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Second order nonequilibrium phase transition in oppositely charged
driven colloids,
(in preparation)

H. Löwen, H. H. Wensink, and M. Rex,
Driven colloidal mixtures and colloidal liquid crystals,
AIP Conference Proceedings, 982, 284-288 (2008)

Chapter 3
M. Rex and H. Löwen,
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Summary

In this work, we present recent results obtained for the dynamics of colloidal
dispersions out of equilibrium in external fields by means of theory and com-
puter simulations. In the first part of this thesis we study a binary mixture
of oppositely charged colloids which is driven by an external field by carrying
out extensive Brownian dynamics computer simulations. The particles are
driven in opposite directions by either an electric field or by gravity. While
the direct forces are chosen to be identical, the hydrodynamic interactions,
which are taken into account on the Rotne-Prager level, are different in the
two situations. In the presence of an electric field the Oseen contribution
to the mobility tensor is screened due to the forces acting on the counterion
cloud surrounding a charged colloid. The systems undergo a nonequilib-
rium phase transition, the so-called lane formation, if the external driving
force exceeds a critical value. In this nonequilibrium phase particles driven
alike align behind each other and form lanes which comprise only particles
of the same charge. In the plane perpendicular to the external field we find
additionally a variety of different phases. We map out steady-state phase
diagrams for both the case where hydrodynamic interactions are neglected,
as well as when they are taken into account.

In the second chapter we derive a dynamical density functional theory
with hydrodynamic interactions and examine the out-of-equilibrium dynam-
ical evolution of density profiles of hard spherical colloids in an unstable
optical trap. We complement our theoretical analysis by carrying out exten-
sive Brownian dynamics simulations and demonstrate thereby the validity of
our theory. We predict a considerable retardation of the dynamics compared
to the case where hydrodynamic interactions are neglected.

Finally, in the third part we generalize the formalism of dynamical density
functional theory for translational Brownian dynamics to that of anisotropic
colloidal particles which perform both translational and rotational Brownian
motion. Using a mean-field approximation for the density functional and
a Gaussian-segment model for the rod interaction, the dynamical density
functional theory is then applied to a concentrated rod suspension in a con-
fined slab geometry made by two parallel soft walls. The walls are either
expanded or compressed and the relaxation behavior is investigated for an
equilibrated starting configuration. We find distinctly different orientational
ordering during expansion and compression. Furthermore, an external field
which aligns the rods perpendicular to the walls is turned on or switched off
and similar differences in the relaxational dynamics are found. Comparing
the theoretical predictions to Brownian dynamics computer simulation data,
we find very good agreement.





Zusammenfassung

Die vorliegende Arbeit untersucht die Nichtgleichgewichts-Dynamik kol-
loidaler Dispersionen in äußeren Feldern mit Hilfe theoretischer Methoden
und Computersimulationen. Im ersten Teil dieser Arbeit analysieren wir
mit Brownscher Dynamik Simulationen eine äquimolare binäre Mischung
entgegengesetzt geladener Kolloide, die durch ein externes elektrisches Feld
gegeneinander getrieben werden. Wenn die Stärke der externen treibenden
Kraft einen kritischen Wert überschreitet, zeigt das System einen Nichtgleich-
gewichts-Phasenübergang, die sogenannte Spurbildung (lane formation). In
dieser Nichtgleichgewichtsphase ordnen sich die Partikel entlang des elek-
trischen Feldes hintereinander so an, dass eine Spur ausschließlich gleich
geladene Kolloide enthält. Wir untersuchen die Natur des Phasenübergangs
und den Einfluss hydrodynamischer Wechselwirkungen und beobachten, dass
die Spuren in der Ebene senkrecht zu dem externen Feld, abhängig von der
Dichte und der Abschirmlänge, verschiedene Strukturen bilden. Wir finden
u.a. zweidimensionale Gitter- und netzwerkartige Strukturen. Die Ergebnisse
fassen wir in Nichtgleichgewichts-Phasendiagrammen zusammen.

Im zweiten Teil dieser Arbeit leiten wir eine dynamische Dichtefunktio-
naltheorie mit hydrodynamischen Wechselwirkungen her. Anhand dieser un-
tersuchen wir die zeitliche Entwicklung von Dichteprofilen harter sphärischer
Kolloide in einer instabilen optischen Falle. Wir ergänzen unsere Unter-
suchungen durch extensive Computersimulationen und zeigen so die Gültigkeit
unserer Theorie. Durch den Vergleich mit Berechnungen, in denen hydrody-
namische Wechselwirkungen vernachlässigt werden, stellen wir fest, dass die
Dynamik des Systems durch die hydrodynamische Wechselwirkung deutlich
gebremst wird.

Im letzten Teil erweitern wir den Formalismus der dynamischen Dichte-
funktionaltheorie für Translationsdynamik auf die Translations- und Rota-
tionsdynamik anisotroper Brownscher Teilchen. Unter Verwendung einer
mean-field Näherung für das Dichtefunktional und eines Gaußschen Seg-
mentmodels für die Stäbchen–Stäbchen Wechselwirkung, wenden wir die dy-
namischen Dichtefunktionaltheorie auf eine konzentrierte Stäbchenlösung in
einer durch zwei weiche Wände eingeschränkten Geometrie an. Zusätzlich
untersuchen wir den Einfluss eines externen Orientierungsfeldes, das die
Stäbchen senkrecht zu den Wänden ausrichtet. Wir vergleichen die Vorher-
sagen unserer Theorie für die zeitliche Entwicklung der Dichteprofile mit
denen, die durch Brownsche Dynamik Simulationen gewonnen wurden, und
finden sehr gute Übereinstimmung.
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Chapter 1

Introduction

In recent years soft condensed matter (or soft matter, for brevity) has emerged
as an important subfield of condensed matter physics. It is a collective term
for a rich variety of different substances whose common feature is that they
react much more sensitively to mechanical stresses or shear strains than
hard materials such as aluminum or sodium chloride. The reason for the
eponymous softness is the underlying mesoscopic1 length scale of the con-
stituents and can be understood from the following considerations: Imagine
two equally sized perfect crystals consisting either of mesoscopic (soft mat-
ter) or of Ångstrøm sized (atoms) particles. Now, given that the typical
binding energy per particle is in both systems of the same order [1], there
are simply many fewer particles in the soft matter crystal to resist deforma-
tion than in the atomistic one. To be more precise, a quantitative measure
for the rigidity is the shear modulus of a crystal that scales as the inverse
cube of the edge length of an elementary cell. Thus, in our example, the
ratio between the shear moduli of the soft matter and the atomistic crystals
is extremely small, namely up to 10−12 for micrometer sized constituents.
Since this behavior is independent of the details of the particles, the im-
portant role of the mesoscopic length scale of the constituents is made the
defining property of soft matter2. The realm of soft matter thus subsumes
materials such as colloidal dispersions, liquid crystals, polymers, membranes,
dendrimers, surfactants and biological macromolecules [3]. Those substances
have a wide range of applications, e.g., in paints, pharmaceuticals, detergents
and cosmetics, lubricants, and foods [4–6].

This thesis is devoted to the study of colloidal dispersions (also called

1The mesoscopic length scale ranges from the nanometer to the micrometer scale.
2According to the International Union of Pure and Applied Chemistry (IUPAC), soft

condensed matter systems consist of supramolecular entities, which cover at least one
structural length scale which is in the mesoscopic regime [1, 2]

1



2 1. INTRODUCTION

colloids). Colloids are solutions of mesoscopic objects dissolved in a mi-
croscopic host solvent. Though significant complexity arises from having
different constituents with widely separated length scales, the description
of the equilibrium properties of the mesoscopic particles resembles that of
a system of atoms in vacuum – the solvent does not appear explicitly [7].
What seems to be a gross omission turns out to be a sophisticated theo-
retical approach. As was first pointed out by Onsager [8], the degrees of
freedom of the solvent can be eliminated and the colloidal particles interact
with an effective potential (“the potential of mean force”) which accounts
for all solvent effects. When discussing the dynamics, on the other hand, the
analogy between colloids and atoms breaks down. The reason is that atoms
in a gas move ballistically, colloids in a suspension move diffusively. At the
most microscopic level, we can describe the system by the positions and mo-
menta of the small liquid molecules and the large colloidal particles, which
interact by atomic and molecular forces and follow trajectories determined by
Newton’s equations of motion. However, because we are concerned primarily
with the motion of the colloidal particles, one can obtain a more tractable
description by eliminating the liquid variables with the Mori-Zwanzig pro-
jection method [9] to find a set of Langevin equations for the momentum
variables of the large particles. These dissipative stochastic equations replace
the time-reversal invariant Newtonian equations. In this reduced description,
the liquid molecules act as a heat bath, which provides a set of random forces
and torques, as well as friction that produce drag forces and torques on the
colloidal particles and are related by fluctuation–dissipation theorems. In
colloidal suspensions, where usually the long-time configurational dynamics
are of interest, additionally the momentum variables may be dropped from
the equations of motion. This is justified by the enormous difference in size
and mass of the suspended colloidal particles and the solvent molecules which
implies a corresponding separation in the relaxational timescales of the two.
At times of the order of the Fokker-Planck scale, τFP ≈ 10−14s, the solvent
coordinates are already relaxed to thermal equilibrium. On the other Brow-
nian or Smoluchowski timescale, τS ≈ 10−9s, the momentum coordinates of
the solute particles relax to equilibrium with the heat bath of the solvent
molecules. Finally, the time scale of interest for colloidal particles is their
typical diffusive time scale τB (i.e., the time required to move a distance
equal to its own diameter due to thermal motion), which is of the order
of microseconds to seconds [10], and thus a statistical description involving
only the coordinates of the solutes is feasible [10]. Intuitively, the motion
of colloidal particles resembles that of marbles in honey plus Brownian mo-
tion. An important result of the “slow” movement of the particles is that
the dynamics of colloids can easily be resolved experimentally.
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Both facts render colloidal dispersions as appealing model systems for
physics in and out of equilibrium. They are two of the main reasons for the
strong interdisciplinary interest that has arisen in the last few decades. The
term model system is justified for the following reasons:

First, the mesoscopic particles lie within a length scale observable using
visible light and their dynamics are on a experimentally accessible time scale.
Therefore, their structure and their dynamical processes can be observed in
real space by optical techniques such as confocal microscopy. This offers the
unique opportunity to study dynamic processes in and out of equilibrium
by direct observation and allows investigation of the behavior of colloids
simultaneously by theory, computer simulation, and experiment.

Second, though colloidal particles extend well beyond the atomistic regime
and are therefore free of quantum mechanical effects, instructive analogies
between atomistic liquids and solids can be identified [4]. This is because
mesoscopic colloidal particles are still small enough to have a well defined
temperature that manifests itself through the Brownian motion they per-
form. Therefore, in equilibrium they occur in the phase with the lowest free
energy, and the standard tools of classical statistical mechanics and thermo-
dynamics apply. Consequently they also exhibit collective behavior similar
to that found in atomistic systems. For example, liquid-vapor phase separa-
tion or solid phases with different lattice structures possessing virtually every
possible symmetry group are found in colloids.

Third, the effective mutual interaction between colloidal particles is well-
characterized and can be tailored nearly at will. In contrast to atomistic
systems where the interaction potential is prescribed by quantum mechan-
ics, the effective interaction potential between, e.g., charged spherical colloids
can be tuned from a bare Coulombic to a hard-sphere potential by chang-
ing the salt concentration of the suspending fluid and thereby changing the
screening length of the underlying Yukawa potential [9]. Especially the nearly
perfectly realized hard-sphere liquid has become famous and provides excel-
lent laboratories in which to test theoretical predictions [11].

Fourth, mesoscopic particles can be individually controlled by external
fields (e.g. laser tweezers) such that single particles or clusters of particles
can be trapped or dragged. This offers the opportunity to study nearly
arbitrary configurations of the observed system. Moreover, through the use
of external fields, self-organization can be directed to make new advanced
materials [12].

Finally, there are many different kinds of shapes of colloidal particles
available. Prominent examples are spheres, rods, platelets, ellipsoids, or
dumbbells etc., which give rise to a bunch of new phases such as nematic or
smectic order in liquid crystals.



4 1. INTRODUCTION

In conclusion, colloidal dispersions offer an ideal testing ground for fun-
damental concepts in physical science, both in and out of equilibrium. Con-
sequently, colloids are natural candidates for studying dynamical processes
in nonequilibrium situations as is the main interest of this thesis. We predict
the dynamics of colloidal dispersions in external fields by means of both,
theory and computer simulation, in nonequilibrium systems.

In the first part of this thesis, we focus on a binary mixture of oppo-
sitely charged colloids which is driven by an external field. Therefore, we
briefly review what is known about driven diffusive systems out of equi-
librium. Of particular interest are nonequilibrium phase transitions in such
systems, where abrupt changes in the properties of the system can result from
small changes in control parameters such as temperature, density, or external
forces. While bulk equilibrium phase transitions are by now well understood
both by computer simulation [13, 14] and by statistical theories [3, 9, 15],
out-of-equilibrium phenomena still lack a rigorous treatment on the particle
level [16, 17]. For systems in thermal equilibrium the framework provided
by Gibbs allows us in principle to compute averages of all time-independent
observables once the microscopic Hamiltonian and thereby the distribution
over configurational space of the system is known. The remaining difficul-
ties are “merely” technical (though in general challenging). For systems out
of equilibrium on the other hand, until now no similar general classification
scheme has been available [17]. This is immediately evident when consid-
ering the enormous complexity of nonequilibrium time-dependent behavior.
Nonetheless, some good progress in understanding these processes has been
made. One obvious approach is to study steady-state processes. Here, the
system has “settled down” and the probability distribution becomes time-
independent, yet still non-Hamiltonian. In 1983, Katz et al. [18,19] presented
a system which, while being as simple as possible, still retains the essence of
the difficulties of “far from equilibrium” states, in order to study nonequilib-
rium phase-transitions; the Ising lattice gas model in which the constituent
particles have a enhanced/suppressed probability of jumping from a lattice
site to an unoccupied one in/against field direction. It is now referred to
as the “standard model” [17]. They found that particles form strips along
the field direction when a critical field strength is exceeded, and observed a
distinct influence of the field on the equilibrium critical point of the Ising-like
liquid–vapor phase-separation [18, 19]. A similar pattern, though off-lattice
and without the presence of an equilibrium critical point, was recently dis-
covered in a colloidal system: the so-called lane formation [16, 20, 21]. Here,
a repulsive binary colloidal mixture is exposed to a constant external driving
field that acts in opposite directions on the two otherwise identical species.
For forces stronger than a critical force, particles driven alike align behind
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each other. In this way, the driven particles form stripes (or lanes) along the
field direction that comprise only particles of the same species. As a result,
lane formation enhances the drift velocity in field direction [20]. It seems to
be a very common scenario in oppositely driven systems, and similar behavior
has also been found in granular systems [22,23], at fluid–fluid interfaces [24],
in sheared bilayers [25], and pedestrian dynamics [26,27]. Leunissen et al. [28]
have recently presented the first experimental confirmation of lane formation
in colloids in an electrophoresis experiment of oppositely charged colloidal
particles exposed to an external electric field. In the first part of this the-
sis, we perform extensive Brownian dynamics (BD) computer simulations to
study this very system. BD simulations solve the stochastic Langevin equa-
tions of motion for particles performing Brownian motion. What renders
the dynamics of colloids different from ballistic motion, apart from the ran-
dom Brownian forces and the damping of the velocity of the particles due
to the friction with the viscous solvent, is the solvent flow field induced by
the motion of a mesoscopic particles. The flow field then influences the sur-
rounding particles even if there are no direct mutual forces between them.
This solvent-mediated interactions are called the hydrodynamic interactions
and are typically long-ranged and of a many-body nature. In simulations
hydrodynamic interactions are included through the mobility tensor whose
long-distance contribution is called Oseen tensor [13]. In the first instance,
we neglect hydrodynamic interactions and characterize different structures
perpendicular to the direction of drive. Then, in a next step we study the
influence of hydrodynamic interactions on the phase behavior. Thereby, we
study two different setups; namely electrophoresis and sedimentation. In the
former the Oseen contribution to the mobility tensor is screened due to the
forces acting on the counterions. We confirm the previously observed results
in the electrophoresis, while different structures are found in the sedimenta-
tion.

The second part of the thesis is devoted to dynamical density functional
theory (DDFT). This theory predicts the time-evolution of the one-particle
density of a system, i.e. the probability of finding a particle with coordinates
in a volume element, subjected to external fields. It makes use of the formally
exact static classical density functional theory. This theory has proved to be
a very convenient tool that is based on the free-energy density functional of
a given system to derive the equilibrium density profile in external fields.
Density functional theory has been successfully applied to problems such
as adsorption, wetting, confinement, and solid–liquid and liquid–gas phase
transitions [15,29–31]. Several attempts to generalize the theory to nonequi-
librium processes have been carried out in the past. The present version was
originally proposed on a phenomenological basis by Evans [29] and indepen-
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dently by Dieterich [32]. However, it was Marconi and Tarazona [31,33] who
presented a stringent derivation from the Langevin equation of motion and
demonstrated the assumption underlying the DDFT: namely that the cor-
relations of the particles in the out-of-equilibrium system are approximately
those of a system in equilibrium with the same density profile. Archer and
Evans [34] provided an alternative derivation from the Smoluchowski equa-
tion, which is the equation for time-evolution of the probability density in
configurational space. In both cases hydrodynamic interactions are ignored.
A rigorous proof of the existence of an exact DDFT has been given by Chan
and Finken [35], showing that in principle all the time-dependent properties
of the system may be expressed as functionals of the time-dependent density.
Unfortunately, this proof does not provide a practical formalism. However,
to date many studies have demonstrated the accuracy of the original version
and its approximation in a variety of different systems, e.g., [34, 36–40]. In
this thesis, we extend the DDFT, to include hydrodynamic interactions on
a two-body level and to predict the rotational dynamics of anisotropic par-
ticles. We fill both gaps without further approximations in chapter 3 and 4,
respectively. First, we generalize the existing theory to incorporate hydro-
dynamic interactions and apply it to a hard-sphere system in an unstable
optical trap. Then, in chapter 4, we derive a DDFT formalism for rotational
dynamics of anisotropic particles and apply the resulting equation to predict
the switching dynamics of soft rods through an external nematic ordering
field in strong confinement. For both setups we demonstrate the accuracy of
the derived equations by comparing the results to those obtained by extensive
Brownian dynamics simulations.

