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Abstract

In wireless multihop networks (WMN), nodes cooperate to forward data packets for each
other. This forwarding works without infrastructure, being a huge advantage if no such
infrastructure is available, e.g. because it has been destroyed by a disaster. Furthermore,
this networking paradigm is also promising in the context of vehicular safety and traffic
efficiency applications. After years of simulation-based research, the next step in the
development of this paradigm is its evaluation under real-world conditions. However, due
to the distributed nature of such a network in combination with the complex effects of
electromagnetic wave propagation, it is extremely difficult to perform these experiments
systematically. In this thesis, we tackle the fundamental problems of the control and

analysis of such experiments.

Our first step is to develop a guidebook of existing wireless multihop network exper-
imentation techniques. Furthermore, we present our initial experiments, among them
the first large-scale real-world study of ring flooding which reveals that even this simple
algorithm exhibits complex, unexpected behavior in realistic settings. The experiences
made during these evaluations as well as those made by other researchers are condensed
into a description of requirements to be fulfilled by an ideal WMN testbed. Repeatabil-
ity, comprehension and correctness have been especially neglected so far and are crucial

for systematic experiments.

With this knowledge, we develop the EXC testbed based on semi-automatic experiment
control. This control approach automates most actions while the experimenter still can
supervise and flexibly steer the experiment. EXC is a modular and highly portable
software toolkit allowing other researchers to create their own testbed installation and

thus test their protocols in the very environment for which they are designed.

Controlling and analyzing WMN experiments requires a timekeeping accuracy that ex-
ceeds the quality of normal computer clocks. The standard solution, using online clock
synchronization protocols like NTP, cannot be applied as this requires a network connec-

tion to a reference clock which would interfere with the experiment traffic. To support
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Abstract

the control of the experiment, we exploit the capability of the NTP daemon to cor-
rect clock speed when disconnected from the reference clock. We have performed a
study of the timekeeping quality achieved by this approach on devices typically used in
WDMN experiments. It demonstrates that this increases clock precision by two orders
of magnitude, reaching millisecond precision. However, for experiment analysis this
precision is not sufficient. Therefore we created a post-experiment timestamp synchro-
nization algorithm by means of a maximum likelihood estimator (MLE) that is suited
for all networks with local broadcast media. It estimates the clock deviations based
on the recorded event log files of the single nodes and synthesizes globally consistent
timestamps for these events. In our experimental evaluation, it exhibits an error in
microsecond range. The MLE approach is integrated in pcapsync, a tool to synchronize

packet trace files in standard libpcap format.

To cope with the need of flexible data analysis after an experiment, we have developed
the modular data analysis tool EDAT. It follows a flow-based, visual programming
approach and produces graphs directly usable in scientific publications, a large fraction

of the graphs in this thesis have been created with this tool.

Combining EXC, pcapsync/MLE timestamp synchronization and EDAT, we perform
the first systematic study on experimental repeatability in wireless multihop networks.
Up to now, most often it was implicitly assumed that if all devices perform the same
actions in two experiments, also the outcome will be somewhat similar and can therefore
be compared or averaged. Due to the complex electromagnetic wave propagation effects,
this is a risky assumption. Therefore, we propose to consider and verify repeatability
on a topological level based on layer two information. We derive the AD metric to
quantify the topological similarity of experiments and show that it is sensitive to both
interference and changes in node movement. This metric is used to examine — in strictly

controlled experiments — topology variance in real-world environments.
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Zusammenfassung

In drahtlosen Multihop-Netzwerken (engl. WMN) kooperieren die beteiligten Knoten um
fiireinander gegenseitig Datenpakete weiterzuleiten. Die Weiterleitung erfolgt dabei ohne
Infrastruktur, was einen groflen Vorteil darstellt, wenn eine solche beispielsweise nach ei-
ner Naturkatastrophe nicht verfiigbar ist. Daneben kann dieses Netzwerkparadigma auch
im Kontext von fahrzeugbasierten Verkehrsicherheits- und Verkehrseffizienzanwendun-
gen genutzt werden. Nach Jahren der simulationsbasierten Forschung ist der néchste
Schritt in der Entwicklung dieses Paradigmas dessen Bewertung und Erforschung unter
realistischen Bedingungen. Da es sich bei WMNs um verteilte Netzwerke handelt die
zudem den komplexen Effekten der elektromagnetischen Signalausbreitung unterworfen
sind, ist es duflerst schwierig solche Experimente systematisch durchzufiihren. In dieser
Arbeit werden Losungen fiir die bei der Durchfithrung und Analyse solcher Experimente

auftretenden fundamentalen Probleme untersucht und présentiert.

Im ersten Schritt entwickeln wir dazu ein Handbuch das existierende Techniken zur
Durchfithrung und Bewertung solcher Experimente behandelt. Daneben présentieren
wir eigene Experimente, darunter die erste grofiflichige experimentelle Studie iiber das
Verhalten von Ringfluten. Diese Studie demonstriert, dass selbst dieser einfache Algo-
rithmus unter realistischen Bedingungen ein komplexes, unerwartetes Verhalten zeigt.
Die dabei gewonnen Erfahrungen werden mit denen anderer Wissenschaftler zu einem
Anforderungskatalog fiir ein WMN Testbett verdichtet. Dabei zeigt sich, dass besonders
Wiederholbarkeit, Verstdndnis und Korrektheit bisher vernachléssigt wurden und einen

integralen Bestandteil von systematischen Experimenten bilden.

Basierend auf diesem Wissen wurde das EXC-Testbett entwickelt, welches auf einer halb-
automatischen Kontrolle von Experimenten beruht. Dieser Ansatz fiir die Experiment-
durchfithrung automatisiert die meisten Aktionen der beteiligten Geréte und erlaubt es
dennoch, das Experiment zu {iberwachen und flexibel zu steuern. EXC ist ein modulares,
hochportierbares Software-Werkzeug das es anderen Wissenschaftlern ermoglicht ein ei-
genes Testbett aufzubauen und neue Algorithmen in genau der Umgebung zu testen fiir

die diese entwickelt wurden.



Zusammenfassung

Die Durchfithrung und Analyse von WMN-Experimenten erfordert Uhrgenauigkeiten,
die die von normalen Computeruhren weit iiberschreiten. Der Standardansatz, die Syn-
chronisation der Uhren iiber eine Netzwerkverbindung mittels des NTP-Protokolls, ist
hierbei nicht anwendbar da die dabei ausgetauschten Datenpakete das Experiment
storen konnen. Um die Durchfithrung von Experimenten zu unterstiitzen nutzen wir
deshalb die Fahigkeit des NTP-Deamons zur Korrektur der Uhren ohne bestehende
Netzwerkverbindung. In Messungen mit bei WMN Experimenten oft eingesetzter Hard-
ware zeigt sich, dass die Uhrgenauigkeit damit um zwei Gréfenordnungen verbessert
werden kann, im aktuellen Fall betragen die Unterschiede nur noch wenige Millisekun-
den. Dennoch ist diese Genauigkeit fiir die Analyse von Experimenten nicht ausreichend.
Deswegen wurde von uns ein auf der Maximum-Likelihood-Methode (engl. MLE) basie-
rendes Verfahren zur nachtréglichen Synchronisation von Zeitstempeln entwickelt, das
fiir alle Netzwerke mit lokalen Broadcasteigenschaften eingesetzt werden kann. Dieses
Verfahren schétzt die Uhrenfehler mittels der aufgezeichneten Logdateien und erzeugt
basierend auf dieser Schétzung global konsistente Zeitstempel fiir die aufgetretenen Er-
eignisse. In einer experimentellen Auswertung hat dieses Verfahren einen Fehler im Mi-
krosekundenbereich. Dieses Verfahren ist auch in pcapsync integriert, einem Werkzeug

zur Synchronisation von Paketlogdateien im weit verbreiteten libpcap-Format.

Um ein Experiment nach dessen Ende einfach und gleichzeitig flexibel analysieren zu
konnen, wurde im Rahmen dieser Arbeit das modulare Datenanalysewerkzeug EDAT
entwickelt. Es nutzt einen datenflubasierten, visuellen Ansatz und kann direkt in wis-
senschaftlichen Publikationen verwendbare Diagramme erzeugen. Dies wird auch durch
die Tatsache unterstrichen, dass ein Grofiteil der in dieser Arbeit gezeigten Diagramme

mit diesem Werkzeug erstellt wurden.

Durch die Kombination von EXC, pcapsync/MLE-Zeitstempel-Synchronisation und
EDAT konnten wir die erste systematische Studie zur Wiederholbarkeit von WMN Expe-
rimenten durchfithren. Bisher wurde meist implizit davon ausgegangen, dass identisches
Knotenverhalten in zwei Experimenten auch zu identischen Ergebnissen fiithrt. Auf-
grund der komplexen Effekte elektromagnetischer Signalausbreitung ist dies jedoch eine
riskante Annahme. Deswegen betrachten wir Wiederholbarkeit auf der Ebene der Netz-
werktopologie. Mittels der neu entwickelten AD-Metrik ist es moglich, die Ahnlichkeit
zweier Topologien quantitativ zu bestimmen. Wir zeigen, dass diese Metrik sowohl mit
Interferenzen als auch mit Anderungen in den Knotenbewegungen umgehen kann. In
streng kontrollierten Experimenten wird untersucht wie grofl die tatséichlich auftreten-

den Topologiednderungen in realistischen Umgebungen sind.
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Chapter 1
Introduction

Communication networks have strongly influenced everyday life since the invention of
semaphores and telegraphs. Nowadays, telephones, the Internet and cellular wireless
communication are used by billions of people around the world. All these networks have
in common that they rely on infrastructure, be it the routers of the Internet, the circuits
of the telephone network or the radio towers of the cell phone system. In the early
70’s [LNT8T7], a different type of network paradigm was proposed. Instead of relying
on infrastructure, the nodes in such networks cooperate and transmit packets for each
other in a collaborative manner. The range of possible applications of this paradigm is
constantly increasing and has led to a number of different network types. In vehicular ad-
hoc networks (VANETS), cars exchange information about current traffic or emergency
situations, thus allowing drivers to react early and appropriately. Via mesh networks the
range of wireless access points can be extended to cover bigger areas with fewer cables,
and multihop networks can continuously connect firefighters with each other and their
headquarters to increase security and responsiveness. Wireless sensor networks (WSNs)
enable new forms of sensing applications, e.g. surveying the activity of a volcano with
high precision at low cost, and delay tolerant networks (DTNs) can transmit information
to otherwise disconnected areas. All these networks are based on the same collaborative
paradigm and use wireless technology to transmit information. These networks will
therefore be summed up under the generic term wireless multihop network (WMN) in
this thesis and the more specific term mobile ad-hoc network (MANET) will be used

when focusing on WMNs with mobile nodes.

Although the basic idea of wireless multihop networks arose nearly 30 years ago, the
two most common instruments to evaluate WMN algorithms are theoretical analysis and
simulation, while real-world experiments are rare. Where theoretical analysis provides

fundamental insights into the characteristics of the investigated approaches, simulation
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enables their exploration in a dynamic environment. Both methods require a significant
level of abstraction to reduce the real-world complexity of radio propagation, hardware,
and mobility. It has been repeatedly shown that due to these simplifications, the direct
transfer of findings, e.g. from simulations to real-world systems, is not advisable [LNT02,
LYNT04, KNG104].

To progress in the development of wireless multihop networks, it is necessary to comple-
ment theoretical analysis and simulation by real-world experiments: If the behavior of
networks and algorithms is evaluated on the devices and in the environment for which
they have been designed, none of the possibly misleading simplifications need to be
made. Therefore, experimental evaluation is the key to a better understanding of this
networking paradigm. However, an examination of existing experiments reveals that
most real-world evaluations conducted so far lack a precise methodology. The result is
the proof-of-concept of a certain algorithm or protocol but it is difficult to gain verifiable
knowledge without a systematic approach. Furthermore, a lot of work is duplicated as
the software tools created during these evaluations are quickly hacked prototypes. To
overcome these issues, we concentrate in this thesis on methods and techniques for
a structured experimental evaluation of WMN algorithms. We examine the different
stages of an experiment and show how these stages can be supported by methodologies
and tools that are all designed for extensibility and reusability. It is the goal of this
thesis to make experiments with wireless multihop networks feasible and lower the effort

necessary for them. Our main contributions are as follows:

e We perform the first large scale study of ring flooding and discover that even this
simple algorithm exhibits a complex, unexpected behavior in realistic settings. It
is shown that flooding with the network diameter d is not enough if all nodes
should be reached and that the often used term of an n-hop neighborhood must

be revised.

e We provide a guidebook that condenses information about the experiences made in
existing experiments. It lists the most common tools, movement patterns, traffic

models and concepts and thus lowers the duplication of work.

e Based on this knowledge as well as on our own experiences, we develop a method-
ology and the EXC toolkit to conduct tightly controlled real-world experiments in

wireless multihop networks.

e With the help of EXC we perform the first systematic study on the repeatability

of experiments with wireless multihop networks. In the context of this study, we



show how the differences of static and mobile topologies can be quantified solely

based on packet level information.

e In the course of our experiments, we discovered that time synchronization is a
recurring issue and therefore developed two time synchronization approaches that
can be used either online, i.e. during an experiment or offline after an experiment.
The NTP skew correction is an online approach that increases clock precision by
two orders of magnitude with standard software tools, already reaching millisec-
ond precision on PDA-class devices. The second approach is a post-experiment
timestamp synchronization algorithm based on a maximum likelihood estimator
(MLE). It can synchronize timestamps provided by unmodified clocks and has an
error in microsecond range. Based on this approach, we have developed the tool

pcapsync that synchronizes packet trace files in standard libpcap format.

e To cope with the need of flexible data analysis after an experiment, we have
developed the modular data analysis tool EDAT. This tool follows a flow-based

approach and produces graphs directly usable in scientific publications.

This thesis is structured as follows. In Chapter 2, we give an overview of existing eval-
uation strategies, present some of our initial experiments and condense this to a recom-
mendation for the construction of WMN testbeds. Based on these recommendations,
we have constructed our testbed EXC that is presented together with the underlying
semi-automatic experiment control methodology in Chapter 3. The different time syn-
chronization techniques developed in the course of this thesis can be found in Chapter 4.
Thereafter, Chapter 5 discusses the extensible data analysis toolkit EDAT. The repeata-
bility of experiments with wireless multihop networks is examined in Chapter 6, followed

by concluding remarks in Chapter 7.
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Chapter 2
Strategies, Experiments and Consequences

Chapter Outline

The first step in improving something is always the analysis of the state of the art, so we
started with an examination of existing experiments with wireless multihop networks.
This analysis reveals that a lot of work in this area is duplicated. To avoid such dupli-
cations in the future but also to introduce the reader to these existing approaches, we
present in the first section of this chapter a guidebook for the experimental evaluation
of wireless multihop networks. We list the different strategies that have been used to set
up an experiment, the most important tools, commonly used topologies, input parame-
ters, and metrics to characterize the outcome of the experiments. For this, we focus on
mobile ad-hoc networks but also consider the simpler static setups. The content of this
chapter has been published in [KM07a, KMO07b], Appendix A reviews the experiments

from which this knowledge has been extracted.

Besides surveying existing work, we started to perform our own WMN experiments.
The first study [KTMO05, KTMO06| was an experimental evaluation of ring flooding, a
technique often used in MANET algorithms and applications. Furthermore we created
a number of tools to assess radio propagation in an experimentation area and performed
measurements with them [Ker06]. On the one hand, these evaluations result in knowl-
edge about the behavior of these techniques in real-world settings and are therefore
valuable contributions for themselves. However, they are even more valuable in the
context of this thesis because they provide hands-on experience with such real-world

evaluations.

These experiences as well as those made by other researchers motivated us to think
about the problems and requirements of experiments with wireless multihop networks
in general. A summary of this process which has also been published in [KZTMO05] is
presented in the third part of the chapter.
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2.1 Existing Strategies — A Guidebook

2.1.1 Topologies, Node Placement and Movement Patterns

From a network layer point of view, topology and topology changes are among the most
prominent features of mobile ad-hoc networks. In simulations which often use a simpli-
fied radio model and no obstacles, network topology and topology changes are a direct
result of node placement and movement. In a real MANET, a large number of interwo-
ven factors have an additional influence on network topology, multipath propagation,
small and large scale fading, and radio obstacles for example. Recent studies [KNG'04]
have shown that the topology of a real MANET is complex: links are asymmetric, their
quality can change rapidly over short periods of time and a link almost never provides a
full-reliable delivery. As most of the influencing factors are hard to control or cannot be
controlled at all during an experiment, most papers about MANET experiments only
consider node placement and movement as influencing factors. In the following section,
we give an overview of the node placements and movement patterns that are used most
often in the literature. It should be kept in mind that these node placements and move-
ment patterns are intended to directly result in a similar network topology, although

this may not always be the case in the real world.
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Figure 2.1: String placement.

