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Introduction

Understanding the laws of nature and elucidating their functioning is the fundamental
motivation in the natural sciences. In the evolution of life, this functioning is strongly
determined by our main natural source of energy, the sun. On a biochemical level, sun-
light initiates a multitude of processes involving excited states of molecules, thereby
constituting the driving force in the astonishing complexity of what we simply call
“living”.

These processes usually involve direct excitation of molecular systems, followed by sub-
sequent de-excitation through a variety of possible mechanisms. Considering especially
the numerous pathways molecules in biological environments can follow in redistribut-
ing their excess energy, it is not surprising to reflect that we are far from understanding
the functioning of biological organisms. Nonetheless, concerted efforts from both the
experimental and theoretical sides constitute a promising approach, successively re-
vealing facets of the entire composition.

The theoretical community has a profound record of success in the consideration of sys-
tems at equilibrium. Investigation of excited states, in particular the consideration of
reaction mechanisms, necessitates entirely different approaches, however. A molecule
undergoes conformational reorientations accompanied by changes in the structure of
its energy levels, opening possibilities for intricate energy redistributions and coupling
to different states, conceivably involving neighbouring molecules. Excitation from the
singlet to the triplet manifold can be a crucial aspect in this process and necessitates
the consideration of spin interactions. From a theoretical perspective, this involves the
evaluation of spin coupling effects frequently small in magnitude, the conceptual origin
of which lies in the consideration of special relativity.

The group of Theoretical and Computational Chemistry at the University of Düsseldorf
provides profound competence in the sophisticated electronic structure treatment of
excited states of medium-sized systems through the efficient dft/mrci approach [1].
This is combined with considerable experience in the calculation of spin-orbit coupling
effects employing the program spock [2–4]. This expertise is brought to applications
in the Sonderforschungsbereich (SFB) 663 “Molecular Response to Electronic Excita-
tion”. The incentive of the SFB 663 is the investigation of processes of photostability
and photoreactivity; its particular strength lies in the interdisciplinary approach of
experimental and theoretical fields.

The present work is motivated by an extension of the capabilities of our group. It
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2 Introduction

presents the development and theoretical consideration of the calculation of coupling
effects between the spins of unpaired electrons (spin-spin coupling). The impact of
this work is twofold: First, electron spin-spin interaction, like spin-orbit interaction,
constitutes a possible coupling mechanism in processes of excitation and de-excitation.
Understanding the origin of these transitions is mandatory for an explanation of bio-
chemical reactions. Second, spin-spin coupling can be employed as a means of investi-
gating the structure of excited states. The magnitude of this interaction is an indicator
of the distance between unpaired electrons. This has already been employed in an ex-
perimental context and the combination with the theoretical approach is particularly
promising for obtaining insight into the location of radical electrons in molecular sys-
tems, thereby clarifying processes of energy dissipation.

Calculations in the field of electron spin-spin coupling have been very limited. This
observation is related to the high demand that the implementation of this operator
poses, motivated by its complicated structure. The present work represents one of the
first efforts in the implementation of this effect based on a computational treatment
that considers dynamical as well as non-dynamical correlation contributions and al-
lows for the computation of medium-sized systems. It is novel as it is one of the few
approaches that considers the relevant correlation effects on an equal basis, allows for
the calculation of excited states due to its multireference approach, and furthermore
enables the consideration of larger systems due to the efficient selecting algorithm of
the underlying correlation treatment. The present work will thereby not only assist in
the ultimate elucidation of the intricate biochemical mechanisms present in photoactive
systems but will advance an understanding of the properties of this effect itself.



Chapter 1

Framework

ĤΨ = i~
∂

∂t
Ψ

The field of theoretical chemistry is concerned with the task of solving the Schrödinger
equation which is given above in its most general form. The Schrödinger equation rep-
resents the Coulomb interactions between charged particles on a quantum mechanical
level as described by the action of the Hamiltonian Ĥ on the wave function Ψ. Funda-
mental aspects underlying this task have been extensively covered in literature [5–7].
The Schrödinger equation in itself does not account for relativistic effects, thereby in
its most profound deficiency failing to describe the quantity of spin. One of the first
attempts at a unified description of relativistic as well as quantum mechanical effects
was formulated through the Dirac equation [8, 9] which is valid for a single particle of
spin 1/2 and thereby constitutes a starting point for a unification of these theories on
a molecular level. Nevertheless, the extension of the Dirac equation to a many-particle
system is not straightforward and the field of theoretical chemistry has observed con-
siderable effort in the development of approximate treatments of relativistic effects. A
beautiful introduction is given by Moss [10], while Faegri and Dyall [11] cover contem-
porary efforts and developments in the field of relativistic quantum mechanics.

For a consistent overview over the more basic aspects in the field of theoretical chem-
istry, the reader is encouraged to refer to beforehand mentioned literature [5–7,10,11].
Within this thesis, I will restrict myself to the introduction of concepts and notions
specific to this work which may extend beyond fundamental aspects familiar to most
quantum chemists. I will refer frequently to available literature, though, so as to enable
the reader to acquire a more detailed knowledge where desired.

Prelude

The following sections are intended as a reflection on more general aspects, embedding
the computational treatment of electron spin-spin coupling into an experimental as well
as historical context. I will start out with an introduction of the most important con-
cepts and characteristics concerning electron spin-spin interactions (Section Primary
Concepts). Subsequently, I will turn to the experimental side of the observation of
this effect, discussing in particular its investigation and relevance in the context of ex-
perimental work (Section Assessment of the Experimental Framework). The following
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4 Chapter 1. Framework

sections will be concerned with a discussion of the theoretical side, starting out with
an illustration of the historical origins in the calculation of electron spin-spin coupling
(Section Historically: Calculations of Electron Spin-Spin Coupling), and subsequently
discussing in detail the contemporary efforts in this field (Section Present Theoretical
Work). I will finish with a brief reflection on the concerted efforts in theory and ex-
periment (Section Concerted Considerations).

1.1 Electron Spin-Spin Coupling: General Framework

1.1.1 Primary Concepts

The observation and explanation of the effect of electron spin-spin coupling is histori-
cally in close vicinity to the emergence of quantum mechanics itself.

The experimental foundation of electron spin lies in the famous measurement of the
magnetic moment of a beam of silver atoms by Stern and Gerlach in 1921 [12, 13].
The origin for the observed well-defined transition which suggested a quantization of
the magnetic moment of the silver atoms was then unknown. A theoretical discussion
of the anomalous Zeeman effect in alkali atoms, in particular the reflection on the
relevance of inner shell electrons, caused Pauli to conclude that the observed effect is
attributable solely to the valence electron and thereby led him to the postulation of
a fourth electronic quantum number [14]. His work was shortly after interpreted by
Uhlenbeck and Goudsmit [15,16] as an intrinsic angular momentum of the electron (for
a more detailed review of the experimental discovery, see e.g., Ch. 2 in [17]). The theo-
retical basis of the effect of electron spin was laid by Dirac in 1928 with the relativistic
description of the motion of a single electron [8, 9, 18]. An approximate extension to
a system of more than one electron followed subsequently by Breit [19, 20]. By 1957,
the transitions observable in electron spectra were already well understood and a com-
prehensive discussion of atomic terms in the Hamiltonian was given in the influential
work by Bethe and Salpeter [21].

A detailed discussion of the parallel experimental and theoretical development of elec-
tron paramagnetic resonance (EPR) is presented in a review by Neese and Munzarová,
Historical Aspects of EPR Parameter Calculations, in [22]. This review illustrates com-
prehensively the connections and mutual influences between theory and experiment and
provides a concise overview of the historical path in theoretical developments. I will
therefore restrict myself to highlighting a few points of major relevance and refer to
the above mentioned work for the entire picture.

The concept of fundamental influence in the theoretical treatment of transitions exper-
imentally observable in EPR spectra was the introduction of the effective spin Hamil-
tonian in the early 1950s. The theoretical description of molecular systems from first
principles proved to be highly demanding at the time of the emergence of EPR, and a
simpler concept was required to assist experimentalists in a theoretical interpretation
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of spectral transitions. The fundamental idea lay in the introduction of a ficticious
Hamiltonian containing solely spin-dependent operators. The theoretically demanding
effects of correlation were absorbed into numerical parameters, the values of which were
obtained by comparison with experiment. I refer to McWeeny [23] for a thorough dis-
cussion of the underlying theory of the spin Hamiltonian formalism, but would like to
stress that this “effective Hamiltonian” is not the electronic Hamiltonian of the system
under consideration but a construct introduced on the basis of a simplified analysis of
experimental data. As McWeeny remarked in this respect: “It [the spin Hamiltonian]
provides an attractive formal prescription for “absorbing” the complexities of a detailed
energy calculation into a few numerical parameters [...]. The use of spin Hamiltonians
in many areas of chemical physics is now commonplace, but we must always remem-
ber they provide the means of fitting observed results and identifying parameter values
within a certain theoretical scheme – they do not provide a “first principles” method of
calculating anything.” (McWeeny [23], p. 30).

The concept of the spin Hamiltonian was and still is of major relevance in the analysis
of experimental data as it enables experimentalists to interpret complicated spectra
on the basis of a limited number of parameters. Extensive literature has been writ-
ten, particularly in the 1960s and 1970s, which establishes the connection between the
theoretical concept of spin Hamiltonian parameters and experimental observations,
discusses spectra of individual systems as well as classes of systems, and analyzes
experimentally observed transitions with respect to selection rules, considerations of
symmetry and possible influences of the surrounding environment [24–31]. Among
these, I would like to point out in particular the comprehensive discussion of organic
as well as inorganic systems by Weltner [24] which reflects a thorough investigation
of contemporary experimental and theoretical work, furthermore the monograph by
Abragam and Bleaney [25] which constitutes a detailed discussion of effects observable
in transition metal spectra, and the review by Langhoff and Kern [27] which considers
aspects closer to the computational level, discussing the evaluation of matrix elements
and the analytic calculation of integral expressions. A particular focus on triplet sys-
tems is provided by the extensive assessment of McGlynn, Azumi and Kinoshita [29].

The general principle behind the investigation of transitions in atomic and molecular
systems is the observation of minor deviations of the energetics from the predictions
on the basis of a purely electrostatic Hamiltonian. The cause of these deviations lies
in coupling effects involving electron and/or nuclear momenta which can theoretically
only be accounted for in the framework of a relativistic description [10, 11]. These
coupling effects may give rise to splittings of levels which are degenerate in a nonrela-
tivistic consideration of the system and may furthermore affect the energetic position
of individual levels. Due to the small magnitude of these deviations, the computational
approach consists frequently of a consideration of individual coupling terms on the basis
of perturbation theory. Assuming the nonrelativistic Hamiltonian as the unperturbed
description of a system composed of electrons and nuclei, the perturbing relativistic
effects are most commonly described through the terms of the well-established Breit-
Pauli Hamiltonian, originating in the work by respective persons [19, 20, 32] (for a
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concise derivation of this operator, the reader is furthermore referred to [10,11]). The
Breit-Pauli Hamiltonian, which constitutes an approximate consideration of the rela-
tivistic interactions, possesses the distinct advantage of allowing for a straightforward
interpretation of its individual terms with regard to physical interactions.

The early introduction of a ficticious spin Hamiltonian was motivated from an exper-
imental perspective, simplifying the interpretation of spectral observations. At the
same time, the theoretical foundation of these transitions was accepted to originate in
the relativistic description of the electron. This suggested the possibility of relating
individual spin Hamiltonian parameters to (approximate) expressions derived from the
full relativistic Hamiltonian. The connection between spin Hamiltonian parameters
and terms of the Breit-Pauli Hamiltonian was indeed accomplished by Harriman in
1978 [33], and his work has therefore to be referred to as of particular significance,
establishing a direct relationship between the first principles approach of the theo-
retician and the effective, phenomenological description of the experimentalist. (For
further theoretical considerations on the spin Hamiltonian, the reader is referred to [23],
while [24–31] cover issues of higher relevance to the experimental interpretation.)

One of the terms introduced through the derivation of the Breit-Pauli Hamiltonian can
be recognized as describing the interaction of the spins of two electrons. Naturally,
electron spin-spin interaction can only occur in systems with a spin S of S > 1. The
coupling of electron spins potentially causes a splitting of electronic states with iden-
tical spin quantum number S but differing projections MS, thereby possibly partially
lifting the degeneracy present in a nonrelativistic calculation. As this effect arises inde-
pendent of the presence of external fields, it is commonly denoted “zero-field splitting”
(ZFS). Phenomenologically, the experimentally observable effect of zero-field splittings
is parametrized in the framework of the spin Hamiltonian by the zero-field coupling
constants D and E. In the case of a triplet, which is the most frequently considered
one, we may observe depending on the symmetry of the system a splitting into two or
into three distinct levels, the nomenclature of which is illustrated in Fig. 1.1.

Figure 1.1: General picture of the splitting of a triplet state

A distinctly complicating aspect in the theoretical assessment of zero-field splittings
lies in the fact that in the case of this observable, two different physical effects can
contribute. The coupling of electron spin with orbital angular momentum is referred
to as spin-orbit coupling (SO) and may, depending on the system, contribute in first
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and/or in second order to the splitting. The coupling between spins of different elec-
trons is denoted spin-spin coupling (SS) and contributes in first order [33]. The critical
point herein is the observation that second-order SO and first-order SS coupling exhibit
an identical mathematical structure, therefore causing these two effects to be experi-
mentally indistinguishable. In theoretical literature, a differentiation between the two
possible origins of zero-field splitting is frequently encountered by assignment of cor-
responding subindices, thereby specifying coupling constants DSS/ESS vs. DSO/ESO.
Depending on the system, one or the other effect may predominate, otherwise, a bal-
anced description of both is required to obtain quantitative agreement with experiment.

1.1.2 Assessment of the Experimental Framework

In the analysis of experimental EPR spectra, the physical coupling effects essential for
a qualitative description, parametrized by corresponding spin-Hamiltonian parameters,
are [34]:

• Interaction of the electron dipole moment with an external magnetic field (Zee-
man effect) which is parametrized through the so-called “g-tensor”.

• Interaction between electronic and nuclear spins which is parametrized by the
hyperfine coupling constant A.

• Effect of zero-field splitting (ZFS), lifting the degeneracy between spin compo-
nents in states of S > 1 as parametrized by the zero-field splitting constants D
and E.

• Interaction of the nuclear quadrupole moment Q with the electric field gradient
q at the nucleus (for nuclear spins with I > 1), parametrized by the nuclear
quadrupole coupling constant given as the product eqQ (e: electron charge).

• Interaction of the nuclear dipole moment with an external magnetic field (nuclear
Zeeman effect), parametrized by the chemical shielding σ.

The order of magnitude of the observed transitions may assume as much as several
hundred wave numbers in the case of electron Zeeman splittings (in particular in the
presence of considerable spin-orbit coupling effects), a few wave numbers in the case
of zero-field effects, less than one wave number in the case of hyperfine couplings, and
less than a hundreth of a wave number in the case of nuclear quadrupole and nu-
clear Zeeman splittings. Computational investigations in literature have until recently
strongly focussed on the calculation of hyperfine couplings (in particular in the context
of transition metals) and g-tensors. For a detailed discussion of the historical devel-
opment in these fields, the reader is once again referred to the review by Neese and
Munzarová [34], while contributions in the entire volume provide a notion of the range
of present achievements [22]. Efforts in the calculation of zero-field splittings have been
moderate in comparison ( [34] and discussion in Chs. 1.1.3, 1.1.4).
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Since the advent of EPR as a spectroscopic method in the 1950s, the focus in the
computational developments was strongly influenced by contemporary experimental
possibilities. The first applications of EPR consisted of observations of hyperfine cou-
plings in transition metal ions, while the interest from the side of organic chemistry
originated in the investigation of π-systems in aromatic radicals. Parallel studies con-
tinued in the three different fields of organic radicals, transition metal ions and small
inorganic radicals [34]. For a period of several decades, the technological possibilities
were constrained to continuous wave (cw) EPR of limited spectral and time resolution.
The development of pulse EPR techniques in combination with the technological im-
provement of operating at higher and higher frequencies was of substantial impact on
the experimental field of EPR spectroscopy. The introduction of commercially available
high-field EPR spectrometers in the early 1990s induced a high interest into the appli-
cation of EPR spectroscopy and led to a substantial effort into the further development
and improvement of sophisticated techniques which still continues [35, 36]. The high
resolution achievable with pulse/cw high-field/high-frequency EPR spectroscopy pro-
vides the experimentalist with means of establishing remarkably detailed information
about the system under study. The potential of this technique covers the investigation
of interactions on a shorter range, thereby revealing information about electronic states
and couplings of electron and nuclear momenta, as well as assessing long-range inter-
actions which may extend to several (5-8) nanometers [35, 37, 38], thereby providing
means of evaluating information concerning electron spin distributions as well as sep-
arations between coupling electronic/nuclear centers. For an introductory summary, I
refer to the article by Calle et al. [39], while a comprehensive treatise of the historical
development of EPR techniques as well as a review of modern methods is encountered
in Schweiger and Jeschke [35]. A recent special issue in Magnetic Resonance in Chem-
istry offers a notion of the diverse research efforts conducted in this area at present [36].

Regarding electron spin-spin coupling, the particular relevance for EPR investigations
lies in the interpretation of zero-field splittings in terms of distances of coupling electron
centers. The spin-spin operator exhibits a strong dependence on the interelectronic dis-
tance as the Hamiltonian structure entails an r−3

ij coupling between electrons i, j (see
Eq. (1.2) and accompanying discussion in Ch. 1.3). The experimental interpretation is
based on the spin Hamiltonian approach, thereby adopting a simplified theoretical de-
scription in the framework of which experimental parameters are fitted. The principal
concept has been described comprehensively in literature [35,40], complemented by re-
views [41,42] and advanced discussions of the accessible distance range and limitations
as well as precision and sensitivity of present EPR experiments [37]. With respect to
most recent work, I would like to point to the review by Jeschke and Polyhach [38] (and
references therein). The particularly high interest in the last decade in the combina-
tion of EPR spectroscopy and electron-electron distance interpretation can possibly be
attributed to its applicability to biological systems. Structures of biomolecules are fre-
quently assessed by X-ray crystallography and/or high-resolution NMR. While X-ray
crystallography requires the system to be crystallizable, NMR on the other hand im-
poses restrictions with respect to the size of the biological system under investigation.
EPR spectroscopy is establishing itself in this respect as an advantageous complement,
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as it can be applied to biological systems in their natural conformation and is sufficiently
sensitive for characterization of large biomolecular complexes, as well as having the ad-
vantage of assessing a distance range (. 5 nm) which is on the order of the size of the
system [38]. In general, hyperfine and spin-spin coupling effects can be interpreted in
terms of spin distributions and distance measurements. The introduction of spin labels
provides additionally the possibility to selectively mark molecular sites by attaching
paramagnetic centers, frequently nitroxides. A consecutive EPR spectroscopic investi-
gation reveals information about orientation and geometry of the nitroxide-labeled pro-
tein domains (see [37] and references therein, as well as again [35,40]). An experimental
elucidation is universally assisted by sophisticated techniques which enable a separa-
tion of experimental signals, thereby facilitating a high spectroscopic resolution. The
timescale accessible by EPR spectroscopy furthermore allows the detection and investi-
gation of transient intermediates in their biologically active state, a point of particular
relevance in the elucidation of mechanistics underlying biological processes. Combining
different available strategies finally enables the experimentalist to deduce previously
unaccessible information about the system. Latest developments entail the assessment
of geometric information on the structure of macromolecules beyond straightforward
distance distributions, as is discussed in the combination of spin-labeling with experi-
mental orientation selection, supported by simulations of the spectra, by Polyhach et
al. [43]. Another recent example for the ingenious combination of experimental tech-
niques, aided by considerate data analysis, can be encountered in the work of Savitsky
et al. [44]. This group studied bacterial photosynthetic reaction centers and was able
not only to obtain information about the electronic structure of the redox partners but
also about the three-dimensional orientation of the radical-pair system P ·+

865Q
·−
A , en-

compassing distances to about 5 nm. Thereby, the three-dimensional structure of the
charge-separated primary electron donors P ·+

865 and acceptors Q·−
A in reaction centers

from the purple photosynthetic bacterium Rhodobacter sphaeroides was solved, and a
small light-induced reorientation of the acceptor discovered which had escaped previ-
ous investigations. The resolution achieveable and information content deducible is an
impressive reflection on the advances in the field of EPR spectroscopy accomplished in
the last 15 − 20 years.

A point of high relevance with respect to the experimental treatment of electron spin-
spin coupling from the viewpoint of the theoretician is the realization that although
experimental techniques have developed to a high degree of sophistication, the theoret-
ical structures experimentalists employ are usually still based on the spin Hamiltonian
approach in an approximation which is entitled “dipolar electron-electron interaction”,
or alternatively “point-dipole model”. Electron spin-spin coupling is therein reduced
to the physical picture of localized electrons of distinct distance. Effects of correlation
and delocalization are neglected in this approximation as we are basically considering
two point charges on different sites of a molecular system with the interaction being
described by classical electromagnetics. In experimental literature, the limitations of
this approach are noted and discussed as restrictions on the lower limit of the accessi-
ble distance range [37]: “A lower limit is imposed by the exchange contribution to the
coupling between the two electron spins. Neglect of the through-space isotropic exchange
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coupling may cause significant errors for distances below 1.5 nm, [...]. [Isotropic and
anisotropic] contributions cannot be separated from the dipole-dipole coupling by any
means, and at present they cannot be predicted with sufficient precision by quantum-
chemical computations. Special care should be taken in studies on conjugated systems,
where the isotropic exchange coupling can be significant for distances up to at least 3.6
nm.” Evaluating this statement from the theoretician’s perspective, we have to con-
sider that the terminology employed stems out of an experimental context. The notion
of “exchange coupling” for example refers to a term in the spin Hamiltonian that is in-
cluded on the basis of a phenomenological treatment and does not arise from true spin
interactions in the Hamiltonian (see [33], p. 190). Accounting for these for the theoreti-
cian slightly unfamiliar concepts, we recognize nonetheless that from the experimental
side, deficiencies on the level of calculation and data analysis are distinctly noted. In
particular the failure of an approximation based on localized electrons in the treatment
of conjugated systems is recognized. In the reflection of experimental progress, two as-
pects clearly point to the necessity of improved theoretical concepts and computational
considerations. On the one hand, the increased sensitivity on the experimental side
provides more detailed information which should in its precision be met by the level
of sophistication in calculations. On the other hand, considering the heightened inter-
est and increased possibilities in the experimental investigation of biologically relevant
compounds, one has to reflect about the nature of these systems. Catalytically rele-
vant metal complexes may comply with the assumption of localized spin radicals; for
delocalized conjugated molecules, like porphyrins, porphyrin-derived systems like cor-
roles and corrins, as well as for carotenoidal systems which are of pronounced relevance
in photoactive processes, a “dipolar electron-electron approximation” will very likely
fail, and the question for computational treatments which account for high-level cor-
relation as well as possibly a multireference character of the underlying system is posed.

1.1.3 Historically: Calculations of Electron Spin-Spin Coupling

Theoretical assessments of electron spin-spin coupling were and still are in general based
on a perturbative treatment of the Breit-Pauli spin-spin Hamiltonian (see Ch. 1.3), a
legitimate approach given the magnitude of this effect.

Computational considerations of zero-field splittings (spin-orbit and spin-spin) date
back as far as the 1950s/1960s and were motivated by experimental investigations. An
early work by Hameka in 1959 [45] evaluated the spin-spin contribution to the zero-field
splitting of benzene in first-order perturbation theory, restricted to a consideration of
the π-electron system employing Hückel MOs. The wave function consisted of Slater
orbitals, incorporating as an empirical parameter the experimental C-C bond length of
this system. At that time, experimental ZFS values for benzene were not available, but
a very recent EPR investigation by Hutchison and Mangum on naphthalene [46] existed.
The symmetry of the lowest triplet state was not known with certainty; Hameka calcu-
lated a spin-spin coupling constant of D = 0.15 cm−1 for a state of 3B2u symmetry and
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D = 0.09 cm−1 for a state of 3B1u symmetry1. In 1963, Boorstein and Gouterman [47]
conducted a theoretical study on the ZFS in aromatic hydrocarbons (benzene, naphtha-
lene, anthracene, phenanthrene, triphenylene, coronene), again based on a π-electron
Hückel-MO approximation, employing a wave function parametrized with respect to
configurational mixing. Their calculated spin-spin coupling constant of D = 0.159 cm−1

for benzene was in astonishingly good agreement with recent computational assess-
ments of Vahtras et al. in 2002 [48], who reported a value of D = 0.1583 cm−1. At the
time of the study of Boorstein and Gouterman, experimental values for the investigated
systems were already available, indicating the experimental advancement in the field of
EPR spectroscopy. The agreement between theory and experiment was reported to be
satisfactory for benzene, naphthalene and anthracene, but declined substantially for the
larger polyenes. Considering the simplicity in the theoretical treatment, the calculated
results for the smaller systems were of encouraging accordance with experimental work.

The first ab initio calculation of electron spin-spin coupling was accomplished by
Kayama in 1965 on the molecular system of O2 [49] (according to Langhoff and David-
son [50]). Kayama compared the results as obtained under different constructions of
the wave function, motivated by schemes which were employed by other groups. The
electron spin-spin coupling for a single configuration wave function composed from
Slater orbitals yielded a value of DSS = 1.510 cm−1, thereby in favourable agreement
with present computational considerations of Vahtras et al. [48] (DSS = 1.455 cm−1).
Employing a p-electron CI wave function which was considered to be the best theoreti-
cal approach assessed in their study resulted in noticeably stronger deviations, though
(DSS = 0.94 cm−1). Early EPR investigations by Tinkham and Strandberg [51] estab-
lished an experimental value for the zero-field splitting in O2 of λ = 1

2
D = 1.981 cm−1;

this naturally comprises spin-orbit and spin-spin effects. The case of O2 proved to
be computationally distinctly more demanding than benzene, for which the spin-spin
coupling was considered to be the predominant contribution to its zero-field splitting
and the spin-orbit coupling of negligible relevance, thereby usually omitting its calcu-
lation. For O2, it was not clear that either of these experimentally indistinguishable
effects could be neglected in a computational treatment. The theoretical considera-
tion of O2 by Kayama was therefore followed by an animated prolonged effort in the
investigation of the contribution of spin-orbit vs. spin-spin coupling to the zero-field
splitting in this system [52–57]. The ongoing discussion was seemingly resolved in 1974
by Langhoff [58], who calculated the spin-orbit and spin-spin contribution employing
configuration interaction wave functions.

Further computational investigations of this period encompass for example calculations
on O2 and SO by Veseth and Lofthus [56], on NH, NF, PH, PF, NCl and SO by Wayne
and Colburn [59], on N2 and CO by Sink et al. [60], NH, OH+, PH, SH+ by Palmieri and
Sink, on benzene by Luzanov and Poltavets [61]. For a concise overview over the com-
putational efforts of this time, I refer to [24, 29]. Acknowledging a major contribution
to the field, I would like to point out though the extensive work of Langhoff, partly in

1Subsequently, it was established that contrary to the speculations of Hameka based on spin-orbit
calculations, the lowest triplet was of 3B1u symmetry.
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collaboration with Davidson and Kern, in the 1980s joined by Ellenbogen, Feller, Bor-
den, who conducted investigations on numerous systems, basing their spin-orbit and
spin-spin calculations on a configuration interaction treatment, in combination with
a sophisticated analysis (SO and SS in O2 [58], SO in CH2 [62], SS in benzene [63],
SS in C2 [64], SO in CH2O [65], SO and SS in CH2O [66], SS in pyrazine [67], SS in
vinylmethylene [68]; see further the review of Langhoff and Kern in [69]).

The efforts in the 1960s − 1980s in the calculation of electron spin-spin coupling in
organic and inorganic systems can adequately be grouped into two categories: On the
one hand, ab initio investigations on small systems, commonly diatomics, on the other
hand, investigations on aromatic hydrocarbons, frequently employing a semi-empirical
approach confined to the π-electron system. Calculations on transition metal ions usu-
ally neglected the spin-spin contribution to the zero-field splitting as the spin-orbit
effect was considered to be predominant [70](p. 330). Based on a historical assess-
ment and comparison with experimentally available zero-field splittings, the initial
impression is formed that those early calculations frequently resulted in astonishingly
satisfactory results. As Vahtras et al. [48] pointed out with reference to Langhoff et
al. [63] though, a more detailed analysis of the computational treatment of aromatic
systems indicates the agreement of the semi-empirical π-electron approximation to be
accidental. Langhoff et al. considered electron spin-spin coupling in benzene based on a
CI wave function, investigating in particular the dependence on the size of the CI space
and relevance of particular excitations. A distinct difficulty in the balanced description
of the spin density of benzene was found and small deviations from the hexagonal sym-
metry were reported to have a substantial effect. Electron correlation was considered
to be of dominant relevance, as their large CI calculation yielded a spin-spin coupling
of D = 0.1676 cm−1 as compared to an experimental value of D = 0.1580 cm−1 and
a value of D = 0.1087 cm−1 for a single-reference calculation. Their conclusion stated
the necessity of including a considerably larger number of configurations in the compu-
tational treatment for an appropriate characterization. Difficulties in the description
of the spin density were furthermore reported subsequently by Feller et al. [68] in the
context of a multireference treatment of modest size on vinylmethylene. As this group
states in their initial discussion of calculations of zero-field splittings: “Past attempts
to compute molecular zfs parameters by ab initio methods have shown these properties
can be quite sensitive to the electronic distribution in the molecule. Thus, convergence
of the theoretical estimate of D and E with regard to quality of CI and basis set size
is sometimes discouragingly slow.” They relate their difficultes in the calculation of
spin-spin couplings in vinylmethylene to a particularly flat potential energy surface in
combination with a high sensitivity of the spin density on the difference between C-C
bond lengths. “Therefore, a relatively small error in the calculated equilibrium geome-
try could lead to a large error in the spin density and, hence, in D.”

In recent years, the advance in computational methods in combination with a consider-
able improvement in available computer resources resulted in an unprecedented level of
sophistication in the theoretical assessment of molecular systems, extending meanwhile
to calculations on small biological units. It is in these circumstances, partly motivated
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by the heightened interest from the experimental side, that a revived concern with the
evaluation of electron spin-spin coupling is initiated.

1.1.4 Present Theoretical Work

In the last decade, the number of groups involved in the calculation of electron spin-spin
coupling has been limited. My intention is to review the investigations of this period,
only briefly noting work of minor significance while referring in more detail to con-
tributions of higher relevance, highlighting therein points of particular interest. I will
start out with the assessment of predominantly first-principles ab initio investigations
and will finish with a brief discussion of the characteristics of the prevalent theoretical
method. Subsequently, I will turn to an evaluation of approaches originating from the
area of density functional theory.

Mählmann and Klessinger [71] published in 2000 spin-orbit and spin-spin calculations
on a series of carbenes (carbene, tetramethyleneethane, twisted ethylene, ring-opened
oxirane biradical) within a multireference scheme based on spin-adapted CSFs, albeit
in the context of their semiempirical MNDOC-CI treatment. In the same year, Bom-
fleur et al. [72] employed a single-configuration spin-coupled valence bond function for
the calculation of benzene and naphthalene, in reasonable agreement with experiment,
analyzing their results in a subsequent publication [73] in terms of spin-correlation
functions.

On a higher level of sophistication, Mitrushenkov, Palmieri and Tarroni [74] presented
in 2003 a scheme for the calculation of spin-orbit and spin-spin effects based on inter-
nally contracted CI wave functions derived from the MOLPRO [75] implementation
and applied it to the test cases of atomix oxygen O and the O+ ion. Subsequent publi-
cations involving Spielfiedel, Palmieri and Mitrushenkov [76,77] applied this method in
the calculation of excited states and transition matrix elements in H2. Unfortunately,
calculations on larger systems with this promising approach were not noted.

Michl [78] introduced in 1996 in the first publication of a continuing series the al-
gebraic “2-electrons-in-2-orbitals” model in its extension to spin-orbit effects in bi-
radicaloid systems, considering one-electron as well as two-electron interactions. In
1998, Havlas, Downing and Michl [79] evaluated spin-orbit and spin-spin effects in
CH2 and SiH2, employing wave functions of different quality on the CASSCF and CI
level, interpreting the results on the basis of their “2-in-2” model. The investigations
on CH2 should be pointed out in particular as they constitute an extensive analysis
of the quality of the computational approach in its impact on the magnitude of elec-
tron spin-spin coupling. Correlation treatments under consideration include ROHF,
CIS, CASSCF(6,6), CISD and CISDTQ, while the basis set size covers the range from
STO-3G over 6-31G∗ to cc-pVTZ. A slow convergence of the results of spin-spin cou-
pling with the basis set size is noted, as well as a distinct sensitivity to the description
of electron correlation; a questionable value of CIS and CASSCF(6,6) is stated. The
authors recommend at least a correlation on the level of CISD in combination with a
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triple-ζ basis for quantitative results. As a further point, the dependence of spin-orbit
and spin-spin effects on the bonding angle H-C-H was analyzed in detail. Further ar-
ticles of this series entail calculation and analysis of spin-orbit and spin-spin effects
in carbenes [80] (CH2, CHF, CHCl, CHBr; CASSCF(8,6)/cc-pVDZ), ground and ex-
cited triplets of m-xylylene [81] (CASSCF(6,6)/cc-pVDZ; Havlas and Michl), nitrenes,
phosphinidenes, and arsinidenes [82] (CH3-N, CH3-P, CH3-As, SiH3-N, SiH3-P, SiH3-
As; CASSCF(12,11)/cc-pVTZ; Havlas, Kývala, Michl). Analysis in the framework
of the “2-in-2” model usually confirmed the applicability of this algebraic approach.
The latest work in 2005 considers the reactive intermediates triplet dimethylnitre-
nium, dimethylphosphenium and dimethylarsenium cations [83] ([CH3-N-CH3]

+, [CH3-
P-CH3]

+, [CH3-As-CH3]
+; Havlas, Kývala, Michl) within a CASSCF(14,14)/cc-pVTZ

treatment. The contribution of spin-orbit vs. spin-spin coupling in these systems
isoelectronic to the corresponding carbene [CH3-C-CH3] was investigated and again
satisfactory agreement with the “2-in-2” model stated.