This thesis is organized as follows. In chapter 2, we study a mixture of
oppositely charged colloids driven by an external field in two steps. First, in
section 2.4, we perform Brownian dynamic simulation to study lane forma-
tion in an equimolar system of oppositely charged colloidal particles while
neglecting hydrodynamic interactions. In section 2.5, we then expand the
model by considering the influence of hydrodynamic interactions on lane for-
mation. In chapter 3, we derive an equation for the time-evolution of the
one-body density in the framework of the DDFT, including hydrodynamic
interactions, and apply it to a hard-sphere cluster trapped and driven by a
laser field. In chapter 4, we show how rotational dynamics are to be treated
within DDFT and study the switching dynamics of soft rods. Finally, in
chapter 5, we conclude and give an outlook to possible future work.



Chapter 2

Lane formation in oppositely
charged colloids driven by an
external field

In this chapter, we study a binary mixture of oppositely charged colloids which
is driven by an external field by means of extensive Brownian dynamics com-
puter simulations. The system investigated is designed to model an experi-
mental setup in which recently lane formation was observed [28]. In section
2.4, we first ignore hydrodynamic interactions, whose calculation is compu-
tationally very costly, and characterize the observed structures. We find a
variety of different phases involving lanes with two-dimensional crystalline
order perpendicular to the field and network-like structure reminiscent of a
phase-separating fluid. We map out a whole steady-state phase diagram for
different values of the screening length and the volume fraction. In section
2.5, we then study the influence of hydrodynamic interactions on the Rotne-
Prager level on the results. Thereby, we examine two different setups; namely
electrophoresis and sedimentation. In the former case the Oseen contribution
to the mobility tensor is screened due to the opposite motion of counteri-
ons. Virtually all phases are confirmed and only minor changes on the phase
boundaries are observed when the external field stems from an electric field.
For the sedimentation, on the other hand, the phase diagram is altered and
two different structures perpendicular to the field direction are identified: a
square-lattice and a phase separation.

7
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2. LANE FORMATION IN OPPOSITELY CHARGED COLLOIDS DRIVEN

BY AN EXTERNAL FIELD

2.1 Introduction

As already stated in the introductory chapter, the physics of phase transitions
in nonequilibrium are still in its infancy [17]. Colloidal suspensions in external
fields are excellent model systems to study those phase transitions [3,41]. One
important example, which builds the basics of electrophoresis and electro-
osmosis [42], is to expose charged colloidal particles to an external electric
field. A constant electric field leads to a nonequilibrium drift of the parti-
cles. If a binary mixture of oppositely driven particles is considered, there
is a transition toward formation of lanes at high driving fields and sufficient
particle concentration. Each lane consists of particles driven alike. This
transition was found in Brownian dynamics simulations [20, 21, 43–47] of a
binary mixture of repulsive particles driven by opposite forces. It occurs in
two and three spatial dimensions. In two dimensions, it was reported to be
a first-order nonequilibrium transition with a hysteresis in a suitable order
parameter [20]. We address this issue in Sec. 2.5.2.

The general scenario is reminiscent of that of pedestrians moving in two
opposite directions in a pedestrian zone [26, 27]. Similar patterns were ob-
served in simulations of granular systems [22, 23, 48], at fluid-fluid inter-
faces [24], in sheared bilayers [25], and in driven diffusive lattice gases [49].

Recently, the formation of lanes in a colloidal system was confirmed in
real space experiments by Leunissen et al. [28]. The dynamics of oppositely
charged colloidal suspensions in an external field was studied by confocal
microscopy. In the absence of an electric driving field, these suspensions
form binary crystals [50, 51] coexisting with a vacuum. If the applied field
strength exceeds a critical threshold, the equilibrium crystal is destroyed and
particles form lanes parallel to the applied field, or jam in opposing bands
perpendicular to the field direction.

In this chapter we study this system by means of extensive BD computer
simulations. We thereby, proceed as follows: First, we explain the model
and the simulation details in Sec. 2.2. Then, we define the used analyzing
tools to calculate the structural correlations in the system and to detect lane
formation in Sec. 2.3. In Sec. 2.4 we present the results obtained with hy-
drodynamic interactions ignored and in Sec. 2.5 we then study its influence.
Finally, in Sec. 2.6 we conclude and outlook.

2.2 The Model

We perform Brownian dynamic simulations to study an equimolar binary
mixture of N (N = 2000 in Sec. 2.4 and N = 1024 in Sec. 2.5) oppositely
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charged colloidal particles of diameter σ dissolved in a solvent fluid of shear
viscosity η at temperature T and volume fraction φ = 2Nπσ3/6l3 exposed
to an external driving field, where l is the dimension of a cubic simulation
box having periodic boundary conditions. Henceforth, σ serves as the unit
of length and kBT , the thermal energy, as the energy unit of the system. To
mimic the experiments by Leunissen et al. [28,52] the particles interact with
an effective screened Coulomb potential (or Yukawa potential) plus a steric
repulsion Vh:

V (rij) = V0
ZiZj

(1 + κσ/2)2

e(−κσ(rij/σ−1))

rij/σ
+ Vh(rij) (2.1)

with V0 = 50kBT the strength of the interaction potential and Zi = ±1 the
sign of the charge of particle i. It has been shown experimentally that this
Yukawa interaction is a suitable effective interaction for this system [28,52].
rij = |ri − rj| denotes the distance between particle i and j, where ri is
the coordinate vector. The inverse screening length κ governs the range of
the interaction and is determined by the salt concentration of the solution.
The steric repulsion between the particles, that prevents the system from
collapsing, is approximated by a repulsive (shifted and truncated) Lennard-
Jones potential

Vh(rij) =

 ε

[(
σ
rij

)12

−
(

σ
rij

)6

+ 1
4

]
if rij ≤ 21/6σ

0 else,
(2.2)

with ε = 4V0/(1 + κσ/2)2. A plot of the potential is shown in Fig. 2.1. The
constant external driving field that acts in opposite directions on the two
different particle species reads as

Fext
i = Zifez, (2.3)

where ez is the unit vector along the z direction and f is the strength of
the external force which is chosen to be f = 276kBT/σ in Sec. 2.4 and
f = 150kBT/σ in Sec. 2.5, respectively. In the former case we chose a
stronger external field to be well in the laning regime [see Fig. 2.28] and to
have more pronounced structures in the lateral direction, i.e., the direction
perpendicular to the field. The minor influences on the observed phases
of the different field strengths are addressed in Subsec. 2.5.2. Though the
interaction strength and the external force are large against the thermal
energy, we perform Brownian dynamics simulation to prevent particles from
crystallizing within a lane.
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Figure 2.1: Interaction potential between like-charged (solid black curve)
and oppositely charged (dashed red curve) particles for κσ = 1.

In Sec. 2.5, we distinguish between two different setups that are identi-
cal as long as hydrodynamic interactions are ignored. The external force is
supposed to stem from either an electric field (electrophoresis) or a gravi-
tational field (sedimentation) accompanied with different buoyant masses of
the oppositely charged particles. Though the external force Eq. (2.3) may
in both cases be identical, if the charges and/or buoyant masses are chosen
accordingly, the hydrodynamic interactions are not.

The algorithm used to simulate the diffusive Brownian motion of the
colloidal particles was proposed by Ermak and McCammon [53]. Here, the
translational displacements of the particles are deemed to occur in time steps
of fixed length ∆t and the update algorithm is given by [13]:

ri(t+ ∆t) = ri(t) + ∆t
N∑

j=1

{
Dij(t)

kBT
· Fj(t) +∇rj

·Dji(t)

}
+ ∆rG

i , (2.4)

where Dij denotes the diffusion tensor field depending solely on the positions
of the particles at time t. The random displacements ∆rG

i are chosen from a
joint Gaussian distribution with mean and covariant matrix [13]

〈∆rG
i 〉G = 0; 〈∆rG

i ∆rG
j 〉G = 2Dij∆t, (2.5)

where 〈. . .〉G denotes the average over the Gaussian noise distribution. Fi(t),
i = 1, ..., N , comprises the nonhydrodynamic forces due to interparticle inter-
actions, determined by the gradient of the interaction potentials in Eq. (2.1)
and Eq. (2.2), and the external force Fext

i , Eq. (2.3), acting onto particle i.
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Hydrodynamic interactions are included in the simulation through the
mobility tensor µij = Dij/kBT . In a first approach, we neglect the numeri-
cally very costly hydrodynamic interactions completely to be in the position
to study larger systems and longer times and to assess the effect of hydrody-
namic interactions on the system. In that case the diffusion tensor is given
by Stoke’s law in diagonal form

γµij = δij1, (2.6)

with friction γ = 3πησH, where σH is the hydrodynamic diameter. The
integration of Eq. (2.4) is then carried out by using the stochastic Runge
Kutta algorithm which has been shown [54, 55] to give more accurate re-
sults than the conventional Brownian dynamics algorithm of Ermak [56]. In
the sedimentation and electrophoresis situation we approximate the mobility
tensor by two-body interactions. In this approximation the divergence in Eq.
(2.4) vanishes always [57]. When studying the sedimentation, the buoyant
masses of the oppositely charged particles are supposed to be such that due
to Archimedes principle the same force acts on the two species but in oppo-
site directions. The action of gravity on the surrounding microions, which
screen the Coulomb potential, can safely be neglected. Therefore, in sum
no net force is acting on the solvent and overall it remains quiescent. Then,
for a pair of spheres of hydrodynamic diameter σH the mobility tensor is
approximated by the well-known Rotne-Prager expression [58]

γµRP
ij = δij1 + (1− δij)

[
3σH

8
O(rij) +

σ3
H

16
Q(rij)

]
, (2.7)

where

O(r) =
1

|r|
(1 + r̂r̂); Q(r) =

1

|r|3
(1− 3r̂r̂), (2.8)

with the unit vector r̂ = r/|r|, r̂r̂ a dyadic product, and δij Kronecker’s
symbol. On this level of approximation we incorporate all interactions up
to O((σH/r)

3). Higher order contributions such as many-body, coupling be-
tween rotational and translational motions, and lubrication forces are ne-
glected. Note, that the leading term in Eq. (2.7) is given by O(r) which is of
the order of 1/|r| for large distances.

However, when regarding the electrophoresis, the mobility tensor has to
be altered since forces induced by the surrounding counterions into the sol-
vent are in sum equal to the force induced by a colloidal particle. Thus, the
solvent flow stemming from the drag on the counterions cannot be neglected
as is done in the sedimentation case. For this case, Long and Ajdari [59] have
calculated the solvent flow field. Thereby, they assumed that the colloidal
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particle can be treated as a point-like chargeQ in an electrolyte which induces
an excess of counterions in its neighborhood. They approximated the result-
ing net charge distribution by the linear Debye-Hückel theory [11], such that
the charge density in the solution is given by ρc(r) = −Qκ2 exp(−κr)/4πr.
Together with Fáxen’s law, which states that at large enough distances a
sphere is simply advected by the velocity of the solvent [60], this results in
an effective screening of the leading far-distance term of the hydrodynamic
interactions between the colloidal particles. The mobility tensor µLA

ij then
reads as

γµLA
ij = δij1 +

3σH

4
(1− δij)

[
e−κrij

rij

((
1 +

1

κr
+

1

κ2r2

)
1−(

1

3
+

1

κr
+

1

κ2r2

)
3r̂ij r̂ij

)
− 1

κ2
Q(rij)

]
. (2.9)

Here, the leading order term is Q(rij) which decays as 1/|r3|. Some further
remarks are in order. The charge density distribution is described on the
Debye-Hückel level that is suited for weakly charged point ions. The distor-
tion of the spherical electrolyte atmosphere around the colloidal particle by
the electric field is neglected. For high volume fractions and large screen-
ing length where particles are close to contact the above mobility tensor
might be inaccurate. However, to some extent the problems are overcome
by the fact that the considered colloidal particles are coated with a polymer
layer. To account for this polymer coating, that gives rise to the steric re-
pulsion, we choose σH = 0.9σ throughout this chapter. Additionally, this
ensured the positive definiteness of the mobility tensor since configurations
with |ri − rj| ≤ σH are of negligible statistical weight.

More sophisticated simulation techniques for spherical particles in an
unbounded space including lubrication approximation for particles in close
proximity and multipolar expansion methods are available [61–65]. However,
in the electrophoresis where the hydrodynamic interactions of the counteri-
ons become important explicit simulations of all colloidal particles and their
counterions – 110 per colloidal particle in the experiments by Leunissen et
al. – are still beyond computational means. Therefore, we adopted the
calculations of Long and Ajdari to our simulations and compare it to the
sedimentation problem on the same level of accuracy, i.e. the Rotne-Prager
level. To our best knowledge this is the first Brownian dynamic simulations
with the Long and Ajdari mobility term (2.9).

Both mobility tensors (2.7) and (2.9) are long-ranged and thus require
an Ewald-like summation in simulations analogous to Coulomb and dipole-
dipole interactions. Details on the summation and discussions about appro-
priate boundary conditions to the system can be found elsewhere [66–69].
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We applied the scheme suggested by Beenakker [69] and adapted it for µLA
ij

accordingly, see Appendix A. The square root of the diffusion tensor, needed
when calculating the random displacements in Eq. (2.5), are obtained from
a Cholesky decomposition:

D = L · LT, (2.10)

where L is a lower triangular matrix and LT is its transpose. A suitable time
scale for our system is τB = γσ2/kBT . The equations of motion including
the external field are numerically solved using a small finite time step ∆t =
2 · 10−5τB in all simulations. The starting configuration of all simulations
including HIs was a homogeneous mixture. For the case of ignored HIs we
tried different starting configurations but the system was observed to run into
the same nonequilibrium steady-state independent of the initial configuration
unless stated differently in the text. Statistics were gathered after an initial
relaxation period of 20τB. We address the issue of system-size effects in
subsection 2.4.2.

2.3 Order parameters and structural correla-

tions

We monitor a suitable order parameter Φ to detect the laning transition,
which is defined as follows. An order parameter Φi = (nl − no)

2/(nl + no)
2

is assigned to every particle i. The numbers nl and no are the numbers of
like-charged particles and oppositely charged particles, respectively, whose
projections of distance onto the plane perpendicular to the field are smaller
than a suitable cutoff length scale zc. This order parameter is equal to 1 if
all particles within this distance criterion are of the same kind and zero if
nl = no, i.e., a homogeneous mixture. We chose for convenience zc = 3

4
σ to

detect all lanes starting from a single queue of particles. The global order
parameter Φ is then defined as

Φ =
1

N

〈
N∑

i=1

Φi

〉
t

, (2.11)

where the angular brackets 〈...〉t denote a time average. The global order
parameter Φ is practically zero for a homogeneous mixed configuration, since
oppositely charged particles will be found inside the cutoff distance but it gets
close to unity if the same particles are located on top of each other, i.e., in a
state of lanes. In what follows we will use the following threshold: for Φ ≥ 3/4
we call the configuration a state of lanes while in the opposite case (Φ < 3/4)
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Figure 2.2: Dimensionless order parameter Φ as a function of the volume
fraction φ for different inverse screening lengths κ∗ with hydrodynamic inter-
actions neglected. The straight line indicates the threshold dividing states
of lanes (above) from states of no lanes (below).

we call it a state without lanes. A typical result for the order parameter Φ
as a function of the volume fraction φ is depicted in Fig. 2.2 for different
inverse screening lengths κ∗ and neglected hydrodynamic interactions. We
observe that for low volume fractions φ < 0.01 the laning order parameter
is small, but upon increasing the volume fraction it sharply increases to a
value close to unity. Only for strongly Coulomb coupled particles, κ∗ ≤ 1,
is the order parameter in the laning regime for φ = 0.01. This behavior
can be understood intuitively. When the volume fraction and the Coulomb
coupling are small, the mean particle separation is several diameters and
thus the particles are hardly correlated and do not form lanes; whereas for
sufficiently high densities or sufficiently low κ∗ we observe lane formation due
to the stronger interaction. A detailed discussion on the phase transition as
a function of the strength of the driving force is given in Sec. 2.5.2.

As mentioned in the introduction, we find a variety of different situations
within the laning regime depending on the volume fraction and the screening
length. Therefore, we monitor the following analysis tools to classify dif-
ferent states of lanes. To distinguish the particles species they are labeled
henceforth A and B. We calculate a pair distribution function perpendicular
to the field direction to check for the structure in the lateral direction which
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is defined as follows:

g⊥(r⊥) =
1

ρN

〈
N∑
i,j

(i/=j)

δ(r⊥ − |ri ⊥ − rj ⊥|)δ(zi − zj)

〉
t

, (2.12)

Here, r⊥ denotes the lateral direction, i.e., r = (r⊥, z), δ(r) Dirac’s delta
distribution, and ρ = 6/πφσ3 the number density. Similarly, we calculate
the pair distribution functions between the different particle species gAB(r⊥)
and like-charged particles gAA(r⊥), which are defined as follows:

gAB(r⊥) =
2

ρN

〈
N∑
i,j

(Zi /=Zj)

δ(r⊥ − |ri ⊥ − rj ⊥|)δ(zi − zj)

〉
t

, (2.13)

and

gAA(r⊥) =
2

ρN

〈
N∑
i,j

(Zi=Zj ,i/=j)

δ(r⊥ − |ri ⊥ − rj ⊥|)δ(zi − zj)

〉
t

. (2.14)

Additionally, we calculate the Fourier transforms ĥX(k) of hX(r⊥) = gX(r⊥)−
1 to obtain the structure factors

SX(k) = 1 + ρĥX(k), (2.15)

with X =⊥,AA,AB and the wave vector k = |k|, where k = (2π/l)(kx, ky)
and kx and ky are integers. A prepeak in the structure factor is an indication
of an additional mesoscopic length scale as is typical for bicontinous networks,
such as, e.g., microemulsions [70,71].