In the string placement, the nodes are set up in a chain as shown in Figure 2.1. The
intention is to let each node communicate only with its two neighbors such that, given
a fixed number of nodes, the longest multihop chain is constructed. This placement has
been used e.g. in [MBJ99, MBJ00, GWWO04, M6s03]. In order to better separate the
links from each other, obstacles like walls, buildings or even access points that create

interference limiting the transmission range have been used [MFHF04, BCDGO5].

When the nodes are aligned in a grid as shown in Figure 2.2, this should result in a
topology where each node can only communicate with its four direct neighbors. As such
a node placement requires a certain number of nodes to be available, it can be found
most often in experiments with sensor networks. Nevertheless, there are also setups for
MANET experiments like in the ORBIT testbed that aligns 400 nodes in a 20 x 20
grid [ORB, RSO105].
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Figure 2.2: Grid placement.
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Figure 2.3: Roaming node.

In static experiments with commercial-off-the-shelf (COTS) 802.11 hardware frequently
used for MANET experiments, the experimenters often deploy the nodes in a way that
conforms best to the environmental conditions. This random placement consequently
also leads to a random network topology. This is most often used in indoor settings when
a larger number of nodes are deployed [DPZ04a, PAMT05] although outdoor examples
exist as well [BABMO4].

The static string also builds the basis for a number of simple movement patterns: the
roaming node pattern (also called circling node) shown in Figure 2.3 is the simplest
pattern with node mobility. Out of the n nodes in the network, n-1 are static and one
is mobile. The static nodes can be set up either in a chain as shown in Figure 2.1 or be
randomly placed. Packets are then exchanged between one of the static nodes and the
moving node. As the mobile node moves in and out of the transmission range of the static
nodes, the network topology changes constantly with respect to the mobile node [HJ02,
CJWKO02, PAM*05, SBSC03, DPZ04a, GWWO04, STP*05, BCDGO05]. Variations of the
circling node pattern are end swap (the outermost nodes in a chain change places) and

relay swap (two nodes in the middle of the chain change their place) [BCDGO5].

The chain on the fly pattern shown in Figure 2.4 consists of a number of nodes that are
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Figure 2.5: Mobile String.

close to each other in such a way at the beginning of the experiment that every node
can communicate with every other node. Then the nodes start to move until they are
aligned in a chain [MFHF04, STP105]. The experiments presented in [LLNT02] use a
variation of this topology in which clusters of nodes move around to form a chain of

clusters.

The mobile variation of the static string is the mobile string movement pattern shown in
Figure 2.5. Here, a number of nodes move around following each other without changing
their relative position. This has been mostly used in experiments with cars [MBJ99,
MBJ00, MFHF04].

The mobile random movement pattern is the mobile variation of the static random
node setup. The nodes move around randomly corresponding to the random waypoint
model used in a lot of MANET simulation studies. This pattern is most often used in
experiments with a large number of nodes where it is difficult to explicitly control the
movement of each single node [GKN104, JBD*05, RRS105].

Two different trends are visible in node placements and movement patterns used for
MANET experiments. On the one hand, there are the controlled setups like string,

grid, circling node or mobile string. These are built with either a small number of
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nodes or with networks of small physical extension. Random setups are used as soon
as the network becomes difficult to handle due to a large number of nodes, a great
physical extension or high node speeds. We are not aware of experiments with a larger
number of mobile nodes following a non-trivial, controlled movement pattern. As some
of the presented patterns are used to create an especially challenging scenario for the
tested protocols, they are rather artificial. Nevertheless, some patterns and placements
also have realistic counterparts. For example, “chain on the fly” occurs in robotic
surveillance systems [KOVT02, STPT05], “mobile string” occurs in unicast communi-
cation between cars on a highway, and the “random” placement is relevant for mesh
networks [BABMO04].

2.1.2 Traffic Patterns

As a protocol provides services for the next layer up in the protocol stack, testing the
protocol requires that this layer requests these services. The question which WMN
applications are most promising and therefore which traffic patterns to use for this is an
open research issue. Here, we provide a short overview over the traffic patterns chosen

by different researchers for their real-world experiments.

In systems built as demonstrators, real traffic produced by a real application is trans-
ported over the MANET. The intention of this setup is to show that the given applica-
tion is working. Unfortunately, there is no demonstrator for a complex application over
a MANET we know of that has been evaluated in detail. Examples are the Fleetnet
demonstrator with “broadcasting of emergency warnings” [HFMF03], the live audio and
video transmissions over DSR [HJ02], the work in [STP*05] where live video and robot
control messages are transmitted over a MANET with one mobile node, the Centibots
project where robots transmitted topology information and control messages over the
MANET [KOV'02], or the DSR demonstrator [MBJO00] transmitting status information
as well as GPS corrections over the MANET.

Artificial traffic is used to test the underlying protocol when no real application is avail-
able. This traffic is produced by a traffic generator following a certain distribution.
There are experiments using the distribution of real applications as model such as the
artificial voice traffic in [MBJ0O] or the experiments presented in [GKN104], where the
traffic volume is modeled after a “prototype military application”. A lot of experiments
are performed to evaluate the maximum performance of a given protocol, e.g. to de-

termine the highest possible throughput or the minimum round-trip-time. Therefore,
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standard tools known from wired networks and designed to stress a protocol are often
used. This can be traffic generators like netperf or iperf producing TCP and UDP
streams [SBSC03, PAM ™05, MFHF04, GWWO04] as well as the ping utility [MBJ99].

2.1.3 Implementation Strategies

The first step towards protocol testing is the implementation of the protocol. As no
code exists that can be (re-)used for protocols following a new paradigm, these are
often implemented as prototypes fresh from scratch. Such implementations are mostly
tailored for the experiment to be performed and are often neither published as source
code nor available in binary form. Examples of this are the DSR prototype [MBJ99,
MBJ00] or the Fleetnet position-based router [HFMF03, MFHF04]. Besides the “from
scratch”-method for prototypes, a number of different implementation strategies for

routing protocols as well as for protocols on other layers are described in the literature.

We classify all software tools built to support the task of implementing protocols as
frameworks. The PICA API [CGMO03] and the “user level framework for ad hoc rout-
ing” [AGSR02] shadow the calls to operation system specific functions. With this, a
protocol can be developed once and used on different operating systems without porting
the implementation. The MANET routing framework [NKSWO02], FRANC [CSS03] and
the ad-hoc support library [KZGO03] extend this approach. Besides allowing platform
independent implementations, they also offer some common services needed by a lot of
algorithms and protocols. The idea is to implement flooding, neighbor discovery, packet
buffering during reactive route discovery, reliable unicast and broadcast, queues, timers,
packet sniffing or network emulation for testing purposes in the framework. This allows

the programmer to concentrate on the specifics of the individual algorithm or protocol.

The Multi-threaded Routing Toolkit (MRT) is a framework that has been used for
the DSDV implementation in [CJWKO02] and also for the TBRPF implementation
in [KOVT02]. Unfortunately, the MRT project seems to be discontinued and there

is no documentation available.

The click modular router [KMC™00] provides a script language allowing the combination
of simple modules to a router. Already existing modules in the click library have tasks
like decrementing the TTL or recalculating the checksum of a packet. Furthermore it is
easy to implement and add new modules. This approach accelerates the protocol devel-

opment as it fosters reusability. Click has been developed for routing in fixed networks

10
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but has also been used to implement routing protocols for mesh networks [BABMO04]
and MANETSs [JBDT05].

As a large number of protocols intended for MANETS are already implemented!®, using
existing code is another strategy that can lead to a working real-world protocol. First
of all, it is possible to directly use an existing implementation without modifications,
e.g. when a reference protocol is needed. This reusing reduces the workload and al-
lows to compare the results with other experiments. In [LLNT02], publically available
versions of AODV and OLSR are used for the experiments; [CJWKO02] does the same
with MAD-Hoc AODV. The authors of [SBSCO03| use an openly available OLSR ver-
sion as a reference point. The authors of [STPT05] utilize code written for a network
stmulator in their real-world experiment. They do this by providing a packet converter
between simulator and real-world packet format together with additional wrapper code.
In [GKN104], existing implementations of four routing protocols are used as model for
a reimplementation. This reimplementation is necessary because the authors need im-
plementations that differ as little as possible to increase comparability. Furthermore,
the existing code itself can be adapted. Examples of this are the signal-strength aware
version of AODV [GWW04] based on AODV-UU, the modification of the Linux-kernel-
TCP to TCP RBP in the same paper, SBRS-OLSR [SBSC03], a signal-strength aware
version of OLSR, or the multimedia extensions to DSR described in [HJ02].

2.1.4 Tools

A number of tools exist that have been repeatedly used in existing MANET experiments.
We summarize them in the following section. An emulator is a combination of soft- and
hardware that mimics the behavior of a network with some of its components being
implemented in the real world and others being simulated. Emulators can be either
used to test protocols on real hardware or to prepare real-world experiments. In the
latter case emulation is used to form a virtual topology among the nodes. This allows
easy in-lab testing without moving the nodes physically around before conducting a full-
scale experiment. For example, MAC layer emulators use real implementations for all
network layers except the MAC and physical layer. These emulators simply determine
the nodes that should receive a given packet: if a node is emulated to be within radio
range of another node, a filter tool allows the exchange of packets between them; if the
nodes are out of range of each other, the respective packets are dropped. Emulators

for WMN experiments are often based on available network filter tools such as iptables,

! [wikb] lists ten AODV, four DSR and seven OLSR implementations.

11
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e.g. as in MobiEmu [ZL02]. For a review on the different types of emulators refer
to [KMO07a].

Due to the complex topology of a real MANET, a number of tools to classify the quality
of existing links and to filter out bad links have been built. This can be done based
on the geographical distance between sender and receiver [HFMF03], based on signal
quality [LNT02, CJWKO02] or by taking the packet loss on a link into account [LNT02].
Furthermore, signal-strength awareness has been directly integrated in some routing
protocols [HJ02, SBSC03, GWW04]. However, as bad links are an inherent property
of a MANET topology, it may be worthwhile to take care of such links during protocol
design rather than try to adapt the experiments to the expectations based on simulation

models.

Monitoring tools allow the supervision of an experiment from a central point. These
tools collect information such as battery state, traffic statistics or link quality and
transmit it to one or several sinks. The monitoring information can be transmitted
either in-band, i.e. over the experimental network itself [KGBK78, MBJ99, JBD*05]
or out-of-band over an additional network [HFMF03, RABRO05, SOSKO05]. The in-
formation collected with monitoring tools has been mostly used for network visu-
alization [Bey90, MBJ99, RBRAO4]. This aids in the explanation of the network
and furthermore supports its debugging. Debugging is also the purpose of the
other projects that have implemented network monitoring without direct visualiza-
tion [KGBK78, JBDT05, HFMF03].

In addition to monitoring an experiment, it is also necessary to control an experiment.
The existing approaches can be classified according to their level of interactivity and
automation. Trivially, all tools can be controlled manually by the experiments’ par-
ticipants. Fully programming the sequence of events in advance marks the other end
of the design space. This can be done by utilizing shell scripts that start and stop all
the software at a predetermined time, for example. As unforeseeable situations occur
often during an experiment, this lack of interactivity can sometimes have severe effects
while experimenters only recognize the resulting problems after the experiment is fin-
ished [GKNT04]. On the other hand, a certain level of automation is necessary and
has been therefore used in a number of experiments. The Ad-hoc Protocol Evaluation
testbed (APE) [LLN102] also uses automated actions but interrupts the flow of actions
at predetermined points. For this, the experiment is divided in runs. The events in each
of these runs are specified by a script that starts traffic generators or tracing tools and

prints out status messages to the experiment participants. Each of the runs then has to
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be started manually one after the other by pressing a button. Another approach is to
steer the experiment based on experimental feedback such as with the ORBIT Measure-
ments Framework and Library (OML) [SOSKO05]. In the presented example, a traffic
source increases the data rate until the monitoring reports that loss exceeds a certain
threshold. It is obvious that monitoring and controlling are most useful when working
hand-in-hand: if there is no information available on the actual state of the network,
adequate decisions are difficult to take. On the other hand, full information without the

ability to interfere is also not satisfactory.

In order to have as much information as possible available for post-experiment analysis,
tracing tools are important software components. For nearly all conducted experiments,
standard packet-level tracers such as tcpdump [TCP] are a basic source of information
as they record all packets sent and received by the recording node. This can be combined
with a log file of the internal state of the tested protocols so that the decisions taken by
these protocols can be replayed. Additionally, the performance on the layer requesting
the service from the protocol to be tested can give insights in how well this service
is provided. An important factor that strongly influences a WMN is the state of the
physical environment. For the wireless channel, this state can be recorded by logging
per-packet signal-strength or noise levels for example and the movement can be traced
via GPS positions logs. This can then be correlated with the higher-layer information to
examine the influence of the environment on the other performance parameters. As all
this data is indispensable for latter analysis of the experiment and the loss of one node’s
traces can already make the interpretation difficult, care must be taken to correctly
collect all trace files at the end of the experiment. A first step into this direction has
been taken by APE [LLNT02] where all log files are automatically transmitted to a data

collection node.

To properly understand the experiment, the recorded raw data needs to be analyzed and
interpreted. A first approach is the calculation of performance metrics using existing
software. With standard tools like netperf, iperf or ping, this is relatively simple because
they directly calculate performance metrics such as throughput or round-trip-time. Fur-
thermore, program packages such as the analysis scripts being a part of APE [LLN102]
can be used to calculate a number of metrics from recorded raw data. This is a concept
also known from the simulation world where the tool TraceGraph [TRA] can compute a
large number of different metrics and graphs for example. If custom performance metrics
need to be calculated, e.g. because a special form of data aggregation is necessary or per-
formance metrics for a new protocol have to be calculated, a custom analysis is required.

This custom analysis is most often performed with programs written from scratch, an

13
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approach called manual analysis. There are also network tracers like wireshark [WIRa]
that allow the recorded packets to be examined in detail. Furthermore, these tools pro-
vide some customization of this examination through simple filtering. From the simula-
tion world, visualization tools such as Adhockey [ADH] or Huginn [SFTT05] are known.
These tools process the available trace files to visualize the events in the network in a
way that allows a human to better understand the large amount of data. As such tools
are often open source, adapting their parsers to the trace formats of recorded real-world

data should be possible and can thus also support the analysis of experiments.

A testbed is a framework that supports testing, comparing and evaluating algorithms
and protocols in the real world. Therefore a testbed should combine all of the above
presented tools and be open for different protocols. The only existing testbed for mobile
ad-hoc networks used to a larger extent is APE [LLNT02] that comes a Linux distri-
bution directly bootable from CD on regular laptops. Each experiment participant is
instructed to move according to a choreography script as described above. To a certain
extent this makes experiments repeatable. The authors have integrated tools to collect
traces about the experiments, to upload these traces at the end of an experiment to a

central computer, and to calculate performance metrics.

2.1.5 Experimentation Strategies

The strategy that is pursued to perform a real-world experiment strongly depends on
the goals that should be accomplished. To get an impression of the goals that have been
reached with existing strategies and to facilitate the choice for future experiments, we

discuss the most common approaches here.

If it should be demonstrated that a given protocol or algorithm works in a real MANET,
a proof-of-concept-strategy can be applied. The goal of such an effort is the building of
a working prototype with the required functionality. The focus lies on the implemen-
tation of the protocol and experimental design is of minor importance. Furthermore,
the experiments are generally ended as soon as the protocol works under the specified
conditions within the required parameters. As the evaluation here plays a secondary

role, one should not expect quantitative results from such experiments.

An in-detail-evaluation-strategy requires a working protocol and can therefore be a
follow-up to a proof-of-concept implementation. As such an evaluation requires the
testing of the protocol under various conditions and in heterogeneous environments, ex-

perimental design becomes important. Before writing this chapter, we asked researchers

14



2.1 Existing Strategies — A Guidebook

to estimate the time they spent during different phases of their experiments. Depending
on the type of evaluation, it is quite likely that conducting and evaluating an experi-
ment can require as much as or even more time than the implementation of the protocol.
Furthermore, it has also been reported that the experiments themselves had to be im-
proved in an iterative process, i.e. a number of “designing, conducting, evaluating an

experiment”-cycles were needed.

The question how the experiment itself should be structured has been solved by nearly
all researchers in a similar way: by dividing the experiment in several runs, often with
similar runs being repeated multiple times during the same experiment?. As mobile
devices like PDAs and laptops are used in most cases as hardware for the tests, the
duration of the whole experiment is limited by their battery capacity [GKNT04]. Short
runs tend to be used for small and low mobility setups, for example the routing proto-
col tests in [BCDGO5] with a duration of 60 to 120s or the static OLSR experiments
in [PAM105] with 60s runs. In contrast, runs performed with cars are often of longer
duration: [MBJ99] has runs of duration 220-1000s and the experiments with the Fleet-
net demonstrator [MFHF04] use runs of 400s. On the other hand, the runs in [SBSCO03]
where only one mobile car is involved have a duration of 90s. Runs performed with a
larger number of mobile nodes also tend to be longer: the 40-node runs in [GKNT04]
last for 900s and the runs in [LLN102] with 20 to 34 nodes have a length of 250 to
400s. The general trend seems to be influenced by the complexity of the setup as here
a certain time is required to achieve the necessary topology changes, thus increasing the

minimum duration of a run.

