Aus der Universitätsfrauenklinik
der Heinrich-Heine-Universität Düsseldorf
Direktor: Prof. Dr. med. H. G. Bender

Tumorspezifische Gentherapie
gynäkologischer Karzinome mit konditional replizierenden
Adenoviren

Dissertation

zur
Erlangung des Grades eines Doktors der
Medizin
der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Marius René Peter Porten

2007
Inhaltsverzeichnis

1. *Einleitung*
1.1 Klassische Therapieansätze
1.1.1 Mechanismen der Resistenzentstehung gegen Zytostatika
1.2 Gentherapie als alternativer Therapieansatz
1.3 Adenovirale Gentherapie
1.3.1 Problematik der adenoviralen Gentherapie
1.3.2 Möglichkeiten zur Steuerung der viralen Replikation
1.3.3 Weitere Möglichkeiten zur Steuerung der adenoviralen Replikation
1.3.4 Möglichkeiten zur Verbesserung der adenoviralen Transduktionseffizienz

2. *Fragestellung und Zielsetzung*

3. *Material und Methoden*

3.1 Zellkultur
3.1.2 Zellen und Zelllinien
3.1.3 Kultivierung der Zellen
3.1.4 Subkultivierung
3.1.5 Kryokonservierung
3.1.6 Induktion der MDR1-Expression
3.1.7 FICOLL-Dichtezentrifugation

3.2 DNA-/RNA-Analytik
3.2.1 Restriktionsanalyse
3.2.2 PCI (Phenol-Chloroform-Isoamylalkohol)-Extraktion
3.2.3 Photometrische Bestimmung von DNA und RNA
3.2.4 RNA-Isolation
3.2.5 cDNA-Synthese
3.2.6 PCR (Polymerase Chain Reaction)
3.2.7 Überprüfung der Qualität der cDNA durch β-Actin-PCR
3.2.8 Quantitative RT-PCR zur Bestimmung der mRNA-Expression

3.3 Gelelektrophoretische Auftrennungsmethoden
3.3.1 Elektrophoretische Auftrennung mit Agarosegelen
3.3.2 Polyacrylamid-Gelelektrophorese

3.4 Mikrobiologische Methoden
3.4.1 Bakterienstämmme
3.4.2 Medien und Aufzucht von *E. coli*
3.4.3 Herstellung kompetenter E. coli

3.4.4 Klonierung
 3.4.4.1 Plasmide zur Klonierung rekombinanter Adenoviren
 3.4.4.2 Isolierung von DNA-Fragmenten aus Agarosegelen
 3.4.4.3 Elektroporation
 3.4.4.4 Plasmidpräparation

3.5 Adenoviraler Gentransfer
 3.5.1 Klonierung des rekombinannten Adenovirusgenoms
 3.5.2 Homologe Rekombination
 3.5.3 Transfer in Verpackungszelllinie und Klonelektion
 3.5.4 Produktion rekombinanter Adenoviren
 3.5.5 Isolation von Adenoviren
 3.5.6 Aufreinigung und Dialyse

3.6 Titerbestimmung
 3.6.1 Photometrische Titerbestimmung
 3.6.2 TCID_{50} - Methode (Tissue Culture Infectious Dose)

3.7 Luziferase-Reportergenassay

3.8 Zytotoxizitätsassay (MTS-Assay)

3.9 Immunhistochemie

3.10 Tumor-Chemosensitivitätsassay (TCA-100)

3.11 Statistische Analyse

4. Ergebnisse
 4.1 Transkriptionales Targeting
 4.1.2 Steuerung der adenoviralen Replikation - Promotorauswahl
 4.1.3 Untersuchung der rekombinannten adenoviralen Klone
 4.1.4 Reportergenassays zur Analyse des transkriptionalen Targeting

4.2 Transduktionales Targeting

4.3 Kombination aus transkriptionalem und transduktionalem Targeting
 4.3.1 MTS-Assays mit nicht chemoresistenten Ovarialkarzinomzelllinien
 4.3.2 MTS-Assays mit Normalgewebe
 4.3.3 MTS-Assays mit chemoresistenten Karzinomzellen

4.4 Immunhistochemischer Nachweis des viralen E1A Gens in Kokultur

5. Diskussion
5.1 Transkriptionales Targeting .. 65
5.2 Transduktionales Targeting ... 67
5.3 Kombination von transkriptionalem und transduktionalem Targeting 69
6. Zusammenfassung ... 75
7. Abkürzungen ... 75
8. Literatur ... 79
9. Anhang .. 84
9.1 FIGO-Stadien mit TNM-Klassifikation für das Ovarialkarzinom 84
9.2 Promotorsequenzen ... 85
9.3 Primersequenzen ... 85
9.4 Plasmidkarten ... 85
10. Danksagung ... 90
11. Erklärung ... 91
12. Lebenslauf ... 91
1. Einleitung

In der weiblichen Bevölkerung der westlichen Welt ist das Ovarialkarzinom der zweithäufigste Genitaltumor der Frau (Jemal, Siegel et al. 2006) und stellt die häufigste Todesursache unter gynäkologischen Malignomen dar (Johnston 2004). Jährlich wird in westlichen Staaten bei ca. 16 von 100000 Frauen eine Diagnose auf Ovarialkarzinom gestellt, bei ca. 8000 Neuerkrankungen pro Jahr allein in Deutschland (Deutsche Krebsgesellschaft, 2003). Die höchste Inzidenz findet man bei Frauen ab dem 45. Lebensjahr, mit einer Spitze um das 60. bis 70. Lebensjahr. Das Life-time-risk (Risiko, im Laufe des Lebens an einem Ovarialkarzinom zu erkranken) beträgt ca. 1-2%. Statistisch gesehen gehören Kinderlosigkeit, Sterilität, spät gebärende Frauen und ein hoher sozioökonomischer Status zu den wichtigen Risikofaktoren. Eine mögliche Erklärung ist die durch viele Eisprünge hervorgerufene erhöhte Anzahl an „Verletzungen“ des Ovarialepithels (langjährige Einnahme hormonaler Kontrazeptiva wirkt protektiv, da weniger Eisprünge) und die häufige Proliferation desselben, wodurch die Wahrscheinlichkeit zur malignen Entartung erhöht wird. In ca. 5% der Fälle finden sich noch genetische Faktoren, die bei der Entstehung des Ovarialkarzinoms eine Rolle spielen. Dazu gehören Mutationen der Tumorsuppressorgene BRCA-1 und BRCA-2, die das Erkrankungsrisiko auf über 60% steigen lassen. Eine Besonderheit stellt das so genannte Lynch-Syndrom dar, das aus kolorektalen Karzinomen in Kombination mit Ovarial-, Endometrium-, Magen-, Nierenbecken- oder hepatobilären Tumoren besteht. Hier erhöht sich das Erkrankungsrisiko um das 40fache bei einem Life-time-risk von 30-60%.

Zum Zeitpunkt der Diagnosestellung befindet sich das Ovarialkarzinom meist schon in FIGO-Stadium III oder IV (FIGO-Stadien siehe Anhang), was insgesamt zu einer schlechten Prognose des Ovarialkarzinoms führt. Die 5-Jahresüberlebensrate (5-JÜR) aller Ovarialkarzinome beträgt 30-40%. Dabei ist zu beachten, dass in FIGO-Stadium I noch eine 80%-ige 5-JÜR besteht, in FIGO-Stadium III und IV nur noch eine 23%-ige bzw. 14%-ige 5-JÜR (Coleman, Gatta et al. 2003). Zur schlechten Gesamtprognose trägt außerdem die hohe Rezidivgefahr bei, etwa 75% der Patientinnen entwickeln ein Rezidiv.

1.1 Klassische Therapieansätze

1.1.1 Mechanismen der Resistenzentstehung gegen Zytostatika

Durch Analyse der Funktion und klinischer Bedeutung aktiver Transportproteine aus der Superfamilie der ABC-Transporter (ATP Binding Cassette) konnten Mechanismen für die beim Rezidiv des Ovarialkarzinoms auftretenden Resistzen gegen Chemotherapie aufgeklärt werden. Unter den bislang 51 beim Menschen identifizierten Vertretern ist das MDR1-Genprodukt p-Glykoprotein (p-gp) der bisher am besten erforschte Stofftransporter. Das p-gp ist eine membranständige Effluxpumpe, die in vielen Geweben vorkommt und für die Stoffelimination aus der Zelle von Bedeutung ist. Es handelt sich um ein 170 kD großes phosphoryliertes und glykolisiertes Protein, das aus 1280 Aminosäuren besteht. P-gp besteht aus zwei homologen Hälften, die durch ein flexibles Mittelstück miteinander verbunden sind. Jede Hälfte hat eine hydrophobe Domäne mit sechs transmembranen

![Abb. 1.1: Schematische Darstellung des p-Glykoproteins](https://www.altcorp.com/AffinityLabeling/pglycoprotein.htm)

1.2 Gentherapie als alternativer Therapieansatz

Einleitung

1.3 Adenovirale Gentherapie

Adenovirale Vektoren mit Deletionen der Genbereiche E1 und E3 können bis zu 7,5 kb Fremd-DNA aufnehmen. Der Genbereich E1 ist verantwortlich für die Regulation der Virusreplikation, Bereich E3 dient dem Schutz der infizierten Zelle vor dem Immunsystem.
Durch die Deletion des E1 Gens sind die rekombinanten adenoviralen Vektoren replikationsinkompetent. Die Produktion der rekombinanten Adenoviren muss deshalb in bestimmten Wirtszellen erfolgen, welche die Deletion der E1 Gene komplementieren und so die Replikation ermöglichen. Die E1-Genexpression, und somit die Virusreplikation, kann jedoch auch gezielt durch einen dem „frühen“ E1A Gen vorgeschalteten Promotor gesteuert werden (siehe 1.3.3).

1.3.1 Problematik der adenoviralen Gentherapie

Im Gegensatz zu vielen Tumorzellen wird CAR jedoch ubiquitär auf der Zelloberfläche der meisten normalen Zellen exprimiert. Besonders in parenchymatösen Organen wie Leber, Milz, Lunge und Niere findet sich eine hohe CAR-Expression. Um Nebenwirkungen der adenviralen Gentherapie in diesen wichtigen Organen zu limitieren, ist die Modifikation der viralen Fiber ebenso von Bedeutung.

1.3.2 Möglichkeiten zur Steuerung der viralen Replikation

1.3.3 Weitere Möglichkeiten zur Steuerung der adenoviralen Replikation

Beim so genannten „transkriptionalen Targeting“ wird das „frühe“ (immediate early) adenovirale E1A Gen unter Kontrolle eines der jeweiligen Tumorentität entsprechenden Promotors gestellt (so genannte Typ-2 CRAds). Das E1A Gen kodiert für ein Protein, das direkt nach Infektion der Zielzelle für die Aktivierung weiterer viraler Promotoren verantwortlich ist. Ohne die Aktivierung werden weitere adenovirale Gene nicht repliziert. Das bedeutet, dass im Idealfall virale Partikel hauptsächlich in Tumorgewebe, nicht aber im umgebenden Normalgewebe amplifiziert werden. Daher sind die Kriterien für die Auswahl geeigneter tumorspezifischer Promotoren zum einen die hohe Expression des korrespondierenden Gens im Tumor und zum anderen eine möglichst niedrige Expression in normalem Gewebe. Systematische Untersuchungen von Genexpressionsmustern in Tumoren und normalem Gewebe mittels Microarray- und Genchip-Technologie konnten in den vergangenen Jahren verschiedene potentiell geeignete Promotoren für verschiedene Tumorentitäten identifizieren. Geeignete Promotoren zur Steuerung adenoviraler Vektoren für die Therapie des Ovarialkarzinoms sind beispielsweise der Secretory Leucoprotease Inhibitor-Promotor (SLPI), der Mesothelin-Promotor (MSLN), oder der Cyclooxygenase-2-
Promotor (Cox-2). Für chemoresistente Ovarialkarzinome eignet sich der in dieser Arbeit untersuchte MDR1-Promotor (multy drug resistance).

Der MDR1-Promotor gehört zu den so genannten induzierbaren Promotoren. Diese Promotoren zeigen eine niedrige basale Expressionsaktivität, aber nach Induktion steigt die Aktivität stark an und es kommt zu einer starken Genexpression (siehe 1.1.1). In dieser Arbeit wurden MDR1-gesteuerte CRAds kloniert und in vitro getestet.

1.3.4 Möglichkeiten zur Verbesserung der adenoviralen Transduktionseffizienz

In der Vergangenheit sind verschiedene Strategien entwickelt worden, die hohe CAR-Expression in normalen Geweben und die niedrige CAR-Expression in Tumorzellen zu umgehen. Beim so genannten „transduktionalen Targeting“ wird die adenovirale Fiber bzw. das Viruskapsid durch genetische Modifikation an die entsprechende Tumoorentität angepasst, um bessere Gentransferraten zu erreichen. Eine Möglichkeit besteht in der Einfügung eines RGD-4C-Motivs (Arginin-Glycin-Asparaginsäure) in den HI-Loop der viralen Fiber. Das RGD-4C-Motiv bindet an αβ-Integrine, die auf der Zelloberfläche von Ovarialkarzinomzellen überexprimiert werden (Hemminki, Belousova et al. 2001). Studien
haben gezeigt, dass auf diese Weise deutlich höhere Virus-Transduktionsraten erzielt werden können (Rein, Breidenbach et al. 2004).

Um die Replikation der CRAds noch weiter zu spezifizieren, kann die 24-bp-Deletion im viralen E1A Gen mit einem vorgeschalteten tumorspezifischen Promotor kombiniert werden. Zusätzlich kann zur Transduktionsverbesserung noch eine Fiber-Modifikation vorgenommen werden.

In dieser Arbeit wurden eigenständig klonierte CRAds getestet, die eine 5/3-Fiberchimäre besaßen und den MDR1-Promotor mit und ohne 24-Basenpaardeletion im viralen E1A Gen.
2. Fragestellung und Zielsetzung

Die virale Replikation soll durch Integration eines möglichst tumorspezifischen Promotors kontrolliert werden und so eine selektive Tumorzellzerstörung bewirken. In dieser Arbeit galt das Interesse speziell dem MDR1-Promotor, denn es ist bekannt, dass die Promotoraktivität von MDR1 in chemoresistenten Karzinomzellen stark erhöht ist. Eine weitere Möglichkeit, die virale Replikation zu steuern, ist die 24-bp-Deletion im viralen E1 Gen, das dem Promotor nachgeschaltet ist. Dadurch wird die Virusvermehrung an den Zellzyklus der Wirtszellen gekoppelt, denn die Replikation des Virus findet nur in Zellen mit Defekt im Retinoblastom-Pathway, d.h. in proliferierenden Zellen, statt.