To detect two-dimensional crystallization in the lateral direction we mon-
itor bond-order parameters

〈
Ψ(k)

〉
similar to those frequently used in two-

dimensional systems [72–75]. These order parameters check for symmetry of
the bonds between particles. We assign to every particle a local bond-order
parameter

Ψ
(k)
i =

∣∣∣∣∣ 1

Nb

Nb∑
j=1

ekiΘij

∣∣∣∣∣ , (2.16)

that is close unity for a particle whose neighbors have a k-fold symmetry,
and remains small otherwise. The global bond-order parameters

〈
Ψ(k)

〉
are

then defined by 〈
Ψ(k)

〉
=

1

N

〈
N∑

i=1

Ψ
(k)
i

〉
t

. (2.17)
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In Eq. (2.17), i runs over all particles of the system, and in Eq. (2.16), j runs
over all neighbors of i, Θij denotes the angle between the projection of the
bond connecting particles i and j onto the xy plane and an arbitrary but
fixed reference axis in this plane, and Nb denotes the number of bonds of
particle i. We define a bond between two particles if they are next neighbors
in the z direction and their projected distance onto the xy plane is less than
1.3σ and more than σ. This somewhat arbitrary definition may be applied
since we find that the resulting Ψ(k) depends only weakly on the precise def-
inition of the neighbor distance. In fact, it has already been observed earlier
that details of the neighborhood definition have negligible influence on the
results of the bond-order parameter [73, 74]. This allows us to discriminate
between a fluidlike structure where all

〈
Ψ(k)

〉
are small and a crystalline one.

Furthermore, a k-fold symmetry within a crystalline structure in the lateral
direction can clearly be detected. The distribution function P (Ψ

(k)
i ) accord-

ing to Eq. (2.17) of the local bond-order parameter Ψ
(k)
i also sheds light on

coexistence of a crystalline phase with a second one, since its distribution
reveals a two-peak structure in that case. Thus it allows for detection of
coexistence regimes.

2.4 Lane formation in oppositely charged col-

loids driven by an electric field: chaining

and two-dimensional crystallization

2.4.1 Introduction

In this section, we perform extensive Brownian dynamics simulations without
hydrodynamic interactions between the constituent particles. The obtained
results are summarized in a nonequilibrium “phase diagram” classifying dif-
ferent steady-states as a function of the colloidal volume fraction and the
Coulomb coupling. Different steady-states are characterized by structural
correlations perpendicular and parallel to the applied field, whose definitions
are presented in the previous section. We find a variety of different phases
involving lane chains at small volume fraction and low screening, and lanes
with two-dimensional crystalline order perpendicular to the field at high vol-
ume fraction. The lateral crystalline order can be a square, triangular, or
rhombic lattice. In between there is a lateral network structure.
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2.4.2 Results

(a) Different state points

Figure 2.3: Pair distribution function g⊥(r⊥) as defined in Eq. (2.12) for
φ = 0.01 and κ∗ = 7 (a) and the corresponding projections of the particle
positions onto the area perpendicular to the field (b).

We first discuss eight different typical state points shown in Figs. 2.3 -
2.16 below and then summarize more data in a nonequilibrium state dia-
gram Fig. 2.18. For each, we monitor the lateral pair distribution function

Figure 2.4: Same as Fig. 2.3 for φ = 0.01 and κ∗ = 0.2. Statistics are
gathered after an initial relaxation time of 10τB.

g⊥(r⊥) as defined in Eq. (2.12) and present the results with a typical parti-
cle snapshot projected to a plane perpendicular to the applied driving field.
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Figure 2.5: Same as Fig. 2.4. Statistics are gathered after an initial relax-
ation time of 320τB.

We accompany the results with adequate structural correlations and order
parameters. The first parameter set is for low density (φ = 0.01) and high
screening (κ∗ = 7), see Fig. 2.3. In this case, there is no fully developed lane
formation, yet the projected particle snapshots reveal some anisotropic coars-
ening which results in an intermediate value of the order parameter Φ = 0.5
as shown in Fig. 2.2. Concomitantly, apart from a correlation hole, there
is no liquid or solid structure in the lateral direction, because the particles
hardly interact with each other.

The second situation is for low screening and low density (φ = 0.01).
Then, initially a few lanes of oppositely charged particles form chainlike ob-
jects, i.e., a string of alternating lanes; see Fig. 2.4. This formation process
occurs typically within a few τB, when starting from a mixed disordered con-
figuration. We emphasize that a strong mutual attraction is needed to stabi-
lize the chains; no chains are obtained for repulsive Yukawa mixtures [20]. It
is interesting to follow the further dynamical evolution of the chains. Then,
neighboring lane chains fuse subsequently and grow. The fusing process is
slow compared to the initial formation of the small chains. The growing pro-
cess can clearly be deduced from the projected snapshot of Fig. 2.5(b) and the
corresponding lateral pair correlation function, Fig. 2.5(a), which exhibits an
ordering phenomena along the chains. In the latter case, the pair correlation
reveals more peaks than in the early stage, showing that the average chain
length is growing in time. In Fig. 2.6 the number of chains NC as a function of
time is displayed. One clearly observes the gradual reduction in the number
of chains. The inset shows a log-log plot suggesting that the decrease follows
a scaling law with best fit NC = A/tα with A = 60 and α = 0.32. But, due
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Figure 2.6: Number of chains NC as a function of time. The straight red
line is the best fit of a scaling law to the simulation results (symbols). The
inset shows a double-logarithmic plot of the same data.

to the limited time window accessible in the simulation, the ultimate steady-
state is not clear; one may conjecture that it is a fully phase-separated region
coexisting with a region of no lanes. Nevertheless, the lane chains should be
clearly observable as transient dynamical states in an experiment. A similar
chain formation is observed for higher volume fraction up to φ = 0.05. The
appearance of chains can be qualitatively understood when regarding pairs
of lanes. Since a lane pair of oppositely charged particles clearly possesses
a dipolar moment the effective interaction between pairs is expected to be
like that between dipoles. In fact, a similar chaining behavior has also been

Figure 2.7: Same as Fig. 2.3 for φ = 0.3 and κ∗ = 2.
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observed in equilibrium dipolar fluids; see, e.g., [76–78].

Figure 2.8: Bond-order parameter distribution P (Ψ
(4)
i ) for φ = 0.3 and

κ∗ = 2 (a) and a corresponding typical simulation snapshot (b). The latter
clearly indicates a square lattice in the lateral direction.

Next we explore a parameter combination with low screening and high
density; see Fig. 2.7, where data for φ = 0.3 and κ∗ = 2 are shown. As is
clearly visible from both the pair correlation function and the projected snap-
shots, a lateral crystal-like order emerges. Oppositely driven lanes are placed
on a square lattice as the high value of

〈
Ψ(4)

〉
= 0.95 clearly reveals. The

sharp distribution of P (Ψ
(4)
i ) depicted in Fig. 2.8(a) indicates indeed a single

state with fourfold symmetry. This lattice formation can be qualitatively

Figure 2.9: Same as Fig. 2.3 for φ = 0.4 and κ∗ = 8.

understood from an effective interaction between oppositely charged driven
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Figure 2.10: Bond-order parameter distribution P (Ψ
(6)
i ) for φ = 0.4 and

κ∗ = 8. It clearly reveals a sixfold symmetry of the lattice in the lateral
direction.

lanes which has a short-ranged repulsive part and a long-ranged attractive
interaction. The former is caused by friction between oppositely driven par-
ticles, while the latter just results from the bare Coulomb interaction. From
the data we conclude that the positional order in the lane location is really
long ranged. This is supported by a simulation of a system that is eight times
bigger, as will be discussed in Sec. 2.4.2.

The next parameter combination is high screening and high volume frac-
tion, φ = 0.4 and κ∗ = 8; see Fig. 2.9. Here the strong friction between

Figure 2.11: Same as Fig. 2.3 for φ = 0.1 and κ∗ = 5.

oppositely driven particles enforces lane formation, and the high density re-
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Figure 2.12: Same as Fig. 2.3 for φ = 0.1 and κ∗ = 10.

sults in a rhombic or triangular packing of different lanes. This lattice is then
decorated with different charges. The sixfold symmetry of the lattice of this
parameter combination is revealed by the averaged value of

〈
Ψ(6)

〉
= 0.83.

The distribution of Ψ
(6)
i is also shown in Fig. 2.10. For less screening, κ∗ ≤ 3,

we find a rhombic lattice with a twofold symmetry.
Next we go for further intermediate cases. The most striking new state

occurs at high screening and intermediate volume fraction; see Fig. 2.11 and
2.12, where data for φ = 0.1 and κ∗ = 5 and κ∗ = 10 are shown. Here
one encounters an in-plane structure reminiscent of a percolating network,

Figure 2.13: Pair distribution function gAB(r⊥) (a) and structure factor
SAA(k) of like charged particles (b) for φ = 0.1, κ∗ = 5 and κ∗ = 10.
Additionally the structure factor for κ → ∞ is shown. The latter indicates
that the two particle species are separated by half of the box length.
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Figure 2.14: Same as Fig. 2.3 for φ = 0.1 and κ∗ = 1.

bicontinuous microeemulsion, or microphase-separated system. We call this
structure network like. It is characterized by liquid like order in the lateral
direction [see Fig. 2.11(a) and 2.12(a)]. The prepeaks in the structure fac-
tors SAA(k) in 2.13(b) reveal an additional length scale that depends on the
screening length κ∗. The peaks clearly show that the average thickness of the
lateral regions of like-charged particles is significantly affected by the choice
of κ∗. The characteristic spacing in this structure can be also extracted from
the pair correlation function between the different particle species gAB as de-
fined in Eq. (2.13) [see Fig. 2.13(a)]. These result show that the characteristic
spacing is increasing with increasing κ∗. This is also qualitatively supported
from the projection snapshots in Fig. 2.11(b) and 2.12(b). In the limit of
κ → ∞, i.e., the interaction potential reduces to the repulsive core, we find
that the characteristic spacing is half of the box length suggesting that the
steady-state situation is a phase separated one.

Then we observed a mixed situation of two coexisting dynamical states.
Coexisting states are characterized by two peaks in the appropriate bond-
order parameter distribution, indicating that parts of the system are in a k-
fold symmetry regime while other parts of the system are not. These results
are summarized in Figs. 2.14 and 2.16. The former shows a coexistence
between a region of no lanes and a square lattice phase which involves empty
holes. The fourfold symmetry in the lattice is indicated by the second peak
in the bond-order parameter distribution both depicted in Fig. 2.15(a). The
prepeak in the structure factor S⊥(k) in Fig. 2.15(b) shows an additional
length scale caused by the voids. But, as in the chaining situation, it is
not completely clear whether this is a transient state toward a complete
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Figure 2.15: Bond-order parameter distribution P (ψ
(4)
i ) (a) and structure

factor S⊥(k) (b) for φ = 0.1 and κ∗ = 1.

Figure 2.16: Same as Fig. 2.3 for φ = 0.3 and κ∗ = 7.

square lattice and no lanes phase separation, or whether this is a stable
state. However, if a completely separated state is used as a different starting
configuration, it stays stable over the time explored by the simulation.

Finally in the projected snapshot of Fig. 2.16(b) one observes both local
network structures and parts with triangular crystallinity. The underlying
sixfold symmetry is again revealed by the bond-order parameter distribution
Fig. 2.17.

(b) Steady-state phase diagram

In Fig. 2.18 we present a nonequilibrium steady-state phase diagram for fixed
driving force as a function of the screening parameter κ∗ and the volume
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Figure 2.17: Bond-order parameter distribution P (Ψ
(6)
i ) for φ = 0.3 and

κ∗ = 7. It clearly reveals that parts of the system are in a sixfold symmetry
while others are not.

fraction φ. In addition to the eight parameter combinations that were already
discussed in detail, more data are collected here. There are stable states
with no lanes, network-forming lanes, square, triangular, and rhombic lateral
crystals of lanes, and associated coexistence situations. Solid lines separate
the different states. The chain formation is shown as well. The broken line
separating this state from the others indicates that we are not sure whether
this is a transient state on the way to square and no-lane coexistence or a
stable state. This phase diagram should be detectable in experiments on
highly charged colloidal suspensions.

It is interesting to correlate our results with the phase diagram of the
same system in equilibrium without an external field which was calculated
by Hynninen et al. for κ∗ = 6 and varying temperatures and volume frac-
tions in [50]. Similar to our results, they find a variety of different stable
states due to the competition between the repulsive core and the screened
Coulombic attraction. Let us first go through the phase diagrams from low
to high volume fractions for weak Coulomb coupling, which corresponds to
high temperature in the phase diagram of Hynninen et al. and high screen-
ing in ours. In equilibrium one encounters first a fluid phase, then a fluid
and fcc-disordered coexistence regime, and ends up in a fcc-disordered phase.
Analogously, in our phase diagram we start from two regimes with no crys-
talline order, namely, no lanes and network, and go through a triangular
lattice-network coexistence to a triangular lattice. This part of the phase di-
agram is in both cases mainly dominated by the repulsive core. For stronger
Coulomb coupling, on the other hand, the equilibrium case reveals a broad
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Figure 2.18: Nonequilibrium steady-state phase diagram for a constant
driving force of strength f ∗ = 236. All different states described in Fig. 2.3
- 2.16 in the plane perpendicular to the external fields as a function of the
inverse screening length κ∗ and the volume fraction φ are displayed. The lines
are a guide for the eye. Additionally, the yellow area indicates the parameter
set for which laning was reported in [28].

gas-CsCl coexistence. The corresponding part in our phase diagram shows
similarly a coexistence between a square lattice and no lanes including the
special case of the chain regime. Finally, for higher packing fractions and
strongly interacting particles, Hynninen et al. find three different crystal
structures for increasing volume fractions: CuCl, CsCl, or tetragonal struc-
ture. In our case, we find analogously a transition from a square to a rhombic
lattice. We emphasize, however, that this is just a qualitative comparison
between an equilibrium and a nonequilibrium phase diagram.
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Figure 2.19: Projections of the particles’ position onto the area perpendic-
ular to the field for φ = 0.01 and κ∗ = 0.2 after an initial relaxation time of
10τB. (a) is the same plot as in Fig. 2.4(b). (b) shows the same setup but for
N = 16000 particles. For (b) only 1/8 of the system is displayed to compare
with the smaller system depicted in (a) on the same dimensions. Addition-
ally, the pair distribution function g⊥(r⊥) for the two different system sizes
after an initial relaxation time of 10τB is presented.

(c) Finite system size effects

We have also addressed the issue whether the observed results are influenced
by the system size and whether the periodic boundary conditions support
lane formation. Therefore, we carried out several benchmark simulations
with a system that is eight times bigger, i.e., N = 16000 particles. We
applied the same external field as previously as well as a field tilted by 45
degrees such that lanes do not connect themselves due to the periodic bound-
ary conditions. We compare the simulations to the previous results after the
same initial simulation time. We find that the qualitative results are influ-
enced neither by system size nor by the field direction. We further confirm
that the quantitative results depend only weakly on the system size.

We exemplify this with two state points and compare them to earlier dis-
cussed results. First, we consider φ = 0.01 and κ∗ = 0.2. For this parameter
combination, we find chains of lanes as reported in subsection 2.4.2. The
same is holds for the larger system. Typical projections of the particles’ po-
sition onto the area perpendicular to the field for N = 2000 and N = 16000
are presented in Fig. 2.19. For the larger system only 1/8 of the system
is displayed to enable comparison on the same dimensions. Obviously we
find qualitative agreement with the previously shown results. The quantita-
tive agreement can be deducted from the pair distribution functions g⊥(r⊥)
in Fig. 2.19. They reveal the same number of peaks, suggesting that the
average width of a chain is nearly unaltered by the system size.

The second state point is φ = 0.1 and k∗ = 10, where we find a network
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Figure 2.20: Projections of the particles’ position onto the area perpendic-
ular to the field for φ = 0.1 and κ∗ = 10. (a) Same plot as in Fig. 2.12(b).
(b), (c) Same setup but for N = 16000 particles. In (c) the external driving
field is tilted by 45 degrees such that the lanes do not connect themselves due
to the periodic boundary conditions. For (b) and (c) only 1/8 of the system
is displayed to compare with the smaller system depicted in (a) on the same
dimensions.

like structure. In Fig. 2.20(a) and (b) the projected particle positions for
the two system sizes with the same driving field are displayed. To make the
point, for the larger system we again show only 1/8 of the system. Once
again, the qualitative agreement is obvious. Quantitatively, we compare
the pair distribution functions gAB(r⊥) in Fig. 2.21. It suggests that the
characteristic spacing is more or less system-size independent.

Figure 2.21: Pair distribution function gAB(r⊥) for φ = 0.1 and k∗ = 10 for
two different system sizes N = 2000 and N = 16000.

The influence of the periodic boundary conditions, which support laning
by connecting the lanes to each other when the driving field is along the box
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orientation is also small, as can be seen when tilting the external driving field.
We then find the same qualitative behavior, see Fig. 2.20(a) and (c). Here,
we depict a simulation snapshot for an external field tilted by 45 degrees, i.e.
Eext

i = Zif(ey + ez)/
√

2.
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2.5 Influence of hydrodynamic interactions on

lane formation in oppositely charged driven

colloids

2.5.1 Introduction

In this section, the influence of hydrodynamic interactions on lane formation
of oppositely charged driven colloidal suspensions is investigated using Brow-
nian dynamics computer simulations performed on the Rotne-Prager level of
the mobility tensor. Our motivation to do so is twofold: First, the experi-
ments, of course, contain hydrodynamic interactions in their full glory, and
therefore an inclusion of hydrodynamic interactions is needed for a quanti-
tative comparison. Second, there is a principal need to understand in which
direction hydrodynamics influence lane formation. Two cases are consid-
ered, namely sedimentation and electrophoresis. In the latter case the Oseen
contribution to the mobility tensor is screened due to the opposite motion
of counterions. The simulation results are compared to that resulting from
simple Brownian dynamics where hydrodynamic interactions are neglected.
For sedimentation, we find that hydrodynamic interactions strongly disfavor
laning. In the steady-state, a macroscopic phase separation of lanes is ob-
served here. This is in marked contrast to the simple Brownian case where
a finite size of lanes was obtained in the steady-state. For strong Coulomb
interactions between the colloidal particles a lateral square lattice of oppo-
sitely driven lanes is stable similar to the simple Brownian dynamics. In an
electric field, on the other hand, the behavior is found in qualitative and
quantitative accordance with the case of neglected hydrodynamics.