Particular relevance in the high-level correlation treatment of electron spin-spin cou-
pling should be attributed to the efforts around its evaluation within an MCSCF treat-
ment in the program Dalton [84]. Since 2002, various persons contributed to more
than ten publications based on this implementation, the most frequently noted ones
being Vahtras, Minaev, Loboda, Ruud and Ågren [48, 85–95]. The first publication
in this context by Vahtras et al. [48] considered zero-field splittings (spin-orbit and
spin-spin) on O2, investigating furthermore the internuclear dependence of DSO/DSS,
as well as the calculation of spin-spin effects on benzene (this work was already noted
in the disucssion of the historical efforts on these systems), providing highly satisfac-
tory agreement with experimental values. Loboda et al. [85] investigated subsequently
spin-spin coupling effects in linear polyacenes (naphthalene, anthracene, naphthacene)
based on a consideration of the π-electron space, but limited to a RAS instead of a
CAS treatment in the two larger systems. Agreement of the D value with experiment
was reasonable, while the E splitting value, not surprisingly enough considering its
dinstinctly small magnitude, constituted a more problematic case. Pentacene was cal-
culated on the basis of an ROHF approach. In this context, the essential relevance
of electron correlation was stated, as Loboda et al. observed in the comparison of a
restricted open-shell approach with a consideration of the full π-electron active space
roughly an increase in the magnitude of spin-spin coupling by a factor of two. Evalua-
tions of electron spin-spin coupling embedded in a polarized continuum model (PCM),
thereby incorporating effects of the surrounding solvent environment, were presented on
pyrazine and quinoline [86] as well as subsequently on pyridine, pyrazine, pyrimidine,
quinoline [91]. Experimental data available for pyrazine showed reasonable agreement.
Further studies include the diatomics H2 [87], He2 [88], Li2 [93], NH [92], as well as tri-
atomic systems, with focus on HCN and O3 [90]. Calculations on the larger system of
p-dichlorobenzene [94] showed good agreement with experimental values, on the other
hand investigations on a series of benzene derivatives [89] proved to be more prob-
lematic. In p-dibromobenzene, a deviation by almost a factor of two is noted, which
is attributed to the presence of the heavier atom Br and the increased contribution
of second-order spin-orbit effects. Equally high deviations for aniline are speculated
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to originate in the presence of environmental effects in the experimental consideration
within a p-xylene host crystal. Free-base porphin constitutes the largest system inves-
tigated by Loboda et al. [95]. The calculation of zero-field splittings is performed in
this case within an ROHF treatment, though, which, as was observed in the context
of linear polyacenes, may be problematic in its deficiencies in the description of corre-
lation effects. The predicted theoretical value is found in distinct disagreement with
experimental assessments (exp.: D = 0.0435 cm−1, E = 0.0063 cm−1, measurement in
n-octane matrix; calc.: D = 0.016 cm−1, E = 0.0021 cm−1).

In considering the most relevant ab initio efforts in the calculation of electron spin-
spin coupling, it can be noted that the two major distinct groups (Havlas, Michl et
al. on the one hand, the group employing Dalton on the other hand) both predomi-
nantly operate in the framework of CASSCF. In evaluating the characteristics of this
approach, I may start out with quoting Rubio-Pons et al. [89] who summarized the
implicit deficiencies ecountered in the context of calculations on benzene derivatives:
“Limitations of the CASSCF method are obvious and well known; the wave functions
blow up rapidly in size with increasing active spaces and, except for benzene, for which
two well-defined π-electron active spaces can be utilized, there is no beforehand-given
choice for the other species, and one has to rely on an analysis of bonding character and
calculated natural occupation numbers. Furthermore, CASSCF excludes a large part of
the dynamic correlation effect.” CASSCF as a method constitutes a sophisticated cor-
relation treatment which accounts appropriately for non-dynamical corrrelation. A
distinct disadvantage lies in the considerable restrictions on the active space, which
manifests itself already within a molecular system of limited size, as was recognized
by Rubio-Pons et al. Furthermore, CASSCF does not consider dynamical correlation
appropriately, which could possibly be a particularly severe limitation in the case of
electron spin-spin coupling, reflecting here from a principal perspective the strong de-
pendence on the interelectronic distance of the underlying operator while noting at
the same time the observed sensitivity to a balanced description of the spin density.
These issues raise the interest in a computational consideration of electron spin-spin
coupling in the framework of a method which may meet associated demands. A further
point that should be mentioned with respect to the implementations within Dalton
as well as in the treatment by Havlas and Michl is the restriction to the evaluation of
expectation values, thereby neglecting couplings between different states. It is usually
assumed that this approach is legitimate, as Havlas et al. pointed out though [79]:
“We also ignore all elements of the spin-spin dipolar coupling operator that connect
different states. It is hoped that these neglects are acceptable when the properties of
the lowest triplet are to be described, even though we realize that in at least one case
(predissociation of NH) first-order spin-spin dipole induced singlet-quintet state mixing
is known to dominate over second-order spin-orbit induced mixing of the same states.”.
Without investigation of this aspect, its is not possible to exclude its relevance.

The heightened attention that density functional theory (DFT) has received in re-
cent years propagated into the field of computational evaluation of EPR spectroscopic
parameters. Again, initial efforts focussed more on the calculation of g-tensors and
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hyperfine coupling constants [34]. The first application of DFT in the calculation of
electron spin-spin coupling is attributed to Petrenko et al. [96] in 2002. The theo-
retical basis for their evaluation lies in an analogy to Hartree-Fock theory. As was
shown early by Dirac [97], the two-particle density function can be exactly expressed
through one-particle density functions in the case of a single-determinant description.
McWeeny [23](p. 85–90), [98] applied this reduction on the spin-spin coupling function
in the description of the Breit-Pauli Hamiltonian, thereby obtaining an expression in
which the two-electron quantity of electron spin-spin coupling is entirely determined by
one-electron spin densities. Petrenko et al. replaced the HF-one particle density with
the spin-density as obtained in their DFT calculation on CH2 and thereby transferred
the formalism of McWeeny into the framework of DFT. As the authors stated with
respect to the validity of this approach: “To our knowledge, the validity of DFT-based
calculations for reproduction of the observed ZFS parameters D and E has not been
tested up to now.” The results of their practically motivated approach were satisfac-
tory though, even if in slightly worse agreement with experiment than the ab initio
calculations of Havlas et al. [79].

Shoji et al. [99] based their evaluation of electron spin-spin coupling in the framework
of DFT on the calculation of spin natural orbitals (SNO). The triplet states of or-
ganic biradicals were expressed as a simple antisymmetrized product of respective two
singly occupied SNOs and the expectation value over the Breit-Pauli spin-spin oper-
ator was evaluated. In the context of a restricted Hartree-Fock formalism, it is well
known [27,100] and will be proved in detail in Ch. 2.2.2 that the contribution of closed
shells to electron spin-spin coupling vanishes and only open shells enter the equation.
The expression to be evaluated therefore involves solely the two open shells in the case
of a single determinant of triplet symmetry. It is presumably on this analogy that Shoji
et al. base their approach. Their calculations on a series of carbenes of different size
were in good agreement for smaller systems, distinct discrepancies with experimentally
predicted values were obtained in some cases for the larger systems, not entirely sur-
prising considering the observations of Loboda et al. on linear polyacenes [85].

The most extensive investigations in the calculation of EPR parameters within a DFT
approach were undertaken by Neese. His access to the field of computational chemistry
originated from the direction of bioinorganic chemistry and is strongly motivated by a
purpose-driven application. Employing computational methods as supportive means,
closely accompanying the interpretation of experimental work, characterizes his ap-
proach. Strongly influenced by the relevance of individual parameters in the context of
bioinorganic chemistry, his work in the computational evaluation of EPR spectroscopic
quantities has evolved continuously and comprises meanwhile several investigations in
the calculation on g-tensors, hyperfine coupling constants, as well as zero-field split-
tings. Commonly, but not exclusively, Neese employs DFT, as this method has a high
potential especially in the consideration of larger systems, and operates frequently in
collaboration with experimental groups [101–111]; recent work encompasses further-
more consideration of environmental effects in an QM/MM approach [112, 113]. A
comprehensive contribution [114] analyzes the evaluation of coupling effects and EPR
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parameters in transition metal chemistry while numerous reviews on the interface of
computational and spectroscopic investigations [102,115–120] discuss applicability, lim-
itations and examples of present approaches. The efforts of Neese in the evaluation
of zero-field splittings focussed until recently onto the contribution of spin-orbit cou-
pling as the effect of electron spin-spin interactions was historically considered to be
negligible in transition metal chemistry [70] (p. 330), an opinion that perpetuated in
this area for decades. Only recently has this assumption started to be questioned by
Neese, and his theoretical investigation in 2006 [108] on Mn[(acac)3] yielded a con-
tribution of electron spin-spin coupling of ∼ 1 cm−1, thereby accounting for 40 % of
the overall zero-field splitting, which even allowing for an error in the computational
assessment of a factor of 2–3 indicates it to be far from negligible in this system. As
the calculation of electron spin-spin coupling has been so far predominantly an area of
the organic chemist, Neese’s results may motivate an interest in the field of transition
metal chemistry.

Neese’s most recent approaches to the computational evaluation of zero-field splittings
encompass therefore not only spin-orbit effects but consider furthermore spin-spin in-
teractions. I would like to point in this context to two recent reviews, the first of
which discusses the theoretical evaluation of zero-field splittings (spin-orbit and spin-
spin) [119]. In particular the connection established between experimentally observed
transitions and the magnitude of individual EPR parameters for different cases of field
strength may be of value to the theoretician. The second is concerned more com-
prehensively with the theoretical approach and computational evaluation of the most
relevant coupling effects manifest in EPR spectra, accompanied by practical aspects
of the calculation, illustrated with results of individual case studies [121]. Highlighted
here should be in the context of spin-spin coupling the discussion of the experimen-
tally employed “point-dipole approximation”, as it represents the very seldom reflection
on this approximation from the perspective of the theoretician, illustrating underlying
assumptions and neglected terms on the basis of the Breit-Pauli spin-spin Hamiltonian.

Neese’s computational approach to the calculation of electron spin-spin coupling em-
ploys the same theoretical concept as Petrenko et al., based on the spin-density formal-
ism of McWeeny. His implementation evaluates this quantity in the framework of DFT
as well as CASSCF. The previously discussed reduction of the two-particle spin-density
into an antisymmetrized product of one-particle density functions is exact in the for-
malism of Hartree Fock. Its validity in the context of DFT has not been established, as
is acknowledged by Petrenko et al. as well as Neese [108]: “It is unknown what kind of
error is introduced by this approximation. Its main justification may remain for some
time to come that, at least to the best of the author’s knowledge, it is without practical
alternative at the present level of sophistication of DFT.” In the case of a CASSCF
wave function, the two-particle spin-density does not factorize in the indicated way,
and the application of this scheme is therefore an approximate treatment. Presumably
in the analogy to Hartree-Fock constituting a mean-field approach and the employed
scheme for the calculation of electron spin-spin coupling being exact in the case of
Hartree-Fock, Neese denotes his approach “spin-spin mean-field approximation”. This
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should not be mistaken though with the well-established spin-orbit mean-field approx-
imation [17, 122, 123], which is based on a different theoretical foundation. Neese’s
first investigation of electron spin-spin coupling together with Sinnecker in 2006 [124]
constitutes a comprehensive study and will be discussed in more detail motivated by
the general relevance of its conclusions. In the first part, it assesses the validity of his
approach in calculations on O2 in the internuclear distance range of 1.0 Å to 2.0 Å,
based on CASSCF, UHF, restricted DFT (RODFT) and unrestricted DFT (UDFT),
comparing with the exact (i.e., no spin-spin mean-field approximation) CASSCF re-
sults of Vahtras et al. [48]. The overall agreement of the CASSCF calculations of
Sinnecker and Neese with the results of Vahtras et al. is satisfactory and indicates the
applicability of Neese’s mean-field approach in this system at equilibrium geometry. A
breakdown upon increased internuclear distance is noted though, which is attributed to
the strongly increased non-dynamical correlation effects. With respect to the spin-spin
mean-field approach in the context of DFT, the authors note a better performance
of restricted as compared to unrestricted calculations. Furthermore, a series of fif-
teen triplet carbenes as well as benzene and the polyacenes naphthalene, anthracene
and tetracene were computationally assessed in the framework of RODFT and UDFT.
These test systems were chosen on the basis of existing experimental and/or theoret-
ical data and comparisons were included in the work. The evaluation of the series of
triplet carbenes revealed considerable discrepancies between a restricted and an unre-
stricted approach. While the RODFT calculations showed reasonable agreement with
experimental values, distinct difficulties were observed in the case of an unrestricted
treatment. This point was therefore further investigated in a computational assessment
of H2CO. By comparison with a series of CASSCF and multireference calculations, it
was concluded that UB3LYP provides a very realistic description of the spin distribu-
tion, indeed slightly better than ROB3LYP. The predicted spin-spin couplings differed
almost by a factor of two though, with ROB3LYP being in better agreement with
experimental data. The authors compared spin populations of different orbitals and
noted a minute amount of spin polarization contained in the unrestricted Kohn-Sham
determinant, which they concluded to be responsible for the large difference between
unrestricted and restricted solutions. As an important point of the work, the authors
state an extreme sensitive reaction of ZFS to the calculated spin distribution. The
good performance of the restricted open-shell Kohn-Sham methods was speculated to
be attributable to a certain amount of error compensation. The study on benzene
yielded a coupling parameter D in satisfactory agreement with experiment while the
values for the polyacenes were underestimated by approximately a factor of two, which
is consistent with the observation of Loboda et al. [85] in the comparison of ROHF and
CASSCF on these systems, thereby indicating the necessity of an explicitly correlated
treatment beyond DFT. As a result of their investigations, the authors conclude a sat-
isfactory validity of their spin-spin DFT approach in the study of triplet states and
diradicals in large biologically relevant molecules, and state its deficiency in extended
π-systems: “In situations with large medium- and long-ranged electron–electron correla-
tion effects, ab initio methods will probably turn out to be preferable over DFT methods
and, in our opinion, efforts toward their efficient development and implementation are
well-invested.”
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Subsequent work by Ganyushin and Neese [125] applies their approach furthermore to
S2 and SO, while computational considerations of transition metals (Mn-complexes)
are encountered in [108,111] (the latter work has already been noted in the assessment
of the relevance of spin-spin couplings in transition metals).

1.1.5 Conclusion: Concerted Considerations

The last decade has seen a considerable development in EPR spectroscopy, meanwhile
enabling investigations on biological systems of distinct size. From the perspective
of the experimentalist, the significance of computational methods is recognized, as
discussed by Möbius et al. [126] who emphasize the importance of quantum-chemical
interpretations of experimental data in their review of high-field EPR spectroscopy,
applied to biological systems. Due to the size of the system under consideration,
the computational approach consists frequently of advanced semi-empirical methods
and/or DFT. Multiple examples for a beneficial combination of DFT and experimental
assessments [103–107,110–113,127–129] support the general applicability and value of
this method.

Nonetheless, two main aspects have to be recognized in the computational considera-
tion of electron spin-spin coupling. First, from the approach of the pure experimen-
talist, the employed theoretical model is usually of a strongly simplified structure. It
is frequently based on the “point-dipole approximation”, which is restricted to an ap-
plication to well-localized electron distributions of distinct distance (see discussion in
Ch. 1.1.2 as well as theoretical assessment by Neese [121]). A further point of discomfort
for the theoretician in this respect is the observation that in experimental evaluations
of electron spin-spin coupling, the quantity of the g-tensor frequently appears together
with the D value in the same expression (see for example [37, 38, 43, 44]), as was al-
ready criticized by Neese [121]. The application of a more sophisticated computational
approach should therefore be of distinct relevance in the experimental context, espe-
cially considering the advance and level of sophistication meanwhile attained in EPR
spectroscopy. Second, from the approach of the theoretician, it has to be recognized
that the calculation of electron spin-spin coupling necessitates a highly sophisticated
computational treatment as an exceptional sensitivity of this effect on the description
of the spin density is observed. A considerable demand on the correct description of the
spin distribution was already early on noted by Langhoff et al. [63] as well as Feller et
al. [68] and recently supported by Sinnecker and Neese [124]. Difficulties were further-
more reported in the description of extended π-systems with DFT based approaches, as
the explicit treatment of non-dynamical correlation effects is beyond the scope of this
method. It is therefore particularly in those systems which do not satisfactory com-
ply with assumptions underlying the experimally employed point-dipole approximation
that the application of high-level correlation beyond DFT is of significant relevance.

The most important point to be emphasized in the context of a computational approach
is that based on existing evidence, satisfactory agreement with excitation energies or
other properties may not necessarily indicate a reliable calculation of electron spin-
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spin interactions as this effect exhibits a considerably stronger sensitivity on the spin
distribution.

Interlude

Recent years observed promising efforts in the field of theoretical chemistry, at the
same time, the heightened interest in the experimental community can possibly be
considered a motivating aspect. Nonetheless, the computational investigation of elec-
tron spin-spin coupling is still at an early stage, and a comprehensive understanding of
the characteristics of this quantity has still to be gained. The number of sophisticated
investigations, in particular concerning systems of a moderate molecular size, is limited
and it is here that the strongest demand for computational development is noted.

After this more general reflection on the framework accompanying the theoretical con-
sideration of electron spin-spin coupling, I will turn specifically to the interests and
capabilities of the group of Theoretical Chemistry of Christel M. Marian at the Uni-
versity of Düsseldorf as this constitutes the environment for the present work. After
discussing the scientific context, I will illustrate the motivation and in particular the
promising potential that is provided in the computational competence of this group for
the investigation of electron spin-spin coupling in the systems of interest.

1.2 Theoretical Chemistry at Düsseldorf – SFB 663

The group of Theoretical Chemistry at the University of Düsseldorf is centrally embed-
ded in the Sonderforschungsbereich (SFB) 663 “Molecular Response to Electronic Ex-
citation”, an interdisciplinary project funded by the Deutsche Forschungsgemeinschaft
(DFG) which is the main institution for external support of research at universities
and public research centers in Germany. The purpose of an SFB in general is the ini-
tiation of interdisciplinary cooperation in the context of a common long-term project,
involving a distinct number of groups rooted in differing scientific fields. The incen-
tive of the SFB 663 in particular is the investigation of photostability, photoreactivity
and photoprotection, aiming at the elucidation of transient intermediates and reaction
pathways in the context of biologically relevant processes of photoexcitation and de-
excitation. A particular strength of the SFB 663 therein is the breadth of theoretical
and experimental methods involved, with participation of groups situated in the field
of organic and macromolecular chemistry, biochemistry, biophysics, molecular biology,
as well as physical and theoretical chemistry.

The group of Marian provides in the dft/mrci approach, which will be discussed in
Ch. 1.4, a sophisticated means for the investigation of excited states of multireference
character. Expertise in the context of spin-orbit and vibronic coupling allows the as-
sessment of de-excitation mechanisms caused by these effects. It is in this framework
that the development of an advanced means of evaluation of electron spin-spin cou-
pling effects is embedded. Collaboration with W. Lubitz who employs high-resolution
EPR spectroscopy, thereby providing information about spin density distributions and
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structural aspects, constitutes great promise for a common experimental and theoreti-
cal assessment of transient triplet states. The group of W. Lubitz introduces valuable
expertise in the EPR/ENDOR investigation of biological sytems [44, 127, 130–145],
their experimental investigations frequently being supported by computational assess-
ments, commonly reverting to DFT based methods, partly in collaboration with Neese.

Of particular interest in the framework of the SFB 663 is the investigation of carotenoids
as they are of central significance in biological systems. Their dual purpose com-
prises the functionality as effective quenchers for reactive triplet species as well as
singlet oxygen in most biological species while furthermore in photosynthetic organ-
isms, carotenoids as part of the antenna system constitute a functional unit in the
energy-transfer process. The detailed mechanism underlying the singlet-triplet transi-
tions associated with their biological activity is unknown and of major interest in the
SFB 663. The complex activity of carotenoids in biologically relevant circumstances
is certainly closely related to position and characteristics of its excited states. The
experimental assessment of these states, in particular of the so-called “dark states”,
is very difficult, though, as these states usually exhibit very short lifetimes (tens of
femtoseconds to at most a few picoseconds); furthermore, one-photon transitions are
symmetry forbidden for excitations from the ground to some of the excited states,
therefore preventing the direct spectroscopic access to those.

Recently, extensive investigations by Marian [146,147] in the framework of the dft/mrci
approach provided valuable insight into the characteristics of this system. A detailed
computational study revealed the predominant multireference character of the lowest
singlet state S1, the triplet state T2 and the singlet state S3, as well as to a lesser extent
of S2 and T1. For example, for S1, the major configuration defines 26 % of the state,
while at the same time three more states of similar relevance contribute noticeably
(15 %, 12 %, 10 %). Furthermore, it was found that the description of S1 as well
as T2 is dominated by double excitations from the ground state, a contribution that
is still non-negligible in the states T1 and S3. This investigation has to be analyzed
in the context of the methodological approach, and in particular in its relevance for
a calculation of electron spin-spin coupling. The strength of the dft/mrci lies in
its computational assessment of even medium-sized systems on a sophisticated level.
This efficiency is realized through a shortened configuration expansion as dynamical
correlation effects are already partly accounted for through the dft ansatz by employ-
ing Kohn-Sham orbitals. Non-dynamical correlation is described by the multireference
approach which in its implementation of a configuration selecting scheme further con-
tributes considerably to a limitation in the size of the configuration space. Assessing
the systems under investigation and the questions posed in the framework of the SFB
663, is has to be recognized that it is a combination of different aspects that poses
challenges on the computational description. The systems are from the perspective of
the theoretician of considerable size, thereby preventing in particular the application
of CASSCF-based methods since the required active spaces likely exceed present com-
putational possibilities. A considerable multireference character as observable through
significant configuration mixing necessitates a reliable description of non-dynamical
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correlation effects, which are beyond the scope of DFT. Furthermore, it should be
mentioned that the calculation of excited states is commonly approached within the
context of a further popular method (TDDFT) which is conceptually based on linear
response theory. Due to the distinct double-excitation character of the investigated
singlet and triplet states, this method cannot be applied in the present case. It is the
combination of these aspects that places the demand on the computational descrip-
tion and explains the difficulties in previous theoretical assessments. After elucidation
of the characteristics in the electronic structure, the next questions to be approached
concern the electron distribution in excited states and the coupling effects responsible
for the fast singlet–triplet transitions in this system. It is in this context that elec-
tron spin-spin coupling may assist in the clarification, in combination with a high-level
correlation treatment in the framework of the dft/mrci approach.

Interlude

Having established the general environment and motivation of the present work, I will
turn now to a stronger mathematical/computational level. In the following section, I
will discuss the characteristics of the Breit-Pauli spin-spin operator. My intention is to
point out differences in the mathematical structure in comparison to the nonrelativistic
Hamiltonian in order to illustrate where the challenges and difficulties in the calculation
of electron spin-spin coupling could possibly lie. Subsequently, I will turn to aspects
concerning the present implementation of electron spin-spin coupling (Sec. Program
Frame, Ch. 1.4). In particular, I will introduce the computational efforts in the group
of Theoretical Chemistry at the University of Düsseldorf. I will give an overview over
the program structure electron spin-spin coupling is embedded in, pointing out issues
in the existing environment and programming decisions made in the context of the
whole package which strongly influence the spin-spin implementation.

1.3 Computational Considerations

In the framework of the Breit-Pauli Hamiltonian, electron spin-spin interaction is de-
scribed through the operator expression:

ĤBP
SS = g2

eµ
2
Bα2

N∑
i<j

{
−8π

3
δ(rij)ŝiŝj +

ŝi · ŝj

r̂3
ij

− 3 (ŝi · ŝj) (r̂ij · r̂ij)

r̂5
ij

}
, (1.1)

given in atomic units, with the g-factor of the free electron ge, the Bohr magneton µB,
and the fine structure constant α. Summation in the electron indices i, j is over all
electrons N .

The first term of the Breit-Pauli spin-spin operator constitutes a Fermi-contact type
interaction which is nonvanishing when the two electrons coincide. Terms two and
three represent a dipole-dipole interaction, analogous to the interaction between two
magnetic moments in classical physics. As the Fermi-contact type interaction does not
contribute to the magnitude of the zero-field splitting but solely causes an identical
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energetic shift of the components of a spin state S it is usually neglected.

For the subsequent discussion of the computational demands related to the structure of
the operator, it is advantageous to write it in terms of its tensor components, close to
its actual computational treatment (for discussion of aspects of the tensor formulation,
see Ch. 1.5.1):
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i ŝ+1
j

}
+

1√
2

{
3x̂ij ẑij
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−1
j − ŝ+1
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. (1.2)

Different albeit equivalent formulations of ĤSS are found in the literature. I chose here
to express the spin part in terms of spherical operators while the grouping of the spatial
part as linear combinations of its cartesian components is influenced by arguments of
symmetry. The operator is given in atomic units, it should be mentioned, though, that
especially in physics literature, Planck units are commonly chosen which differ from
atomic units by the speed of light c being defined as c = 1 instead of c = α−1, conse-
quently resulting in a prefactor of −g2

eµ
2
B with µB = e

2me
. Furthermore, I chose in my

work to deviate from the commonly encountered notation in the spin operator indices
which refers to electrons as well as operator components through subscripts. Especially
within the intricate derivation of Ch. 2, an unambiguous identification of these quan-
tities is mandatory, and the reference to the operator component will therefore appear
as a superscript throughout. With respect to the expression of the spherical spin op-
erator components, it has to be noted that prevalent formulations may differ in signs
and prefactors. The convention employed in above equation defines the spin operator
components as tensor operators which are related to their cartesian counterparts by
the following relationships:

ŝ+1 = − 1√
2
(ŝx + iŝy), ŝ0 = ŝz, ŝ−1 =

1√
2
(ŝx − iŝy). (1.3)

To illustrate the additional issues arising in the context of the spin-spin operator, I
compare to the nonrelativistic Hamiltonian in the Born-Oppenheimer approximation
describing the motion of N electrons in the field of M nuclei:

ĤBO = −
N∑
i

1

2
∇2

i −
N∑
i

M∑
A

ZA

riA

+
N∑
i

N∑
j<i

1

rij

(1.4)



24 Chapter 1. Framework

The most demanding evaluation in the case of this purely electrostatic Hamiltonian is
the contribution of the electron-electron interaction which corresponds to the last term
in above equation. In comparison, the spin-spin operator is like the spin-free operator
a full two-electron operator and we are faced with a computational demand on equally
high a level. No approximations are rigorously investigated and established so far, and
the implementation of the exact evaluation is therefore mandatory for an assessment
of the validity of possible future simplifications.

A simple but obvious structural difference between spin-spin versus spin-free electro-
static operator lies in the number of terms that have to be evaluated: While the latter
exhibits a single term related to the electron-electron interaction, the former consists in
the above formulation of five terms. Furthermore, each of these terms comprises a space
as well as a spin dependent part, whereas the nonrelativistic Hamiltonian depends on
space only. Connected to this observation is the issue of nonvanishing coupling ele-
ments between different quantum states: All terms of the Hamilton operator belong
to the totally symmetric irreducible representation. In the case of a spin-free operator,
this imposes identical spatial symmetry on two interacting states, while in the case of
a spin-dependent operator, no such selection rule necessarily holds for the space part
only but instead the product of spatial and spin symmetry of interacting states has
to be totally symmetric. The individual spatial components of the spin-spin operator
will, depending on the point group of the system, likely fall into different irreducible
representations, thereby enabling the spin-spin operator, in contrast to the spin-free
operator, to couple multiple different spatial symmetries. Furthermore, related to the
presence of spin dependent factors, additional coupling is introduced between states
of different spin quantum number S and/or its projections of differing MS value as
the selection rule imposed by the spin part is ∆S/∆MS = 0,±1,±2. Consequently,
we observe now a coupling between the degenerate components of a spin state, at the
same time, the coupling of states with different spin quantum numbers is introduced.
Therefore, with respect to the possible nonvanishing matrix elements between quantum
states, we notice the introduction of additional coupling due to the space as well as the
spin part, thereby greatly exacerbating the complexity of the computational evaluation.

Turning to the structure of individual terms, the different dependence of spin-free vs.
spin-spin operator on rij has to be noted. While the Coulomb term of the purely
electrostatic Hamiltonian exhibits an ∝ r−1

ij dependence, a dependence on r−3
ij in the

spin-spin operator is observed. As an r−3
ij operator is in principle unbounded, this

poses the question of the convergence properties of the spin-spin operator which may
manifest itself within a variational treatment in instabilities, an issue that is of minor
relevance in the context of first-order perturbation theory, though. Another aspect
following from the stronger singularity of the operator, with higher relevance on the
level of the present calculations, is the possibly increased demand on the quality of
basis set and computational consideration, imposed by the demand of describing more
singular an electron cusp: Since matrix elements over the spin-spin Hamiltonian ex-
hibit a distinctly stronger dependence on the interelectron distance, it is not obvious
that a wave function which satisfactorily describes the Coulomb cusp is necessarily



1.4. Program Frame 25

sufficient with respect to a description of the electron spin-spin cusp. One should be
aware of this aspect in the context of quality and reliability of calculations. Particular
observations concerning basis set effects and composition of the wave function relating
to the different structure of the spin-spin operator will be discussed in the context of
calculations on O2 (see Ch. 3.1).

Further issues of relevance, stronger on the level of the actual implementation, which
I would like to point out are: In case of the spin-free Hamiltonian which commutes
with the operator of the spin, it is advantageous to employ an algorithm based on spin
eigenfunctions (configuration state functions – CSFs) as opposed to determinants since
this allows for the application of selection rules in the spin quantum number. In the
case of a spin-dependent operator, both, an implementation based on determinants as
well as an implementation based on CSFs, is accompanied by complications. In the
case of determinants, one has to be conscientious with respect to a proper evaluation
of the spin interaction. Algorithms based on CSFs on the other hand have to realize
an intelligent implementation in order to be computationally feasible. In any case,
additional thought has to be given to the processing of spin functions. Considering the
calculation of the space part, the actual spatial integrals can be obtained via the eval-
uation of second derivatives of Coulomb integrals. As several of the existing quantum
chemistry programs do already possess implementations of second-order derivatives,
obtaining these integrals does not pose a strong demand from an implementational
point of view. Nonetheless, the calculation of second-order derivatives as compared to
undifferentiated integrals constitutes a computational expense that can be six times
higher, depending on the algorithm.

Finally, I finish the consideration of computational aspects of the spin-spin operator
on a more general note: Research has been performed for some considerable time on
the evaluation of the Coulomb operator. Computational chemists have meanwhile a
good impression of the scope and limitations of contemporary approaches and approx-
imations. On the other hand, research in the framework of spin-spin coupling has been
limited, and especially recognizing the strongly differing structure, it is not obvious
that the experience gained in the context of the electrostatic Hamiltonian is readily
extensible to the case of the spin-spin operator. There is a strong need for reliable
investigations in this respect.

1.4 Program Frame

The group of Christel M. Marian at the University of Düsseldorf has a strong con-
nection to the programming package dft/mrci which was written by Stefan Grimme
and Mirko Waletzke, University of Münster [1]. This program possesses an ab ini-
tio mrci branch which works with Hartree-Fock orbitals obtained from a previous
turbomole-dscf [148,149] run, as well as a dft/mrci branch which differs from the
former in employing Kohn-Sham orbitals and a modified empirical Hamiltonian. The
subsequent multireference calculation constitutes a selecting MRCI: After generation
of the CI space from the specified references, relevant configurations are selected based
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on their contribution to the reference space as evaluated perturbationally. The distinc-
tive advantage of this approach lies in the reduction of the size of the calculation by
exclusion of configurations of minor relevance. Employing configuration selection com-
pels the implementation of a configuration-driven, as opposed to an integral-driven,
algorithm: On the computational level, functions |Ψ〉 are stored as vectors of configu-
rations |Ξ〉, as indicated in Fig. 1.2. The matrix element (ME) 〈Ψk|O|Ψl〉 is calculated
by comparing configurations pairwise and adding up the contribution from each pair.
What further data has to be accessed is therefore determined by the pair of configu-
rations that is immediately evaluated. Details of the algorithm will be illustrated in
Ch. 2; the discussion in this section will slightly simplify aspects of the processing.

Figure 1.2: Pairwise comparison of configurations

An integral-driven algorithm, as is realized in “direct CI”, processes instead lists of
integrals; in this case, the specific integral determines which configurations have to be
evaluated. Since we deleted some configurations out of the state vector, we do not
store a consecutive sequence of configurations anymore. Therefore, we cannot predict
at which position of a vector a particular configuration appears but would have to
search step-by-step through a list instead, which would be computationally too labo-
rious. One major consequence of a configuration-driven algorithm is the necessity to



1.4. Program Frame 27

Figure 1.3: Connection of mrci, spock, spock.sistr

store all possible integrals in memory. Before comparing two configurations, we are not
in the possession of the information which integral(s) need to be processed, further-
more, it would be too time consuming to load integrals from disk. We therefore have
to provide all integrals readily accessible in memory, which can become a serious limi-
tation on the size of the calculation. Approximate schemes exist to reduce the storage
space necessary for the spatial integrals, one of which, the RI-approximation [150,151],
has been implemented in the case of the Grimme/Waletzke dft/mrci. Since there has
been limited interest in the field of spin-spin coupling until recently, no well-established
analogous schemes for spatial spin-spin integrals exist as to this stage though.

The dft/mrci-program constitutes the first step of a subsequent high-correlation
treatment of spin-dependent effects in the group of Theoretical and Computational
Chemistry at the University of Düsseldorf (see Fig. 1.3). Built onto the Grimme/-
Waletzke dft/mrci resides the SPin-Orbit-Coupling Kit (spock) [2–4] which is
on its implementational level in parts based on the former. spock calculates spin-orbit
interactions between the previously obtained mrci-wave functions, providing a quasi-
degenerate perturbational (QDPT) as well as a spin-orbit-CI algorithm (soci) within
the spin-orbit mean field approximation [122,152]. Again, determined by the use of the
preselected mrci-wave functions, a configuration driven algorithm is compulsory. Since
we employ a spin-dependent operator, thought has to be invested into coping with the
aspect of spin though. It was chosen to base the algorithm on the implementation of
MS = S spin functions while the matrix elements between spin functions for which
MS /= S can be obtained via the Wigner-Eckart theorem (see p. 30ff in Ch. 1.5.1). Rel-
evant aspects of the algorithm will be illustrated in Ch. 2 while further details beyond
can be found in [153].

This work presents the derivation and implementation of spock.sistr, the spin-spin
treatment. spock.sistr constitutes an extension of spock, enabling the calculation
of electron spin-spin effects subsequent to an mrci-, parallel to a possible spin-orbit
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calculation. The implementation is conceptually strongly related to the QDPT-spin-
orbit treatment. The main difference and point of labour as well as novelty lies in the
extension of algorithm and implementation to the treatment of a two-electron operator
as opposed to the one-electron mean-field treatment in the case of the spin-orbit branch.
At the beginning of the project, it was not clear if the procedure employed in the spin-
orbit case is applicable to the spin-spin operator. Now, the first major step is taken
to show that it is indeed in principle possible, and this work will hopefully be taken
further at the University of Düsseldorf, assessing the full scope and possibilities of the
project.

Interlude

The previous sections intended to convey the overall context of the present work, ad-
dressing the level of the general motivation, the particular scientific interests in this
group, as well as establishing an impression of the demands and challenges on a level
closer to the computational treatment.

