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Abstract

In this article, we address the Cauchy problem associated with the k-generalized Zakharov-Kuznetsov
equation posed on R x T. By establishing an almost optimal linear L*-estimate, along with a family of
bilinear refinements, we significantly lower the well-posedness threshold for all k£ > 2. In particular, we
show that the modified Zakharov-Kuznetsov equation is locally well-posed in HS (R x T) for all s > %.
© 2025 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction
For k € N and s € R, we consider the Cauchy problem
8,u+3xAxyu::|:3x(uk+1), ut=0=upe H'R x T) (CP-k)

associated with the k-generalized Zakharov-Kuznetsov equation (gZK), where u = u(¢, x, y) is a
real-valued function. For k = 1, gZK reduces to the classical Zakharov-Kuznetsov equation (ZK),
which was first derived on R3 by Zakharov and Kuznetsov [35], as a model for the propagation of
nonlinear ion-acoustic waves in a magnetized plasma. When posed on R?, ZK describes similar
phenomena, and the derivation in this case is due to Laedke and Spatschek [23]. Regarding
conserved quantities, it is well known that the mass
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M(u(t)) = / (u(t, x, y))*d(x, y)

RxT
and the energy

2
k+2

1
Ex(u(0) = / IVu(t, x, y)I3 £ (u(t, x, y)F2d(x, y)

RxT

are conserved over time, provided the solution is of sufficient regularity. Both M and E4 play a
central role in the well-posedness analysis of gZK, particularly in extending local to global solu-
tions. The well-posedness theory of gZK has been extensively studied over the past decades, both
on R3 and on R2. For the three-dimensional case, we refer to [13,14,17,19,22,27,28,32], whereas
for the two-dimensional case, we refer to [2,3,7,8,15,21,22,24,25,28,31]. The semi-periodic case,
however, has not yet been studied in comparable depth and has only recently come into focus.
We provide an overview of the results obtained to date:

In the case k = 1, the foundational work was carried out by Linares, Pastor, and Saut [26], who
established local well-posedness in H*(R x T) for all s > % By developing a bilinear estimate
that allows for a gain of up to %— derivatives, Molinet and Pilod [28] were subsequently able
to prove global well-posedness for all s > 1. Based on a refinement of said estimate, Osawa
[29] succeeded in lowering the threshold for local well-posedness to s > %, and, in joint work
with Takaoka [30], further established global well-posedness for all s > % by employing the /-
method. More recently, Cao-Labora [5] developed a further refinement of said bilinear estimate,
carefully adapted to the resonance function. By invoking geometric arguments, he was then able
to improve the local well-posedness result to s > % (ors > % under an additional low-frequency
condition), and in both cases established optimality up to the endpoint. For the case k > 2, Farah
and Molinet [9] proved the linear L*-estimate

lell s ®xRxT) S lullxy 5 - (1

=)

where X | 3 (¢) denotes the Bourgain space associated with the ZK equation, and by using this
5

estimate in conjunction with the bilinear estimate due to Molinet and Pilod, they obtained local
well-posedness for every s > 1—, explicitly establishing s > % in the case k = 2. Furthermore,
by making use of the conservation laws, they also proved (small data) global well-posedness for
every s > 1.

The development of increasingly sharp linear Strichartz estimates has become a central focus of
current research concerning the well-posedness study of different problems posed on R x T'. Ex-
amples of such recent work include the contributions of Herr, Schippa, and Tzvetkov [18] on the
semiperiodic dispersion-generalized KP-II equation; Corcho and Mallqui [6] on the semiperi-
odic NLS equation with fractional derivatives in the periodic component; and Bagsakoglu, Sun,
Tzvetkov, and Wang [1] on the semiperiodic hyperbolic NLS equations. In this spirit, the proofs
of several new linear and bilinear estimates of Strichartz type will also serve as the starting point
in this article. In particular, we wish to highlight the following linear L*-estimate, which we will
furthermore show to be optimal up to the loss of an e-derivative.

Theorem 1.1. Let ¢ > 0 and b > % be arbitrary. If u € X¢ (@), then the following estimate holds
true:
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lall s R xRxT) Seb Ml 50)- 2

For the proof of this estimate, we will follow the approach of Takaoka and Tzvetkov [34] for
the semiperiodic Schrodinger equation and consider sets of the form

{E.q)eRxZ]|ci=pG.q9)=c2}

for ¢y, c2 € R and a specific polynomial p. The simple polynomial structure of p will then allow
us to sharply estimate the measure of these sets, and a subsequent dyadic summation will yield
the desired estimate. Moreover a modification of the proof of Theorem 1.1 will yield a family of
bilinear refinements of (2), which in certain frequency ranges allow a gain of up to %— deriva-
tives.

As a first application of the newly obtained linear estimates, we will then verify the well-
posedness results summarized in the following theorem.

Theorem 1.2. Let k € NZ2, define

! ifk=2
so(k) = { & ifk=3,
11— ifk>4

and let s > so(k) be arbitrary. Then for every ug € H'(R x T), there exists a § =
Slluoll grsowr+ R xT)) > 0 and a unique solution

s
ue XA&%_F((p)

to (CP-k). Moreover, for every 5 €(0,8), there exists a neighborhoodU € H* (R x T) of ug such
that the flow map

S:H'R x T) 2U — X° (@), ug+> S(uo) ==u
2
(data upon solution) is smooth.
Subsequently, in the case k = 2 (which corresponds to the modified Zakharov-Kuznetsov

equation), we will carry out a detailed case-by-case analysis using the bilinear refinements of

(2) and the resonance function, and push the local well-posedness threshold in this case down to

11
S>ﬂ.

Theorem 1.3. Let s > % be arbitrary. Then for every ug € H*(R x T), there exists a § =

S(||u 11 > 0 and a unique solution
(ol 1 o) q

s
ue XA&%_F((p)

to
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i + By Agyu = £, (), u(t =0) = uy.

Moreover, for every S8 € (0, 8), there exists a neighborhood U € H*(R x T) of ug such that the
Sflow map

S: HS(RXT)DU—)X ((p) uo > S(ug) :=u
(data upon solution) is smooth.
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2. Preliminaries
We start by fixing notation and introducing the function spaces that will be used in this paper.
2.1. Notation

If A is a measurable subset of R x Z, R x R x Z or R”, then |A| will denote its Haar
measure. For an arbitrary number x € R, x+ will denote a number slightly greater than x, while
x—"! will denote a number slightly smaller than x. If we have two real numbers, x and y, then
their maximum will be denoted by x Vv y and their minimum by x A y. If x and y are both positive,
then x < y will mean that there exists some constant ¢ > 0, such that x < cy holds. In the case
that the constant ¢ can be chosen particularly close to 0, we will write x < y and if both x <y
and y < x hold, we will write x ~ y. Furthermore, we will denote the absolute value of a real
number x by |x|, while for a vector x = (x1,x2) € R2, the Euclidean norm will be denoted by

|x],. Using the Euclidean norm, we define the Japanese brackets as (x) := (1 + |x|2)% For an
admissible function f = f(z, x, y), where (¢,x, y) € R% x T, its space-time Fourier transform
will be denoted by f and its inverse space-time Fourier transform by f If we are interested in
the partlal Fourier transform of such a function, we indicate this by using subscripts, e.g., in Fy f
and F_ f We use the Fourier transform to define the Bessel and Riesz potential operators of
order —s where s is a real number:

P f=FE QY Fof.  If=F 1E QBFuf
If we wish to use J and I with respect to different combinations of variables, we specify them by
using subscripts as well. We also make use of the Fourier transform to define the unitary group

(e~%Bx1), g associated with the linear part of gZK:

e—axAxyff — fx—yle”lﬂ(f»lﬂfxyf

! In the context of interpolation, the notation co— will be used to indicate a number that is very large, but still finite.
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Here, ¢(£, q) = £(&% + ¢?) denotes the corresponding phase function. For later well-posedness
considerations related to the modified Zakharov-Kuznetsov equation, it will be necessary to work
with the associated resonance function R, defined by

RE,q.61,91,6,9) =&, q) — &1, q1) —9&2,q2) —0 — &1 —&,9 —q1 — q2).