3. Material und Methoden

3.1 Zellkultur
Alle Zellkulturen werden unter aseptischen Bedingungen in Gewebekulturflaschen bei 37°C, 5% CO₂ und 95% Luftfeuchtigkeit im Begasungsschrank (Haereus, Hanau) kultiviert. Das verwendete, sterile Zellkulturmaterial wird von den Firmen Greiner bio-one (Cellstar®, Frickenhausen), Invitrogen (Gibco ™, Karlsruhe) und Corning Incorporated (Costar®, USA) bezogen.

3.1.2 Zellen und Zelllinien
Für die \textit{in vitro} Versuche werden humane Zelllinien eingesetzt sowie primäre Zellen, die aus Aszites aufgereinigt wurden (s. 3.1.7). Die Produktion von Adenoviren wird in der Zelllinie 293A durchgeführt, die Teile des adenoviralen Genoms als stabile Integration enthält. Die Kulturmedien werden von der Firma Invitrogen (Gibco™) und PAA Laboratories GmbH (Pasching, Österreich) bezogen und enthalten unter anderem Glukose (1,0 bzw. 4,5 g/L), 110 mg/l Natriumpyruvat, 15 mM HEPES und L-Glutamin. Den Medien werden zusätzlich fötales Kälberserum (Mycoplex™, Foetal Bovine Serum (PAA, Österreich), 2%, 5% bzw. 10% v/v), L-Glutamin (20 mM, Invitrogen, Gibco™) und das Antibiotikum Gentamicin (50 µg/ml, Invitrogen, Gibco™) zugesetzt. Die verwendeten Zelllinien bzw. Zellen und weitere zell- und zelllinienspezifische Zusätze zu den Kulturmedien sind der Tabelle 3.1.1 zu entnehmen.

3.1.3 Kultivierung der Zellen
Die Zellen werden in Gewebekulturflaschen kultiviert und je nach Zellart bis zu einem konfluenten Wachstum von 70-90% im Begasungsschrank inkubiert. Während der Kultivierung wird mindestens zweimal wöchentlich ein Mediumwechsel mittels steriler Einmalpipetten vorgenommen.

3.1.4 Subkultivierung
Bei der Subkultivierung werden subkonfluente Kulturen durch Passagierung geerntet. Die adhärent wachsenden Zellen werden dazu nach Abnahme des Mediums mit PBS (Dulbecco’s Phosphat Buffered Saline (1x, PAA)) gewaschen und durch Zugabe von 0,5% Trypsin-EDTA (w/v) (10x, Invitrogen Gibco™, 1:10 mit PBS verdünnt) vom Boden der Zellkulturflasche gelöst. Zur Inaktivierung des Trypsins und zur Aufnahme der Zellen wird das gleiche Volumen zellspezifischen Mediums zugeführt und in ein steriles PP-Röhrchen (Cellstar®, Greiner bio-one) überführt. Durch Zentrifugation (5 min, 1000 rpm) werden die...
Zellen sedimentiert und dann nach Vereinzelung in 1 ml Medium ihrem Wachstum entsprechend anteilig in einer Zellkulturflasche neu ausgesät.

Tabelle 3.1.1: Auflistung der Zellen, Zelllinien, Kultivierungsmedien und Bezugsquellen

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Ursprung</th>
<th>Kulturmedium</th>
<th>Zusätze</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>293A</td>
<td>Nierenkarzinom</td>
<td>DMEM (4g/L)</td>
<td>--</td>
<td>Qbiogene, Heidelberg</td>
</tr>
<tr>
<td>Ov-4</td>
<td>Ovarialkarzinom</td>
<td>RPMI 1640</td>
<td>--</td>
<td>Prof. Curiel, University of Alabama, USA</td>
</tr>
<tr>
<td>Hey</td>
<td>Ovarialkarzinom</td>
<td>RPMI 1640</td>
<td>Vitamine (1% v/v)</td>
<td>Prof. Pfleiderer, Universität Freiburg, Deutschland</td>
</tr>
<tr>
<td>MDAH 2774</td>
<td>Ovarialkarzinom</td>
<td>DMEM (4,5 g/l Glukose)</td>
<td>Vitamine (1% v/v)</td>
<td>ATCC (CRL-10303)</td>
</tr>
<tr>
<td>SKOV-3</td>
<td>Ovarialkarzinom</td>
<td>RPMI 1640</td>
<td>--</td>
<td>ATCC (HTB-77)</td>
</tr>
<tr>
<td>SKOV-3 i.p.</td>
<td>Ovarialkarzinom</td>
<td>DMEM/NutMix-F12</td>
<td>--</td>
<td>Prof. Curiel, University of Alabama at Birmingham, USA</td>
</tr>
<tr>
<td>HepG2</td>
<td>Leberkarzinom</td>
<td>RPMI 1640</td>
<td>--</td>
<td>ATCC (HB 8065)</td>
</tr>
<tr>
<td>HMEC</td>
<td>Reduktionsplastik</td>
<td>Ham’s F-12</td>
<td>Insulin, Hydrocortison, Penicillin/ Streptomycin</td>
<td>Frauenklinik Düsseldorf</td>
</tr>
<tr>
<td>Keratinozyten</td>
<td>humaner Donor</td>
<td>Keratocyte-Growth-Media</td>
<td>supplements</td>
<td>Hautklinik Düsseldorf</td>
</tr>
<tr>
<td>Fibroblasten</td>
<td>Normalgewebe</td>
<td>DMEM (1g/L)</td>
<td>--</td>
<td>Hautklinik Düsseldorf</td>
</tr>
<tr>
<td>Prim. Mamma bzw. Ov.-carcinomzellen</td>
<td>humaner Donor</td>
<td>RPMI 1640</td>
<td>Penicillin/ Streptomycin</td>
<td>Frauenklinik Düsseldorf</td>
</tr>
</tbody>
</table>

3.1.5 Kryokonservierung

3.1.6 Induktion der MDR1-Expression

3.1.7 FICOLL-Dichtezentrifugation

3.2 DNA-/RNA-Analytik

3.2.1 Restriktionsanalyse
Bei einer Restriktionsanalyse werden 1 µg DNA mit 2 U/µg DNA eines Restriktionsenzymns für mindestens 2 h inkubiert. Bei einer Restrikition, die vorbereitend für eine Transfektion/Transformation adenoviraler DNA ist, werden 5 µg DNA (Shuttle-Plasmid) bzw. 10 µg (adenovirales Plasmid) mit 15-20 U/µg DNA des Enzyms Pme I bzw. Pac I für 5 h inkubiert. Restriktionsenzyme, enzymspezifische Zusätze und Puffer werden von der Firma New England BioLabs® (NEB, Frankfurt) bezogen. Die Reaktion findet nach Herstellerangaben unter den für das jeweilige Enzym spezifischen Pufferbedingungen bei 37°C statt. Finden Restriktionen mit mehreren Enzymen statt, werden die Reaktionen in
einem Ansatz unter den für alle Enzyme idealen Pufferbedingungen durchgeführt. Nach einer Restriktion werden die Enzyme bei 65°C für 20 min hitzeinaktiviert. Um eine Re-Ligation der Vektoren zu vermeiden, wird eine Dephosphorylierung der freien Phosphatgruppen durch 0,5 U/µg DNA CIP (Calf Intestinal Alakaline Phosphatase, NEB) für 1 h bei 37° durchgeführt. Danach wird die DNA bei −20°C eingefroren oder mittels PCI-Extraktion weiter aufgereinigt.

3.2.2 PCI (Phenol-Chloroform-Isoamylalkohol)-Extraktion
Um die rekombinanten adenoviralen Konstrukte nach einer Restriktionsanalyse aufzureinigen, wird eine PCI-Extraktion durchgeführt. Die Extraktion der DNA beginnt mit der Zugabe von 1 Volumen PCI (Phenol:Chloroform:Isoamylalkohol 25:24:1 v/v, SIGMA®) zu der DNA-haltigen Probe. Der Ansatz wird dann zur Phasentrennung für 3 min bei Raumtemperatur und 14000 rpm (Eppendorf Centrifuge 5417R) zentrifugiert. Danach wird die obere, wässrige und DNA-haltige Phase in ein neues Eppendorf-Reaktionsgefäß überführt. Die Proteine werden denaturiert und sammeln sich in der organischen Phase. Die DNA wird mit 1/10 Volumen Natrium-Acetat-Lösung (3M) und 2-3 Volumen Ethanol absolut (−20°C) gefällt, wobei die Probe gemischt und anschließend zur Fällung mindestens 30 min bei −80°C inkubiert wird. Durch erneute Zentrifugation bei 14000 rpm und 4°C wird die gefallte DNA pelletiert und das Pellet mit 1 Volumen 75% Ethanol gewaschen. Nach Entfernung des Ethanols und einer weiteren Zentrifugation bei 14000 rpm und 4°C für 15 min wird die DNA getrocknet und in TE-Puffer (10 mM Tris pH 8,0, 1 mM EDTA) aufgenommen.

3.2.3 Photometrische Bestimmung von DNA und RNA
3.2.4 RNA-Isolation

Zur Isolierung von RNA aus Zellen wird die Zellernte 5 min bei 1000 rpm (Haereus Seprotech Megafuge 1.0) zentrifugiert. Der Überstand wird verworfen und es wird mit dem gleichen Volumen an PBS gewaschen. Anschließend wird wieder zentrifugiert, der Überstand PBS verworfen und das Zellpellet in 1 ml TRIzol® aufgenommen. Die so homogenisierten Proben können für etwa einen Monat bei –80°C aufbewahrt, oder für die weitere RNA-Isolation aufbereitet werden. Für die weitere RNA-Isolation werden die homogenisierten Proben 5 min bei Raumtemperatur inkubiert, damit eine Dissoziation von Nukleoproteinkomplexen ermöglicht wird. Danach werden 200 µl Chloroform zugegeben und die Proben ca. 15 Sekunden geschüttelt. Hiernach wird 2-3 min bei Raumtemperatur inkubiert. Danach werden die Proben 15 min bei 12000 rpm zentrifugiert. Die wässrige RNA-haltige Oberphase wird in ein neues Eppendorf-Gefäß überführt, mit 500 µl Isopropanol versetzt und vorsichtig invertiert. Nach 10 min Inkubation bei Raumtemperatur wird die präzipitierte RNA durch Zentrifugation (10 Minuten, 4°C, 12000 rpm) pelletiert, mit 1 ml 75% (v/v) Ethanol (-20°C) gewaschen und erneut für 5 min bei 9500 rpm und 4°C zentrifugiert. Nach vollständiger Entfernung des Ethanols wird das RNA-Pellet im Heizblock bei 55°C für 5-10 min getrocknet und in 20 bis 100 µl DEPC-Wasser resuspendiert. Die Bestimmung der RNA Konzentration erfolgt photometrisch.

3.2.5 cDNA-Synthese

Bei der cDNA-Synthese werden mit Hilfe der Reversen Transkriptase (Omniscript, QUIIAGEN) mit Random-Primern (Hexaoligonukleotide) Gesamt-RNA (mRNA, tRNA und rRNA) in cDNA (complementary DNA) translatiert. Die Verwendung unspezifischer Random-Primer ermöglicht es, mehrere Transkripte gleichzeitig zu untersuchen und zu quantifizieren. Zunächst wird die RNA (5 µg) für 5 Minuten bei 65°C denaturiert und anschließend auf Eis abgekühlt. Anschließend wird der Reaktionsansatz zugeben, sodass folgende Konzentrationen vorliegen: 50 mM KCl, 10 mM Tris/HCl, 7.5 mM MgCl₂, 0.1 mg/ml BSA, 15 mM DTT, je 1 mM dATP, dCTP, dGTP und dTTP, 1 U/µl RNasin, 1000 pmol Random-Primer und 9.5 U (0,5µl) Reverse Transkriptase. Für die cDNA Synthese wird der Reaktionsansatz 10 Minuten bei 25°C und danach 45 Minuten bei 42°C inkubiert. Anschließend wird die
Reverse Transkriptase durch 5 Minuten bei 95°C inaktiviert. Nach Abkühlung auf Eis werden die cDNA Proben bei -20°C gelagert.

3.2.6 PCR (Polymerase Chain Reaction)

Tabelle 3.2.1: PCR-Ansatz mit Reaktionsbedingungen

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen/Reaktion</th>
<th>PCR-Bedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktionspuffer (10x)</td>
<td>4,5 µl (1x)</td>
<td>94°C 10 min</td>
</tr>
<tr>
<td>(Amersham Biosciences Buckinghamshire, England)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dNTP (10nmol/µl) (Roche, Mannheim)</td>
<td>3 µl (0,6nmol/µl)</td>
<td>94°C 1 min</td>
</tr>
<tr>
<td>5´Primer (10pmol/µl) (Metabion International AG, Martinsried)</td>
<td>5 µl (1pmol/µl)</td>
<td>56°C 1 min</td>
</tr>
<tr>
<td>3´Primer (10pmol/µl) (Metabion)</td>
<td>5 µl (1pmol/µl)</td>
<td>72°C 1 min</td>
</tr>
<tr>
<td>DNA (variable Konzentration)</td>
<td>1 µl</td>
<td>72°C 8 min</td>
</tr>
<tr>
<td>Wasser</td>
<td>26,5 µl</td>
<td></td>
</tr>
<tr>
<td>Taq-Polymerase-Mix, bestehend aus:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taq-Polymerase (5 U/µl) 0,5 µl, Reaktionspuffer (1x) 0,5 µl, Wasser 4 µl</td>
<td>5 µl</td>
<td></td>
</tr>
</tbody>
</table>

Der zu amplifizierende MDR1-Promotor hat eine Fragmentgröße von 485 bp. Die entsprechenden Primer flankieren den Promotor so, dass noch 600 bp des adenoviralen Genoms (Teil des E1-Gens) mit amplifiziert werden, sodass ein PCR-Produkt von 1,1 kb Größe entsteht. Die annealing-Temperatur der Primer beträgt 55°C.
Primersequenzen: 5´-MDR1-Promotor: 5´-cga gct ctt acg cgt gct a-3´ und 3´-E1: 3´-att ttc act tac tgt aga caa aca-5´.