The remaining part of this chapter focusses on detailed aspects. Ch. 1.5 is dedicated
to the introduction of concepts and algorithms assisting in the theoretical and compu-
tational consideration of the spin-spin operator. This chapter therefore constitutes the
basis for an in-depth understanding of the derivation of the spin-spin implementation
(Ch. 2). The path I will follow herein is to start on the level of the operator itself,
motivating its particular formulation as employed in this work as well as introduc-
ing auxiliary concepts (Sections Wigner-Eckart Theorem and Second Quantization).
Subsequently, I will turn to the level of evaluation of individual matrix elements, in-
troducing the η-pattern formalism which constitutes a concept of central relevance in
the spin-orbit and spin-spin implementation. I will discuss its spin-free manifestation
before turning to the spin-dependent algorithm as realized in spock.

Having established the relevant theoretical and computational concepts, I will illustrate
in Ch. 1.6 the phenomenological description on a mathematical level and relate it to
the theoretically employed Hamiltonian. The chapter will conclude with reflections on
principal issues in the present implementation (Ch. 1.7).

1.5 Theoretical Concepts

1.5.1 Expression of the Operator

The spin-spin operator can be written in terms of tensor operators of the space and
spin part as follows:

ĤBP
SS = g2

eµ
2
Bα2

N∑
i<j

{
ŝi · ŝj

r̂3
ij

− 3 (ŝi · ŝj) (r̂ij · r̂ij)

r̂5
ij

}
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The parenthesized superscripts denote the rank of the underlying tensorial structure,
the index m refers to its components, ŝi/j designate spin tensors of rank one while the

traceless tensor operator of rank two D̂ij can be expressed as:
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3x̂ij ŷij 3ŷ2
ij − r̂2

ij 3ŷij ẑij
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The dipole-dipole interaction can thereby be viewed as the coupling of a spin tensor
of rank two with a space tensor of rank two to give an operator of rank zero. The
motivation for the consideration of the spin-spin operator as a tensor contruct lies in
the computational advantages that can be exploited in this reformulation: Choosing
to recast the tensor operators through their irreducible components permits the appli-
cation of the Wigner-Eckart theorem (WET). This theorem establishes relationships
between irreducible tensor components and thereby allows for an expression of compo-
nents through one another, resulting in a saving in the number of terms that have to
be evaluated directly.

The irreducible components of the second-rank spin tensor operator T̂ (2) are specified
as:
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0
j + ŝ+1

i ŝ−1
j + ŝ−1
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We can thereby rewrite the spin-spin operator as given in Eq. (1.2) as follows:
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+1
j

}



30 Chapter 1. Framework

+i
1√
2

{
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In the general case of an irreducible tensor operator T̂
(k)
q of rank k and component

q, and denoting an eigenstate with angular momentum j, magnetic quantum number
m and possible additional quantum numbers α as |α j m〉, we observe nonvanishing

matrix elements 〈α′ j′ m′|T (k)
q |α j m〉 only if the selection rules:

|j − k| 6 j′ 6 j + k (1.12)

m′ = q + m (1.13)

are obeyed. With k = 2 in the case of the spin-spin operator, we notice therefore
that there is no coupling j = 0/j = 0 (singlet–singlet), j = 0/j = 1 (singlet–triplet),
j = 1

2
/j = 1

2
(doublet–doublet).

Wigner-Eckart Theorem

In the evaluation of matrix elements over irreducible spin tensor components, the appli-
cation of the Wigner-Eckart theorem (WET) is of crucial relevance. A matrix element

〈α′ j′ m′|T (k)
q |α j m〉 over an irreducible tensor T̂

(k)
q can according to the WET be

expressed as:

〈α′, j′ m′|T (k)
q |α, j m〉 = 〈jk; mq|jk; j′m′〉〈α

′j′||T (k)||αj〉√
2j + 1

. (1.14)

The Clebsch-Gordan coefficients 〈jk; mq|jk; j′m′〉 (see [6]) denote coupling coefficients
between angular momentum states and are tabulated in literature [154]. Further de-
tails referring to tensors, tensorial methods and the WET can be found in Silver [155].

The relevance of the WET in the present case is the expression of a tensorial matrix
element through the reduced matrix element (RME) 〈α′j′||T (k)||αj〉 which is indepen-
dent of the quantum numbers m, m′ and q. Therefore, if we consider further matrix
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elements between states with identical quantum number j, j′ but differing magnetic
quantum numbers m′′, m′′′, we can formulate:

〈α′, j′ m′′′|T (k)
q′ |α, j m′′〉 =

〈jk; m′′q′|jk; j′m′′′〉
〈jk; mq|jk; j′m′〉

〈α′, j′ m′|T (k)
q |α, j m〉. (1.15)

The quotient of two Clebsch-Gordan coefficients is denoted as a scaled Wigner-Eckart
coefficient.

Concretely in the application of the WET in the present implementation, I give the
calculation of the spin-spin interaction between two triplet states as an example: In
principle, we have to set up a {3× 3} matrix between the MS = −1, 0, +1 components
of the triplet state. What is actually implemented is an evaluation of each space com-
ponent with the spin component T̂

(2)
0 between the triplet states with MS = S = +1;

we therefore only calculate one spin-coupling element of the matrix. Subsequently, the
appropriate combination with the spin components T̂

(2)
−2 , T̂

(2)
−1 , T̂

(2)
+1 , T̂

(2)
+2 is obtained via

the WET without having to evaluate the other spin parts directly.

Since the implementation of our spin-spin program evaluates matrix elements over
MS = S-states, the reference MEs that we have to consider with respect to the appli-
cation of the WET represent the subcase j = m, j′ = m′. McWeeny [98] has derived
scaled Wigner-Eckart coefficients for irreducible tensor operators T̂ (1), T̂ (2) for this par-
ticular subcase, denoting his coefficients as “scaled 3j symbols”. We have employed
his tabulated scaled 3j symbols, given in table III of his work, in our implementation.2

Second Quantization

The derivation of the implemented formulas in Ch. 2 will employ the formalism of
second quantization. The most important notions and relationships are introduced in
this section, for a comprehensive presentation the reader is referred to [7].

In second quantization, operators and wave functions are expressed through the con-
struct of creation and annihilation operators; inherent properties like the antisymmetry
of the wave function are represented through the algebra of these operators. For sim-
plicity, I will introduce relevant concepts in the context of a spin-free formalism, the
adaptation to a spin-dependent scheme is straightforward and will occur at the end of
this section.

A determinant in the basis {φP} of M orthonormal spin orbitals can be written as a
general occupation number vector (ONV) |k〉:

|k〉 = |k1, k2, . . . , kM〉, kP =

{
1 φP occupied
0 φP unoccupied

(1.16)

2Note that his table exhibits a sign error: In the entry Sa = S, Sb = S +2, Ma = M , Mb = M ± 1,
it should read [(S ±M + 1)(S ∓M + 1)(S ±M + 2)(S ±M + 3)].
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with the occupation number kP denoting the occupation 1 or 0 of spin orbital P . A
creation operator a†P operates on the spin orbital φP as follows:

a†P |k1, k2, . . . , 0P , . . . , kM〉= Γk
P |k1, k2, . . . , 1P , . . . , kM〉 (1.17)

a†P |k1, k2, . . . , 1P , . . . , kM〉= 0, (1.18)

thereby generating an electron in φP if it is unoccupied, resulting in zero else. The
phase factor Γk

P is equal to +1 if the number of occupied spin orbitals to the left in
the ON vector is even, and −1 if it is odd. Conversely, the action of an annihilation
operator aP is defined as:

aP |k1, k2, . . . , 0P , . . . , kM〉= 0 (1.19)

aP |k1, k2, . . . , 1P , . . . , kM〉= Γk
P |k1, k2, . . . , 1P , . . . , kM〉. (1.20)

The following anticommutation relations are defined:{
a†P , a†Q

}
= 0 (1.21){

aP , aQ

}
= 0 (1.22){

a†P , aQ

}
= δPQ. (1.23)

These relations determine the algebra of creation and annihilation operators and are a
direct consequence of the mathematical properties imposed on the fermionic system.

One-electron operators are expressed in second quantization as:

f̂ =
∑
PQ

〈P |f |Q〉a†P aQ =
∑
PQ

fPQa†P aQ (1.24)

while two-electron operators are introduced as:

ĝ =
1

2

∑
PQRS

gPQRSa†P a†RaSaQ (1.25)

(see [7], especially Eqs. (1.4.2) and (1.4.15)).
As a simpler example, the spin-free Hamiltonian in the Born-Oppenheimer approxima-
tion is therefore formulated in second quantization as:

Ĥ =
∑
PQ

hPQa†P aQ +
1

2

∑
PQRS

gPQRSa†P a†RaSaQ. (1.26)

In the framework of spin-dependent operators, it is advantageous to adapt the nota-
tion and refer to spin quantum numbers explicitly. As it is common practice, I will
operate with a restricted formalism in which a spin orbital is formulated as a product
of spatial and spin eigenfunctions. A compound index is employed, referring to the
orbital part through lower-case Roman letters r, s while lower-case Greek letters ρ, σ
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denote the spin state, thereby identifying spin orbitals as φrρ, φsσ. The formalism of
creation/annihilation operators introduced so far is straightforwardly adaptable to this
change in notation, thereby for example in the case of the anticommutation rule given
in Eq. (1.23) rewriting to: {

a†rρ, asσ

}
= δrsδρσ. (1.27)

1.5.2 Matrix Elements

Algorithm: η-Pattern: spin-free

In 1975 Wetmore and Segal introduced a scheme for the efficient evaluation of CI-matrix
elements [156]. The basic idea is to avoid the time-consuming step of descending onto
the level of determinants in the comparison of configurations. A crucial element in the
realization of this intention is the recognition that the difference in occupation between
two arbitrary configurations can be expressed through a limited number of possible ex-
citation patterns. It is in those excitation patterns that ultimately the spin-coupling
information of the associated CSFs is encapsulated. The interaction associated with
each pattern can be precalculated once, which reduces the computational labour in the
actual evaluation to the recognition of the concrete pattern of the pair of configurations
in question and retrieving from memory the interaction element associated with this
pattern. I will subsequently outline the crucial aspects of the work of Wetmore and
Segal before illustrating the extension to the spin-orbit operator.

A configuration will denote solely the spatial occupation of molecular orbitals. Asso-
ciated with a single configuration can be more than one configuration state function
(CSF) which represents an eigenfunction with valid S, MS values. Following the con-
vention of Wetmore and Segal, a CSF is expressed as a linear combination of determi-
nants ∆i as:

|S,MS, ω, w〉 =
∑

i

ci(S,MS, ω) ∆i(MS, w) (1.28)

with w representing the space occupation vector while ω refers to the spin eigenfunc-
tion. Introducing in the notation of Wetmore and Segal the spin-conserving excitation
operator:

Êj
i =

∑
σ

a†iσajσ, (1.29)

the matrix element between two CSFs |ω, w〉, |ω′, w′〉 over this operator is obtained as:

〈ω′, w′|Ej
i |ω, w〉 = η(ω′, w′; ω, w). (1.30)

The η-coefficient constitutes a single number representing the spin interaction of the
CSFs |ω, w〉, |ω′, w′〉. It is computed by evaluating the spin occupation vectors of the
determinants associated with respective CSFs and can be precalculated ahead of the
actual program run and retrieved from memory during the calculation. The application
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of this scheme to two-electron operators was introduced employing the insertion of the
resolution of identity:

〈ω′, w′|Ej
i E

l
k|ω, w〉=

∑
ω′′

〈ω′, w′|Ej
i |ω′′, w′′〉〈ω′′, w′′|El

k|ω, w〉

= η(ω′, w′; w′′)ω′′ · η(w′′; ω, w)ω′′ (1.31)

with the contraction of the vectors η over the dimension in ω′′. The summation in w′′

vanishes as the particular excitation indices i, j, k, l constitute a selection in w′′. Note
that at this point, I deviate from the notation of Wetmore and Segal as I chose to refer
to the bra with indices grouped on the left of the bracketed expression accompanying
an η-coefficient while indices grouped on the right, separated by a semicolon, refer to
the ket. The dimension ω′′ along which contraction is performed is denoted by a sub-
script. This deviation from the original notation of Wetmore and Segal is introduced
for reasons of clarity in the case of the more complex spin-spin formulation, as it will
be employed in Ch. 2.

A crucial saving intrinsic in this approach is that the value of η depends solely on num-
ber and positions of open-shell electrons of the two CSFs involved while shells empty
or doubly occupied in both CSFs do not contribute to the value of η. Indeed, as the
sequence of open shells is common to CSFs exhibiting an identical configuration, the
notion of excitation patterns can already be applied on the level of configurations. A
brief introduction of this scheme including the computationally efficient realization as
binary numbers follows.

Configurations are stored as occupation vectors of MOs, constituting a sequence of 0,
1, 2, depending on the occupation of the individual molecular orbital. According to
Wetmore and Segal, the difference between two occupation vectors is expressed as a
so-called excitation pattern. The identification of excitation patterns is performed by
bitwise comparison of occupations of bra and ket and the resulting pattern is stored
as a binary number. The following example illustrates the underlying principle in the
comparison of two occupation number vectors:

ONV 1 1 0 1 1 0 1 2 2 2 2
ONV 2 1 1 0 1 0 1 2 2 2 2

1 0 0 1 1

= 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= pattern 19

Figure 1.4: Example of calculation of excitation pattern

Shells empty and doubly occupied vanish in the evaluation of the pattern, shells singly
occupied in both configurations result in a bit set to one, shells of changing occupation
result in a bit set to zero. Thereby, all excitation patterns can be uniquely identified.
Expression of the Hamiltonian in terms of excitation operators Êj

i enables the refor-
mulation of matrix elements between states as products of integrals and η-coefficients.
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A detailed illustration of this approach including a derivation of terms over the Hamil-
tonian is presented in [156].

Algorithm: η-Pattern: spin-dependent

The algorithm of Wetmore and Segal is particularly suited for a configuration selecting
algorithm as the main focus is the reduction in computational effort in the comparison
and evaluation of pairs of configurations. The Grimme/Waletzke dft/mrci applies
this scheme on the level of the spin-free operator. In the framework of an implementa-
tion of spin-orbit interaction employing dft/mrci states, Kleinschmidt and Marian [3]
developed an extension of the algorithm to the case of the spin-orbit operator in its
formulation as an effective one-electron interaction [122]. The one-electron spin-orbit
operator in second quantization is introduced according to Kleinschmidt and Marian
as:

Ĥeff
SO =

∑
m,n

∑
µ,ν

〈m µ|l · s|n ν〉a†mµanν

=
∑
m,n

∑
µ,ν

〈m|l|n〉〈µ|s|ν〉a†mµanν

=
∑
m,n

lmn

(∑
µ,ν

sµνa
†
mµanν

)
(1.32)

denoting spatial functions m, n and spin µ, ν, furthermore omitting the index in MS

as the program operates internally with wave functions for which S = MS. The second
step illustrates the possible decomposition of spatial and spin contributions in that
the angular momentum operator can be grouped referring to the spatial part of the
wavefunction only and the spin operator equivalently to the spin part.

The matrix element between two CSFs |S, ω, w〉, |S ′, ω′, w′〉 which differ by a single
excitation b → a thus formulates as:

〈S ′, ω′, w′|
∑
m,n

lmn

∑
µ,ν

sµνa
†
mµanν |S, ω, w〉

= lab 〈S ′, ω′, w′|
∑
µ,ν

sµνa
†
aµabν |S, ω, w〉

≡ lab · η(S ′, ω′, w′; S, ω, w). (1.33)

The matrix element between two CSFs is therefore reduced to the product of an angular
momentum integral lab and a spin-η-coefficient which, in contrast to the spin-free η-
coefficient, involves a dependence on the spin operator ŝ+1, ŝ0, ŝ−1.3 In the subsequent
work, the term “η-coefficient” shall denote implicitly the spin-dependent construct and

3Note that in Eq. (1.33) I chose a notation which differs slightly from the original one of Klein-
schmidt and Marian in [3], again referring in my notation with the left-hand side of indices to the bra,
the right-hand side to the ket, while separating these two quantities by a semicolon.
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I will refer to the spin-free η-coefficient explicitly when necessary.

The consideration of spin operators introduces additional coupling terms as nonvan-
ishing matrix elements may occur now between states for which ∆S = 0,±1. Conse-
quently, the number of η-coefficients is noticeably higher in the spin-dependent than
in the spin-free case. As in the spin-free case, the η-coefficient depends solely on num-
ber and positions of open shell electrons but not on individual occupation indices.
This considerably limits the number of distinct excitation patterns and therefore co-
efficients and allows for a precalculation of the η-coefficients and storage in memory
during the actual program run. Out of completeness, it should be mentioned that with
each pattern and spin operator, four subcases are associated which are partly related
to one another. Only an independent subset of the cases are precalculated and the
individual one accounted for during the program run. As a description on this level of
detail goes beyond the scope of this work, the reader is once again referred to [2–4,153].

1.6 Experimental Formulation

The experimentally assessed observable corresponding to electron spin-spin coupling
is the effect of “zero-field splitting” (ZFS), as was described at the end of Ch. 1.1.1.
The possibly partial lifting of degeneracies between the MS components of a state with
spin S can be caused by spin-orbit and/or spin-spin coupling effects. The terms in the
Breit-Pauli Hamiltonian giving rise to second-order SOC and first-order SSC exhibit
an identical phenomenological structure, causing these effects to be experimentally
indistinguishable. The effective spin Hamiltonian describing zero-field splittings is
formulated in the case of a system with S = 1 as [24]:

ĤZFS = Ŝ · D̂ · Ŝ. (1.34)

Ŝ denotes the spin operator Ŝ = (Ŝx, Ŝy, Ŝz) while the so-called zero-field tensor D̂

encapsulates the spatial dependence. As a Hermitian operator, D̂ can be diagonal-
ized by a unitary transformation, yielding the eigenvalues Dxx, Dyy, Dzz and thereby
simplifying the above spin Hamiltonian expression to:

ĤSS = DxxŜ
2
x + DyyŜ

2
y + DzzŜ

2
z . (1.35)

Furthermore, tracelessness follows from D̂ being a tensor of rank two, imposing addi-
tionally the condition Dxx + Dyy + Dzz = 0. Consequently, we obtain two independent
values which quantify zero-field splittings and are commonly designated as D and E,
obeying the following definition:

D =
3

2
Dzz (1.36)

E =
1

2
(Dxx −Dyy). (1.37)
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Within an experimental context, the values of D and E depend on the choice of prin-
cipal axis system and it is customary to choose the axis system so as to satisfy the
condition:

|E| 6 |D/3|. (1.38)

In a theoretical context, one frequently further imposes E/D > 0.

The experimentally observed zero-field splittings D/E have to be related to theoret-
ically obtained values. The above discussion based on the general form of HZFS was
valid in the description of SOC as well as SSC. In the following, we will turn specifically
to the assessment of the latter. In order to establish a connection between experimen-
tal and theoretical formulations, Eq. (1.34) has to be compared with the Breit-Pauli
Hamiltonian describing electron spin-spin coupling, see Eq. (1.2). After regrouping of
terms, we can identify operator expressions and thereby relate the phenomenological
construct to the theoretical description. We arrive at the definition of DSS already
introduced in Eq. (1.8), associated with the operater formulation in Eq. (1.7) (see
Ch. 1.5.1). The eigenvalues obtained by diagonalization of HSS directly correspond to
the components Dxx, Dyy and Dzz of the phenomenological Hamiltonian (Eq. (1.34))
and can be assembled according to Eqs. (1.36)/(1.37) to compare with experimentally
determined couplings D and E.

Systems with S > 1

The case S = 1 is the most common one in organic systems. Phenomenological terms
describing higher spin symmetries have been discussed by Weltner [24] as well as by
Abragam and Bleaney [25]. In general, the zero-field splitting is expressed therein
as a summation over higher powers of Ŝx, Ŝy, Ŝz and the coefficients parametrized
accordingly. For further details, I refer in particular to [24].

Tracelessness of D̂

In principle, D̂ does not necessarily exhibit tracelessness in the phenomenological de-
scription of ĤZFS, as was noted by Neese [119]. Since Eq. (1.34) is employed in the
experimental context to parametrize observable zero-field splittings in general, other
possible coupling effects which would necessitate a more complicated theoretical consid-
eration are included alongside second-order spin-orbit and first-order spin-spin interac-
tions. These further coupling effects do not necessarily have to comply with a traceless
tensorial operator structure. This aspect is not relevant in the present context since
we restrict our discussion primarily to spin-spin effects to first order as described by
the Breit-Pauli Hamiltonian, but it is mentioned as this is a common misconception
encountered in the literature.
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Identification of the Axis System

The experiment allows the correlation of zero-field splitting levels with the principal
axis system, as defined by the three components X , Y , Z. This can be accomplished
by aligning the molecule successively along external magnetic fields of different orienta-
tion and registering the dependence of energy transitions on the field strength. In the
approximation of the weak-field regime, an orientation along a principal axis Z distin-
guishes the corresponding eigenstate. Its energy can be observed to be independent of
the external magnetic field HZ while the remaining two components X , Y exhibit a
dependence on the field strength as their degree of mixing varies with the applied field
(see description of S = 1 systems in Wertz and Bolton [28] as well as Weltner [24]).
In the experimental context, it is therefore possible to establish a connection between
energy levels and the molecular orientation and thereby interpret spin-spin couplings
with respect to particular molecular axes. In the theoretical consideration, electron
spin-spin coupling is calculated at zero magnetic field, yielding the eigenvalues of the
system. The additional information of the dependence of spin splittings on the field
strength is absent, and the correspondence of spin levels to the molecular geometry
can therefore not be deduced. However, comparison with experiment can allow for an
identification of the theoretical splittings. Furthermore, in systems of higher symmetry,
the recognition of the principal axis system may be deducible from inspection of the
molecular geometry. Nonetheless, it has to be recognized that in the theoretical con-
text, assignment of spin splittings to specific molecular axes is generally not possible a
priori.

1.7 Final Remarks

In the customary approach of evaluating electron spin-spin coupling and possibly fur-
thermore spin-orbit coupling, implicit assumptions are frequently present. In the cur-
rent first implementation of spock.sistr, I bring these to attention as possible issues.

Evaluation of HSO/HSS

In particular if it is to be expected that spin-orbit and spin-spin effects are of compara-
ble magnitude, an assessment of both is desirable. The present program version allows
the execution of the spin-spin parallel to the spin-orbit branch, thereby evaluating
either HSO or HSS subsequent to a consideration of the purely electrostatic Hamilto-
nian Hel within the mrci program run. As both couplings are small compared to the
Coulomb contribution in most systems, the implicit assumption of the effect of spin-
orbit coupling on the wave function being negligible with respect to its impact on the
magnitude of SSC (and vice versa) is usually legitimate. Nonetheless, a subtle aspect
can manifest itself in an alternative consecutive assessment of the operators: Spin-orbit
coupling can cause a splitting of initially degenerate levels and reduce the symmetry
of the system. Upon subsequent evaluation of spin-spin coupling, this introduces the
possibility of observing previously symmetry-forbidden SSC.
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Calculation of DSO/DSS

In theoretical assessments, second-order spin-orbit and first-order spin-spin effects are
frequently evaluated separately. It is important to note that in the general case, the uni-
tary transformation diagonalizing the entire zero-field splitting tensor D̂ (see Eq. (1.34))
in the basis of the states of the system is not necessarily identical to the unitary trans-
formation that diagonalizes the individual coupling matrices D̂SO/D̂SS. In general, the
spin-coupling constants DSO and DSS are therefore not additive, which is crucial to
recognize if theoretical values are to be compared with experiment. Only if an identi-
cal unitary transformation diagonalizes both coupling matrices is the simple relation
D = DSO + DSS valid. This is the case if the coupling matrices themselves commute
which can occur accidentally if higher-symmetry systems result in sparse coupling ma-
trices.

Fermi-Contact Term

In Eq. (1.1), the full Breit-Pauli spin-spin Hamiltonian was introduced. This operator
can be decomposed into a sum of a tensor of rank zero (Fermi-contact term) and a
tensor of rank two. Customarily, it is only the second-rank tensor D̂ that is evaluated
in calculations of spin-spin coupling effects as the scalar term does not contribute to
the magnitude of the splitting. The Fermi-contact term causes solely an identical
energetic shift of all components of a specific spin state and the omission of this term
does therefore not affect the evaluation of expectation values. In principle, an error can
be introduced in the calculation of matrix elements between different states, though,
as the Fermi-contact term does not necessarily account for identical shifts of different
spin states. To the best of my knowledge, the possible magnitude of this error has
not been assessed so far. In general, a δ function operator imposes a considerable
demand on the computational description of short-range distances and is therefore
very difficult to calculate. Considerations of the electron-nuclear Fermi-contact term
of the hyperfine coupling tensor exist(e.g. [157,158]) and the experience gained in this
context may assist in future assessments of the electron-electron Fermi-contact term of
the spin-spin operator.
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Chapter 2

Computational Structure

The spin-spin branch spock.sistr developed within my PhD is embedded in the pro-
gramming package spock which in turn is conceptually based on the Grimme/Waletzke
mrci. In Ch. 1.4, I have introduced the basic connections between these programs on
a general level (see Fig. 1.3) and outlined major aspects. Naturally, the programming
decisions made in the context of the mrci program and subsequently spock guide the
program structure and thereby set the scene for the spin-spin implementation.

In its outer framework as well as the constructs it depends on, the spin-spin imple-
mentation is based on the spin-orbit code. In the development of spock itself, the
basic structure of retrieving, comparing and processing configurations was ported from
the mrci program, the actual evaluation of configuration pairs was extended to the
treatment of the spin-dependent one-electron operator ĤSO which necessitated the in-
troduction of new structures and concepts, the details of which were illustrated in
Ch. 1.5.2, p. 35ff. Adopting the spin-orbit implementation as a reference point, two
major adaptations had to be considered in the case of the spin-spin operator. First,
and predominantly reflected on a higher level in the outer routines, different selection
rules have to be obeyed with respect to the spatial as well as the spin part. Second, the
algorithm of η-coefficients and pattern evaluation had to be extended from the case of
a one-electron to a two-electron operator (see Ch. 2.2); this point as the more crucial
one concerns the concrete evaluation of the contribution of pairs of configurations.

In Ch. 2.1, I will illustrate the general program flow of the spin-spin implementation,
which is structurally similar to the spin-orbit QDPT branch spock.qdpt. I will start
out on the outer level of spock.sistr and move towards the inner processing, reaching
pictorially the step of calculating contributions of pairs of configurations. The subse-
quent chapter, Ch. 2.2, will be concerned with the detailed mathematical evaluation
of the individual terms.

2.1 Program Structure

The principal program structure is illustrated in Fig. 2.1: At the begin of the code
execution, information about molecular system and states is established by evaluation
of the previous mrci-run(s) and program variables of spock are initialized. Subse-
quently, the spin-spin branch is entered if requested.

41
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Figure 2.1: Program structure of spock.sistr

The outermost loop assesses the information concerning the spin and evaluates if spin-
spin coupling is possible and with which states, based on the selection rule ∆S =
0,±1,±2. The next loop evaluates the spatial symmetry of the states in question and
determines the coupling component(s) of the operator, based on the point group of
the molecule and the symmetry of the individual spin-spin terms. Subsequently, the
routine of the actual vector comparison is entered and the contribution of pairs of con-
figurations |Ξi〉, |Ξj〉 evaluated, the details of which will be illustrated below. After
calculation of all matrix elements between MS = S wave functions, the interaction
matrix in the basis of states of all MS-values is constructed employing the Wigner-
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Eckart theorem (see p. 30ff in Ch. 1.5.1). Diagonalization of this matrix yields the
perturbation energy to second order as well as the first-order wave functions as linear
combinations of the unperturbed states.

In the subsequent illustration of vector processing and configuration comparison, I
introduce |Υ〉 to denote CSFs while |Ξ〉 refers to configurations. A wave function |Ψk〉
can be expressed as a linear combination of CSFs, the coefficients ck

i of which have
been determined in the previous mrci calculation:

|Ψk〉 =
∑

i

ck
i |Υi〉. (2.1)

Storage of Wave Function
Internally, wave functions |Ψk〉, |Ψl〉 are stored as vectors of CSFs, while in turn
CSFs belonging to an identical configuration are grouped consecutively.

Figure 2.2: Alignment of configurations |Ξ〉, CSFs |Υ〉

Note that I explicitly introduced primed subindices in the left vector while em-
ploying unprimed ones in the right vector. If |Ψk〉, |Ψl〉 fall into different symme-
tries, the configuration spaces of these two states differ, and we observe |Ξj′〉 /=
|Ξj〉. A clear distinction between the two configuration spaces is therefore re-
quired if we display entire vectors. When discussing individual matrix elements
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in subsequent sections, I will return to the simpler notation of employing different
letters for configurations/CSFs of bra and ket.

The grouping of CSFs on the basis of configurations is advantageous in the frame-
work of the algorithm, which operates on the higher level of configurations instead
of CSFs.

Comparison of Configurations
The matrix element 〈Ψk|HSS|Ψl〉 is calculated by progressing through the vector
of bra and ket. Individual configurations are compared pairwise and their differ-
ence in excitation idiff established as a branching criterion, yielding nonvanishing
matrix elements and therefore further execution for idiff = 0, 1, 2. Subsequently,
the excitation pattern for the pair of configurations |Ξi′〉, |Ξj〉 is determined and
the corresponding set of η-coefficients retrieved from memory.

Figure 2.3: Comparison of configurations

Evaluation of Matrix Element
In the last step of a configuration comparison, the vectors of coefficients of the
CSFs belonging to configurations |Ξi′〉, |Ξj〉 are accessed and assembled with
spatial integrals and spin coefficients to calculate the contribution of 〈Ξi′ |HSS|Ξj〉
to the matrix element 〈Ψk|HSS|Ψl〉.
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Figure 2.4: Calculation of contributions

It should be emphasized at this point that the comparison step involves solely configu-
rations and does not descend to the level of CSFs, which constitutes a distinctive point
of saving in the computational effort. After determination of associated patterns of the
pair of configurations in question, the coefficients of CSFs are accessed directly and
processed with spatial spin-spin integrals and spin coefficients to yield 〈Ξi′|HSS|Ξj〉.
The evaluation of this term is derived in the following.

2.2 Calculation of Matrix Elements

In principle, a general matrix element 〈Ξk|O|Ξl〉 between two configurations |Ξk〉, |Ξl〉
entails a summation over CSFs |Υ′〉 affiliated with |Ξk〉 and CSFs |Υ〉 affiliated with
|Ξl〉:

〈Ξk|O|Ξl〉 =
∑
Υ′

∑
Υ

〈Υ′|O|Υ〉. (2.2)

It has to be remembered that the introduction of |Υ〉 constitutes a compact notation
for a particular spin eigenfunction with definite values of spin S, spin component MS,
space occupation vector w and and spin vector ω: |S,MS, ω, w〉 = |Υ〉.
As an element in a CI wave function, Eq. (2.2) has to be weighted by the CI coefficients
{ci}, {cj} that specify the contribution of individual CSFs to the electronic states |Ψi〉,
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|Ψj〉. We therefore obtain in the evaluation of spin-spin coupling for the contribution
of 〈Ξk|HSS|Ξl〉 to 〈Ψi|HSS|Ψj〉:

〈Ξk|HSS|Ξl〉=
∑
Υ′

∑
Υ

ci(Υ′)cj(Υ)〈Υ′|HSS|Υ〉 (2.3)

with the definition of ĤSS given in Eq. (1.2). We introduce at this point a simplified
notation for the spin-spin Hamiltonian by referring with a general label Ŝ to a compo-
nent of the spin tensor T̂

(2)
i while the accompanying spatial part is denoted R̂. Using

this abbreviated notation, the spin-spin operator reads:

ĤSS = k
∑
m

N∑
i/=j

R̂(m) · Ŝ(m) (2.4)

with the compound prefactor k = −g2
eµ

2
Bα2. It is legitimate to decompose the CSFs

into spatial and spin information and evaluate these contributions as a product ex-
pression over the corresponding operators, thereby allowing to write in an abstract
sense:

〈Ξk|HSS|Ξl〉= k
∑
Υ′

∑
Υ

ci(Υ′)cj(Υ)
∑
m

〈w′|R(m)|w〉〈S ′, M ′
S, ω′|S(m)|S,MS, ω〉. (2.5)

At this point, we recognize the product of CI coefficients, spatial integrals over R̂ and
spin coupling over Ŝ which is assembled to the corresponding matrix element. The
spatial spin-spin integrals depend solely on the excitation between the two configura-
tions and are therefore common to the set of CSFs associated with |Ξi′〉, |Ξj〉. The
spin contribution on the other hand depends on the spin eigenfunctions as well as the
spin operator in question and thereby incorporates the entire spin information of the
term.

The factorization of spatial and spin information is reflected on the level of the deriva-
tion as well as the implementation. The labour in the derivation of expressions de-
scribing electron spin-spin coupling in the framework of spock constitutes therefore of
two parts. The first is concerned with the development of the concrete spatial coupling
expressions over R̂ under consideration of selection rules and permutational properties
of the spin-spin operator. The second concerns the evaluation of spin coupling ex-
pressions over Ŝ, again employing operator relations while resorting to individual spin
operator components in order to simplify the expressions that arise.

In the case of the one-electron spin-orbit operator, the spin contribution is given by
a single η-coefficient (see Ch. 1.5.2, Eq. (1.33)). The question in the context of the
present thesis was if the concept of spin-dependent η-coefficients could be extended
from a one- to a two-electron operator, and in particular if this could be done effi-
ciently within the framework of the existing program. Following the idea of Wetmore
and Segal, the decomposition of a two-electron to a product of two one-electron opera-
tors by insertion of the resolution of identity is in principle straightforward (see p. 33ff
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in Ch. 1.5.2). As so often with ideas, the actual realization is more intricate in the case
of the spin-spin operator than it may seem at first sight, however. The majority of this
chapter is devoted to the stepwise derivation of the implemented formulas. At the end
of it stands a construct which indeed allows the calculation of matrix elements over
the spin-spin operator consistent with the structures employed within spock, and it is
shown specifically that the spin term can be evaluated as a scalar product of η vectors.
It should be pointed out that this decomposition was crucial for the realizability of
the implementation of the spin-spin operator as the alternative would have been the
introduction of a compound two-electron construct depending on two CSFs and four
spin indices. This would have been distinctly more demanding in terms of memory
requirement.1

The route I am about to commence is as follows:

Spin-Spin Operator: I will start out with the introduction of the spin-spin operator
in second quantization. After specification of the three possible cases of spatial
excitation (idiff = 0, 1, 2), I will introduce the expressions associated with each
case (Ch. 2.2.1).

Derivation (I): The first part of my derivation refers to the spatial contribution.
Under consideration of spatial excitations, I will establish selection rules and
matrix element expressions which follow from the mathematical properties of the
spin-spin operator. It consists of the steps:

• Derivation of the selection rules associated with each case of excitation.

• Showing that the contribution of closed shells is vanishing in the calculation.

• Introduction of a permutational relation between spin indices which is nec-
essary for further reformulations.

I will finish this section giving compact expressions for the evaluation of spin-
spin coupling on a general background, e.g., without further resolution of the
spin coupling contribution (Ch. 2.2.2).