Following the approach of Molinet and Pilod in [28], it will also be useful to introduce
Littlewood-Paley projectors adapted to R: Let (¢, g) € R x Z. We define the following dilated

quantity |(&, q)| = (3¢ 24 qz) % Then, for a fixed smooth cut-off function u with

8 8
neCy®), 0=p<l, s sy=1 and supp(y,)g[—— }

5'5
we set
Y(&) = ul) — u2é)
and define
Y1, q) =u(E, @) and ni(7,§,q9) =ur —9&,q)),
as well as

Y (§,q) =y Q27"E @) and nn(r.§,q9) =Y 27" (T — ¢, 9))),

where n € N. If we now replace 2" with N, we obtain

8 5 8
Supp(l/f])é{l(&ﬁ)lfg} and Supp(WN)E{gNSI(E,Q)Ing}, N=>2
and this construction provides

Y unE.g=1  VEqeRxXLZ.

Ne{2" | neNp}

The Littlewood-Paley projectors are then given by
Pyf=Fg ynFuyf. and Qrf =F niFiyf.  N.Le{2"|neNoh
2.2. Function spaces

Fors e Rand X € {R, T,R x T}, H*(X) will denote the usual Sobolev-space, endowed with
the norm ||| g5 (x) == |/°-|l L2(x)» While its homogeneous version will be denoted by H’(X) and
equipped with the norm ||-|| g x) = 17°1l 2(x)- We will often replace the underlying space X in
the notation with variable subscripts, as in H*(R x T) = Hy,. Now let T < 1 be a positive real
number and 1 < p, g < co. Then, the mixed Lebesgue spaces such as L, L7 and L%LZ will be
endowed with the following norms:
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1
1fllpp pg = ( / I x, ->||iq(md(r,x)>‘
R2

and

1
||f||L;ng:=( / ||f<t,~,y>||iq(R)d<t,y>>p,

[-T,T1xT

with the obvious modifications in the case p = oo. For later well-posedness considerations, we
further introduce the semiperiodic Bourgain spaces X 5 (¢), with regularity indices s, b € R. We
equip these with the norm

1

1 sy o= ( /] Z«é,q»z‘?(r—go@,q>>2”|f<r,s,q>|2d<r,5))2,

RR([EZ

where ¢(£, q) = £(£2 + ¢?) refers to the phase function defined earlier. Lastly, we define the
restriction norm spaces Xf »(@) as the sets of all restrictions of Xj »(¢)-functions to [—§, 8] x
R x T, where § is a positive real number. These spaces will be equipped with the norm

17150 = {1 Pl 00 | Flisixmr = £ and Fe X, .

Since tbe phase function ¢ won’t vary throughout this paper, we will just write X ; and Xf b
respectively.

3. Linear and bilinear Strichartz estimates

This section will be devoted to establishing the linear and bilinear Strichartz estimates needed
for the proofs of Theorem 1.2 and Theorem 1.3. We begin with the proof of a slightly sharpened
version of a bilinear estimate that goes back to Molinet and Pilod (see Proposition 3.6 in [28]).

This estimate allows for a gain of %— derivatives for widely separated mixed frequencies (1, g1)
and (82, q2).

Proposition 3.1. Let ¢ > 0 and b > % be arbitrary. Furthermore, we define the bilinear Fourier
multiplier M P (-, -) by its Fourier transform

MP,v)(1, €, q) =

| St - e an Pt &0 b aden )

eZ
R2 ql*

where * indicates the convolution constraint (t,&,q) = (11 + 12, &1 + &, q1 + q2). Then, the

1
following estimate holds for all Jy +€u, veXop:

1
7 te
||MP(L£, v)”Lthy Sé‘,b ||Jy2 u“XO,b ”U”X()’b' (3)

6
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Proof. We fixe >0and b = % +é&' > % By employing Parseval’s identity, the Cauchy-Schwarz
inequality and Fubini’s theorem, we obtain

1 1

7 7te

’ L2, ~ (% }‘2 Xo,b Xo0,b°

IMP@u,v)l2 < sup co |y ullx,, Ivlix,
7 (1,€,9)eRxRxZ

where

o ::f Y lIEL gD = G, a)Plgn ™ 7 (1 — o1, q0)

R2 mfZ
A — @2, q2)) " ¥ d(x1, £1),

and for the integration over 71, Lemma 4.2 in [10] yields that
/m — L) T T T — e —1.g —q) T ¥ dny

R
St —ELq) —pE —E1.g—qn) ™ 7%

From this, it follows that

s Yo [l a0P - 16 ~&.q - a0P)
R

q1€Z
(T —@(Erq1) — 9 — 1,9 —q1)) "7 dg,

and substituting

E =1 —0ELq) —9E—E,q9—q1)~ "dé1 = (I(E — &1, — qDI* — |1, q)*)d&”

leads to

S Y g / (§1)7' 7% dé) < 0.
R

Q€L
This completes the proof of (3). O

Remark 3.2.

1
(i) The proof shows that it does not matter whether Jy2Jr is applied to u or v, so that the deriva-
tive loss can always be shifted to the low-frequency factor.

7
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(i) By applying Sobolev’s embedding theorem and Lemma 4.2 from [10] in the form

/( —9(ELg)) T E (t -1 — (& — 1, q —Q1))_%_25ldfl <L
R

an argument analogous to that of Proposition 3.1 yields the estimate
IMP. W2 Slullx  lvllx - “
xy I |

By bilinear interpolation between (3) and (4), we then obtain that for every & > 0, there
exists £ > 0 such that

IMPGL oI, Sy, Ivlx, 5)
. 2teg—E 27

and this will turn out to be useful for later estimates by duality.

The linear Strichartz estimates that we want to establish next are based on the observation that
the linear propagator e /%% associated with gZK implicitly contains both the one-dimensional
Schrodinger and Airy propagators. This becomes evident when applying partial Fourier trans-
forms F, and F, to e~"%Awy. One obtains

(fxeftaxAx«"uo> &, y)= eits (ei(_gt)agfxuo($)>()’) (6)

and

(Fye80up) (x, q) = 0% (7% Fyuo(g) ) (1) = (¢ W Fyuo(@)) e + g%, (7)

and for fixed spatial frequencies £ or ¢, one can then invoke well-known estimates for the
Schrodinger and Airy equations. This argument has been employed multiple times in the context
of the Schrodinger propagator (see, e.g. [12,16,17]), whereas it seems to be new in the case of
the Airy propagator. We make the described approach precise in the propositions that follow.

Proposmon 3.3. Let T > 0 and e > 0 be arbitrary. Furthermore, let ug and vg be functions with

Jlug € L2 and J ngo € L2 Then the two estimates

—13:A

1
e 'y <r I u 8
I olls St e uolls, ®)

and

—13, A

1
xy < JJE
lle “wollg 7 I Jyvolles, ©)

hold. Moreover; if p € [2,6] and b > % are given, then the estimate

8
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175 33
ull;r St Jo P P u 10
I ”LTX)' eb I1Jx y ||XO.(%7%)b (10)
1-5 35
holds for every time-localized u with J,, " J,” " MEXO(%fé)b'
’ P

Proof. We begin with the proof of (8). Taking (6) into account, the Sobolev embedding theorem
for homogeneous spaces, followed by Parseval’s identity in the x-variable and an application of
Minkowski’s integral inequality, yields

1
—10y Axy < 4 ,—t0xAyy
lle MOHL‘;U Slhhe MOHL‘;},L)%
1 i(—&nd?
~ g TN Faoll g 42

| 2
< g1z N Fauoll .