2.5.2 Results

Order parameter and steady-state phase diagrams

To assess the effect of hydrodynamic interactions on the lane behavior of
oppositely charged colloidal particles we study a set of volume fractions φ and
inverse screening lengths κ∗ = κσ and map out nonequilibrium steady-state
phase diagrams for three situations: hydrodynamic interactions neglected
(A), electrophoresis (B), and sedimentation (C).

A state of lane is thereby identified by a laning order parameter that
is defined in the previous Sec. 2.3. We observe that lanes form different
structures in the plane perpendicular to the driving direction for different
values of κ∗ and φ [see also Sec. 2.4]. We find lanes placed on a square
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Figure 2.22: (Color online) Nonequilibrium steady-state phase diagram
for a constant driving force of strength f = 150kBT/σ with hydrodynamic
interactions neglected accompanied by a typical simulation snapshot of the
projection of the particle coordinates onto the plane perpendicular to the
driving field for each different state. The lines between the phases are a
guide for the eye.

or triangular lattice, a network-like structure (reminiscent of a bicontinous
microemulsion or microphase-separated system), coexistence regimes of the
same, and macroscopically separated lanes. The resulting nonequilibrium
steady-state phase diagrams are shown in Fig. 2.22, 2.23, and 2.24. They
are accompanied with typical simulation snapshots of the projection of all
particle coordinates onto the xy-plane of the respective situation.

What can be seen at first sight is that the qualitative behavior of situa-
tion (A) and (B) in Fig. 2.22 and 2.23 is almost identical with only subtle
differences, while on the other hand the phase behavior changes drastically
for situation (C), Fig. 2.24. In the latter, the whole phase diagram is altered
and the diversity of phases found is reduced compared to the first two cases.
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Figure 2.23: (Color online) Same as Fig. 2.22 but for electrophoresis with
hydrodynamic interactions taken into account through µLA

ij in Eq. (2.9). The
phase diagram reveals only minor differences as compared to the the case of
neglected hydrodynamic interactions in Fig. 2.22.

Comparison of simulation results for neglected hydrodynamic in-
teractions and electrophoresis

In this subsection, we briefly describe the two phase diagrams in Fig. 2.22
and 2.23 and their differences, beginning at low volume fractions and ending
at high ones, and then dwell on the third diagram, Fig. 2.24, thereafter in
subsection 2.5.2. A more ample discussion on how different phases are iden-
tified and what structural correlations they exhibit is given in the previous
section 2.4 on the same system with hydrodynamic interactions neglected
but for a stronger driving strength and larger systems [79]. Here, we find for
situation (A) virtually the same results as in the previous section with only
one difference, namely that we do not encounter a rhombic phase for φ = 0.4
and κ∗ = 1, 2, 3.

For very low volume fraction, φ . 0.01, in both systems the correlations
between particles are not sufficient to form lanes at all. Thus, the systems
are in a phase of no lanes. Only for very low salt concentration, i.e. small κ∗,
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Figure 2.24: (Color online) Same as Fig. 2.22 but for sedimentation with
hydrodynamic interactions taken into account through µRP

ij in Eq. (2.7). The
phase diagram shows significant changes as compared to Fig. 2.22 and Fig.
2.23.

where the electrostatic coupling between the colloidal particles is strong, we
find a coexistence region between lanes and no lanes. Here, the region with
no lanes consists of voids, where hardly any particle is found. The structure
of the lane region, on the other hand, is different in situation (A) and (B).
For situation (A) the corresponding snapshot in Fig. 2.22 reveals fixed lattice
points while the snapshot in Fig. 2.23, situation (B), shows a network-like
structure. For situation (A), an initial configuration with lanes placed on a
square lattice separated from a completely depleted region is stable in sim-
ulations, as well [see also Sec. 2.4.2]. Thus, we assume that in situation (A)
the lanes/no lanes phase is a transient state toward a complete square lattice
and no lane phase separation. Hydrodynamic interactions destroy the coex-
istence phase for φ = 0.01. It only occurs in a denser system with φ = 0.1
whereas in situation (A) this state shows already up at φ = 0.01. Addition-
ally, the voids are more pronounced in the latter case compared to situation
(B). Upon increasing κ∗ ≥ 2 for φ = 0.1 we find in both situations a network-
like structure whose characteristic spacing is increasing with increasing κ∗.
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Figure 2.25: Partial structure factor S⊥(k) of like-charged particles per-
pendicular to the driving field for κ∗ = 10 and φ = 0.1 for hydrodynamics
neglected and electrophoresis. The prepeak at k∗0 = k0σ indicates an ad-
ditional length scale of the structure in the network-like phase. The inset
shows the position k∗0 of the prepeak as a function of the inverse screening
length κ∗ for a fixed volume fraction of φ = 0.1.

For situation (A) there is also a small coexistence region between network
and square lattice at κ∗ = 2 that is not present in (B).

To obtain a quantitative measure of the characteristic spacing in the net-
work structure we determine a structure factor perpendicular to the driving
field of like-charged particles. The steady-state partial structure factor has
been calculated by evaluating expression 2.15. An example of the structure
factors for κ∗ = 10 and φ = 0.1 for both situation, (A) and (B), is shown in
Fig. 2.25. One clearly observes a pronounced prepeak at the wave number
k0 ≈ 1/σ in both cases. A prepeak in the structure factor is an indication
of an additional mesoscopic length scale as typical for bicontinous networks,
such as e.g. microemulsions [70, 71]. In the inset, we additionally present
the position k∗0 = k0σ of the prepeak as a function of the inverse screening
length. It is evident from the picture that the characteristic spacing is indeed
growing with increasing κ∗. We find hardly any difference between situation
(A) and (B).

For φ = 0.2 an additional phase for small inverse screening length shows
up in both phase diagrams. Oppositely driven lanes are placed on a square
lattice with an alternating charge pattern. The formation of this lattice
structure can be qualitatively understood from an effective interaction be-
tween oppositely charged driven lanes which has a short-ranged repulsive
and a long-ranged attractive interaction. The former stems from the friction
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between oppositely driven particles while the later results form the Coulomb
interaction. The square lattice then reduces the electrostatic energy of the
system because each particle has only oppositely charged neighbors. For
increasing salt concentrations we encounter a coexistence region between
the square lattice and the network-like phase and finally end up in a pure
network-like phase. The phase diagram is in both situations very similar,
only the borders of the transitions are slightly shifted. In the electrophoresis
case the network-like structure is preferred to the square lattice.

For a higher volume fractions of φ = 0.3 a coexistence regime between a
triangular lattice and a network-like structure is found. The lattice-points in
the triangular phase are rather randomly decorated with different charges.
Here, the short range repulsion plays the dominant role compared to the
electrostatic interaction. It enforces a triangular lattice due to packing ef-
fects although electrostatically it is strongly disfavored because like-charged
particles necessarily occupy lattice points next to each other. Again, hydro-
dynamic interactions slightly shift the phase boundaries to the network-like
structure.

For the highest volume fraction studied, φ = 0.4, both phase diagrams
show exactly the same behavior. Here, the short range repulsions dictates the
phase behavior for nearly all salt concentration but for κ∗ = 1 and enforces
lanes to be placed on a triangular lattice. Only for κ∗ = 1, where electrostatic
interactions are prominent, a square lattice is preferred. In principle a square
lattice is possible up to the packing of φ = 0.52, i.e. the closed packing of
the simple cubic lattice.

In summary, we found very similar behavior in both situations. The
observed differences can be qualitatively explained by the fact that hydrody-
namic interactions disfavor lanes driven oppositely past each other.

Sedimentation

Regarding sedimentation, Fig. 2.24, the whole phase diagram exhibits only
three different phases. For volume fractions φ ≤ 0.1 we do not find lane
formation for all inverse screening length studied. For increasing volume
fractions and strong electrostatic interactions, κ∗ ≤ 2, first the square lattice
at φ ≈ 0.3, that is also present in the previous two situations, is recovered and
then the system reenters a region with no lanes for φ = 0.4. This behavior
nicely illustrates the competition between hydrodynamic interactions disfa-
voring lanes driven oppositely past each other and the electrostatic interac-
tions favoring a square lattice. Only for the small regime around φ ≈ 0.3 the
electrostatics succeeds the hydrodynamic interactions and enforces a square
lattice. For all other volume fractions laning is destroyed. However, for
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stronger salt concentrations, where the Coulombic coupling is reduced, we
discover a situation that is not present in the previous situations (A) and (B),
namely a region with only two big completely separated lanes. We call this
state phase separated. In that case the long ranged hydrodynamic interac-
tions prescribe the structure and the short ranged Yukawa interaction plays
its role only at the rough interface of the two phases. From our simulations
we conclude the lanes are separated by half of the box length.

Drift velocity

Now, we study the influence of hydrodynamic interaction on the drift velocity
along the field direction that is defined as follows

v2 := lim
t→∞

〈
[(ri(t)− ri(0)) · ez]2

〉
t2

. (2.18)

This entity measures the mean-square displacement of each particle in the
nonequilibrium steady-state. A study on the effect of hydrodynamics on the
drift velocity of like charged colloidal particles was carried out by Watzlawek
and Nägele [80]. Here, we study two cases. First we fix the volume fraction
at φ = 0.3 and vary the inverse screening length and afterward vice versa for
κ∗ = 1.

In Fig. 2.26, we display v∗ = v/v0, where v0 = 150σ/τB is the drift ve-
locity of an infinitely diluted system, for a fixed volume fraction φ = 0.3
as a function of the inverse screening length κ∗ for all three situations. For
all cases the drift velocity increases with decreasing Coulomb coupling be-
cause oppositely charged colloids attract each other while driven in opposite
direction and lanes mutually retard each other. For very strongly screened
particles where this friction is less important all three curves reveal approxi-
mately the same value of v∗ ≈ 0.87. Accordingly, this value approaches the
drift velocity of a system of infinite dilution subjected to the same driving
force. While in (A) and (B) v grows gradually, in the sedimentation curve
we encounter a jump in the drift velocity between κ∗ = 3 and κ∗ = 4. This
coincides with the transition from the no lane regime to the phase separated
regime, see the phase diagram Fig. 2.24. On the other hand for κ∗ ≤ 2, where
we find a square lattice, the drift velocity is similar to κ∗ = 3. From that we
conclude that the phase separated state of lanes supports particle transport
while lanes placed on a square lattice, enforced by strong Coulombic inter-
actions, slows down particle transportation. A further interesting feature is
that curves for (A) and (B) intersect between κ∗ = 1 and κ∗ = 2 and that
the screened hydrodynamic interaction enhance the drift velocity for larger
inverse screening length. The same is true for the unscreened hydrodynamic
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Figure 2.26: Average dimensionless drift velocity v∗ = v/v0 in drive direc-
tion as a function of the inverse screening length κ∗ at φ = 0.3 for Brownian
dynamic simulations with hydrodynamic interactions neglected, taken into
account through µLA

ij , and µRP
ij .

interactions in the sedimentation for κ∗ ≥ 6. When studying the drift veloc-
ity for a fixed inverse screening length but for varying volume fractions in Fig.
2.27, we find again an intersection point of the curves for situations (A) and
(B). Here, the drift velocity in the electrophoresis reaches an approximately
constant value of v∗ ≈ 0.75 for φ = 0.1− 0.4, whereas it gradually decreases
when hydrodynamic interactions are neglected. For the sedimentation the
drift velocity decreases monotonically. In contrast to the case of varying salt
concentration we do not encounter a jump in the sedimentation drift velocity
when entering the square lattice at φ = 0.3 and reentering the no lane regime
at φ = 0.4.

Phase transition

Finally, we address the issue of the order of the laning phase transition.
Therefore, we calculate the laning order parameter (2.11) as a function of
the driving strength f ∗ = fσ/kBT for φ = 0.2 and κ∗ = 6, which corre-
spond to the values of the experiment by Leunissen et al [28], for all three
situations, (A), (B), and (C). Additionally, we also computed another laning
order parameter ΦD which was introduced by Dzubiella and co-workers [20].
This order parameter probes the particle density inhomogeneities along the
field, which vanishes in an ideal lane configuration and is defined as follows.
To every particle i an order parameter ΦD

i is assigned, which is unity if the
lateral distance |ri⊥− rj⊥| to all oppositely charged particles j is larger than
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Figure 2.27: Average dimensionless drift velocity v∗ = v/v0 in drive direc-
tion as a function of the volume fractions φ at κ∗ = 1 for Brownian dynamic
simulations with hydrodynamic interactions neglected, taken into account
through µLA

ij , and µRP
ij .

the cut-off zc = 3
4
σ. Otherwise, ΦD

i is set zero. The global order parameter
ΦD is then, analogously to Φ, defined as

ΦD =
1

N

〈
N∑

i=1

ΦD
i

〉
t

, (2.19)

The resulting curves are shown in Fig. 2.28. Two different situations are
studied. We increase the field starting from a mixed configuration and de-
crease the field starting from the true lane state for f ∗ = 200. For situation
(A) and (B) the latter is a network-like state, whereas for (C) it is a phase
separated one. The results in Fig. 2.28(a) and (b) suggest that the transition
in (A) and (B) is of second order with no hysteresis or jump in the order pa-
rameters. Instead we observe a gradual increase/decrease of Φ and ΦD upon
increasing/decreasing the strength of the external force. The results for the
electrophoresis, Fig. 2.28(b), are in qualitative agreement with experimen-
tal data performed by Royall and co-workers [81]. A detailed comparison is
current work in progress. In situation (C) on the other hand, the system is
either in a phase separated state or in a no lane state, resulting in a jump in
the order parameter. It is accompanied by a significant hysteresis. Thus, we
conclude that the transition in (C) is first order. The results for Φ and ΦD

are qualitatively the same in all three situations.
In an earlier work by Dzubiella and co-workers [20], who studied a similar

system but of like charged colloids driven in opposite directions without
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Figure 2.28: Dimensionless order parameters as defined in Eq. (2.11) and
(2.19) (insets) as a function of the strength of the external driving force for
hydrodynamic interactions neglected (a), for the electrophoresis (b), and for
the sedimentation (c). Two different initial configurations are studied: the
field is increased starting from a randomly mixed configuration (black curves)
and the field is decreased starting from the steady-state configuration for
f ∗ = 200 (red curve), that is in its state of lanes (compare Fig. 2.22-2.24).

hydrodynamic interactions, it was reported that the laning phase transition
is of first order in a two-dimensional system using ΦD. In a two-dimensional
system lanes form stripes in field direction which are very stable once they
are formed. Therefore, we conclude that the order of the transition depends
on the dimensionality of the system.

2.6 Conclusions

In conclusion, in Sec. 2.4 we have analyzed steady-states in a driven mix-
ture of oppositely charged colloidal particles which exhibit lane formation.
By structural diagnostics, different states were distinguished via a different
degree and order of the lanes. At high Coulomb coupling and low densities,
a chaining of oppositely charged lanes was observed. Furthermore, there is
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the possibility of lateral crystallization of lanes into two-dimensional square,
triangular, or rhombic lattices. These states occur for high densities. In Sec.
2.5, we have investigated the influence of hydrodynamic interactions on lane
formation of opposite charged colloids driven by an electric field or by grav-
ity. Hydrodynamic interactions were included on the Rotne-Prager level. For
an electric field, the leading Oseen term is screened due to the presence of
counterions. The latter fact has lead to very similar steady-state phase dia-
grams for an electric field as a driving source than that in the simple case of
neglected hydrodynamic interactions. Again, various steady-state were ob-
tained as a function of the colloidal density and the range of the interaction.
They can qualitatively be understood in terms of a competition of the mu-
tual Coulomb attraction and friction of sliding lanes. At high densities the
lateral structure is crystalline, the crystal is either triangular as dictated by
packing at high densities and high screening or square-like at low-screening
which minimizes the Coulomb attractive energy. On the other hand, in sed-
imentation where the two colloidal species have the same buoyant mass up
to a relative sign, friction of sliding lanes is strongly enhanced leading to
macroscopic separation of lanes.

The steady-state phase diagram can in principle be verified in real-space
experiments of charged suspensions which are driven in an electric field or
sedimenting [28]. In the future, we shall focus on a detailed comparison
between our simulation data and the experimental data. Work along these
lines is in progress.

It would be interesting to check whether effective dipolar interactions
between the charged particles which are mediated by the distorted counterion
cloud around the colloids in an electric field are relevant. These forces favor
aligning particles no matter how they are charged.

Further future work is to generalize the set-up to driven non-spherical
particles like rod-like particle and/or to rod/plate mixtures where new effects
are anticipated [82–84].

Also the special case of a mixture of charged and uncharged particles
as recently studied by simulation in Ref. [85] should receive more attention
and should be classified according to our structural criteria. It would be
interesting to construct a microscopic theory for the lane transitions which
includes the lateral crystalline structure. The instability analysis within a
dynamical density functional theory as applied to the case of equal charges
in two spatial dimensions [44, 86] should in principle be generalizable to the
case of oppositely charged particles.