Derivation (II): The second part of the derivation is concerned with the evalua-
tion of the spin coupling information within the existing program environment.
In particular, it is here that the decomposition of two-electron spin-spin terms
into a product of one-electron spin-η-coefficients will be accomplished. The sec-
ond aspect of major relevance that has to be accounted for in derivation and
implementation is the imposition of an algorithm based on wave functions with
MS = S, as will be shown herein (Ch. 2.2.3).

Implemented Formulas: At the end of the derivation, I will present the formu-
las for the evaluation of the spin coupling terms as they are implemented in
spock.sistr, casewise dependent on the excitation and the difference in multi-
plicity (Ch. 2.2.4).

1Considering as an example the excitation between two triplets with ten open shells, the storage
demand would increase approximately (based on a simplified assessment) by a factor of 15.
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Spatial Integrals: The previous steps were related to the program structure and
the evaluation of the spin-coupling contribution. For the evaluation of the entire
matrix element, the spatial spin-spin integrals have to be furthermore incorpo-
rated. I will therefore describe the calculation of exact spatial integrals, obtained
by modification of the program Dalton (Ch. 2.2.5).

2.2.1 Spin-Spin Operator

The starting point of my derivation is the spin-spin operator as introduced in the abbre-
viated notation of Eq. (2.4). The mrci as well as spock code evaluate configurations
based on their difference in excitation. This processing is related conceptually to the
formalism of second quantization, and it therefore constitutes a compact notation that
I adapt for the subsequent derivation (the most important relationships were intro-
duced in Ch. 1.5.1, p. 31ff). The reader more familiar with first quantization may find
some of the reformulations less intuitive which may make some steps appear hasty and
others more elaborate.

Introducing now the spin-spin operator in second quantization, we obtain:

ĤSS = k
1

2

∑
m

∑
rstu

∑
ρστυ

〈rρ sσ|R(m) · S(m)|tτ uυ〉a†rρa
†
sσauυatτ

= k
1

2

∑
m

∑
rstu

∑
ρστυ

〈rs|R(m)|tu〉〈ρσ|S(m)|τυ〉a†rρa
†
sσauυatτ

= k
1

2

∑
m

∑
rstu

∑
ρστυ

R
(m)
rstu S

(m)
ρστυ a†rρa

†
sσauυatτ , (2.6)

with the spatial orbitals r, s, t, u and spin indices ρ, σ, τ, υ; the factor of 1
2

is conven-
tional (see [7], Eq. (1.4.15) and encompassing exposition). Note that indices r, t/ρ, τ
refer to electron 1, indices s, u/σ, υ to electron 2. This translates in the case of the spin-

spin operator, illustrated with one component, into: 〈ρσ|T (2)
+2 |τυ〉 = 〈ρσ|s+1

1 s+1
2 |τυ〉 =

〈ρ|s+1
1 |τ〉 · 〈σ|s+1

2 |υ〉. In the further evaluation, the first spin operator in a product will
implicitly refer to electron one, the second to electron two, and I will therefore omit
the explicit electron indices 1/2.

Comparing an arbitrary pair of configurations, the cases that have to be distinguished
with respect to a spatial occupation w, w′ of ket and bra are:

i. no excitation: w′ = w

ii. single excitation: w′ = a†baaw

iii. double excitation: w′ = a†ca
†
dabaaw .

I start out from the general expression for a matrix element between two CSFs
|S ′, M ′

S, ω′, w′〉, |S,MS, ω, w〉:

〈S ′, M ′
S, ω′, w′|HSS|S,MS, ω, w〉 =

k

2

∑
m

∑
rstu

∑
ρστυ

R
(m)
rstuS

(m)
ρστυ〈Υ′|a†rρa

†
sσauυatτ |Υ〉, (2.7)
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introducing |S ′, M ′
S, ω′, w′〉 ≡ |Υ′〉, |S,MS, ω, w〉 ≡ |Υ〉 for compactness.

i. w′ = w
The CSFs |Υ〉, |Υ′〉 do not differ in their spatial occupation, nonvanishing con-
tributions can therefore occur only if the combined application of creation and
annihilation operators does not alter the occupation vector:

〈Υ′|a†ra†sauat |Υ〉 = ±〈Υ′|Υ〉 (2.8)

which is fulfilled for the two possible cases:

u = r ∧ t = s

u = s ∧ t = r. (2.9)

Thereby, the summation reduces to:

〈Υ′|HSS|Υ〉 =
k

2

∑
m

∑
r /=s

∑
ρστυ

{
R

(m)
rsrsS

(m)
ρστυ〈Υ′|a†rρa

†
sσasυarτ |Υ〉

+R
(m)
rssrS

(m)
ρστυ〈Υ′|a†rρa

†
sσarυasτ |Υ〉

}
. (2.10)

It should be mentioned that the selection rule r /= s was already introduced at
this point for clearness, the proof of it will follow in the next section (Selection
Rules, p. 52).

ii. w′ = a†baaw
The CSFs |Υ〉, |Υ′〉 differ in their spatial occupation by a single excitation a → b,
thereby resulting in nonvanishing contributions only if:

〈Υ′|a†ra†sauat |Υ〉 = ±〈Υ′|a†baa|Υ〉. (2.11)

The four possible cases that have to be considered are therefore:

r = b, u = a ∧ s = t

r = b, t = a ∧ s = u

s = b, u = a ∧ r = t

s = b, t = a ∧ r = u, (2.12)

resulting in a reduction of the summation to:

〈Υ′|HSS|Υ〉 =
k

2

∑
m

∑
r /=a,b

∑
ρστυ

{
R

(m)
brarS

(m)
ρστυ〈Υ

′|a†bρa
†
rσarυaaτ |Υ〉

+R
(m)
brraS

(m)
ρστυ〈Υ

′|a†bρa
†
rσaaυarτ |Υ〉

+R
(m)
rbarS

(m)
ρστυ〈Υ

′|a†rρa
†
bσarυaaτ |Υ〉

+R
(m)
rbraS

(m)
ρστυ〈Υ

′|a†rρa
†
bσaaυarτ |Υ〉

}
. (2.13)

This expression can be further simplified as it can be shown that term (1) is
equivalent to term (4), and term (2) is equivalent to term (3). The proof will
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be illustrated in detail for the case of term (1)–term (4). Starting out with the
expression for term (1), we can rewrite:∑

ρστυ

{
R

(m)
brarS

(m)
ρστυ〈Υ

′|a†bρa
†
rσarυaaτ |Υ〉

}
=
∑
ρστυ

{
R

(m)
brarS

(m)
ρστυ〈Υ

′|a†rσa
†
bρaaτarυ|Υ〉

}
(2.14)

=
∑
ρστυ

{
R

(m)
brraS

(m)
ρστυ〈Υ

′|a†rσa
†
bρaaτarυ|Υ〉

}
(2.15)

=
∑
ρστυ

{
R

(m)
brraS

(m)
σρυτ 〈Υ

′|a†rρa
†
bσaaυarτ |Υ〉

}
. (2.16)

The first step consisted of an application of the anticommutation rule
{

a†sσ, a
†
tτ

}
={

asσ, atτ

}
= 0, in the next step the permutational symmetry in the spatial in-

tegrals: Rrstu = Rsrut was employed, and in the last step a relabeling of the
dummy summation indices was performed. The final step of the derivation of
above stated equivalence constitutes of employing the permutational symmetry
in the spin indices: Sρστυ = Sσρυτ . This permutational symmetry shall be il-

lustrated for the component T̂
(+2)
+1 = 1√

2

{
ŝ0

i ŝ
+1
j + ŝ+1

i ŝ0
j

}
for which it translates

into:

〈ρ|s0
i |τ〉〈σ|s+1

j |υ〉+ 〈ρ|s+1
i |τ〉〈σ|s0

j |υ〉
= 〈σ|s0

i |υ〉〈ρ|s+1
j |τ〉+ 〈σ|s+1

i |υ〉〈ρ|s0
j |τ〉 (2.17)

which holds upon permutation of the electron indices i, j in one of the terms. The
permutational relationship in the spin indices is evidently a direct consequence
of the symmetrical appearence of the electron indices in the spin terms. We can
thereby perform the last step in the derivation and conclude:∑

ρστυ

{
R

(m)
brarS

(m)
ρστυ〈Υ

′|a†bρa
†
rσarυaaτ |Υ〉

}
=
∑
ρστυ

{
R

(m)
rbraS

(m)
ρστυ〈Υ

′|a†rρa
†
bσaaυarτ |Υ〉

}
. (2.18)

Identifying the right-hand side with term (4) in Eq. (2.13), the above stated
equivalence between term (1) and term (4) was therefore proved. Employing an
analogous line of argument, one may show equivalently for term (2)–term (3):∑

ρστυ

{
R

(m)
brraS

(m)
ρστυ〈Υ

′|a†bρa
†
rσaaυarτ |Υ〉

}
=
∑
ρστυ

{
R

(m)
brraS

(m)
ρστυ〈Υ

′|a†rσa
†
bρarτaaυ|Υ〉

}
(2.19)

=
∑
ρστυ

{
R

(m)
rbarS

(m)
ρστυ〈Υ

′|a†rσa
†
bρarτaaυ|Υ〉

}
(2.20)
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=
∑
ρστυ

{
R

(m)
rbarS

(m)
σρυτ 〈Υ

′|a†rρa
†
bσarυaaτ |Υ〉

}
(2.21)

=
∑
ρστυ

{
R

(m)
rbarS

(m)
ρστυ〈Υ

′|a†rρa
†
bσarυaaτ |Υ〉

}
. (2.22)

We can therefore combine identical terms and reformulate Eq. (2.13) as:

〈Υ′|HSS|Υ〉 = k
∑
m

∑
r /=a,b

∑
ρστυ

{
R

(m)
brarS

(m)
ρστυ〈Υ

′|a†bρa
†
rσarυaaτ |Υ〉

+R
(m)
brraS

(m)
ρστυ〈Υ

′|a†bρa
†
rσaaυarτ |Υ〉

}
. (2.23)

Again, it should be mentioned that the indicated selection rule (r /= a, b) will be
proved in the following section Selection Rules (p. 52).

iii. w′ = a†ca
†
dabaaw

The CSFs |Υ〉, |Υ′〉 differ in their spatial occupation by a double excitation
a, b → c, d. Nonvanishing contributions in the summation do therefore only
result if the indices t, u of the annihilation operators are identified with a, b while
at the same time the indices r, s of the creation operators have to agree with c, d.
This restricts the possible cases to the following permutations:

r = c, s = d, u = a, t = b

r = c, s = d, u = b, t = a

r = d, s = c, u = a, t = b

r = d, s = c, u = b, t = a, (2.24)

thereby yielding for the matrix element expression:

〈Υ′|HSS|Υ〉 =
k

2

∑
m

∑
ρστυ

{
R

(m)
cdbaS

(m)
ρστυ〈Υ

′|a†cρa
†
dσaaυabτ |Υ〉

+R
(m)
cdabS

(m)
ρστυ〈Υ

′|a†cρa
†
dσabυaaτ |Υ〉

+R
(m)
dcbaS

(m)
ρστυ〈Υ

′|a†dρa
†
cσaaυabτ |Υ〉

+R
(m)
dcabS

(m)
ρστυ〈Υ

′|a†dρa
†
cσabυaaτ |Υ〉

}
. (2.25)

Employing an analogous line of argument as in (ii.), we can establish equivalence
of term (1)–term (4): ∑

ρστυ

{
R

(m)
cdbaS

(m)
ρστυ〈Υ

′|a†cρa
†
dσaaυabτ |Υ〉

}
=
∑
ρστυ

{
R

(m)
dcabS

(m)
ρστυ〈Υ

′|a†dσa
†
cρabτaaυ|Υ〉

}
(2.26)

=
∑
ρστυ

{
R

(m)
dcabS

(m)
ρστυ〈Υ

′|a†dρa
†
cσabυaaτ |Υ〉

}
(2.27)
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and term (2)–term (3):∑
ρστυ

{
R

(m)
cdabS

(m)
ρστυ〈Υ

′|a†cρa
†
dσabυaaτ |Υ〉

}
=
∑
ρστυ

{
R

(m)
dcbaS

(m)
ρστυ〈Υ

′|a†dσa
†
cρaaτabυ|Υ〉

}
(2.28)

=
∑
ρστυ

{
R

(m)
dcbaS

(m)
ρστυ〈Υ

′|a†dρa
†
cσaaυabτ |Υ〉

}
, (2.29)

thereby leading to the simpler expression:

〈Υ′|HSS|Υ〉 = k
∑
m

∑
ρστυ

{
R

(m)
cdbaS

(m)
ρστυ〈Υ

′|a†cρa
†
dσaaυabτ |Υ〉

+R
(m)
cdabS

(m)
ρστυ〈Υ

′|a†cρa
†
dσabυaaτ |Υ〉

}
. (2.30)

At this point, we have introduced in Eqs. (2.10)/(2.23)/(2.30) formulas for the three
types of nonvanishing excitations in the calculation of spin-spin coupling. This con-
stitutes our starting point for the introduction of further relevant relationships, and,
following from there, the derivation of the concrete terms implemented in spock.sistr.

2.2.2 Derivation – Part (I)

Selection Rules

As already partly indicated in Eqs. (2.10)–(2.30), the cases obey the following selection
rules:

i. w′ = w: r /= s, see Eq. (2.10)

ii. w′ = a†baaw: a /= r, b /= r, see Eq. (2.23)

iii. w′ = a†ca
†
dabaaw: a /= b, c /= d

These selection rules are an application of the more general statement that nonvanishing
contributions for a term

∑
ρστυ R

(m)
rstuS

(m)
ρστυ〈Υ′|a†rρa

†
sσauυatτ |Υ〉 occur solely for r /= s,

u /= t. The proof consisting of two parts follows.

(I). Assume u = t. We therefore operate in succession with two annihilation opera-
tors, both of which refer to an identical spatial orbital, onto an occupation vector
and can formulate this as the general case: ajρajσ|Υ〉. A nonvanishing contribu-
tion can only result if ρ /= σ and the occupation vector contains both jα, jβ. The
restriction on the spin states limits the possible nonvanishing contributions for
the individual spin tensor components T̂

(2)
i to:

T̂
(2)
+2 : no contribution

T̂
(2)
+1 : R

(m)
rstt

1√
2
〈α|s0|α〉〈α|s+1|β〉〈Υ′|a†rαa†sαatβatα|Υ〉
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+ R
(m)
rstt

1√
2
〈α|s+1|β〉〈α|s0|α〉〈Υ′|a†rαa†sαatαatβ|Υ〉 (2.31)

= R
(m)
rstt

1

4

{
−〈Υ′|a†rαa†sαatβatα|Υ〉 − 〈Υ′|a†rαa†sαatαatβ|Υ〉

}
(2.32)

= R
(m)
rstt

1

4

{
−〈Υ′|a†rαa†sαatβatα|Υ〉+ 〈Υ′|a†rαa†sαatβatα|Υ〉

}
(2.33)

= 0

T̂
(2)
0 : R

(m)
rstt

1√
6

{
2〈α|s0|α〉〈β|s0|β〉〈Υ′|a†rαa†sβatβatα|Υ〉

+ 2〈β|s0|β〉〈α|s0|α〉〈Υ′|a†rβa†sαatαatβ|Υ〉
+ 〈β|s−1|α〉〈α|s+1|β〉〈Υ′|a†rβa†sαatβatα|Υ〉

+〈α|s+1|β〉〈β|s−1|α〉〈Υ′|a†rαa†sβatαatβ|Υ〉
}

(2.34)

= R
(m)
rstt

1√
6

{
−1

2
〈Υ′|a†rαa†sβatβatα|Υ〉 −

1

2
〈Υ′|a†rβa†sαatαatβ|Υ〉

−1

2
〈Υ′|a†rβa†sαatβatα|Υ〉 −

1

2
〈Υ′|a†rαa†sβatαatβ|Υ〉

}
(2.35)

= R
(m)
rstt

1

2
√

6

{
〈Υ′|a†rαa†sβatαatβ|Υ〉+ 〈Υ′|a†rβa†sαatβatα|Υ〉

−〈Υ′|a†rβa†sαatβatα|Υ〉 − 〈Υ′|a†rαa†sβatαatβ|Υ〉
}

(2.36)

= 0

T̂
(2)
−1 : R

(m)
rstt

1√
2
〈β|s0|β〉〈β|s−1|α〉〈Υ′|a†rβa†sβatαatβ|Υ〉

+ R
(m)
rstt

1√
2
〈β|s−1|α〉〈β|s0|β〉〈Υ′|a†rβa†sβatβatα|Υ〉 (2.37)

= R
(m)
rstt

1

4

{
−〈Υ′|a†rβa†sβatαatβ|Υ〉 − 〈Υ′|a†rβa†sβatβatα|Υ〉

}
(2.38)

= R
(m)
rstt

1

4

{
−〈Υ′|a†rβa†sβatαatβ|Υ〉+ 〈Υ′|a†rβa†sβatαatβ|Υ〉

}
(2.39)

= 0

T̂
(2)
−2 : no contribution.

The individual reformulations consisted of applications of the anticommutation
relation between annihilation operators, to be precise employing arαarβ|Υ〉 =
−arβarα|Υ〉.

The proof regarding the selection rule r /= s is performed analogously as follows.

(II). Assume r = s. We operate now with two creation operators with reference to
an identical spatial orbital onto an occupation vector and consider thereby the
general case: a†jρa

†
jσ|Υ〉. Therefore, orbital j has to be vacant in the occupation

vector and again ρ /= σ. Examining now individual spin tensor components yields
under the restriction in spin values:

T̂
(2)
+2 : no contribution
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T̂
(2)
+1 : R

(m)
sstu

1√
2
〈β|s0|β〉〈α|s+1|β〉〈Υ′|a†sβa†sαauβatβ|Υ〉

+ R
(m)
sstu

1√
2
〈α|s+1|β〉〈β|s0|β〉〈Υ′|a†sαa†sβauβatβ|Υ〉 (2.40)

= R
(m)
sstu

1

4

{
〈Υ′|a†sβa†sαauβatβ|Υ〉+ 〈Υ′|a†sαa†sβauβatβ|Υ〉

}
(2.41)

= 0

T̂
(2)
0 : R

(m)
sstu

1√
6

{
2〈α|s0|α〉〈β|s0|β〉〈Υ′|a†sαa†sβauβatα|Υ〉

+ 2〈β|s0|β〉〈α|s0|α〉〈Υ′|a†sβa†sαauαatβ|Υ〉
+ 〈β|s−1|α〉〈α|s+1|β〉〈Υ′|a†sβa†sαauβatα|Υ〉
+〈α|s+1|β〉〈β|s−1|α〉〈Υ′|a†sαa†sβauαatβ|Υ〉

}
(2.42)

= R
(m)
sstu

1

2
√

6

{
〈Υ′|a†sαa†sβauαatβ|Υ〉+ 〈Υ′|a†sβa†sαauβatα|Υ〉

−〈Υ′|a†sβa†sαauβatα|Υ〉 − 〈Υ′|a†sαa†sβauαatβ|Υ〉
}

(2.43)

= 0

T̂
(2)
−1 : R

(m)
sstu

1√
2
〈α|s0|α〉〈β|s−1|α〉〈Υ′|a†sαa†sβauαatα|Υ〉

+ R
(m)
sstu

1√
2
〈β|s−1|α〉〈α|s0|α〉〈Υ′|a†sβa†sαauαatα|Υ〉 (2.44)

= R
(m)
sstu

1

4

{
〈Υ′|a†sαa†sβauαatα|Υ〉+ 〈Υ′|a†sβa†sαauαatα|Υ〉

}
(2.45)

= 0

T̂
(2)
−2 : no contribution.

We have thereby proved in general that the contributions from terms vanish in which
either the indices of the creation operators and/or the indices of the annihilation op-
erators coincide. We can therefore exclude from our calculation terms with identical
indices in the creation operators and identical indices in the annihilation operators.
Returning to the three cases of excitation upon consideration, we can from inspection
of the matrix element expressions (Eqs. (2.10)/(2.23)/(2.30)) identify operator indices
and establish our selection rules:

i. w′ = w
Terms: 〈Υ′|a†rρa

†
sσasυarτ |Υ〉/〈Υ′|a†rρa

†
sσarυasτ |Υ〉

Selection rule: r /= s

ii. w′ = a†baaw

Terms: 〈Υ′|a†bρa
†
rσarυaaτ |Υ〉/〈Υ′|a†bρa

†
rσaaυarτ |Υ〉

Selection rule: a /= r, b /= r

iii. w′ = a†ca
†
dabaaw

Terms: 〈Υ′|a†cρa
†
dσaaυabτ |Υ〉/〈Υ′|a†cρa

†
dσabυaaτ |Υ〉

Selection rule: a /= b, c /= d .
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Contribution of Closed Shells

Contrary to the spin-free Coulomb operator, the summation does not involve closed
shells in the case of the spin-spin operator. This can be shown in general, considering
the three possible excitations solely as special cases, as follows: Assume that the sum-
mation index r refers to a closed shell while indices i/j refer to the creation/annihilation
of an electron in an arbitrary orbital i/j without further restriction. The possible per-
mutations of i/j/r in the indices of creation/annihilation operators can be reduced to
two distinct cases which I treat individually:

(I).
∑

ρστυ

R
(m)
irrjS

(m)
ρστυ〈Υ′|a†iρa

†
rσajυarτ |Υ〉

(II).
∑

ρστυ

R
(m)
irjrS

(m)
ρστυ〈Υ′|a†iρa

†
rσarυajτ |Υ〉 .

From the derivations in the previous section, we know furthermore that i /= r, j /= r.
Therefore, the creation and annihilation in the doubly occupied orbital r has to refer
to identical spin indices: a†rσarυ|rαrβ〉 = δσυ|rαrβ〉. The summation in ρ, σ, τ, υ thereby
reduces to:

(I). R
(m)
irrjS

(m)
ρααυ〈Υ′|a†iρa

†
rαajυarα|Υ〉 + R

(m)
irrjS

(m)
ρββυ〈Υ′|a†iρa

†
rβajυarβ|Υ〉

(II). R
(m)
irjrS

(m)
ρατα〈Υ′|a†iρa

†
rαarαajτ |Υ〉 + R

(m)
irjrS

(m)
ρβτβ〈Υ′|a†iρa

†
rβarβajτ |Υ〉 .

Having established the nonvanishing terms for a summation over closed shells r, I turn
now to the specific tensor components T̂

(2)
i and examine the contributions originating

from each component individually.

(I). considering spin terms 〈ρ|s|α〉〈α|s|υ〉/ 〈ρ|s|β〉〈β|s|υ〉

T̂
(2)
+2 : no contribution

T̂
(2)
+1 : R

(m)
irrj

1√
2
〈α|s0|α〉〈α|s+1|β〉〈Υ′|a†iαa†rαajβarα|Υ〉

+ R
(m)
irrj

1√
2
〈α|s+1|β〉〈β|s0|β〉〈Υ′|a†iαa†rβajβarβ|Υ〉 (2.46)

= R
(m)
irrj

{
−1

4
〈Υ′|a†iαajβ|Υ〉+

1

4
〈Υ′|a†iαajβ|Υ〉

}
(2.47)

= 0

T̂
(2)
0 : R

(m)
irrj

1√
6

{
2〈α|s0|α〉〈α|s0|α〉〈Υ′|a†iαa†rαajαarα|Υ〉

+〈β|s−1|α〉〈α|s+1|β〉〈Υ′|a†iβa†rαajβarα|Υ〉
}

+ R
(m)
irrj

1√
6

{
2〈β|s0|β〉〈β|s0|β〉〈Υ′|a†iβa†rβajβarβ|Υ〉

+〈α|s+1|β〉〈β|s−1|α〉〈Υ′|a†iαa†rβajαarβ|Υ〉
}

(2.48)

= R
(m)
irrj

1√
6

{
1

2
〈Υ′|a†iαajα|Υ〉 −

1

2
〈Υ′|a†iβajβ|Υ〉
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+
1

2
〈Υ′|a†iβajβ|Υ〉 −

1

2
〈Υ′|a†iαajα|Υ〉

}
(2.49)

= 0

T̂
(2)
−1 : R

(m)
irrj

1√
2
〈β|s−1|α〉〈α|s0|α〉〈Υ′|a†iβa†rαajαarα|Υ〉

+ R
(m)
irrj

1√
2
〈β|s0|β〉〈β|s−1|α〉〈Υ′|a†iβa†rβajαarβ|Υ〉 (2.50)

= R
(m)
irrj

{
1

4
〈Υ′|a†iβajα|Υ〉 −

1

4
〈Υ′|a†iβajα|Υ〉

}
(2.51)

= 0

T̂
(2)
−2 : no contribution

(II). considering spin terms 〈ρ|s|τ〉〈α|s|α〉/ 〈ρ|s|τ〉〈β|s|β〉

T̂
(2)
+2 : no contribution

T̂
(2)
+1 : R

(m)
irjr

1√
2
〈α|s+1|β〉〈α|s0|α〉〈Υ′|a†iαa†rαarαajβ|Υ〉

+ R
(m)
irjr

1√
2
〈α|s+1|β〉〈β|s0|β〉〈Υ′|a†iαa†rβarβajβ|Υ〉 (2.52)

= R
(m)
irjr

{
−1

4
〈Υ′|a†iαajβ|Υ〉+

1

4
〈Υ′|a†iαajβ|Υ〉

}
(2.53)

= 0

T̂
(2)
0 : R

(m)
irjr

1√
6

{
2〈α|s0|α〉〈α|s0|α〉〈Υ′|a†iαa†rαarαajα|Υ〉

+2〈β|s0|β〉〈α|s0|α〉〈Υ′|a†iβa†rαarαajβ|Υ〉
}

+ R
(m)
irjr

1√
6

{
2〈α|s0|α〉〈β|s0|β〉〈Υ′|a†iαa†rβarβajα|Υ〉

+2〈β|s0|β〉〈β|s0|β〉〈Υ′|a†iβa†rβarβajβ|Υ〉
}

(2.54)

= R
(m)
irjr

1√
6

{
1

2
〈Υ′|a†iαajα|Υ〉 −

1

2
〈Υ′|a†iβajβ|Υ〉

−1

2
〈Υ′|a†iαajα|Υ〉+

1

2
〈Υ′|a†iβajβ|Υ〉

}
(2.55)

= 0

T̂
(2)
−1 : R

(m)
irjr

1√
2
〈β|s−1|α〉〈α|s0|α〉〈Υ′|a†iβa†rαarαajα|Υ〉

+ R
(m)
irjr

1√
2
〈β|s−1|α〉〈β|s0|β〉〈Υ′|a†iβa†rβarβajα|Υ〉 (2.56)

= R
(m)
irjr

{
1

4
〈Υ′|a†iαajβ|Υ〉 −

1

4
〈Υ′|a†iαajβ|Υ〉

}
(2.57)

= 0

T̂
(2)
−2 : no contribution.
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I have established now that shells which are doubly occupied in bra as well as ket do
not contribute to spin-spin coupling. Therefore, only shells singly or variably occupied
have to be considered in calculations, a fact which is well-known in the evaluation of
zero-field splitting. The obvious consequence is a saving in the computational cost,
a further consequence which is usually not reflected on is the strong dependence of
the magnitude of spin-spin coupling on the description of open-shell occupation. Since
closed shells do not enter the expression, there is no “weighting” effect associated with
the occupation of closed shells which in turn renders a reliable open shell treatment to
be of crucial relevance. This point will be illustrated with the example of O2 in the
context of application calculations (Ch. 3.1).

Permutational Relation

A further permutational relation which is employed in my subsequent derivation and
should therefore be proved here is:∑

ρστυ

S
(m)
ρστυ〈Υ′|a†rρa

†
sσauυatτ |Υ〉 =

∑
ρστυ

S
(m)
ρστυ〈Υ′|a†rρa

†
sσauτatυ|Υ〉, (2.58)

or, equivalently:∑
ρστυ

S
(m)
ρστυ〈Υ′|a†rρa

†
sσauυatτ |Υ〉 =

∑
ρστυ

S
(m)
ρσυτ 〈Υ′|a†rρa

†
sσauυatτ |Υ〉. (2.59)

I stress at this point that this entails a permutational symmetry between one index of
electron 1 and electron 2, namely: 〈ρ|s|τ〉〈σ|s|υ〉 → 〈ρ|s|υ〉〈σ|s|τ〉. This permutational
symmetry is a consequence of the full summation over spin indices in combination with
the symmetrical structure of the tensor components and the symmetry in electron in-
dices. It may be shown for the individual tensor components straightforwardly:

T̂
(2)
+2

The only nonvanishing spin term is: 〈α|s+1|β〉〈α|s+1|β〉. The permutational symmetry
in the second index is therefore trivial.

T̂
(2)
+1

It has to be shown that:∑
ρστυ

{
〈ρ|s+1|τ〉〈σ|s0|υ〉+ 〈ρ|s0|τ〉〈σ|s+1|υ〉

}
〈Υ′|a†rρa

†
sσauυatτ |Υ〉

=
∑
ρστυ

{
〈ρ|s+1|τ〉〈σ|s0|υ〉+ 〈ρ|s0|τ〉〈σ|s+1|υ〉

}
〈Υ′|a†rρa

†
sσauτatυ|Υ〉. (2.60)

Considering nonvanishing terms in the spin summation, we obtain for the left-hand
side: ∑

ρστυ

{
〈ρ|s+1|τ〉〈σ|s0|υ〉+ 〈ρ|s0|τ〉〈σ|s+1|υ〉

}
〈Υ′|a†rρa

†
sσauυatτ |Υ〉
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= 〈α|s+1|β〉〈α|s0|α〉〈Υ′|a†rαa†sαauαatβ|Υ〉
+ 〈α|s+1|β〉〈β|s0|β〉〈Υ′|a†rαa†sβauβatβ|Υ〉
+ 〈α|s0|α〉〈α|s+1|β〉〈Υ′|a†rαa†sαauβatα|Υ〉
+ 〈β|s0|β〉〈α|s+1|β〉〈Υ′|a†rβa†sαauβatβ|Υ〉. (2.61)

The right-hand side reduces to:∑
ρστυ

{
〈ρ|s+1|τ〉〈σ|s0|υ〉+ 〈ρ|s0|τ〉〈σ|s+1|υ〉

}
〈Υ′|a†rρa

†
sσauτatυ|Υ〉

= 〈α|s+1|β〉〈α|s0|α〉〈Υ′|a†rαa†sαauβatα|Υ〉
+ 〈α|s+1|β〉〈β|s0|β〉〈Υ′|a†rαa†sβauβatβ|Υ〉
+ 〈α|s0|α〉〈α|s+1|β〉〈Υ′|a†rαa†sαauαatβ|Υ〉
+ 〈β|s0|β〉〈α|s+1|β〉〈Υ′|a†rβa†sαauβatβ|Υ〉. (2.62)

Since 〈α|s+1|β〉〈α|s0|α〉 = 〈α|s0|α〉〈α|s+1|β〉 = − 1
2
√

2
and

〈α|s+1|β〉〈β|s0|β〉 = 〈β|s0|β〉〈α|s+1|β〉 = 1
2
√

2
, both expressions are identical.

T̂
(2)
0

Stating: ∑
ρστυ

{
2〈ρ|s0|τ〉〈σ|s0|υ〉+ 〈ρ|s+1|τ〉〈σ|s−1|υ〉

+ 〈ρ|s−1|τ〉〈σ|s+1|υ〉
}
〈Υ′|a†rρa

†
sσauυatτ |Υ〉

=
∑
ρστυ

{
2〈ρ|s0|τ〉〈σ|s0|υ〉+ 〈ρ|s+1|τ〉〈σ|s−1|υ〉

+ 〈ρ|s−1|τ〉〈σ|s+1|υ〉
}
〈Υ′|a†rρa

†
sσauτatυ|Υ〉 (2.63)

and examining again independently left-hand side:∑
ρστυ

{
2〈ρ|s0|τ〉〈σ|s0|υ〉+ 〈ρ|s+1|τ〉〈σ|s−1|υ〉+ 〈ρ|s−1|τ〉〈σ|s+1|υ〉

}
〈Υ′|a†rρa

†
sσauυatτ |Υ〉

= 2〈α|s0|α〉〈α|s0|α〉〈Υ′|a†rαa†sαauαatα|Υ〉
+ 2〈α|s0|α〉〈β|s0|β〉〈Υ′|a†rαa†sβauβatα|Υ〉
+ 2〈β|s0|β〉〈α|s0|α〉〈Υ′|a†rβa†sαauαatβ|Υ〉
+ 2〈β|s0|β〉〈β|s0|β〉〈Υ′|a†rβa†sβauβatβ|Υ〉
+ 〈α|s+1|β〉〈β|s−1|α〉〈Υ′|a†rαa†sβauαatβ|Υ〉
+ 〈β|s−1|α〉〈α|s+1|β〉〈Υ′|a†rβa†sαauβatα|Υ〉 (2.64)

and right-hand side:∑
ρστυ

{
2〈ρ|s0|τ〉〈σ|s0|υ〉+ 〈ρ|s+1|τ〉〈σ|s−1|υ〉+ 〈ρ|s−1|τ〉〈σ|s+1|υ〉

}
〈Υ′|a†rρa

†
sσauτatυ|Υ〉

= 2〈α|s0|α〉〈α|s0|α〉〈Υ′|a†rαa†sαauαatα|Υ〉
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+ 2〈α|s0|α〉〈β|s0|β〉〈Υ′|a†rαa†sβauαatβ|Υ〉
+ 2〈β|s0|β〉〈α|s0|α〉〈Υ′|a†rβa†sαauβatα|Υ〉
+ 2〈β|s0|β〉〈β|s0|β〉〈Υ′|a†rβa†sβauβatβ|Υ〉
+ 〈α|s+1|β〉〈β|s−1|α〉〈Υ′|a†rαa†sβauβatα|Υ〉
+ 〈β|s−1|α〉〈α|s+1|β〉〈Υ′|a†rβa†sαauαatβ|Υ〉, (2.65)

we recognize again that with 2〈α|s0|α〉〈β|s0|β〉 = 2〈β|s0|β〉〈α|s0|α〉
= 〈α|s+1|β〉〈β|s−1|α〉 = 〈β|s−1|α〉〈α|s+1|β〉 = −1

2
, left- and right-hand side are equal.