T

. 4 % %
=( / |5|5< (@8 Fane) o) dtdy) ds> .
R

T —-T
Now, substituting f = —&t in the innermost integral, we obtain

1 1

= (H{{/(/ T‘(a‘faffxuo(g))(y)rdfdy)zdg>7,

T -Ti§|

and if k € Ny is the uniquely determined integer such that kwr < T|&| < (k + 1)m, then it follows
from the 2 -periodicity of the integrand in f that

1 1

(k+ D ) Lol
s < / ( | [ | ruwe)o) dfdy) dg)
R

T —(k+Dx

< </(T|§|+l)é(//)(e"t"a;fxuo(é))(y)rdfdy)zdé)i
R T T

—2 2
< ( [t R, (qur)d’fé) .
R '

For the inner L:i'y -norm, we can now rely on the well-known Schrodinger L*-estimate, originally
due to Zygmund [36], to obtain

2 1
< (/(S)éllfxuo(f)llig(qr)df) ~ IIszuolngy.
R
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This concludes the proof of (8). To prove (9), we proceed analogously and arrive at

1
3 13 A

taxAxy < I Xy
UO”L%Rv Sliie UO”L%LJZ(

lle~
~IIE13 ¢ E Fvll 6 o
* LT,VLE

1 G 2
< 115" 5% Fevoll 6.

1 1

S <[|s|%ms| + 1) <//’(effﬂffxvo@))(y)(ﬁdfdy)3d§>2
R T T

N 2
St ( / <s>§||e”f’3fxvo<s)||§§_(des) .
R y

At this point, we can now apply the Schrodinger L°-estimate with a loss of an e-derivative in y
(see Proposition 2.36 in [4]), and conclude that

1
2 ? 1
S ( / <s>§||J;fxvo<s>||i%mds> ~ IS TEvol 2,
R

It remains to prove (10). The transfer principle (see Lemma 2.3 in [10]) transforms (8) and (9)
for time-localized u# and b > % into

1
lull s S 195 g, (n
and
3
&
leell g, Step 1y Jyullx, . 12)
so that we obtain (10) by interpolating (12) with the trivial estimate
IIullem S lullzz = lullxe,- B (13)

With the “Schrodinger point of view” now addressed, we turn to deriving linear estimates that
arise from the Airy perspective.

2

%y Then the esti-

1
Proposition 3.4. Let ug and vo be functions such that J ug € szcy and vy € L
mates

1 1
6 ,—10xAxy 3
118~ ™ ugl o S Iy woll2, (14)
and

10
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1
I _—toy A
I1¢e 10x X’VUO”L;‘L;;OLg_ < ”vOHL;ch (15)

1_1
hold.* Furthermore, ifpel2,6], b> % and u is a function with Jy2 Pue X, G-y then
’ 14

11 li

I8 7 ullyp <o 10y Tullx, (16)

0.3-3b
holds true as well.

Proof. We begin the proof of (14) in a manner similar to that of (9), except that we apply the
Sobolev embedding theorem in the y-variable and, following Parseval’s identity, make use of
equation (7):

1
118 ™ Bougll <10 1be e "B ugll s 1o

17 L 3
~ ) (1 e Fyuo ) x + 40l g 12

1 1

= 1@)5 (18e™ % Fyuo) (x40 12,

1

=( g(//‘ takf uo(q))(x+q t)‘ dxdt)i)i.
qu

By the translation invariance of the Lebesgue measure, it then follows that
1 1

( %(f/‘ t3xfyu0(q)>(x)‘ dxdt>§>7
qeZ

1

2
=(Z< i lrge R F @)1 (RxR)> ,

qeZ

and for the inner fo—norm, we can apply the Airy L®-estimate proved by Kenig, Ponce, Vega
(see Theorem 2.4 in [20]). This yields

1

2
2 1
S ( DI ||fyuo<q>||i§(R)> ~ 1wl

qeZ

2 The “Airy endpoint estimate” will not be used in this paper, but it might be of independent interest for future appli-
cations.

11
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and the proof is complete. The proof of (15) proceeds in an entirely analogous way, except that
we can dispense with the use of the Sobolev embedding theorem and, instead of the Airy L°-
estimate, we apply the endpoint Airy L?Lio -estimate (see Theorem 2.4 in [20]). We obtain:

1 1
T~y Ay 7,193 2
||Ix4e 10x X)UOHL;‘L)CEOL% ~ ||(Ix4e t"]'"yvo)(X-H] I)HL;‘U\?OLZ
7,193 2
= ||(1x e X]:yUO)(X +q t)”L?le]L?O
1
i, —td] 2
=< ||(Ix4e ! '”]:yvo)(x +4q t)”L[ZILngo

1
1 2
— Z 1,-13] 2

qeZ
1

2

2

5(2}5mwm%m) ~ llvoll 2,
qeZ ’

and thus the proof of this partial result is also complete. Finally, the transfer principle converts
estimate (14) for b > % into

1 1
M ull s, <o 10y ullx,,» a7
and by interpolating this with the trivial estimate (13), we obtain (16). O

Remark 3.5. The application of the Sobolev embedding theorem in the proof of (14) can be
avoided by starting directly in Li. After applying the transfer principle, we thus obtain

1
6 <
I ull s 12 Sb el xg e (18)

for every b > %, and by interpolating this estimate with the trivial estimate (13), we arrive at

1
1l g 0 S Wl (19)
This estimate will later prove useful in dealing with particularly small frequency domains.
Similar to the approach taken by Molinet and Farah in the proof of their linear L*-estimate
(1), we can combine the one-dimensional arguments from Proposition 3.3 and Proposition 3.4 to
minimize the resulting derivative loss.

Corollary 3.6. Let T > 0,0 <e K 1, b > % and p € (2, 6]. Then the estimate

u < u
Il ”L[T’xy Steeb |l ||X%

(20)

12
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holds for every time-localized u € X| —24G-De -2

Proof. We define the Fourier projectors

— 1
Pz =T ooy Pt

and

P u=Fy Fryl.
{lel>(@)3 %) Kiie1> @ 327
Then we have
ol p SIIP 2 0 e +||P 3o, ullp
Lrsy (§1<ta) 372} oy (181> ()37} T hrey
and for the first term we use (10), which, taking into account
1 1 3_3
-1, G- HtG-pe
S (6)2 rlg) 5()
=@ i) 1 1
leads us to
15,35
< 4 14
” {|§|< 7725}14”[‘/;” ~T,e,b ”Jx Jy {ISIS(q>3 23} ”XO,( 3
-E2+G-Le
<
||J ||X0?(%7;)b
S llullx .
=gy
For the second term, we apply (16) and note that
(A-L 1_1 L2 1Ly
20 [E1F )2 P Sdg)? T
1=t 2}5 1 1
which again yields
~d-4 4
P u < I L S u
S A S B T
I-2+G3-1)
< 3 3p 2 p
N”Jy u”XO,(%—i)b
Sllullx,

2 1_1 3_3,°
373t

Altogether, we obtain

ull,r < u
I ”Lr - St |l ||Xl_l+(7_7) NERES

13
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which is what we aimed to show. O
Remark 3.7.

(i) Inthecase p=4,b = %+, Corollary 3.6 provides the estimate

’

g, S lullx, s,

ool

+,

N

which constitutes a slightly weakened version of estimate (1).
(i) The corollary also yields the two estimates

[ < 21
u u
and

ullo- <lullz,1_, 22

which, in this form, will be sufficient for the remaining well-posedness considerations. How-
ever, the L>-estimate provided by Corollary 3.6 is still not good enough - more on this will
follow after the establishment of Theorem 1.1.

While the estimates proved in Propositions 3.3 and 3.4 are derived from already known one-
dimensional estimates, we adopt a two-dimensional approach for the proof of Theorem 1.1. The
following auxiliary lemma clarifies what is meant by this, and is inspired by the idea of Takaoka
and Tzvetkov in their proof of a linear L*-estimate for the semiperiodic Schrodinger equation
(see Lemma 2.1 in [34]).