Finally, more sophisticated simulations schemes are needed in order to go
beyond the Rotne-Prager level of approximation used in this chapter. Among
the various promising approaches are the stochastic rotation dynamics code
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[87, 88], a lattice Boltzmann theory including hydrodynamics [89–93] and
counterion flow or the recently developed fluid particle dynamics methods
[94–96].
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Chapter 3

Dynamical density functional
theory with hydrodynamic
interactions

In this chapter, we derive a dynamical density functional theory (DDFT)
for translational Brownian dynamics including hydrodynamic interactions on
the two-particle level starting from Smoluchowski’s equation for the time-
evolution of the probability density. The theory reduces to the original version
of the DDFT presented by Marconi and Tarazona [31,33] when hydrodynam-
ics are neglected. Using Rosenfeld’s fundamental measure theory (FMT) for
the density functional, we analyze the dynamics of a cluster of hard spheres
trapped in an oscillating spherical optical trap which switches periodically in
time from a stable confining to an unstable potential. The hydrodynamic in-
teractions are treated as pair interactions on the Rotne-Prager level. The very
accurate FMT functional allows us to scrutinize the quality of our theory.
Additionally, we compare the results to those obtained when hydrodynamic
interactions are ignored. We find that the predictions for the density profile
are confirmed by those obtained by extensive Brownian dynamics simulations
for moderate external forces. For strong external forces some discrepancies
are observed.

3.1 Introduction

The dynamics of colloidal particles dispersed in a molecular solvent is by
far less understood than their static behavior. The reason is that colloidal
dynamics span a wide range of time-scales due to the enormous difference in
size and mass of the colloidal particles and the host solvent molecules. The

43
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obvious approach to this problem is to reduce the description of the solvent,
when one is interested in the dynamics of the colloidal particles. While in
equilibrium all solvent effects can be mapped on an effective interaction po-
tential between the colloids, in nonequilibrium additional solvent effects need
to be taken into account. These are: The friction of the colloids with the
solvent, their Brownian motion due to random kicks of the solvent molecules,
and solvent meditated interactions, the hydrodynamic interaction. This is
either done by solving Langevin’s equations of motion for the constituent
particles, or by describing the time evolution of the probability density in
configurational space. The former description takes the Brownian motion
the particles perform explicitly into account and build the basis of computer
simulations of colloidal dynamics (see previous chapter 2). A full microscopic
theory for the time evolution of the probability density including hydrody-
namic interactions through the mobility tensor is in principle given by the
Smoluchowski equation. In practice, however, such a predictive theory is
hampered by the many-body nature of the problem and the long range of
the Oseen mobility tensor which is the leading contribution for a colloidal
pair. Explicit approaches have been worked out in the bulk for short-time
and long-time diffusion coefficients [97–99], and for the viscosity [100]. There
are also first investigations for colloids near walls and on interfaces [101,102]
but a general theory for an arbitrary and time-dependent inhomogeneous
external potential is missing.

A promising approach to describing the dynamics of colloidal particles
is DDFT which is based on the classical density functional theory (DFT).
DFT is a microscopic theory which starts from the interparticle interactions
and bulk fluid correlations as an input. It predicts the inhomogeneous den-
sity profiles in an external potential including strongly inhomogeneous sit-
uations like freezing, for reviews see [30, 103]. The key quantity is the ex-
cess (“over ideal-gas”) free energy density functional, which is in general
unknown. However, to date very accurate approximations for various in-
terparticle interactions are available. For example, Rosenfeld’s fundamental
measure theory [104,105] has been shown to be reliable for hard spheres, and
the mean-field approximation is asymptotically correct for soft core interac-
tion at high densities [38, 106,107].

While it is by now well understood how to extract the static equilibrium
properties of an inhomogeneous system from density functional theory, its
extension toward time-dependent dynamical situations in nonequilibrium is
more challenging. Recently, a DDFT was developed [31, 33, 34] where hy-
drodynamic interactions are ignored. DDFT results for the nonequilibrium
dynamics of inhomogeneous Brownian fluids were found to agree with sim-
ulation data [39, 40, 108]. Further important activities in developing the
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dynamical extension of DFT lie in the existence proof of the dynamical func-
tional [35], its applicability to Newtonian dynamics [109] and to include fluc-
tuations and noise effects [110]. Still lacking to date is how hydrodynamic
interactions are to be treated in the DDFT formalism. Some attempts have
been carried out by including hydrodynamic interaction effects in a density
dependent diffusion coefficient [37]. Here, we present a stringent derivation
of a DDFT which takes hydrodynamic interactions on a two-particle level
into account without making further approximations than those underlying
the DDFT of Marconi and Tarazona.

This chapter is laid out as follows. In Sec. 3.2, starting from the Smolu-
chowski equation, we derive a generalized dynamical density functional the-
ory which includes hydrodynamic interactions. Sec. 3.3 is devoted to de-
scribing the system and the associated free energy functional. In Sec. 3.4 we
present the results obtained by DDFT and Brownian dynamics simulations.
Finally, in Sec. 3.5 we draw some conclusions.

3.2 Equation of motion for the one-body den-

sity

To derive a functional theory for the one-body density ρ(r, t) including hy-
drodynamic interactions, we start from the equation for the time-evolution
of the full probability density distribution P (rN , t) for N interacting spheri-
cal Brownian particles at positions rN = r1, r2, ..., rN , i.e., the Smoluchowski
equation (see e.g. [10]):

∂P (rN , t)

∂t
=

N∑
i=1

N∑
j=1

∇i ·Dij(r
N) ·

[
∇j + β∇jU(rN , t)

]
P (rN , t), (3.1)

where Dij(r
N) is the diffusion tensor, β−1 = kBT is the thermal energy,

and U(rN , t) is the total potential energy of the system. By using the Smolu-
chowski equation the description of the complex fluid is reduced to one based
solely on the position coordinates of the colloids, rather than utilizing the full
set of phase space coordinates for the colloid and solvent particles. The sol-
vent mediated interactions, the hydrodynamic interactions, are then included
through the configuration-dependent diffusion tensor Dij(r

N). In our ap-

proach, we approximate the diffusion tensor by Dij(r
N) ≈ D01δij +D

(2)
ij (rN),

i.e., on a two particle level. D0 denotes the diffusion constant of a single iso-
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lated particle, δij is Kronecker’s delta, and

D
(2)
ij (rN) = D0

δij N∑
l/=i

ω11(ri − rl) + (1− δij)ω12(ri − rj)

 . (3.2)

For a one-component suspension of spheres, series expansions of the two ten-
sors ω11 and ω12 are known, in principle, to arbitrary order [111]. We further
assume pairwise additivity for the total potential energy of the system, such
that U(rN , t) reads as:

U(rN , t) =
N∑

i=1

Vext(ri, t) +
1

2

N∑
i=1

N∑
j /=i

v2(ri, rj), (3.3)

where Vext(r, t) is the one-body time-dependent external potential acting on
each particle and v2(ri, rj) is the pair potential. To obtain an equation for
the time-evolution of the one-body density, we note that the n-body densities
are given by integrals over the probability density:

ρ(n)(rn, t) =
N !

(N − n)!

∫
drn+1 ...

∫
drN P (rN , t) (3.4)

Thus, by integrating Eq. (3.1) with N
∫

dr2 ...
∫

drN , we obtain the following
equation for the one-body density:

Γ−1∂ρ(r, t)

∂t
=

{
∇r ·

[
kBT∇rρ(r, t) + ρ(r, t)∇rVext(r, t) +∫

dr′ ρ(2)(r, r′, t)∇rv2(r, r
′)

]}
+

∇r ·
∫

dr′ ω11(r− r′) ·
{
kBT∇rρ

(2)(r, r′, t) +∇r[Vext(r, t) + v2(r, r
′)]

ρ(2)(r, r′, t) +

∫
dr′′ ρ(3)(r, r′, r′′, t)∇rv2(r, r

′′)

}
+

∇r ·
∫

dr′ ω12(r− r′) ·
{
kBT∇r′ρ(2)(r, r′, t) +∇r′ [Vext(r

′, t) + v2(r, r
′)]

ρ(2)(r, r′, t) +

∫
dr′′ ρ(3)(r, r′, r′′, t)∇r′v2(r

′, r′′)

}
, (3.5)

where Γ is the mobility constatant for which the Einstein relation gives
D0/Γ = β. Eq. (3.5) still depends on both the time-dependent two-body



3.2. Equation of motion for the one-body density 47

and the three-body densities. We will cast those into a form involving ex-
clusively the free energy functional F [ρ] by making use of static DFT [29]
and the Yvon-Born-Green (YBG) relations (see, e.g., [9]). To that end,
we regard an out-of-equilibrium system at time t = t0 with the instanta-
neous density profile ρ(r, t0), whose time-evolution is given by Eq. (3.5).
From static DFT it is known that every equilibrium density profile ρ0(r) is
brought about by a unique external potential Φext(r). Thus, we can identify
the out-of-equilibrium instantaneous density with an equilibrium one of a
reference system exposed to an accordingly chosen unique external potential
Φext(r, t0) = u(r, t0) + Vext(r, t0), such that ρ0(r) = ρ(r, t0). This holds for
every point in time and therefore Φext(r, t), the additional potential u(r, t),
and the equilibrium reference density ρt(r) depend parametrically on time t.
In equilibrium, a generalized force balance equation can be proved [29]

kBT∇ρt(r)

ρt(r)
+∇Φext(r, t) = −∇ δFexc[ρ]

δρ

∣∣∣∣
ρ=ρt(r)

, (3.6)

with the excess free energy functional Fexc[ρ]. A simple reorganization (recall
that u(r, t) is chosen such that ρt(r) = ρ(r, t) at each point in time) yields:

∇u(r, t) = −∇ δF [ρ]

δρ(r, t)
≡ −∇µ(r, t). (3.7)

with the free energy functional

F [ρ] = kBT

∫
dr ρ(r, t)[ln(Λ3ρ(r, t))− 1] + Fexc[ρ] +

∫
dr ρ(r, t)Vext(r, t).

(3.8)
Λ denotes the thermal de Broglie wavelength. µ(r, t) is usually interpreted
as a local nonequilibrium chemical potential. In the nonequilibrium system,
the gradient of the chemical potential is the thermodynamic driving force.
∇u(r, t) may therefore be envisaged as the additional external force which
is necessary to balance the thermodynamic driving force in the equilibrium
reference system. In the latter, additionally the YBG-hierarchy holds, whose
first two members read as [9]:

kBT∇rρt(r) + ρt(r)∇r [Vext(r, t) + u(r, t)] +
∫

dr′ ρ
(2)
t (r, r′)∇rv2(r, r

′) = 0

⇔
−ρt(r)∇ru(r, t) = kBT∇rρt(r) + ρt(r)∇rVext(r, t) +∫

dr′ ρ
(2)
t (r, r′)∇rv2(r, r

′) (3.9)
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and

kBT∇r′ρ
(2)
t (r, r′) +∇r′ [Vext(r

′, t) + u(r′, t) + v2(r, r
′)] ρ

(2)
t (r, r′) +∫

dr′′ ρ
(3)
t (r, r′, r′′)∇r′v2(r

′, r′′) = 0

⇔
−ρ(2)

t (r, r′)∇r′u(r′, t) = ∇r′ [Vext(r
′, t) + v2(r, r

′)] ρ
(2)
t (r, r′) +

kBT∇r′ρ
(2)
t (r, r′) +

∫
dr′′ ρ

(3)
t (r, r′, r′′)∇r′v2(r

′, r′′). (3.10)

The two right-hand sides in the second lines of equations (3.9) and (3.10) oc-
cur in the dynamical (nonequilibrium) context, Eq. (3.5). The basic assump-
tion now, which also underlies the original version of the DDFT [31,33,34], is
to use these expressions in the nonequilibrium situation, i.e., we approximate
the two-body and three-body densities by those of the reference system with
the same one-body density: ρ(2)(r, r′, t) ≈ ρ

(2)
t (r, r′) and ρ(3)(r, r′, r′′, t) ≈

ρ
(3)
t (r, r′, r′′). Inserting equations (3.7), (3.9), and (3.10) into Eq. (3.5) we

obtain our central result

Γ−1∂ρ(r, t)

∂t
= ∇r

[
ρ(r, t)∇r

δF [ρ(r, t)]

δρ(r, t)

]
+

∇r ·
∫

dr′ ρ(2)(r, r′, t)ω11(r− r′) · ∇r
δF [ρ]

δρ(r, t)
+

∇r ·
∫

dr′ ρ(2)(r, r′, t)ω12(r− r′) · ∇r′
δF [ρ]

δρ(r′, t)
. (3.11)

Note that the first part on the right hand side of Eq. (3.11) is identical to
the original DDFT of Marconi and Tarazona [31,33].

Finally, we need to close the above relation, which still depends on the
two-body density. Within the central approximation ρ(2)(r, r′, t) = ρ

(2)
0 (r, r′),

the latter is given at every point in time by the exact generalized Ornstein-
Zernike equation [29]:

ρ(2)(r, r′, t) = ρ(r, t)ρ(r′, t)

(
1 + β

δ2Fexc[ρ]

δρ(r, t)δρ(r′, t)

)
+

ρ(r′, t)

∫
dr′′ (ρ(2)(r, r′′, t)− ρ(r, t)ρ(r′′, t))β

δ2Fexc[ρ]

δρ(r′, t)δρ(r′′, t)
. (3.12)

In conclusion, we derived a closed system of two equations that involves
exclusively the equilibrium free energy functional F [ρ] to obtain the time-
evolution of the one-body density, including hydrodynamic interactions on
the two-body level. The only assumption in the derivation was that the out-
of-equilibrium two-body and three-body densities are approximated by those



3.3. The model 49

of an equilibrium system with the same instantaneous density. This assump-
tion seems reasonable, since we consider overdamped Brownian dynamics, for
which the momentum degrees of freedom relax instantaneously. Imagine one
actually switches on u(r, t), then the density of the out-of-equilibrium system
is instantaneously the same as its equilibrium one, and “only” the n-body
densities have to relax to their equilibrium values. Within our assumption
this happens instantly. This central assumption, sometimes referred to as
adiabatic approximation, was first suggested by Marconi and Tarazona [33].
To date, a number of studies have demonstrated the accuracy of this approx-
imation in a variety of different systems, see e.g. [34, 36–40]. However, it is
supposed to work best in relaxational dynamics.

3.3 The model

As a demonstration of the method presented in the previous section, the
time-evolution of the one-body density with hydrodynamic interactions is
predicted by Eq. (3.11) for a cluster of N = 100 monodisperse spherical
particles of diameter σ, whose interaction is hard, i.e.,

v2(rij) =

{
∞ if rij ≤ σ
0 else

, (3.13)

with rij = |ri−rj|. Henceforth, σ serves as the unit of length, the appropriate
time scale is τB = σ2/D0, and the energy unit is kBT . The particles are
trapped in a fixed soft spherical cavity which is supposed to be generated by
light fields. Thus, it only acts on the colloidal particles but is penetrable for
the solvent molecules and the solvent is therefore treated as an unbounded
fluid. The particles are then driven to the shell or to the center of the cavity
by a second light field in an oscillatory manner. The total external potential
reads as

Vext(r) = V0

(
r

R0

)4

+ (−1)Θ(sin(2πt/T ))VD

(
r

RD

)2

, (3.14)

where r = |r| and Θ(x) is the step function. R0 = 4σ and V0 = 10kBT are
the length scale and the strength of the outer fixed potential and RD = σ
and VD = kBT are the length scale and strength of the driving potential,
respectively. T = τB is the period with which the inner potential switches
instantaneously. Due to the spherical symmetry, the density profile ρ(r, t)
depends on only one effective coordinate, namely the absolute value of the
coordinate vector.

We argued in the preceding section that the DDFT needs an accurate
excess free energy functional as an input. For a hard-sphere liquid, Rosen-
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feld’s FMT [104] provides a very reliable approximation scheme for Fexc[ρ].
Its accuracy in spherical confinement was demonstrated by González and
co-workers [112,113]. FMT is a generalized form of weighted-density approx-
imations for fluids designed to model hard objects. In contrast to conven-
tional weighted-density approaches, the free energy density is taken to be a
function of not just one but of several different weighted densities. Though
Rosenfeld’s original work was proposed to describe hard sphere mixtures,
to date several generalizations to other hard objects are available [114]. The
weighted densities are obtained by convolutions with weight-functions, where
a spatial convolution is given by g(r)∗h(r) =

∫
dx g(x)h(r−x). The weight-

functions are geometrical properties of the constituent objects. For spherical
particles they are given by

w3(r) = Θ(R− r), w2(r) = δ(R− r), (3.15)

wv2(r) = w2(r)r/r, wm2(r) = w2(r)[rr/r2 − 1/3], (3.16)

and the linearly dependent weights

w1(r) =
w2(r)

4πR
, wv1(r) =

wv2(r)

4πR
, w0(r) =

w1(r)

R
. (3.17)

δ(x) is the Dirac distribution, and R = σ/2 is the radius of the spheres. rr
denotes a dyadic product and 1 the 3× 3 identity matrix. Convolution with
the density ρ(r) yields the weighted densities

nν(r) = ρ(r) ∗ wν(r), ν = 3, 2, 1, 0, v2, v1,m2. (3.18)

The excess free energy functional is obtained by integrating over a free energy
density,

βFexc[ρ] =

∫
dr Φ({nν}), (3.19)

where the reduced free energy density Φ is a simple function as opposed to
a functional of the weighted densities nν and reads as:

Φ = −n0 ln(1− n3) +
(n1n2 − nv1 · nv2)

(1− n3)
+

n3
2/3− n2n

2
v2 + 3(nv2nm2nv2 − 3 det nm2)/2

8π(1− n3)
. (3.20)

The contributions involving nm2 are small and will be neglected henceforth.
They were given here for completeness.
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The last input are the tensors ω11(r − r′) and ω12(r − r′) that account
for the hydrodynamic interactions between a pair of spheres. We approx-
imate D0ω12(r − r′) by the well-known Rotne-Prager expression [58], and
it is given in Eq. (2.7) in chapter 2 and neglect ω11(r − r′), whose leading
term is O((σ/r)4). On this level of approximation, we incorporate all solvent
mediated interactions up to O((σ/r)3), neglected is O((σ/r)4).