An emulation can be either performed instead of an experiment, to prepare an experi-
ment or to reproduce an experiment with trace data as input. For information on the first
and last case, refer to [KMO0T7a], here we concentrate on those emulations conducted to
prepare experiments. The basic idea of this strategy is to test all soft- and hardware be-
fore the experiment under semi-realistic conditions. This can save a lot of work [MBJ99]
and the importance of such an emulation is underlined by the number of experimenters
that have used corresponding tools under different names: powerwave [CJWKO02], APE
mackill [ape], MobiEmu [ZL02], Fleetnet packet suppression mechanism [MFHF04] or
FRANC virtual networks [CSS03].

Although it is very difficult to compare the outcome of two experiments, performing

baseline measurements can be a strategy to improve comparability. The basic idea is to

2An exception to this is the “multimedia over DSR” demonstration presented in [HJ02] where the
demonstration runs continuously without interruption for a whole day.
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perform measurements with very simple or idealized protocols that can use more infor-
mation than is normally available at a single node. With this it is then possible to either
judge the quality of the environment, to determine upper bounds for the performance
or to calculate performance metrics relative to the best possible performance. Different
types of such baseline measurements are 1) measurement of the basic characteristics of
all links in order to assess the maximum performance of the network without multihop
effects [DPZ04a, BABMO04], 2) measurement of the performance of a MANET protocol
in a static scenario in order to have an upper bound for the performance under mobil-
ity [MFHF04, MBJ99], and 3) use of an idealized protocol that has global knowledge,
e.g. for routing [FS01].

If the evaluation of a protocol comprises also a simulation and/or an emulation, Sim-
ulation, Emulation, Real-World (SER) integration, i.e. using the same protocol code
for simulation, emulation and real-world experiment, may be worth considering. This
requires some effort to adapt the code to different environments, but it also saves time:
as the protocol has to be implemented only once, bugs can be found at an early stage
in the development process and do not occur at the moment of the experiment. Fur-
thermore, it is not necessary to reimplement the whole protocol for the experiment and

double the effort. Existing SER integration approaches can be classified as follows:

1. Run encapsulated code and either use a packet converter between real world and
simulation format [STPT05] or encapsulate the packets [DRSCO05].

2. Write the code by using an API available in the simulator as well as in reality:
a) Integrate the API in an existing simulator: nsclick [NJG02], GEA [HMO05].
b) Write a custom-made simulator that supports the API: SURAN [Bey90],
Rooftop CPT (used by WINGS [GLAO01] and GloMo DAWN [RHO00]), “user
level framework for ad hoc routing” [AGSRO02], the routing protocol evalua-
tion presented in [GKNT04, LYN104].
3. Port the code manually: [RP00, LYNT04, OT05, RRST05].
The approaches 1) and 2a) seem the most promising as they allow the use of a well

established network simulator that normally contains a variety of protocols and radio

layer models without making changes to the code.
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2.1.6 Performance Metrics and Characterization

To judge the performance of a protocol and also to compare it with other protocols,
performance metrics are used primarily. A number of such metrics are listed in RFC
2501 [CM99] for MANET routing protocols: 1) end-to-end data throughput and delay,
2) route acquisition time, 3) percentage out-of-order delivery, and 4) efficiency (inter-
nal efficiency, e.g. delivered bytes / total bytes). These performance metrics can be
calculated as averages over a whole experimental run, e.g. the overhead of routing pro-
tocols [GWWO04, GKN104, STP105], the packet delivery ratio [GKNT04, BCDGO5],
overall throughput [JBDT05, PAM™*05, GWWO04] or the end-to-end latency [GKN*04].
It is also possible to build performance metrics with respect to the number of hops, e.g.
for ping requests and replies [MBJ99, LLNT02].

In order to characterize the environment in which the experiment has been executed,
plots of physical layer parameters over time have been used. The parameters here can
be received signal strength (RSS) or signal-to-noise ratio (SNR) [MFHF04, PAM™05,
GWWO04, CJWKO02]. This has been extended by Lundgren et al. with their virtual
mobility metric that is based on measured signal quality [LLNT02]. The idea is to
use per packet signal quality to compute virtual distances between the nodes. These
distances are used to describe the topology changes in the network as perceived by
the nodes. Plotting the virtual mobility over time then produces a fingerprint of the
experiment that can be used to determine how similar two repetitions of an experiment

are with respect to connectivity.

The approach to plot parameters over time is also used for the network layer. The pa-
rameters here are loss rate or packet delivery ratio (PDR) [MBJ99, MFHF04, STP*05,
LLNT02] and the link changes per second or connectivity [LLNT02]. In order to ex-
plain the inter-layer influences, such time-plots with parameters for different layers are
often shown in parallel for the same run, e.g. in [MFHF04] where three plots with dis-
tance, hops and PDR are shown or the experiments in [LLNT02] where plots for PDR,

connectivity and signal quality are combined.

2.2 Ring Flooding

The knowledge acquired in the previous section is complemented by the experiences
made during our experimental evaluation of ring flooding, a dissemination technique

that is frequently used in ad-hoc networks. In its simplest form, flooding is realized
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by letting each node rebroadcast the flooded packet exactly once. To limit the scope
of a flooded data packet, the sender of the packet may use ring flooding. For this,
the packet’s time-to-live (TTL) field is initially set to n. As the TTL of the packet
expires after n hops, it only reaches all those nodes that are at most n hops away from
the original sender. Ring flooding is used to distribute information only relevant in a
certain area such as emergency messages in car-to-car networks, or to do an expanding

ring search during route discovery as in AODV [PBRDO03], for example.

The examined scenarios consist of up to thirteen nodes and we study 1) how reliable
a flooded packet reaches all nodes, 2) how long it takes the packet to reach the nodes,

and 3) how many nodes are reachable when flooding with a certain TTL.

2.2.1 Experiment Setup

We have performed one indoor and one outdoor experiment on static multihop topologies
with IEEE 802.11b equipped nodes. The parameters that have been varied are initial
TTL, jitter and packet size. Jitter was used to delay the rebroadcasting for a random
time from the interval [0; jitter] in order to reduce collisions. All nodes used Linux and
the packets were traced with tcpdump. Flooding was implemented with click [KMC™00],
and we used nsclick [NJG02] to test the implementation in ns-2 [NS2]. One node at the
corner of the network acted as packet source. Each node repeated each packet exactly

once and ignored duplicates; packets were dropped on TTL expiration.

The indoor experiment consisted of 10 iPAQ5550 PDAs distributed in two rows over
15x50 meters as shown in Figure 2.6(a). The flooded packets had a size of 100 bytes each,
we chose 0 and 10 ms maximum jitter. For each jitter interval, we flooded 10 000 packets
divided in sequences with TTL (1, 3,5,7,9) and 10 000 packets divided in sequences with
TTL (1,2,4,8,16). The minimum spacing between two flood attempts was 120 ms.

For the outdoor experiment, thirteen nodes (ten iPAQ5550 and three laptops) were
distributed over an area of 110 x 145 meters on the university campus (Figure 2.6(b),
“moe” was the packet source). For all experiments, we used linear ring flooding, i.e. the
source increased the initial TTL from one to thirteen for each successive packet and then
restarted from one. Packets had a size of 200 bytes each and the used maximum jitter
values were 0, 5, 10, and 15ms. For each of these values, a total of 3000 packets were
flooded in six runs. As minimum spacing between two flood attempts, we used 60 ms
and increased this for higher TTLs and jitter. During run thirteen, the node “laptopl”
(see Figure 2.6(b)) failed due to a lack of battery power, dividing the experiment in
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Figure 2.6: Node setup in the ring flooding experiment.

TTL | Oms jitter | [0;10] ms jitter
3 13.7% 14.1%
4 98.0% 99.1%
>95 99.7% 97.0% (99.7%)

Table 2.1: Reliability for the indoor experiments.

two different topologies. We therefore eliminate the affected runs 8-15, leaving for each

maximum jitter value 1000 packets on each topology.

2.2.2 Results

Reliability is the percentage of packets that reach all nodes in the network. Although
each node in the indoor experiment was theoretically reachable with at most three hops,
packets with an initial TTL > 5 achieved the highest reliability as shown in Table 2.1.
Obviously, high reliability comes at the cost of letting each node repeat the packet. The
behavior of packets with an initial TTL > 5 for the [0;10] ms jitter runs is also interesting.
One of the runs had a reliability of only 54.6%. With this run, the reliability was
97.0%, without it, it was 99.7%. We assume that this difference stems from temporary
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Figure 2.7: Reliability for TTL > 6 in the outdoor experiment.

interference. Also for the outdoor experiment, the trend of the curves for the two
topologies indicate that increased jitter has a positive effect on reliability as shown in
Figure 2.7. However, it should be kept in mind that each data point is an average over

only two runs, explaining the strong fluctuations that can be observed in the graph.

Latency is the time from the initial broadcast until the last node receives the packet.
For the outdoor experiments, the latency is shown in Figure 2.8 for topology two. The
highest latency in the experiment, over 140 ms occurred on topology one (not shown
here). The reason for this was a rebroadcasting delay of 120ms in “laptopl”. Besides
that, the highest latencies for both topologies were 42, 46, 67 and 74 ms for the increasing

maximum jitter values.

Received copies are the number of copies a node receives of a flooded packet. As nodes
at the border of the network do not receive packets with low initial TTL, we only consider
packets with a sufficiently high TTL. For the outdoor experiment, a node received on
average 3.8 copies on topology one and 3.3 copies on topology two (TTL >6). For the
indoor network, the number of copies per node was 3.6 (TTL >5). This is interesting
in relation to those copies sent but not received by any other node. While indoor
runs with [0;10] ms jitter lost only 0.3% of all send events, 0.9% were lost for the runs
without jitter. For the outdoor experiment (averaged over both topologies), this loss
decreased slightly from 1.6% over 1.4% and 1.3% to 1.0% with increasing jitter. Due to

the dependence on jitter, we suspect that this is an effect of collisions.

Neighborhood stability denotes how the allocation of a node to a n-hop neighbor-
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Figure 2.8: Latency for all packets in the outdoor experiment.

hood fluctuates. Figure 2.9(a) shows the minimum number of hops the flooded packets
needed to reach the nodes. Six of the nodes were firmly attached to a certain neigh-
borhood with reception rates of over 90%. Four other nodes received between 75 and
90% over a certain number of hops. One node (“lisa”) received 62% of the packets over
three and 38% over four or more hops. Figure 2.9(b) shows how this influenced node
reachability: while 60% of the packets flooded with TTL 2 reached exactly seven nodes,
a 2-hop ring flood might reach as few as four or as many as nine nodes. A similar

behavior can be observed for the other TTL values.

These experiments show that flooding with the network diameter d is not enough if all
nodes should be reached: in the examined scenarios, flooding was most successful for
TTL > d + 2. Furthermore, the number of nodes reachable with an n-hop flood varied
from attempt to attempt even in our static networks. Thus the definition of the often

used n-hop neighborhood should be revised.

2.3 Propagation Estimation

Our second experimental study concentrated on the estimation of the propagation char-
acteristics of a certain area. This is important for the selection of an appropriate testing
site during preparation of an experiment. Knowledge about these characteristics allows
for better planning of the topology, for example for a setup with a certain number of

hops. This information can also be used as input for an emulation that is closer to
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periment.
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reality than existing, distance-based connectivity assessments. The main problem here
is that directly measuring these propagation characteristics between all point-pairs in
the experimentation area is impossible: as the number of such pairs is unlimited, so

would be the number of necessary measurements.

2.3.1 Basic Idea and Implemented Tools

To acquire the desired information with a limited number of measurements, we have
developed a toolset that records the link quality only between selected point-pairs and
uses interpolation to estimate the qualities for uncovered points. As directly measuring
link quality is only supported by some wireless network interfaces, our tools use packet
level information as link quality indicator. The whole measurement process is sped up
by deploying multiple devices at the same time. The devices rotate through the different
measurement positions and cover multiple point-pairs in one round. Thus, fewer mea-
surement rounds are necessary to cover the whole area. However, this speedup comes
at the price of a more complex experiment coordination. In total, we have developed
three related tools for this task: Mapconfig is used for planing the measurements and
calculating the sequence of positions for these. During the measurements, Mapkit pro-
vides a simple positioning service and also sends out the packets. The results of these
measurements then can be directly processed by our library. To examine the propaga-
tion characteristics of the area in detail, we have implemented an Analyzer visualizing

the measurements’ outcome.

The first step in planning the measurements is to determine points for which measure-
ments are to be made. To this end, Mapconfig positions a grid of adjustable size on
a map where the grid points mark the measurement positions. Out of the set of grid
points, the required subset of measurement points can then be selected. A screenshot
of this tool during the planning of one of our experiments can be found in Figure 2.10;
the selected points are marked white. For the measurement, the devices at the different
positions have to send out packets successively such that they can be recorded without
interfering transmissions of other devices. For the coordination of these tasks, we use
control packets that are flooded in the network: as soon as a node has finished sending
packets, the flooded control packet triggers the action in the successor node. To keep
the network connected when the nodes rotate through the different measurement points,
we use static mesh nodes. The mesh nodes must have a single- or multihop connection
with every other mesh node and it must be possible to reach at least one of these from

each measurement position. With some experience, these mesh nodes can be positioned
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Figure 2.10: Mapconfig screenshot with activated, white-marked measurement points.

simply by visually inspecting the map. In case of doubt, however, it is advisable to

conduct some pre-measurements.

Mapconfig also determines the movement sequences for the participating nodes. For this,
the nodes are divided in two groups and rotated through the measurement positions as
illustrated in Table 2.2. Here, a total of eight measurement points x1, o, ..., Tg are to be
covered with four mobile measurement nodes ni,..,n4. The nodes nq,ns that are part
of the first group GG; move to the first positions while the nodes n3,ng of the second
group (9 rotate through the remaining positions. After the second group has finished,
the nodes in G move on to the next set of positions. The nodes in G2 once again start
rotating but skip those positions already covered by G in the previous round. This

process continues until all point-pairs have been covered?.

The tool Mapkit is responsible for performing the measurements. It supports the users
in correctly positioning the devices and also controls and performs the packet sending.
For the first task, we use a map-based, visual positioning service: the target position is

shown to the user who then manually marks its current location. In contrast to using

3For point-pairs such as z1,z2 where several measurements are made, the recorded link qualities are
averaged during the analysis step.
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SCENARIO/POSITION 1T X9 XT3 T4 Ty Tg Ty T8
1 ni no ns Ny
2 ni N9 ng N4
3 ni no ns Ty
4 ni Ng N3 Ny
5 niy ng ns Ty
6 ny n9 ns ny

Table 2.2: Example positioning of the measurement devices.

GPS, this does not require additional hardware and also works when the view to the
sky is obstructed, e.g. inside or in the vicinity of buildings. In our experiments, this
simple approach allowed the devices’ positioning with a precision of a few meters. Even
though we use the mesh nodes, sometimes control packets do not arrive at the target
nodes. Therefore, there is an additional monitor that coordinates the experiment and
can repeat such missing packets. This monitor is also responsible for initializing the

measurement.

The recorded values are used then as input for the interpolation in the analysis step.
The different cases that can occur when the quality between a source S and a target T'

should be calculated are:

1. S is a measurement point, 7" is not.
2. S is not a measurement point, 7' is a measurement point.

3. Neither S nor T are measurement points.

The basic interpolation approach is identical for all cases and can be illustrated for
the first case: in the initial step, a maximum of n measurement points around 7' are
determined, n € {1,2,3,4}. As only measurements close to the corresponding point
should be considered, points with a distance above a certain threshold can be rejected
in this step. The qualities from S to these points are then weighted with their dis-
tance to T (where the weight decreases with the distance) and averaged, resulting in
an approximation for the quality between S and 7. Obviously, this calculation can be
similarly performed for the second case. In the third case, this principle is applied in
both directions, i.e. the above calculation is made four times for the neighbors of S,
the results then are weighted with the distance of T' to the measurement points around
its own position. This is outlined in Figure 2.11 for n = 2. In the first step, the points

S92, 84 that are closest to S are selected and the qualities to T are calculated by using the
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Figure 2.11: Example for an interpolation with n = 2. The algorithm in this case selects
the points so, s4 and t1, to.

map size | 1500x 1500 pixel
area size | ca. 90x45m

grid size | 125 pixel = 18.75m
scale 1 pixel = 15cm

Table 2.3: Measurement details.

values provided by t1,t2. The results of this calculation are the interpolated qualities
from so,s84 to T. These are then once again weighted with the distances of so,s4 to S

and then averaged.