3.2.7 Überprüfung der Qualität der cDNA durch β-Actin-PCR

Die synthetisierte cDNA wird mittels β-Actin-PCR (s. Tab. 3.2.2) auf ihre Qualität und eine eventuelle Kontamination mit genomischer DNA untersucht. Die Primer sind so gewählt, dass genomische DNA aufgrund der zusätzlichen Intronsequenzen ein größeres Fragment (652 bp) ergibt als das cDNA-Fragment (446 bp). Die unterschiedlichen Fragmente werden über die Gelelektrophorese im Agarosegel (3.3.1) aufgetrennt.

Primersequenzen: β-Actin-5´-Primer: 5´-att tgc ggt gga cga tgg ag-3´ und β-Actin-3´-Primer: 5´-aga gat ggc cac ggc tgc tt-3´.

Tabelle 3.2.2: Reaktionsbedingungen und PCR-Bedingungen der β-Actin-PCR

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen/Reaktion</th>
<th>PCR-Bedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktionspuffer (10x)</td>
<td>4,5 µl (1x)</td>
<td>94°C 10 min</td>
</tr>
<tr>
<td>(Amersham Biosciences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dNTP (10nmol/µl) (Roche)</td>
<td>4 µl (0,8nmol/µl)</td>
<td>94°C 1 min</td>
</tr>
<tr>
<td>5´Primer (10pmol/µl) (Metabion)</td>
<td>2,5 µl (1pmol/µl)</td>
<td>60°C 1 min</td>
</tr>
<tr>
<td>3´Primer (10pmol/µl) (Metabion)</td>
<td>2,5 µl (1pmol/µl)</td>
<td>72°C 1 min</td>
</tr>
<tr>
<td>cDNA (1:5 verdünnt)</td>
<td>1 µl</td>
<td>35 Zyklen</td>
</tr>
<tr>
<td>Wasser</td>
<td>30,5 µl</td>
<td>72°C 8 min</td>
</tr>
<tr>
<td>Taq-Polymerase-Mix, bestehend aus:</td>
<td>5 µl</td>
<td></td>
</tr>
<tr>
<td>Taq-Polymerase (5 U/µl) 0,4 µl,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaktionspuffer (1x) 0,5 µl, Wasser 4 µl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.8 Quantitative RT-PCR zur Bestimmung der mRNA-Expression

3.3 Gelelektrophoretische Auftrennungsmethoden

3.3.1 Elektrophoretische Auftrennung mit Agarosegelen
Die DNA-Fragmente oder PCR-Produkte werden in 1-3%-igen (w/v in 1x TBE-Puffer) Agarosegelen aufgetrennt. Die Proben werden dazu in einem Verhältnis von 1:1 mit Probenpuffer (SB-Puffer, 1x) vermischt. Um die Größe der Fragmente zu bestimmen, werden die 1-kb-DNA-Leiter (Invitrogen, Gibco™, 5 µl/Spur) und/oder der SmartLadder (Eurogentec, 5 µl/Spur) mitgeführt. Abhängig von der Größe der aufzutrennenden Fragmente erfolgt die Elektrophorese bei 80 bis 100 V für 45 bis 120 min. Nach dem Lauf wird das Gel in einer Ethidiumbromidlösung für mindestens 20 min gefärbt. Durch die Bestrahlung mit UV-Licht (λ = 312 nm) wird die Floureszenz des interkalierenden Agens angeregt und die DNA-Fragmente werden sichtbar gemacht.

1x TBE-Puffer 0,2 M Tris
0,17 M Borsäure
2 mM EDTA, pH 8,0

3.3.2 Polyacrylamid-Gelelektrophorese

Bind-Silan-Lösung
4 ml Ethanol absolut
15 µl Bind-Silan (Pharmacia)
1 ml 10% Essigsäure

Polyacrylamid-Lösung
25,2 g Harnstoff (SIGMA)
9 ml 40% Acrylamid/N,N-Methylen-bisacrylamid (29:1)
25,5 ml Aqua dest.
6 ml 6x TBE-Puffer
200 µl 10% APS (Pharmacia)
40 µl TEMED (BioRad)

Probenauftragspuffer
100 ml Formamid (deionisiert)
600 µg Dextranblau
4 ml 20 mM EDTA, pH 8,3

6x TBE
72,7 g Tris
30,8 g Borsäure
2,25 g EDTA

Die Proben müssen zur Auftragung auf das Gel erst vom Öl getrennt werden. Dann werden die Proben je nach PCR-Produktintensität mit Wasser im Verhältnis von 1:2 bis 1:10 verdünnt. 6,5 µl der Proben werden mit 6,5 µl Probenauftragspuffer gemischt, für 5 min bei
95°C denaturiert und danach 5 min auf Eis abgekühlt, woraufhin sie dann auf das Gel aufgetragen werden. Es wird ein 1:10 mit Aqua dest. verdünnter 6x TBE Puffer als Laufpuffer verwendet. Folgende Laufbedingungen sind erforderlich: max. Spannung 1500 V, max. Stromstärke 34 mA, max. Leistung 38 W, Temperatur 40°C und Laufzeit 200 bis 210 min.

3.4 Mikrobiologische Methoden

3.4.1 Bakterienstämme

Es wird mit den E. coli Stämmen DH5α und BJ5183 gearbeitet. Sie charakterisieren sich wie folgt:

DH5α: F-, φ80lacZΔM15, Δ(lacZYA-argF), U169, deoR, recA1, endA1, hsdR17(rK-, mK+)
phoA, supE44, λ-thi-1, gyrA96, relA1
BJ5183: endA, sbcBC, recBC, galK, met, thi-1, bioT, hsdR (Str′)

3.4.2 Medien und Aufzucht von E. coli

Alle E. coli werden generell in LB-Medium (1% Trypton, 0,5% Hefeextrakt, 0,5% NaCl, pH 7,3) und bei 37°C kultiviert. Die Kultivierung der Flüssigkulturen erfolgt auf einem Schüttler (GFL®, 180 rpm). Zur Selektion plasmidhaltiger Zellen wird dem Medium nach dem Autoklavieren 50 µg/µl Ampicillin bzw. Kanamycin zugesetzt (Selektionsmedium). Feste Nährmedien enthalten zusätzlich 2% Agar (Agar-Agar, Merck, Darmstadt). Nach der Elektroporation wird ein mit Salzen und Glucose erweitertes SOC-Medium eingesetzt (0,5 g 0,5% Hefe-Extrakt, 2 g 2% Trypton, 0,06 g 10 mM NaCl, 0,018 g 2,5 mM KCl, 0,204 g 10 mM MgCl₂x6H₂O, 0,246 g 10 mM MgSO₄x7H₂O, 0,378 g 20 mM Glukose).

3.4.3 Herstellung kompetenter E. coli

Für die Herstellung kompetenter Zellen wird zunächst eine 10 ml Vorkultur über Nacht bei 37°C auf einem Schüttler (180 rpm) angezüchtet. Am folgenden Tag werden mit dieser Vorkultur 500 ml LB-Medium angeimpft. Das Zellwachstum wird photometrisch bei λ = 600 nm verfolgt. Bei einer optischen Dichte von ca. OD₆₀₀nm = 0,6 (nach etwa 2 h) werden die Zellen geerntet und in Zentrifugenröhrchen 10 Minuten auf Eis inkubiert, was ein weiteres Wachstum verhindern soll. Die Zellen werden bei 4°C und 6000 rpm (Beckman J2-H2) für 15 Minuten pelletiert. Anschließend werden die Zellen zweimal mit eiskaltem Wasser (500 ml und 250 ml) gewaschen und erneut zentrifugiert. Nach einem weiteren Waschschritt mit 10 ml 10%-igem Glycerin und erneuter Zentrifugation werden die Zellen in 1,5 ml 10%-igem Glycerin resuspendiert, in 50 µl Eppendorf-Reaktionsgefäße aliquotiert und bei -80°C gelagert.
3.4.4 Klonierung

3.4.4.1 Plasmide zur Klonierung rekombinanter Adenoviren

3.4.4.2 Isolierung von DNA-Fragmenten aus Agarosegelen

3.4.4.3 Elektroporation
die kleinsten (homologe Rekombination) bzw. größten (Transfektion) Bakterienkolonien auf den Agar-Platten mit einem Zahnstocher gepickt und es werden 2 ml Übernachtkulturen (Selektionsmedium) angeimpft.

3.4.4.4 Plasmidpräparation

3.5 Adenoviraler Gentransfer

3.5.1 Klonierung des rekombinanten Adenovirusgenoms
Beim Adenovirusgenom handelt es sich um ein ca. 36 kb großes lineares DNA-Molekül, das die Erkennungssequenz von jedem kommerziell erhältlichen Restriktionsenzym mehrfach enthält. Deshalb eignet sich das Adenovirusgenom nicht zur direkten Klonierung. Zur Herstellung rekombinanter, adenoviraler Vektoren wird das AdEasy™-System (Qbiogene, Heidelberg) verwendet. Um nun die gewünschte Fremd-DNA in das Adenovirusgenom zu integrieren, wird dabei der „Umweg“ über so genannte Shuttle-Plasmide gewählt. Dabei wird in einem ersten Schritt das gewünschte DNA-Fragment in den Shuttle-Vektor eingebaut und dieses in einem zweiten Schritt über homologe Rekombination (s. Abb. 3.5.1) in das Adenovirusgenom integriert. Das Adenovirusgenom wurde von TG. Uil und V. Krasnykh, University of Alabama, USA bezogen und heißt pvkF5/3. Die Shuttle-Vektoren wurden von Frau I. Herrmann zur Verfügung gestellt und heißen pSMDR1E1, pSMDR1E1Δ24 und pSMDR1Luc.
3.5.2 Homologe Rekombination

Um eine erhöhte Effizienz bei der homologen Rekombination zu erreichen, werden die Plasmide pvkF5/3 und pShuttle gleichzeitig in E. coli (BJ5183) transfiziert. BJ5183 ist ein Bakterienstamm, der die Rekombination möglich macht, allerdings sind die rekombinanten Plasmide in BJ5183 nicht über längere Zeit stabil, sodass für eine Präparation größerer Plasmidmengen auf den Stamm DH5α zurückgegriffen werden muss. Die korrekten rekombinanten Klone werden durch Verdau mit Restriktionsendonukleasen detektiert und die Plasmide in größerer Menge mit dem EndoFree Plasmid Maxi Kit (Qiagen, Hilden) hergestellt.
3.5.3 Transfer in Verpackungszelllinie und Klonselektion

Um die rekombinanten Plasmide aus Adenovirusgenom und eingefügter Genexpressionskassette als adenovirale Partikel zu verpacken, müssen diese in die Verpackungszelllinie 293A transferiert werden. Die Zelllinie 293A stammt von einem embryonalen Nierenzellkarzinom ab und enthält Fragmente der Adenovirus-DNA. Durch die stabile Integration der E1-Region des Adenovirusgenoms in 293A kann diese Zelllinie die Deletion des E1-Bereichs in adenoviralen Vektoren komplementieren und es kommt zur Replikation des rekombinanten Adenovirus in 293A Zellen.

Die lytische Freisetzung der rekombinnten Adenoviren wird durch das Auftreten viraler Plaques im Monolayer sichtbar. Das Zelllysat wird nach vollständigem CPE als Virus-Stock geerntet und die Adenoviren werden wie unter 3.5.5 isoliert.
3.5.4 Produktion rekombinanter Adenoviren

3.5.5 Isolation von Adenoviren

Um die Adenoviren gezielt aus den Verpackungszellen (293A) freizusetzen, wird das Pellet nach der Ernte der Zellen durch einen so genannten Gefrier-Tau-Zyklus aufgeschlossen. Dabei wird die Zellsuspension abwechselnd für 20 min in flüssigem Stickstoff (-196°C) eingefroren und sofort wieder im 37°C Wasserbad aufgetaut (20 min). Nach viermaligem Gefrier-Tau-Zyklus sind alle Zellen lysiert und die Viren liegen frei in der Lösung vor. Zur Abtrennung der Zelltrümmer wird für 10 min bei 4°C und 1200 rpm zentrifugiert und der Virus-haltige Überstand (Zelllysat) in ein neues PP-Röhrchen überführt. Die so isolierten
Adenoviren werden dann über zwei diskontinuierliche CsCl-Gradienten und einer anschließenden Dialyse aufgereinigt (s. 3.5.6).

3.5.6 Aufreinigung und Dialyse

CsCl (1,33 g/cm³) 113,6 g CsCl
1,25 ml HEPES 1M
pH 7,8
mit Aqua dest. auf 250 ml auffüllen, steril autoklavieren
Lagerung bei Raumtemperatur
CsCl (1,45 g/cm³) 152,3 g CsCl
1,25 ml HEPES 1M
pH 7,8
mit Aqua dest. auf 250 ml auffüllen, steril autoklavieren
Lagerung bei Raumtemperatur

5 mM HEPES 250 µl HEPES 1M
pH 7,8
49,75 ml Aqua dest.
steril autoklavieren
Lagerung bei Raumtemperatur

Dialysepuffer 20 ml 10mM Tris pH 8,0
100 g Sucrose 5%
2 ml MgCl₂ 2mM
mit Aqua dest. auf 2000 ml auffüllen
steril autoklavieren, Lagerung bei 4°C

viral preservation media 1 ml 1M Tris pH 8,0
2 ml 5M NaCl
0,1 g BSA
mit Aqua dest. auf 50 ml auffüllen
50 ml Glycerol
vor Gebrauch steril filtrieren, Lagerung bei 4°C

3.6 Titerbestimmung

3.6.1 Photometrische Titerbestimmung
Diese Methode basiert auf der Messung der Extinktion viraler DNA. Die Konzentration der Infektionseinheiten in der isolierten Virenlösung kann damit bestimmt werden. Dazu wird ein Aliquot der Viruslösung (200 µl) durch ein äquivalentes Volumen des Viruslysepuffers lysiert (1:2 Verdünnung), indem in einem Wasserbad für 20 min bei 56°C inkubiert wird. Durch Messung der optischen Dichte dieser Probe im Photometer (PERKIN ELMER, Lambda Bio) kann auf die Anzahl viraler Partikel (VP) in der Lösung geschlossen werden. Die Probe wird bei Wellenlänge 260 nm, 280 nm und 320 nm gemessen. Der Wert bei 320 nm wird dem Wert für die Messung bei 260 nm abgezogen, denn er entspricht der Absorption der Lösung
ohne virale Partikel. Idealerweise sollte der Wert bei 260 nm zwischen einer OD von 0,1 und 1 liegen. Dabei entspricht die Extinktion von 1 OD\textsubscript{260nm} = 1,1x10^{12} Viren. Der Virustiter berechnet sich dabei nach folgender Formel:

\[
\text{OD_{260nm} \times Verdünnungsfaktor \times 1,1x10^{12} = Titer in VP/ml.}
\]

\[
\text{OD_{260nm} = Wert 260 nm – Wert 320 nm}
\]