Lemma 3.8. Fora € [0, 1], (1,6,9) e RxR*Ox Z, K > 1, c=c(1,£,9) €R, h € {0, 3} and
dyadic numbers N1, N € 2No e define the following measurable subsets of R x Z.:

i § §
Bll,ng,q ::{(Elvql)ERXZ ’ |§1| < 51 '<§1+§7QI+%+}1>‘5N17

‘(%-51,%—Q1—h>‘§N2, |3$2_q2|21, p(él&]l‘F”OE[C,C—i—K]},

and

TEq :{(51,611)6RXZ‘551, '<€1+%,Q1+%+h>‘§1\/1,

‘(%—sl,%—ql —h)‘SNz» 382 — ¢*| 2 €°, p(sl,q1+h>e[ac+1<l},

where p denotes the polynomial function p(x,y) = &(3x% + y%) 4+ 2gxy. Then, the following
two estimates hold for every ¢ > 0:

14
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. 1
sup B 12 <. (N1 vV N2PK 2, (23)
(1,€,9)eERxR>OxZ
and
sup  £FBY, |P <o (N1 v NP2 24)

(1,6,9)eRxR>OxZ

Proof. We start by proving (23). Let ¢ > 0 be arbitrary. For a fixed g € Z, p is an ordinary
polynomial of degree two in &1, so that if we define

2 2
q- — 3¢ 2
D = h —
082 (q1+h) +3$
and
2 2
q-—3§ 2 +K
D, = h —_—
2 082 (g1 +m)"+ 3%

a simple calculation shows that

p(él,ql+h)e[c,c+K]A<|$1|<%)©

(q1+h) 2 2 2 i
(‘ 5z q+([ 22 _Dz] [Dlz’Df]))m(_%’%) it Dy =0
(q1+h) §
(~etha 4 [-p;. Dj]) N (-5,

o

) if D1 <0, D, >0.

Thus, summing the lengths of these intervals over all admissible g1 € Z, we obtain an upper
bound for B |. We divide this approach into four cases.

t.§.q
@) q2 — 3¢ 2> 0 and ¢ > 0: We first note that from the definition of Bi‘% 7 it follows that
1 q
11 = slar + L n| 5|2~ [ IS v ),

Furthermore, the assumptions q2 — 3¢ 2-50andc>0 imply D1 > 0 for all g; € Z, so that we
obtain

pgs 3|0 (ol o ool o)) ot 5.

IQ| IS(N1VN2)

=a(q1)

From this estimate, we can immediately see that in the case & < m, it follows from a(q1) <
& that

1
RS Z a(ql)gm Z 1<1< (N1 VvN)*K
11 <(N1VNy) YR < avivivy

15
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so that we may restrict our further investigations to & > m In addition to a(q;) <&, we
also have

which allows us to conclude that a(g;) < K % Thus, we obtain

Yo a@ns<Ki+ Y.

1 1
(o7 3]
lq11 S(N1VND)

lq1 S(N1VND)
q1¢{0,—1}

1
K3 2 _3g2 _1
- X (%(‘“”’)2“) 2
§2 ISV

q1#{0,—1)

S

SKT+

and a subsequent integral comparison yields

1 ¢(N1VN2)

() o

2 32 1
)2 (NIVN)
i K

1
— / (1+ 2757 2dz.
@2 -3): )
Now, taking 1 < g% — 362 < (Ny Vv Np)2, € > m and K > 1 into consideration, we get

~ 5
¢(N1VN>y)2

<K (1+zz)—%dz51<1n((zv1 vV N2)3 + 1) <. K(Nj V Ny
0

and this concludes the discussion of case (i).

(i) g2 — 36% > 0 and ¢ < 0: We divide this case into two subcases.
(ii.1) K + ¢ > 0: In this situation we easily verify

(SIS

3
D120©|ql+h|z(ﬂ) and Dy >0 Vg, € Z,
q2_3%~2

allowing us to conclude

1B IS > algn + Y. b= D+UD),
(L) 2 <lgr +HIS N V) a1+ <( 2kl 3

16
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where a(q1) is defined as in case (i), and

= (-2 4 [0} o) 5|
follows that

We first turn our attention to contribution (I7). If & < 1, then b(q;) < & < 1, from which it

(Il < Z 1<((ﬂ)5

3&c|
‘ql+h|<(q2,3§2)

D=

) SK? < (N v N)¥K,

where the final step relies on the inequalities & < 1, g> — 352 > 1 and |c| < K > 1. In the case
& > 1, we have

1
1o q* — 382 , K+cy: K2 1
D2 2 =2 2Z2——> <
b(ql)f‘[ D2,D2] 2( o @+ = ) 52(35)%N1<z,

3&]c]

1
with the second-to-last step justified by |g; + k| < (q2_3%_2)2. This, together with £ > 1, g% —

362> 1and |c| < K > 1, leads to

1

1
K2 K2 3 3
an<t Z 1< = (%)%A <K < (N v N2)®K,
3 &2 q-— 3§
5 <)}
ge—3

so that we have, in total, verified that

(I1) < (Np v N2)*K.

Let us now consider (/). By the same reasoning as in case (i), we can restrict ourselves to the
case £ > m It is immediately clear that

E<1<K2
a(qy) < 1l

[pf. 5]

ifé <1

o

<

Bl—

<K

; ifé>1
£2
holds for all the values of ¢g; occurring in the sum, so that we can write
IR
(D<K + 3 [pi.p3]
(-3l 1

qL}Ez)7+1S\ql+h|§(N1VN2)

| >

SKT+

o
=

Z (q2_3;§2

+h)?+K—|c )_7_
o 3 (g1 +h) c]
(ﬁi‘;z)iﬂsmﬂrh\g(mvm)

17
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An integral comparison then leads to

< ENIVNY) 22 1
<KI4— / (Qy2+K—|c|) 2dy
£2 1 3§
(7550)?
5(”’25;&2)%(N1VN2)
1 K 2 _1
~Kld —m—— (z°+ K —|c)"2dz
(¢* —382)2 1
lel2
HE52E2) S NV~ el 2
1 K 2 _1
<K 4 — (u”+1)"2du,
(¢* —3&%)2

0

- $?=3€2\ 3 : : 2 2
where we substltuted 7= (T)Zy, followed by u = z — |c|2, and taking 1 < ¢° — 3§° <

(N1 V Ny), & > WD vN 3 and K > 1 into account once again, we obtain - just as in (i) - that

(I) <e (N) Vv N2)*K.

(1i.2) K + ¢ < 0: Compared to (ii.1), the only difference in this case is that

3&(lc] — K)\2
D) >0«& h>———)".
220l +h2 (S 50)
We thus obtain

1B 1S > a(qr) + > b(q1)

| | |
3Elel _\5 3E(el=K)\ 5 3Elel_\>
(@)Zs\qwhls(Msz) (#—352)25\q1+h|<(@)2

and the first sum can be estimated in exactly the same way as in (ii.1), since the estimates did
1

not rely on K + ¢ > 0. Moreover, as in (ii.1), we may again rely on b(g;) < & and b(q;) < X%,
€2

which yields

3¢lcl \1  (3&(cl— K)\3
b(¢]1)§$< _ +1>
36(c|=K) & Z sl b (612—352) ( g2 — 3g2 )
(o) 2 slaithl<(557)?

in the case £ < 1 and

18
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1
Kz [/ 3&lc| \i (3&(c|l—K)\3
> b(q1)§—< 3kl \B_ (3(Ie — K) +1)
36(cl-K)\ 36l (L g% (q2—3$2) ( g2 — 3€2 )
(552 <lar+hl<(7551)

<K S (N1 Vv N)*K

in the case & > 1. Here, the inequalities g2 — 362 > 1 and K < |c| were employed in both cases.
(iii) g% — 382 < 0 and ¢ > 0: We observe that in this case,

KN 36(c+K)\z2
D10 g1+ = (<5 ) and D20 g1+ < (KK
1= lg1 +h| < 32— g2) D2z lg1 +h| < 32— 42
hold. With a(q1) and b(q1) as before, we thus obtain
B IS Y. alq) + > b(q1)
lg1-+hl=(5 35 ) 2 (25 ) b <l +hl<(EL2K))

352_(12 352_(12 352_(12

and again, the two sums are to be estimated one after the other. First, we note that for the g,
1 1

over which the sums extend, we have a(q;) <&, a(q1) < K—F, b(q1) <&and b(qy) < Q at our
2 £2

disposal. If we denote the second sum by (/1), it follows that

3 K)\3 3 :
o e () - () ) 2 <o

in the case £ < 1, and

1
Kz (/36(c+K)\% 3&c
(11)§_1<<3$2_q2) _(3%.2_q2

1
)2+1)§K§(N1VN2)28K
%‘7

in the case & > 1. In both estimates, we made use of 362 — g2 > 1 and ¢ > 0. For the first sum
(1), we aim once again to use an integral comparison. Due to our bounds for a(q1), we have