2.3.2 Evaluation

With these tools, we have examined the propagation characteristics in the area close to
the university already known from the above flooding experiment. As map, an aerial
photograph of the university campus has been used, for other areas maps or photographs
with sufficient quality are available e.g. via Google Maps [Goo]. The area had a size
of about 90x45m and one grid square was 18.75m wide; see also Table 2.3. On this
grid, twelve measurement points and one mesh point have been selected, and a total
of five Zaurus SL-6000 devices were used. This results in 15 different scenarios, i.e.
measurement rounds. The measurement packets had a size of 256 bytes and the number
of packets has been varied between 100 and 200 in the different scenarios. All devices

used 802.11b network interfaces switched to ad-hoc mode on channel two.
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Figure 2.12: Measured link quality from selected point.

In the first step, we consider the measured values without interpolation as displayed in
Figure 2.12. It shows a screenshot of the Analyzer, the single lines mark the links from
the position under the tree in the upper right corner to all other points on the grid, the
small white figures at the end of each line represent the measured link quality. In this
scenario, it is obvious how trees and buildings impact the quality. One example here is
the link passing through the group of trees in the middle, only reaching a quality of 15%.
Those links to the bottom of the area are obstructed by buildings and do not even work
at all. In contrast, links to points in the vicinity of the sender have a high quality. The
influence of these obstacles on the interpolated link quality is displayed in Figure 2.13,
here shown for an interpolation with n = 2. In this screenshot, the sender is positioned
in about the same location as above, indicated by a white rectangle. Obviously, the
coarse grid resolution does not allow to determine the quality in the proximity of smaller
obstacles with enough precision. Nevertheless, e.g. the buildings’ influence is clearly

visible and the propagation map reflects our experiences made in this area.

The visual result of the interpolation shows that the propagation behaves as can be
expected. However, it is not clear how close the interpolated values approximate the
real link qualities. To clarify this matter, we have performed five additional rounds of
measurements where the participants where asked to move to a new, randomly selected
location in each round. This results in a total of 100 link measurements that can be

compared to the interpolated values. Table 2.4 displays the results of this comparison.
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Figure 2.13: Interpolated link quality.

DIFFERENCE | n=1|n=2|n=4
< 20% 58 68 59

< 50% 78 85 88

> 50% 22 15 12

> 80% 11 7 5

Table 2.4: Difference of the interpolated link quality in 100 measurements.

Here, the interpolation with two points approximates 68 out of the 100 measurements
with a difference of less than 20%. On the other hand, only 15 of the measured links are
misestimated with an error >50 %. In contrast, interpolating with more points reduces
the number of good estimates and does not avoid many of the bad ones. If those links
that are interpolated grossly wrong are examined in more detail, it becomes clear that
most of these go through one of the obstacles like the group of trees in the middle or
the building on the right. Thus, this has to be considered in future measurements, e.g.

with a more fine grained grid resolution close to such obstacles.
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2.4 Lessons Learned

In the following section, we sum up the experiences made and the lessons learned during
the experiments with flooding and the propagation estimation. Inspired by [MBJ99],
we investigated the radio ranges of our hardware before performing the above presented
ring flooding evaluation. During these measurements, we discovered that the iPAQ ra-
dios were sometimes able to successfully deliver ping packets over more than 900 m while
already a tree in the line-of-sight between two nodes can block a transmission. Thus, set-
ting up a reliable, reconstructible 7-node/6-hop string topology for our preparatory tests

was only possible by carefully positioning each device around the edges of a building.

Our next step was to set up a multihop topology where every node had multiple neigh-
bors. After further measurement sessions, a suitable experimental site seemed to be the
university parking lot. Only after the main experiment did we discover some undesir-
able properties of this location. As the library and other university buildings are nearby,
there were other WLANS present requiring the careful selection of the radio channel (a
problem also described in [RABRO5]). Another issue were moving cars, possibly leading

to frequent changes in the topology even though the nodes themselves did not move.

In the flooding experiment, the topology is determined at the start of an experiment by
letting each node transmit a number of beacons. While one node transmits its beacon
at a time, all other nodes record the packet reception. The necessary exact coordination
is achieved with a domino effect. Prior to the experiment, a route is specified that
includes all nodes of the network. The nodes use the sequence imposed by this route
to coordinate their beaconing. The first node starts with its beaconing. Its successor
will take over once this node has finished. This is repeated until the last node has
transmitted its beacons. The domino approach worked well for the static setup in the
flooding experiment but needed to be adapted for the propagation estimation where
the topology changed during the experiment. As outlined above, the coordination was
therefore performed by flooding the control messages, thus triggering each single action
in the devices. Although this worked well in most situations, this resulted in a lot of
control traffic. Furthermore, it required the supervision of each single control packet
transmission from a central node as control packets sometimes were lost. For future
experiments, it might therefore be necessary to develop a more generic mechanism and

use a time-based coordination to reduce control traffic.

Often during our experiments, a link, the used software or a whole node failed. Every

time this happened, we had to check each node manually. To ease this task, we im-
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plemented a simple in-band one-hop status check. Each node wrote its current status
to a file accessible via HTTP. To control the nodes’ status, it was sufficient to walk
around and use a Perl script to retrieve the status file from each node. Obviously, this
approach has several limitations: it requires walking into the radio range of each node to
be checked, the transmissions “contaminate” the experimental data, and the correction

of an error still requires physical access to the affected node.

Another issue appeared during the postprocessing of the data from the experiments and
the simulations. As the output format of the simulator (ns-2) differs from the trace
format of the experiment (tcpdump), each tool for the analysis of the results had to be
implemented twice. Furthermore there is currently no good solution for commenting
and documenting the raw data so that special events during the experiments can later

be remembered and reconstructed.

2.5 Refining the Experiences

Our own experiences outlined above as well as those of other researchers, see also Ap-
pendix A, show that most experimenters conducting real-world experiments have to
face unforeseen difficulties: the failure of nodes during experiments was only discovered
after the experiment, reproduction of results was difficult and required the unnecessary
duplication of work by multiple work groups or the network showed unexplainable be-
havior. We believe that these problems can be alleviated if future experiments satisfy

three key requirements of scientific experimentation.

e Repeatability is the “closeness of the agreement between the results of succes-
sive measurements of the same measurand carried out under the same conditions
of measurement” [TK94]. For WMN experiments, this means that it must be
possible to gain similar results in back-to-back measurements. Repeatability is
also a prerequisite for reproducibility, meaning that other researchers should be
able to recreate the experiments with comparable results. For mobile ad-hoc net-
works, repeatability is a significant challenge due to the complex impact of radio

propagation and node mobility on the results of an experiment.

e Comprehension A scientist conducting an experiment must be able to access
all relevant information to comprehend and explain the results of the experiment.
There is a need for tools that collect information on different layers and combine

this information to allow a detailed analysis.
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e Correctness Any experiment may suffer from broken tools, errors with the setup
and problems when conducting the experiment. While repeatability and compre-
hension will most likely reveal these problems, it is vital to the efficiency of a
researcher to be able to verify whether any given experiment has produced valid
results. This can be supported by an established methodology and a selection of

appropriate tools.

To examine in detail how these requirements can be supported by a testbed, we divide
an experiment in several phases: implementation, experiment specification, node config-
uration, setup verification, execution, and analysis. For each of these phases we discuss
in the following how a testbed can support them. We assume that the testbed consists
of two key elements: a number of physical devices (nodes) which may be moved around
individually and the software to support and conduct the experiments. Note that this
stands in sharp contrast to most existing approaches in which soft- and hardware are
coupled to form a shared research infrastructure, e.g. [DRK06, JSFT06, RSO™05].

The first phase of an experiment is the implementation of the algorithm to be tested.
A good testbed will support this phase in three ways: it will 1) help to minimize the
work required for the implementation, 2) seek to reduce implementation errors, and 3)
encourage interoperability between algorithms implemented and evaluated by distinct
research groups. As a lot of algorithms will be initially analyzed by means of simulation,
reusing the simulation code instead of reimplementing it eases the workload and reduces
the potential for errors. Thus a good testbed will allow the usage of SER integration
tools. Encouraging interoperability is mainly a matter of interfaces and methodology.
A good testbed will specify concise interfaces and best-practice methods for integrating
new functionality. It will also support interoperability through a clean and simple

architecture.

After the implementation is complete, the experimenter specifies the scenario used for
the evaluation. In order to allow other research groups to verify the results, the speci-
fication should be a complete description of the experiment made available as a file in
a standardized format. There exist at least two variants of scenarios, strict and loose
scenarios. In a strict scenario each node follows detailed instructions on when each
action is to be performed. Although a rigid description of the experiment fosters re-
peatability, there are setups in which this might not be suitable, e.g., if experiments are
run as background tasks on devices primarily used for other purposes or if the number
of nodes is too big to be controllable. A scenario with loose descriptions of the services

and actions able to adapt to the current state of the node is better suited in this case.
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When the scenario is prepared, the nodes need to be configured with the information
required to run the experiment. This includes the implementation of the investigated
algorithms as well as the specification of the actions and the movements of each node.
This step mainly consists of the distribution of files and the configuration of nodes
(setting of addresses for example), thus it should be automated as much as possible. The
key to the autonomous configuration of the nodes is the experiment specification. Since
this specification contains any relevant information on how each node should behave,
a good testbed will be able to install the required software and perform the necessary
configuration based solely on this information. This can either be done by directly
distributing the specification to each node or it can require its “compilation” to gain
configuration files that are specific for each node. If the nodes are physically accessible
to the experimenter, the automatic file distribution can be provided with simple means,
e.g., through a one-hop download. However, in loose scenarios the devices may not be
available for a direct download and the required files therefore need to be distributed
to nodes that are already in the field. Omne approach to do this is to let the nodes
distribute the required files amongst themselves, i.e., whenever two nodes come in radio

range, they will exchange information and files on the scheduled experiments.

The actual execution of an experiment that uses a strict scenario is extremely costly in
terms of man-power and time. A verification of the test setup and the used hardware
before the experiment in a controlled laboratory environment is therefore vital and
should be supported by the testbed. The verification can be divided into tests involving
one or multiple devices. Single device tests allow to avoid problems occurring due
to lack of memory, low battery power or physical damages, for example. Tests with
multiple devices can reveal problems that result form the interaction between devices.
An important multiple device test which should always precede an experiment is running
the complete setup installed on real devices under laboratory conditions in an emulation.
Although these artificial conditions prevent the acquisition of quantitative results, the
setup is not expensive, can be repeated easily, and allows the isolation of errors. A
good testbed can use the position information in the scenario file to compute the virtual

distances and control the topology accordingly.

The main phase of the experiment starts with the distribution of the devices. Each
experiment will most likely consist of several runs in which the nodes move around.
Finally, the devices need to be collected and the phase is concluded by downloading the
trace files from the devices. The main phase has some properties which necessitate a
dedicated support by the testbed: 1) the time in this phase is expensive: only an optimal

usage of experimental time makes experiments economically feasible, 2) repeatability of
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this phase is crucial for a scientific evaluation, and 3) all information available here is
valuable. Due to these properties, the testbed should support the experiment by op-
timizing the usage of experimental time, by fostering repeatability and by collecting
detailed information on the nodes’ actions. The usage of experimental time can be opti-
mized by automating tasks and by avoiding errors and therefore unnecessary repetitions.
As device distribution and collection are physical tasks, the potential for automation
here is small. This is different with tasks not requiring a direct (human) interaction
like trace file collection. A large optimization potential also lies in the avoidance of
the execution of erroneous experiments. By controlling that all nodes act within the
parameters specified in the scenario, the testbed should assure that exactly the intended

experiment is executed.

The repeatability of an experiment is provided if it is possible to rerun the same exper-
iment such that the relevant parameters in both runs have sufficiently similar values.
There are two ways to support repeatable experiments: comparing the parameters after
an experiment to determine if it was a repetition of a prior experiment or steering the
experiments to ensure that these parameters lie within an acceptable threshold. Open
issues in this context are the determination of the relevant parameters and the question

if it is technically and economically possible to record these parameters.

For all aspects mentioned so far it is crucial to trace the data on the behavior of nodes
and on external influences as completely as possible. This data can be used for a detailed
post-run analysis as well as for steering the experiment. The data to be recorded involves
packet-level traces, timing and positioning information, states of higher level protocols

as well as physical and MAC layer logging.

To steer the experiment, the experiment control component of the testbed should con-
tinuously compare the actual values of the relevant parameters to those specified in the
scenario. The testbed therefore should provide a method to specify and control bound-
aries for these parameters, soft boundaries like “position between x-5 and x+5” as well
as hard boundaries like “GPS daemon running”. In case some of these boundaries are
violated, the testbed can adjust the behavior of the node during the run or mark the run
as invalid. If the violation is severe, this can render the whole experiment unusable and
should therefore be known during the experiment. Thus, the testbed should support
the transmission of status information to a central monitor station and it should also

be possible to remotely correct errors or alter the configuration of the affected node.

Experiment monitoring and remote login necessitate the exchange of management mes-

sages between the nodes and the monitoring station, possibly during the experiment.
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This counteracts a primary design goal of the testbed, i.e., minimizing the interference
of the test equipment (both hard- and software) with the experiment. As outlined in
Section 2.1.4, a solution to this is the “out-of-band”-transmission of all management
messages. This can be achieved either via a separate network interface during the ex-
periment or in the pauses between the single runs of an experiment using the tested
network itself. Although the last method does not allow to stop erroneous runs directly,
this is not problematic if runs are short. Furthermore, it is more practical than the

more expensive first method.

The postprocessing can be divided into organizing the raw data gathered during the
experiment and analyzing it. This phase should be governed by the principle that the
raw data is a valuable resource. It needs to be documented, stored and published.
Based on this data, independent researchers must be able to verify any conclusions that
are drawn from the experiments. A good testbed will provide mechanisms to ease the
documentation and support storage and publication of the involved files, e.g. via the
repository of the CRAWDAD project [cra]. Furthermore it will provide or incorporate

an extensible toolset for analyzing the raw data.

The first postprocessing step is the structured, permanent storage of all raw data. As
there are also a lot of other files involved in the postprocessing such as scenario files
or tools, the testbed’s automatic file handling should include these. One possibility is
the implementation of a file management framework that defines interfaces to access,
view, annotate, process, and store these files. The organization of the raw data is
concluded by the documentation of the events and conditions not recorded in the traces
but perceived by the human participants. The tools to process the raw data should
provide functionality for consistency checks, data analysis or for enabling trace-based
simulation. All these tools can be used for multiple experiments, thus the testbed
should foster reusability to reduce work. If the tools are modular and reusable, this also
increases reliability as results can be easily reproduced. Therefore the goal has to be
the creation of a reusable standard toolset for the postprocessing of WMN experiments
which should be publically available, extensible and well documented. The analysis tools
should support the different input formats of real-world traces and simulator traces to

allow comparison of results from both evaluation methods.
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2.6 Chapter Summary

In the first part of this chapter, we have presented a guidebook to existing WMN ex-
perimentation strategies. This guidebook contains an overview of the most common
tools, lists important topologies, and surveys the metrics that have been used for the
analysis of such experiments. This knowledge is complemented with the experiences
made during our own experiments on ring flooding and the evaluation of a propaga-
tion estimation toolkit. In the third part of this chapter, we have then combined this
knowledge. Repeatability, comprehension and correctness have been identified as the
three key requirements that future experiments should fulfill and we have described
how a testbed can support these requirements throughout the different phases of such

experiments.
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Chapter 3

The EXC Testbed

Chapter Outline

A lot of full-scale WMN experiments follow a “let’s install the software and see what
happens” approach that results in a proof-of-concept but does not allow the protocols
to be investigated in detail [KMO07a]. Instead, in order to acquire verifiable knowledge,
protocol behavior must be examined in well-defined situations, e.g. on a specific topology
or during transition from a partitioned to a connected network. Although the radio
layer has a non-deterministic influence here, tightly controlling all other variables like
movement or timing of the used software increases the chance of creating the desired
situation. The coordination of such systematic experiments is a complex task: 1) The
devices, spread over a possibly large area, have to perform actions at predetermined
points in time. 2) The tested software as well as the protocols are prototypes, thus
errors are likely to occur. 3) The used tools must not disturb the experiment as this

would distort the results.

To cope with these requirements, we have developed the concept of semi-automatic
experiments. While parts of the experiment are fully automated in runs, it still can
be influenced between these runs. This concept is implemented in EXperiment Control
(EXC), atoolkit to control and steer experiments with wireless multihop networks that
is based on the knowledge outlined in the previous chapter. EXC is a pure software ap-
proach that runs on Linux-based systems supporting the Ruby programming language.
This approach allows researchers to use their own hardware to build a testbed and
execute experiments in a controllable fashion with moderate effort. EXC supports ex-
periments under fully realistic conditions, as we do not require any modifications of
either the environment or the used hardware. Thus, it is possible to perform controlled

experiments in the very environment for which the algorithms have been designed. The
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development of EXC has been guided by the belief that a WMN testbed should be open
source, not restricted to special hardware, customizable, and not bound to any specific
location. As outlined in the previous chapter, it must support repeatable, comprehen-
sive, and correct experiments. Due to the complexity of such a testbed, we implemented
it with a modular, extensible architecture. In the following chapter, we present this
toolkit together with a description of the different experimental aspects supported by
EXC. This chapter is based on a paper that has been accepted for publication [KOMOS|.
The analysis component of EXC is called EDAT and will be presented in Chapter 5;
a full-scale study on experiment repeatability performed with EXC can be found in
Chapter 6.