Viruslysepuffer

- 100 µl TrisHCL 1M pH 8,0
- 20 µl EDTA 0,5 M pH 8,0
- 500 µl SDS (10%)
- mit Aqua dest. auffüllen auf 10 ml

3.6.2 TCID\textsubscript{50}- Methode (Tissue Culture Infectious Dose)

Der Virustiter T berechnet sich nach folgender Formel:

\[
T = 10^{1+d(S-0,5)} \text{ mit } d = \log (\text{Verdünnungsfaktor}) \text{ und } S = \Sigma \text{CPE-Wellen}/10
\]

In dem angegebenen Beispiel (s. Abb. 3.6.1) ist die Verdünnung jeweils um den Faktor 10 erhöht worden, d.h. d=1 und die Summe aller Wells mit CPE ist 85, da auch die ausgelassenen Verdünnungsstufen 10-1 bis 10-3 für die Berechnung gewertet werden müssen. Demnach ergibt sich ein Titer von T = 10^{1+1(8,5-0,5)} = 10^{0} pro 90 µl, die für die Infektion verwendet worden sind. Um den Titer in die gebräuchliche Einheit „plaque forming
unit“ (PFU) umzurechnen, muss vom TCID$_{50}$-Titer 0,7 log subtrahiert werden. In dem Beispiel ergibt sich also:

\[
T = 1 \times 10^9 \text{TCID}_50/90 \mu l = 1 \times 10^{9-0.7}/90 \mu l = 1 \times 10^8.3 \text{ PFU}/90 \mu l
\]

Abb. 3.6.1: Pipettierschema eines TCID$_{50}$
3.7 Luziferase-Reportergenassay

Tabelle 3.7.1: ausgesäte Zellzahl/Well im Luziferase-Reportergenassay

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Zellzahl/Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skov-3</td>
<td>10000</td>
</tr>
<tr>
<td>Fibroblasten</td>
<td>20000</td>
</tr>
<tr>
<td>Hey</td>
<td>15000</td>
</tr>
<tr>
<td>MDAH 2774</td>
<td>15000</td>
</tr>
<tr>
<td>Primäre Zellen</td>
<td>10000</td>
</tr>
</tbody>
</table>

3.8 Zytotoxizitätsassay (MTS-Assay)

Für ein MTS-Assay werden in 96-Well-Platten pro Well 10000 Zellen in 100 µl zellspezifischem Wachstumsmedium ausgesät. 24 h später erfolgt die adenovirale Infektion. Es wird mit MOI 0,1, 1 und 10 infiziert, wobei mit dem biologischen Titer (TCID₉₀ - Methode) gearbeitet wird. Die Infektion findet in 50 µl zellspezifischem Wachstumsmedium mit 2% FCS statt. Als Negativkontrolle werden auch bei diesem Assay Zellen ohne Virus nur mit Wachstumsmedium (2% FCS) versehen (MOI 0). Zur Datenreproduzierbarkeit werden Vierfachbestimmungen pro MOI durchgeführt. In drei Wells, die keine Zellen enthalten, werden jeweils 100 µl Wachstumsmedium (5% FCS) gegeben, um die Hintergrundabsorption bestimmen zu können. Nach 1 h Inkubation bei 37°C und 5% CO₂ im Begasungsschrank ist die virale Infektion abgeschlossen und zu jedem Well werden 200 µl zellspezifisches Wachstumsmedium (5% FCS) gegeben. Wenn nun das schnellste Virus in der kleinsten MOI (0,1) ca. 50% der Zellen lysiert hat (erkennbar am CPE, je nach Zellart etwa nach 7 bis 15 Tagen), wird gemessen. Dafür wird das Medium der Zellen bis auf 100 µl pro Well entfernt und auf jedes Well werden 20 µl MTS pipettiert. Danach erfolgt eine vierstündige Inkubation bei 37°C und 5% CO₂ im Begasungsschrank. Nach dieser Zeit hat das anfangs gelb-grünliche MTS in den Wells eine, in der Intensität von der Anzahl vitaler Zellen abhängige, rot-bräunliche Farbe angenommen. Deren Absorption bei 490 nm wird nun im Absorptionsphotometer gemessen. Die Messergebnisse werden mit MS Excel™ verarbeitet.
3.9 Immunhistochemie

Material und Methoden

Aufbewahrungsmedium
250 ml 1x PBS
42,8 g Sucrose
0,33 g MgCl₂
250 ml Glycerin

3.10 Tumor-Chemosensitivitätsassay (TCA-100)

der Reihe A durch die Reihen B-F der Platte seriell verdünnt. Zum Schluss jeweils 100 µl aus der Reihe F entnehmen und verwerfen.

Um optimale Ergebnisse zu erhalten, werden 20000 lebende Zellen pro Vertiefung ausgesät. Diese werden vorher gewaschen, gezählt sowie in CAM resuspendiert. Es wird ein Master-Mix hergestellt, der pro 100 µl 20000 Zellen enthält, die in die für die Zytostatika-Testung bestimmten Vertiefungen pipettiert und vorsichtig gemischt werden. Dabei ist darauf zu achten, dass die Pipettenspitzen beim Pipettieren in eine Spalte mit einem neuen Zytostatikum gewechselt werden. In die für die M0-Kontrollen und MI-Kontrollen vorgesehenen Reihen werden ebenso 100 µl des Master-Mixes pipettiert. Die Platten werden abgedeckt und im Begasungsschrank bei 37°C, 5% CO₂ und >95% Luftfeuchtigkeit für 6-7 Tage inkubiert.

Die Wachstumshemmung (Tumor Growth Inhibition, TGI) der Tumorprobe für jede Konzentration (TDC) einzelner Medikamente oder Kombinationen wird nach folgender Formel berechnet:

\[1 - (\text{Test} - \text{MI}) / (\text{M0} - \text{MI}) = \text{TGI} \]

wobei:
- Test = Durchschnitt der drei Messwerte pro Konzentration eines Zytostatikums
- MI = Durchschnitt der zwölf Maximum Inhibitor-Kontrollen
- M0 = Durchschnitt der zwölf Kontrollen ohne Zytostatika-Zusatz
Basierend auf den TGI-Werten berechnet die Software vier weitere Parameter:

\[AUIC = \text{Area Under Inhibition Curve} \]
\[IC_{50} = \text{Durch Interpolation ermittelte Zytostatika-Konzentration, die zu 50\% TGI führt} \]
\[IC_{90} = \text{Durch Interpolation ermittelte Zytostatika-Konzentration, die zu 90\% TGI führt} \]
\[\text{S.I.} = \text{Sensitivitäts-Index} \]

Folgende Richtlinien werden zur Interpretation von TCA-100 Ergebnissen für Zytostatika- Sensitivität und –Resistenz verwendet:

1. Zytostatika-Sensitivität ist erkennbar bei hohen AUIC-Werten, niedrigen IC_{90}-, IC_{50}- und S.I.-Werten und hohen TGI-Werten, die auf vollständige Unterdrückung des Wachstums der Tumorzellen hinweisen.

Vier Kategorien der ex vivo Sensitivität wurden wie folgt definiert:

- Starke Sensitivität: IC_{90} < 100\% TDC und IC_{50} < 25\% TDC
- Partielle Sensitivität: IC_{90} > 100\% TDC und IC_{50} < 25\% TDC
- Schwache Sensitivität: IC_{90} < 100\% TDC und IC_{50} > 25\% TDC
- Resistenz: IC_{90} > 100\% TDC und IC_{50} > 25\% TDC

3.11 Statistische Analyse

Für die statistische Analyse werden die Daten aus separaten Experimenten verwendet. Die MTS-Assays liegen in dreifacher, die Luziferasereportergenassays in zwei- bzw. dreifacher Ausführung vor. Es werden stets Mittelwerte ± Standardabweichung angegeben. Im Falle einer Berechnung der Signifikanz wird der Student’s t-Test (paarweise, doppelseitig) verwendet. P-Werte <0,05 werden als signifikant gewertet.
4. Ergebnisse

Um die Vorteile adenoviraler Vektorsysteme für die Gentherapie gynäkologischer Tumore zu untersuchen, wurden onkolytische und Luziferase exprimierende adenovirale Vektoren hinsichtlich Tumorspezifität und Infektionseffizienz untersucht. Die Tabelle 4.1 zeigt die photometrisch und durch die TCID₅₀-Methode bestimmten Titer der Viren, die in in vitro Versuchen eingesetzt wurden. Dabei geben die photometrisch bestimmten Titer die Anzahl an viralen Genomen pro µl Lösung an (VP = virale Partikel). Mit der TCID₅₀-Methode wurde der biologische Titer bestimmt, d.h. die aktiven (intakten) viralen Partikel in der Virenlösung (Pfu = plaque forming unit). Der Quotient von VP und Pfu soll einen Anhaltspunkt für die Vergleichbarkeit der eingesetzten Viren sein. Die mit (*) markierten Viren wurden eigenständig hergestellt sowie amplifiziert und sowohl deren photometrischer, als auch biologischer Titer wurden selber bestimmt. Die mit (**) markierten Viren freundlicherweise erhalten von Prof. Curiel, University of Alabama, USA. Das mit (***) markierte Virus freundlicherweise erhalten von A. Kanerva, University of Helsinki, Finnland.

Tabelle 4.1: photometrisch und über die TCID₅₀-Methode bestimmte Titer der in den Versuchen eingesetzten Viren. VP = virale Partikel; Pfu = plaque forming unit; die mit (*) markierten Viren wurden eigenständig kloniert; die mit (**) markierten Viren wurden von Prof. Curiel (University of Alabama, USA), das mit (***) markierte Virus wurde von A. Kanerva, University of Helsinki, Finnland, zur Verfügung gestellt.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Titer in VP/ml</th>
<th>Titer in VP/µl</th>
<th>Titer in Pfu/ml</th>
<th>Titer in Pfu/µl</th>
<th>(VP/µl)/(Pfu/VP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad5.WT**</td>
<td>5,24 x 10 exp12</td>
<td>5,24 x 10 exp9</td>
<td>3,16 x 10 exp9</td>
<td>3,16 x 10 exp6</td>
<td>1:1658</td>
</tr>
<tr>
<td>Ad5/3.Δ24***</td>
<td>2,84 x 10 exp12</td>
<td>2,84 x 10 exp9</td>
<td>3,16 x 10 exp10</td>
<td>3,16 x 10 exp7</td>
<td>1:89</td>
</tr>
<tr>
<td>Ad5/3.MDR1E1*</td>
<td>6,51 x 10 exp11</td>
<td>6,51 x 10 exp8</td>
<td>8,97 x 10 exp9</td>
<td>8,97 x 10 exp6</td>
<td>1:72</td>
</tr>
<tr>
<td>Ad5/3.MDR1E1Δ24*</td>
<td>4,92 x 10 exp11</td>
<td>4,92 x 10 exp8</td>
<td>8,15 x 10 exp9</td>
<td>8,15 x 10 exp6</td>
<td>1:60</td>
</tr>
<tr>
<td>Ad5/3.MDR1Luc*</td>
<td>1,19 x 10 exp12</td>
<td>1,19 x 10 exp9</td>
<td>6,58 x 10 exp9</td>
<td>6,58 x 10 exp6</td>
<td>1:180</td>
</tr>
<tr>
<td>Ad5/3.CMVLuc**</td>
<td>9,13 x 10 exp11</td>
<td>9,13 x 10 exp8</td>
<td>7,13 x 10 exp9</td>
<td>7,13 x 10 exp6</td>
<td>1:128</td>
</tr>
<tr>
<td>Ad5.CMVLuc**</td>
<td>1,73 x 10 exp12</td>
<td>1,73 x 10 exp9</td>
<td>1,42 x 10 exp10</td>
<td>1,42 x 10 exp7</td>
<td>1:121</td>
</tr>
</tbody>
</table>

4.1 Transkriptionales Targeting

4.1.2 Steuerung der adenoviralen Replikation - Promotorauswahl

Die Abbildung 4.1.1 gibt eine vereinfachte Schemazeichnung der klonierten Adenoviren wieder.

Abb. 4.1.1: vereinfachte Schemazeichnung der klonierten Adenoviren

A

B

C

Abb. 4.1.3 Untersuchung der rekombinanten adenoviralen Klone

Nach erfolgter homologer Rekombination der p-Shuttle-Vektoren mit dem adenoviralen Plasmid pvkF5/3 durch den E. coli Stamm BJ5183 wurden nach Plasmidisolation die positiven Klone einer Restriktionsanalyse mit dem Enzym PacI sowie einer PCR-Kontrolle zum Nachweis des MDR1-Promoters unterzogen. Später wurden die jeweils positiven adenoviralen Klone zur Amplifikation in den E. coli Stamm DH5alpha transformiert, bevor sie in 293A Zellen zur weiteren Amplifikation transfiziert wurden. Nach dieser Amplifikation erfolgte eine zweite PacI Restriktion zur Charakterisierung der amplifizierten adenoviralen Plasmide. Durch die Restriktion mit dem Enzym PacI wurden ein großes...
Ergebnisse

Fragment von 36 kb und ein kleines Fragment von 3 kb bzw. 4,5 kb erwartet (s.o.). Diese Fragmente entsprechen der Größe des rekombinannten adenoviralen Genoms nach homologer Rekombination zwischen dem „linken Arm“, oder den Ori der beiden Vektoren und nachfolgender PacI Restriktion. Bei nicht erfolgter Rekombination sollten die DNA-Fragmente eine Größe von 6 kb und 3 kb haben, was der Größe des p-Shuttle-Vektors nach PacI Restriktion entspricht. Nach Restriktion wurden die Fragmente gelektrophoretisch aufgetrennt. In der nachfolgenden Abbildung sind die Bilder der gelektrophoretischen Auftrennung der DNA-Fragmente dargestellt.