11
(D<K + 3 ([Df,Dg]
I
|q1+h|§(3£§i”qz)2—1
K 32 _ 2 1
ki Y (1T )
2¢2 . 3&c
|q1+h\§(3£$: 7)2 -1
3kc (4
B (e 2)? e 1
<K%+ / (1 54 y2> 2dy
~ 1 1
g7 3&c

19



J. Nowicki-Koth Journal of Differential Equations 455 (2026) 113951

1
K
<K 4 —— /(1 — ) 2d;
(B&2—gH2 )

[ —

(S E]

< (N v Np)*K,

making use of 352 — g2 > 1 in the final step. With that, case (iii) is also settled.
@iv) q2 — 32;‘2 < 0 and ¢ < 0: In this final scenario, we have

3E(K—ICI)>%

D <0Vgy€Zand D, >0 & h<(
1=0Vq; 2 > lg1 +hl| < 32- 42

although the latter holds only under the additional assumption |c¢| < K. With b(q1) as previously
defined, it follows that

Byl S b(qn).
§.q

_ 1
b=l

o

For all g appearing in the sum, we again have b(g;) <& and b(q;) < K2 | so that we obtain

£

=

b 1
gg((%y + 1) <KZ<(NVvN)FK

in the case £ < 1 and

- Q(<3S<K —lcD

1
2 2¢
- S +1)§K§(N1\/N2) K
g3 \\ 362—¢2 )
in the case £ > 1. In these last two estimates, we made use of 362 — g2 > 1 and thus the proof in
the final case is also complete.
Now, collecting the results from cases (i) to (iv), we obtain

o )
|BY"} /17 Se (N1 V Np)°K 2

and taking the supremum on both sides yields assertion (23).

If we now wish to prove (24), we need to take into account that we can no longer rely on
a(q1),b(q1) < &. However, a careful examination of the proof of (23) shows that this is not
problematic, since

1
(A) we still have a(q1), b(q1) < ¥ at our disposal, and
£2

(B) the integral estimates in the cases (i) and (ii.1) work under the assumption & = 1, which is

already included in the definition of By £.q°

20
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‘We thus obtain

28 K
1B ¢ | Se (N1 V N?) —
362 — ¢?|2 57
and multiplication with £3 gives
§3K K2
E2-|Bfg 4l Se Ny v Ny E
352 2|2 %- =2

Since we now have [382 — ¢?| > &% & > 1 and « € [0, 1], it follows that

7B, | Se (N1 VN)*K

and taking square roots, followed by forming the supremum yields the claimed result. O

With the proof of Lemma 3.8, we have now completed the necessary groundwork to prove the
first main result of this paper.

Proof of Theorem 1.1. We fix arbitrary positive numbers ¢ > 0 and & > 0 and consider u €
X, e Since we want to establish a linear estimate and the phase function ¢ (&, ¢) = £(£€% +¢°?)

is odd, we may assume without loss of generality that supp(ii) € R x R>% x Z for the remainder
of the proof. We begin by noting that (2) follows from

(P, Qryu) (PN, Qa2
e L 1 (25)
Se (NLV N2 (L AL (L1 V L) 2| Py, Qryull2, 1PN, Qroullp2

via dyadic summation, as this implies
2 1,2
hullyy = 0lz,

S D IPw QL) (P, @yl 2

N;,L;

~5 a5 ey —e age ey 3HE p aHE
Seer ) Ny Ny PLUS Ly  NENSLY ™ L3 1Py, Quyull 2 1Py Quauel 2
Ni,L; ' ’

[ A— , ’
S(Z Ny zszLlst)uunx Sl
3 £

N;,L; A 2

We therefore turn to the proof of (25). By introducing the following two Fourier projectors
Piagz—q2i=1) = Foy) Xipper—q2i=1y Fat
and

21
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— -1
Plagr—g21< = Ty X(pg2—g21 < Fxytt
we separate the left-hand side of (25) into two components, namely
() 1= P2 g2y 1) (Pry QL) (P, QLyte) |l 2

and

(II) = ||P{‘3§2—qz|§1}((PN1 QL]M)(PNZ QLZM))”L%W’

both of which can now be suitably estimated. Using Parseval’s identity, the Cauchy-Schwarz
inequality, and Fubini’s theorem, we obtain

1
< sp  |Acegl? |IPw Oyl | Py Qrytll 2
(1,€,9)eERxR>OxZ ’ ’

with

Argg={,6,9) eRx RO Z | —& >0, 362 —¢*| > 1, (1, qD)| < N,
16 —&1,9 —qDI SN2, [t — 1L gD S L, |t — 11— 96 — 61,9 — q1)| S La}.

Furthermore, the triangle inequality gives
It —@E1,q)—9E—§1,9g—qDl < lt1—eE1, gD+t —t1—9E —§1,9g —q)| S (L1 V L),
allowing us to deduce
|Arql? S (L1 ALY Brg gl
with

Brgg=1¢1,q) eROXZ|&—& >0, 362 —¢*| > 1, [(1.qD| S N1,
(€ —&1,9 —qDI SN2, [T — @1, q1) —9E —&1.g —qD| S (L1 vV L)}

We now define the function

1 0 ifgiseven
hZ—0.5) grh@=1, 7
5 ifgisodd

and introduce new variables

£ :=gl—% and gy :=q1—%—h(q).

This leads to

22
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3 3 3
B —£) = (s] + %) + (% —s]) - % 43¢5,

2 2
§191 = (51 + %) (% +4i +h(q>> =£1(G1 +h(@)’ + 191 +h(@) +E T

2
+ %(q] +h(@)* + %q(q] +h(q)) + %

and
&E ~\(4 2
E—&Dg—q)’= (5 — a) (5 — (1 +h<q>)>
_&q> &
g 21
—&1(q1 + h(@))?,

2
(1 +h(g) + %(ql +h(g))* — 51% +&19(q1 + h(q))

and we thus obtain

§

OEL ) +9E —E1.q — q1) =EGE + (G + h(@)?) +2q(G1 + h@)E +Z(sz +4%).
=pE1.41+h(q)
With this, we arrive at
It —9é1,91) —9E —&,9g—q1)| <c(L1 VL) &
— L1V L)+t — %(52 +¢%) < pE1, g1 +h(q) <EL1V L)+t — %(Ez +4%),

and upon setting

c(1,E,q) =—¢(L VL) +1— %(gz +¢% and K :=2&(L;V L),

the substitution of the new variables, together with the translation invariance of the counting
measure, yields

L plin 1
|Brgql2 = |B‘[’€:’q(c7 K)|z,

with Bli%’ q= Blri‘é q(c, K) defined exactly as in Lemma 3.8. Thus, we may now invoke the

previouély established estimate (23), from which we obtain
1 1 1 €
[Azgql2 Se (L1 AL2)2(Ly VvV L2)2 (N1 V Na)2

and this concludes the proof of (25) in the case 1362 — ¢%| > 1. In order to control (I1), we
proceed by duality and write
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(I)~ sup / Pyg2—g21<1) (Px, Q) (Py, Qr,w)) - £A(2, x, )|
felL?,,
171,z <t BT

Then, applying Parseval’s identity, the Cauchy-Schwarz inequality and Fubini’s theorem, we
again obtain

~ 1
-3 Sup |Az 61,4112 ”PNlQLlu”Ltzx,”PNzQLzu”Ltzxv ||f||Lt2¥
(t1,61,q1)eERxR>0x Z y 3 xy
<1
with
Ac gy,q =

[(0,6,9) eRxR™OxZ | & —& >0, 387 —g*| < 1, |(¢1,q1)| S N1,
I —&1.g—qDI SN2 [t — @G gD S Ly, [T — 11— —&1.g —q1)| S L2},

and from the definition of A, ¢, .q1> we further deduce

1

- 1 1
|Aﬂ’€1m|25(L1VL2)2( > /X{|352q2|51}d5>

lg|S(NIVN) R

1

2
S(Ll\/Lz)%(lﬁ- Z l)

lg| S(N1VN2) 4]
q7#0

< (L1 V Ly)? In@E(Ny v Na))?
<o (L1 V Lo)Z(Ny v N2)2 (L A Ly)? .
[ ——

>1

Thus, (25) is also established in the case [36> — ¢?| < 1, completing the proof of Theo-
reml1.1. O
Remark 3.9. If we interpolate (2) with the trivial estimate (13), we obtain

ull4- < |lu
I ”foyN” ||X0+v%_

(26)

and this shows that we can essentially rely on (2), even if b happens to be slightly smaller than
1
i .