T̂
(2)
−1

Analogously to the {+1}-component, we start out from the expression:∑
ρστυ

{
〈ρ|s−1|τ〉〈σ|s0|υ〉+ 〈ρ|s0|τ〉〈σ|s−1|υ〉

}
〈Υ′|a†rρa

†
sσauυatτ |Υ〉

=
∑
ρστυ

{
〈ρ|s−1|τ〉〈σ|s0|υ〉+ 〈ρ|s0|τ〉〈σ|s−1|υ〉

}
〈Υ′|a†rρa

†
sσauτatυ|Υ〉 (2.66)

and consider the left-hand side:∑
ρστυ

{
〈ρ|s−1|τ〉〈σ|s0|υ〉+ 〈ρ|s0|τ〉〈σ|s−1|υ〉

}
〈Υ′|a†rρa

†
sσauυatτ |Υ〉

= 〈β|s−1|α〉〈α|s0|α〉〈Υ′|a†rβa†sαauαatα|Υ〉
+ 〈β|s−1|α〉〈β|s0|β〉〈Υ′|a†rβa†sβauβatα|Υ〉
+ 〈α|s0|α〉〈β|s−1|α〉〈Υ′|a†rαa†sβauαatα|Υ〉
+ 〈β|s0|β〉〈β|s−1|α〉〈Υ′|a†rβa†sβauαatβ|Υ〉. (2.67)

and right-hand side:∑
ρστυ

{
〈ρ|s−1|τ〉〈σ|s0|υ〉+ 〈ρ|s0|τ〉〈σ|s−1|υ〉

}
〈Υ′|a†rρa

†
sσauτatυ|Υ〉

= 〈β|s−1|α〉〈α|s0|α〉〈Υ′|a†rβa†sαauαatα|Υ〉
+ 〈β|s−1|α〉〈β|s0|β〉〈Υ′|a†rβa†sβauαatβ|Υ〉
+ 〈α|s0|α〉〈β|s−1|α〉〈Υ′|a†rαa†sβauαatα|Υ〉
+ 〈β|s0|β〉〈β|s−1|α〉〈Υ′|a†rβa†sβauβatα|Υ〉, (2.68)

and using 〈β|s−1|α〉〈α|s0|α〉 = 〈α|s0|α〉〈β|s−1|α〉 = 1
2
√

2
,

〈β|s−1|α〉〈β|s0|β〉 = 〈β|s0|β〉〈β|s−1|α〉 = − 1
2
√

2
, obtain identical terms.

T̂
(2)
−2

The only nonvanishing spin term is: 〈β|s−1|α〉〈β|s−1|α〉. As in the case of the {+2}-
component, the permutational symmetry in the second index is trivial.

Having established this relation, we can now employ it to further simplify the three
expressions for the calculation of spin-spin coupling (terms (2.10)/(2.23)/(2.30)) as
follows:
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i. w′ = w

〈Υ′|HSS|Υ〉 =
k

2

∑
m

∑
r /=s

∑
ρστυ

{
R

(m)
rsrsS

(m)
ρστυ〈Υ′|a†rρa

†
sσasυarτ |Υ〉

+R
(m)
rssrS

(m)
ρστυ〈Υ′|a†rρa

†
sσarυasτ |Υ〉

}
(2.69)

=
k

2

∑
m

∑
r /=s

∑
ρστυ

{
R

(m)
rsrsS

(m)
ρστυ〈Υ′|a†rρa

†
sσasυarτ |Υ〉

+R
(m)
rssrS

(m)
ρστυ〈Υ′|a†rρa

†
sσarτasυ|Υ〉

}
(2.70)

=
k

2

∑
m

∑
r /=s

∑
ρστυ

{
R

(m)
rsrsS

(m)
ρστυ〈Υ′|a†rρa

†
sσasυarτ |Υ〉

−R
(m)
rssrS

(m)
ρστυ〈Υ′|a†rρa

†
sσasυarτ |Υ〉

}
(2.71)

=
k

2

∑
m

∑
r /=s

∑
ρστυ

{
R

(m)
rsrs −R

(m)
rssr

}
S

(m)
ρστυ〈Υ′|a†rρa

†
sσasυarτ |Υ〉 (2.72)

ii. w′ = a†baaw

〈Υ′|HSS|Υ〉 = k
∑
m

∑
r /=a,b

∑
ρστυ

{
R

(m)
brarS

(m)
ρστυ〈Υ

′|a†bρa
†
rσarυaaτ |Υ〉

+R
(m)
brraS

(m)
ρστυ〈Υ

′|a†bρa
†
rσaaυarτ |Υ〉

}
(2.73)

= k
∑
m

∑
r /=a,b

∑
ρστυ

{
R

(m)
brarS

(m)
ρστυ〈Υ

′|a†bρa
†
rσarυaaτ |Υ〉

+R
(m)
brraS

(m)
ρστυ〈Υ

′|a†bρa
†
rσaaτarυ|Υ〉

}
(2.74)

= k
∑
m

∑
r /=a,b

∑
ρστυ

{
R

(m)
brarS

(m)
ρστυ〈Υ

′|a†bρa
†
rσarυaaτ |Υ〉

−R
(m)
brraS

(m)
ρστυ〈Υ

′|a†bρa
†
rσarυaaτ |Υ〉

}
(2.75)

= k
∑
m

∑
r /=a,b

∑
ρστυ

{
R

(m)
brar −R

(m)
brra

}
S

(m)
ρστυ〈Υ

′|a†bρa
†
rσarυaaτ |Υ〉 (2.76)

iii. w′ = a†ca
†
dabaaw

〈Υ′|HSS|Υ〉 = k
∑
m

∑
ρστυ

{
R

(m)
cdbaS

(m)
ρστυ〈Υ

′|a†cρa
†
dσaaυabτ |Υ〉

+R
(m)
cdabS

(m)
ρστυ〈Υ

′|a†cρa
†
dσabυaaτ |Υ〉

}
(2.77)

= k
∑
m

∑
ρστυ

{
R

(m)
cdbaS

(m)
ρστυ〈Υ

′|a†cρa
†
dσaaυabτ |Υ〉

+R
(m)
cdabS

(m)
ρστυ〈Υ

′|a†cρa
†
dσabτaaυ|Υ〉

}
(2.78)

= k
∑
m

∑
ρστυ

{
R

(m)
cdbaS

(m)
ρστυ〈Υ

′|a†cρa
†
dσaaυabτ |Υ〉

−R
(m)
cdabS

(m)
ρστυ〈Υ

′|a†cρa
†
dσaaυabτ |Υ〉

}
(2.79)

= k
∑
m

∑
ρστυ

{
R

(m)
cdba −R

(m)
cdab

}
S

(m)
ρστυ〈Υ

′|a†cρa
†
dσaaυabτ |Υ〉 (2.80)
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We thereby arrive at the intermediate formulation of the implemented terms. This
part of the derivation concerned simplifications in the spatial contribution, yielding
expressions of general relevance in a possible calculation of spin-spin coupling. The
main incentive was a reduction in the number of terms, employing the mathematical
properties of the operators.

The second part of the derivation will consider the spin contribution, ultimately intro-
ducing the η-coefficient scheme. The reformulations reflect a level closer to the actual
implementation, as they are governed by computational constructs present in the pro-
gram. At the end of this derivation, we will arrive at a form of the expressions which
resembles as closely as possible the actual realization within spock.sistr.

2.2.3 Derivation – Part (II)

spock operates internally with wave functions for which MS = S. Within the spin-
orbit branches spock.qdpt/spock.CI, nonvanishing matrix elements occur for ∆S =
0,±1. The spin contribution of pairs of states for which ∆S = 0 is obtained by eval-
uating the matrix elements 〈S,MS = S|s0|S,MS = S〉; matrix elements 〈S, MS /=
S|s0|S,MS /= S〉 are derived from these by application of the WET (see p. 30ff in
Ch. 1.5.1). Analogously, spin contributions of pairs for which ∆S = ±1 are obtained
by evaluating the element 〈S+1, MS = S+1|s+1|S,MS = S〉, from which again all ele-
ments of differing MS values are derived. Furthermore, the relationship (ŝ+1)† = −ŝ−1

is employed, thereby restricting the calculation entirely to the evaluation of matrix
elements over the spin operator components ŝ0, ŝ+1.

In the evaluation of spin-spin contributions, the selection rule ∆S = 0,±1,±2 ap-
plies. As in the spin-orbit case, relationships between operator components facilitate
a reduction in the amount of work. In particular, employing that:(

T̂
(2)
+2

)†
=
(
ŝ+1

i ŝ+1
j

)†
= ŝ−1

j ŝ−1
i = T̂

(2)
−2 (2.81)(

T̂
(2)
+1

)†
=

(
1√
2

{
ŝ0

i ŝ
+1
j + ŝ+1

i ŝ0
j

})†
=

1√
2

{
−ŝ−1

j ŝ0
i − ŝ0

j ŝ
−1
i

}
= −T̂

(2)
−1 , (2.82)

with (ŝ+1)† = −ŝ−1, (ŝ0)† = ŝ0, (ŝiŝj)
† = ŝ†j ŝ

†
i , limits the computational labour to the

calculation of matrix elements over T̂
(2)
+2 , T̂

(2)
+1 , T̂

(2)
0 .

Considering now the concrete evaluation of the spin components, the most important
aspect in the further derivation constitutes the adaptation of the η-pattern formalism
to the spin-spin-operator case. The crucial step herein consists of the insertion of the
resolution of identity 1 =

∑
Υ′′ |Υ′′〉〈Υ′′|, represented here as a summation over an

infinite number of states |Υ′′〉 = |S ′′, M ′′
S , ω′′, w′′〉 with all possible occupations of spin

and space. Terms (2.72)/(2.76)/(2.80) have to be reformulated in the context of this
insertion to account for the constructs that are imposed by the surrounding program
environment.
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So far, I have been operating with compound expressions of space and spin R(m)/S(m)

and have directed my derivation by the three possible cases of excitation. I will turn
now successively to the individual spin tensor components T̂

(2)
+2 , T̂

(2)
+1 , T̂

(2)
0 , resolving the

compound expression in S
(m)
ρστυ. After discussing important individual steps in detail,

I will perform the derivation for general orbital indices r, s, t, u as it is common to
all three possible cases of excitation. Following the derivation itself, I will then give
the concrete formulas for the three cases of excitation for the three tensor operators,
thereby listing the expressions that are directly implemented in spock.sistr.2

Anticommutation

For an adaption of the η-scheme to spin-spin coupling, the two-electron expression
has to be decomposed into effectively a product of two one-electron expressions. This
entails a reordering of creation and annihilation operators and grouping together with
the respective spin integral. Inspecting a general term∑

ρστυ

〈ρ|s|τ〉〈σ|s|υ〉〈Υ′|a†rρa
†
sσauυatτ |Υ〉,

we recognize that the operators a†rρ/atτ are associated with spin integral 〈ρ|s|τ〉 while
the operators a†sσ/auυ refer to spin integral 〈σ|s|υ〉. Prior to the insertion of the reso-
lution of identity, the operators have to be anticommuted correspondingly, either as

a†rρa
†
sσauυatτ = a†rρatτa

†
sσauυ

or

a†rρa
†
sσauυatτ = a†sσauυa

†
rρatτ .

Reflecting on the anticommutation relations of creation and annihilation operators (see
p. 31ff in Ch. 1.5.1), this can be performed accompanied solely by a change of sign if the
indices of the operators are disjoint. If the indices of the operators coincide, an addi-
tional term is introduced in the anticommutation of creation with annihilation operator.
Returning briefly to the terms under consideration (see Eqs. (2.72)/(2.76)/(2.80)), we
recognize that the ordering of the operators in combination with the selection rules
that were established previously indeed ensures disjoint indices in the anticommuta-
tions that we accomplish. To be precise, this particular ordering of the operators was
of course achieved in the knowledge of the subsequent reformulations in order to avoid
the introduction of additional terms as this would constitute a substantial disadvantage
in the computational treatment.

2Note that the numerical prefactors of 1√
2
/ 1√

6
in the components T̂

(2)
+1 /T̂

(2)
0 are evaluated separately

in the program and will be omitted in the derivation as well as in the concrete form of the equations.
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Insertion of Resolution of Identity

The insertion of the resolution of identity is equivalent to the insertion of an infinite
number of all possible occupations of spin and space, considering all possible quantum
states in S, MS. Fortunately, of course, the number of nonvanishing terms originating
in this step is rather modest as the individual creation and annihilation operators acting
on the configuration of bra and ket constitute a definite selection in the quantum state.
Considering the insertion:∑

ρστυ

〈ρ|s|τ〉〈σ|s|υ〉〈Υ′|a†rρatτa
†
sσauυ|Υ〉

=
∑
ρστυ

〈ρ|s|τ〉〈σ|s|υ〉
∑
Υ′′

[
〈Υ′|a†rρatτ |Υ′′〉〈Υ′′|a†sσauυ|Υ〉

]
(2.83)

=
∑
ρστυ

〈ρ|s|τ〉〈σ|s|υ〉
∑
S′′

∑
M ′′

S

∑
ω′′

∑
w′′

[
〈S ′, M ′

S, ω′, w′|a†rρatτ |S ′′, M ′′
S , ω′′, w′′〉

×〈S ′′, M ′′
S , ω′′, w′′|a†sσauυ|S,MS, ω, w〉

]
, (2.84)

we recognize that the operation of a†sσauυ on the configuration of |Υ〉 with spatial
occupation w reduces the summation over the spatial occupation w′′ of |Υ′′〉 to one
case, to be precise to the case which results from the application of a single excitation
u → s on w: w′′ = a†sauw. It should be noted that this is identical to the excitation
r → t with respect to the spatial occupation of |Υ′〉: w′′ = a†tarw

′. In addition, we
recapitulate at this point that we imposed on |Υ′〉, |Υ〉 that M ′

S = S ′, MS = S by
operating solely with spin functions within spock which were generated under this
restriction. We may therefore rewrite:∑
ρστυ

〈ρ|s|τ〉〈σ|s|υ〉
∑
S′′

∑
M ′′

S

∑
ω′′

∑
w′′

[
〈S ′, M ′

S, ω′, w′|a†rρatτ |S ′′, M ′′
S , ω′′, w′′〉

×〈S ′′, M ′′
S , ω′′, w′′|a†sσauυ|S,MS, ω, w〉

]
=
∑
ρστυ

〈ρ|s|τ〉〈σ|s|υ〉
∑
S′′

∑
M ′′

S

∑
ω′′

[
〈S ′, M ′

S = S ′, ω′, w′|a†rρatτ |S ′′, M ′′
S = S ′′, ω′′, w′′〉

×〈S ′′, M ′′
S = S ′′, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]
. (2.85)

Furthermore, we recognize that the projection of bra and ket onto the state manifold
|Υ′′〉, in combination with the selection rules associated with the spin operators ŝ = ŝ−1,
ŝ0, ŝ+1, constitutes a restriction to a limited number of elements in the summation in
S ′′, M ′′

S . The form of the resulting expression depends on the concrete spin operator
and has therefore to be examined for each spin tensor component individually.

Sequence of Spin Terms

The programming decision of basing the entire algorithm on spin functions with MS = S
has a subtle but substantial impact on the details of the spin-spin implementation. As
a consequence, careful consideration is demanded in the derivation of the expressions
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to be evaluated.

I will illustrate this issue with the term
∑

ρστυ〈ρ|s+1|τ〉〈σ|s0|υ〉〈Υ′|a†rρatτa
†
sσauυ|Υ〉

which constitutes one part of the T̂
(2)
+1 component.

In general, the ŝ+1 operator restricts the coupling state to possess quantum number
∆MS = +1, analogously does the ŝ−1 component operate with the selection of ∆MS =
−1, while the ŝ0 component couples states for which ∆MS = 0. Furthermore, all of
the spin operators allow for coupling of ∆S = 0,±1. These selection rules have a
direct consequence for the evaluation of terms within the specific framework of the
program which will be shown as follows. I start out with the insertion of the resolution
of identity in above term:∑

ρστυ

〈ρ|s+1|τ〉〈σ|s0|υ〉〈Υ′|a†rρatτa
†
sσauυ|Υ〉

=
∑
ρστυ

〈ρ|s+1|τ〉〈σ|s0|υ〉
∑
Υ′′

[
〈Υ′|a†rρatτ |Υ′′〉〈Υ′′|a†sσauυ|Υ〉

]
. (2.86)

The selection rules of the individual spin operators translate into the restriction of
M ′

S = MS + 1, furthermore M ′′
S = MS, M ′

S = M ′′
S + 1. Noticing additionally the

program constraint of M ′
S = S ′, MS = S, we obtain:∑

ρστυ

〈ρ|s+1|τ〉〈σ|s0|υ〉
∑
Υ′′

[
〈Υ′|a†rρatτ |Υ′′〉〈Υ′′|a†sσauυ|Υ〉

]
=
∑
ρστυ

〈ρ|s+1|τ〉〈σ|s0|υ〉
∑
S′′

∑
ω′′

[
〈S+1, M ′

S = S+1, ω′, w′|a†rρatτ |S ′′, M ′′
S = S, ω′′, w′′〉

×〈S ′′, M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS, ω, w〉

]
. (2.87)

We observe that the projection of states |Υ〉, |Υ′〉 onto the manifold |Υ′′〉 constitutes a
selection criterion in spin and spatial states. The limited number of nonvanishing terms
associated with the summation in S ′′ depends on the action of ŝ0, ŝ+1 onto |Υ〉, |Υ′〉.
I mention at this point that the remaining summation over the spin vector ω′′ which
represents individual CSFs associated with the state |S ′′, M ′′

S , w′′〉 will be incorporated
into the η-coefficient expression in the later part of the derivation.

Further considering the possible quantum numbers of the inserted state |Υ′′〉, we have
to reflect that although we selected states |Υ〉, |Υ′〉 with M ′

S = S ′, MS = S by the
program choice of spin function and algorithm, on the other hand the insertion of the
resolution of identity does not impose any such restriction on |Υ′′〉. To be precise: In
order for this step of the derivation to be formally valid, we have to allow a summation
over all possible spin functions, with all possible values of M ′′

S , S ′′, including of course
M ′′

S /= S ′′. In this particular case, remembering that both spin operators ŝ0, ŝ+1 permit
coupling for states of ∆S = ±1 as well as ∆S = 0, we obtain the following nonvanishing
terms:∑

ρστυ

〈ρ|s+1|τ〉〈σ|s0|υ〉
∑
S′′

∑
ω′′

[
〈S+1, M ′

S = S+1, ω′, w′|a†rρatτ |S ′′, M ′′
S = S, ω′′, w′′〉
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×〈S ′′, M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS, ω, w〉

]
=
∑
ρστυ

〈ρ|s+1|τ〉〈σ|s0|υ〉
∑
ω′′

[
〈S+1, M ′

S = S+1, ω′, w′|a†rρatτ |S+1, M ′′
S = S, ω′′, w′′〉

×〈S+1, M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS, ω, w〉

]
+
∑
ρστυ

〈ρ|s+1|τ〉〈σ|s0|υ〉
∑
ω′′

[
〈S+1, M ′

S = S+1, ω′, w′|a†rρatτ |S, M ′′
S = S, ω′′, w′′〉

×〈S,M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS, ω, w〉

]
. (2.88)

The elementary point to recognize is that the operation of ŝ0 onto |Υ〉 permits states
|Υ′′〉 exhibiting quantum numbers S ′′ = S + 1 as well as S ′′ = S. The further op-
eration of ŝ+1 onto the intermediate |Υ′′〉 state may yield in both cases the quantum
state |Υ′〉 of the bra. The difference is that in the one case, an increase in the spin
quantum number S to S + 1 is associated with the operation of ŝ0, while in the other
case, it is associated with the operation of ŝ+1. We note in passing that the state
S ′′ = S − 1 cannot occur since although in principle the operator ŝ0 could couple to a
state with ∆S = −1, it would imply in this particular case the appearence of a state
with S ′′ = S − 1, M ′′

S = S, i.e., M ′′
S > S ′′, which is of course forbidden.

I arrive now at an observation that is crucial in the framework of the program: The
derivation, as it was performed in this section, results in the necessity of a wave func-
tion with M ′′

S /= S ′′, to be precise, in the chosen case M ′′
S = S ′′ − 1. This would pose

a substantial problem in the spin-spin implementation as the program environment
as well as the η-coefficients are constructed solely for wave functions with MS = S.
If possible, it would be advantageous to circumvent this issue as the introduction of
functions with MS /= S would permeate through the entire program construct and the
necessary changes would constitute a nontrivial effort. As it is, I present a detailed
exposition to illustrate this subtle but significant point and motivate a crucial step in
the derivation which might otherwise not appear to be of obvious necessity. It is indeed
by careful reordering of operators and integral expressions possible to circumvent the
issue of the appearance of states with MS /= S.

Reflecting on the present case, we recognize that the operation of first ŝ0 onto |Υ〉,
followed by the operation of ŝ+1 onto the intermediate state |Υ′′〉, resulted in the
problematic appearence of states with M ′′

S /= S ′′. On the other hand, evaluating the

second term of the component T̂
(2)
+1 = 1√

2
{ŝ+1ŝ0 + ŝ0ŝ+1}, we note that this case is

not problematic. In operating first with ŝ+1 onto |Υ〉, the selection rule ∆MS = +1
demands a raising to M ′′

S = MS + 1 and therfore imposes necessarily S ′′ = S + 1. The
subsequent operation of ŝ0 onto |Υ′′〉 can in principle alter the spin quantum number
S ′′, but in the projection of |Υ′〉 onto the resulting state, we restrict the selection of
states with S ′′ = S +1. This consideration points to the resolution of the complication:
We should aim at formally recasting the first term ŝ+1ŝ0 → “ŝ0ŝ+1”. This is indeed
possible by careful permutation of operators and indices as follows:∑

ρστυ

〈ρ|s+1|τ〉〈σ|s0|υ〉〈Υ′|a†rρa
†
sσauυatτ |Υ〉
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=
∑
ρστυ

〈σ|s0|υ〉〈ρ|s+1|τ〉〈Υ′|a†sσauυa
†
rρatτ |Υ〉 (2.89)

=
∑
ρστυ

〈σ|s0|υ〉〈ρ|s+1|τ〉
∑
Υ′′

[
〈Υ′|a†sσauυ|Υ′′〉〈Υ′′|a†rρatτ |Υ〉

]
(2.90)

=
∑
ρστυ

〈σ|s0|υ〉〈ρ|s+1|τ〉
∑
ω′′

[
〈S+1, M ′

S = S+1, ω′, w′|a†sσauυ|S+1, M ′′
S = S, ω′′, w′′〉

×〈S+1, M ′′
S = S, ω′′, w′′|a†rρatτ |S, MS, ω, w〉

]
. (2.91)

Note the difference to the second term of the T̂
(2)
+1 component:∑

ρστυ

〈ρ|s0|τ〉〈σ|s+1|υ〉〈Υ′|a†rρa
†
sσauυatτ |Υ〉

=
∑
ρστυ

〈ρ|s0|τ〉〈σ|s+1|υ〉
∑
ω′′

[
〈S+1, M ′

S = S+1, ω′, w′|a†rρatτ |S+1, M ′′
S = S, ω′′, w′′〉

×〈S+1, M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS, ω, w〉

]
. (2.92)

In Eq. (2.91), we are considering a state |Υ′′〉 with the spatial occupation w′′ = a†ratw
while on the other hand in Eq. (2.92), the spatial occupation is reflected as w′′ = a†sauw.
Therefore, these terms are not identical and have to be calculated independently.

I will now present the concise derivation for the three cases ∆S = 2, ∆S = 1, ∆S = 0
for general orbital indices. The individual steps involve mainly anticommutation of
operators and insertion of the resolution of identity and should be comprehensible
from the previous exposition. I will distinguish the η-coefficients of the ŝ+1 operator
by reference as η(+1) while the η-coefficients of the ŝ0 operator will be denoted η(0).

∆S = 2∑
ρστυ

S(m)
ρστυ〈Υ′|a†rρa

†
sσauυatτ |Υ〉

=
∑
ρστυ

〈ρ|s+1|τ〉〈σ|s+1|υ〉〈Υ′|a†rρa
†
sσauυatτ |Υ〉 (2.93)

=
∑
ρστυ

〈ρ|s+1|τ〉〈σ|s+1|υ〉〈Υ′|a†rρatτa
†
sσauυ|Υ〉 (2.94)

=
∑
ρστυ

〈ρ|s+1|τ〉〈σ|s+1|υ〉
∑
Υ′′

[
〈Υ′|a†rρatτ |Υ′′〉〈Υ′′|a†sσauυ|Υ〉

]
(2.95)

=
∑
Υ′′

[∑
ρτ

〈ρ|s+1|τ〉〈Υ′|a†rρatτ |Υ′′〉

][∑
συ

〈σ|s+1|υ〉〈Υ′′|a†sσauυ|Υ〉

]
(2.96)

=
∑
ω′′

[∑
ρτ

〈ρ|s+1|τ〉〈S+2, MS = S+2, ω′, w′|a†rρatτ |S+1, MS = S+1, ω′′, w′′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, MS = S+1, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]
(2.97)
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= η(+1)(ω′, w′; w′′)ω′′ · η(+1)(w′′; ω, w)ω′′ (2.98)

The first step consists of a permutation of creation and annihilation operators so as to
obtain a grouping of operators referring to identical electrons (Eq. (2.94)). This can be
performed without introduction of additional terms due to disjoint indices, as discussed
in the section Anticommutation (p. 62). After insertion of the resolution of identity
1 =

∑
Υ′′ |Υ′′〉〈Υ′′| (Eq. (2.95)), summations are interchanged grouping now spin in-

tegrals with the associated creation/annihilation operators and thereby succeeding in
generating a product of two independent expressions (Eq. (2.96)). Substitution of the
compound index Υ′′ by S ′′, M ′′

S , ω′′, w′′ and retention of nonvanishing terms yields the
final expression involving a summation over individual CSFs ω′′ (Eq. (2.97)). The in-
dividual bracketed factors correspond to spin-η-coefficients, the entire summation can
therefore be conveniently formulated as the vector product of two η-vectors η with ω′′

as the contracted dimension, as denoted by subindexation (Eq. (2.98)).

∆S = 1

∑
ρστυ

S(m)
ρστυ〈Υ′|a†rρa

†
sσauυatτ |Υ〉

=
∑
ρστυ

{
〈ρ|s+1|τ〉〈σ|s0|υ〉+ 〈ρ|s0|τ〉〈σ|s+1|υ〉

}
〈Υ′|a†rρa

†
sσauυatτ |Υ〉 (2.99)

=
∑
ρστυ

〈ρ|s+1|τ〉〈σ|s0|υ〉〈Υ′|a†rρa
†
sσauυatτ |Υ〉

+
∑
ρστυ

〈ρ|s0|τ〉〈σ|s+1|υ〉〈Υ′|a†rρa
†
sσauυatτ |Υ〉 (2.100)

=
∑
ρστυ

〈σ|s0|υ〉〈ρ|s+1|τ〉〈Υ′|a†sσauυa
†
rρatτ |Υ〉

+
∑
ρστυ

〈ρ|s0|τ〉〈σ|s+1|υ〉〈Υ′|a†rρatτa
†
sσauυ|Υ〉 (2.101)

=
∑
ρστυ

〈σ|s0|υ〉〈ρ|s+1|τ〉
∑
Υ′′

[
〈Υ′|a†sσauυ|Υ′′〉〈Υ′′|a†rρatτ |Υ〉

]
+
∑
ρστυ

〈ρ|s0|τ〉〈σ|s+1|υ〉
∑
Υ′′

[
〈Υ′|a†rρatτ |Υ′′〉〈Υ′′|a†sσauυ|Υ〉

]
(2.102)

=
∑
Υ′′

[∑
συ

〈σ|s0|υ〉〈Υ′|a†sσauυ|Υ′′〉

][∑
ρτ

〈ρ|s+1|τ〉〈Υ′′|a†rρatτ |Υ〉

]

+
∑
Υ′′

[∑
ρτ

〈ρ|s0|τ〉〈Υ′|a†rρatτ |Υ′′〉

][∑
συ

〈σ|s+1|υ〉〈Υ′′|a†sσauυ|Υ〉

]
(2.103)

=
∑
ω′′

[∑
συ

〈σ|s0|υ〉〈S+1, MS = S+1, ω′, w′|a†sσauυ|S+1, MS = S+1, ω′′, w′′〉

]



68 Chapter 2. Computational Structure

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, MS = S+1, ω′′, w′′|a†rρatτ |S,MS = S, ω, w〉

]

+
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S+1, MS = S+1, ω′, w′|a†rρatτ |S+1, MS = S+1, ω′′, w′′′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, MS = S+1, ω′′, w′′′|a†sσauυ|S,MS = S, ω, w〉

]
(2.104)

= η(0)(ω′, w′; w′′)ω′′ · η(+1)(w′′; ω, w)ω′′

+ η(0)(ω′, w′; w′′′)ω′′ · η(+1)(w′′′; ω, w)ω′′ (2.105)

Note that I introduced w′′′ vs. w′′ to distinguish between the differing spatial occupa-
tions and therefore differing η-coefficients associated with the first and second term.

The individual steps follow an analogous sequence as for ∆S = 2: Permutation of
operators (Eq. (2.101)), in this case with the additional consideration of an exchange
of the position of ŝ0 and ŝ+1 in the first term, insertion of the resolution of identity
(Eq. (2.102)), interchange of summations accompanied by a separation into indepen-
dent terms (Eq. (2.103)), resolution of the compound index Υ′′ under consideration
of nonvanishing terms (Eq. (2.104)), and finally a compact reexpression employing
η-vectors η(0), η(+1).

∆S = 0

The consideration of this case is slightly more intricate. After the first steps, I will
therefore split up the terms and will evaluate the expression over {ŝ0 · ŝ0} on the one
hand and {ŝ−1 · ŝ+1 + ŝ+1 · ŝ−1} on the other hand separately.

∑
ρστυ

S(m)
ρστυ〈Υ′|a†rρa

†
sσauυatτ |Υ〉

=
∑
ρστυ

{
2〈ρ|s0|τ〉〈σ|s0|υ〉+ 〈ρ|s+1|τ〉〈σ|s−1|υ〉

+ 〈ρ|s−1|τ〉〈σ|s+1|υ〉
}
〈Υ′|a†rρa

†
sσauυatτ |Υ〉 (2.106)

=
∑
ρστυ

2〈ρ|s0|τ〉〈σ|s0|υ〉〈Υ′|a†rρa
†
sσauυatτ |Υ〉

+
∑
ρστυ

〈ρ|s+1|τ〉〈σ|s−1|υ〉〈Υ′|a†rρa
†
sσauυatτ |Υ〉

+
∑
ρστυ

〈ρ|s−1|τ〉〈σ|s+1|υ〉〈Υ′|a†rρa
†
sσauυatτ |Υ〉 (2.107)

=
∑
ρστυ

2〈ρ|s0|τ〉〈σ|s0|υ〉〈Υ′|a†rρatτa
†
sσauυ|Υ〉

+
∑
ρστυ

〈σ|s−1|υ〉〈ρ|s+1|τ〉〈Υ′|a†sσauυa
†
rρatτ |Υ〉
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+
∑
ρστυ

〈ρ|s−1|τ〉〈σ|s+1|υ〉〈Υ′|a†rρatτa
†
sσauυ|Υ〉 (2.108)

=
∑
ρστυ

2〈ρ|s0|τ〉〈σ|s0|υ〉
∑
Υ′′

[
〈Υ′|a†rρatτ |Υ′′〉〈Υ′′|a†sσauυ|Υ〉

]
+
∑
ρστυ

〈σ|s−1|υ〉〈ρ|s+1|τ〉
∑
Υ′′

[
〈Υ′|a†sσauυ|Υ′′〉〈Υ′′|a†rρatτ |Υ〉

]
+
∑
ρστυ

〈ρ|s−1|τ〉〈σ|s+1|υ〉
∑
Υ′′

[
〈Υ′|a†rρatτ |Υ′′〉〈Υ′′|a†sσauυ|Υ〉

]
(2.109)

= 2
∑
Υ′′

[∑
ρτ

〈ρ|s0|τ〉〈Υ′|a†rρatτ |Υ′′〉

][∑
συ

〈σ|s0|υ〉〈Υ′′|a†sσauυ|Υ〉

]

+
∑
Υ′′

[∑
συ

〈σ|s−1|υ〉〈Υ′|a†sσauυ|Υ′′〉

][∑
ρτ

〈ρ|s+1|τ〉〈Υ′′|a†rρatτ |Υ〉

]

+
∑
Υ′′

[∑
ρτ

〈ρ|s−1|τ〉〈Υ′|a†rρatτ |Υ′′〉

][∑
συ

〈σ|s+1|υ〉〈Υ′′|a†sσauυ|Υ〉

]
(2.110)

At this point, I turn to the individual operator expressions.

{
ŝ0 · ŝ0

}

2
∑
Υ′′

[∑
ρτ

〈ρ|s0|τ〉〈Υ′|a†rρatτ |Υ′′〉

][∑
συ

〈σ|s0|υ〉〈Υ′′|a†sσauυ|Υ〉

]

= 2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S,M ′′

S = S, ω′′, w′′〉

]

×

[∑
συ

〈σ|s0|υ〉〈S,M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]

+ 2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S+1, M ′′

S = S, ω′′, w′′〉

]

×

[∑
συ

〈σ|s0|υ〉〈S+1, M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]
(2.111)

After insertion of the resolution of identity and retention of nonvanishing terms, we
encounter again in the second term the problematic appearence of a wave function
with M ′′

S /= S ′′. Recollecting the introduction of the WET (see p. 30ff in Ch. 1.5.1), in
particular Eq. (1.15), we recognize that this expression can be reformulated employing
the operators ŝ+1, ŝ−1 and wave functions M ′′

S = S ′′ instead.
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I repeat for clarity Eq. (1.15):

〈α′, j′ m′′′|T (k)
q′ |α, j m′′〉 =

〈jk; m′′q′|jk; j′m′′′〉
〈jk; mq|jk; j′m′〉

〈α′, j′ m′|T (k)
q |α, j m〉.

In compliance with this notation (and omitting for the present purpose irrelevant in-
dices in ω, w as well as the summation over spin indices ρ, σ, τ , υ), the term we have
to reformulate is written as:

〈S, M ′
S = S|s0|S+1, M ′′

S = S〉 · 〈S+1, M ′′
S = S|s0|S,MS = S〉. (2.112)

For the sequence of the application of the WET, I will remain in the notation of first
quantization as it is more suitable for this purpose, resulting in more compact an eval-
uation. Subsequently, I will return to the notation of second quantization which is
preferrable in the context of the implemented equations.

In the consideration of the first factor I insert T
(k)
q′ = T

(1)
0 = s0, T

(k)
q = T

(1)
−1 = s−1,

j′ = S, j = S+1, m′′′ = S, m′′ = S, m′ = S, m = S+1 and obtain:

〈S,M ′
S = S|s0|S+1, M ′′

S = S〉

=
〈S+1 1; S 0|S+1 1; S S〉

〈S+1 1; S+1 −1|S+1 1; S S〉
〈S,M ′

S = S|s−1|S+1, M ′′
S = S+1〉. (2.113)

Correspondingly, the second factor is formulated by insertion of T
(k)
q′ = T

(1)
0 = s0,

T
(k)
q = T

(1)
+1 = s+1, j′ = S+1, j = S, m′′′ = S, m′′ = S, m′ = S+1, m = S as:

〈S+1, M ′′
S = S|s0|S,MS = S〉

=
〈S 1; S 0|S 1; S+1 S〉

〈S 1; S +1|S 1; S+1 S+1〉
〈S+1, M ′′

S = S+1|s+1|S, MS = S〉. (2.114)

The Clebsch-Gordan coefficients appearing in above quotient expressions are tabulated
in literature [154] and we therefore obtain by insertion of the appropriate factors:

〈S,M ′
S = S|s0|S+1, M ′′

S = S〉=− 1√
S+1

〈S,M ′
S = S|s−1|S+1, M ′′

S = S+1〉 (2.115)

〈S+1, M ′′
S = S|s0|S,MS = S〉= 1√

S+1
〈S+1, M ′′

S = S+1|s+1|S,MS = S〉. (2.116)

Combining these terms yields:

〈S,M ′
S = S|s0|S+1, M ′′

S = S〉 · 〈S+1, M ′′
S = S|s0|S,MS = S〉

= − 1

S+1
〈S,M ′

S = S|s−1|S+1, M ′′
S = S+1〉

· 〈S+1, M ′′
S = S+1|s+1|S,MS = S〉 (2.117)

= − 1

S+1

∑
ω′′

[∑
ρτ

〈ρ|s−1|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S+1, M ′′

S = S+1, ω′′, w′′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]
, (2.118)
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returning in the last step to the notation of second quantization in compliance with
the indexation of Eq. (2.111).