Abb. 4.1.2: Gelektrophoretische Auftrennung der DNA-Fragmente nach Restriktion mit dem Enzym PacI A: positive Klone von pAd5/3.MDR1E1 nach homologer Rekombination zwischen dem „linken Arm“ beider Vektoren nach PacI Restriktion mit 36 kb sowie 3 kb Fragment; negative Klone mit 6 kb sowie 3 kb Fragment; zur Kontrolle pSMDR1E1 und pvkF5/3 nach PacI Restriktion; B: positive Klone von pAd5/3.MDR1E1Δ24 nach homologer Rekombination zwischen dem „linken Arm“ sowie den Ori beider Vektoren nach PacI Restriktion mit 36 kb sowie 3 kb bzw. 4,5 kb Fragment; negative Klone mit 6 kb und 3 kb Fragment; C: positive Klone und ein negativer Klon von pAd5/3.MDR1Luc (s.o.); roter Pfeil = positiver Klon, gelber Pfeil = negativer Klon.

![AABB 4.1.3: Kontrolle der in 293A Zellen amplifizierten adenoviralen Plasmide durch Restriktionsanalyse und Nachweis des inserierten MDR1-Promotors mittels PCR A: gelelektrophoretische Auftrennung nach Restriktion mit dem Enzym PacI zeigt DNA-Fragmente von 36 kb und 3 kb sowie 36 kb und 2 kb bei dem Kontrollplasmid pVKF5/3; B: PCR-Kontrolle des inserierten MDR1-Promotors; NK = Negativkontrolle.]

4.1.4 Reportergenassays zur Analyse des transkriptionalen Targeting

Das Luziferase-Reportergen E1-deletierter oder replikationsinkompetenter adenoviraler Vektoren steht unter direkter Kontrolle des MDR1-Promotors und wurde anstelle des frühen viralen E1 Gens in den adenoviralen Vektor eingefügt. Somit lieferte die gemessene Luziferaseaktivität einen direkten Nachweis für die Promotoraktivität in den verwendeten Zellen. Dadurch konnte die basale MDR1-Promotoraktivität in Skov-3 und Normalzellen

Es konnte gezeigt werden, dass Zellen der Zelllinie Skov-3 nach Inkubation mit dem Zytostatikum Doxorubicin (Adriamycin, ADR) eine signifikant höhere MDR1-Promotoraktivität aufwiesen im Vergleich zu denjenigen Zellen, die nicht mit ADR behandelt wurden (Skov-3 naïv). Abb. 4.1.4 zeigt die Ergebnisse der gemessenen Luziferaseaktivitäten in absoluten (A) und relativen Werten (B). Die Zellen wurden mit MOI 0,1 (Multiplicity of Infection; Virus/Zelle), MOI 1 und MOI 10 infiziert (Infektion in PFU/Zelle). Es ist zu sehen, dass das Virus Ad5/3.CMVLuc in Skov-3 naïven Zellen, sowie in Skov-3 Zellen, die mit 150 ng/ml ADR inkubierte wurden (Skov-3 150 ADR Zellen), erwartungsgemäß eine stärkere Promotoraktivität aufwies als das Virus Ad5/3.MDR1Luc. Dabei schien die CMV-Promotoraktivität in Skov-3 150 ADR Zellen höher zu sein als die in Skov-3 naïven Zellen. Dies muss jedoch als Unterschied in der Transduktionseffizienz interpretiert werden (siehe Transduktionales Targeting). Wichtig ist, dass die MDR1-Promotoraktivität des Virus Ad5/3.MDR1Luc in Skov-3 150 ADR Zellen deutlich höher war, als in Skov-3 naïven Zellen. Es wurden nämlich etwa 7fach höhere LU in den chemoresistenten Zellen gemessen (siehe Absolutwerte), dargestellt in Abb. 4.1.4 A und in Abb. 4.1.4 B (relative MDR1-Aktivität). Die relative MDR1-Aktivität nahm nach Behandlung von Skov-3 Zellen mit ADR von 7,31% in Skov-3 naïven Zellen auf 11,5% in Skov-3 ADR Zellen zu bei MOI 0,1 (P = 0,002). MOI 1 zeigte eine Zunahme der relativen MDR1-Aktivität von ca. 6,52% in Skov-3 naïven Zellen auf 9,79% in Skov-3 150 ADR Zellen (P = 0,0013). Beim Vergleich der MOIs untereinander konnte ein direkter Zusammenhang zwischen Virusedelmenge/Zelle und Luziferaseaktivität hergestellt werden. Des Weiteren wurde ersichtlich, dass die Skov-3 naïven Zellen im Vergleich mit primären Fibroblasten eine relativ hohe basale MDR1-Promotoraktivität besaßen. Abb. 4.1.5 zeigt die Ergebnisse der Luziferaseaktivitäten in absoluten (A) und relativen LU (B). Die absoluten und relativen LU von Ad5/3.MDR1Luc der MOI 1 sind hier am ehesten mit denen in Skov-3 naïven Zellen vergleichbar. Die relative MDR1-Aktivität in primären Fibroblasten betrug 3,28% bei MOI 1. Es lag also eine relativ geringe MDR1-Promotoraktivität in Fibroblasten vor und eine darauf bezogen hohe in Skov-3 naïven Zellen.
Abb. 4.1.4: absolute und relative Luziferaseaktivitäten (LU, RLU) in Skov-3 Zellen

Die MDR1-Promotoraktivität wurde auch in primären Mammakarzinomzellen untersucht. Die primären Tumorzellen stammten von mehrfach vorbehandelten Mammakarzinompatientinnen, und die Zellen wurden aus Aszites gewonnen und aufgereinigt. Unmittelbar danach wurden sie im Luziferase-Reportergenassay eingesetzt. Abb. 4.1.6 zeigt die Ergebnisse der absoluten (A) und relativen (B) Luziferaseaktivitäten. Auch hier konnte gezeigt werden, dass die MDR1-Promotoraktivität in den mit Chemotherapie behandelten malignen Zellen verglichen mit Skov-3 naiven Zellen signifikant

Das Dokument wurde erstellt mit PDF/A Quick Master von soft Xpansion, www.soft-xpansion.de
höher war. Bei MOI 0,1 wurde eine relative MDR1-Aktivität von 8,83% erreicht (P = 0,05), die bei MOI 1 mit 10,81% noch übertroffen wurde (P = 0,001). Bei MOI 10 zeigte sich wieder die nicht-proportionale Zunahme der CMV-Aktivität.

4.2 Transduktionales Targeting

Ergänzend zum transkriptionalen Targeting sollte in dieser Arbeit untersucht werden, ob eine Modifikation der adenviralnen Fiber eine Verbesserung der Infektion von Tumorgewebe ("infectivity enhancement") bewirkt. Dies geschah vor dem Hintergrund, dass u.a. Ovarialkarzinomzellen verstärkt den so genannten Ad3 Rezeptor auf der Zellmembran exprimieren und daher eine CAR-abhängige Infektion wegen nicht vorhandener CAR-Rezeptoren kaum möglich ist (Kanerva, Mikheeva et al. 2002). Des Weiteren sollte der Frage nachgegangen werden, ob die wiederum erhöhte tumorale Expression des CAR-Rezeptors nach Behandlung mit Chemotherapeutika (Hemminki, Kanerva et al. 2003) eine bessere Transduktion der für die Infektion CAR-abhängiger adenoviraler Vektoren zur Folge hat, oder ob fibermodifizierte Adenoviren auch in diesen Geweben zu einer verbesserten Transduktion führen. Um diese Frage zu klären, wurde das Virus Ad5/3.CMVLuc in Luziferase-Reporter-Genassays untersucht. Ad5/3.CMVLuc wurde durch homologe Rekombination gentechnisch modifiziert, so dass es anstatt der Ad5.WT Fiber (CAR-abhängig) eine Chimäre aus dem langen 5er Schaft und dem kleineren 3er Knob erhielt, was eine CAR-unabhängige Infektion ermöglichen sollte. Als Vergleich dienten Adenoviren, die nicht fibermodifiziert waren, d.h. die Wildtypfiber besaßen (Ad5.CMVLuc). Beide enthielten den CMV-Promotor und anstelle des viralen E1 Gen das Luziferasegen, so dass sie sich nur in der Fibermodifikation unterschieden. Die gemessenen Luziferaseaktivitäten standen also in direktem Zusammenhang mit der Transduktionseffizienz. In Abb. 4.2.1 sind die Ergebnisse der gemessenen Luziferaseaktivitäten in Zellen der Zelllinie Skov-3 dargestellt, die einmal mit 150 ng/ml ADR behandelt wurden (Skov-3 150 ADR Zellen) bzw. nicht behandelt wurden (Skov-3 naive Zellen). Infiziert wurden die Zellen jeweils mit MOI 10, MOI 100 und MOI 1000 (Infektion mit VP/Zelle). Der Vergleich der Infektiosität des Virus Ad5/3.CMVLuc mit dem Virus Ad5.CMVLuc zeigte eine deutliche absolute Transduktionsverbesserung für Ad5/3.CMVLuc sowohl in Skov-3 150 ADR Zellen, als auch in Skov-3 naiven Zellen. Dabei war die Transduktionsverbesserung stärker in Skov-3 naiven Zellen ausgeprägt als in Skov-3 150 ADR Zellen, denn Ad5.CMVLuc zeigte in Skov-3 150 ADR Zellen eine 100-fach erhöhte Zunahme der Infektiosität. Es fand sich eine vierzehn bis fünfzehnfach höhere Transduktionseffizienz für Ad5/3.CMVLuc in Skov-3 naiven Zellen, hingegen eine 1,6 bis 1,7fach höhere bei Skov-3 150 ADR Zellen. Die Transduktionseffizienz wurde ebenso in primären Mammakarzinomzellen untersucht, die aus Aszites von Tumorpatientinnen gewonnen wurden, welche bereits mehrfach mit Chemotherapie vorbehandelt worden waren. Abb. 4.2.2 ist zu entnehmen, dass die Fibermodifikation des Virus Ad5/3.CMVLuc ebenfalls zu einer besseren Transduktionseffizienz führte verglichen mit Ad5.CMVLuc. In den MOIs 10, 100 und 1 000 war sie etwa zweifach höher als die des Virus mit der Wildtypfiber.

Abb. 4.2.2: Luziferaseaktivitäten (LU) in primären Mammakarzinomzellen, mit Chemotherapie vorbehandelt nach Infektion mit Ad5/3.CMVLuc und Ad5.CMVLuc; Diagramm beinhaltet Mittelwert und Standardabweichung von zwei Experimenten, in denen jeder Wert in einer Dreifachbestimmung gemessen wurde.

Um die Infektiosität der Viren an Normalgewebe zu analysieren, wurden primäre Fibroblasten mit den Viren Ad5/3.CMVLuc und Ad5.CMVLuc infiziert und die Luziferaseaktivitäten gemessen. Die Ergebnisse sind in Abb. 4.2.3 dargestellt. Es zeigte sich, dass durch die Fibermodifikation eine 230fach höhere Transduktionseffizienz bei MOI 1000 erreicht werden konnte im Vergleich zum Virus mit Wildtypfiber. Die MOIs 10 und 100 konnten wegen der geringen Luziferaseaktivität (<100 LU) bei Ad5.CMVLuc nicht in ein
auswertbares Verhältnis zu Ad5/3.CMVLuc gesetzt werden, zeigten aber, dass das Virus mit der Wildtypfiber die Fibroblasten kaum infizieren konnte.

![Diagramm](image-url)

Abb. 4.2.3: Luziferaseaktivitäten (LU) in primären Fibroblasten nach Infektion mit Ad5/3.CMVLuc und Ad5.CMVLuc; Diagramm beinhaltet Mittelwert und Standardabweichung von zwei Experimenten, in denen jeder Wert in einer Dreifachbestimmung gemessen wurde.

Ergänzend zu den Experimenten mit der Ovarialkarzinomzelllinie Skov-3 wurden die Ovarialkarzinomzelllinien MDAH 2774 und Hey einem Luziferase-Reporterogenassay zur Analyse der Infektiosität von Ad5/3.CMVLuc und Ad5.CMVLuc unterzogen. Die Zelllinie MDAH 2774 exprimiert vermehrt CAR-Rezeptoren (Kim, Lee et al. 2002). Hey wurde ausgewählt, da Zytotoxizitätsassays vorliegen (s. 4.3), in denen das Virus Ad5.WT eine relativ starke Zytotoxizität in dieser Zelllinie zeigte. Es sollte untersucht werden, wie sich die Viren Ad5/3.CMVLuc und Ad5.CMVLuc hinsichtlich der Infektiosität in diesen Zelllinien verhielten. Wie der Abb. 4.2.4 (A) zu entnehmen ist, war das Virus Ad5.CMVLuc in der Zelllinie MDAH 2774 infektiöser als das fibermodifizierte Virus Ad5/3.CMVLuc, etwa um das 1,4fache. In der Zelllinie Hey besaßen beide Viren etwa die gleiche Infektiosität, Ad5/3.CMVLuc war minimal infektiöser (s. Abb. 4.2.4 (B)).
4.3 Kombination aus transkriptionalem und transduktionalem Targeting
Um eine erfolgreiche onkolytische Gentherapie zu ermöglichen, ist eine optimale Transduktionseffizienz und eine spezifische Replikation der Adenoviren in Tumorgewebe von
Ergebnisse