3.1 Movement and Control

Two of the most important questions to be solved during preparation of real-world ex-
periments with (mobile) wireless multihop networks are 1) How to move a large number
of devices in a large area? 2) How to control the actions of the devices and the timing

of the actions?

3.1.1 Existing Concepts

In some existing testbeds, nodes are moved automatically e.g. by robots [DRK™06,
JSF106]. This fosters the repeatability of movement patterns but also leads to high
initial costs and makes it difficult for other researchers to repeat the experiment. Fur-
thermore, this does not allow for tests under realistic conditions such as they are neces-
sary in the development of car-to-car communication for example. Another possibility
is to let humans move the devices [LLNT02]. With this, the complexity of an automatic
movement can be avoided, fixed costs can be kept low and the variable costs per hour

of experiment mainly depend on the participants’ salary.

For the coordination of the nodes’ actions, there are currently two approaches: manual
or automatic control. In manually controlled experiments, all actions on the partici-
pating nodes are triggered directly by the users. This allows for a very flexible control
but either requires users with high qualifications and a lot of knowledge about the test-
system, or limits the complexity of actions. Besides, such experiments are error-prone
and it is hard to obtain even a basic level of repeatability since exact timing of actions

is difficult. In automatically controlled experiments such as the previously described
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flooding experiments or the comparison of four MANET routing protocols described
in [GKNT04], all actions to be performed are laid down in a script. The script is exe-
cuted on startup and triggers all actions to be performed during the whole experiment
without the need of further interference by the participants. This allows for complex
actions and high timing precision with unexperienced users and possibly increases re-
peatability of actions. However, the automatic control approach is not flexible and no
knowledge about the state of the experiment is available. Above as well as in [GKN104],
it has been reported that failing nodes reduced the number of actually participating de-
vices. These errors can require the repetition of the whole experiment, thus they should

be avoided or compensated for to the best possible extend.

3.1.2 Semi-automatic Control

As outlined above, protocol behavior should be examined in well-defined setups. The
network size in most of these experiments will be in the order of some tens of nodes
as this already allows the creation of interesting scenarios and at the same time limits
complexity and cost. The movements depend on the type of network: when testing an
emergency communication system among firefighters, participants will carry a personal
digital assistant (PDA) or laptop, in a car-to-car scenario they will drive a car equipped
with the respective device. The devices will be moved by unexperienced users that are
only roughly briefed about the functioning of the experiment. In case a problem occurs
on a device, the user would not be able to overcome the problem, and no one with

sufficient knowledge would be close by.

To conduct such experiments in a systematic way, we have developed the concept of
semi-automatic control. Each experiment here is partitioned in a number of runs that
are only loosely coupled. In a run, all node actions, like sending certain packets or
moving the node, are precisely scheduled based on a predefined script. As most actions
can be executed without any interaction from the users, this increases repeatability and
minimizes errors. Those errors that still occur only corrupt one run, not the whole
experiment. After each run, the nodes pause and the person responsible for controlling
the experiment (called operator) remotely queries the state of the nodes. If errors
such as wrong position or a software crash have occurred, the operator has the chance
to overcome these before continuing. If a run could not be conducted correctly, e.g.
because the movement path of one of the nodes was temporarily blocked, it is also

possible to repeat this run later on. After this control phase, the operator remotely
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selects and starts the next run. As all the communication takes place between runs, the

runs themselves are unaffected.

Besides dealing with unforeseen errors, this also allows the experiment to be steered
based on experimental feedback that currently is only feasible with fixed nodes with
an additional network for control traffic [RSOT05, SOSK05]. An example is the mea-
surement of maximum throughput along a chain of nodes: after specifying runs for
the whole range of possible throughputs (for a 802.11b based scenario, this would be
0-5.5Mbit/s), one would start with a value just in the middle, e.g. 2.75Mbit/s. After
the end of the first run, the operator can query the last receiver for its reception rate.
Depending on the result of the query, he then can select the next run to be executed

similar to a binary search.

This semi-automatic control approach results in certain demands that the experiment
control software must fulfill. It must allow the devices to be automatically steered based
on command scripts, i.e. to start arbitrary actions either at predetermined moments or
a selectable number of seconds after a certain event. Furthermore, it must be possible to
communicate with the devices between runs because the operator at a central node needs
to supervise the experiment by querying the nodes’ state and by remotely influencing

the nodes’ behavior.

3.2 Implementation and Practical Aspects

In this section, we present our EXC software that implements the above described
approach. As the software is too complex to be described in full detail, we concentrate

on those aspects relevant for researchers that want to steer their experiment with EXC.

EXC is implemented in the scripting language Ruby because this allows for a simi-
lar code base on different platforms. The routing components are implemented with
click [KMC*00]. For the GUI on the monitor (the node from which the experiment is
controlled), we have used Qt and the corresponding Ruby/Qt bindings, the graphical
user interface on our mobile nodes is implemented with GTK+ [QTT, QRB, GTK].
Configuration scripts, scenario files and movement files are mostly specified in XML

and there is also a parser for movement files in ns-2 [NS2| syntax.
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I___J____ :

-
| EVENT: startRun | I startRun |
I I —
| |
Control |————|:————-
———————— B
| EVENT: getstatus!
I -9 I H  startRun |

|____I—————! I_.| getStatus |

Figure 3.1: Schematic overview of two objects A and B that register their getStatus
and startRun event handlers with Control.

3.2.1 Architecture

As outlined above, the devices move around and perform certain tasks during an ex-
periment. Among these tasks are starting a routing protocol or a packet source, telling
the user the next position to go to or setting the devices’ clock. All these tasks can be
regarded as actions triggered by an event. Therefore an event handler framework is the
basic building block of the EXC architecture. The basic idea is to use a central class
called Control that allows other classes to register their event handlers. All events that
occur are raised within Control. This class delegates the handling sequentially to the
registered handlers. This is schematically outlined in Figure 3.1. Here, the startRun
handler is implemented by both objects A and B while only B has a handler for the
getStatus event. These handlers are registered with Control and are called whenever
the corresponding event occurs. Note that different handlers can react differently to
the same event. For example, startRun can cause the handler of A to start counting
the duration of the run while the handler of B starts writing a trace file. In order
to determine which handlers (and with this which functionality) are needed during an

experiment, we use an XML configuration script listing the required components.

This architecture has several advantages, the most obvious one is its generality and
extensibility. The EXC scheduler is a good example: as it is designed to trigger an
event at a certain moment in time, all events can be scheduled. All components of
EXC follow this generality principle by working with such events. If other researchers
want to use EXC and extend it with their own functionality, it is sufficient to write an
appropriate handler and specify it in the configuration script. The new functionality
is then fully integrated in the control software and can use all features offered by it.

Furthermore, this architecture also allows to easily exchange certain components. An
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example is the packet tracing for which we in general use tcpdump [TCP] during our
experiments. At a certain point it was necessary to record packets at the moment
they passed the firewall, a feature offered by ulogd [ULO]. For this it was sufficient to
implement a second event handler that relied on ulogd but reacted to the same events

as the one for tcpdump.

3.2.2 Plug-in Mechanism

The entire event handler management is performed by an object-oriented method plug-
in mechanism. An object can register any of its own methods with the Control-class.
After a method X has been registered, the event X can be raised by calling Control.X().
Whenever the method Control.X() is invoked thereafter, all methods that have been
registered with this keyword and signature get called in their registration order. With

this feature, it is thus possible to install handlers for single events.

Beside actions that can be performed in one single method call, certain programs and
components can run for a longer time during an experiment. This may be a packet
tracer like tcpdump or a new routing protocol implemented as Linux kernel module.
Such long-running components are started at a certain instant, run in the background
for a while and are stopped at some future moment. During runtime, the user or operator
may want to know whether this component is still working correctly. For the routing
protocol, starting means to load the kernel module, information about the state may be
acquired via the “proc”-interface and stopping is performed by unloading the module.
For programs with such requirements, it is sufficient implement a subclass of Service
and appropriate start, stop and status methods. After these methods are registered
via the plugin-mechanism, they are accessible within EXC and it is thus possible to fully

control the routing protocol with EXC.

3.2.3 Control Scripts

To automate the sequence of actions as much as possible, it needs to be specified prior to
the experiment. In EXC, this is done via an XML script. Each XML tag corresponds to
the case-insensitive name of one method registered in Control. Method parameters are
listed in child-tags and a tag also contains information on affected nodes and execution
time. In this way, new methods registered via the plugin mechanism are callable from
the scenario script without further programming. An excerpt from such a script looks

as follows:
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setupRun(1) setupRun(2)
startRun() startRun()
Y—¥ ¥
AN Setup An Main Phase I Setup AN Main Phase
variable
time | | L |
; Run 1 C Run 2 ;
| Experiment |

Figure 3.2: Semi-automatic experiment with setup and main phase. A phase is only
started upon an explicit command.

<userinfo nodes="1-3" time="1" id="start">Starting...</userinfo>

<starttracing nodes="1-3" depends="start" time_delta="5">
<param key="file">tracel</param>
<param key="snaplength">200</param>
<param key="interface">wlanO</param>

</starttracing>

The first tag specifies a userinfo event (this may print the given string on the command
line or show it on the GUI) on nodes one to three at time one. The packet tracer is

started five seconds later as specified by the second tag.

3.2.4 Semi-automatic Experiments

During the preparation of an experiment, each single run is specified in a control script.
In our experiments, a run is composed of a setup phase and a main phase as shown in
Figure 3.2. In the setup phase, the nodes start the necessary software, schedule all the
actions for the main phase and the users move to their start positions. At the end of
this phase, the monitor sends out a status request to verify that no errors occurred and
then the run can be started. All this is available via two commands, setupRun (<ID>) to
select a certain run from the experiment description and launch the preparation phase
and startRun to trigger the main phase. Thus, two commands are sufficient to trigger
the next run if no errors occur while the two phases are still decoupled. This allows for
the delay of the main phase, e.g. in case one of the users takes more time than expected

to reach his start position.
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3.2.5 Remote Method Invocation

As the actions on the nodes should be accessible remotely, the methods of Control
must be callable over the network. This is performed by the RemoteCommunication
class that provides remote method invocation (RMI). For each node participating in the
network, this class holds a stub serving as placeholder for the remote Control instance.
If a method should be called on a remote node, the stub class constructs a message
object that serves as a container for method name and arguments. The message is
then transformed to a string via the marshaling feature of Ruby and transmitted to
the remote node. There, the message is reconstructed and the corresponding method
of Control is called. By convention, the return value of methods starting with the
keyword get is transmitted over the network. In contrast, the return values of methods

without this prefix are not returned remotely.

3.2.6 Communication

The EXC RMI allows the state of a node to be queried by executing a getXY-method
and also provides the ability to influence the nodes’ behavior by remotely executing
methods. To this end, data packets must be exchanged with the devices. As outlined
above, this is either possible by using an additional network and implementing out-
of-band monitoring or by using the experimental network itself by means of in-band

monitoring.

In EXC, both options are available because all control communication takes place over
a control network interface specified in the node configuration file. Out-of-band moni-
toring is technically easy but requires additional network hardware, thus increasing cost
and complexity. The central task when using in-band monitoring is routing, the trans-
mission of control packets to the target nodes. The nodes in experiments with mobile
multihop networks are spread over a larger area and the network topology is unknown.
Thus only a limited number of these nodes is within direct reach of the monitor. The
conditions under which the messages need to be delivered limit the choice of a suitable
transmission method: 1) During a run, the method must not disturb the experiment.

2) Packet delivery must be robust and work on arbitrary multihop topologies.

At first glance, this looks like a task for one of the well-known MANET routing pro-
tocols. However, all proactive protocols continuously transmit packets and thus violate
condition 1). Another option are reactive routing protocols like AODV [PBRDO03] or
DSR [JMHO03] that fulfill their task in two steps. In the initial phase, a request is flooded
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to discover a route to the target node, then the data is transmitted over this route in
the second step. However, for our remote method invocation either method name and
method parameters or a short return value need to be transmitted. As this information
fits in one packet, we directly flood the control messages. As shown in Section 2.2.2,
a wireless multihop network can deliver a high percentage of such control packets. To
deal with losses still unresolved, each of these messages is sent out multiple times'. This
method worked sufficiently well for all our experiments. If such losses are problematic,
it is easy to use acknowledgments and retransmissions instead. This control packet ex-
change is based on the flooding implementation already used and tested in Section 2.2.
The flooding itself is hidden behind a virtual Linux tun/tap interface that serves as
control network card. All packets transmitted over this interface are encapsulated and
then flooded in the wireless network. The target node unpacks the packet and delivers
it over its own virtual network interface. This mechanism is called monitor routing

because it serves the in-band transmission of experiment monitoring information

3.2.7 Trace Files

Experiments result in a large number of trace files: for each run there are position traces,
packet traces or application layer traces. In order to associate these files with the correct
run, they are stored in a special directory. EXC uses the DirectoryGenerator to keep
track of the current trace-directory that is created new for each run and follows the
notation experimentname/runname/run-id_timestamp. This also allows the use of the
same run-specification multiple times without overwriting previous trace files, e.g. in
case a run has to be repeated due to an error. For components that need to write such
files, it is sufficient to call the Control.getCurrentDirectory()-method and write the

file to this directory.

At the end of an experiment, the trace files can be automatically collected by the
monitor. For this, EXC uses an FTP-server on the monitor to which the different nodes
transmit their compressed trace-directory upon a call to the Control.uploadTraces-
method. In addition, the file transfer mechanism is also available to remotely update

the control scripts and even the EXC installation on the nodes.

'In the current implementation, it is sent out three times.
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Figure 3.3: A screenshot of the EXC GUI that is running on the monitor used for an
experiment with four nodes.

3.2.8 Graphical User Interfaces

Due to the large amount of complex information that must be handled by the operator
on the monitor, EXC provides a graphical user interface that is shown in Figure 3.3. It
has been implemented with Qt and Qtruby [QTT, QRB]. The GUI allows to monitor
the participants’ state, send RMI commands, visualize the network topology and keep
track of other information regarding the experiment. The table on the left of the GUI
contains a list of the participating nodes along with their status. The RMI command
interface is located to the right and below. This interface adapts to the current con-
figuration of EXC: if a plugin is loaded, the corresponding methods are available. The
scrollable window on the right displays the current position of the participants and the
topology if this information is available on the monitor. The component on the bot-
tom stores information about the experiment state and displays the raw information
exchanged between monitor and nodes. A detailed description of this GUI can be found
in [Ogi07].

Besides the GUI for the monitor, EXC also provides a graphical user interface for the
nodes that is shown in Figure 3.4. It is implemented with C++4/GTK+ [GTK] as this
allows for an easy cross-compilation for arm-based platforms like our Zaurus SL-6000
PDAs. The node GUI features a map display that provides a bird’s-eye view on the

area. On this map, the track the participant has to follow is displayed as white line.
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Experiment is running 23 seconds

Figure 3.4: A screenshot of the EXC GUI for the node.

The current position on the track is indicated by a color change. Furthermore, the node

GUI is able to display text messages that can be triggered by userinfo events.

3.2.9 Emulation

Emulation tools can create and manipulate a multihop topology without requiring actual
node movement [KMO07a]. Running such an emulation prior to the full-scale experiment
is a valuable component as it helps to discover problems in the setup as well as bugs in

the software.

Existing tools like MobiEmu [Z1.02] use a central server to enforce the network topology
as predefined in a script: if two nodes move out of each others’ virtual radio range, a
command is sent that makes these nodes block packets from each other. First of all, such
an external tool complicates the setup, as e.g. the nodes actions and emulation need
to be synchronized. Besides, such a centralized approach is problematic as it cannot
be assumed that a central server knows the whole topology a priori. This is the case
when a positioning system is used on the nodes. Examples for such systems are GPS
(that must be replaced by an emulation component for the pretest) or tools like the
manual positioning system implemented in Mapkit, see Section 2.3. The positioning

component is part of the system to be tested, thus the position is only known on the
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nodes. Furthermore, even without such a positioning system, only the node knows where
it should be because it has to display the movement pattern to the user. By enforcing
the movement via a centralized emulation, such components cannot be tested because

errors affecting the node position simply do not occur.