The partial differential equation governing the time evolution of ρ(r, t),
Eq. (3.11), is solved numerically employing a finite difference approximation
with a fixed time step ∆tD = 10−5τB. We avoid the numerically demanding
solution of Eq. (3.12) which would involve an iterative scheme to calculate the
two-body density at every time step. Instead, we approximate the two-body
density by ρ(2)(r, r′, t) = ρ(r, t)ρ(r′, t)g(|r− r′|), where g(|r− r′|) is the pair
correlation function for a homogeneous system, that has been evaluated from
an analytic expression, which is based on the Percus-Yevick equation, given
in [115]. Thereby, at each time step the pair correlation is calculated at the

average density of the system ρ̄(t) = 1/Rmax

∫ Rmax

0
drρ(r, t), where Rmax is the

distance from the origin for which the density vanishes: ρ(r ≥ Rmax, t) = 0.
The results are checked against Brownian dynamics simulations performed

on the same level of accuracy of the diffusion tensor. Additionally, the densi-
ties are compared to those obtained by standard DDFT where hydrodynamic
interactions are ignored. The Brownian dynamics simulation technique for
hard spheres differs from the standard one presented by Ermak [56] (see also
previous chapter 2) where in a time step ∆t all particles are displaced si-
multaneously. In the latter method forbidden overlap configurations would
occur. To avoid those, the method presented by Cichocki and Hinsen [116]
resembles that of a Monte-Carlo simulation. In each time step ∆t/N only
one particle is displaced according to Eq. (2.4). If an overlap occurs, the
particle is restored to its previous position and the time step is not counted.
Unfortunately, this scheme is only valid for Brownian dynamics simulations
in which hydrodynamic interactions are neglected. For hydrodynamic inter-
actions on the Rotne-Prager level no similar scheme is available. Foss and
Brady [117] presented a simulation method for hard spheres which is based
on the Stokesian dynamics [61]. Their code crucially needs lubrication forces
to avoid particle overlaps and is thus not appropriate here, since lubrication
is neglected in the DDFT results. Therefore, for the case of hydrodynamic
interactions included, we approximate the hard interaction by a soft one:

v2(rij)

kBT
=


[(

σ
rij

)48

−
(

σ
rij

)24

+ 1
4

]
if rij ≤ 21/24σ

0 else
. (3.21)

The simulation algorithm is then the same as presented in chapter 2. In
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Figure 3.1: Hard-sphere (black curves) and soft-sphere (red curves) BD
simulation results for the time-dependent density profile. Hydrodynamic
interactions are in both cases neglected. The profiles correspond to the fol-
lowing time sequence: t0 = 0.0, t1 = 0.1τB, t2 = 0.2τB, t3 = 0.3τB, t4 = 0.4τB,
and t5 = 0.5τB in (a) and t0 = 0.5τB, t1 = 0.6τB, t2 = 0.7τB, t3 = 1.0τB in
(b).

all simulations we chose ∆t = 10−4. In order to obtain the time-dependent
density ρ(r, t) we perform a large number Nrun = 5000 of independent runs
with different initial configurations sampled from a situation with a static
external potential, i.e., Eq. (3.14) at t = 0.

For hydrodynamic interactions neglected we are in the position to com-
pare the resulting density profiles for the hard- and the soft-core interaction,
see Fig. 3.1. Some deviations are observed (profiles for the soft-core inter-
action evolve faster and have slightly less structure). However, we use the
soft-core results as reference results for hydrodynamic interactions included.
For future work, a simulation scheme that is capable of simulating the true
hard-sphere interaction should be developed.

3.4 Results

In this section, we present the results obtained by DDFT and Brownian dy-
namics simulation for the setups introduced in the preceding section. Hence-
forth, the case of hydrodynamic interactions included will be labeled (A),
and the case of hydrodynamic interactions ignored (B), respectively. The
associated profiles for ρ(r, t) are shown in Fig. 3.2 for the first half-period
in which the cavity is unstable and in Fig. 3.3 for the stable complement,
respectively. In (A) full relaxation to equilibrium is hindered by the periodic
switching of the external potential and the system rather reaches a steady-
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Figure 3.2: DDFT (black curves) and BD (noisy red curves) results for the
time-dependent density profile with hydrodynamic interactions taken into
account (a) and without hydrodynamic interactions (b). The profiles cor-
respond to the following time sequence: t0 = 0.0, t1 = 0.1τB, t2 = 0.2τB,
t3 = 0.3τB, t4 = 0.4τB, and t5 = 0.5τB.

state, i.e., a periodically repeating density profile ρ(r, t) = ρ(r, t + T ). The
steady-state profiles for (A) are depicted in Fig. 3.4. In (B) on the other
hand, the system relaxes to equilibrium within each period. Therefore, their
steady-state profiles are identical to those in the initial period and not shown
again. The initial curves in Fig. 3.2 are the same in both cases, namely the
equilibrium profiles ρ0(r) for t = 0, i.e., when the external confining poten-
tial is stable. One clearly observes a layering in the initial curve with three
correlation peaks in the density profile. In the dynamic development of the

Figure 3.3: Same as Fig. 3.2 but for the time sequence: t0 = 0.5τB, t1 =
0.6τB, t2 = 0.7τB, and t3 = 1.0τB.

density, there are some obvious results that can already be discerned by vi-
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Figure 3.4: DDFT (black curves) and BD (noisy red curves) results for the
time-dependent steady-state density profile with hydrodynamic interactions
taken into account for the expanding and compressing half-periods (a) and
(b), respectively. t0 = 2T + 0.0, t1 = 2T + 0.1τB, t2 = 2T + 0.2τB, t3 =
2T + 0.3τB, t4 = 2T + 0.4τB, and t5 = 2T + 0.5τB in (a) and t0 = 2T + 0.5,
t1 = 2T + 0.6τB, t2 = 2T + 0.7τB, t3 = 2T + 1.0τB in (b).

sual inspection: The curves obtained by DDFT are in good agreement with
the simulation results for the initial unstable half-period (Fig. 3.2), while
there are strong deviations in the stable half-period (Fig. 3.3), in both (A)
and (B). The latter can be understood from the fact that the system is driven
with a strong external force and is therefore “far from equilibrium”. Then
the fast driving process might generate additional dynamic correlations. In
such a situation the underlying assumption in the derivation of the DDFT is
rather inappropriate. This is supported from the finding that the agreement
in (B) is “worse” than in (A). The dynamics in the system involving hydro-
dynamic interactions are considerably slowed by the coupling of the spheres
through the long ranged solvent mediated interactions and therefore the net-
force on each particle is smaller than in (B). Then, the assumption in the
DDFT seems to work better. However, the qualitative trends are recovered
correctly.

Since the first time step of the time evolution of the density with hydro-
dynamic interactions is given by [see Eq. (3.11)]: ρA(r,∆tD) = ρB(r,∆tD) +
∆ρ(r)∆tD, where ρA is the density profile of situation (A) and ρB of (B),
respectively, the significant retardation of (A) compared to (B) can be in-
ferred more quantitatively from the difference in the initial time evolution
between the case (A) and (B), i.e., ∆ρ(r) = (ρA(r,∆tD)− ρB(r,∆tD))/∆tD),
presented in Fig. 3.5. We accompany the figure with the initial time evolu-
tion of the density when hydrodynamic interactions are neglected: ∆ρB(r) =
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Figure 3.5: Difference in the initial time evolution of the density profiles
∆ρ(r) from DDFT (black curve) and simulation (noisy red curve). Addition-
ally, the DDFT result for ∆ρB(r) = (ρB(r,∆tD)− ρ0(r))/∆tD (green curve)
is shown.

(ρB(r,∆tD) − ρ0(r))/∆tD. The figure clearly reveals that the part originat-
ing from the hydrodynamic interactions is acting in the opposite direction
and is of the same order of magnitude as the part without hydrodynamic
interactions. Here, the DDFT reproduces the simulation results.

A further qualitative difference between (A) and (B) is that during the
unstable half-period, where particles leak in to the initially depleted area, Fig.
3.2(a) reveals that the density in the center of the system first increases and
then gradually decreases. In (B) on the other hand, Fig. 3.2(b), the density
behaves rather the way one would expect: The profiles decrease gradually
and leave behind a depleted part in the center. During the confining half-
period, the behavior is opposed to the former. Here, in (B) initially, mainly
the outer part of the cavity experiences an increase in the density while the
center remains depleted. Only in a later stage of the time evolution material
flows to the center. This is again the behavior one would expect, since the
forces are the stronger the larger the distance from the origin. In (A) on
the other hand, the center of the system is affected immediately due to the
hydrodynamic coupling of the particles.

In order to quantify better the asymmetry of the time evolution of (A) and
(B), we consider the second moment of the density, m2(t), defined through

m2(t) =

∫
dr r2ρ(r, t). (3.22)

This quantity is a measure of the spread of ρ(r, t) around the center of the
external field. Its time evolution is depicted in Fig. 3.6. Obviously, the time
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Figure 3.6: The second moment of the radial DDFT density profiles, m2(t)
for hydrodynamic interactions taken into account (black curves) and ne-
glected (red curves), respectively. Results for the time evolution of m2(t)
for initial unstable half-period (A), the initial stable half-period (b), and for
the first three periods (C) are shown.

evolution of m2(t) for (A) and (B) are different and it also supports our
earlier finding that the dynamics of the system with hydrodynamic interac-
tions are considerably slowed compared to (B). System (B) is already in its
steady-state within the first period and correspondingly the second moment
is virtually the same for the next periods. System (A) on the other hand,
needs two periods to be in the steady-state. Furthermore, Fig. 3.6 reveals
that the stable and the unstable half-period are asymmetric and not each
other’s “time reverse”. The saw tooth-like shape of m2(t) indicates that the
confining half-period evolves much faster than the unstable one.

We checked whether the time evolution of m2(t) can be fitted to a single
exponential during the stable or the unstable half-period, respectively. The
motivation to do so, is that the time evolution of a single isolated particle
would behave like this, since the driving force is proportional to r. We find
that non of the curves can be fitted reasonably to a single exponential and
conclude that the dynamical evolution of the densities is non-trivial.

Finally, to scrutinize the influence of the strength of the external force
on the accuracy of the adiabatic approximation, we also studied a similar
system with the following external potential:

Vext(r) = V0

(
r

R0

)2

−Θ(sin(2πt/T )VD

(
r

RD

)2

, (3.23)

with V0 = 10kBT , VD = 5kBT , R0 = RD = 2σ, T = 0.5τB, and N = 30.
In this setup the forces acting on the particles are moderate compared to
the previous one. The resulting curves for the first two half-periods are
depicted in Fig. 3.7 and Fig. 3.8. Again, we show both cases: hydrodynamic
interactions included (A) and neglected (B). Obviously, the DDFT results
are in good agreement with the simulation data in situation (A) and (B)



3.4. Results 57

Figure 3.7: DDFT (black curves) and BD (noisy red curves) results for the
time-dependent density profile with hydrodynamic interactions taken into ac-
count (a) and without hydrodynamic interactions (b) for the external poten-
tial (3.23). The profiles correspond to the following time sequence: t0 = 0.0,
t1 = 0.05τB, t2 = 0.15τB, and t3 = 0.25τB.

for the stable half-period as well as for the unstable one. This supports our
conclusion that the discrepancies in the previous setup stem from the strong
forces. On the other hand, we find smaller differences in the dynamical
evolution of the densities in (A) and (B) compared to the previous setup.
Yet, we observe the same trend, namely a retardation in the dynamics in
system (A) compared to (B).

Figure 3.8: Same as Fig. 3.7 but for the time sequence: t0 = 0.25τB,
t1 = 0.3τB, t2 = 0.4τB, and t3 = 0.5τB.
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3.5 Conclusions

In this chapter, we have presented a DDFT formalism with hydrodynamic
interactions incorporated on a two-particle level. As a demonstration of the
theory we have studied a hard-sphere system confined in an optical trap which
switches periodically from a stable to an unstable confining potential. The
theory has been supplemented by an accurate equilibrium free energy func-
tional, namely Rosenfeld’s FMT functional. We have found good agreement
for the dynamic development of the density profile in the unstable half-period
while deviations from simulation results have been observed during the stable
half-period. The latter was explained by the strong driving force acting on
the spheres such that the system is far from equilibrium. In this situation
the assumption underlying DDFT seems inappropriate. By comparing the
results to those obtained from conventional DDFT, where hydrodynamic in-
teractions are ignored, we find significant differences and the time evolution
is considerably slowed by hydrodynamic interactions.

The presented formalism provides a theory that can be applied to arbi-
trary time-dependent external potentials and systems, provided the applied
external forces are moderate and an accurate equilibrium free energy func-
tional is known. It would be interesting to study sedimentation or, in con-
nection with the previous section, lane formation with DDFT. It would be
further challenging to generalize the present formalism to many-body hy-
drodynamic interactions. A generalization of DDFT to anisotropic particles
with orientational degrees of freedom without hydrodynamic interactions will
be given in the next chapter 4.

Finally, Archer [109] has demonstrated how mode-coupling theory, which
is capable of predicting glass transition, can be derived from a DDFT for
atomic liquids with further approximations. It is tempting to use the above
formalism to derive a mode-coupling theory including hydrodynamic interac-
tions since it is anticipated that hydrodynamic interactions play an important
role in the dynamics near the glass transition [118].



Chapter 4

Dynamical density functional
theory for anisotropic colloidal
particles

In this chapter, we present a joint work with H. H. Wensink. We gener-
alize the formalism of dynamical density functional theory for translational
Brownian dynamics to that of anisotropic colloidal particles which perform
both translational and rotational Brownian motion. Using a mean-field ap-
proximation for the density functional and a Gaussian-segment model for the
rod interaction, the dynamical density functional theory is then applied to a
concentrated rod suspension in a confined slab geometry made by two parallel
soft walls. The walls are either expanded or compressed and the relaxation
behavior is investigated for an equilibrated starting configuration. We find
distinctly different orientational ordering during expansion and compression.
During expansion we observe preferential parallel ordering of the rods relative
to the wall while during compression there is homeotropic ordering perpen-
dicular to the wall. We find a nonexponential relaxation behavior in time.
Furthermore, an external field which aligns the rods perpendicular to the walls
is turned on or switched off and similar differences in the relaxational dynam-
ics are found. Comparing the theoretical predictions to Brownian dynamics
computer simulation data – by courtesy of H. H. Wensink –, we find good
agreement.

4.1 Introduction

Nearly all activities in dynamical density functional theory, including the
previous chapter 3, were focused on translational dynamics while the orien-
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tational degrees of freedom were neglected. The latter are trivial for spherical
particles but become highly relevant for asymmetric (e.g., rodlike) particles.
At high densities, the translational degrees of freedom are nontrivially cou-
pled to their rotational counterparts.

In this chapter, we extend the formalism of dynamical density functional
theory to both translational and rotational degrees of motion by consid-
ering the Brownian motion of anisotropic colloidal particles. With similar
approximations used for the translational case [34], we derive the dynam-
ical equation for the time-dependent density field ρ(r, ω̂, t) which depends
both on the position r and orientation ω̂, where ω̂ is a unit vector. It is
shown that this theory becomes equivalent to the approach of Dhont, Briels
and co-workers [119, 120] at low-density where a virial approximation for
the density functional is appropriate. The theory, however, provides a more
general framework for dynamics and nonequilibrium phenomena at higher
densities as well. We then test the theory against Brownian dynamics com-
puter simulation for a soft-core rod-segment model. This model is the rodlike
analog to spherical polymer models [121,122] and therefore describes bottle-
brush polymers with a stiff backbone [123–125]. We use a mean-field-type
approximation for the density functional and apply it to a situation of strong
confinement between two soft walls. Two situations are studied. First the
confined system is compressed and relaxed by compressing and expanding
the walls. In a second setup, an additional external aligning field is turned
on and switched off. We find a nontrivial relaxation behavior which is non-
exponential in time. Expansion and compression proceed via different paths
as a function of time. In particular, distinctly different orientational or-
dering during expansion and compression is observed. During expansion,
rods orient preferentially parallel to the wall while during compression there
is homeotropic ordering perpendicular to the wall. Similar conclusions are
found for the aligning field. In general, good agreement between DDFT and
Brownian dynamics simulation is found.

This chapter is organized as follows. In Sec. 4.2 we derive the general-
ized dynamical density functional theory which includes rotational Brownian
motion. Sec. 4.3 and 4.4 will be devoted to describing the rod model, the
associated free energy functional and the dynamical processes, respectively.
In Sec. 4.5 the predictions of our DDFT will be compared with simulation
results and notable effects will be discussed. Finally, some conclusions will
be formulated in Sec. 4.6.
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4.2 Equation of motion for the one-body den-

sity

In this section we will derive an expression for the time evolution of the
one-body density, ρ(r, ω̂, t), for anisotropic Brownian particles with a three-
dimensional spatial coordinate r and orientation unit vector ω̂. In doing
so, we generalize the derivation by Archer and Evans [34] to orientational
degrees of freedom.

We start from the full probability density distribution P (rN , ω̂N , t) to find
N anisotropic Brownian particles at positions rN = (r1, ..., rN) and orienta-
tions ω̂N = (ω̂1, ..., ω̂N). According to Ref. [34], the n-body density is given
by the following integral of the probability density distribution P (rN , ω̂N , t)

ρn(rn, ω̂n, t) =
N !

(N − n)!

∫
drn+1 ...

∫
drN

∮
dω̂n+1 ...