Given the lack of dispersion in the T-component, it is not surprising that such a linear L*-

estimate cannot achieve much more than the loss of an e-derivative. This is captured in the
following proposition, which demonstrates the near-optimality of (2).
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Proposition 3.10. The estimate

27

s,b

el s, S el
fails for all s <0 and b € R.

Proof. Let s <0 and b € R be arbitrary. For N € N, we define the following sequence of func-
tions via its Fourier transform:

Un(t,§,q) = (8g,N +84,-N)X1—1,11E) x1—1,1(T — @&, 9)).
Here, 8,y denotes the Kronecker delta. A straightforward computation yields
lunlk,, So N* (28)
and an application of Parseval’s identity gives
lunls = Nuillpz ~ Ny =inllz,

> 1Gg. N x—1,uE) x—1,1(T — @&, g)) * Og,—nX[-1,11) X[~ 1.11(T — w(é,Q)))lnggq,
=1

where * denotes the convolution with respect to 7, £ and ¢g. For the convolution integral I, we
now have

1=3q,0/X171,11($1)X[71,1J(§ —51)/)([71,11(11 — @1, N))
R R

“X-1,11(t =71 — @ — &1, —N))dr1d§

=3q,ofX[—1,1](§1)X[—1,1](E —El)/X[—l,l](fl)
R R

“x-1,1(T1 — (t — ¢, N) — o — &, —N)))dr1dé;

254,0/X[—1,1]($1)X[—1,1]($ —&Dx-1,11(t — @1, N) — 9 — &, —N))dé&;
R

> 54,0)([_1’%](5)/X[_%’%](SI)X[—I,I](T — @1, N) — ¢ — &1, —N))dé1,
R

and

T— @, N)—@E —&,—N)=1—& —&EN? — (5§ —&)° — (£ —&)N?
=1 —EN? &3 +38% — 3&&}
]

ool
ool

e[—
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allows us to conclude that

X110 = 9L N) =96 — €1, =N) = x_1 1(T —§N?)

holds true. We thus have

_ 2
1zsq,OX[—%,%](S)X[_l,%](f é:N )

and forming the L%S ,-horm yields

P
i 2 ([ [ rana) =520 29)
A

Now, if (27) were true, then combining (28) and (29) would lead to
S lunllys,, S lunlly,, SN* YN eN,
which would contradict the assumption s < 0. This completes the proof. O
Although, according to Proposition 3.10, we cannot expect a gain in derivatives in a linear L*-
estimate, it is possible - using Lemma 3.8 - to establish a parameter-dependent family of bilinear
estimates that will allow us to gain up to %— of a derivative in certain frequency ranges. These

estimates can be understood as bilinear refinements of the linear L*-estimate (2).

Proposition 3.11. Let ¢ > 0 and b > % be arbitrary. Furthermore, let the Fourier projector P%
for a € [0, 1] be defined by

Pou = F o Xpe—g2 iz e, ez n vt
Then, the estimate
1 P @l S lluly,, Ivllx, (30)
holds for all u,v € X¢ .
Proof. Since the phase function is odd, we may assume without loss of generality that & > 0.

Analogous to the argument in the proof of Theorem 1.1, the estimate (30) to be established,
follows from

|11 PY((Py, Qr,u) (PN, Q1,0)) IILng
(3D
£ 1 1
Se (N1 V N2)2(Ly VvV Lp)Z(Ly A Lp)2| Py, Or,ullz2 11 Pr, Qszlngr},
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by means of dyadic summation. We therefore proceed to the proof of (31). An application of
Parseval’s identity, the Cauchy-Schwarz inequality and Fubini’s theorem yields

118 PPy, Q1) (Pry Q)2

a 1
< sup  £914%, 1 )IPy, Quyull . 1PY,Quavl
(1,6,9)eRxR>O%Z ’ ’

with
Al ={.6,qD eRXRXZ|EZ T, 1362 — g% 2 &%, (&1, 91 S N,
(€ —&1.g —qDI SN2, |t —9EL gD S Ly, [T —11—@@E —§1,9 —qD| S Lo}

Now, if we control the extension of A‘;" £.q in the 71-direction by (L] A L), and then substitute
~ § - q
=& — = and =q1 — = —h(q),
& =& > GQr=q1— 5 (q)

just as in the proof of Theorem 1.1, it follows - taking into account the translation invariance of
the Haar measure on R x Z - that

a 1 1 a 1
E3|AY, 17 S(Ly A Ly)ZES|BY, |7,
with BY, = B%, (c,K)=B%, (=&(L1VLy)+7—5(E>+¢%),28(L1V Ly)) defined exactly

as in Lemma 3.8. From an application of (24), it finally follows that
-3 1 1 1 £
E3|AT ¢ 417 Se (L1 AL2)2(Ly vV L) 2 (N1 V No)2,
and thus the proof of (31) is complete. O

Remark 3.12. Estimate (30) will likewise be available for later estimates involving duality: Tak-
ing Remark 3.2 (ii) into account, an argument analogous to the proof of Proposition 3.1 yields

BIR

% o < %
11 PGl S uly, 190y, (32)

Bl

which, after interpolation with (30), leads to

L3 P%uv < |lu v . 33
I1: P*( )||Lt2xyN|| ||X0+’%_|| ||X0+v%_ (33)

We now have all the necessary ingredients to show our well-posedness results in the cases k =
2 (mZK) and k > 4. For the case k = 3, we will conclude this section by proving L’-estimates
that are specifically tailored to the quartic nonlinearity.
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Corollary 3.13. Let T >0, 0 <e <K 1 and b > % Furthermore, if u, v, w are time-localized’

1 1
Sunctions with Jou € X¢ p, Jy5 veXep and w e X;Jrs p» then the following three estimates
15 )
hold:
3
Il g, S 195 0lx, (34)
b %
1100, Sb 195 vlix, e (35)
and
w < w . 36
iy, Sreslwly, (36)

Proof. By interpolating the newly obtained L*-estimate (2) with (12), we obtain (34), while (35)
follows from interpolating (2) and (17). By decomposing on the Fourier side into the regions

A=1{(q) | ] < (g)3) and A == {(£,q) | |€] > (q)7), estimate (36) follows from using
estimate (34) on region A and estimate (35) on region A. 0O

4. Local well-posedness theory for GZK
4.1. General LWP for gZK

It is commonly known that the well-posedness results stated in Theorem 1.2 follow from a
standard fixed-point argument, provided that a certain multilinear estimate can be established.
We state the desired estimate in the following

Proposition 4.1. Let k € NZ2, and let so(k) be as defined in Theorem 1.2. Then, for every s >
so(k), there exists a sufficiently small number ¢ = £(s) > 0 such that the following estimate holds

for all time-localized functions u; € X Lie?

k+1 k+1
a u; < u; . 37
|| x(]"[ l)uxs_%w]'!n illx, .. (37)
1=

i=1

In this paper, we restrict our attention to the proof of (37) and refer the reader to, e.g., [4,11,33]
for details concerning the fixed-point method.