We recollect at this point furthermore that the program implements η-coefficients for
the operators ŝ+1, ŝ0 while the operator ŝ−1 is recast employing the relationship ŝ−1 =
−(ŝ+1)†. We therefore have to convert the matrix element appearing in Eq. (2.118)
accordingly:

〈ρ|s−1|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S+1, M ′′

S = S+1, ω′′, w′′〉
= −〈ρ|(s+1)†|τ〉〈S,M ′

S = S, ω′, w′|a†rρatτ |S+1, M ′′
S = S+1, ω′′, w′′〉 (2.119)

= −
(
〈τ |s+1|ρ〉

)† (
〈S+1, M ′′

S = S+1, ω′′, w′′|a†tτarρ|S,M ′
S = S, ω′, w′〉

)†
(2.120)

= −〈τ |s+1|ρ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†tτarρ|S, M ′

S = S, ω′, w′〉. (2.121)

In the last step we employ that the matrix element 〈τ |s+1|ρ〉 constitutes a real number,
furthermore that the program operates with real wave functions, thereby yielding a real
matrix element 〈S+1, M ′′

S = S+1, ω′′, w′′|a†tτarρ|S,M ′
S = S, ω′, w′〉 the adjoint of which

is solely its transpose.

Combining the individual steps while returning now to Eq. (2.111), we obtain:

2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S,M ′′

S = S, ω′′, w′′〉

]

×

[∑
συ

〈σ|s0|υ〉〈S,M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]

+ 2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S+1, M ′′

S = S, ω′′, w′′〉

]

×

[∑
συ

〈σ|s0|υ〉〈S+1, M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]

= 2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S,M ′′

S = S, ω′′, w′′〉

]

×

[∑
συ

〈σ|s0|υ〉〈S,M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]

− 2

S+1

∑
ω′′

[∑
ρτ

〈ρ|s−1|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S+1, M ′′

S = S+1, ω′′, w′′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]
(2.122)

= 2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S,M ′′

S = S, ω′′, w′′〉

]
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×

[∑
συ

〈σ|s0|υ〉〈S,M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]

+
2

S+1

∑
ω′′

[∑
ρτ

〈τ |s+1|ρ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†tτarρ|S,M ′

S = S, ω′, w′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]
.(2.123)

To summarize the sequence of reformulations of the first term for the case of ∆S = 0:
After insertion of the resolution of identity we obtain two terms, the first of which
is unproblematic to calculate in the context of the program environment while the
second contains wave functions which are not provided in the program. Employing
the Wigner-Eckart Theorem, the second term is first recast in an expression over the
operator product {ŝ−1 · ŝ+1} instead of {ŝ0 · ŝ0}. In a second step, we obtain formally
an expression over {ŝ+1 · ŝ+1}, in compliance with the η-coefficients present within the
program environment.

I turn now to the consideration of the remaining terms of the case ∆S = 0.

{
ŝ−1 · ŝ+1 + ŝ+1 · ŝ−1

}
For the reformulation of the second and third term of the T̂

(2)
0 component, we start

out from Eq. (2.110). After insertion of the resolution of identity, the matrix element
expression over ŝ−1 is recast over the ŝ+1 operator in accordance with the implemented
η-coefficients.

∑
Υ′′

[∑
συ

〈σ|s−1|υ〉〈Υ′|a†sσauυ|Υ′′〉

][∑
ρτ

〈ρ|s+1|τ〉〈Υ′′|a†rρatτ |Υ〉

]

+
∑
Υ′′

[∑
ρτ

〈ρ|s−1|τ〉〈Υ′|a†rρatτ |Υ′′〉

][∑
συ

〈σ|s+1|υ〉〈Υ′′|a†sσauυ|Υ〉

]

=
∑
ω′′

[∑
συ

〈σ|s−1|υ〉〈S,M ′
S = S, ω′, w′|a†sσauυ|S+1, M ′′

S = S, ω′′, w′′′〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, M ′′
S = S, ω′′, w′′′|a†rρatτ |S,MS = S, ω, w〉

]

+
∑
ω′′

[∑
ρτ

〈ρ|s−1|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S+1, M ′′

S = S, ω′′, w′′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]
(2.124)
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= −
∑
ω′′

[∑
συ

〈υ|s+1|σ〉〈S+1, M ′′
S = S, ω′′, w′′′|a†uυasσ|S,M ′

S = S, ω′, w′〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, M ′′
S = S, ω′′, w′′′|a†rρatτ |S,MS = S, ω, w〉

]

−
∑
ω′′

[∑
ρτ

〈τ |s+1|ρ〉〈S+1, M ′′
S = S, ω′′, w′′|a†tτarρ|S,M ′

S = S, ω′, w′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]
.(2.125)

At this point, we can combine the individual terms associated with the T̂
(2)
0 compo-

nent, namely Eqs. (2.123) and (2.125), to obtain the compound expression for this
component.

{
ŝ0 · ŝ0

}
+
{

ŝ−1 · ŝ+1 + ŝ+1 · ŝ−1
}

2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S,M ′′

S = S, ω′′, w′′〉

]

×

[∑
συ

〈σ|s0|υ〉〈S,M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]

+
2

S+1

∑
ω′′

[∑
ρτ

〈τ |s+1|ρ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†tτarρ|S,M ′

S = S, ω′, w′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]

−
∑
ω′′

[∑
συ

〈υ|s+1|σ〉〈S+1, M ′′
S = S, ω′′, w′′′|a†uυasσ|S,M ′

S = S, ω′, w′〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, M ′′
S = S, ω′′, w′′′|a†rρatτ |S, MS = S, ω, w〉

]

−
∑
ω′′

[∑
ρτ

〈τ |s+1|ρ〉〈S+1, M ′′
S = S, ω′′, w′′|a†tτarρ|S,M ′

S = S, ω′, w′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]
(2.126)

= 2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†rρatτ |S,M ′′

S = S, ω′′, w′′〉

]
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×

[∑
συ

〈σ|s0|υ〉〈S,M ′′
S = S, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]

−
(

S − 1

S + 1

)∑
ω′′

[∑
ρτ

〈τ |s+1|ρ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†tτarρ|S,M ′

S = S, ω′, w′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†sσauυ|S,MS = S, ω, w〉

]

−
∑
ω′′

[∑
συ

〈υ|s+1|σ〉〈S+1, M ′′
S = S, ω′′, w′′′|a†uυasσ|S,M ′

S = S, ω′, w′〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, M ′′
S = S, ω′′, w′′′|a†rρatτ |S,MS = S, ω, w〉

]
(2.127)

= 2 η(0)(ω′, w′; w′′)ω′′ · η(0)(w′′; ω, w)ω′′

−
(

S − 1

S + 1

)
η(+1)(w′′; ω′, w′)ω′′ · η(+1)(w′′; ω, w)ω′′

− η(+1)(w′′′; ω′, w′)ω′′ · η(+1)(w′′′; ω, w)ω′′ (2.128)

As the second term originating from the operator product {ŝ0 · ŝ0} is identical to the
second term of {ŝ−1 · ŝ+1 + ŝ+1 · ŝ−1}, these two expressions were combined in Eq.
(2.127) with the prefactor

(
2

S+1
− 1
)

= −
(

S−1
S+1

)
.

I have now presented the derivation of the formulas for the calculation of spin-spin
coupling for general orbital indices r, s, t, u for the three cases ∆S = 2 (Eqs. (2.97),
(2.98)), ∆S = 1 (Eqs. (2.104), (2.105)), ∆S = 0 (Eqs. (2.127), (2.128)). This part
of the derivation was strongly directed by two elements imposed within the environ-
ment of spock: First, the construct of one-electron spin-η-coefficients, and second,
the program framework based on wave functions of MS = S. Employing one-electron
spin-η-coefficients necessitated the decomposition of two-electron spin-spin terms into
a product of two one-electron quantities by insertion of the resolution of identity and
appropriate grouping of expressions. The implementation being based on MS = S
functions necessitated a careful reordering of terms as well as the application of the
WET and transposition of elements so as to obtain formulas which can be efficiently
evaluated within the existing program structure.

I will now list the individual equations as implemented in spock.sistr for the three
possible cases of excitation w′ = w, w′ = a†baaw, w′ = a†ca

†
dabaaw, for the three different

cases of spin coupling ∆S = 2, ∆S = 1, ∆S = 0.
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2.2.4 Implemented Formulas

w′ = w

∆S = 2

∑
ω′′

[∑
ρτ

〈ρ|s+1|τ〉〈S+2, MS = S+2, ω′, w|a†rρarτ |S+1, MS = S+1, ω′′, w〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, MS = S+1, ω′′, w|a†sσasυ|S,MS = S, ω, w〉

]
(2.129)

∆S = 1

∑
ω′′

[∑
συ

〈σ|s0|υ〉〈S+1, MS = S+1, ω′, w|a†sσasυ|S+1, MS = S+1, ω′′, w〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, MS = S+1, ω′′, w|a†rρarτ |S,MS = S, ω, w〉

]

+
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S+1, MS = S+1, ω′, w|a†rρarτ |S+1, MS = S+1, ω′′, w〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, MS = S+1, ω′′, w|a†sσasυ|S,MS = S, ω, w〉

]
(2.130)

∆S = 0

2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w|a†rρarτ |S,M ′′

S = S, ω′′, w〉

]

×

[∑
συ

〈σ|s0|υ〉〈S,M ′′
S = S, ω′′, w|a†sσasυ|S, MS = S, ω, w〉

]

−
(

S − 1

S + 1

)∑
ω′′

[∑
ρτ

〈τ |s+1|ρ〉〈S+1, M ′′
S = S+1, ω′′, w|a†rτarρ|S,M ′

S = S, ω′, w〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S+1, ω′′, w|a†sσasυ|S,MS = S, ω, w〉

]

−
∑
ω′′

[∑
συ

〈υ|s+1|σ〉〈S+1, M ′′
S = S, ω′′, w|a†sυasσ|S,M ′

S = S, ω′, w〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, M ′′
S = S, ω′′, w|a†rρarτ |S,MS = S, ω, w〉

]
(2.131)
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w′ = a†baaw

∆S = 2

∑
ω′′

[∑
ρτ

〈ρ|s+1|τ〉〈S+2, MS = S+2, ω′, w′|a†bρaaτ |S+1, MS = S+1, ω′′, w〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, MS = S+1, ω′′, w|a†rσarυ|S,MS = S, ω, w〉

]
(2.132)

∆S = 1

∑
ω′′

[∑
συ

〈σ|s0|υ〉〈S+1, MS = S+1, ω′, w′|a†rσarυ|S+1, MS = S+1, ω′′, w′〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, MS = S+1, ω′′, w′|a†bρaaτ |S,MS = S, ω, w〉

]

+
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S+1, MS = S+1, ω′, w′|a†bρaaτ |S+1, MS = S+1, ω′′, w〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, MS = S+1, ω′′, w|a†rσarυ|S, MS = S, ω, w〉

]
(2.133)

∆S = 0

2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†bρaaτ |S,M ′′

S = S, ω′′, w〉

]

×

[∑
συ

〈σ|s0|υ〉〈S,M ′′
S = S, ω′′, w|a†rσarυ|S,MS = S, ω, w〉

]

−
(

S − 1

S + 1

)∑
ω′′

[∑
ρτ

〈τ |s+1|ρ〉〈S+1, M ′′
S = S+1, ω′′, w|a†aτabρ|S,M ′

S = S, ω′, w′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S+1, ω′′, w|a†rσarυ|S,MS = S, ω, w〉

]

−
∑
ω′′

[∑
συ

〈υ|s+1|σ〉〈S+1, M ′′
S = S, ω′′, w′|a†rυarσ|S,M ′

S = S, ω′, w′〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, M ′′
S = S, ω′′, w′|a†bρaaτ |S, MS = S, ω, w〉

]
(2.134)
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w′ = a†ca
†
dabaaw

∆S = 2

∑
ω′′

[∑
ρτ

〈ρ|s+1|τ〉〈S+2, MS = S+2, ω′, w′|a†cρabτ |S+1, MS = S+1, ω′′, w′′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, MS = S+1, ω′′, w′′|a†dσaaυ|S,MS = S, ω, w〉

]
(2.135)

∆S = 1

∑
ω′′

[∑
συ

〈σ|s0|υ〉〈S+1, MS = S+1, ω′, w′|a†dσaaυ|S+1, MS = S+1, ω′′, w′′〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, MS = S+1, ω′′, w′′|a†cρabτ |S,MS = S, ω, w〉

]

+
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S+1, MS = S+1, ω′, w′|a†cρabτ |S+1, MS = S+1, ω′′, w′′′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, MS = S+1, ω′′, w′′′|a†dσaaυ|S,MS = S, ω, w〉

]
(2.136)

∆S = 0

2
∑
ω′′

[∑
ρτ

〈ρ|s0|τ〉〈S,M ′
S = S, ω′, w′|a†cρabτ |S,M ′′

S = S, ω′′, w′′〉

]

×

[∑
συ

〈σ|s0|υ〉〈S,M ′′
S = S, ω′′, w′′|a†dσaaυ|S,MS = S, ω, w〉

]

−
(

S − 1

S + 1

)∑
ω′′

[∑
ρτ

〈τ |s+1|ρ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†bτacρ|S, M ′

S = S, ω′, w′〉

]

×

[∑
συ

〈σ|s+1|υ〉〈S+1, M ′′
S = S+1, ω′′, w′′|a†dσaaυ|S,MS = S, ω, w〉

]

−
∑
ω′′

[∑
συ

〈υ|s+1|σ〉〈S+1, M ′′
S = S, ω′′, w′′′|a†aυadσ|S,M ′

S = S, ω′, w′〉

]

×

[∑
ρτ

〈ρ|s+1|τ〉〈S+1, M ′′
S = S, ω′′, w′′′|a†cρabτ |S,MS = S, ω, w〉

]
(2.137)

The individual position of the spatial indices r, s, a, b, c, d in Eqs. (2.129)–(2.137) is
determined by the reformulations in the first part of the derivation (Ch. 2.2.2), see in



78 Chapter 2. Computational Structure

particular Eqs. (2.72)/(2.76)/(2.80).

On an implementational level, the case of ∆S = 2 is obviously the most straightforward
one. Additional complexity beyond an increase in the number of terms is introduced in
the further spin coupling cases due to the intricate steps in the derivation. The transpo-
sition necessitated by the reexpression of the ŝ−1 operator manifests itself in permuted
spatial indices, as can most clearly be observed for the case of w′ = a†ca

†
dabaaw. For

∆S = 0 (Eq. (2.137)), we note for example that the first factor in term 2 exhibits a
permutation of indices bτ/cρ as compared to the first factor in term 1. On the other
hand, the altered sequence of spin terms as necessitated by the construct of MS = S
wave functions is reflected in the permuted appearence of the spin terms themselves, as
can for example be observed in the comparison of term 2 and term 3 in Eq. (2.137) con-
cerning the excitation aυ/dσ which appears in term 2 within the second factor while
being present in the first factor of term 3. As a consequence, we consider different
configurations and therefore different CSFs in the two cases and have to determine the
individual excitation patterns of these terms independently.

Concluding Examination

Comparing with the spin-orbit implementation, it has to be recognized that the ex-
tension of the η scheme to the case of the spin-spin operator increases the degree of
complexity distinctly. While in the spin-orbit case, the spin element between two CSFs
is expressed as a single η-coefficient:

〈S ′, ω′, w′|
∑
ρσ

sρσa
†
aρabσ|S, ω, w〉 = η(S ′, ω′, w′; S, ω, w)

(see Eq. (1.33) and accompanying text), the corresponding evaluation in the spin-spin
case entails the consideration of two (case ∆S = 2) to six (case ∆S = 0) η vectors,
the length of which is given by the number of inserted CSFs |Υ′′〉. This can be most
straightforwardly seen by inspection of Eqs. (2.98)/(2.105)/(2.128).

2.2.5 Spatial Integrals

The exposition so far covered the illustration of the program framework as well as
the derivation of the spin-coupling expressions. The spin contribution is assembled
together with the CI coefficients and the spatial integrals into the final matrix element
(see Eq. (2.5)). The coefficients are present from a previous mrci program run, while
the two-electron spatial spin-spin integrals, denoted in this work in general as Rrstu (see
Eqs. (2.10)/(2.23)/(2.30) for the concrete case dependent expressions, Eq. (1.2) for the
individual operator components), had to be obtained in the course of the PhD project.
The program Dalton already implements the calculation of spin-spin integrals over
non-symmetry-adapted atomic orbitals and constituted therefore a suitable starting
point for the present purpose. In the course of my PhD, I modified Dalton so as to
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implement the calculation of integrals over symmetrized atomic orbitals which are now
obtained in a preparatory program run. In the subsequent execution of spock.sistr,
these integrals are present on corresponding integral files, read in at the beginning,
and at the innermost level multiplied together with CI- and η-coefficients into the final
matrix element.

Principal scheme

In order to obtain spatial spin-spin integrals, the Dalton code was extended to cal-
culate integral derivatives over symmetry-adapted orbitals. In principle, the entire
program operates with symmetry-adapted atomic orbitals Fα

aA (SOs) which constitute
linear combinations of atomic orbitals faA (AOs) over symmetry-equivalent nuclear
centers:

Fα
aA = g−1

∑
G

χα(G) GfaA, (2.138)

with A referring to the symmetry equivalent nuclear centers, a to the type of orbital
(s, p, d, ...), α denoting the irreducible representation of the molecular point group G, g
its order, and χα(G) referring to the characters associated with irrep α and symmetry
operation G. The implementation of symmetry in a quantum chemistry program has
in general the distinct advantage of possibly considerable savings in the size of the
calculation related to the application of symmetry selection rules. With respect to the
size of integral expressions in particular, the savings are on the order of g (at most
g = 8 in the case of the point group D2h). This is especially crucial for the case of the
two-electron spin-spin integrals as the integral expressions consist of the six operator

components
x2

ij

r5
ij

,
xijyij

r5
ij

,
xijzij

r5
ij

,
y2

ij

r5
ij

,
yijzij

r5
ij

,
z2
ij

r5
ij

which have to be transferred between Dal-

ton and spock.sistr.

The spatial components of the two-electron spin-spin operator exhibit a close resem-
blance to second derivatives of the Coulomb operator [159]. This can be illustrated
trivially by inspecting the example of a derivation of the Coulomb operator with respect
to coordinate y of electron 1 and coordinate z of electron 2:

∂2

∂y1∂z2

(
1

r12

)
=

∂

∂y1

(
−z12

r3
12

)
= −3y12z12

r3
12

. (2.139)

The most straighforward way to calculate two-electron spin-spin integrals constitutes
therefore of calculating the second derivative of the integral expressions over the Coulomb
operator with respect to electron 1/2:

(∇1∇1 + ∇2∇2 + ∇1∇2 + ∇1∇2)
〈

1
r12

〉
→〈

x2
12

r5
12

〉〈
3x12y12

r5
12

〉〈
3x12z12

r5
12

〉〈
y2
12

r5
12

〉〈
3y12z12

r5
12

〉〈
z2
12

r5
12

〉
(2.140)

employing the notation 〈O〉 = 〈rs|O|tu〉. Construction of the corresponding spin-spin
integrals entails a summation of the second derivatives under appropriate considera-
tion of sign changes and resulting prefactors. The advantage of an evaluation over
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the second derivatives lies in the observation that most quantum chemistry codes al-
ready possess an implementation of integral derivatives, a necessity in the calculation
of molecular properties. Therefore, the code modification required to obtain spin-spin
integrals is in principle very modest. The step of calculating spin-spin integrals and the
combination into integral expressions over AOs was already present in Dalton, the
next step, the symmetrization of these integrals in order to obtain integral expressions
over SOs, was not.

The theoretical foundations for the symmetrization of integral derivatives were laid in
1986 by Taylor [160]. The symmetrization of integrals is based on employing double
coset decomposition (DCD), the details of the principal scheme can be found in [161].
The basic idea lies in introducing DCD to obtain a subset of operators R of G, so-called
double coset representatives (DCR). The set R (with R ε R) constitutes the minimum
set of operators which generate all symmetry-distinct pairs A−B (with nuclear centers
A, B) by application of R onto B. Thereby, the number of transformations to obtain
all unique two-center contributions is reduced to the absolute minimum. The exten-
sion to the four-center case holds analogously. For further details, the reader is referred
to [160,161]. I would like to illustrate though the most important consequences in the
symmetrization of two-electron integrals by comparison of the resulting expressions as
obtained through a direct straightforward approach versus the introduction of DCD.

A general operator belonging to the symmetry ε is denoted as Oε. Directly resolving
the SOs according to Eq. (2.138), a general two-electron integral 〈Fα

aA F β
bB|Oε|F γ

cC F δ
dD〉

is evaluated as:

〈Fα
aA F β

bB|O
ε|F γ

cC F δ
dD〉 = g−4

∑
G

∑
H

∑
I

∑
J

χα(G)χβ(H)χγ(I)χδ(J)

× 〈GfaA HfbB|Oε|IfcC JfdD〉. (2.141)

Application of DCD in reexpressing symmetry operators G, H, I, J employing DCRs
yields instead after some intricate derivation:

〈Fα
aA F β

bB|O
ε|F γ

cC F δ
dD〉 = g−4uvwxλ−1

T Iαβγδε

∑
R

∑
S

∑
T

χβ(R)χγ(T )χδ(TS)

× pb(R)pc(T )pd(TS)〈faAfbR(B)|Oε|fcT (C)fdTS(D)〉. (2.142)

This at first sight more complicated expression is evaluated straightforwardly, as most
of the appearing quantities constitute simple factors. The prefactor g−4uvwxλ−1

T is
composed of orders of (sub)groups and the individual elements therefore attain values
between 1 and 8, Iαβγδε represents the selection rule as the direct product of the in-
volved irreps has to belong to the totally symmetric one (α ⊗ β ⊗ γ ⊗ δ ⊗ ε = A1),
R, S, T refer to DCRs and therefore denote a (sub)set of the operations G of G, and
pb(R), pc(T ), pd(TS) represent parity factors of ±1.

In comparison of Eq. (2.141) with Eq. (2.142), we neglect the prefactors in both expres-
sions as they are trivially evaluated. The most apparent difference and point of saving
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lies in the summation: First, a reduction from a quadruple to a triple summation was
achieved. Second, the triple summation only extends over the DCRs R, S, T , thereby
covering a subset of G. This observation is directly related to the beforehand mentioned
properties of DCRs: We have selected the minimum subset of operators with which
we can generate all symmetry-distinct integral expressions. In a summation over all
elements G, H, I, J as in Eq. (2.141), possibly identical integrals are evaluated multi-
ple times. In the introduction of double coset decomposition, we are able to eliminate
these redundancies.

Existing Approach in Dalton

Although Dalton in principle operates with SOs, this is not the case in the calcula-
tion of electron spin-spin coupling which is implemented employing AOs. This apparent
inconsistency is directly related to the evaluation of zero-field splitting solely as an ex-
pectation value within Dalton and will be clarified in the following.

The calculation of an expectation value over an arbitrary operator Oε can in principle
be evaluted as a trace operation according to:∑

αβγδ

∑
aA bB cC dD

Pαβγδ
aA bB cC dD〈F

α
aA F β

bB|O
ε|F γ

cC F δ
dD〉 (2.143)

with P referring to the second-order reduced density matrix, incorporating the infor-
mation concerning molecular orbitals. The above integral is formulated over SOs and
thereby encapsulates the symmetry information of the molecular system. Alternatively,
expressing the SO integrals according to Eq. (2.142) and exchanging summations while
rearranging factors, we can reformulate:∑

aA bB cC dD

∑
αβγδ

Pαβγδ
aA bB cC dD〈F

α
aA F β

bB|O
ε|F γ

cC F δ
dD〉

=
∑

aA bB cC dD

∑
R S T

∑
αβγδ

Pαβγδ
aA bB cC dD g−4uvwxλ−1

T Iαβγδεχ
β(R)χγ(T )χδ(TS)

× pb(R)pc(T )pd(TS)〈faAfbR(B)|Oε|fcT (C)fdTS(D)〉 (2.144)

=
∑

aA bB cC dD

∑
R S T

PR S T
aA bB cC dD〈faAfbR(B)|Oε|fcT (C)fdTS(D)〉 (2.145)

with

PR S T
aA bB cC dD =

∑
αβγδ

g−4uvwxλ−1
T Iαβγδεχ

β(R)χγ(T )χδ(TS)

× pb(R)pc(T )pd(TS)Pαβγδ
aA bB cC dD. (2.146)

Comparing Eq. (2.143) with Eq. (2.145), we recognize that the symmetrization infor-
mation was transferred from the integrals to the second-order reduced density matrix.
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In the actual program execution, Eq. (2.145) is evaluated by first symmetrizing the
density matrix (e.g., calculating PR S T

aA bB cC dD) and subsequently employing the existing
symmetry loop structure over R, S, T to assemble the trace expression. The integrals
over AOs can be calculated within each loop anew and immediately discarded after
folding together with the corresponding density expression. In the case of the present
example, there is no distinct advantage associated with either choosing to symmetrize
the AOs (Eq. (2.143)) or symmetrizing the reduced density matrix (Eq. (2.145)) in-
stead. If we are considering on the other hand the evaluation of ZFS where we intro-
duce 21 second order derivatives instead of the single integral expression appearing in
Eqs. (2.143)/(2.145), it is obvious that the single symmetrization of the reduced den-
sity matrix is more efficient than symmetrizing 21 AO-integral expressions. Therefore,
within Dalton, is was chosen to calculate the ZFS as a trace operation employing
AO integrals and a symmetrized second-order reduced denity matrix (Eq. (2.145)).
The choice between these two transformations is only possible in the evaluation of an
expectation value since the reformulation in Eq. (2.144) is based on the possibility of
associating the symmetry loop structure either with the second-order reduced density
matrix or the integral expression. This is permitted as the presence of complete sum-
mation indices allows for an arbitrary permutation of the appearing factors. If we
are not evaluating trace expressions, a formulation according to Eq. (2.143) employing
the second-order reduced density matrix does obviously not occur. In the calculation
of matrix elements between different states, as is implemented within spock.sistr,
we therefore have to resolve to incorporating the symmetry information in the inte-
gral expression and thereby employ SO integrals if we want to take advantage of the
computational savings associated with the consideration of symmetry.

Interlude

At this point, I have illustrated the principal program structure and outlined the pro-
cessing based on configuration comparison. Formulas for the calculation of the spin
contribution were derived and the concrete expressions implemented in spock.sistr
explicitly stated. The mechanism of obtaining the spatial contribution to the matrix
element expression was introduced.

The presentation on this abstract conceptual/mathematical level has now to be set
into the context of the program implementation. In the remaining part of the chapter,
I will parallel structural aspects of the evaluation with the level of program routines
and internal processing. After outlining briefly the overall connection of the spin-spin
routines, I will consider each of these routines individually and describe the position
in the calculation of spin-spin matrix elements.
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2.3 Implementation

Figure 2.5: Contrasting: Structure/Major routines of spock.sistr

In Fig. 2.5, I display the program structure of spock.sistr as introduced abstractly
in Fig. 2.1, facing additionally on the right-hand side the implementational level with
reference to program routines. The initialization process driven by the routine main
employs the program logic previously implemented in spock. It is concerned with
reading of input parameters passed into the program and establishing information
of molecular states provided by a previous mrci calculation. After return to main,
different branches of the program can be called from the driving routine as specified
in the input file, one of it being the evaluation of the spin-spin contribution. The
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execution of spock.sistr is initialized by call to calc ssmes, the driving routine of
the spin-spin branch which in turn controls the entire calculation of spin-spin matrix
elements.

Figure 2.6: Hierarchy of spin-spin routines in spock.sistr

Fig. 2.5 depicts the correspondence of program routines to the structure of the compu-
tational evaluation of spin-spin matrix elements; Fig. 2.6 indicates in turn the hierarchy
among these routines. Dashed boxes encompass a set of related routines one of which
is actually called in an individual loop execution, a case decision determined by the
information of individual configurations (set {ssint}) and by the difference in spin ∆S
(set {deltaS}).

Each of the intermediate routines is dedicated to the stepwise processing of configura-
tion information before passing its results downwards until the lowest level of the actual
multiplication of CI coefficients and η-values is reached in {deltaS}. After having now
set the spin-spin branch into the program context and outlined the hierarchy between
the program routines involved, I will at this point turn to the individual components
and step in detail through the algorithm of the spin-spin calculation.
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(I). calc ssmes
The driving routine of the spin-spin branch evaluates the information about spin
and spatial symmetry of states passed in from main on the basis of the selection
rules for spin-spin coupling. After establishing the knowledge about coupling
states over operator components for the entire program run, η-coefficients for a
particular pair of coupling multiplicities are loaded as determined by the spin of
the individual states and their difference ∆S. Spatial spin-spin integrals are read
into memory based on the spatial symmetry of the two states (which determines
the spatial symmetry of the coupling operator component). The subsequent

program structure is executed for each operator component T̂
(2)
q and pair of states

|Ψi〉, |Ψj〉 successively, thereby passing on the evaluation of the single matrix

element 〈Ψi|T (2)
q |Ψj〉 to cipropSS.

Figure 2.7: calc ssmes

(II). cipropSS
Upon entry of cipropSS, detailed information on the states |Ψi〉, |Ψj〉 is estab-
lished by reading configuration information and associated CI coefficients {ci},
{cj} from file. The configuration space itself is structured based on the algo-
rithm of configuration generation and processing of the preceding mrci calcula-
tion [153, 162]: The set of reference configurations |Ξref〉 is specified by the user
and constitutes the core from which the full CI space is generated by application
of single und double excitations. The information about the full configurational
space is stored relative to the configurations of the reference space. Associ-
ated with individual reference configurations are 1-hole and 2-hole configurations
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which are obtained by application of one or two annihilation operators ai. The fi-
nal CI configurations are generated by subsequent application of the appropriate
number of creation operators a†k.

We therefore have a division of the configuration space into 0-hole, 1-hole and
2-hole configurations. A classification of the applied excitation is introduced by
the categorization of the MO space into internal and external, distinguishing
thereby between MOs which are occupied in at least one reference configuration
and MOs which are not occupied in any reference. Originating from an n-hole
configuration (n = 1, 2), an excitation within the internal or into the external
MO space is possible.

The classification scheme of the configuration space mirrors the conceptual rela-
tion of mrci as well spock to the notion of second quantization. It further
strongly influences the subsequent configuration processing, the principles of
which are common to the spin-free, spin-orbit and, derived from those, the spin-
spin code: Within cipropSS, the configurations of bra 〈Ψi| and ket |Ψj〉 are pro-
cessed successively in groups of n-hole configurations (n = 0, 1, 2). We therefore
identify the following six batches corresponding to the possible distinct pairings
of bra and ket:

(1). 0-hole configuration – 0-hole configuration

(2). 0-hole configuration – 1-hole configuration

(3). 1-hole configuration – 1-hole configuration

(4). 0-hole configuration – 2-hole configuration

(5). 1-hole configuration – 2-hole configuration

(6). 2-hole configuration – 2-hole configuration.

I note for completeness that in the case of differing configuration spaces for 〈Ψi|
vs. |Ψj〉, the processing of a pair of the kind m-hole – n-hole with n /= m (cases

2,4,5) necessitates two executions, namely the group of elements 〈(m)Ψi|T (2)
q |(n)Ψj〉

and 〈(n)Ψi|T (2)
q |(m)Ψj〉. Internally, this is executed by treatment of the second

combination as a transposed matrix element, the details of which will be omitted
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as they are intricate and not relevant for the understanding of the algorithm.

Within a particular group 〈m-hole| – |n-hole〉, the processing performed in cipropSS
consists of the application of n creation operator(s) onto the n-hole-configuration
|Ξl〉 of the ket and assessment of the difference in spatial occupation to the m-
hole configuration 〈Ξk| of the bra. The further evaluation of the matrix element
is passed downwards by call to one of the routines out of the set denoted {ssint}
or possibly the routine ssmatelsum itself in the case of the batch 0-hole – 0-hole
configuration.

Figure 2.8: cipropSS

(III). { ssint }
The individual names of the routines {ssint}= ssint1erzi, ssint1erze, ssint2erzii,
ssint2erzie, ssint2erzee reflect the previous configuration processing of the ket |Ψj〉.
The number denotes the origin in a 1- or 2-hole configuration while the trailing
letters or letter combinations of i/e refer to the creation operator(s) and indicate
an excitation into the internal/external space of molecular orbitals.

Upon entry of an {ssint} routine, the configuration |Ξl〉 constitutes a single or
double excitation with respect to a reference configuration |Ξref〉 while the con-
figuration 〈Ξk| represents at this stage an m-hole configuration (m = 0, 1, 2).
The processing of the n-hole configuration of the ket was performed in cipropSS.
The corresponding treatment of the m-hole configuration of the bra in terms of
the application of the creation operator(s) a†k is realized within the {ssint} rou-
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tine. The accompanying processing entails a synchronization of the information
about creation and annihilation operators of bra and ket, accouting for redundant
(de)excitations.

This step generates thereby finally two valid configurations |Ξk〉, |Ξl〉 of the CI
calculation space. Their difference in spatial occupation is stored as the number of
creation/annihilation operators (idiff = 0, 1, 2) and the individual values of a, a†

which connect 〈Ξk| with |Ξl〉. Together with the CI coefficients read previously in
cipropSS, this information is passed downwards for the evaluation of the particular
matrix element 〈Ξk|T (2)

q |Ξl〉 by ssmatelsum.

Figure 2.9: { ssint }
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(IV). ssmatelsum
The routine ssmatelsum is called by cipropSS in the case of the 0-hole – 0-hole
branch and by an {ssint} routine in the case of the execution of any other batches.

The first branching decision is governed by the difference in excitation idiff, as
this impacts the further execution in the possible summation over open shells
common to the configurations |Ξk〉, |Ξl〉. For idiff = 2 and thereby evaluation of
the element 〈Ξk|a†ca

†
dabaa|Ξl〉, the spatial contribution is entirely determined by

the creation and annihilation operators that connect 〈Ξk| with |Ξl〉, the case idiff
= 1 entails a single summation over open shells r common to the two configura-
tions, while for idiff = 0, a double summation over common shells r, s is initiated
within ssmatelsum (see Eqs. (2.72)/(2.76)/(2.80)).