4.3.1 MTS-Assays mit nicht chemoresistenten Ovarialkarzinomzelllinien

Bei den Versuchen mit nicht chemoresistenten Ovarialkarzinomzelllinien zeigte sich, dass das Virus Ad5/3.∆24 in den Zelllinien Ov-4, Hey, Skov-3 und Skov-3 i.p. mit MOI 0,1 und MOI 1 eine deutlich höhere onkolytische Potenz besaß als die Viren Ad5/3.MDR1E1, Ad5/3.MDR1E1∆24 und Ad5.WT (s. Abb. 4.3.1 bis 4.3.3). Nach 11 (Skov-3), 12 (Skov-3 i.p., Hey), 13 (Ov-4) und 14 Tagen (MDAH 2774) konnten bei MOI 0,1 relative Zellvitalitäten von 54,64% (Skov-3), 53,91% (Skov-3 i.p.), 41,56% (Hey), 59,34% (Ov-4) und 56,61% (MDAH 2774) gemessen werden, während nach Infektion mit Ad5/3.MDR1E1 bzw. Ad5/3.MDR1E1∆24 mit MOI 0,1 relative Zellvitalitäten von 73,79% bzw. 76,01% in Skov-3, 99,63% bzw. 94,76% in Skov-3 i.p., 99,39% bzw. 92,51% in Hey, 110,34% bzw. 105,6% in Ov-4 und 96,02% bzw. 105,9% in MDAH 2774 gemessen wurden. Nach Infektion mit dem Virus Ad5/3.∆24 wurden relative Zellvitalitäten von 27,55% (Skov-3), 14,94% (Skov-3 i.p.), 17,3% (Hey), 8,48% (Ov-4) und 27,51% (MDAH 2774) gemessen. Nach Infektion mit Ad5/3.MDR1E1 und Ad5/3.MDR1E1∆24 wurden bei MOI 1 relative Zellvitalitäten von 39,59% bzw. 43,15% in Skov-3, 53,23% bzw. 31,73% in Skov-3 i.p., 67,16% bzw. 77,2% in Hey, 71,04% bzw. 54,59% in Ov-4 und 32,73% bzw. 41,82% in MDAH 2774 gemessen. Mit MOI 10 war zwischen den fibermodifizierten Viren kein signifikanter Unterschied in der onkolytischen Potenz messbar. Eine Infektion mit 10 Viruspartikeln pro Zelle war unabhängig vom Promotor und der Modifikation im E1 Gen stark zytotoxisch, über 90% der Zellen überlebten die Infektion nicht. Das Virus Ad5.WT war in OV-4 und Skov-3 und Skov-3 i.p. Zellen bei MOI 0,1, 1 und 10 kaum zytotoxisch. In MDAH 2774 Zellen konnte aber eine deutlich höhere onkolytische Potenz von Ad5.WT nachgewiesen werden, sie war höher als die der Vergleichsviren Ad5/3.MDR1E1, Ad5/3.MDR1E1∆24 und Ad5/3.∆24 (s. Abb. 4.3.2 A). Auch in der Zelllinie Hey (s. Abb. 4.3.1 B) zeigte Ad5.WT eine höhere onkolytische Potenz als Ad5/3.MDR1E1 und Ad5/3.MDR1E1∆24, Ad5/3.∆24 war jedoch etwas toxischer. Abb. 4.3.4 zeigt den immunhistochemischen Nachweis der p-Glykoprotein-Expression der entsprechenden Zelllinien. Man sieht, dass in den eingesetzten Ovarialkarzinomzelllinien immunhistochemisch keine p-Glykoprotein-Expression nachgewiesen werden konnte (vgl. mit der Positivkontrolle), da sich die Zellmembran nicht braun anfärben ließ.
Abb. 4.3.2: Zellvitalität nach Infektion mit Ad5/3.MDR1E1, Ad5/3.MDR1E1Δ24, Ad5/3.Δ24 und Ad5.WT

A: Zelllinie MDAH 2774, gemessen nach 14d; B: Zelllinie Skov-3, gemessen nach 11d; dargestellt sind die Mittelwerte aus Vierfachbestimmung mit Standardabweichung von drei separaten Experimenten.
Ergebnisse

Abb. 4.3.3: Zellvitalität nach Infektion der Zelllinie **Skov-3 i.p.** mit Ad5/3.MDR1E1, Ad5/3.MDR1E1Δ24, Ad5/3.Δ24 und Ad5.WT, gemessen nach 12d; dargestellt sind die Mittelwerte aus Vierfachbestimmung mit Standardabweichung von drei separaten Experimenten.

Abb. 4.3.4: Immunhistochemische Färbung des p-Glykoproteins in Ovarialkarzinomzelllinien
Die Zellen wurden vorher auf Objekträgern fixiert und die Färbung erfolgte durch die Avidin-Biotin-Methode; braune Färbung: Umsetzung des DAB-Chromogens mit Peroxidase zu einem braunen Präzipitat; blaue Färbung: Kernfärbung mit Hämalaun; A = Ov-4, B = Hey, C = MDAH, D = Skov-3, E = Skov-3 i.p., F = Nebennierenrinde, Positivkontrolle; Vergrößerung = 200x, D = 400x
4.3.2 MTS-Assays mit Normalgewebe

Bei den Versuchen mit Normalgewebe zeigte das Virus Ad5/3.Δ24 in HMEC, Keratinozyten und der Zelllinie HepG2 die höchste Toxizität, gefolgt von Ad5/3.MDR1E1 und Ad5/3.MDR1E1Δ24 (s. Abb. 4.3.5 bis 4.3.7). Nach Infektion mit Ad5/3.Δ24 wurden jeweils nach 9 (HepG2) bzw. 10 Tagen (HMEC, primäre Keratinozyten) bei MOI 0,1 relative Zellvitalitäten von 49% in HepG2, 48,44% in HMEC und 42% in prim. Keratinozyten gemessen, wobei nach Infektion mit Ad5/3.MDR1E1 bzw. Ad5/3.MDR1E1Δ24 relative Zellvitalitäten von 71% bzw. 80% (HepG2), 86,24% bzw. 86,81% (HMEC) und 70% bzw. 72% (prim. Keratinozyten) gemessen wurden. In HMEC waren Ad5/3.MDR1E1 und Ad5/3.MDR1E1Δ24 auch sehr toxisch bei MOI 1 (s. Abb. 4.3.5), es zeigten sich relative Zellvitalitäten von 14% bzw. 28%. Mit MOI 10 führten die fibermodifizierten Viren bei den Normalzellen, ähnlich wie bei den Versuchen mit Ovarialkarzinomzellen, zum Zelltod von über 90% der Zellen. Eine Infektion mit Ad5.WT führte lediglich bei den HMEC und bei HepG2 nach Infektion mit MOI 10 zu einer stärkeren Toxizität (s. Abb. 4.3.5 und 4.3.6 B). Die Fibroblasten bildeten einen Sonderfall, in diesen Zellen war eine Unterscheidung der Toxizität zwischen Ad5/3.Δ24, Ad5/3.MDR1E1 und Ad5/3.MDR1E1Δ24 bei allen MOI schwierig (s. Abb. 4.3.7). Ad5/3.MDR1E1 war bei MOI 0,1 etwas toxischer als Ad5/3.MDR1E1Δ24 und Ad5/3.Δ24. Das Virus Ad5.WT zeigte hier kaum Toxizität. Allerdings dauerte es mit 15 Tagen relativ lange, bis die Messungen erfolgen konnten. In Abb. 4.3.8 sind die Ergebnisse des immunhistochemischen Nachweises der p-Glykoprotein-Expression der entsprechenden Zellen dargestellt. Man erkennt, dass sich in HMEC, Keratinozyten, Fibroblasten und HepG2 immunhistochemisch keine p-Glykoprotein-Expression nachweisen ließ, denn die Zellmembran konnte nicht braun angefärbt werden (vgl. Positivkontrolle).

Abb. 4.3.5: Zellvitalität nach Infektion von HMEC mit Ad5/3.MDR1E1, Ad5/3.MDR1E1Δ24, Ad5/3.Δ24 und Ad5.WT, gemessen nach 10d; dargestellt sind die Mittelwerte aus Vierfachbestimmung mit Standardabweichung von drei separaten Experimenten.
Abb. 4.3.7: Zellvitalität nach Infektion von primären Fibroblasten mit Ad5/3.MDR1E1, Ad5/3.MDR1E1Δ24, Ad5/3.Δ24 und Ad5.WT, gemessen nach 15d; dargestellt sind die Mittelwerte aus Vierfachbestimmung mit Standardabweichung von zwei separaten Experimenten.

Abb. 4.3.8: Immunhistochemische Färbung des p-Glykoproteins an Normalzellen Die Zellen wurden vorher auf Objekträgern fixiert; die Färbung erfolgte durch die Avidin-Biotin-Methode; braune Färbung: Umsetzung des DAB-Chromogens mit Peroxidase zu einem braunen Präzipitat; blaue Färbung: Kernfärbung mit Hämalaun; A = HMEC, B = primäre Keratinozyten, C = HepG2, D = primäre Fibroblasten, E = Nebennierenrinde, Positivkontrolle, Vergrößerung = 200x.
4.3.3 MTS-Assays mit chemoresistenten Karzinomzellen

Bei den Experimenten mit chemoresistenten Karzinomzelllinien und primären Karzinomzellen zeigte das Virus Ad5/3.MDR1E1 die höchste onkolytische Potenz, gefolgt von Ad5/3.MDR1E1Δ24 und Ad5/3.Δ24 (s. Abb. 4.3.9, 4.3.10). Bereits nach sechs (primäre Ovarialkarzinomzellen, Skov-3 150 ADR Zellen) bzw. sieben Tagen (primäre Mammakarzinomzellen, Skov-3 90 ADR Zellen) zeigten die Zellen nach Infektion mit Ad5/3.MDR1E1 mit MOI 0,1 relative Zellvitalitäten von 49,57% (Skov-3 150), 63,52% (Skov-3 90), 52,72% (primäre Mammakarzinomzellen) und 44,67% (primäre Ovarialkarzinomzellen). Ad5.WT zeigte die schwächste onkolytische Potenz. In Skov-3 90 ADR Zellen war ein Unterschied in der onkolytischen Potenz zwischen Ad5/3.MDR1E1Δ24 und Ad5/3.Δ24 nur schwer festzustellen (s. Abb. 4.3.9 A). Dieser wurde in Skov-3 150 ADR Zellen deutlicher darstellbar (s. Abb. 4.3.9 B). Mit MOI 0,1 wurden nach Infektion mit Ad5/3.MDR1E1Δ24 relative Zellvitalitäten von 57,96% gemessen (Skov-3 150), mit MOI 1 21,67% (nach Infektion mit Ad5/3.MDR1E1 nur noch 8,81%). Nach Infektion mit Ad5/3.Δ24 wurden hingegen relative Zellvitalitäten von 71,67% mit MOI 0,1 gemessen und 48,91% mit MOI 1. In primären Mamma- und Ovarialkarzinomzellen von Patientinnen, die mit mehreren Zytostatikaregimen vorbehandelt worden waren, konnten ähnliche Ergebnisse erzielt werden (s. Abb. 4.3.10). Ad5/3.MDR1E1 war das Virus mit der stärksten onkolytischen Potenz, gefolgt von Ad5/3.MDR1E1Δ24. Ad5/3.Δ24 und Ad5.WT zeigten die schwächste onkolytischen Potenz, wobei die Unterschiede der onkolytischen Potenz mit MOI 0,1 und 1 nur etwa 10% relative Zellvitalität ausmachten. Vergleiche besonders mit Abb. 4.3.2 B. Man beachte, dass im Gegensatz zu den Experimenten mit nicht chemoresistenten Karzinomzellen und Normalgewebe bereits nach 6 bis 7 Tagen (s.o.) post infektionem das Virus mit der höchsten onkolytischen Potenz in der kleinsten MOI zum Zelltod von ca. 50% der Zellen führte. Abb. 4.3.11 zeigt den immunhistochemischen Nachweis des p-gp bei Skov-90 ADR Zellen. Man erkennt eine eindeutige braune Färbung der Zellmembran, was eine erhöhnte p-Glykoprotein-Expression nachweist. Die Abb. 4.3.12 zeigt ergänzend dazu die Ergebnisse der Expressionsanalyse mittels quantitativer RealTime PCR. Unter den relevanten Genen, die bei der Ausprägung der Multidrugresistance beteiligt sind, wurde eine spezifische Erhöhung der MDR1-Expression in resistenten Skov-3 Zellen festgestellt. Die Expression von MDR1 war unverändert in Resistenzzellen. Demnach konnte die ADR-Resistenz auf spezifische Expression des MDR1-Gens zurückgeführt werden. In Abb. 4.3.13 und 4.3.14 sind die Ergebnisse der Chemosensitivitätsassays der primären Mamma- und Ovarialkarzinomzellen dargestellt. Man sieht, dass beim primären Mammakarzinom Zytostatikakonzentrationen von über 100% nötig waren, um eine 50 prozentige Inhibition des Tumorwachstums zu erreichen. Zytostatikakonzentrationen, die zu einer 90 prozentigen Inhibition des Tumorwachstums führten, konnten gar nicht ermittelt werden. Dies spricht für
Ergbnisse

Eine sehr starke Resistenz der eingesetzten primären Mammakarzinomzellen. Bei den primären Ovarialkarzinomzellen mussten über 25 prozentige Zytostatikakonzentrationen eingesetzt werden, um eine 50 prozentige Wachstumshemmung zu erreichen. Für eine 90 prozentige Inhibition des Tumorwachstums waren Zytostatikakonzentrationen von über 100% nötig. Also war auch beim primären Ovarialkarzinom definitionsgemäß eine starke Chemoresistenz vorhanden.

A

B

Abb. 4.3.9: Zellvitalität nach Infektion mit Ad5/3.MDR1E1, Ad5/3.MDR1E1d24, Ad5/3.d24 und Ad5.WT

A: Skov-3 90 ADR Zellen, gemessen nach 7d; B: Skov-3 150 ADR Zellen, gemessen nach 6d; dargestellt sind die Mittelwerte aus Vierfachbestimmung mit Standardabweichung von zwei separaten Experimenten.
Abb. 4.3.10: Zellvitalität nach Infektion mit Ad5/3.MDR1E1, Ad5/3.MDR1E1Δ24, Ad5/3.Δ24 und Ad5.WT
A: primäre Mammakarzinomzellen, vorbehandelt u.a. mit Doxorubicin und Cisplatin, gemessen nach 7d;
B: primäre Ovarialkarzinomzellen, auch vorbehandelt u.a. mit Doxorubicin und Cisplatin, gemessen nach 6d; dargestellt sind die Mittelwerte aus Vierfachbestimmung mit Standardabweichung von zwei separaten Experimenten.
Ergebnisse

Abb. 4.3.11: Immunhistochemische Färbung des p-Glykoproteins an Skov-3 90 ADR Zellen
Die Zellen wurden vorher auf Objekt trägern fixiert; die Färbung erfolgte durch die Avidin-Biotin-Methode; braune Färbung: Umsetzung des DAB-Chromogens mit Peroxidase zu einem braunen Präzipitat; blaue Färbung: Kernfärbung mit Hämalaun; A: Vergrößerung = 200x; B: Vergrößerung = 400x; C: Nebennierenrinde, Positivkontrolle, Vergrößerung = 200x; D: zum Vergleich Skov-3 naiv, Vergrößerung = 400x.

Abb. 4.3.12: Quantitative RealTime PCR zum Nachweis der MDR1-basierten Resistenz von Skov-ADR 90 Zellen
Diagramm beinhaltet Mittelwerte aus Zweifachbestimmung eines Experiments; Werte von MRP1 und XPAC waren zu gering, um auf dieser Skalierung gut dargestellt zu werden (<0,001).
Abb. 4.3.13: Chemosensitivitätsassay mit primärem Mammakarzinom. Diagramm beinhaltet Mittelwerte aus Dreifachbestimmung eines Experiments.

