (QT42)1 = (A#)" = ker A. Finally,
@ = QIQ) = (QMQ —TIQ = Q. .

B Appendix: Proof of Corollary 9

B.1 Necessity
Let us abbreviate i =3 —p, 2, = A, ZA, and Y; = A, ZA ;. From Theorem 8

it follows that for any optimal measurement we have (= 1,2)

= Myl 20, (T6a)
(Zy — Ay By =0, (76D)
and
Zu(bp — Bp) = YaEgh,, (T7a)
Ya(ha— Ep) = 2, B0, (77h)
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where the last two equations follow from A ZE»A, =0 with Iy =1 - L, — FEp.
From Z > 0 we have Z,, > 0 and Y; = Y;{. We find

Ly — My = (A# - En)(Z.u - ’Yﬂ)(AM - E.u)
= A#EﬁYg (Ap—Ey) — (A — Ev(Ay — Ey)

= NeEpvaBph — (A — Bgvu(Ay — B) ™
— A BBy — A By Er A,
Thus Eq. (26a), Eq. (26b) follow from Eq. (76a). From Eq. (76b) we have
A B (v — 7)o B, = 0. (79)
Combining Fq. (77a) and Eq. (77h) we obtain
Yoy = Zu B gy + 2, (A — Ey) (80)

and hence from Eq. (77a) and due to Fq. (76h),

ApZu by — Ey) = (YHAﬁ)TEﬁAH
=N EpvaEahy + (Ag — Eg)vaEph, (81)

Az
Aﬁ(AH - EH)Z#(AH - E,u) + (Aﬁ - Eﬁ)’YﬁEﬁAw

where in the last step we used the result from Hq. (78). Thus we have found
AgE v (A, — B ={Az — Eg)vaEpd,, e, Eq. (26¢) follows.

This equation together with Fq. {(79) for 1 = 1 and p = 2, finally yields
Fq. (25h).

B.2 Sufliciency
We first get rid of the non-skew parts of &:

Lemma 19. With the definitions and preliminaries as in Proposition 6, if E
is o proper USD measurement of & and sotisfies Fg. (25) for S, then E'?Skew =
E7 + (I — Iakew) 15 a proper USD measurement of S¥V and satisfies Eg. (25)
for Stkew

Hence, if we further show, that from the second part of the Lemma, it follows
that E5Ke™ is optimal for %% then we have due to Proposition 6, that also
E; is optimal for S.

Proof of Lemma 19. We denote by ¥4 the projector onto supp v M ker v2, by
Y5 the projector onto supp s Mker v and by I, the projector onto supp .
Then multiplication of Eq. (25a) by ¥, yields

YaFryeEr Y — B Eey Er¥H > 0. (82)

Since for a USD measurement [Ty Fovs = II17vs, we have 314 = 0 and only the
second term remains, which henceforth must vanish. This yields |/A7F>3; =0
or equivalently 13 E>¥, = 0. A further multiplication from the left by ¥ to-
gether with the property F > 0 proofs that E+*4 = 0. An analogous argument
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can be used in order to show FE:*s = 0. Now, following the same lines of ar-
gument ag in the proof of Propoesition 8, it follows that E?kew is a proper USD
meagurement, for S5k,

From I»¥,, = 0it in particular follows that £ (yo—y ) Ee = 2k T aeew (Yo —
fyl)HSkewE'?Skew. Using
ker Takew Vullskew = ker v, (1 — 2,) = 2,5 E ker vy, (83)

it is now straightforward to show that F55% satisfies Eq. (25) for S5kew, O

It remains to consider the case where supp virker vz = {0} = supp ~yzrker ;.
We define R, to be the bijective chlique projector from ker yg to kerv,. Note
that R, = RE. We furthermeore denote by @, the bijective oblique projector

from ker-y; Msupp & to supp v, N (keryy + ker v2). Then the multiplication of
Eq. (25b) by QL from the left and by @, from the right yields

A By (’Yﬁ - VM)E?EM =0 (84)

Let us define
Vi = AuBe(vp — v) Br Ay + Apvpdy, (83)
Wi = (Ha(Ap — Bp) + A )V (36)

Then, using Fq. (26¢).(84), we have

ViAy — Ep) = ApBe(vp — v Er Ay + Apvu Er Ay,

= A#E?’}'ﬁE?AH + E#’}'#E?A#
= A Bpyple Ay — Rply, oA, (s7)
= —(ApBg + Rl )yp B Ay,
= (A Ep + Ra(Ap — Eg))va By
=WnEzA,.
And a similar equation holds for Wy:
Wia(Ag — Eg) =RaEqr (v — va)Be A + Rl — Eg)va(Ag — Ep)
+ A Bpya(Ag — Ep)

=RpFEoy, ErAg — A Eey, Er Ay (88)

= (_Eu - (Au - Ep))’YpEpA,&

=V, E, Ap.

We combine these two equations and find W, = V(B Az + (A, — E)Ry), e,
in comparison with the definition in Eq. (86), W; = W;{ Furthermore, we have
WiVvirVy = Wy and Vo = W V™ T/V{r , where VI~ denotes the inverse of V] on
its support. (The second identity follows from lel_WI =Wi(A — B Re +

We construct the operator Z as Z = TViTT with T = @, + Q. W1V . Since
Vi > 0 we have Z > 0. From cur previcus considerations, A, ZA, =V, and
A ZA; = Wy follows. Then using Eq. (26a), Eq. (26b), and Eq. (84) it is
now straightforward to verify that Z satisfies the conditions in Eq. (24b) of
Theorem &.
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It remains to show that Z k% = 0. First, with IT the projector onto supp v11M
supp 2, we have ZE¢Il| = ZIIj = 0 due to 1| (), = 0. Analogously with IT,
the projector onto ker &, ZF;I1| = ZII| = 0. Thus we only need to show that
ApZEqA, = 0. But this follows from Eq. (87) and Eq. (88).

C Appendix: Construction of Jordan bases

In this Appendix an explicit construction of Jordan bases {also sometimes called
canonical bases) of two subspaces o and % of €% is given (cf. also Ref. [33, 9,
19, 18]). Jordan bases are orthonormal bases {|a;)) of & and (|b;}) of %, such
that {a;|b;} = 0 for all ¢ £ j and {ag|by} > O for all k. With S, we denote
the d x ny dimensional matrix where the columns are given by the ng basis
vectors of some orthonormal basis of &/. Analogously we define S% and nz by
using 9.
Consider a singular value decomposition of

S1 Se = U DUL, e, (SaUx)'(SalUz) =D, (89)

where [) 1s a n X ng dimensional diagonal matrix. U,y and Uz are unitary
matrices. Let us denote the ith column of S Uy by |a;) and the jth column of
SalUg by |b;). Then (Ja;)) and (|b;)) are Jordan bases of & and 2.
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