Due to this, we implemented a new, mixed centralized /decentralized emulation compo-
nent in EXC that only assumes that nodes know their own position. The component
on each node continuously requests the position with local getPosition method calls
and transmits it to a central machine. This central server collects the positions and
integrates these to form the global position model. Based on this model, it decides
which nodes can communicate. In the current implementation this is done by a simple
distance metric. The connectivity information is transmitted back to the nodes that
set and remove corresponding iptables rules. Problems like the time synchronization
between emulation server and emulation clients as outlined in [ZL02] do not occur as
the server calculates the topology based on the positions transmitted by the nodes. The
communication between nodes and central machine takes place over the emulation net-
work interface specified in the configuration file. Obviously, the emulation server should
not be blocked by the nodes. Thus, the server either must be hosted on a dedicated ma-
chine that does not participate in the emulation or an additional (hardware or virtual)

network must be available.

In all of our emulations, we treat the monitor as any other node. This creates a more
realistic emulation as the monitor is also affected by topological effects such as network
partitions in the real experiment. If the monitor cannot issue control commands to
devices in other partitions, this might be a situation that should already occur in the
emulation. To hide the complexity of the emulation setup from the experimenter, we
have written appropriate plugins for EXC. Clients need to specify the EmulationClient
service, the server EmulationServer in the configuration file. Both services react to the
startEmulation event that triggers the above described mechanism and with this the

emulation.

3.3 Experiments

In this section, we report on experiences made during case studies performed with
the support of EXC, amongst them experiments with the whoisthere node presence
detection approach presented in [TSMO7]. A node using whoisthere regularly sends

out a beacon announcing its own presence as well as the local information about other
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nodes. Upon reception of a beacon, the information is incorporated in the local presence
table. This way, the information spreads throughout the network. As the focus here lies
on the behavior and performance of EXC, we will not go into the details of the tested
algorithms. An EXC study concentrating on the experimental results themselves can
be found in Chapter 6. For the following evaluations, both static and mobile scenarios
were used, thus spanning the different setups encountered when conducting experiments

with wireless multihop networks.

3.3.1 Integration

An important early task is the integration of the software to be tested; we use the
whoisthere implementation as example here. In order to control this command line

program from EXC, the following Ruby class had to be implemented:

class WhoisthereService < ServiceForExternalProgram

def initialize()
super ()
# Register methods with EXC
Control.register(self,:startWhoisthere,

["interval","nodeNumber"])

Control.register (self,:stopWhoisthere, [])
Control.register(self,:stop,[], METHOD_INTERNAL_TO_EXC)
Control.register (self,:getStatus, [])
@start_id = 1

end

def startWhoisthere(interval, nodeNumber)
# Determine command line parameters
nic = Configurator.get(’interface_name’)
b_addr

node_id

Configurator.get(’broadcast_ip’)

Configurator.get(’nodeid’)

trace Control.getCurrentDirectory () +
"whoisthere_trace.txt"
trace += @start_id.to_s ()
@start_id += 1
# Assemble command
command = "whoisthere_ -ig#{nic}, " +
"-bu#{b_addr} -bi#{intervall}" +

"-n_ #{nodeNumber} -id_ #{node_id} " +
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"-log,#{tracel}"
# Start ’‘whoisthere’ as subprocess
io = I0.popen(command)
@pid = io.pid()
@last = 0K

end

def stop()
stopWhoisthere ()

end

def stopWhoisthere ()
killchilds (@pid)
stopService(self.class.to_s())

end

def getStatus ()
return {self.class.to_s() => status()}
end

end

The constructor initialize is responsible for registering the implemented methods by
means of the plugin-mechanism described in Section 3.2.2. As all input to whoisthere
is performed over command line parameters, the startWhoisthere method collects
the relevant parameters that are all available via EXC method calls. After the com-
mand line has been assembled in a string, whoisthere is started as a subprocess. The
stopWhoisthere method uses a method provided by EXC to kill all child processes of
the current process (identified by @pid) and then stops the process itself. The current
state of whoisthere is determined in getStatus by inspecting the system process table
with a method provided by EXC.

With this 45 lines of code, whoisthere is fully integrated with EXC: it can be started
and stopped from an XML script at predetermined moments, the trace files are stored in
the correct directory, the status is available in the GUI and commands can be executed

remotely.

3.3.2 Experiment Setup and Network Topology

In most experiments, an IBM Thinkpad X40 laptop with Gentoo Linux was the monitor

and Zaurus SL-6000 PDAs running OpenZaurus Linux in version 3.5.4.2 [opec] served as
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Figure 3.5: Movement of the four mobile nodes (61-64) and position of the stationary
node 60 during a mobile experiment.

nodes. Besides, some experiments were conducted with an Xubuntu-based EXC Live-
CD that allows to run EXC on x86- or PowerPC-based, CD drive equipped computers

either in node or monitor mode, see Appendix C for details on the Live-CD.

The experiments consisted of up to eight nodes and one monitor. The topology and
also the location of the network varied: some experiments have been conducted inside
the offices of our university, others were performed in a students’ hostel, on the campus
and in a nearby residential area. An example for a mobile experiment can be found
in Figure 3.5, one of the static setups is shown in Figure 3.6. The mobile experiment
consisted of a total of five nodes: four mobile nodes (IDs 61-64) and one static node
with the ID 60 that also served as monitor. The movement pattern was adjusted to
normal walking speed and fully specified in advance. The volunteers that carried the
mobile devices across the campus followed the pattern displayed on their nodes’ GUI,
see Figure 3.4. Due to the bird’s-eye view on the area, it was easy to follow the pattern
and from the visual impression, the error in the movement path was in the range of

meters.
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3.3.3 Detected Errors

One of the primary motivations behind the design of EXC is improving correctness
by reducing errors and providing a fast recovery from errors that still occur during an
experiment. As with every other evaluation, we encountered a number of such error
situations during our measurements. These are described in the following to get an

impression of the capabilities of EXC for these tasks.

During the preparation of one experiment, we deleted by mistake the basic trace di-
rectory on all participating nodes instead of its contents. When the first run of the
next experiment was executed thereafter, the tracing component reported an error: the
packet tracer (tcpdump in this case) needed to write its file to the trace directory which
was not present. This was detected right after setting up the first run and thus could

be fixed directly without abandoning the experiment.

Another error occurred during the mobile experiment due to a misconfiguration of the
sleep cycle of the nodes. Per default, i.e. after flashing the standard operating system
image to the SL-6000, the PDAs go to sleep mode after five minutes without user input.
As our experimental setup did not require any user input in combination with EXC, this
situation occurred shortly after the experiment was started. Here, the concept of EXC
with an experiment divided in runs showed its whole potential: right after a run, some of
the nodes did not answer to status requests. After requesting an error description from
one volunteer over a walkie-talkie (“the screen suddenly went black”), we were able to
wake up the devices again and synchronized the state between the nodes. The run was
restarted remotely and the experiment set back on track. The misconfiguration itself

could be overcome with a workaround (“click the touchscreen once per minute”).

During one of the static indoor experiments, no power connection was available. In the
middle of a run, some of the devices switched themselves off due to a lack of battery
power. This was discovered right after that run as the devices did not answer any more
to status requests. After recharging the battery, the experiment could be restarted with
the run that failed first. Furthermore, as consequence of this incident, we implemented
a service to remotely query the battery state and integrated appropriate feedback in the
GUI, see Figure 3.3.

In the course of one presence detection experiment, the network interfaces of two nodes
crashed due to unknown reasons. This ruined the current run and left the devices
unaccessible. The error was detected right after the run, the devices had been rebooted

manually and the runs could be repeated, leading to a full set of runs.
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Figure 3.6: A screenshot of the EXC topology visualization showing a chain-like setup
in one of the presence detection experiments with nine nodes.

3.3.4 Topology Visualization

Obviously, information propagation speed has a large impact on the performance of the
whoisthere presence detection. Most interesting here is a string-like network topology
that has some alternative paths. This is one of the scenarios outlined at the beginning
of this chapter in which an experiment is to be performed on a well-defined topology.
Setting up this topology was much simplified by the network visualization feature of EXC
as shown in Figure 3.6. After the nodes had been distributed over the different offices
of the second floor, we were able to test the topology. Some nodes were temporarily
disconnected in the first setup. After two more “moving nodes and testing the topology”

cycles, we were able to setup a topology that suited our experimental needs.

3.3.5 Communication

In the mobile experiment shown in Figure 3.5, all nodes moved effectively in a circle
and returned to the starting point after the run. Thus, monitor communication gener-
ally took place over one hop here and therefore worked fine. In a second set of mobile
experiments, the nodes moved from one position to another between runs. Also here
the communication worked without problems as the network spanned multiple but nev-
ertheless static hops. In fact, mobility itself and the resulting topology changes may
not be an issue at all for the monitor routing of EXC: in all of our experiments that

involved mobility during runs, the nodes were nevertheless stationary between runs.

The network with the largest diameter in our setups is the one shown in Figure 3.6.

Because the monitor with id 50 is positioned in the middle, the monitor routing had to
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cope with up to three hops here. This worked without perceptible performance degra-
dation throughout the experiment. As the monitor routing is implemented as a simple
form of flooding, it will very likely perform like ring flooding, see also Section 2.2.2.
Furthermore, we also verified that all runs were free of monitor communication packets.

Thus, EXC does not produce any packet influencing the protocols to be tested.

3.4 Related Work

The only testbed that can be directly compared with EXC as it is purely software-
based and offers unlimited mobility in real environments is APE [LLN102]. It comes
as a Linux Live-CD and relies on shell scripts to fully automate the actions during
the tests. After APE is booted on the participating laptops, the single runs can be
started one after the other in a predefined sequence by pressing a button on any of the
devices. In contrast to that, EXC follows the philosophy of a semi-automatic control of
experiments. Only the actions during a run are automated, the decision which run is
to be executed next can be made at runtime from a central point. The feedback on the
experiments’ status allows to encounter frequently occurring errors like node failures or
wrong configurations already during an experiment and even permits to repeat runs.
Furthermore, as stated in the REQUIREMENTS file of the APE distribution, APE
needs “i386 compatible computers (preferably laptops) equipped with ORINOCO IEEE
802.11 WaveLAN cards”. In contrast to that, EXC is highly portable and platform-
independent and there are no further requirements on CPU architecture or network
interface hardware models. The EXC base system (except for the platform dependent
graphical user interfaces that require cross-compilation) works with similar code on the
most recent Gentoo, Ubuntu and OpenEmbedded Linux distributions on i386-based
laptops as well as ARM-based PDAs and also has been successfully tested on PowerPC
Apple laptops.

All other testbeds that offer the ability to examine mobile nodes are  shared re-
search infrastructures (SRI) out of which we consider MiNT-m [DRK'06], Mobile Em-
ulab [JSFT06], and ORBIT [RSO™05] here. The idea is to concentrate the physical re-
sources at a central place and offer remote access to these resources to other researchers.
This allows for sophisticated setups and a larger number of nodes, and researchers that
want to perform experiments do not have to setup their own installation. Both MiNT-
m [DRK"06] and Mobile Emulab [JSFT06] are indoor testbeds that use robots for node

mobility. An important aspect in these systems is the combination of robot steering and
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positioning that must be as precise as possible. As the multihop topologies are created
inside a single room, both testbeds need radio hardware with limited range. While Mo-
bile Emulab relies on sensor network hardware working in the 900 MHz band, MiNT-m
uses attenuated IEEE 802.11a/b/g-cards. The ORBIT [RSO™05] testbed currently also
consists of an indoor installation but follows a different approach to achieve mobility.
Here, a total of 400 nodes are installed in a grid. Instead of moving nodes, the signal
is switched from node to node. Although an outdoor installation is planned, it is not

clear what it will look like.

Obviously, the approach and focus of EXC is orthogonal to such shared research infras-
tructures. While an SRI initiative results in one single testbed for all researchers, it
is our goal to enable each researcher to set up an experiment with his own hardware.
Where SRI testbeds need to rely on automatic mobility by means of robots, our goal
is mobility by equipping each participating person with a device and thus allowing also
tests with human centric networks. Furthermore, EXC makes it possible to perform
experiments in the very environment for which the algorithms are designed while SRI

approaches allow for tests in a controlled (indoor) laboratory setting.

Besides the above described testbeds, there is a lot of interesting work related to the ex-
perimental evaluation of wireless multihop networks. These are experiments performed
with network prototypes, testbeds for mesh or sensor networks as well as software tools
that support e.g. monitoring or emulation. Because these projects pick out certain
special aspects of experimentation and therefore follow very different goals than a fully-
fledged mobile testbed, we do not consider these here. For a detailed overview, refer
to [KMO07a] and Appendix A.

3.5 Chapter Summary

In this chapter, we have presented EXC, a software toolkit to conduct experiments with
mobile and static multihop networks under fully realistic conditions. EXC is based on
the new concept of semi-automatic control that divides each experiment in a series of
runs that can be started individually. This is only possible with the central, flexible
control feature of EXC that allows to request the nodes’ status between runs. With
this, errors occurring during the experiment can be detected and repaired. EXC is
the first toolkit that allows to conduct real-world experiments with fully controlled

mobility. By presenting the experiences made during different research projects, we
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show how these features enable the evaluation of static and mobile ad-hoc networks

under realistic conditions.
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Time Synchronization

Chapter Outline

A fundamental problem in real-world computer network experiments that also occurred
repeatedly during our own evaluations is that each system uses its own local clock to
timestamp events or schedule actions. As these clocks do not run perfectly synchronous,
this can have negative effects not only when the experiment is running but also on its
analysis. During an experiment, synchronized clocks can be a crucial factor for the coor-
dination of the nodes’ actions. After an experiment, event log files where all timestamps
refer to a single reference clock instead of multiple local clocks are highly desirable for
the investigation of timing related performance parameters, event correlation, and vi-
sualization. In production environments, this problem is often solved either by using a
high-precision, special purpose external clock or by synchronizing the nodes’ clocks over
a network. A prominent example for such a synchronization protocol is the Network
Time Protocol (NTP) [Mil92], but a number of other solutions exist as well [RBMO05].
Both of these methods cannot be directly applied to experiments with wireless multi-
hop networks because they either require the use of specialized, expensive hardware or
a permanent, reliable network connection between a reference clock and the nodes that

cannot be guaranteed during such experiments.

To improve clock precision during an experiment, we have developed a simple method
that uses off-the-shelf software called NTP skew correction. It exploits the characteristic
behavior of these clocks and the capability of the NTP daemon to correct clock speed
when not connected to a reference clock. To evaluate the synchronization accuracy
achievable with hardware typically used for real-world experiments, we have performed
a measurement study that is presented in Section 4.2. It shows that clock precision can
be improved by two orders of magnitude with simple means. A paper thereon has been
published [KZMO07].
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Although the clocks’ deviation can be limited to a few milliseconds with this method, the
precision may still be too low for the analysis of time-related performance parameters like
round-trip time. Furthermore, even if the clocks were perfectly synchronized, it takes
some system dependent (and potentially non-deterministic) time from the occurrence of
an event until it is actually timestamped and recorded. We call this the timestamping
delay. While it may be possible to use customized hard- and software to bound the
timestamping delay, such a solution cannot be employed for the off-the-shelf systems

often used in network experiments.

In order to avoid these problems we have developed MLE timestamp synchronization,
an algorithm to correct the timestamps of the individual log files after an experiment is
completed which is based on a maximum likelihood estimator (MLE). For this synchro-
nization, we take advantage of a specific characteristic of networks with local broadcast
media: a transmission is often received by multiple nodes. Upon recording this trans-
mission, each node uses its local clock to provide a timestamp for the same physical
event. Such shared events can be used as anchor points that relate the different clocks
to each other. The combination of multiple anchor points allows for a very good esti-
mation of this relation and finally for an accurate post-experiment synchronization of
the log files. A description of this approach is provided in Section 4.3, it is based on a
paper that has been accepted for publication [SKR*08b].

4.1 Related Work

The relevant literature in the area of clock synchronization can be divided into online
and offline clock synchronization protocols. The aim of online clock synchronization
protocols, like the well-known Network Time Protocol (NTP) [Mil94a, Mil92], is to
keep the clocks of the participating nodes synchronized while the network is up and
running. By contrast, offline clock synchronization approaches correct timestamps that
have been provided by unsynchronized clocks after the experiment is finished. NTP
skew correction is a special application of NTP and an online approach, MLE timestamp

synchronization clearly falls into the second category.

4.1.1 Online Clock Synchronization

As discussed above, most online approaches use explicit messages for clock synchroniza-

tion. They are also constrained by the fact that they need to work in a distributed
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fashion and may consume only very limited computational resources. Moreover, online
synchronization can only exploit past information, whereas offline approaches can make
use of all—previous as well as later occurring—events for the time estimates. For these
reasons, online synchronization protocols are not an optimal solution if the goal of the
synchronization are log files with a common time base. In the following section, we
summarize the approaches that use the idea of events observed by multiple systems. A
broader overview of the topic, with a focus on wireless sensor networks, can be found
in [RBMO5]. Although our NTP skew correction is based on NTP, the basic idea behind

it can be adapted for other online protocols as well.