∮
dω̂N P (rN , ω̂N , t)

(4.1)
where the integral of the orientation is over the full unit sphere. For over-
damped Brownian dynamics of the particles, the time evolution of P (rN , ω̂N , t)
is given by the Smoluchowski equation [10]

∂P (rN , ω̂N , t)

∂t
= L̂SP (rN , ω̂N , t) (4.2)

where the Smoluchowski operator is defined as

L̂S =
N∑

i=1

{
∇ri

·D(ω̂i) ·
[
∇ri

+ β∇ri
U(rN , ω̂N , t)

]
+DrR̂i ·

[
R̂i + βR̂iU(rN , ω̂N , t)

]}
. (4.3)

Here, hydrodynamic interactions are not taken into account, β−1 = kBT is
the thermal energy of the system, ∇ri

is the gradient operator with respect
to ri, and R̂i the rotation operator acting on the Cartesian coordinates of
the orientation ω̂i. The latter is given by

R̂i = ω̂i ×∇ω̂i
. (4.4)

Furthermore, Dr is the rotational diffusion coefficient and D(ω̂i) the trans-
lational diffusion tensor. For uniaxial (cylindrical) anisotropic particles this
tensor may be expressed as

D(ω̂i) = D‖ω̂iω̂i +D⊥[Î− ω̂iω̂i], (4.5)
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in terms of the translational diffusion constant parallel (D‖) and perpendic-

ular (D⊥) to the main particle axis ω̂i, with Î the unit matrix, and ω̂iω̂i the
dyadic product. Assuming pairwise additivity for the total potential energy
of the system U(rN , ω̂N , t), we may write

U(rN , t) =
N∑

i=1

Vext(ri, ω̂i, t) +
1

2

N∑
i=1

N∑
j /=i

v2(ri, rj, ω̂i, ω̂j), (4.6)

where Vext(r, ω̂, t) is the one-body external potential acting on each parti-
cle and v2(r, r

′, ω̂, ω̂′) the pair potential. Upon integrating Eq. (4.2) with
N
∫

dr2 ...
∫

drN

∮
dω̂2 ...

∮
dω̂N one obtains

∂ρ(r, ω̂, t)

∂t
=

∇r ·D(ω̂) ·
[
∇rρ(r, ω̂, t) + βρ(r, ω̂, t)∇rVext(r, ω̂, t)− βF̄(r, ω̂, t)

]
+DrR̂ ·

[
R̂ ρ(r, ω̂, t) + βρ(r, ω̂, t)R̂ Vext(r, ω̂, t)− βT̄(r, ω̂, t)

]
, (4.7)

with F̄(r, ω̂, t) denoting the average force and T̄(r, ω̂, t) the average torque
due to the interaction with other particles:

F̄(r, ω̂, t) = −
∫

dr′
∮

dω̂′ ρ(2)(r, r′, ω̂, ω̂′, t) ∇rv2(r, r
′, ω̂, ω̂′, t)

and

T̄(r, ω̂, t) = −
∫

dr′
∮

dω̂′ ρ(2)(r, r′, ω̂, ω̂′, t) R̂v2(r, r
′, ω̂, ω̂′, t). (4.8)

Note that for the steady-state (∂ρ/∂t = 0), Eq. (4.7) reduces to the first
member of the Yvon-Born-Green (YBG) hierarchy molecular fluids [126].

The equation of motion (4.7) for the one-body density ρ(r, ω̂, t) is ex-
act but still depends on the unknown time-dependent two-body density
ρ(2)(r, r′, ω̂, ω̂′, t). Using Eq. (4.1), a similar equation of motion may be de-
rived for ρ(2)(r, r′, ω̂, ω̂′, t) which will depend on the three-body density ρ(3)

and so on. To make headway, a closure relation is needed to terminate the re-
sulting hierarchy of coupled equations of motion. Making use of static DFT,
this can be done at the second YBG level by recasting the average interaction
force and torque, given by Eq. (4.8), into functionals of the nonequilibrium
one-body density to construct a dynamical density functional theory.

In equilibrium, a generalized force balance equation can be proved [29,127]

∇rρ0(r, ω̂) + βρ0(r, ω̂)∇rVext(r, ω̂) = −ρ0(r, ω̂)∇r
δFexc[ρ]

δρ

∣∣∣∣
ρ=ρ0(r,ω̂)

(4.9)
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where ρ0(r, ω̂) denotes the equilibrium one-particle density field correspond-
ing to the prescribed external potential Vext(r, ω̂) and Fexc[ρ0] is the excess
free energy density functional in equilibrium. Likewise, a generalized torqued
balance [127] reads in equilibrium as

R̂ρ0(r, ω̂) + βρ0(r, ω̂)R̂Vext(r, ω̂) = −ρ0(r, ω̂)R̂ δFexc[ρ]

δρ

∣∣∣∣
ρ=ρ0(r,ω̂)

. (4.10)

A second set of balance conditions are the well-known YBG relations [cf. Eq.
(4.7)] in equilibrium [126]. These are for the translational part

∇rρ0(r, ω̂) + βρ0(r, ω̂)∇rVext(r, ω̂) =

−β
∫

dr′
∮

dω̂′ ρ
(2)
0 (r, r′, ω̂, ω̂′)∇rv2(r, r

′, ω̂, ω̂′) (4.11)

and for the rotational part

R̂ρ0(r, ω̂) + βρ0(r, ω̂)R̂Vext(r, ω̂) =

−β
∫

dr′
∮

dω̂′ ρ
(2)
0 (r, r′, ω̂, ω̂′)R̂v2(r, r

′, ω̂, ω̂′) (4.12)

respectively. Consequently, the following two relations hold in equilibrium:

ρ0(r, ω̂)∇r
δFexc[ρ]

δρ0(r, ω̂)
=

∫
dr′

∮
dω̂′ ρ

(2)
0 (r, r′, ω̂, ω̂′)∇rv2(r, r

′, ω̂, ω̂′) (4.13)

and

ρ0(r, ω̂)R̂ δFexc[ρ]

δρ0(r, ω̂)
=

∫
dr′

∮
dω̂′ ρ

(2)
0 (r, r′, ω̂, ω̂′)R̂v2(r, r

′, ω̂, ω̂′). (4.14)

The two right-hand sides of equations (4.13) and (4.14) occur in the dynam-
ical (nonequilibrium) context as average force and torque in Eq. (4.7). The
basic approximation now is to use this expression in the nonequilibrium sit-
uation. This may be called an adiabatic approximation since the underlying
idea is to identify – for a fixed time t – the dynamical one-particle density
profile ρ(r, ω̂, t) with an equilibrium density profile ρ0(r, ω̂) with a suitably
prescribed external potential. Strictly speaking, the two latter quantities
depend parametrically on time t. Hence nonequilibrium correlations are ap-
proximated by equilibrium correlations of a suitable equilibrium reference
system that possesses the same one-particle density [31,33].

Within this adiabatic approximation, we obtain our central dynamical
density functional theory (DDFT) result:

∂ρ(r, ω̂, t)

∂t
= ∇r ·D(ω̂) ·

[
ρ(r, ω̂, t)∇r

δF [ρ(r, ω̂, t)]

δρ(r, ω̂, t)

]
+DrR̂ ·

[
ρ(r, ω̂, t)R̂ δF [ρ(r, ω̂, t)]

δρ(r, ω̂, t)

]
, (4.15)
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in terms of the total equilibrium Helmholtz free energy functional

F [ρ0] = Fid[ρ0] + Fexc[ρ0] +

∫
dr

∮
dω̂ρ0(r, ω̂)Vext(r, ω̂, t) (4.16)

where the ideal contribution reads

Fid[ρ0] = kBT

∫
dr

∮
dω̂ ρ0(r, ω̂) [lnVρ0(r, ω̂)− 1] , (4.17)

with V the thermal volume of the anisotropic particle.

We finish this section with some remarks: First of all, the DDFT equation
for spherical particles is recovered when the density is independent of orien-
tation. In this case, the adiabatic approximation has been shown to hold
even for strong inhomogeneities and strong time dependencies and turned
out to give remarkably good agreement with results from Brownian dynam-
ics computer simulations [34,36–40,108,110,128,129]. Second, we emphasize
that the above equation reproduces the approach proposed by Dhont and
Briels [119, 120] for thin hard rods if Fexc[ρ0] is represented by the Onsager
functional [8, 130]. Third, a similar dynamical density functional theory ap-
proach was proposed by Chandra and Bagchi [131,132] on a phenomenologi-
cal basis. In the latter work, the explicit coupling between orientational and
translational diffusion was neglected.

4.3 Model and free energy functional

Figure 4.1: Gaussian segment model of NS = 3 and segment spacing ∆.
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Figure 4.2: Schematic sketch of the system setup. The Gaussian rods are
confined in a slab geometry that consists of two soft walls and an orienting
field. Vnem is applied perpendicular to the walls. The relevant coordinates of
the system are the spatial coordinate z normal to the wall and the angle ϑ
between the rod and the wall normal.

In this chapter, we consider systems of soft rods of length L, each com-
posed of NS segments of ultrasoft spheres1; see Fig. 4.1. The distance between
two consecutive segments on the rod is ∆ = L/(NS−1). The interaction po-
tential between two segments of different rods is supposed to be a Gaussian.
The total rod-rod interaction potential is then given by

v2(ri, rj, ω̂i, ω̂j) = ε

K∑
α=−K

K∑
β=−K

exp

(
−|rαβ|2

σ2

)
, (4.18)

where K = (NS − 1)/2 and rαβ = (ri + α∆ω̂i) − (rj + β∆ω̂j) the distance
between segment α on rod i and β on rod j (i /= j). Furthermore, σ is the
range of the Gaussian potential which sets the unit length, and ε = kBT
provides the unit of energy for the system. In all cases, we consider slightly
anisotropic rods with NS = 3 and L ≡ σ.

The Gaussian segment model can be considered as a simplified model for
the effective interaction between so-called bottlebrush polymers with a short,

1Ellipsoidal Gaussian particles were recently studied in S. Prestipino and F. Saija, J.
Chem. Phys. 126, 194902 (2007)
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stiff backbone [123–125]. For ultrasoft particles at high densities, a very
accurate and simple functional Fexc[ρ] is available, namely the mean-field or
random-phase approximation:

Fexc[ρ] =
1

2

∫
dr

∫
dr′

∮
dω̂

∮
dω̂′ ρ(r, ω̂)v2(r, r

′, ω̂, ω̂′)ρ(r′, ω̂′). (4.19)

which was demonstrated to become exact for bounded potentials at asymp-
totically high densities [38, 106, 107]. The accuracy of the static mean-field
DFT for soft rods enables us to scrutinize the validity of the adiabatic approx-
imation for the dynamics of systems with coupled translational and rotational
degrees of freedom.

An important limitation of our model is that, within the mean-field ap-
proximation, the rotational diffusion becomes ideal for homogeneous systems.
This can be easily inferred from the excess functional Eq. (4.19) using the rod
pair potential Eq. (4.18). Identifying ρ(r, ω̂) = ρ and carrying out the spatial
integration over the Gaussian potential leads to a constant, independent of
the orientation. This result, which in fact holds for any bounded segment-
segment potential, implies that in homogeneous systems all rotational corre-
lations are absent and that the system cannot form a stable nematic phase.
Although this effect may seem unphysical, it is in fact reproduced by Brow-
nian dynamics simulations of the segment model provided that the density
is sufficiently high [133]. Therefore, in order to avoid the rotational diffu-
sion being trivial we will only consider inhomogeneous systems throughout
this paper. This is done by confining the fluid in a slab geometry consisting
of two soft walls, see Fig. 4.2, so that a nonuniform density distribution is
generated. The soft walls are supposed to model an optical trap such that
only the colloidal particles are affected by the field and the solvent remains
quiescent. For the external wall potential we choose the following form:

Vwall(z, t) = V0(z/Z(t))10. (4.20)

Here, V0 = 10kBT is the amplitude of the potential, and Z(t) the potential
range that will be changed in time; see Sec. 4.4. In this setup, the instan-
taneous density profile ρ(z, ϑ, t) depends on only one spatial coordinate z
(normal to the wall), an angular one ϑ (the angle between the rod and the
wall normal), and time t. A similar setup for the statics of hard ellipsoids
between hard walls was studied by Chrzanowska et al. [134].

4.4 Dynamic processes

We intend to study two different setups. First, the system is compressed and
expanded by changing the wall separation Z(t). For the compression case,
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the wall separation is reduced linearly in time, so that

Z(t) =


2σ if t < 0
2σ − ct if 0 ≤ t ≤ τB
σ if t > τB

(4.21)

with the velocity of the wall c = σ/τB. τB denotes the Brownian timescale and
will be specified later. The reverse direction is implemented for the expansion
case. Additionally, we investigate the expansion process for an instantaneous
extension of the wall separation. We do not look at the inverse problem: The
instantaneous compression.

In a second setup, we instantaneously switch on an external orienting
field represented by

Vnem(ϑ) = −Φ0 cos2 ϑ, (4.22)

where the strength of the potential is Φ0 = 10kBT and ϑ is the angle between
the wall normal and the orientation of the rods: cosϑ = ẑ · ω̂. This field
generates strong homeotropic nematic ordering with a director parallel to
the wall normal. All setups are summarized in Table 4.1.

In each system the initial density is the equilibrium density ρ0(z, ϑ, t0) of
the respective system and we follow the time evolution of ρ(z, ϑ, t) to the new
equilibrium state. Note that in the first scenario the external field primarily
couples to the translational degree of freedom, whereas in the second one
the orienting field acts only on the rod orientations. Both cases will provide
insight into the intricate interplay between the translational and orientational
degrees of freedom during the dynamic processes.

As a final input for the dynamics, we need to specify the diffusion con-
stants D⊥, D‖, and Dr. For these, we take the results for hard ellipsoids of
variable aspect ratio p reported by Tirado and co-workers [135]:

D⊥ = D0

4π
(ln p+ 0.839 + 0.185/p+ 0.233/p2),

D‖ = D0

2π
(ln p− 0.207 + 0.980/p− 0.133/p2),

Dr = 3D0

πL2 (ln p− 0.662 + 0.917/p− 0.050/p2), (4.23)

whereD0 sets the unit of time via τB = σ2/D0. In all cases, the hydrodynamic
aspect-ratio of the rods was fixed at p = 5. To justify the use of the mean-
field functional, we fix the overall system number density to ρ0σ

3 = 1, which
is close to the overlap concentration of the rods.

Benchmark data to test our DDFT results were obtained by Brownian
dynamics (BD) simulations of the segment model introduced in Sec. 4.3.
The simulation method is based on a standard finite-difference integration of
the overdamped Langevin equations for N Brownian rods according to the



68
4. DYNAMICAL DENSITY FUNCTIONAL THEORY FOR ANISOTROPIC

COLLOIDAL PARTICLES

Setups Vext(r, ω, t)

A Slow compression V0

(
z

Z(t)

)10

, Z(t) =


2σ if t < 0
2σ − ct if 0 ≤ t ≤ τB
σ if t > τB

B Slow expansion V0

(
z

Z(t)

)10

, Z(t) =


σ if t < 0
σ + ct if 0 ≤ t ≤ τB
2σ if t > τB

C Instantaneous expansion V0

(
z

Z(t)

)10

, Z(t) =

{
σ if t < 0
2σ if t ≥ 0

D Relaxation from initial alignment V0

(
z
2σ

)10 − Φ0 cos2 ϑΘ(−t)

E Evolution toward alignment V0

(
z
2σ

)10 − Φ0 cos2 ϑΘ(t)

Table 4.1: All setups investigated in this chapter which are characterized
by different time-dependent external potentials and labeled by the letters
A–E. In A, B, and C a slab confinement of two soft walls is modeled with
time varying wall separation Z(t) compressing or relaxing the system. z is
the coordinate perpendicular to the walls, V0 = 10kBT and c = σ/τB. In D
and E, in addition to a fixed slab geometry, a nematic ordering field is either
switched off D or on E. Here, ϑ is the angle between the wall normal and
the orientation of the rods: cosϑ = ẑ · ω̂, and Φ0 = 10kBT . The Heaviside
step-function is defined by: Θ(x) = 1 if x ≥ 0 and 0 if x < 0.
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scheme of Ermak [56, 136]. We simulated N = 100 rods each with NS = 3
segments in a slab geometry with periodic boundary conditions in the x and
y directions. In all simulations, the time step was fixed at 0.001τB. Instan-
taneous density profiles were measured by averaging over 1000 consecutive
dynamical processes each starting from a different initial equilibrium con-
figuration. Each process was followed for the duration of about 15 − 20τB.
To check for finite-size effects, additional simulations were carried out for
N = 500 rods yielding virtually identical results in all setups.

4.5 Results

Figure 4.3: DDFT (solid black curves) and BD (dashed red curves) results
for (a) the time-dependent density profile ρ(z, t) and order parameter (b)
S(z, t) for the slow compression; see A in Table 4.1. The profiles correspond
to the following time sequence: t0 = 0.0, t1 = 0.2τB, t2 = 0.4τB, t3 = 0.6τB,
t4 = 0.8τB, t5 = 0.9τB, and t6 = 15.0τB. At t6 the system has virtually
relaxed to equilibrium.

In this section, we present the results obtained by DDFT and Brownian
dynamics simulation for the setups introduced in the preceding section. For
each situation we show the time evolution of the density profile

ρ(z, t) =

∫
d(cosϑ)ρ(z, ϑ, t) (4.24)

and of the local nematic order parameter

S(z, t) =
1

ρ(z, t)

∫
d(cosϑ)

[
3

2
cos2 ϑ− 1

2

]
ρ(z, ϑ, t) (4.25)
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for a sequence of times. The nematic order parameter gives insight into the
preferred direction of the rods. It is unity if the rods are perfectly oriented
perpendicular to the wall and S = −0.5 if the rods are oriented parallel to
the wall.

4.5.1 Compression and expansion

First we examine the compression and expansion setups A, B, and C in Table
4.1. The associated profiles are shown in Figs. 4.3-4.5. From all figures it
can be seen that the theory correctly reproduces the time evolution of the
density and nematic order parameter profiles. Looking first at the evolution
of the nematic order parameter S(z, t) we find a qualitative difference between
the slow compression and expansion processes. Upon compression, the rods
show enhanced homeotropic ordering (perpendicular to the wall), whereas the
expansion process seems to be associated with pronounced planar ordering
(parallel to the wall).