Abb. 4.3.14: Chemosensitivitätsassay mit primärem Ovarialkarzinom. Diagramm beinhaltet Mittelwerte aus Dreifachbestimmung eines Experiments.
4.4 Immunhistochemischer Nachweis des viralen E1A Gens in Kokultur

5. Diskussion

5.1 Transkriptionales Targeting

Zur Untersuchung eines potentiell geeigneten tumorspezifischen Promotors für die adenovirale Gentherapie wurde der MDR1-Promotor im Luziferase-Reportergenassay untersucht. Es ist durch Studien belegt, dass die MDR1-Promotoraktivität durch Einsatz von Chemotherapeutika, wie z.B. Anthrazyklinen, induzierbar ist (Schondorf, Neumann et al. 2003). Um die Induzierbarkeit des MDR1-Promotors nachzuweisen, eignet sich besonders die Zelllinie Skov-3, da sie bereits eine basale MDR1-Promotoraktivität besitzt. Es wurden relative MDR1-Aktivitäten von ca. 6% (bezogen auf den ubiquitär exprimierten starken CMV-Promotor) in dieser Arbeit gemessen (s. Abb. 4.1.4). Durch Kultivierung von Skov-3 Zellen in Adriamycin (ADR) haltigem Medium konnte die MDR1-Expression induziert werden. So wurde durch schrittweise Erhöhung der Dosis von ADR um jeweils 30 ng/ml bis auf 150 ng/ml in dieser Arbeit die relative MDR1-Promotoraktivität auf 9,8% mit MOI 1 und 11,5% mit
MOI 0,1 gesteigert (s. Abb. 4.1.4). Ziel dieser Arbeit war es, die Plasmakonzentration von Adriamycin bei Patienten in therapeutischer Dosis mit Mittelwerten von ca. 150 bis 200 ng/ml während einer 4-stündigen Infusion (Speth, Linssen et al. 1987) zu simulieren. Zwar können nach i.v. Gabe kurzzeitig Plasma-Peaks von >1000 ng/ml erreicht werden, diese fallen jedoch schnell wieder ab und eine intratumorale, für die adenovirale Replikation relevante Konzentration von etwa 150 ng/ml kann als realitätsnah angenommen werden. Eine stabile, induzierte MDR1-Aktivität von max. 3 Wochen ohne Chemotherapieapplikation kann dabei erzielt werden (Hu, Slater et al. 1999).

Das bedeutet, dass eine ausreichende MDR1-Aktivität für die CRAd-Replikation unter natürlichen Therapiebedingungen mit ADR gegeben ist und die in dieser Arbeit verwendeten Konzentrationen mit in vivo Verhältnissen verglichen werden können.

Eine durch ADR induzierte erhöhte MDR1-Aktivität ließ sich ebenso in primären Ovarialsowie Mammakarzinomzellen mittels Luziferase-Reportergenassay nachweisen. Es wurden relative Luziferaseaktivitäten von 8,8% mit MOI 0,1 bis 10,8% mit MOI 1 gemessen (s. Abb. 4.1.6). In primären Fibroblasten wurden lediglich relative Luziferaseaktivitäten von 3% mit MOI 1 gemessen (s. Abb. 4.1.5), wobei die relative MDR1-Aktivität mit MOI 0,1 nicht ausgewertet werden kann, da absolute LU von <100 gemessen wurden und diese wegen Hintergrundlumineszenz und Überstrahlung des emittierten Lichts nicht zur Interpretation herangezogen werden konnten.

Die Ergebnisse zur Induzierbarkeit des MDR1-Promotors decken sich mit den Literaturangaben und lassen zusammenfassend auf eine tumorspezifische Expression in chemoresistenten Karzinomzellen schließen. Auf Tumorgewebe allein bezogen trifft dies zu, auch verglichen mit der MDR1-Promotoraktivität in den in dieser Arbeit verwendeten Fibroblasten, die Normalgewebe darstellen sollten. Wenn man aber die Funktion und damit die Expression des p-Glykoproteins (p-gp) im menschlichen Körper berücksichtigt, kann man nur eingeschränkt von einer Spezifität des MDR1-Promotors sprechen. Denn die physiologische Lokalisation des p-gp in Leber, Pankreas, Niere, Nebenniere (siehe auch Positivkontrolle Immunhistologie des p-gp) und Endothelzellen physiologischer Barrieren lässt an eine vermutlich toxische Wirkung der klonierten so genannten MDR-CRAds (CRAd = konditional replikativer Adenovirus) in diesen Geweben denken. Für diese Arbeit standen aber keine Gewebe dieser Art zur Verfügung, so dass experimentell keine Aussage über die Toxizität an diesen Geweben gemacht werden konnte. Da die adenovirale Gentherapie additiv zu den bisherigen Therapiemöglichkeiten erfolgen soll und die Viren nicht i.v., sondern intratumoral verabreicht werden sollen, stellt sich außerdem die Frage, in wieweit die Viren in den extratumoral gelegenen Organen kumulieren und dort toxische Wirkungen erzielen können. Um diese Frage zu beantworten, sind in vivo Versuche unumgänglich.
5.2 Transduktionales Targeting

Wie der Abb. 4.2.1 zu entnehmen ist, konnte in Skov-3 Zellen für die Viren mit 5/3-Fiberchimäre eine vier- bis fünfzehnfach höhere Transduktionseffizienz gemessen werden. Diese Ergebnisse sind ähnlich denen in Literaturangaben, wobei die Zahlen je nach Gewebe variieren. In den mit ADR behandelten Skov-3 Zellen fand sich nur noch eine 1,6 bis 1,7fach höhere Transduktionseffizienz, was mit der sehr starken Zunahme der Infektiosität von Ad5.WT in diesen Zellen zusammenhängt. Die in der Literatur beschriebene erhöhte CAR-Rezeptorexpression nach Chemotherapie wurde bestätigt und führte zu einer verbesserten Infektion durch Ad5.WT. Sie war der Grund dafür, dass die Skov-3 ADR Zellen durch fibermodifizierte Adenoviren besser infiziert werden konnten als durch nicht-fibermodifizierte Viren. Die Skov-3 naiven Zellen zeigten jedoch eine erheblich gesteigerte Infektiosität mit Ad5.WT. Bei den primären Mammakarzinomzellen konnte, wie Abb. 4.2.2 zu entnehmen ist, eine signifikant höhere Transduktionseffizienz gemessen werden. Auch diese Ergebnisse sind mit verstärkter CAR-Rezeptorexpression in diesen Zellen zu erklären. Es ist also festzuhalten, dass trotz erhöhter CAR-Expression nach Behandlung mit Chemotherapie die 5/3-Fibermodifikation einen Vorteil hinsichtlich der Infektiosität brachte.
Wie der Abb. 4.2.3 zu entnehmen ist, hat die 5/3-Fiberchimäre auch in Fibroblasten eine signifikante Transduktionsverbesserung zur Folge. Mit MOI 10 und 100 konnten bereits LU von >100 bzw. 1000 gemessen werden, während nach Infektion mit Viren mit Wildtypfiber in entsprechenden MOIs LU <100 gemessen wurden. Mit MOI 1000 erreichten die fibermodifizierten Adenoviren sogar eine 230fach höhere Transduktionseffizienz. Dies passt zu den Literaturangaben, wonach Fibroblasten auf der Zellmembran kaum CAR-Rezeptoren exprimieren (Hidaka, Milano et al. 1999) und folglich weitgehend resistent sind gegen Infektion mit Adenoviren, welche die Fiber vom Serotyp 5 besitzen. Die 5/3-Fiberchimäre verleiht dem Virus also in diesen Geweben einen offensichtlichen Vorteil hinsichtlich der Infektiosität. Verglichen mit den Ergebnissen der Skov-3 Zellen ist die Transduktionseffizienz in Fibroblasten deutlich höher. Der Unterschied erklärt sich durch die relativ höhere CAR-Expressionsrate in Skov-3 Zellen im Vergleich zu Fibroblasten. Eine signifikant stärkere CAR-Expression zeigten die Ovarialkarzinomzelllinien MDAH 2774 und Hey. Die in der Literatur beschriebene verstärkte CAR-Rezeptorexpression dieser Zelllinien (Kim, Lee et al. 2002), besonders der Zelllinie MDAH 2774, konnte in den durchgeführten Luziferase-Reportergenassays bestätigt werden. Wie der Abb. 4.2.4 (A) zu entnehmen ist, war das Virus mit der Wildtypfiber etwa 1,4fach infektiöser als das fibermodifizierte. In der Zelllinie Hey (s. Abb. 4.2.4 (B)) zeigten sich nur minimale Unterschiede in der Infektiosität zwischen Ad5 und Ad5/3. Die CAR-Rezeptorexpression war in dieser Zelllinie also auch erhöht, aber nicht so stark wie in MDAH 2774. Deswegen konnte das fibermodifizierte Virus diese Zelllinie nicht wesentlich besser infizieren als Ad5.CMVLuc.

5.3 Kombination von transkriptionalem und transduktionalem Targeting

Um die Kombination des transkriptionalen mit dem transduktionalen Targeting zu untersuchen, wurden in dieser Arbeit Ovarialkarzinomzelllinien, chemoresistente Ovarialkarzinomzelllinien, primäre chemoresistente Ovarial- sowie Mammakarinomzellen, primäre Fibroblasten, HMEC und Keratinozyten sowie die Zelllinie HepG2 in Zytotoxizitätsassays eingesetzt. Diese wurden mit eigenständig klonierten Adenoviren infiziert, die sowohl die 5/3-Fiberchimäre als auch den MDR1-Promotor besaßen. Dem MDR1-Promotor war einmal das frühe virale E1 Gen nachgeschaltet, so dass dieses unter direkter Kontrolle der MDR1-Promotoraktivität stand (Ad5/3.MDR1E1). Dadurch sollte bei

Die Abb. 4.3.1 bis 4.3.3 zeigen, dass in nicht chemoresistenten Ovarialkarzinomzelllinien die MDR-CRAds deutlich langsamer replizierten als Ad5/3.Δ24. Die Immunhistochemie (s. Abb. 4.3.4) zeigt weiter, dass die eingesetzten Ovarialkarzinomzellen keine nachweisbar verstärkte MDR1-Promotoraktivität besaßen. Die geringe MDR1-Expression der Karzinomzellen führte also erwartungsgemäß zu einer signifikant geringeren onkolytischen Potenz der MDR-Crads. Nach Infektion mit MOI 10 führte die 5/3-Fibermodifikation der Adenoviren bei allen Zelllinien zum Zelltod von über 90% der Zellen, unabhängig vom Promotor. Dies war u.a. Folge der veränderten Transduktionseffizienz, denn Ad5.WT, das
keine Fibermodifikation besaß, war in den Zelllinien Ov-4, Skov-3 und Skov i.p. kaum infektiös. Zudem ist von der Zelllinie Skov-3 bekannt, dass sie schwach CAR exprimiert (Kim, Lee et al. 2002) und daher weitgehend resistent ist gegen Infektion mit Ad5.WT. Die Zelllinien MDAH 2774 und Hey verhielten sich anders als Ov-4, Skov-3 und Skov i.p. hinsichtlich der Infektion mit Ad5.WT. Von der Zelllinie MDAH 2774 ist bekannt, dass sie eine erhöhte CAR-Rezeptorexpression aufweist (Kim, Lee et al. 2002). Wie in Abb. 4.3.2 A ersichtlich ist, war Ad5.WT das Virus, das die stärkste onkolytische Potenz in dieser Zelllinie besaß. Die erhöhte CAR-Rezeptordichte hatte also eine bessere Transduktion von Ad5.WT mit MOI 0,1 und 1 zur Folge (siehe auch Abb. 4.2.4). Das fibermodifizierte Virus Ad5/3.Δ24 zeigte jedoch eine nur unwesentlich niedrigere Tumorzellllyse. Die Transduktionseffizienz der 5/3-fibermodifizierten Adenoviren ist bei höherer CAR-Expression offensichtlich unverändert.

In der Zelllinie Hey zeigte Ad5.WT auch eine starke onkolytische Potenz mit MOI 1 und 10, was ebenfalls durch eine erhöhte CAR-Rezeptorexpression in dieser Zelllinie bedingt ist und dem Wildtypvirus in dieser Zelllinie eine hohe Infektiosität verleiht (siehe auch Abb. 4.2.4). Die CAR-Rezeptorexpression ist nicht so hoch wie in der Zelllinie MDAH 2774, denn Ad5/3.Δ24 führte mit MOI 0,1 schneller zum Zelltod von ca. 50% der Zellen als Ad5.WT. Die MDR-CRAds hatten hingegen in den Zelllinien MDAH 2774 und Hey die schwächste onkolytische Potenz. Somit zeigt sich eine Korrelation zwischen MDR-Expression und Promotoraktivität in den untersuchten Zellreihen. Ein signifikanter Unterschied hinsichtlich der onkolytischen Potenz zwischen Ad5/3.MDR1E1 und Ad5/3.MDR1.Δ24 ließ sich bei den eingesetzten Ovarialkarzinomzelllinien nicht feststellen. Diese Tatsache kann dadurch erklärt werden, dass es sich bei diesen Zellen um proliferierende Zellen handelte, und demzufolge die Bremse durch die 24-bp-Deletion im viralen E1 Gen keine Rolle gespielt hat.

Es lässt sich also zusammenfassend sagen, dass die MDR-CRAds in den untersuchten Ovarialkarzinomzelllinien, die keine immunhistochemisch nachweisbar erhöhte MDR1-Promotoraktivität besaßen, durch die 5/3-Fiberchimäre eine verbesserte Infektiosität erhielten, durch die Steuerung über den MDR-Promotor jedoch an einer schnellen Replikation gehindert wurden und somit langsamer zum Zelltod führten als das Vergleichsvirus Ad5/3.Δ24, das den Wildtyppromotor besaß.

Die Zytotoxizitätsassays mit den Kontrollzellen (s. Abb. 4.3.5 bis 4.3.7) zeigen, dass auch hier das Virus Ad5/3.Δ24 schneller repliziert als die MDR-CRAds. Ad5.WT zeigte in allen Zellen die niedrigste Toxizität. Wie der Abb. 4.3.8 zu entnehmen ist, konnte auch bei den Normalzellen immunhistochemisch keine erhöhte MDR1-Promotoraktivität festgestellt werden.