A number of online synchronization protocols [VRC97, MFNT00, EGE02] rely on the
parallel reception of broadcasted packets by multiple systems. A broadcasted packet is
received by all systems nearly at the same instant, and the only uncertainty in times-
tamping such packets is the signal propagation time and the timestamping delay. To
synchronize the clocks, the recipients of a given broadcast communicate to exchange
their respective reception times. By comparing these reception times, two nodes are
able to compare and adjust their clocks. In [EGE02], for example, the clock skew is
estimated using linear least-squares regression. A complete network can then be syn-
chronized by synchronizing adjacent nodes pairwise along a tree structure, yielding,

however, the disadvantage of accumulating the pairwise errors.

In [KEPS04], the pairwise synchronization of [EGE02] is extended to a global one. The
authors present an online synchronization approach for sensor networks that is based
on a global unbiased minimum variance estimator. They first introduce a version that
considers only clock offsets, and then complement it with an idea on how to deal with
clock rate differences. Their approach, however, is not able to handle offsets and rate
deviations conjointly, but must rely on separate estimates on different time scales. This
is feasible and appropriate in the considered context of online time synchronization for
continuously running sensor networks, but is not optimal for the offline synchronization
of the logs of time-limited experiments. In addition to avoiding the general drawbacks of
using online approaches for the synchronization of log files, our MLE approach estimates
offsets and rates in one single step, and can thus exploit all the available information to
find the global optimum for both.

4.1.2 Offline Clock Synchronization

The first offline clock synchronization algorithm was proposed by Duda et al. [DHHB87]

for generic distributed systems. The send and receive timestamps of messages between
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nodes A and B are taken as coordinates of a point, the x-axis being the timestamp of A
and the y-axis being the timestamp of B for the same packet. Due to the network delay,
two point-clouds emerge with an empty corridor in between. Each point is either above
the corridor (when sent from A to B) or below (when sent from B to A). The authors
present two methods to fit a line in this corridor, thereby estimating the difference in
clock speed and offset between A and B. The first method computes the separating
line with linear regression; the other uses a convex hull approach. They also sketch a
maximum likelihood approach but are not able to use it due to a lack of knowledge

about the message delay from sender to receiver.

Duda’s linear regression and convex hull approaches have been extended in [Ash95]. The
author corrects the timestamps using experimental knowledge about the smallest round
trip delays. This knowledge is incorporated in an algorithm that selects the two best
points to estimate the skew and offset between the nodes. In [MST99], linear program-
ming is used to compensate for clock skew that influences one-way delay measurements
between two nodes over the Internet. A convex hull based approach able to cope with
clock resets is presented in [ZLX02].

All of the presented offline synchronization algorithms can compensate linear clock de-
viations between two nodes without requiring additional network traffic. In contrast to
our MLE approach, which exploits the broadcast nature of the medium, they can be
used for all kinds of communication systems. However, this benefit is also their main
drawback: all of them consider the comparison of send and receive timestamps. Thus,
the network delay cannot be completely eliminated, as it is the case in our approach.
Likewise, they cannot separate and handle the timestamping delay. Finally, while we use
all the available data to compute globally consistent estimates for an arbitrary number
of nodes in parallel, all these algorithms synchronize only two clocks directly. In order
to synchronize more clocks, a successive synchronization of node pairs is necessary, a

process in which errors can accumulate.

4.2 NTP Skew Correction

In the following we model clocks as twice differentiable functions, mapping some (virtual)
global, absolute time ¢ to the view of the respective clock. This model matches those
commonly used in literature related to clocks and time synchronization [Mil92, MST99,

EGEO02], and is justified since only the limited timespan of a single experiment needs to
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be considered. For the same reason and for the sake of simplicity we do not account for

clock resets.

The true clock Cr is a clock which is correct by definition: V¢ : Cr(t) = t. The offset of
a clock C at time t is the difference C(t) — Cp(t) between C and the true clock Cp. If
we use the term offset without referring to a certain point in time we refer to C'(0), the
offset at time ¢t = 0. C’(t) is called the rate or frequency of C at time t. The difference
between a clock’s rate and the true clock’s rate C'(t) — Ch.(t) = C'(t) — 1 is called skew
or frequency error. Finally, the second derivative C”(¢) is called the drift of C. The
clocks of devices participating in WMN experiments can have an arbitrary offset, but

their skew is limited within production dependent boundaries.

The NTP daemon (ntpd) uses a network connection to a node with a high-precision
clock to determine offset and skew of the local clock. Approximately one hour after ntpd
acquires synchronization, the skew is laid down in the so called drift file'. Ntpd continues
to correct the local clock with this skew estimate even if the device is disconnected from
the reference clock. This continued NTP skew correction without network connection
makes ntpd suitable for the synchronization of the clocks in a WMN experiment where
no such connection is available. As long as the clock drift is small and thus the skew
remains relatively constant over the time of an experiment, this should allow the local

clock to maintain a good degree of synchronization with the reference clock.

To determine the accuracy achievable with hardware typically used in WMN experi-
ments, we have conducted a series of measurements. On the one hand, the achievable
absolute precision is of interest. On the other hand, it is also interesting how the
skew and the related synchronization quality changes over time. Note that this skew
correction approach is orthogonal to existing online synchronization algorithms as any
approach able to determine clock skew with sufficient precision can be used. We have
chosen NTP as it has been in productive use for a long time, is available on a large
number of platforms and thus allows other researchers to easily adopt our method for

their own experiments.

4.2.1 Measurement Setup

Two different kinds of handheld devices have been used for the measurements:

e HP iPAQ 5550 (Nodes 2-11)

LAlthough this file name may be misleading as the file contains the skew and not the drift, we keep
this name to stay consistent with existing terminology.
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e Sharp Zaurus SL-6000 (Nodes 51-64)

Both of these devices have integrated 802.11b WLAN network interfaces and were run-
ning a customized version of OpenEmbedded Linux [opeb] named zauluz [zau]. As not
all devices were available for all experiments, some had been conducted with a subset

of these nodes.

For the measurements, we used a setup similar to the one in [EGE02]: all nodes were
set up in a single room, one node broadcasted a packet (beacon) once every second
over 802.11b WLAN. The nodes receiving the beacon recorded it together with their
local timestamp that has a resolution of 1 ms. Due to the proximity of the devices,
the propagation delay is small enough to be ignored, each device thus records an event
that has occurred at the same moment in time. By comparing the timestamps for this
moment, it is possible to determine the differences of the clocks. For each run, we sent
140000 beacons, resulting in an experiment duration of approximately 39h. During the
experiment, we minimized background traffic in order to avoid disturbances. Note that
this single-hop setup is used for measuring the clock behavior; the proposed approach,

however, also works for multihop networks.

After the experiment, the trace files were gathered and evaluated with our EDAT analy-
sis tool that will be presented in Chapter 5. For each clock, we then plotted the averaged
difference to the timestamp of a reference node that is chosen from the receivers. To
compensate for initial differences in the clock setting, the constant offset of the first
packet is subtracted from all values?. These differences also occur in a real MANET
experiment but can be compensated by setting the clock before disconnecting ntpd from
the reference clock. The difference of a node’s timestamp to the timestamp at the ref-
erence node is plotted on the y-axis, the elapsed time is shown on the z-axis. Thus,
the y-axis always shows differences relative to the reference node. As we are interested
in general clock behavior rather than that of individual nodes, the corresponding curve

labels will be omitted in these graphs.

Clock Quality

Before evaluating the quality of the NTP skew correction, we determine lower and upper
bounds for the synchronization quality. This upper bound is marked by a permanent
NTP clock correction while running the clocks freely allows the quality of hardware

clocks of our devices to be determined. The behavior of the clocks when these are

2The only exception is Figure 4.1 where such differences do not occur due to the setup.
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Figure 4.1: Deviation of the clocks when synchronized with NTP.

permanently corrected by NTP and connected over an additional wired network to a
reference clock is shown in Figure 4.1 for ten of the Zauri. It can be seen that after
an initial phase with larger oscillations, ntpd keeps the clocks well synchronized and
adapts to changing clock skew such as the peak that occurs for one of the nodes around
the 23rd hour. Without any correction, the clocks’ quality is quite bad, as shown in
Figure 4.2. Each device’s clock soon diverges from the reference node. It is furthermore
interesting to note that the clocks of the iPAQs (all lines ending above 6 000) tend to be
faster than the clocks of the Zauri (the lines around zero and below). The clock spread
in the group is about 77ms/h for the iPAQs and about 128 ms/h for the Zauri. The
overall spread is 307 ms/h. This strongly highlights the need for a simple mechanism

that is able to correct the clocks.

Precision of the Drift Files

As long as ntpd has a connection to a reference clock, it updates the factor in the
drift file to compensate for changing clock skew. This factor is measured as frequency
error in “parts per million” (ppm)?3 and is updated once per hour. An important factor
influencing the quality of NTP skew correction is the stability of the drift factor over
time. The more stable it is, the more synchronized the nodes will stay even when

disconnected from the reference clock. The stability of the drift factor for our devices is

3An error of 12 ppm corresponds to about one second per day.
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Figure 4.2: Deviation of uncorrected clocks.

shown in Table 4.1. It shows the changes of the initial correction factor for some of the
participating devices over 46 hours, measured in ppm. For the majority of the devices,
the initial frequency error never changes more than 0.8 ppm, so a longer synchronization
time would not improve the correction factor significantly. However, synchronization for
several hours is recommended since the error rate tends to stabilize in the first few hours,

as also shown in Figure 4.1.

4.2.2 Evaluation

After knowing that the clocks behave as expected, we evaluated the performance of ntpd
with the proposed NTP skew correction. We let ntpd create and refine the drift file for
several hours and then shut down the network connection, relying only on the drift file
to keep the clocks synchronized. The results of this experiment are shown in Figure 4.3

(note the different y-axis scale of this figure compared to Figure 4.2).

Obviously, the overall time deviation of the clocks can be reduced by this method, in
our setup by two orders of magnitude. Nevertheless, the results are surprising as the
plot shows some non-linearity. We repeated this setup several times and got similar
results. The most likely reason for this is temperature fluctuation, as it has the largest
short-term influence on the oscillator stability [Mil94b]. After examining this in more
detail, we wondered if this non-linearity also exists for the non-synchronized case but

could not be observed due to the different y-axis scales of the plots. We therefore
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4.2 NTP Skew Correction

Node | Start | Median | Standard | Max. difference
value | freq. err. | deviation | from start value
60 95.792 95.888 0.031 0.12
5 18.893 18.946 0.116 0.256
51 79.851 80.1725 0.113 0.392
3 14.365 14.1855 0.105 0.412
4.965 4.9385 0.168 0.429
11 15.302 15.665 0.101 0.542
15.131 15.6005 0.127 0.616
2 7.458 7.0815 0.15 0.677
10 -1.866 -2.217 0.117 0.733
6 2.069 1.3145 0.173 1.056
61 80.94 82.611 0.361 1.785
63 61.367 59.374 1.07 7.105

Table 4.1: Changes of the initial correction factor (in ppm).

use linear regression to approximate the slope of each of the curves in the uncorrected
plot in Figure 4.2. This approximated slope leads to a correction function that can
be used to remove linear deviations, leaving mainly the non-linear components of this
deviation. The result is shown in Figure 4.4. Due to the applied correction that results
in a compression of the y-axis, it is now possible to compare this graph to the one in
Figure 4.3 at the same scale. It is obvious that similar non-linear features are present
in both cases. The discovered non-linearity is inherent to the devices’ clocks, and the

overall quality of the clocks is not influenced by the proposed skew correction approach.

The above results reveal a certain kind of non-linearity in the clocks and the available
literature [Mil94b] suggests that changes in the environment temperature may be re-
sponsible for this. We therefore set up an additional experiment in which we also have
recorded the temperature to examine its influence on the clocks. During this experi-
ment, we have varied the environment temperature on purpose to provoke a reaction
of the clocks. The evaluation method is the same as above: freely running clocks were
corrected after the experiment with linear regression and we plotted averaged differ-
ences. The result can be seen in Figure 4.5, containing both temperature and the time
differences. The influence of the temperature is immediately obvious: as soon as the
temperature starts to decrease from 24 degrees to the lowest temperature of 15 degrees,
the nodes change their relative clock speed. Different nodes show different reactions

to this change in environmental conditions: some oscillators are more sensitive to tem-
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Figure 4.3: Deviation of clocks with the NTP skew correction. It is interesting that all
clocks behave similarly except for one clock that is much faster and therefore
has a difference to the reference node of more than 100 ms at the end of the
experiment.

perature than others. As we chose an arbitrary node as reference, some clocks here
slow down compared to this reference node (the lines below zero), while other clocks
speed up in relation to this node. This experiment shows that it is advisable to avoid
temperature fluctuations, e.g. by not exposing nodes to direct sunlight. Furthermore, it

also shows that these clocks behave approximately linear if the temperature is stable.

To sum up, this measurement study reveals that NTP skew correction can reduce the
clock frequency error of devices typically used in WMN experiments by two orders of
magnitude. As this approach does not require a connection to an external reference
time source, it is especially suited for such experiments where this connection is not

available most of the time.

4.3 MLE Timestamp Synchronization

These experiments show that the clocks can be kept in sync within a few milliseconds
over the duration of a whole experiment, a precision high enough for the coordination
of actions. However, parameters like end-to-end delay have values in the same order of

magnitude, their analysis therefore requires higher synchronization precision. For this,
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Figure 4.4: The clocks of Figure 4.2, now corrected after the experiment with a linear
regression-based method.

we have developed the MLE timestamp synchronization approach. It employs a model
for the clocks and the timestamping delays and uses physical events recorded at the
same moment by multiple nodes (so-called anchor points) to estimate the parameters
of this model. These parameters are estimates of the clock deviations and allow to
derive estimates for the timestamps of all events on a common time basis. A maximum
likelihood estimator is used for this purpose. It leads to a large linear program with a
very specific structure. We exploit this structure to solve the linear problem efficiently
in spite of its huge size. The solution then yields a synchronized log file where all entries
are recorded with a common time basis. Analytical and numerical results show that the
solution converges quickly to a good estimate for increasing input data sizes, and that
it is robust if the assumptions made for its derivation are not perfectly fulfilled. Thus,
in practice, a very reasonable amount of log data is typically sufficient to identify and

eliminate clock deviations.

Our approach is applicable to all networks with local broadcast characteristics. It just
requires that the clocks of any two nodes in the network can be—directly or indirectly—
set into relation by anchor points. In particular, this includes experiments in wireless
ad-hoc-, sensor- and mesh-networks for which it was initially designed. However, it is
also suited for local area networks with multiple stations in each collision domain and

satellite networks.
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Figure 4.5: Experiment with temperature recording (solid line) and the time differences
averaged over one minute.

4.3.1 Model, Terminology, and Applicability

Nodes and Events

In our terminology, an event is an incident that has been observed by one or more nodes
and is recorded in their local log files. Of particular interest for us are packet reception
events, since they can be observed by multiple nodes almost at the same time. We
assume that parallel receptions of the same transmission can be identified as such and
concentrate primarily on events that have occurred in more than one node, since they

can serve as anchor points for the synchronization.

We denote the set of nodes participating in an experiment by J and the set of events
that occur during the experiment by I. Each event ¢ € I occurs at some “true” time
T;. The same event ¢ can be observed by multiple nodes. In this case each of the nodes
records its own timestamp for the event according to its local clock, i.e., event i is

recorded by some of the nodes j € J with local timestamps ; ;.

The recorded times define a relation R C I x J in the sense that (i,7) € R if and only
if event ¢ is recorded by node j. The subset of nodes that observe a certain event ¢ €
is denoted by R;, i.e., j € R; if and only if (i,j) € R.
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Clocks

As stated above, the true clock Cr is a clock which is correct by definition: Vt : Cp(t) =
t. Our aim is to approximate this clock as closely as possible by the calculated global

event timestamps.

The clock model we use for our estimator assumes that during the time interval of an
experimental run, the local clocks in the nodes can be closely approximated by a linear
function. We denote the rate of a node j’s local clock C; by r; > 0 and its offset at

time t = 0 by o;. Thus, for all times ¢ during the run we have

Cj(t) =r;t + 0;. (4.1)

The time span over which the linearity assumption holds is related to the clock’s fre-
quency stability. It is commonly specified using the Allan deviation [AllI87], which
characterizes the rate variations over different timescales. One application area of of-
fline synchronization are the experiments with wireless multihop networks this thesis
concentrates on. As pointed out in Section 2.1.5, the duration of an experimental run
typically does not exceed 1000 seconds. This coincides with previous work, which shows
that clock drift is typically negligible over time spans up to 1000 seconds [VBP04]. Fur-
thermore, also the experiments in Section 4.2.2 show that clocks are approximately

linear for shorter intervals and stable temperature.

If the linearity assumptions do not hold, the accuracy of the results may deteriorate.
As will become clear later, the degradation is graceful, i.e., the estimation is a good
linear approximation. Note also that it is easily possible to synchronize arbitrary sub-
intervals of longer logs, such that the assumption holds reasonably well within each

sub-interval.