Figure 4.4: DDFT (solid black curves) and BD (dashed red curves) results
for (a) the time-dependent density profile and (b) order parameter for the
inverse case to Fig. 4.3, the slow expansion; see B in Table 4.1. The profiles
correspond to the following time sequence: t0 = 0.0, t1 = 0.2τB, t2 = 0.4τB,
t3 = 0.6τB, t4 = 0.8τB, t5 = 0.9τB, and t6 = 15.0τB. At t6 the system has
virtually relaxed to equilibrium and the curves coincide with the initial ones,
t0, in Fig. 4.3(a) and (b).

The first effect can be inferred from the overshoot in the nematic order
parameter profile compared to the final equilibrium one; see Fig. 4.3(b).
During the slow expansion, S(z) gradually becomes negative indicating an
orientational relaxation path characterized by the rods being preferentially
oriented parallel to the wall [Fig. 4.4(b)].
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This effect becomes even more pronounced for the instantaneous expan-
sion, shown in Fig. 4.5(b). Here, the initially depleted area is flooded with
rods that are strongly oriented parallel to the walls. This is best seen for the
curves t1, t2 and t3 in Fig. 4.5(b) where S < −0.4 close to the walls.

Both expansion processes B and C roughly consist of two steps. First, the
initial two peak structure of S(z, t) rapidly vanishes within the time interval
of about 1τB. Second, a slow evolution (spanning multiple τB) towards the
final three peak structure is observed. On the contrary, for the slow compres-
sion case the initial two peak structure is preserved throughout the process
and the weak third peak at z = 0 slowly fades.

Figure 4.5: DDFT (solid black curves) and BD (dashed red curves) results
for (a) the time-dependent density profile and (b) order parameter for the
instantaneous expansion; see C in Table 4.1. The profiles correspond to the
following time sequence: t0 = 0.0, t1 = 0.02τB, t2 = 0.04τB, t3 = 0.06τB,
t4 = 0.08τB, t5 = 0.25τB, and t6 = 15.0τB. The initial curves and those for t6
coincide with the corresponding ones in Fig. 4.4.

Now we turn our attention to the time evolution of the density profiles
ρ(z, t). For the slow compression, the preferred homeotropic alignment cor-
responds to a shoulder in the density profiles [see t4 and t5 Fig. 4.3(a)]. Note
that it is not present in the final equilibrated configuration: t6 in Fig. 4.3(a).
Due to the increased local homeotropic alignment, there is an excess of rods
with position Z − L/2 ≥ |z| ≥ Z which gives rise to the shoulder.

Apart from the shoulder, the density profiles for the slow expansion and
compression processes seem very similar. Both show a layering effect that be-
comes manifest by a third peak emerging at z = 0. This is most pronounced
for t ≈ 0.5τB where the effective wall-wall distance is such that three layers
of rods can be accommodated between the walls. For the sudden expan-
sion, the correlation peaks vanish completely during the relaxation process
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and the path toward the new equilibrium state goes via a four-peak struc-
ture illustrated by curve t4. Another difference is that the planar oriented
rods give rise to an overshoot in the correlation peaks compared to the final
equilibrated profile; see t5 and t6.

In order to quantify the described asymmetry of the path of the different
processes we calculate the second moment of the density, defined as

m2(t) =

∫
dz z2(ρ(z, t)− ρ(z, t = ∞)). (4.26)

The quantity m2(t) is a measure of the spread of ρ(z, t) around its center.
The resulting curves are shown in Fig. 4.6. In a similar study for spherical

Figure 4.6: Second moment of the density profiles, m2(t), versus time t.
The full black curve corresponds to the instantaneous relaxation C, the long-
dashed red curve to the continuous relaxation B, and the short-dashed green
curve to the compression A, respectively. The inset shows a magnified view
of the same curves for small values of m2(t).

particles [36], it was found that m2(t) behaves monotonically and can be
best fitted to a single-exponential function for the expansion case and to a
double-exponential function for the compression process. Here, m2(t) turns
out to be a nonmonotonic function of time for all three processes which pre-
cludes a simple description in terms of an exponentially decaying function.
From this we may already conclude that there is an interesting interplay be-
tween rotational and translational dynamics not found in systems of spherical
particles.

The complicated relaxational behavior found here is related to the non-
monotonous evolution of the density profiles due to a transient enhanced
localization of rods, viz. the shoulders emerging during the compression pro-
cess. Finally, we note that in all three setups the reorientation process toward
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the new equilibrium state is approximately an order of magnitude slower than
the initial relaxation of the positional degrees of freedom of the rods.

4.5.2 Orienting external field

Figure 4.7: DDFT (solid black curves) and BD (dashed red curves) results
for (a) the time-dependent density profile and (b) order parameter for the
relaxation of an initially aligned state; see D in Table 4.1. The profiles
correspond to the following time sequence: t0 = 0.0, t1 = 1.0τB, t2 = 2.0τB,
t3 = 3.0τB, t4 = 4.0τB, t5 = 6.0τB, and t6 = 15.0τB.

We will now focus on the setups D and E in Table 4.1, a slab confinement
of fixed wall separation with an additional orienting field. We investigate
both the relaxation from an initially aligned state by instantaneously switch-
ing off the field (Fig. 4.7) and the opposite case, in which a system is driven
into an aligned state after the field is switched on (Fig. 4.8). For the relax-
ation process both density and order parameter profiles agree very well with
the simulation results. For the aligning process, however, larger discrepancies
are found, especially in the nematic order parameter profiles. Here, the ori-
enting process seems to be faster in the DDFT than in the BD simulations.
(See Fig. 4.8(b).) A possible explanation is that the fast aligning process
generates additional dynamic correlations that are not accounted for by the
adiabatic assumption in our DDFT.

Although the external orienting field couples only to the orientation of
the rods, the positions are also clearly affected. By forcing the rods to orient
perpendicular to the wall, rod overlaps will be more common and the system
will feel an effective compression. As a result, layering becomes more promi-
nent, as we see from the sharpening of the density peaks in Fig. 4.8(a). The
order parameter profiles show that the rods strongly orient perpendicular to
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Figure 4.8: DDFT (solid black curves) and BD (dashed red curves) results
for (a) the time-dependent density profile and (b) order parameter for the
inverse case to Fig. 4.7, the evolution towards an aligned state; see E in
Table 4.1. The profiles correspond to the following time sequence: t0 = 0.0,
t1 = 3.0τB, t2 = 5.0τB, t3 = 7.0τB, t4 = 20.0τB.

the wall when the orienting field is switched on resulting in a value close
to unity. Only very close to the walls do the rods lie parallel but the local
density there is rather low.

In order to demonstrate the asymmetry of the two processes, we show the
absolute values of the second moment in Fig. 4.9. First of all, the two data
for m2(t) fall on different curves showing that the processes are asymmetric.
Still both systems need approximately the same time to equilibrate, roughly
20τB. Furthermore, the log-linear plot shown in the inset shows that there
are clear deviations from a straight line. Hence again the behavior is not
a single exponential function in time. In contrast to the compression and
expansion the time evolution of m2(t) is a monotonous function of t for both
situations.

4.6 Conclusions

We have presented a formalism to predict the dynamical evolution under
nonequilibrium conditions for anisotropic colloidal particles. The input needed
for this theory is the equilibrium free energy density functional. Within
a mean-field approximation for the functional valid for bounded Gaussian
segment-segment interactions, the relaxation dynamics was studied for rods
confined in a slab geometry. Slab expansion and compression was studied as
well as turning on and off an aligning external field. Good agreement with
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Figure 4.9: Absolute value of the second moment m2(t) of the density
profiles defined in Eq. 4.26 against time t. The full black curve shows |m2(t)|
for the situation when the orienting field is switched on E and the long-dashed
red curve the inverse D. The inset shows a logarithmic plot of the same.

Brownian dynamics computer simulations was found. The relaxation was
a nontrivial interplay between rotational and translational dynamics. The
system chose different paths of relaxation upon compression and expansion
implying that the sequence of density fields is not inversion symmetric, even
not with a suitably scaled time variable.

The present formalism can be applied to describe both different systems
and setups. For examples, hard rods or platelets can be treated by more so-
phisticated density functionals, as, e.g., within the fundamental measure-like
approximation [114, 137, 138] and Yukawa-segment models can be described
by a mapping onto effective hard spherocylinders [139]. Other setups con-
cern switching dynamics in different aligning fields which is the basic process
in a liquid-crystalline optical device [140–142], sedimentation problems in
rod-like suspensions [143–146] and orientational dynamics in rotating light
fields [82, 83, 147, 148]. Furthermore, it would be interesting to study the
orientational glass transition within the DDFT approach in order to explore
whether the orientational and translational dynamics get frozen-in at the
same densities or not [125,149]. For future studies it would be challenging to
incorporate shear flow in the dynamical density functional theory formalism
in which case macroscopic solvent flow will couple strongly to the orientation
of rodlike particles [150, 151]. We acknowledge that serious modifications
have to be carried out to our present DDFT formalism in order to correctly
account for the distorted pair correlation function due to the shear [152–154].
In connection with the previous section, the ultimate goal would be to derive
a DDFT for anisotropic particles including hydrodynamic interactions. Fi-
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nally we think that the present approach will be helpful to describe solvation
dynamics [155,156], the orientational diffusion of supramolecular aggregates
(like proteins) in solution and the dynamics of stiff polymers [157].



Chapter 5

Conclusion and outlook

In summary, we have investigated the out-of-equilibrium dynamics of col-
loidal systems in external fields using theory and computer simulations. In
the first part of this thesis we examined an equimolar binary mixture of op-
positely charged colloidal particles, which were driven by an external field,
by means of extensive Brownian dynamics simulations. In this system Leu-
nissen et al. [28] found the first experimental realization of lane formation.
Lane formation is a nonequilibrium phase transition, in which oppositely
driven colloids avoid each other by forming lanes which comprise only parti-
cles driven alike [20, 21, 43–47]. We confirmed the findings of Leunissen and
co-workers, and focused on the influence of hydrodynamic interactions on the
nonequilibrium state. For that purpose we studied two different situations,
namely sedimentation and electrophoresis where the colloids were driven ei-
ther by gravity or by an electric field. While the direct forces were chosen
to be identical, the hydrodynamic interactions are different in the two situa-
tions. In the electrophoresis case the Oseen contribution to the mobility ten-
sor is screened due to the forces acting on the counterion cloud surrounding
a charged colloid. Additionally, we compared the results to those obtained
by simulations where hydrodynamic interactions were neglected. We have
analyzed the steady-states by structural diagnostics and identified different
states in the lateral direction, i.e. perpendicular to the driving field. At high
Coulomb coupling and low densities, a chaining of oppositely charged lanes
was observed. Furthermore, there is the possibility of lateral crystallization
of lanes into two-dimensional square, triangular, or rhombic lattices. The
various steady-state can qualitatively be understood in terms of a compe-
tition of the mutual Coulomb attraction and friction of sliding lanes. All
states were summarized in steady-state diagrams as a function of the volume
fractions and the screening lengths. The screening of the solvent mediated
interactions in the electrophoresis has led to a very similar steady-state phase
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diagram compared to the phase diagram in the simple case of neglected hy-
drodynamic interactions. On the other hand, during sedimentation, friction
of sliding lanes is strongly enhanced leading to macroscopic separation of
lanes. We have further analyzed the nature of the lane transition for varying
driving strengths and found an interesting feature. In the sedimentation the
nonequilibrium phase transition seems to be of first order with a significant
jump and hysteresis in an appropriate order parameter. Conversely, in the
electrophoresis, and when the solvent mediated interactions are ignored, the
transition was found to be second order. For future studies, more sophisti-
cated simulation techniques needed to test the validity of the Long-Ajdari
tensor for the electrophoresis and to account for many-body interactions, lu-
brication forces, and deformation of the counterion cloud due to the electric
field. There are several promising approaches, e.g. the stochastic rotation
dynamics code [87, 88], a lattice Boltzmann theory including hydrodynam-
ics [89–93] and counterion flow or the recently developed fluid particle dy-
namics methods [94–96]. What is also missing is a detailed comparison with
experimental data from Ref. [28]. Work along these lines is in progress. Re-
cently, lane formation was also observed in a dusty plasma system. Here,
the appropriate particle dynamics are given by the Fokker-Planck equation.
It would be interesting to scrutinize the influence of the dynamics of the
particles on the formation of lanes.

In chapter 3, we presented a dynamical density functional theory (DDFT)
which takes hydrodynamic interactions on a two-body level into account. The
only approximation in the derivation was that the n-body densities are ap-
proximated by those of an equilibrium system whose one-body densities are
equal. The formalism presented here provides a theory that can be applied
to arbitrary time dependent external potentials and systems, provided an
accurate equilibrium free energy functional is known and the external forces
are not too strong, such that the underlying assumption is still accurate.
The theory reduces to the original version of DDFT derived by Marconi
and Tarazona when hydrodynamic interactions are neglected. As a demon-
stration of the theory we have analyzed the dynamics of hard spheres in
an unstable spherical optical trap supplied by Rosenfeld’s very reliable ex-
cess free energy functional and compared the results to those obtained by
Brownian dynamics simulations. We found that the theory reproduces the
simulation results as long as the external forces were moderate and demon-
strated thereby the validity of our theory. Additionally, we calculated the
density profiles from the original version of dynamical density functional the-
ory for the same setup but without hydrodynamic interactions. We found
that the coupling of the particles mediated through the solvent slowed the
dynamics considerably. For future studies, it would be interesting to apply
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the presented DDFT to the setup studied in chapter 2 and to have a theory
that predicts lane formation. Finally, Archer [109] has demonstrated how
mode-coupling theory, which is capable of predicting the glass transition but
ignores hydrodynamic interaction, can be derived from a DDFT for atomic
liquids with further approximations. It is tempting to use our formalism to
obtain a mode-coupling theory including hydrodynamic interactions since it
is anticipated that hydrodynamic interactions play an important role near
the colloidal glass transition [118]. For future work, it would be further
challenging to expand the present formalism to many-body hydrodynamic
interactions.

A generalization of DDFT to anisotropic particles with orientational de-
grees of freedom but without hydrodynamic interactions was derived in the
last chapter of this thesis. The formalism allows for studying arbitrary exter-
nal potentials in nonequilibrium albeit with some discrepancies anticipated
for strongly driven systems “far from equilibrium”, since the underlying ap-
proximation is expected to work best for relaxational dynamics. Once again,
the accuracy of the theory crucially depends on the excess free energy. In this
chapter, we use a mean-field approximation for the density functional, which
is essentially exact for unbounded potentials at high densities. Therefore,
we chose for the rod interaction a Gaussian-segment model which describes
bottlebrush polymers with a stiff backbone. We then applied our theory to
predict the time-evolution of the density profiles of a concentrated rod sus-
pension in a confined slab geometry made by two parallel soft walls. Slab
expansion and compression was studied, as well as the effect of an aligning
external field which was either switched on or off. Good agreement with
Brownian dynamics computer simulations was found. The relaxation was
a nontrivial interplay between rotational and translational dynamics. The
system chose different paths of relaxation upon compression and expansion
implying that the sequence of density fields is not inversion symmetric, even
with a suitably scaled time variable. The present formalism can be also
applied to describe different particle shapes like platelets or hard sphero-
cylinders. Furthermore, it would be interesting to study the orientational
glass transition within the DDFT approach in order to explore whether the
orientational and translational dynamics become frozen-in at the same den-
sities or not [125, 149]. Finally, in connection with the previous chapter, a
density functional theory for anisotropic particles and hydrodynamic inter-
actions would be desirable.
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Appendix A

Ewald sum of µLA
ij

In the appendix, the lattice sum of the long ranged dipole part of the Long-
Ajdari tensor µLA

ij is given. The scheme is adapted from the more general
summation by Beenakker [69].

We consider a three-dimensional periodic lattice in which each unit cell
(volume V , numbered by the index l) contains N spherical particles (radius
a, numbered by the index i) with inverse screening length κ and friction
coefficient γ = 6πηa, where η is the viscosity of the solvent. The lattice
points are given by the vectors Rl and the particles have position vectors
ril = ri + Rl. The force on particle i is denoted by Fi. The total force on
the particles in a unit cell is assumed to vanish:

N∑
i=1

Fi = 0 (A.1)

Now we consider the following lattice sum:

Si0 =
∑

l

(
N∑

i=1

µi0l0,il · Fi

)
, (A.2)

with the long ranged part of µLA
ij :

γµi0l0,il =

{ 3a
2κ2|x|3 (1− 3x̂x̂) for (i, l) /= (i0, l0)

1 for (i, l) = (i0, l0)
. (A.3)

with x = ril−ri0l0 and x̂ = x/|x|. Using the the Ewald summation technique,
Beenakker has rewritten this series into a rapidly converging form (with the
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simple modification a3 → 3aκ−2):

γSi0 = (1− 40π−1/2ξ3aκ−2)Fi0

+
∑

l

ril /=ri0l0

N∑
i=1

µ(1)(ril − ri0l0) · Fi

+ V −1
∑

λ

kλ /=0

N∑
i=1

µ(2)(kλ) · Fi cos[kλ · (ri − ri0)], (A.4)

with the definitions

µ(1) = 1

{
3

2
aκ−2r−3erfc(ξr) +

(4ξ7r4 − 20ξ5r2 + 14ξ3 + ξr−2)3aκ−2π−1/2 exp(−ξ2r2)

}
+

r̂r̂

{
− 9

2
aκ−2erfc(ξr) +

(−4ξ7r4 + 16ξ5r2 − 2ξ3 − 3ξr−2)3aκ−2π−1/2 exp(−ξ2r2)

}
(A.5)

µ(2) = −6πaκ−2

(
1− k̂k̂

)(
1 +

1

4
ξ−2k2 +

1

8
ξ−4k4

)
exp

(
− 1

4
ξ−2k2

)
. (A.6)

The second lattice sum in Eq. A.4 runs in reciprocal space over reciprocal
lattice vectors kλ satisfying exp(ik · rl) = 1 for all l. ξ > 0 is an convergence
rate control parameter.
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[98] G. Nägele and J. Bergenholtz, J. Chem. Phys. 108, 9893 (1998).
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