Proof of Proposition 4.1. We divide the proof into three parts and start with some preparatory
remarks: By duality and an application of Parseval’s identity, estimate (37) is equivalent to show-

ing

3 Time localization is not actually required for the function v.

28



J. Nowicki-Koth Journal of Differential Equations 455 (2026) 113951

Iy =

k+1 _
> / > s«s,qw(1‘[a,-u,-,s,-,q»)f(r,s,q)dfdéd(r,s>
i=1

R2 9€ZR2% 91 Gk €L

k+1

= [T
S0,y [Tl

forall f e X, 1_,, with|fllx , <1.Here, the symbol x denotes the convolution constraint
02 0, 2 —2¢e

&)=+ ...+u+1.6+ ... + &+1,91 + ... + gk+1), and we adopt the notation dfdé =
dty...d7d& ...d&, for brevity. Furthermore, since the norms involved only depend on |i; | and | f [,
we may, without loss of generality, assume that all &; and f are nonnegative for the remainder of
the proof. Finally, if (&;, g;) denotes the frequency variable associated with the factor u;, then by
symmetry, it suffices to restrict the following analysis to the case where the frequency distribution

satisfies |(§1, 1) = (62, g2)| = ... = [(Ek+1, Gr+1)]-

(1) k=2:

Q1) &L gDl S 1:

In this case, we have |(&;,¢;)| < 1and |(§,¢)| < 1, forall i € {1, 2, 3}, so that Sobolev’s embed-
ding theorem applies without any derivative loss. Consequently, for any 0 < ¢ <« 1 and s > 0, we
obtain

Oy (uiusu < uquau
[10x (112 3)||xx?7%+2€~|| 1U2 3”L?X,

= llurllzz Nualizperss lualizeerse
Slutlip, Nuallpers Nuallgers

< ||u u u
S 1||x0‘%+8|| 2||x0’%+5|| 3“X0,%+s

3
S i
sy,
1=

where we have used the fact that
1
el mg, ol 0> 5. (38)

12) [GrgD> 1, [(E1, g0 > (53, g3)I:
2.1 |6, )| > (52, g2)I:
In this situation, we have in particular 1 < |(&1, q1)| ~ (€, )| ~ ((, ¢)), and we obtain

E1(E )" S 1 ) = 16309 P17 (E1.90) (63, 40) 7
N6 P = 1620217 (€ ) ((&2.920) 72
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Undoing Plancherel and subsequently applying Holder’s inequality leads to®
1 Ly
Iy SIMP(Pur, ™2 uz)l 2 IMPI £ I 72 i)l
and applying (3) and (5) finally yields
<
Sl sl I el

which shows the desired estimate for any s > 0, provided ¢ > 0 is sufficiently small.

(12.2) ¢, DI S 162, @)l

For this frequency configuration, we have

E1(E. @) SIIEL gD — 1E3, a3 PI2Er g0 (E ) 3 T(E ) (2. g2 T

and undoing Plancherel, followed by Holder’s inequality, yields
_1 SR
I SIMP I ur, I3 us)l 2 1907 fI5 5 il 2
_1 _ 1y
<IMPur I us)lgp 19°7 fllpa 1954l

For the first factor, we can once again rely on (3), while for estimating the second factor, we
make use of (26). The third factor can be controlled using the estimate in (2), for example by
interpolating it with (21). We obtain

1
53 gtoate 3

<
Sl sl Uy el

and this yields the desired estimate for any s > %, with ¢ > 0 taken small enough.

1.3) |1, g > 1,11, gD ~ 152, g2)| ~ (&3, g3)|:

In this case, we can freely move derivatives around and obtain

s

3
E1(G. @) S (&) [T a5+,
i=1

Taking this into account, and then applying the dual version of (26), followed by Holder’s in-
equality, leads to

0—, ;541 s 1 sy 1
Iy ruaus)llx SIS IS 5 )
2T 3

<||Js+ S I3, g5t 3T us)| 4

tﬂ

sp 1 sl sp 1
< T35 e 17555 o 17545 us ] 0
Txy Txy Txy

4 We denote iip (1, x, y) = us(—t, —x, —y).
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A triple application of (2), suitably interpolated with (21), ultimately yields

LS lu u u
Sl el sl

Slutllx | lually | lusllx | .
.v‘2+s S, 5+e .v‘7+€

with the last inequality requiring

S licsertts
- - N - S.
373 7720

For ¢ > 0 chosen sufficiently small, the proof of (37) is thereby also completed in this case for

all s > % = 50(2). Putting together all intermediate results finishes the proof in the case k = 2.

(i) k = 3:

(D |Gl S 1

We proceed exactly as in the case (i.1) and use the Sobolev embedding theorem without loss of
derivatives, followed by (38). This yields

0x ruousug)lly | < lluiuouzuall;2
s,77+2£ 1xy

= llurligz, Nuzllzoerog lusll oo pog luall oo g

Slurlip, Nuallzpers Nusllperz luallzers

< ||u u u u
S 1||XO,%+S|| 2||X0,%+8|| 3||X01%+£” 4||X01%+€

4

S i

sy,
1=

forevery 0 <e <« 1 and s > 0.

(11.2) |51, gD > 1, 161, g1 > (64, ga):

(11.2.1) |5, ¢)| > (&2, g2)|:

Taking 1 < |(€1,q91)| ~ (&, )| ~ ((§, q)) into account, it follows under the given assumptions
that

ENE ) SIEL G — 1Ea g) P12 (Er q1) (Eqa)) 6T
NE DR = 1E2 g P12(E ) ((E2, g2)) 5T (€3, 43)) 3T

After undoing Plancherel and applying Holder’s inequality, we thus obtain

1

) _1 _ _ ~ 24 .
I SIMP ur, ™55 un)l 2 IMPQO f, 075 i)l 2 175 s e,

and for the first two factors we use (3) and (5), respectively, while the third factor can be treated
using the Sobolev embedding theorem, followed by (38). It further follows that
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S u u u u
Shall,y buslley, g 1D, Dol sl

and if we choose ¢ > 0 sufficiently small, we obtain the desired estimate for every s > %

(ii.2.2) |6, @) S 12, q)I:

This frequency distribution allows us to deduce

ENE. ) S |I(§1,Q1)|2— |Eae g) P12 (E1.q1) (s, ga)) T
E D) E 02) T (B3, g3) T,

and after an application of Holder’s inequality in the physical space, we thus obtain

Iy SIMPPur, I Kugllp 19757 fI5% a0 il

Iy

_L _2_ 24 . 1
< IMP U, I 2 19757 fllpe 15l e 1 i3l
* xy xy xy

For the first factor we can once again use the bilinear estimate (3), and for the second, we apply
the optimized L%-estimate (22). The remaining two factors are treated using (21), namely after
interpolation with the trivial estimate

<
lullzgs, S lllx,, - (39)
These estimates lead us to

WS lu u u
Sl sl 10y, el sl

which shows that, in this case, (37) holds for every s > 5 pr0V1ded & > (0 is chosen small enough.
(i.3) |1, gD > L, |1, gD ~ 152, g2)| ~ |($3,Q3)|~ |54, qa):

Let us assume without loss of generality that |&max| = max {|&1], |&21, |1&3], 1§41} = |&1]. From
1€] < |émax| = |1&1] and the fact that all |(§;, g;)| are of approximately the same size, it follows
that

1

E10E, @))° S 6104, )75 1611F (61, g0) ¥ (&2, ) T 00

(&3, q3)) T @O (&g, gg)) T

Interpolating the Airy L-estimate (35) with the trivial L2-estimate (13), we obtain

I|1 ullLs— Slullyy s (40)

and using the dual version of this estimate, followed by Holder’s inequality, yields
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&1 sy L sy 113
lovGougusua)lly SN T7ST{ L T8 e [T7a 0 6%, )|
e

S 5y
i=2 txy
1 1 4 1,13
I 54+ L NI ST )
< 5 s l_[||]4+20+oo+ui||L§}+ :
Xy
i=2 ’

For the first factor, we can once again invoke the Airy L3-estimate (35), and for the remaining
factors we use the optimized LA -estimate (36), interpolated with (21). We obtain

Sl o el oy sl el

5t.pte

5Tate

5Tate S

< |\u u u u
Sl 1||XS’%+S|| 2||XS’%+S|| 3||XX’%+E|| 4||XS,%+£,

and the final step requires

S il cse S
P T

By choosing & > 0 sufficiently small, we thus obtain (37) for every s > % =s50(3), completing
the proof in the case k = 3.