Die humanen Mammaepithelzellen ließen sich mit den fibermodifizierten Adenoviren deutlich besser infizieren als mit Ad5.WT. Dieser Unterschied war mit MOI 10 aber kaum noch zu

Für die Zytotoxizitätsassays mit Normalzellen lässt sich also zusammenfassend sagen, dass die MDR-CRAds auch in diesen Zellen durch eine geringe zelluläre MDR1-Promotoraktivität an einer schnellen Replikation gehindert wurden und dadurch deutlich weniger zytotoxisch waren als Ad5/3.Δ24. Die 5/3-Fiberchimäre führte zu einer verbesserten Infektiosität verglichen mit der Wildtypfaser. In relativ replikationsschwachen Zellen konnte der bremsende Einfluss der 24-bp-Deletion im E1 Gen auf die virale Replikation festgestellt werden.

Die Abb. 4.3.9 zeigt, dass die MDR-CRAds in Skov-3 Zellen, die jeweils mit 90 bzw. 150 ng/ml Adriamycin (ADR) behandelt wurden, deutlich schneller replizierten als die Vergleichsviren Ad5/3.Δ24 und Ad5.WT. Dabei replizierte Ad5/3.MDR1E1 schneller als Ad5/3.MDR1E1Δ24. Abb. 4.1.10 zeigt, dass ähnliche Ergebnisse bei primären
Diskussion

...das ist etwa die Hälfte der Zeit, die durchschnittlich bei Assays mit den nicht chemoresistenten Zellen gewartet werden musste. Zurückzuführen ist die rasante Virusreplikation wahrscheinlich im überwiegenden Teil auf die starke MDR1-Promotorinduktion. Weiterhin muss die Tatsache berücksichtigt werden, dass mit steigender Dosis von ADR auch vermehrt Zellmembranschäden hervorgerufen werden, die zusammen mit der Toxizität der Viren und viraler Partikel eher zum Zelltod führen.

Zusammenfassend kann also festgestellt werden, dass die MDR-CRAds in Zellen, die nachgewiesener Weise eine hohe Chemoresistenz besaßen, durch Induktion des MDR1-Promotors eine deutlich bessere onkolytische Potenz zeigten als die Vergleichsviren. Dabei war die zellzyklusunabhängige virale Replikation der zyklusabhängigen überlegen. Die bessere Infektiosität durch die 5/3-Fiberchimäre spielte eine untergeordnete Rolle.

Betrachtet man das Verhalten von Ad5/3.MDR1E1 im Zellverband von Skov-3 Zellen, die mit 90 ng/ml ADR inkubiert wurden, und Fibroblasten, konnte gezeigt werden, dass der MDR-CRAd eine hohe onkolytische Potenz in den chemoresistenten Skov-3 Zellen besaß und eine vergleichsweise geringere Toxizität in den Fibroblasten (s. Abb. 4.4). Durch die MDR1-promotorinduzierte Virusreplikation konnte eine erhöhte Spezifität des MDR-CRAd für chemoresistente Tumorzellen nachgewiesen werden sowie eine schnellere Replikation, die bereits nach fünf Tagen zum Zelltod der meisten Tumorzellen führte.
6. Zusammenfassung

7. Abkürzungen

\(\varepsilon \)
molarer Extinktionskoeffizient

\(^\circ \text{C} \)
Grad Celsius

\(\mu \text{m} \)
Micrometer

a
Adenin

Ad
Adenovirus

Ad5
Adenovirus des Serotyp 5

Ad3
Adenovirus des Serotyp 3

ADR
Adriamycin (=Doxorubicin)

A.L.F.
Automated Laser Fluorescent DNA Sequencer

Abb.
Abbildung

APS
Amoniumpersulfat

Aqua dest.
destilliertes Wasser

ATCC
American type culture collection

bp
Basenpaare

bzgl.
bezüglich

bzw.
beziehungsweise

c
Cytosin

c.a.
circa

CAR
Coxsackie-Adenovirus-Rezeptor

cDNA
komplementäre DNA

CIP
Calf Intestine Phosphatase

CMV
immediate early Promotor des Cytomegalovirus

Cox2
Cyclooxigenase 2

CPE
zytopathischer Effekt

CRAd
conditional replikativer Adenovirus

CsCl
Cäsiumchlorid

d
Tag(e)

d.h.
das heißt

Cy5
Flouresceinmarkierung

dATP
Desoxyadenosin-5´-triphosphat

dCTP
Desoxyctydin-5´-triphosphat

DEPC
Diethylpyrocarbonat

dGTP
Desoxyguanosin-5´-triphosphat

DMSO
Dimethylsulfoxid

DNA
Desoxyribonukleinsäure

dNTP
Desoxynukleotid-5´-triphosphat
<table>
<thead>
<tr>
<th>Abkürzungen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>dTTP</td>
<td>Desoxythymidin-5'-triphosphat</td>
</tr>
<tr>
<td>E</td>
<td>Extinktion</td>
</tr>
<tr>
<td>E1A</td>
<td>adenovirales immediat early E1-Gen</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamin tetraacetat</td>
</tr>
<tr>
<td>et al.</td>
<td>und andere</td>
</tr>
<tr>
<td>FCS</td>
<td>fötales Kälberserum</td>
</tr>
<tr>
<td>g</td>
<td>Guanin</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glycerinaldehyde-3-phosphat-Dehydrogenase</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-2-Hydroxyethyl-1-piperazinetansulfonsäure</td>
</tr>
<tr>
<td>HSG</td>
<td>Heparansulfaglykosaminoglykan</td>
</tr>
<tr>
<td>ITR</td>
<td>inverted terminal repeats</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasenpaare</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo-Dalton</td>
</tr>
<tr>
<td>Luc</td>
<td>Luziferase</td>
</tr>
<tr>
<td>mA</td>
<td>Milliampere</td>
</tr>
<tr>
<td>MDR</td>
<td>multiple drug resistance</td>
</tr>
<tr>
<td>mg</td>
<td>Miligramm</td>
</tr>
<tr>
<td>MgCl<sub>2</sub></td>
<td>Magnesiumchlorid</td>
</tr>
<tr>
<td>min</td>
<td>Minute(n)</td>
</tr>
<tr>
<td>MK</td>
<td>Midkine</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Milimol</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MLSN</td>
<td>Mesothelinpromotor</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-Dimethylthiazol-2-2y]-2,5-Diphenyl-Tetrazolium-Bromid</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>P</td>
<td>Wahrscheinlichkeit</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat-gepufferte Kochsalzlösung</td>
</tr>
<tr>
<td>PCI</td>
<td>Phenol : Chloroform : Isoamylalkohol (25:24:1)</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerasekettenreaktion</td>
</tr>
<tr>
<td>PFU</td>
<td>Plaque forming unit</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Pk7</td>
<td>poly-Lysin (7x)</td>
</tr>
<tr>
<td>pmol</td>
<td>picomol</td>
</tr>
<tr>
<td>RLU</td>
<td>relative Lichteinheit</td>
</tr>
<tr>
<td>RGD</td>
<td>Arginin-Glycin-Asparaginase</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transkriptase PCR</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>s.u.</td>
<td>siehe unten</td>
</tr>
<tr>
<td>SDS</td>
<td>Natrium-dodecyl-Sulfat</td>
</tr>
<tr>
<td>SLPI</td>
<td>secretory leukoprotease inhibitor</td>
</tr>
<tr>
<td>t</td>
<td>Thymin</td>
</tr>
<tr>
<td>t</td>
<td>Zeit</td>
</tr>
<tr>
<td>Taq</td>
<td>Taq-Polymerase</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borat-EDTA</td>
</tr>
<tr>
<td>TCID<sub>50</sub></td>
<td>Tissue culture infectious dose</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N, N-Tetramethylethylen-diamin</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>U</td>
<td>Uracil</td>
</tr>
<tr>
<td>U</td>
<td>Unit (Enzymaktivität)</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolette Licht</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VP</td>
<td>Virus Partikel</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
8. Literatur

9. Anhang

9.1 FIGO-Stadien mit TNM-Klassifikation für das Ovarialkarzinom

I (=T1) Tumor auf die Ovarien begrenzt

IA (=T1a) Tumor auf ein Ovar begrenzt, intakte Kapsel, keine malignen Zellen in der Peritonealspülung / Aszites
IB (=T1b) Tumor auf beide Ovarien begrenzt, intakte Kapsel keine malignen Zellen in der Peritonealspülung / Aszites
IC (=T1c) Tumor auf die Ovarien begrenzt, Kapsel durchbrochen, und/oder maligne Zellen in der Peritonealspülung / Aszites

II (=T2) Tumor der Ovarien und Ausbreitung im Becken

IIA (=T2a) Ausbreitung auf Tuben oder Uterus
IIB (=T2b) sonstige Ausbreitung im Becken
IIC (=T2c) Ausbreitung im Becken und maligne Zellen in der Peritonealspülung / Aszites

III (=T3) Peritonealmetastasen außerhalb des Beckens od. regionäre LK-Metastasen

IIIA (=T3a) mikroskopische Peritonealmetastasen außerhalb des Beckens
IIIB (=T3b) makroskopische Peritonealmetastasen außerhalb des Beckens <2 cm
IIIC (=T3c o. N1) makroskopische Peritonealmetastasen außerhalb des Beckens >2 cm od. regionäre LK-Metastasen (sakral, paraaortal, paracaval, inguinal)

IV (=M1) Fernmetastasen (ausschließlich Peritonealmetastasen)
9.2 Promotorsequenzen

Promotor des multiple drug resistance gene 1 (420bp, Acc.No. X58723)

GATCTGATAT CATCGATGAA TTTCTTCGCT TTTCTAGAGA GGTGCAACGG AAGCCAGAAC
ATTCCTCTGGA GAATTCGACA TGTTGTCGAG GAATCAGCAT TCAGTCATC
CGGCGGCGGGA GGCCAGCATGG TGATGAGGGCG GCCAGGACCA GGCCCAGGAGG
GTGGGCTTGGAC CACAGCGGCT TCGCTTCCTTT TGCCACAGAG ACCCTGAGCT CATTCAGTTA
GCCGGCTCTTC CAAGCTCAAA GAAGCAGAGG CGCTCGTTTG TTTCCTTTAG GTCTTTCCAC
TAAAGGCGGAA GTATCTCTTTT CCAAATTTGC ACGTCTTTGTT GGGCGTTCCA AGAAGCCGCGA
GGTAGGGGCA CGCAAAGCTG GGAGCTACTG GATCCTCCTAG AGTCGACCTG CAGGCAATGCA

9.3 Primersequenzen

5′β-Aktin 5′-aga qat gcc cac gcc tcg tt-3′
3′β-Aktin 5′-att tgc ggt gga cga tgg ag-3′
5′GAPDH-Cy5 5′-cca tgg aga agg ctg ggg-3′
3′GAPDH 5′-caa aqt tgt cat gga tga cc-3′
5′MDR-Prom 5′-cga gct ctt acg cgt gct a-3′
3′MDR-Prom 5′-aaa gcc tga ctc tga gga ac-3′
5′MDR-Expression-Cy5 5′-tca ttc gag tga cgg ctc tt-3′
3′MDR-Expression 5′-ctt ctt tgc tcc tcc tgt gc-3′
5′Sequenzierprimer 5′-cga cgt tgt aaa acg acg gcc ag-3′
3′Sequenzierprimer 5′-cag gaa aca gct atg ac-3′
5′SeqITR 5′-cgg gaa aac tga ata aga gga agt ga-3′
3′Ad1124-1100 5′-att ttc act tac tgt aga cca aca t-3′
3′MDR-Intron 5′-aaa gcc tga cac ttg gga ac-3′

9.4 Plasmidkarten
pAd5/3CMVLuc

pVK500F5/3
10. Danksagung
Herrn Prof. Dr. P. Dall danke ich für die Überlassung des Themas.

Herrn PD Dr. D. Rein danke ich für die sehr gute Betreuung meiner Arbeit, die fachliche
Beratung und kompetenten Hilfestellungen.

Herrn Dr. D. Niederacher danke ich für die Anleitung zum wissenschaftlichen Arbeiten und
die ständige Diskussionsbereitschaft.

Herrn Dr. B. Prisack, Dr. G. Roeder und der onkologischen Chemie danke ich für die
Unterstützung bei der Durchführung der Chemosensitivitätsassays und Bereitstellung von
Tumormaterial.

Herrn Prof. D. Curiel und Frau Dr. A. Kanerva danke ich für die Bereitstellung der Adenoviren
und Plasmide.

Mein ganz besonderer Dank gilt Frau Dr. I. Herrmann, die mich während dieser Arbeit super
unterstützt und betreut und so wesentlich zum Gelingen dieser Arbeit beigetragen hat.

Allen Mitarbeitern des molekulargenetischen Labors der Frauenklinik und des BMFZ möchte
ich für die gute Zusammenarbeit, das kollegiale Miteinander und die gegenseitige Hilfe
danken.

Zum Schluß noch ein Dankeschön an meine Eltern, die mich während meines Studiums und
dem Erstellen dieser Arbeit immer unterstützt haben.
11. Erklärung

Düsseldorf, den 14.06.2007

Marius Porten

12. Lebenslauf

Name: PORTEN, Marius René Peter
Geboren: 27. Februar 1980 in Düsseldorf
Familienstand: ledig
1986 bis 1990 evangelische Grundschule ‘Friedrich-von-Bodelschwingh’ Neuss
1990 bis 1999 Quirinus-Gymnasium Neuss
Juni 1999 Abitur am Quirinus-Gymnasium Neuss
Nov. 1999 bis Aug. 2000 Grundwehrdienst beim Wachbtl. BMVg in Siegburg
Oktober 2000 Beginn Studium der Humanmedizin an der Heinrich-Heine-Universität Düsseldorf
Aug./Sept. 2002 Ärztliche Vorprüfung (Physikum)
März 2003 Famulatur in der Kardiologie, Charité Berlin
August 2003 1. Staatsexamen
September 2003 Famulatur in der Allgemein- Viszeral- und Thoraxchirurgie Lukaskrankenhaus Neuss
September 2004 Famulatur in der Abteilung Gynäkologie und Geburtshilfe Johann-Etienne-Krankenhaus Neuss
Januar 2004 Beginn der Promotionsarbeit im molekulargenetischen Labor der Frauenklinik, Universität Düsseldorf
Aug./Sept. 2005 2. Staatsexamen
Okt. 2005 bis Sept. 2006 Praktisches Jahr im Lukaskrankenhaus Neuss und Regionalkrankenhaus Bozen/Italien
November 2006 3. Staatsexamen und Approbation als Arzt
Seit Januar 2007 Assistenzarzt in der Chirurgischen Klinik Krankenhaus Maria-Hilf, Krefeld