For a particular quadruplet of orbital indices, the spatial contribution is calcu-
lated as the difference of two integrals and the evaluation of the spin part deferred
to one of the {DeltaS} routines.

Figure 2.10: ssmatelsum

(V). { DeltaS }
Until this point, the at most double excitation between 〈Ξk| and |Ξl〉 was passed
on as a set of creation and annihilation operators. It is in the {DeltaS} rou-
tine that this compound expression is resolved into the product of two single
excitations according to the insertion of the resolution of identity. The two re-
sulting individual expressions are treated independently for the determination of
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patterns and subcases. It is in the subsequent step that finally the information
concerning the spin part is evaluated and incorporated into the calculation: The
required set of η-coefficients as determined by excitation pattern and the case
of the called routine is requested from memory. Thereby, the association of a
particular excitation with the ŝ0 or ŝ+1 operator is established.

The computational labour differs in this respect for the routines twoDeltaS/-
oneDeltaS/zeroDeltaS in that twoDeltaS entails the calculation of a single product
expression, while oneDeltaS necessitates a sum of two product expression and in
the case of zeroDeltaS, we are faced with three terms (see Eqs. (2.129)–(2.137)).
This affects not only the arithmetic workload but impacts the number of pat-
tern expressions that have to be determined and evaluated, which is between two
(twoDeltaS) and six (zeroDeltaS).

Remembering that the entire matrix element is assembled as a product of spatial
integrals, spin contribution and CI coefficients (see Eq. (2.5) and accompanying
text in Ch. 2.2), we recognize that on the previous level in ssmatelsum, the spatial

part associated with the element 〈Ξk|T (2)
q |Ξl〉 is considered. It is in the last

step of the processing in {DeltaS} that the further information of CI- and spin

coupling is incorporated. We therefore obtain for the contribution of 〈Ξk|T (2)
q |Ξl〉

to 〈Ψi|T (2)
q |Ψj〉:

〈Ξk|T (2)
q |Ξl〉=

∑
Υ′

∑
Υ

ci(Υ′)cj(Υ)〈Υ′|T (2)
q |Υ〉 (2.147)

=
∑
Υ′

∑
Υ

ci(Υ′)cj(Υ)
∑
Υ′′

{〈Υ′|s1|Υ′′〉〈Υ′′|s2|Υ〉}, (2.148)

resolving in the last step the operator component T
(2)
q as T

(2)
q = {s1 · s2} for the

general case, which may entail more than one term in the individual case, and
obtaining the familiar product of two spin operator expressions under insertion
of the resolution of identity 1 =

∑
Υ′′ |Υ′′〉〈Υ′′|.

The spin expression {〈Υ′|s1|Υ′′〉〈Υ′′|s2|Υ〉} denotes the matrix element between

two CSFs |Υ′〉, |Υ〉 over a general spin operator component T
(2)
q and corresponds

thereby to the spin-η-coefficient expressions that were derived for the specific
cases (see Eqs. (2.97)/(2.98) for ∆S = 2, Eqs. (2.104)/(2.105) for ∆S = 1,
Eqs. (2.127)/(2.128) for ∆S = 0). Continuing with the compound notation of a
CSF as |Υ〉 instead of the resolution into |Υ〉 = |S,MS, ω, w〉 which was chosen
in respective equations, the above matrix element can be formulated employing
η-coefficients as:

〈Ξk|T (2)
q |Ξl〉=

∑
Υ′

∑
Υ

ci(Υ′)cj(Υ)
∑
Υ′′

{η(Υ′; Υ′′)(1) · η(Υ′′; Υ)(2)}. (2.149)
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We recognize that calculation of the matrix element 〈Ξk|T (2)
q |Ξl〉 entails the multi-

plication of two matrices, the dimensions of which are determined by the number
of CSFs that are affiliated with the configurations |Ξk〉, |Ξl〉 and |Ξ′′〉.

Figure 2.11: { DeltaS }

In summary, the principle of the calculation of the spin-spin contribution for CI wave
functions is based on the evaluation of the matrix element 〈Ψi|T (2)

q |Ψj〉 between wave

functions |Ψi〉, |Ψj〉 in terms of the contributions of elements 〈Ξk|T (2)
q |Ξl〉 between

configurations |Ξk〉, |Ξl〉. It is not until the very last step in this process that the
information about individual CSFs is assessed through CI- and η-coefficients.

The above algorithm is executed for the calculation of matrix elements between MS = S
wave functions. Subsequent application of the WET (see p. 30 ff in Ch. 1.5.1) enables
the construction of the entire interaction matrix over the spin-spin operator, as indi-
cated in Fig. 2.5. Diagonalization is performed by call to the Lapack-routine zheevd
which is suitable for the calculation of eigenvalues and eigenvectors of a complex Her-
mitian matrix. We obtain the spin-spin eigenvalues and the eigenvectors as linear
combinations of the unperturbed mrci states. In the case of a triplet state, the eigen-
values are further processed for a calculation of the zero-field splitting values D and E
of the triplet manifold.

2.3.1 Program Execution

On the level of program execution, the preparatory step for spock.sistr consists of ob-
taining the spin-spin integrals by running a local version of Dalton in which the sym-
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metrization of second derivative integrals was implemented according to Eq. (2.142).
The spin-spin integrals are written to six files, a subsequent transformation from the SO
to the MO basis is performed employing the program flash [163]. The dft/mrci code
is executed unaltered, yielding the multireference wave function(s) in the appropriate
scratch directories. The spin-spin integral files are read into memory at the beginning
of the spock.sistr program run. During code execution, the two-electron spin-spin
interaction between pairs of configurations |Ξk〉, |Ξl〉 is evaluated based on Eq. (2.3),
with the resolution of the matrix element expression between pairs of CSFs as given
in Eqs. (2.72)/(2.76)/(2.80). The spin-coupling contribution is resolved according to
Eqs. (2.129) – (2.137), at which point the appropriate η-coefficients, spin-spin inte-
grals and CI coefficients are loaded from memory and assembled as the contribution
of 〈Ξk|HSS|Ξl〉 to the matrix element 〈Ψi|HSS|Ψj〉 between the mrci-wave functions
|Ψi〉, |Ψj〉.

2.4 Conclusion

In the present chapter, I have presented the inner workings of the program spock.sistr:
The equations employed in the calculation of electron spin-spin coupling were derived
in detail, the principle of the implementation in terms of processing of configurations
and assembling of individual matrix elements was outlined. In the following chapter, I
will illustrate the program operation with suitable test cases.
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Calculations

I turn now to the actual program execution which I illustrate with sample calculations.
The initial test phase encompassed di- and triatomic systems, the advantage of which
lay in the high symmetry of these molecules. In this phase, useful insight was obtained
with respect to the general behaviour and convergence of electron spin-spin coupling.
The choice of subsequent molecules was strongly influenced by the interests of the
group of Theoretical and Computational Chemistry at the University of Düsseldorf. In
the context of this thesis, I present the following calculations:

1. The ZFS of the triplet ground state of O2 is a common test case for the evaluation
of electron spin-spin coupling and comparison calculations from different groups
are accessible. In the implementation of spock.sistr, the execution involves a
test of the ∆S = 0 branch, corresponding to Eqs. (2.131)/(2.134)/(2.137). The
relevance of ionic and covalent contributions and their balanced description in
this system is a salient point which has not been discussed so far. Furthermore,
I investigated on this system the convergence behaviour of electron spin-spin
coupling with the size of the CI space, gaining insights of general relevance in the
calculation of this effect.

2. An off-diagonal spin-coupling element of spock.sistr was assessed with calcu-
lations of the singlet–quintet coupling in NH, corresponding to an execution of
the ∆S = 2 branch (Eqs. (2.129)/(2.132)/(2.135)). This choice was motivated
by the increasing spin-spin coupling between c1Π and 15Σ− at larger bond dis-
tances, as discussed in the context of predissociation of the c1Π state by Bohn et
al. [164,165].

3. Conjugated hydrocarbons possess the possibility for delocalization of uncoupled
electrons, allowing for a stabilization of excited states. The mechanism of exci-
tation and de-excitation of photoactive substances belonging to this class, such
as carotenoids, is not understood in detail so far. Electron spin-spin coupling
as a means of assessing the average interelectronic distance between unpaired
electrons is a promising instrument in this context. In this work, I present cal-
culations on the triplet states of the smaller all-trans polyenes. Investigation of
these systems constitutes a first step towards understanding electron distributions
in structurally related larger compounds. These calculations involve application
of the dft branch of the dft/mrci program.

93
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3.1 O2

The triplet ground state of O2 constitutes the first test case of spock.sistr. High-level
correlation calculations on this system were previously reported by Vahtras et al. [48]
as well as Sinnecker and Neese [124]. Vahtras et al. performed CASSCF calculations
employing Dalton, choosing an active space of 10 electrons in 12 active orbitals (the
three lowest orbitals 1σg, 1σu, 2σg were kept inactive) and the aug-cc-pCVTZ [166,167]
basis set. Sinnecker and Neese [124] performed calculations with the Orca [168] elec-
tronic structure program. Spin-spin coupling was evaluated from a CASSCF wave
function (active space of 12 electrons in 8 orbitals), applying their approximate SSC
implementation based on the product decomposition of the two-electron density. Fur-
thermore, calculations with restricted and unrestricted DFT (B3LYP) were carried out.
Basis sets under consideration were EPR-II, EPR-III [169] and QZVP [170].

Single-point calculations on O2 were performed at an internuclear distance of re =
1.207 Å, consistent with Vahtras et al. [48] and Sinnecker and Neese [124]. Second-
order spin-orbit (DSO) and first-order spin-spin effects (DSS) are of similar magnitude
in this system. The exact contribution of DSO vs. DSS has been a point of argu-
ment over a period of several decades, as was discussed by Vahtras et al. as well
as by Langhoff [58] and by Langhoff and Kern [27]. The experimental value of D
(= DSO + DSS) is well established to be 3.965 cm−1 [171, 172], and it is agreed mean-
while from computational investigations that SOC contributes to a larger extent than
SSC. Spin-orbit CI calculations with spock were performed to provided a value for
DSO and thereby assess D.

Vahtras et al. determined a DSS value of 1.44 cm−1. Sinnecker and Neese reported
calculations with BP, B3LYP and CASSCF in the range of 1.52 to 1.59 cm−1, with
smaller values (1.52 − 1.55 cm−1) in the EPR-II basis, and slightly larger ones in
EPR-III and QZVP (1.57 − 1.58 cm−1). The difference in the methodological treat-
ment amounted to at most 0.02 cm−1. In general, little is established about SSC with
respect to basis-set dependencies and convergence behaviour. In this context, Havlas
et al. [79] investigated CH2 with basis sets ranging in quality from STO-3G to aug-
cc-pVTZ employing different methods and found that most basis sets (except for the
clearly deficient STO-3G basis) provide D and E values in the right range, although
fully converged results were not obtained yet.

The present investigation encompassed basis sets cc-pVDZ, cc-pVTZ, cc-pVQZ, aug-
cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ [166,173]. Molecular orbitals were obtained
from an ROHF turbomole-dscf [148, 149, 174]-calculation of the triplet state. The
orbitals 1σg and 1σu were kept frozen throughout. In the mrci calculations, reference
spaces of various sizes were chosen, constructing wave functions from the reference
configurations only and from all single and double excitations (SD) out of the chosen
reference space — no configuration selection was applied so as to exclude a further
variable from the investigation. All calculations utilized the RI-integral approxima-
tion [150,151] and energies given include Davidson correction unless otherwise stated.
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Throughout the discussion, I provided values for DSS including four decimal places for
the illustration of trends. The final value for D is provided with two decimal places as
a more realistic reflection of the intrinsic precision.

3.1.1 One- vs. Two-Center Contributions

In the first part of my investigation, I operated with a strongly simplified space with
no excitations out of the references. The most important basis-set independent finding
relates to a one-configuration vs. a two-configuration description of O2. Table 3.1
lists DSS for the HF ground state reference Ψ0 (valence occupation: σ2

g π4
u π2

g), and
for a calculation including Ψ0 and the π2

u → π2
g doubly excited configuration with the

valence occupation σ2
g π2

u π4
g denoted Ψ1.

Ψ0 Ψ0+Ψ1

cc-pVDZ 1.5094 0.7244

cc-pVTZ 1.5197 0.7421

cc-pVQZ 1.5223 0.7434

aug-cc-pVDZ 1.5054 0.7280

aug-cc-pVTZ 1.5192 0.7420

aug-cc-pVQZ 1.5222 0.7430

Table 3.1: Values for DSS[cm−1] in O2: The one- and two-configuration case (no further
excitations)

The CI coefficients in the two-configuration case range between 0.9730 and 0.9733 for
Ψ0 and −0.2296 and −0.2309 for Ψ1. The substantial decrease in DSS upon inclusion
of Ψ1 is easily understood when interpreting the wave function with respect to covalent
versus ionic contributions. In this argument, only the occupation of πu and πg is of
relevance, and we will omit further occupied and empty shells. The configuration Ψ0

corresponds therefore to the occupation π4
u π2

g , but we can equally well treat it as a
two-hole instead of a six-electron configuration, that is, it is equivalent to π2

g . With
the same argument, Ψ1 corresponds to π2

u. The wave function Ψ composed of Ψ0 + Ψ1

can therefore be written as:

Ψ = c1|πgxπgy|+ c2|πuxπuy| (3.1)

with the spatial orbitals:

πgx = pA
x − pB

x πgy = pA
y − pB

y

πux = pA
x + pB

x πuy = pA
y + pB

y

at the centers A and B. Decomposing Ψ accordingly, we obtain:

Ψ = c1|πgxπgy|+ c2|πuxπuy| (3.2)
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= c1|(pA
x − pB

x )(pA
y − pB

y )|+ c2|(pA
x + pB

x )(pA
y + pB

y )| (3.3)

= c1

{
|pA

x pA
y | − |pA

x pB
y | − |pB

x pA
y |+ |pB

x pB
y |
}

+c2

{
|pA

x pA
y |+ |pA

x pB
y |+ |pB

x pA
y |+ |pB

x pB
y |
}

(3.4)

= (c1 + c2)|pA
x pA

y |+ (c1 + c2)|pB
x pB

y | − (c1 − c2)|pA
x pB

y | − (c1 − c2)|pB
x pA

y |. (3.5)

Terms 1 and 2 in Eq. (3.5) correspond to ionic contributions, with both electrons lo-
cated on one center, while terms 3 and 4 can be classified as covalent contributions.
Electron spin-spin coupling is described by a strongly singular operator, one-center
contributions are therefore expected to be of distinctly higher magnitude than two-
center contributions. For c2 = 0 (only Ψ0), Eq. (3.5) yields the well-known result that
the wave function consists of an equal mixture of covalent and ionic states. Inclusion
of Ψ1 results in a reduction of one-center contributions and an increase of two-center
contributions. As to be expected, this causes the D-value to decrease considerably.
The relevance of this observation for a CI calculation lies in the recognition that the
relative contribution of Ψ0 vs. Ψ1 has immediate impact on the magnitude of DSS in
the case of O2.

In a second set of calculations, I considered all SD excitations of Ψ0 and of Ψ0 + Ψ1.
In Table 3.2, the energy and electron spin-spin coupling obtained in these calculations
is presented.

E[Eh] DSS[cm−1]

Ψ0 Ψ0+Ψ1 Ψ0 Ψ0+Ψ1

cc-pVDZ −149.976157 −149.982223 1.5618 1.3601

cc-pVTZ −150.112903 −150.119932 1.6092 1.3699

cc-pVQZ −150.155785 −150.163060 1.5960 1.3481

aug-cc-pVDZ −150.009054 −150.015539 1.5664 1.3641

aug-cc-pVTZ −150.123754 −150.130934 1.6095 1.3702

aug-cc-pVQZ −150.160026 −150.167349 1.5971 1.3487

Table 3.2: O2: The one- and two-configuration case + SD excitations: Energies and
spin-spin coupling

Comparing the one-reference with the two-reference case, we note that the bias present
from the choice of reference configurations has an impact on DSS, but less so on the
energy, causing at most a difference of ∆E = 7.3 mEh. The relevance of the present
calculation lies in the observation that the correlation energy and electron spin-spin
coupling do not behave in the same way. Even a slight improvement in the correlation
energy causes here a distinct change in the spin-spin coupling, which contraindicates
an immediate, direct relation between these two quantities. It is to be expected that
in general, an improvement in the correlation treatment results in an improvement in
the description of electron spin-spin coupling. With respect to concrete trends though,
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it is not necessarily the case that both quantities exhibit a comparable behaviour, a
point that will further be illustrated in Ch. 3.1.2 and Ch. 3.1.4.

3.1.2 Augmented vs. Non-Augmented Basis Sets

The question of a balanced description of Ψ1 vs. Ψ0 is of distinct relevance in O2 as
this aspects manifests itself to some extent in subsequent calculations. Having estab-
lished one of the underlying issues in the calculation of SSC in O2, a further question
of interest arising in an assessment of DSS concernes basis-set effects.

In the first part of this investigation, I operated again only with the reference configu-
rations and applied no SD excitation. I chose a limited reference space of 8 electrons
in 6 orbitals (3σg, 1πu, 1πg, 3σu) which resulted in 14 CSFs. The configuration space
therefore consisted of Ψ0, Ψ1, and configurations with occupations of the virtual or-
bital σu. Table 3.3 lists values for DSS. In the comparison of the 8 in 6 reference space
calculation with the two-configuration calculation (see Table 3.1), we observe that the
values for the augmented basis sets hardly change while there is an increase in the
magnitude of DSS in the case of non-augmented basis sets. Inspection of the CI space
shows that Ψ0 and Ψ1 constitute the largest contribution. In the non-augmented basis
sets, we observe furthermore noticeable admixture of configurations with occupation in
the σu; the CI coefficient of the next CSF ranges between 0.0502 and 0.0581 (with the
smallest value in cc-pVQZ and the largest in cc-pVDZ). In the augmented basis sets,
the third largest CI coefficient ranges between 0.0028 and 0.0063 (analogously observ-
ing the smallest value in aug-cc-pVQZ and the largest in aug-cc-pVDZ), thereby being
an order of magnitude smaller. Careful inspection of the MOs reveals that the only
virtual HF orbital in this space, the σu, is of course of substantially diffuse character in
the augmented basis sets. This orbital is obviously of less relevance in the correlation
treatment in the augmented basis sets than in the non-augmented ones, in which the
σu, not surprisingly, is more compact due to the lack of diffuse functions. Therefore,
the reference space DSS value in the augmented basis sets is almost entirely defined by
the two-configuration case.

DSS[cm−1]

cc-pVDZ 0.8873

cc-pVTZ 0.8269

cc-pVQZ 0.7683

aug-cc-pVDZ 0.7286

aug-cc-pVTZ 0.7422

aug-cc-pVQZ 0.7430

Table 3.3: Values for DSS in O2: 8 in 6 reference space (no further excitations)

In the second part of this investigation, an MRCI correlation treatment based on the
8 in 6 references was performed. This represents the attempt of a direct comparison
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of basis sets in a full dynamical multireference correlation treatment (Table 3.4). I
remark that this approach is deficient in that especially the σu orbital exhibits a dif-
ferent character in the non-augmented vs. the augmented basis sets but expect that
the observations nonetheless represent general trends. In particular, it can be inferred
that the alternative approach of employing reference configuration spaces based on
the contribution of configurations to the wave function will improve results by intro-
ducing an additional degree of flexibility to compensate for basis set inadequacies but
complicate a direct comparison of basis set effects. Table 3.4 shows that augmented
basis sets result in this calculation in lower values for DSS than non-augmented sets.
Inclusion of the augmented shell is of minor relevance with respect to the energy: For
the case cc-pVTZ vs. aug-cc-pVTZ, the correlation energy (comparing here variational
MRCI energies) is 443.989 mEh vs. 446.551 mEh. The effect on DSS is clearly more
pronounced. The explanation for this trend lies in the description of the HF virtual
orbitals. Inclusion of contributions from diffuse orbitals has less of an effect on the cor-
relation energy, but due to the strong dependence of DSS on the distance of electrons,
e.g., on the electron distribution, a more diffuse description has a stronger effect on
the magnitude of electron spin-spin coupling. We therefore observe in our calculations
that the use of an augmented basis is problematic: The more diffuse character of the
wave function represents its relevance for electron correlation but is overestimated with
respect to a description of electron spin-spin coupling. We speculate that for a satisfac-
tory calculation of DSS, a compact basis which is better able to describe the electron
cusp and therefore model the behaviour at short interelectronic distances reliably is
advisable.

DSS[cm−1]

cc-pVDZ 1.4227

cc-pVTZ 1.4219

cc-pVQZ 1.3807

aug-cc-pVDZ 1.3793

aug-cc-pVTZ 1.3881

aug-cc-pVQZ 1.3663

Table 3.4: Values for DSS in O2: 8 in 6 reference space + SD excitation

3.1.3 Effect of Selected Reference Configurations

In the previous sections, I operated with a generic reference space by specification of
the number of electrons and the associated occupied and virtual orbitals. This is not
a customary approach in a multireference calculation as it is well-established that a
choice of references based on their relevance for the wave function constitutes a more
appropriate description of the system. To investigate the effect of the generic 8 in 6
versus a selected reference space, I performed calculations considering a limited number
of reference configurations based on their contribution to the wave function. Based on
an 8 in 6-MRCI calculation, configurations with a value of c2 > 0.001 were chosen for
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the reference space. Depending on the basis set, between 8 − 13 configurations were
obtained (20 − 33 CSFs). Table 3.5 lists DSS obtained for the references only while
Table 3.6 includes single and double excitations out of the reference space.

Comparison of Table 3.3 with 3.5 reflects the fact that in employing a selected reference
space, configurations which are of higher relevance to the description of the state and
contribute with larger CI coefficients to the wave function are included. This reduces
the contribution of Ψ1 and has immediate effect on the magnitude of DSS, causing it
to increase (see discussion in Ch. 3.1.1). Again, the values in the augmented basis are
smaller than in the non-augmented.

DSS[cm−1]

cc-pVDZ 1.2841

cc-pVTZ 1.1754

cc-pVQZ 1.0766

aug-cc-pVDZ 1.2296

aug-cc-pVTZ 1.1151

aug-cc-pVQZ 1.0433

Table 3.5: Values for DSS in O2: n (n = 8 − 13) reference configurations (no further
excitations)

Comparison of Table 3.4 with 3.6 shows that in a fully correlated calculation, the effect
of augmentation is distinctly less pronounced in the tailored reference space than in a
calculation based on a general 8 in 6 consideration: The flexibility of choosing relevant
configurations in combination with a configuration interaction treatment is able to
compensate partly for problems associated with augmented basis sets.

DSS[cm−1]

cc-pVDZ 1.4846

cc-pVTZ 1.5008

cc-pVQZ 1.4606

aug-cc-pVDZ 1.4817

aug-cc-pVTZ 1.4855

aug-cc-pVQZ 1.4525

Table 3.6: Values for DSS in O2: n (n = 8−13) reference configurations + SD excitation

The question of employing an augmented basis or not in a calculation based on HF
MOs has ultimately to be answered in the context of balancing the improvement of
electron correlation with the impact on the description of SSC. Out of the present expe-
rience, the difficulties introduced by employing an augmented basis for the calculation
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of DSS are sometimes substantial but could possibly be strongly system dependent.
Unless necessitated by an ionic electron distribution in the system, the choice of a
non-augmented set appears to be advisable if the calculation is based on HF MOs. It
is suggestive that employing more compact molecular orbitals, such as those obtained
with a CASSCF or a DFT treatment, leads to an improvement in the behaviour of the
calculation.

3.1.4 Convergence with Reference Space

To investigate the convergence of DSS with the size of the MRCI, a series of calcula-
tions with increasing size of the reference space under inclusion of MRCI excitations
employing the cc-pVTZ basis was performed. Fig. 3.1 displays the dependence of DSS

on the number of reference configurations, Fig. 3.2 presents this dependence for the
variational CI energy EMRCI(V ).

Figure 3.1: Dependence of DSS (O2) on the size of the reference space

The most important points are: First, as a qualitative trend, DSS does exhibit asymp-
totic convergence with the size of the calculation. Second, although EMRCI(V ) converges
smoothly, this does not hold for DSS. This is consistent with previous observations
that energy and electron spin-spin coupling exhibit different behaviour. In particu-
lar, inconsistencies in the region of 16 − 24 configurations and in the region of 29
− 50 configurations are observed. Employing reference spaces selected based on the
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contribution of configurations to the wave function frequently results in introduction
of particular “shells” upon extension of the reference space. Closer investigation of
the problematic regions reveals indeed the connection to the occupation of specific or-
bitals. In the first region, we note a maximum of DSS = 1.5221 cm−1 at a space of
17 configurations which drops to 1.5184 cm−1 at 22 configurations. Inspection of the
additional five configurations shows that particularly occupations in the orbitals 2 b2g,
2 b3g and 3 b1u are introduced. All of these orbitals exhibit a nodal plane between the
bonding oxygen atoms. It is therefore tempting to speculate that the separation of
electrons is increased upon introduction of these additional references, causing a slight
decrease in DSS. In the second region, an almost constant value of DSS occurs for
a reference space of 29 to 41 configurations, with a maximum of DSS = 1.5443 cm−1

at 33. A sudden decrease is observable, with a minimum of 1.5371 cm−1 at a space
of 45 references. The additional configurations introduced going from 29 to 41 reflect
excitations into the orbitals 2 b2u, 2 b3u, as well as the high-lying 1 b1g and 6 ag, none
of which exhibit nodes in the xy plane perpendicular to the bonding z direction. In the
configurations 42 – 48, again configurations with an occupation of the 2 b2g, 2 b3g and
3 b1u are introduced and we observe a decrease in DSS, as was noted in the discussion
of the first region. Overall, we conclude that additional configurations are introduced
on the basis of an improved description of electron correlation but do not reflect their
relevance for electron spin-spin effects adequately.

Figure 3.2: Dependence of EMRCI(V ) (O2) on the size of the reference space



102 Chapter 3. Calculations

3.1.5 Evaluation of Results for O2

To summarize the findings from the calculation of electron spin-spin coupling in O2:

• We observe a direct impact of the contribution of the doubly excited configuration
Ψ1 (valence occupation σ2

g π2
u π4

g) on the value of DSS (see Ch. 3.1.1). It is there-
fore mandatory to obtain a balanced description of the ground state, particularly
with respect to a realistic assessment of the contribution of this configuration.

• Employing augmented basis sets is problematic in highly correlated calculations
of electron spin-spin coupling based on HF orbitals (see Ch. 3.1.2 as well as
conclusions in Ch. 3.1.3). We speculate that these basis sets introduce too diffuse
a bias for the description of the short-range operator ĤSS in the context of HF
virtuals. It is suggestive that more compact MOs would lead to a reduction in
the observed difficulties.

• In the extension of the MRCI configuration space, we observe qualitatively a
comparable trend of convergence for correlation energy and spin-spin coupling.
The convergence of DSS is distinctly discontinuous, however, as this property
exhibits a different dependence on changes in the wave function than the energy.

The last two points can be summarized to the important observation: Correlation en-
ergy and electron spin-spin coupling exhibit different behaviour. It cannot be expected
that an improvement in the correlation, either by improving the basis or improving the
method, directly relates to an improvement in the value of DSS.

I finish by stating the value for DSS of 1.54 cm−1 obtained with an MRCI calculation
based on a reference space of 250 configurations in the cc-pVTZ basis. A value of
DSO = 2.27 cm−1 in the spin-orbit CI treatment was calculated in the same basis, no
configuration selection was applied here either. The established rapid convergence of
spin-orbit coupling elements with the size of the expansion and number of roots [4]
allowed for a smaller reference space of 68 configurations in the triplet and 85 in the
singlet symmetry. Two roots in 1Ag were calculated with the second root represent-
ing the b1Σ+

g which accounts almost entirely for the spin-orbit splitting of the ground
state. One root each was calculated in all other gerade symmetries, thereby sufficiently
spanning the calculation space.

The results for spin-spin and spin-orbit splittings can be combined to D = 3.81 cm−1,
in error by 4 % compared to the experimental value of D = 3.965 cm−1 [171,172]. The
principal focus of this study was the investigation of SSC trends and without further
comprehensive analysis, the deviation cannot be attributed conclusively to DSO or
DSS. As further possible causes of error, the neglect of vibrational averaging as well
as the application of the spin-orbit mean-field approximation can be mentioned. It is
commonly known that the former may amount for uncertainties on the order of 5 %
while investigations of the latter indicate similar magnitudes of error [175]. Considering
these aspects, the present agreement with experiment can be noted as very satisfactory.
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3.2 NH

The spin-spin coupling between the states c1Π and 15Σ− of NH was calculated at var-
ious bond distances in the cc-pVTZ basis as a test of the off-diagonal spin-coupling
branch of spock.sistr. This is motivated by the reported role of singlet–quintet cou-
pling in predissocation of the c1Π state, as investigated by Bohn et al. [164]. We will
compare with their calculation but will refrain from further analysis. In particular, it
is not attempted to discuss the correlation description of the calculated states. Recent
investigation of the higher-lying states of NH by Owono et al. [176] indicate a distinct
Rydberg character in the 15Σ− at equilibrium and seem to necessitate a considerably
diffuse basis; we note in this context that the character of this state is presumably
more well-defined in the crossing region, furthermore, a bias towards Rydberg states
is undoubtedly introduced by their inclusion of Rydberg MOs in their CASSCF active
space. A detailed investigation of this issue is not the purpose of the present calcula-
tions, and we will confine ourselves to reporting spin-spin couplings.

Bohn et al. employed a (8s 6p 4d 1f) basis on nitrogen (including two diffuse s and
one diffuse p) and a (5s 4p) basis on hydrogen (including one diffuse s), based on the
scheme by Manz et al. [177]. Their CI wave function was constructed from molecular
orbitals obtained from a state-averaged MCSCF reference [165,178,179] while keeping
the 1σ frozen. This resulted in an expansion size on the order of 170 000 CSFs for each
state.

The present calculation in the C2v symmetry in the cc-pVTZ basis employed for the
1B1 and 1B2 states a reference space of 44 − 52 configurations, spanning a CI space
of 65 000 − 86 000 CSFs in each of the two irreps. The 5A2 was described by 19 −
27 reference configurations (65 000 − 84 000 CSFs), the 1σ orbital was kept frozen
throughout. Calculations were performed at the five bond distances 1.975 a0, 2.475 a0,
2.775 a0, 3.075 a0, and 3.675 a0. At a distance of 1.975 a0, close to the equilibrium bond
distance of NH, the 15Σ− is a high-lying state (8.65 eV above the ground state [176])
but drops rapidly in energy with increasing bond distance, crossing c1Π at 2.685 a0

at an energy of 5.878 eV [176] which at this bond distance is only 0.13 eV below its
dissociation threshold. The observation of the crossing region is consistent with the
calculations in this work, where we find the 15Σ− to be 0.712 eV above the c1Π at
2.475 a0 and 0.525 eV below at 2.775 a0. Simplifying to a linear dependence on the
bond distance we would estimate a crossing at approximately 2.65 a0.

Bohn et al. reported first-order spin-spin matrix elements 〈c1Π1|HSS|15Σ−
1 〉 in the

Breit-Pauli approximation. The subindex in the states refers to the Ω-quantum number
and has therefore to be related to the calculation of the spock.sistr matrix elements
〈c1Πx|HSS|15Σ−〉/ 〈c1Πy|HSS|15Σ−〉 as:

〈c1Π±1|HSS|15Σ−
±1〉 = ∓ 1√

2

(
〈c1Πx|HSS(yz)|15Σ−〉 ± i〈c1Πy|HSS(xz)|15Σ−〉

)
(3.6)

with |Π±1〉 = ∓ 1√
2
(|Πx〉± i|Πy〉). The yz component of the spin-spin operator is imag-
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inary while the xz component is real, yielding overall an imaginary coupling element.
Table 3.7 reports the spin-spin coupling elements 〈c1Π1|HSS|15Σ−

1 〉 of Bohn et al. as
well as the results of this work. Their values are reproduced very satisfactorily, deviat-
ing at most by 0.05 cm−1. Especially in the context of the difficulties encountered in the
calculations of O2, we note that NH is expected to represent a distinctly better behaved
system as the electron spin-spin coupling is predominantly located on the N atom and
the question of ionic and covalent contributions and their balanced description is not
of relevance here.

〈c1Π±1|HSS|15Σ−
±1〉 [cm−1]

r (a0) Bohn et al. [164] this work

1.975 0.30 0.35

2.475 0.70 0.72

2.775 0.88 0.91

3.075 1.03 1.06

3.675 1.20 1.23

Table 3.7: NH: Spin-spin coupling elements between c1Π and 15Σ− in dependence of
the bond distance

3.3 All-trans Polyenes

Conjugated hydrocarbons of medium size have been a particular focus of experimental
and theoretical studies since they are obvious model systems for polymer compounds
as well as for biologically relevant molecules. The linear (all-trans) polyene docosaun-
decaene (C22H24) can be regarded as a simplified relative of β-carotene as these two
substances share an identical single–double bond sequence. Investigating trends in the
smaller polyenes is therefore a promising approach towards understanding structural
aspects and reaction behaviour of related, more complex compounds.

Excited triplet states of conjugated hydrocarbons are frequently described as a super-
position of several resonant structures. This picture captures the main characteristics
of this class of substances, namely the capability of delocalization of unpaired electrons
along the chain. It is the explanation for their stability as well as their reactivity in a
multitude of possible pathways, as the redistribution of reactive centers of the molecule
opens the possibility for various processes of de-excitation. At the same time, it poses
the question of the structural characteristics of the excited states and a possible local-
ization of the upaired electrons at particular carbon atoms.

Takahashi et al. [180,181] investigated the bond alternation in the T1 state of all-trans
polyenes, motivated by computational disagreement regarding the underlying pattern.
Previous studies by Kuki et al. [182] based on semiempirical Pariser-Parr-Pople single
and double CI (SDCI) calculations observed a loss of bond alternation in the central
part of the polyene chain; this geometry effect was interpreted as a “triplet-excited
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region”. Takahashi et al. employed single-excitation CI (SCI) to study the series of
polyenes from C8H18 to C22H46, obtaining geometries in agreement with Kuki et al.
However, comparison calculations with CASSCF on octatetraene gave a considerably
different bond alternation pattern (see next but one paragraph for a detailed descrip-
tion of this pattern in linear polyenes of different sizes). Takahashi et al. concluded the
appearence of a “triplet-excited region” to be artifactual in SCI and SDCI calculations,
related to the use of RHF MOs in combination with limitations on the excitations in
the CI space. Consideration of the higher polyenes employing this method was not
feasible, however. Geometry optimizations by Ma et al. [183, 184] focussing on an as-
sessment of the semiempirical Pariser-Parr-Pople model as well as providing results
obtained with the UB3LYP method supported the observed trend of bond alternation
in the longer polyenes.