Furthermore, care must be taken that the linearity assumption is not thwarted by pro-
cesses running on the nodes and manipulating the clocks. If online synchronization must
be used—e. g., because it is part of the experiment—then it should record all non-linear
modifications it made to the local clock, so that the effects of these changes can be
eliminated from the log files of the respective nodes prior to synchronizing them. As

NTP skew correction only applies linear corrections, this is not problematic here.

In practice, time in computer systems does not run continuously, but progresses in dis-

crete steps. While the resolution of the timer-interrupt driven system clock is typically
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relatively coarse—in the order of milliseconds—, more fine-grained time sources are of-
ten available and used. On the x86 platform, for example, the CPU’s TSC register
progresses with every CPU clock cycle. Thus, its granularity is very fine. It serves for
generating the timestamps, for example, when using a Linux kernel and the widespread
packet tracing library libpcap [LIB]. Thus, we can assume that the error introduced by
the clock resolution is small in comparison to other sources of error. Our approach does

not amplify such errors.

Timestamping Delay

When sending a message, a number of different delays occur from the moment the source
application generates the message until the receiver timestamps it. As our approach uses
these timestamps as synchronization anchors, we are interested in the delay differences
experienced by distinct nodes. The deterministic components are not an issue in our
context: if all timestamps in a node are recorded late by some fixed time, then this is
the same as if they were recorded immediately with a correspondingly increased offset.

So, the fixed delay components are equivalent to an additional clock offset.

The experienced delay can be decomposed into four components according to [KO87]:
the time needed to compose the message and to assemble the packet; the time to access
the medium; the propagation delay on the medium; and finally, after the transmission
arrives at the receiver, the receive time, i.e., the delay for checking the message and
recording the arrival timestamp. Obviously, the time until the packet leaves the sender

is the same for all receivers and thus does not need to be considered.

The propagation delay depends on the distance between sender and receiver, and the
propagation delay differences depend on the different distances between sender and
receivers. As long as these differences are in the order of a few hundred meters, the
propagation delay difference is in the order of, at most, microseconds and is therefore
negligible?. The receive time is a result of the delayed recording of the timestamps in
the nodes that does not happen immediately upon reception. It can be decomposed
further into a fixed component (which equals the minimum path delay of the processing
necessary at the receiver), and an additional, variable time that occurs because the
timestamping is performed by the node’s CPU, which may be busy with other tasks

before the event is processed. The latter we call timestamping delay.

4If nodes are really far apart and the propagation delay is long, then it is often the case that the
distances and thus also the delays are approximately known. This applies to satellite systems, for
example. In this case it is possible to eliminate the delay prior to synchronization.
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Note that the delay of an event is also “measured” by the recording node’s clock, and
thus is scaled with the rate of this clock. An event 7 at “true” time T; that is recorded

by node j with timestamping delay d; ; thus leads to a timestamp

ti; =C;(Ty + dij) = (T + di j) + o5 (4.2)

The timestamping delay is, like all delays, obviously nonnegative. Furthermore, it seems
reasonable to assume that most timestamps are recorded with small latency and few are
set after a longer time. We model the timestamping delays as exponentially distributed,
pairwise independent random variables. Moreover, we assume that the exponential
distributions of all delays share the same parameter A\. The latter is reasonable if
the nodes participating in the experiment use comparable hard- and software for the

timestamp generation, which will often be the case in a testbed.

In a real-world application, our assumptions about the timestamping delay just like
those about the clocks’ linearity will, of course, not perfectly hold. In fact, depending
on the hard- and software of the devices, reality might look very different. We use the
mentioned assumptions for the motivation and derivation of our method. It will later
become clear that the resulting approach yields good results also under non-conformant

circumstances.

Connectivity Constraints

As our proposed approach relies on anchor points to relate the clocks, it depends on
the presence of events that can serve this role. Consider the case in which there is no
common event between two groups of nodes. Here, it would be impossible for anchor
point-based synchronization to tell if all clocks in one of the groups are, for example,
early by one hour. A common, global time basis can thus not be established, whereas

it remains nevertheless possible to synchronize the clocks within each group.

Note that the availability of anchor points does not imply that all pairs of nodes must
share common events—clocks may also be related indirectly, over intermediate nodes. It
also does not necessitate the network to be “connected” in the commonly used sense. For
example, if there are two almost independent groups of nodes, one single node sharing
events with both groups suffices. These shared events need not occur during the same
time intervals, and thus there is no need for a fully connected topology at even just one

single point in time.

71



Chapter 4 Time Synchronization

Hence, the existence of anchor points is not a severe constraint in practice, and anchor
point-based synchronization will be possible in the vast majority of experimental se-
tups. If this condition is not met, artificial anchor points could be generated, e.g., by
broadcasting “anchor packets”. Doing so during the experiment might interfere with the
experiment itself, just like running an online synchronization protocol. Anchor points,

however, may also be generated before and after an experimental run.

4.3.2 Algorithm

The previous section introduced a model of the network and the timestamping delays.
Now, we will formalize the problem and propose an approach for its solution via a
maximum likelihood estimator (MLE). Given the recorded local timestamps, we wish

to maximize the likelihood that our estimates of the true event times are correct.

Due to the exponentially distributed delays, the conditional probability density for mea-

suring a timestamp ¢; ; for event ¢ at node j given C;; and T; is

fltij | C5,T0) = f(dij) = de M. (4.3)

Because of the independence of the delays the probability density for the whole set of

measurements in our experiment can be written as

F(tid)iger | (Chien (T)ier) = [ Ae 9. (4.4)
(4,7)ER

We can now express our problem as an optimization problem. Under a uniform prior,
we want to find the optimal estimates ﬁ of T; for all ¢ € I, and, in parallel, the optimal
estimates 6]- of C; for all j € J such that the likelihood function L defined in the

following way is maximized:
L =L((Cj)jes: (Ti)ier | (tig)zyer)

N N (4.5)
= f((tig)jer | (Cj)jers (Ti)ier)-

From (4.2) we can see that

¥(i,j) € R:dij = 22 —% 1, (4.6)

Ty
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This relation must also hold for the estimates of 7; and Cj. Let 7, 0;, and CTZ] denote

the estimates for r;, 0;, and d; j, respectively. Then, in analogy to the above we have

~

- ti: — O N
V(i,j) € R:d;; = JTOJ ~ T (4.7)
J

Therefore, L can be expressed as

L= ] A

(i,7)ER

= H )\e_)\( 7j ‘ ,

(4,7)ER

g A) (4.8)

eliminating the estimates (/i\” for the unknown quantities d; ;.

Since all the delays are non-negative, the maximization of L is subject to the con-

straints

t"—A'
V(i,j) e R: % _
rj

=

> 0. (4.9)

Now we apply a standard technique in maximum likelihood estimation: maximizing L

is equivalent to maximizing In L, because L > 0 for all valid parameterizations.

mL=In [] AeiA(ti’g%ﬁ)

(4,7)ER
) tiv];_aj—’;-
= Z (]nA—}—]ne ( " )) (410)
(i,j)€R
— [RlnA— Y A(“f"f—f)
(i,j)ER "

Optimizing this expression with regard to A and all the ﬁ and 6,» is a difficult nonlinear
optimization problem. However, we are not primarily interested in the parameter A.
Fortunately it turns out that the optimal ﬁ and @ are independent of the value of A.
Let for the moment

k(z) = —w. (4.11)
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k is strictly monotonically decreasing for any A > 0 and |R|. Thus, it is easy to see that

L is maximal if and only if k(L) is minimal:

InL— |R|InA\ tij —0; =
L) =——————= ) ( It > (4.12)

Therefore, instead of maximizing L, we minimize k(L). We have thus eliminated the
variable A > 0. The constraints of the resulting optimization problem are still of the
form (4.9).

From the clock model we know that the rates of the clocks are strictly positive. We

exploit this fact and define

rpo= T ! (4.13)
5

T 4.14
o = 2 (414

Equivalently, we have 7; = Fj_l and 0; = 0;7; = # Expressing k(L) in terms of the

variables 0; and 7; leads to

R(L) = > (tgr—o-T). (4.15)

(4,7)ER

Similarly, the constraints (4.9) can be simplified to

V(i,j) € R : t; j7j —0; — Ti > 0. (4.16)

This is a linear objective function with linear constraints, which can be solved using

standard linear program (LP) solvers like the simplex method.

For exponentially distributed errors, the maximum likelihood estimator is known to be
nearly optimal. In our case, however, a different interpretation of the resulting approach

is also possible. When comparing (4.12) and (4.7), we observe that

KL)y= Y diy. (4.17)

(4,9)ER

The optimal solution minimizes the sum of the estimated delays. Therefore, the result-

ing approach may also be understood as a form of constrained Least Absolute Deviation
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(LAD) regression. Since this interpretation is completely independent from the assump-
tion of exponentially distributed delays, it supports the expectation that the derived

estimator is also well-suited for delays with other distributions.

Note that the optimization problem (4.15) and (4.16) has the trivial solution Vj € J :
0j =7; =0and Vi € I : ﬁ = 0. This is because it is only possible to estimate the
relative deviation between clocks from the information contained in the log files. We
call this the rate ambiguity. To overcome the rate ambiguity, we add a normalizing

constraint ) .., 7; = |J|; in the average, the inverse clock rates are assumed to be

jeJ
accurate. This assumption, however, is not crucial at all: if the average takes some

other value, the solutions are simply scaled accordingly.

Similar to the rate ambiguity, there is also an offset ambiguity in the log files. The right
hand sides of (4.15) and (4.16) do not change when all 0; are replaced with 0; + 7 and
all ﬁ are replaced with ﬁ — 1, where 7 € R is a given constant term. Thus, like above
for the rates, it is not possible to estimate absolute, but only relative event times and
clock offsets (even ignoring the fact that there is, of course, no “absolute time”). We

may set, without loss of generality, o; = 0.

If a reference clock is available—e. g., because at least one node has a connection to
an external time source like a GPS receiver and records appropriate data—absolute
synchronization to this reference is possible. More specifically, if the correct, global
time of one event occurrence in one single node is known, then the offset ambiguity can
be overcome. If the global times of two events, or, alternatively, the time of one event
and the rate of one node are known, then the rate ambiguity can likewise be eliminated.
This is possible either by adapting the constraints for rates and offset, or by a respective

transformation of the synchronization result.
The resulting linear program can be written in the form
minimize b’y subject to ATy <, (4.18)

where ¥ is the vector of the unknowns ZA’Z for i € I, followed by the vectors 6 € R/l and

7 € RII of the oj and 7 for j € J, i.e.,

Ned
I
ST

(4.19)

=3
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The matrix AT represents the inequality constraints (4.16) and the normalizing con-

straints.

Events that have only been observed by one single node do not contribute information
for the synchronization. Therefore, to keep the size of the linear program as small as
possible, they should not be included in the optimization. Corrected timestamps for

such events can easily be generated based on the rate and offset estimates.

4.3.3 Solving the Optimization Problem

In (4.18), (4.19) the maximum likelihood estimator is defined as the solution of a linear
program with |I| 4 2-|J| variables and |R| linear inequality constraints. Due to the size
of the linear program a straightforward application of the simplex method may result in
a significant effort in terms of computational power and memory. When solving (4.18)
with a standard simplex solver like QSopt [ACDM] the program takes hours to terminate
even for relatively small problems. Therefore, we will now focus on the special structure
of the linear program (4.18) and how it can be exploited to allow for a fast numerical
solution. Below we outline the ideas behind our implementation of the synchronization
approach. It is able to solve the linear program for data sets with |.J| ~ 100, |I| ~ 10°,

and |R| ~ 10° on a standard PC within a few seconds.

Each row of AT corresponding to a constraint (4.16) has exactly three non-zero entries
and A is thus very sparse. The matrix AT is closely related to the matrices arising in
network optimization problems. In particular, it does not have full column rank. In the
previous section, offset ambiguity was introduced. Since we set 01 to zero, the corre-
sponding column of A can be eliminated prior to the optimization. Our implementation
checks for further redundancies that depend on the particular instance R and eliminates

additional linearly dependent columns of AT if existent.

We use a modern interior-point algorithm for our solver, a variant of Mehrotra’s predic-
tor corrector algorithm [Meh92] that is particularly well suited to handle the structure of
(4.18). The primary advantage of interior-point algorithms versus the simplex method
is that interior-point methods do not suffer from degeneracy of the problem. Practical
implementations very rarely take more than 70 to 100 iterations to solve a linear pro-
gram. In our case, the particular structure of (4.18) can be exploited, making a single
iteration very cheap. The concept of the algorithm as implemented here is based on
Algorithm 14.3 in [NW99].
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Figure 4.6: Performance comparison of QSopt, SeDuMi, and our own implementation
as time synchronization LP solvers.
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Apart from minor adjustments of the parameters proposed in [NW99], the main mod-
ification in our implementation concerns the storage format for the matrix A. Storing
A directly would be extremely inefficient in terms of memory requirements as well as
from a computational perspective. Our implementation comprises a specialized storage
format for A, tailored to both the problem structure and the specific operations that
appear in the interior-point algorithm. For matrices A arising from (4.18) this is a supe-
rior alternative to general purpose sparse matrix formats, as they are readily provided,
e.g., by Matlab.

The main computational effort at each iteration of an interior-point algorithm is the
computation and the Cholesky factorization of the matrix product H = ADAT. Here,
D is a positive definite diagonal matrix that changes at each iteration. Due to our choice
of setting up the variable y by first including T and then o, 7, the leading |I]x |I]-block
of H is a positive definite diagonal matrix; only the trailing 2 - |J| rows and columns
of H do have fill-in. This sparsity structure is also inherited by the Cholesky factor L
of H. The leading |I|x|I|-block of L can thus be computed in linear time. Given that
typically |I| > 2-|J|, the computation of L and thus the solution of the overall problem

is very cheap.

To demonstrate the huge gain in performance that is possible by using the tailored
solver, we compare the runtime of our implementation with that of QSopt [ACDM]
and SeDuMi [SRP]. QSopt is, as mentioned before, a solver that uses the simplex
method. SeDuMi on the other hand is a Matlab interior-point code that, like our own
solver, benefits from the special structure of H, but uses a more general—and therefore
somewhat slower—storage format of the sparse matrix AT, and a more general sparse

Cholesky factorization.

Figure 4.6 shows the computation times for calculating the solutions of optimizations
with 20 nodes and with 100 nodes, for different numbers of shared events. All mea-
surements have been made on an AMD Athlon X2 BE-2300 CPU with 1900 MHz and
1 GB of main memory. From the figure it can be seen that our implementation actually
works very well. The tailored solver brings a large performance gain—it reduces the

computation time by typically at least a factor of 10-15.

Note that SeDuMi expects readily preprocessed input data in Matlab’s sparse matrix
format. The time needed for converting the data to this format is not included in the
SeDuMi results in Figure 4.6. Especially for the larger problems, this can be substan-
tially higher than the time needed for solving the problem. The processing times shown

for our own solver do include the time for reading the input data and preparing the
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optimization problem. For our specialized matrix format this step can be performed

very efficiently; it accounts only for a negligible fraction of the total processing time.

In particular the results with QSopt underline that an off-the-shelf simplex solver is in
fact highly unsuitable for the specific type of linear optimization problem that we deal
with. Not only does the computation time grow rapidly with an increasing problem
size, but also do the memory requirements. By contrast, our tailored implementation is
very memory efficient, and its observed runtime increases approximately linearly with

the number of events |I].

4.3.4 Properties of the MLE

Now that we have seen that it is in fact possible to calculate a solution of the linear
program and thus the maximum likelihood estimator within reasonable time, we are
interested in the quality of this solution. In this section, we will thus tackle the question

of how good the synchronization result is.

The available amount of data to estimate the clock deviations increases with an in-
creasing number of network packets that have been received by multiple network nodes.
Thus, intuitively, one could expect that the quality of the estimate improves with the
availability of more experimental data. Similarly, it sounds reasonable that it is very
unlikely that the result of the time synchronization process is grossly wrong if the input
data is very accurate. In this section, we confine ourselves to a simplified variant of
our estimator. For this simplified variant we can prove that these intuitive expectations
are actually true. Since the complete proofs of these properties are quite complex and
technical despite this simplification, we have not included them here. Instead they can
be found in [SKR08a]. Below we will discuss the results and their implications, and we
give a rough sketch of the proofs’ ideas. Our numerical results presented later underline

that the results also hold for the fully featured estimator with clock rate estimates.

The simplified estimator does not take clock rate deviations into account, i. e., it assumes
that for each node the clock rate r; is (approximately) 1 and thus correct with respect
to the “true clock”. Under this assumption the recorded time for a node-event pair

(¢,7) € R becomes T; + d; j + 0. Thus, the simplified maximum likelihood estimator,
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in analogy to the fully featured version, is the solution to the following problem:

maximize L = H )\e—A(ti,j—aj—ﬁ)
GDER (4.20)
subject to V(i,j) € R : c/i\” —t;; —0j — T. > 0.

minimize k(L) = > (t; =0 -T) = Y dy (4.21)

under the same constraints.

Here we will point out two desirable properties for this version of the estimator. First,
we give tight error bo