The study of extended π-systems employing sophisticated methods is computation-
ally demanding and therefore limited. Recent work by Marian [185] investigates the
applicability of the dft/mrci approach to polyenes as well as polyacenes, evaluating
low-lying singlet and triplet states. In particular the consideration of excited singlet
states in these systems is complicated due to their multireference character and the
distinct contribution of double excitations. The dft/mrci method combines molec-
ular orbitals obtained with a restricted closed-shell Kohn-Sham determinant with a
subsequent multireference calculation. The idea of this approach is to incorporate
dynamical correlation already partly at the level of the molecular orbitals while the
multireference treatment accounts for non-dynamical correlation effects. The effective
dft/mrci Hamiltonian includes five empirical scaling factors, the parametrization of
which only depends on the multiplicity of the state, the number of open shells and
the type of density functional; no information on specific atoms or molecules is in-
corporated. Double-counting of dynamical correlation in the multireference treatment
is prevented by extensive configuration selection. High-lying configurations which ac-
count for dynamical effects in regular CI expansions are excluded by specification of
an energy cutoff with respect to the highest root of the reference space. Application
of configuration selection has furthermore the advantage of considerably reducing the
CI space, thereby providing the basis for a fast evaluation. The dft/mrci method
has been shown to yield reliable results in the calculation of excitation energies and
transition moments [1, 4, 186–188]. The thorough study of Marian establishes its reli-
ability in benchmark calculations on polyacenes, diphenylpolyenes, and on the smaller
all-trans polyenes hexatriene, octatetraene and decapentaene, with an emphasis on the
latter group. For these systems, experimental data as well as previous theoretical re-
sults were available for comparison. Furthermore, Marian investigated basis set effects
on geometrical parameters, vertical absorptions and adiabtic excitation energies and
found satisfactory agreement already in the SV(P) basis at the SV(P)-optimized ge-
ometry. Energy spectra as well as effects of geometry relaxation were studied in the
larger homologues, including systems of the size of C26H54.

The geometry of the T1 state of all-trans polyenes were investigated by Marian based
on unrestricted B3LYP geometry optimizations with the turbomole program [148,
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189–191] in the SV(P) basis [170] (and additionally TZVP on the smaller systems).
Her findings are qualitatively consistent with previous work on these molecules. Upon
excitation to the T1 state in the smaller polyenes, an inversion of the bond alternation
pattern as compared to the S0 ground state is observed. Consideration of the larger
homologues reveals the entire pattern: The strong bond alternation in the center of
the molecule diminishes on progression towards the ends of the chain. Located sym-
metrically away from the center, we observe two regions exhibiting a minimum in the
bond alternation, with adjacent C–C bonds of similar length. Strong bond alternation
resumes at the terminating C-atoms. Fig. 3.3 depicts this behaviour for docosaunde-
caene, taken from the calculations by Marian.

Figure 3.3: Variation of C–C bond distance in docosaundecaene (C22H24)

According to the geometry optimizations of Marian, this effect will start to be ob-
servable around a length of 14–16 carbon atoms, corresponding to the compounds
tetradecaheptaene (C14H16)/hexadecaoctaene (C16H18).

Inspection of this geometry pattern poses the immediate question of a possible local-
ization of electrons. Kuki et al. related their computationally observed domain of
diminishing bond alternation (which was erroneously established at the central car-
bon atoms) to bond orders and postulated a “triplet-excited” region. Takahashi et al.
as well as Ma et al. refrained from speculations in this respect in their later work,
confining themselves to an observation of geometrical effects.
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Different scenarios are possible with respect to a localization, which can be listed in a
reduction to their asymptotic behaviour as:

• The electrons are evenly distributed along the carbon atom chain.

• The electrons are localized in the central part.

• The electrons are localized strongly towards the terminating atoms.

It is here that calculations of electron spin-spin coupling can assist in a clarification. As
was discussed in detail (see the applications in the experimental context in Ch. 1.1.2 as
well as the reflections on the operator structure in Ch. 1.3), SSC can be interpreted in
a simple model as assessing the mean distance between unpaired electrons. In general,
we would therefore expect a decrease in DSS with increasing chain length; the concrete
behaviour would strongly depend on the characteristics in the electron distribution,
however. In the case of a consistent delocalization, we would presumably expect a
gradual decrease in the magnitude of electron spin-spin coupling with increasing chain
length. A strong localization at the center of the molecule relates to a near-constant
value of DSS, although this speculation has to be viewed on the background of the
strong distance dependence of the operator which can cause a noticeable decrease in
the spin-spin coupling mangitude even in the case of minor changes in the electron
distribution. A specific localization of unpaired electrons at the end of the polyene
chain would manifest itself in overall very small values of DSS, further decreasing with
increasing chain length. In the longer polyenes, another possibility is introduced in a
localization at carbon atoms either side of the central region, similar to the manifes-
tation of the geometry pattern described earlier. Establishing this region accurately
necessitates a deeper understanding of behaviour and dependencies of electron spin-
spin coupling.

This introduction was designed to provide the background and motivate the interest
in an evaluation of spin-spin coupling effects in all-trans polyenes. In this study, we
will restrict ourselves to the consideration of the smaller homologues. It is essential to
establish the methodological foundation by investigation of smaller systems and veri-
fication that our assumptions are consistent with our observations given that so little
is known. The main question is therefore what behaviour we note in the magnitude of
electron spin-spin coupling and if we can support this with other data that can explain
the trend. Inspection of the molecular orbitals will be a particularly useful means as
the MOs provide a direct interpretation of the distribution of electrons. Of special
interest is the use of the dft branch of the Grimme/Waletzke dft/mrci program. As
was discussed in detail in the context of O2 (Ch. 3.1, see in particular Ch. 3.1.2 and
3.1.3), HF virtual orbitals exhibit a rather diffuse character which imposes a strong
demand on the evaluation of electron spin-spin coupling. Alternative approaches which
would presumably suffer less from this shortcoming could be based on molecular or-
bitals obtained through CASSCF or DFT.

The dft/mrci calculations included in this work are based on the calculations of Mar-
ian [185]. The geometry was obtained through UB3LYP optimizations of the planar
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T1 state in C2h symmetry, thereby corresponding to the state 3Bu. Molecular orbitals
employed in the subsequent multireference treatment constitute BHLYP-ground state
MOs, consistent with the dft branch of the dft/mrci program being parametrized
for this particular functional. The configuration space was established in a preparatory
dft/mrci calculation of either three roots in Ag and three roots in Bu or six roots
in Ag and six roots in Bu, depending on molecule and basis. Ab initio calculations
employed the UB3LYP-optimized geometry, molecular orbitals were obtained in an
ROHF calculation of the triplet. MOs composed from the 1s atomic orbital of the car-
bon atoms were kept frozen throughout in the multireference treatment. Visualization
of molecular orbitals was accomplished using the program molden [192].

3.3.1 Discussion of MOs

The character of the molecular orbitals employed in the correlation treatment obvi-
ously strongly influences the description of the wave function. In general, there is a
fundamental difference between the virtual molecular orbitals calculated with DFT as
compared to HF. HF virtual MOs represent one-electron functions which experience
an N -electron potential, with N being the number of electrons in the molecular sys-
tem. The approximate physical interpretation that is usually connected with these
molecular orbitals, based on Koopman’s theorem, is the energy associated with bind-
ing a further electron and thereby form an (N + 1)-electron system. HF virtual MOs
are therefore in general distinctly more diffuse than their occupied counterparts as
they basically correspond to molecular orbitals of the anion. Out of this reason, it is
critical to base the subsequent correlation treatment of an excited state on HF MOs
obtained through a calculation of exactly this state. In contrast, in the limit of the ex-
act functional, DFT virtual MOs are evaluated as one-electron functions experiencing
an (N − 1)-electron potential [193, 194]. The energy differences between virtual and
occupied orbitals are better related to excitation energies,1 and virtual MOs obtained
through DFT calculations are consequently more compact by construction. A calcula-
tion of excited states based on DFT MOs is not ideal, but presumably suffers from less
shortcomings than a calculation based on HF MOs. Considering the experiences in the
assessment of O2 based on the ab initio approach of the mrci program (Ch. 3.1), dif-
fuse functions/molecular orbitals constitute a particular difficulty in the computation
of electron spin-spin coupling.

These general issues may of course manifest themselves to a greater or lesser extent
in specific calculations, strongly dependent on the actual evaluation. Basis sets with
diffuse functions will presumably bias the character of the HF virtual MOs towards a
more diffuse description; molecular systems which exhibit bound anionic states might
on the other hand provide more compact virtual orbitals.

1However, the authors in [194] note the insufficient accuracy of popular approximate density func-
tionals, such as the local density approximation (LDA) as well as various general gradient approxima-
tions (GGA), in this respect.
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Hexatriene

In the calculation of small linear polyenes, a further issue of particular relevance for
the evaluation of electron spin-spin coupling was encountered in the comparison of the
DFT with the HF assessment. This will be discussed in the context of calculations of
hexatriene in the SV(P) basis. I emphasize that the calculations in this section are
entirely based on the ab initio branch of the mrci program and do not employ the ef-
fective dft/mrci Hamiltonian. The only difference in the DFT vs. the HF execution
lies in the choice of MOs. This was done on the background of a direct comparison of
the effect introduced by the molecular orbitals themselves.

Figs. 3.4/3.5 depict the molecular orbital 2au. This orbital is doubly occupied in the
ground state S0 and singly occupied in the first excited triplet state T1 of hexatriene.
Figs. 3.6/3.7 show the orbital 2bg which is unoccupied in the ground state and singly
occupied in T1. An identical contour surface value of 0.02 was chosen throughout.
DFT MOs were obtained through a restricted closed-shell BHLYP evaluation while
HF calculations correspond to a restricted open shell treatment of T1.

First singly occupied MO (2au) of the T1 state

Figure 3.4: DFT (BHLYP) calculation

Figure 3.5: ROHF calculation
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Second singly occupied MO (2bg) of the T1 state

Figure 3.6: DFT (BHLYP) calculation

Figure 3.7: ROHF calculation

The main aspect of interest in these figures is the slighty different shape of the molecular
orbitals: In the case of DFT, the electron density, represented by the size of the lobes,
appears to be fairly evenly distributed along the carbon atom chain. In the HF MOs,
we observe instead larger contributions at the end of the chain and smaller ones on the
central atoms. This effect can be rationalized as a tendency in the ROHF calculation
to separate the open-shell electrons. The impact on the magnitude of electron spin-spin
coupling is immediate: Table 3.8 shows the values for DSS and ESS, calculated only for
the open-shell reference of the T1 state, without considering any further configurations.

DSS[cm−1] ESS[cm−1]

DFT MOs 0.1218 0.0021

HF MOs 0.0454 0.0015

Table 3.8: SSC in hexatriene, calculated with DFT or HF MOs: Single-reference case
(no further excitations)

The difference between DFT and HF seems to be dramatic. On the other hand, it
has to be recognized that we are inspecting a single-reference case which magnifies
the bias from the molecular orbitals and is not representative for a fully correlated
calculation. The overall MO space is orthogonal, and related to the reduced electron
density at the central carbon atoms in 2au and 2bg in HF, we observe an increased
electron density at the same atoms in the next two orbitals of this symmetry, 3au
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and 3bg. For a calculation based on six electrons in six π-orbitals (1–3 au, 1–3 bg),
that is, just considering the references for a simplified comparison, we obtain the SSC
contributions listed in Table 3.9.

DSS[cm−1] ESS[cm−1]

DFT MOs 0.1189 0.0034

HF MOs 0.1038 0.0032

Table 3.9: SSC in hexatriene, calculated with DFT or HF MOs: 6 in 6 reference space
(no further excitations)

In this calculation the HF values for DSS (and ESS) approach the DFT results. We may
speculate that the artefact introduced in employing ROHF MOs can partly be com-
pensated in the subsequent correlation treatment, nonetheless, it would be preferrable
not to introduce this bias in the first place.

3.3.2 Hexatriene: Comparison of dft/mrci, hf/mrci, and CASSCF

The dft/mrci calculations in this section are based on the approach by Marian. The
reference space consisted of 30 configurations, generated in a preliminary dft/mrci
calculation as described at the end of the introduction in Ch. 3.3. The ab initio study
employed ROHF MOs and an iteratively determined reference space of 11 configura-
tions, with consideration of different selection thresholds in the construction of the
CI space. The CASSCF calculation with dalton [84] comprised six electrons in six
π-orbitals (1–3 au, 1–3 bg). All of the calculations evaluated the lowest triplet state
3Bu in the SV(P) basis, with the orbitals 1–3 ag, 1–3 bu kept frozen.

Table 3.10 lists electron spin-spin coupling parameters for the T1 state of hexatriene as
evaluated with dft/mrci, hf/mrci with no configuration selection, and CASSCF.

DSS[cm−1] ESS[cm−1]

dft/mrci 0.1172 0.0023

hf/mrci 0.1002 0.0018

CASSCF 0.1230 0.0042

Table 3.10: SSC in hexatriene (SV(P) basis): Comparison of different approaches

Values for CASSCF and dft/mrci are in reasonable agreement, indicating the suit-
ability of these methods for the evaluation of spin-spin coupling effects. The results
for hf/mrci deviate slightly, yielding lower coupling parameters than either of the
other two methods. Critical for a consideration of the feasability of the individual ap-
proaches is the timing though: The CASSCF calculation required less than one minute,
dft/mrci + sistr only a few seconds since extensive selection of configurations ac-
counts for a substantial reduction in the CI space, as discussed in the introduction at
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the beginning of Ch. 3.3. The hf/mrci + sistr evaluation on the other hand occu-
pied a week. This is directly related to performing this calculation with no selection
threshold enabled, thereby considering all single and double excitations out of the given
reference space. Table 3.11 provides for comparison a series of hf/mrci evaluations
with increasing selection, listing furthermore the timing of the calculations. The se-
lection threshold Esel determines the selection of configurations for the CI space based
on their contribution in perturbation theory to the 3Bu state considering only their
interaction with the reference configurations [162].2 A value of Esel = 0 corresponds
to no selection, thereby considering all single and double excitations out of the chosen
reference space, while the specification of Esel = ∞ results in a configuration space
spanned by the references only.

Esel/µEh DSS[cm−1] ESS[cm−1] CPU (mrci) CPU (sistr)

0.0 0.1002 0.0018 2 d 11 h 02 m 5 d 10 h 34 m
0.0001 0.1003 0.0019 2 d 04 h 07 m 4 d 15 h 29 m
0.0005 0.1003 0.0019 1 d 15 h 06 m 3 d 11 h 54 m
0.001 0.1003 0.0019 1 d 07 h 01 m 2 d 17 h 27 m
0.005 0.0990 0.0020 13 h 56 m 18 h 35 m
0.01 0.0962 0.0019 6 h 58 m 13 h 07 m
0.05 0.0814 0.0011 1 h 41 m 3 h 41 m
0.1 0.0744 0.0006 1 h 05 m 2 h 38 m
0.5 0.0647 0.0001 27 m 1 h 13 m
1.0 0.0627 0.0006 15 m 42 m
5.0 0.0650 0.0012 1 m 5 m

10.0 0.0709 0.0017 < 1 m 1 m
50.0 0.0898 0.0052 ¿ 1 m ¿ 1 m

∞ 0.0837 0.0027 ¿ 1 m ¿ 1 m

Table 3.11: SSC with hf/mrci in hexatriene (SV(P) basis): Assessment of selection
thresholds

Most important, we note a very slow convergence of DSS with the selection threshold.
The bias introduced in the molecular orbitals can partly be compensated by consider-
ation of a sufficient number of configurations, albeit only gradually so. As a further
observation, we note a rise in DSS at very high selection thresholds. This can be di-
rectly explained by the structure of the MO space: As already discussed, the singly
occupied 2au, 2bg exhibit an increased electron probability at the terminating carbon
atoms while the 3au, 3bg are characterized by higher AO contributions at the central
atoms. Extension of the single-configuration to the 6 in 6 case correlates with an im-
mediate increase in DSS (corresponding to a comparison of Table 3.8 with Table 3.9).
Addition of contributions from higher-lying orbitals by allowing excitations out of the
6 in 6 configuration space corresponds to an excitation into molecular orbitals which

2Note that this differs from the selection in the dft/mrci branch where the criterion constitutes
the specification of an energy cutoff.
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possess a less centrally-localized character, therefore causing at first a decrease in DSS.

The hf/mrci (Esel = 0.0 µEh) spin-spin coupling values being slightly lower than the
CASSCF and dft/mrci results can be understood by comparison with a hf/mrci
calculation based on a smaller reference space of six configurations instead of eleven,
again considering all single and double excitations. This calculation yields values of DSS

= 0.0720 cm−1 and ESS = 0.0008 cm−1. We therefore recognize that with respect to the
size of the reference space, the hf/mrci calculation is not converged yet. Increasing
the reference space would conceivably lead to a convergence of the hf/mrci results
towards the dft/mrci and CASSCF values but imposes significant demands on the
computational resources.

3.3.3 dft/mrci: Basis Set Comparison for Hexatriene, Octatetraene, De-
capentaene

The results in this section comprise dft/mrci calculations at the UB3LYP-optimized
geometry of the lowest triplet state 3Bu. The reference spaces generated as described
previously consisted of 30–70 configurations in the case of the smaller polyenes hexa-
triene, octatetraene, decapentaene. Table 3.12 lists spin-spin-coupling parameters for
these systems in the SV(P) basis while Table 3.13 provides values in the TZVP basis.

DSS[cm−1] ESS[cm−1]

Hexatriene 0.1172 0.0023

Octatetraene 0.0862 0.0010

Decapentaene 0.0771 0.0002

Table 3.12: SSC in small all-trans polyenes, evaluated with dft/mrci in the SV(P)
basis

DSS[cm−1] ESS[cm−1]

Hexatriene 0.1245 0.0032

Octatetraene 0.0911 0.0011

Decapentaene 0.0648 0.0016

Table 3.13: SSC in small all-trans polyenes, evaluated with dft/mrci in the TZVP
basis

The basis set effect in this calculation is not very pronounced, and we observe in both
bases an agreement with respect to the general expectation of a decreasing value for
DSS with increasing chain length. Values for ESS are on the order of 10−3 cm−1, and
it is therefore difficult to attach significance to the observed fluctuations in the mag-
nitude. On average, we note slightly higher couplings in the TZVP than the SV(P)
basis which an inspection of the molecular orbitals explains. The main observation can
be illustrated with octatetraene, considering the highest π-orbital of the π-MO system
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formed by the 2pz AOs of the carbon atoms (4bg). This molecular orbital is sufficiently
high-lying and diffuse to exhibit the relevant features to which I would like to draw
attention. Equivalent findings were obtained for the corresponding MOs in hexatriene
(3bg) and decapentaene (5bg).

Fig. 3.8 displays the 4bg of octatetraene, in the SV(P) basis on the left, in the TZVP
basis on the right; both plots were taken with an identical contour surface value of
0.03. As was already discussed at the end of Ch. 1.6, it is not possible in principle to
correlate values of zero-field splittings to particular molecular axes in the theoretical
context. So far, we have postulated that the considerable magnitude of DSS is related
to an assessment of electron spin-spin coupling along the C-C-chain and interpreted
decreasing values as information about the increase in the mean distance between the
unpaired electrons along this chain. This assumption seems legitimate considering the
geometry of the molecule but it has to be recognized that this information cannot be
derived from the theoretical evaluation itself. An interpretation of ESS is less straight-
forward. It seems suggestive, though, based on observations in CH2 of a vanishing ESS

upon straightening the molecule to a linear shape, as well as considering the spatial
operator components that contribute to ESS in the case of polyenes (x2 − y2 and xy),
to relate the magnitude of this coupling to the electron distribution in the directions
orthogonal to the carbon chain.

Figure 3.8: Orbital 4bg of octatetraene: SV(P) (left) vs. TZVP (right)

In Fig. 3.8, we observe a well-defined shape of the MO in the SV(P) basis, identifying
individual AOs separately. The diffuseness of the TZVP basis manifests itself in an
expansion of the MO towards and away from the observer. Furthermore, we note a
decreased contribution of the terminating carbon atoms. On the basis of our more
intuitive interpretation with respect to ESS, we may relate its consistently higher mag-
nitude in the TZVP basis to a stronger distribution of the molecular orbital away from
the carbon atom chain. Higher values of DSS in the TZVP basis correlate with a more
compact shape of the MO in the direction of the carbon atom chain. The exception
of decapentaene in the trend of DSS is noted in this context but will not be discussed
further as it is obvious that the present analysis constitutes a substantially simplified
picture and undoubtedly neglects further effects.

In summary, an inspection of the molecular orbitals seems indeed to establish a corre-
spondence between the electron distribution and calculated values of electron spin-spin
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coupling.

3.3.4 dft/mrci: Results for C6H8 – C16H34

The calculations in this section employ the SV(P) basis and were consistent with the
study described earlier, spanning reference spaces of 89 – 99 configurations in the case
of the systems dodecahexaene to hexadecaoctaene. As usual, the MOs composed from
the 1s AO of the carbon atoms were kept frozen throughout.

DSS[cm−1] ESS[cm−1]

Hexatriene C6H14 0.1172 0.0023

Octatetraene C8H18 0.0862 0.0010

Decapentaene C10H22 0.0771 0.0002

Dodecahexaene C12H26 0.0574 0.0001

Tetradecaheptaene C14H30 0.0488 0.0003

Hexadecaoctaene C16H34 0.0407 0.0003

Table 3.14: SSC: Values for C6H14 to C16H34 (SV(P) basis)

Table 3.14 displays the values for DSS and ESS in the series of all-trans polyenes from
hexatriene (C6H14) to hexadecaoctaene (C16H34). The result for ESS converges rapidly
to a magnitude of 10−3 cm−1, its further discussion will be omitted on the ground of
its small absolute value. DSS decreases in a crude first approximation linearly with the
chain length, see Fig. 3.9.

Figure 3.9: Dependence of DSS on the chain length in all-trans polyenes



116 Chapter 3. Calculations

In the examination of these results, we note as a further issue the possibility that
polyenes with an even number of double bonds exhibit a different behaviour than
polyenes with an odd number of double bonds, in which case Fig. 3.9 would constitute
a superposition of two trends. The pattern of a noticeable C-C-bond alternation in the
terminating atoms is expected to establish itself gradually starting with the compounds
C14H30/C16H34. In the present set of molecules, this aspect should therefore not be of
considerable influence.

We return to our speculations regarding the possible localization of unpaired electrons
in linear polyenes. Considering the strong distance dependence of the spin-spin op-
erator, an exclusive localization of the unpaired electrons at the terminating carbon
atoms appears to be unlikely, especially in view of the still noticeable coupling in hex-
adecaoctaene. A localization predominantly in the central part of the polyenes on the
other hand would presumably result in a more constant value of DSS. From the present
calculations, we may therefore exclude these two possibilities and speculate on an even
electron distribution or possibly a localization at intermediate carbon atoms. Com-
parison with further theoretical data, such as for example values of spin distributions,
could assist in a more definite evaluation.

3.3.5 All-trans Polyenes: Conclusions

Calculations of electron spin-spin coupling in the first excited triplet state T1 of all-
trans polyenes C6H14 to C16H34 were presented, focussing in particular on application
and evaluation of spock.sistr with the dft/mrci program. Spin-spin-coupling pa-
rameters obtained with CASSCF and hf/mrci on hexatriene support the validity of
this method. Discussion of differences in the hf/mrci as compared to dft/mrci,
arising on the level of molecular orbitals and in the subsequent correlation treatment,
indicate advantages of dft/mrci over hf/mrci with respect to the description of
spin-spin coupling effects as well as the computational demand. However, the basis
of this comparison is confined to calculations of hexatriene in the SV(P) basis, and
further investigations are undoubtedly necessary to verify these observations.

In the group of polyenes hexatriene, octatetraene, and decapentaene basis set effects
in the dft/mrci approach are noticeable but of minor magnitude in a comparison of
SV(P) with TZVP calculations. The differences arising can be partly related to changes
in the shape of molecular orbitals, indicating the direct connection of a description of
the electron distribution with calculated values of spin-spin coupling. Further investi-
gations of the basis set dependence of spin-spin-coupling interactions for different basis
sets and molecular systems, in particular focussing on the clarification of contributing
and possibly partly compensating effects, would extend our understanding.

Investigation of the series hexatriene, octatetraene, decapentaene, dodecahexaene, te-
tradecaheptaene, and hexadecaoctaene provides first conclusions on the localization of
unpaired electrons in the T1 state, as decreasing values of DSS indicate an increasing
mean distance between the excited electrons. Further calculations as well as evaluation
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of other computed properties will facilitate a more precise interpretation. Establish-
ing a relation between the electron distribution and magnitudes of electron spin-spin
coupling is a promising starting point for the investigation of more complicated sys-
tems where geometrical information is more difficult to analyze and spin-spin coupling
calculations will assist in providing information on the electron distribution in excited
states.

3.4 Conclusion

In this last chapter of my thesis, I presented calculations of electron spin-spin cou-
pling on small and medium-sized systems, with emphasis on the validation of the
spock.sistr implementation. Diagonal as well as off-diagonal spin-coupling elements
were evaluated in the high-symmetry systems O2 and NH, based on the hf/mrci ap-
proach. First observations concerning basis set effects as well as the dependence of
calculated values on molecular orbitals and CI spaces were established. Applicability
of the dft/mrci branch in small polyenes was illustrated and its advantages discussed
in comparison to the hf/mrci execution. The calculation of spin-spin-coupling effects
in a series of all-trans polyenes provided information on electron localization in the first
excited triplet state T1.

The motivation for the calculations presented here was to study trends and establish the
behaviour of computed values of electron spin-spin coupling. Work is still to be done
in improving our understanding of this quantity, but the first steps in the calculation
of electron spin-spin interactions based on a sophisticated evaluation of dynamical and
non-dynamical correlation effects have been taken. They confirm the applicability of
spin-spin coupling to gaining insight into systems of chemical interest, and thus provide
a firm foundation for further activities in this area.
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Summary and Outlook

This work presents the methodological development of the calculation of electron spin-
spin interactions within a high-level correlation treatment, based on an evaluation of the
Breit-Pauli spin-spin Hamiltonian in quasi-degenerate perturbation theory (QDPT).
This task encompassed two main aspects — the derivation of sets of equations de-
scribing electron spin-spin effects, and the implementation of these equations into the
existing program spock, thereby creating spock.sistr. spock calculates one-electron
spin-orbit mean-field interactions of multireference CI wave functions and spock.sistr
extends the capabilities of spock by consideration of two-electron spin-spin coupling
effects.

The crucial aspect in the derivation of the implemented equations lay in the extension
of the efficient computation of the spin part as implemented within spock from a
one- to a two-electron spin operator. Issues had to be resolved in the theoretical refor-
mulation as well as additional cases considered in the concrete implementation which
necessitated a substantial extension of the code design. At the end, the development
of the two-electron spin-coupling scheme as well as the adaptation to the existing pro-
gram environment was successfully accomplished.

spock.sistr permits the calculation of expectation values, corresponding to a consid-
eration of the spin-spin contribution to zero-field splittings, as well as coupling elements
between different spin and spatial symmetries. The evaluation employs a multireference
CI wave function calculated in a previous mrci program run, and it is therefore one
of the first implementations that realizes a consideration of dynamical as well as non-
dynamical correlation effects on an equal basis. The multireference approach permits
a reliable description of excited states while an execution with the efficient dft/mrci
treatment provides the additional capability of investigating systems of larger size. It
is the combination of these aspects that represents the power of this approach. The
present work builds on the existing correlation treatment, creating a means of study-
ing the characteristics of excited states through the high-level computation of spin-spin
coupling effects.

The program operation of spock.sistr combined with the ab initio mrci branch has
been illustrated in calculations of diagonal and off-diagonal spin-coupling elements in
diatomic systems; the applicability with the dft/mrci approach was investigated on
a series of conjugated hydrocarbons. A first understanding of the issues specific to
the computation of this effect was established and insight into questions of chemical
interest obtained.
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The present work has provided the theoretical and computational basis for the calcu-
lation of electron spin-spin coupling effects in ground and excited states of systems of
chemical and biochemical relevance. From here, our understanding of this quantity,
of its behaviour as well as its dependence on computational and molecular circum-
stances, has to be improved. The comparison with experimental data as well as other
theoretical information will establish the foundation. Going further, electron spin-spin
coupling enables us to study characteristics of electronic structure from an entirely new
angle. What it is that we can learn from a computation of this effect, what it will tell
us about the molculear state in question, will come from investigations on individual
systems. Since electron spin-spin coupling constitutes a different means of analyzing
the electron distribution of excited states, it will undoubtedly extend our knowledge in
this respect. This work, then, opens the way to a multitude of exciting problems and
questions.
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and A. Schweiger. Electron paramagnetic resonance spectroscopy. Chimie 55
(10), 763–766 (2001).

[40] L. J. Berliner, S. S. Eaton, and G. R. Eaton, editors. Biological Magnetic Reso-
nance: Distance Measurements in Biological Systems by EPR, volume 19. Kluwer
Academic/Plenum Publishers, New York, 2000.

[41] A. D. Milov, A. G. Maryasov, and Y. D. Tsvetkov. Pulsed electron double
resonance (PELDOR) and its applications in free-radicals research. Appl. Magn.
Reson. 15 (1), 107–143 (1998).

[42] G. Jeschke. Distance measurements in the nanometer range by pulse EPR. Chem.
Phys. Chem. 3 (11), 927–932 (2002).

[43] Y. Polyhach, A. Godt, C. Bauer, and G. Jeschke. Spin pair geometry revealed by
high-field DEER in the presence of conformational distributions. J. Mag. Res.
185 (1), 118–129 (2007).



128 Bibliography

[44] A. Savitsky, A. A. Dubinskii, M. Flores, W. Lubitz, and K. Möbius. Orientation-
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Die vorliegende Dissertation befasst sich mit der methodologischen Entwicklung und
anschließenden Implementation von elektronischer Spin-Spin-Kopplung in ein beste-
hendes Programmpaket. Elektronische Spin-Spin-Kopplung bezeichnet die Wechsel-
wirkung zwischen den Spins von ungepaarten Elektronen und manifestiert sich spek-
troskopisch u. a. in der sogenannten Nullfeld-Aufspaltung. Die theoretische Behand-
lung der Spin-Spin-Kopplung zwischen Elektronen ist bisher stark limitiert, beson-
deres Interesse bestand in diesem Zusammenhang an einem Ansatz, der auf einer
hochkorrelierten Behandlung basiert und die Berechnung größerer Systeme ermöglicht.
In der Gruppe von Christel M. Marian an der Universität Düsseldorf wird mit Er-
folg ein selektierendes Multireferenz-CI als Korrelationsansatz für molekulare Sys-
teme moderater Größe verwendet. Die hierin erhaltene Wellenfunktion stellt die Ba-
sis für eine anschließende Berechnung von Spin-Bahn-Wechselwirkungen dar. Die
Aufgabe innerhalb meiner Doktorarbeit bestand in der Erweiterung des Spin-Bahn-
Paketes um die Möglichkeit, elektronische Spin-Spin-Kopplung mittels quasi-entarteter
Störungstheorie zu berechnen.

Die starke theoretische/methodologische Orientierung der Arbeit umfasste zunächst
die Ausarbeitung der entsprechenden Spin-Spin-Kopplungsterme. Beginnend mit den
in der Literatur verfügbaren Operatorausdrücken wurden Umformulierungen durch-
genommen, die die speziellen mathematischen Eigenschaften des Spin-Spin-Operators
ausnutzten. Ziel war hierin eine Vereinfachung der zu berechnenden Terme auf dem
Hintergrund der verwendeten Rechenzeit. Des weiteren waren durch das umgebende
Spin-Bahn-Paket Rahmenbedingen hinsichtlich der möglichen Realisierung gegeben,
die in diesen Umformulierungen berücksichtigt werden mussten. Das Spin-Bahn-Paket
selbst arbeitet mit einem effizienten Algorithmus zur Berechnung der Spin-Wechselwir-
kungen im Rahmen einer Ein-Elektronen-Behandlung. Es musste gezeigt werden, dass
dieser Algorithmus prinzipiell auf den Zwei-Elektronen-Fall erweiterbar ist und dass
dies zudem innerhalb der Programmumgebung realisiert werden kann. Dieser Schritt
stellte einen zentralen Aspekt in der Umsetzung der vorliegenden Arbeit dar. In der
eigentlichen Programmierung wurden die äußeren Strukturen des Spin-Bahn-Codes als
Orientierung für die Spin-Spin-Implementation verwendet. Die Auswahlregeln zwis-
chen beiden Fällen unterscheiden sich jedoch gravierend, so dass das Programmdesign
insbesondere in inneren Routinen stark erweitert wurde. Der räumliche Beitrag zur
Spin-Spin-Kopplung wurde im Rahmen eines kooperativen Projektes an der University
of Warwick (UK) erarbeitet. Dies involvierte Programmentwicklung auf der Ebene
der Integralberechnung. Im letzten Teil der Arbeit wurden die Möglichkeiten des Pro-
gramms in Anwendungsrechnungen demonstriert und erste Einsichten hinsichtlich der
Eigenschaften von elektronischer Spin-Spin-Kopplung erhalten.
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The present dissertation concerns the methodological development and subsequent
implementation of electron spin-spin coupling into an existing programming package.
Electron spin-spin coupling describes the interaction between the spins of unpaired elec-
trons and manifests itself experimentally inter alia in the so-called zero-field-splitting.
Theoretical considerations of this effect are limited; particular interest in this context
lay in the development of an evaluation of this effect based on a high-level correlation
treatment, feasible for application on larger systems. The group of Christel M. Marian
at the University of Düsseldorf successfully operates with a selecting multireference CI
approach in the computation of systems of moderate size. The wave function obtained
in the correlation treatment constitutes the starting point for a subsequent calculation
of spin-orbit interactions. The task within my thesis was an extension of the capa-
bilities of the spin-orbit package by a computation of spin-spin coupling effects in the
framework of quasi-degenerate perturbation theory.

The strong theoretical/methodological emphasis of the work encompassed in the
first part the derivation of sets of equations describing electron spin-spin interactions.
Expressions available in the literature were reformulated utilizing the particular math-
ematical properties of this operator, aiming at a simplification of the individual terms
on the basis of a reduction in the computational labour. The general framework of the
surrounding spin-orbit package imposed further conditions which had to be accounted
for in the actual reformulations. The spin-orbit package implements an efficient scheme
for the evaluation of the spin part in the formalism of a one-electron mean-field ap-
proach. It had to be shown that in principle, this scheme can be extended from the
case of a one- to a two-electron spin-operator and furthermore, that this could be
incorporated into the existing program environment. This step constituted a crucial
aspect in the realization of the present work. In the subsequent program development,
the outer structure of the spin-orbit code constituted an orientation for the spin-spin
implementation. However, different selection rules as well as additional coupling cases
necessitated a substantial extension of the code design, particularly in the innermost
routines. The spatial contribution to the spin-spin interaction was obtained through a
cooperative project at the University of Warwick (UK). This involved program devel-
opment on the level of integral evaluation. In the last part of the thesis, the potential of
the program was illustrated on application calculations of different molecular systems,
obtaining first insights into the characteristics of electron spin-spin coupling.