(iii) k > 4:

@ii.1) |1, g S 1:

This case can again be treated exactly as in (i.1) and (ii.1). For an arbitrary s > 0and 0 < ¢ K« 1,
we obtain

k+1 k+1
. < 1_[ .
ol [T ), ST Ttz
i=1 i=1

k+1

< llutllg2 lluaill o o0
txy t Hxy
i=2

k+1

Sluilipz | [luillpeer2,
txy t Xy
Y )

k+1

< lu [T
Shaly, [T,
1=

k+1

STty
S'7+€

i=1

which completes the proof in this subcase.
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(i1.2) |G1, gD > 1, [(E1, 911 > |65, g5)1:
(iii.2.1) [(§, @) > [(§2, g2)I:
In this situation, we have [(§1, g¢1)| ~ |(§, )| > |(§2, q2)| = [(§3, g3)|, from which it follows that

E1CE. ) S NEL DI — 1E g P12 (Er q) (Eae )21
k+1

NG P~ 1630 a3 P12 (E ) (630 q30) 2 F [ (G a) T

i=4
By undoing Plancherel and applying Holder’s inequality, we then obtain

k+1
1_2 _ 1_2_ 24 .
Iy SIMPur, T Rl IMPGO f 5 Ryl [T0Fiil s
i=4

and for the first two factors we use (3) and (5), respectively, while the remaining factors can be
dealt with by applying Sobolev’s embedding theorem, followed by (38). These steps lead to

k+1

S lu u u 1_[ u;
S l”XS‘l I 2||X|_2 '+g”f”X0 _2g|| 3||X|_%+’%+S' 4|| z”XI_%_h%_H,
=

2te itz 3
and by choosing ¢ > 0 small enough, we obtain (37) for every s > 1 — % in this case.

(iii.2.2) |, @I S 12, g2)1:
In this case, the frequency configuration under consideration, leads us to

k=4 )
E(E @) S EL gD = 1Es, g2 (G, q)*
(E.9)) T (. g2)) 9 (3. 43)) 9 (B qa)) O T
and

k>5 1 1
ENE )Y < 1IEL G — 1Es.a5) P12 (Er q) (Es. gs)) 2@t

k+1
11 11

_2_ 7 11 711 _u
()T ((E2, q2)) 0TS (83, q3)) 5ok T ] [ (i, ) o
i=4
i%5
and after applying Plancherel’s theorem and Holder’s inequality, we thus obtain
< s 234 3. 4y
Iy SIMP(Pur us)ly 19757 fI5 a0 5 b il o 175 ital ores
< \MPuy,us)ll 2 175~ 130 73t
<IMPurus)lp 19797 Fllpe 175 @l or 195% i3l o
4y
I 9+M4||L§>°ng

in the case k =4, and
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1_ 11 2 7_11 7_ 11
___+ —_s L ~ AN S 3 ~
I SIMP (T ur, J275 T us)l 2 17757 fJ9 i J 5T s 2

txy
k+1 .

T il e
i=4
i#5

s 1oy _2_ 71, 71,
< IMP(ur T8 us)lp 17757 fll g 1978 iall gy 1576 ) o1

k+1 "
3§ (B e
i=4

i#5

in the case k > 5. In both cases we can now proceed in the same manner: The first factor can be
estimated using (3), and for the second factor we apply (22), while for the third and fourth factors
we interpolate (21) with the trivial L°-estimate (39). All remaining factors are treated using the
Sobolev embedding theorem and (38), from which it follows that

. < u u u u u
Sl sk g 1, ol ) ol sl

and

k+1

"
gn ilx, g

e Sl Iflx
s,y te 0,7

respectively. Now, choosing ¢ > 0 sufficiently small, the proof of (37) in this subcase is thus
established for every s > 3 =s0(4) (k=4)and s > 1 — & (k> 5).

(iii.3) |, gD > 1, 1E1L, g ~ ... ~ (&5, 95)|:

(iii.3.1) |Emax| = |&i ], for some i € {1, ..., 5}:

Without loss of generality, let us again assume |Emax| = |§1|. We then have |§] < |&;], and since
we can redistribute the derivatives arbitrarily among the first five factors, it follows that

k—4)

E1(E. @) < IEI5((E. @) 316119 (&1, q)) 5T+ 5T

d s 1, 7 16(k=4) ket 6
(Tt g3t TG gy

i=2 i=6

+

Now, if we interpolate the Airy L%-estimate (17) with the trivial L2-estimate (13), we obtain

1
6
III)thIIL?;VSllullx%l , (41)

[S]

and an application of its dual version, followed by Holder’s inequality then leads us to

k+1
oo [T
||x( e

i=1
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5 k+1
k—4) L7, 16(—4)
<||190J5+15+ S +yu (l |j%+ﬁ+ﬁ+ o+ )(l |j 9k+ul)|| o
i=2

txy

5
1
< ISy TS E o
xy il Txy
k+1
16
T il e e
i=6 ’

For the first factor, we now apply the Airy L®-estimate (17), and for the second through fifth
factors, we employ the optimized L°-estimate (21) interpolated with the trivial L>-estimate
(39). All remaining factors are treated using the Sobolev embedding theorem and estimate (38),
and we ultimately obtain

k+1
< (T [T
N< lillxy g ) ) lillx, go 3

st k

5 k+1
SATThwilx T Thelix :
<i:1 S,%‘FQ is6 l—é—g-%—,%-%—e

Here, the final step requires

S SR (I
TR ok ="

and by choosing ¢ > 0 sufficiently small, the desired estimate is thereby established for all s >
=s0(k).

(iii.3.2) |&Emax| = &1, for some i € {6, ...,k + 1}°:

(i1.3.2.1) |61, gD > |Gi, gi):

In this case, we have |€] < |&;| < |(&;, g;)|, which allows us to shift derivatives

onto the low-frequency factor u;. This yields

11

E1E @) SIEL gD — G a)P12 (G an) (g 2ot
5 ; sy Kl ;
@) (2. 42) TR (B, ) (gL a0 o
j=4
J#
and undoing Plancherel, followed by Holder’s inequality leads to

Iy SIMP? up, J2 6k+U)||L2 1775 fI5 sk a5~ f”<+u3||

5 1tis evident that this case cannot occur for k = 4.
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k+1

H||J T4l e
Hél
s 1 1y _2_ Ty
SIMP ur, J27&Tu) 2 1707 fllo- 197 |l o+
txy Txy Txy

k+1
Ve u3||L6+ H||J Wil e

/#l

At this point, we can proceed exactly as in case (iii.2.2), and for sufficiently small & > 0, we thus

obtain the desired multilinear estimate for every s > 1 — é—i.

(i1.3.2.2) |51, g ~ |Gi, gi) !

In this final subcase, no further work is required, since we have |(&1,q1)| ~ |(§2,92)| ~
153, g3)| ~ (&4, ga)| ~ (&, gi)| ~ |(§s, g5)|, allowing us to argue as in case (iii.3.1). We apply
the Airy L%-estimate to the factor u;, and use the optimized L%-estimate for the factors uy, ...u4.
For all remaining factors, we invoke the Sobolev embedding theorem, which altogether yields
the desired estimate (37) for every s > 1 — 9k O

Remark 4.2. The proof shows that local well-posedness for every s > % in the case of the

modified ZK equation can be achieved through the following simple alternative: for widely sepa-
rated frequencies |(§;, ;)| > |(§;, q;)|, one applies the bilinear estimate (3), whereas for closely
spaced frequencies |(&;, g;)| ~ |(§;,gq;)|, one relies on the linear L*-estimate (2). In the next
section, we will incorporate the newly developed bilinear refinements (30) and the resonance

function in order to further lower the well-posedness threshold to s > ;}‘

4.2. Improved LWP for mZK

As previously noted, the proof of Theorem 1.3 reduces to verifying a concrete trilinear esti-
mate. We fix it in the following

Proposition 4.3. For every s > %, there exists a sufficiently small number ¢ = ¢(s) > 0 such that

the following estimate holds for all time-localized functions u; € X Ly

10xiuous)lly | Sllurlly | lualix | luslly | - (42)
=5 +2¢ s +e s,5+e

= +e a

Proof. We begin by noting once again that (42) is equivalent to showing

=Y / Y EE ) (]‘[ui(r,-,s,-,qo)?(r,s,q)dndrzds]dszdu,@
R2 9€ZR4 910262
Sk, Murllx , lwallx | lleslix
.2 £ s,7+€

for all f € Xg 1_p, With || fllx , =<1, and the convolution constraint being * := (7,§,g) =
°2 0,7726

(t1+ 10+ 13,&1 + & 4+ &3,91 + g2 + g3). As in the proof of Proposition 4.1, we may assume
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without loss of generality that i;, f >0 and |(€1,91)| = (&2, q2)| = |(&3, g3)|, where (&, qi)
denotes the frequency variable associated with the factor u;. Furthermore, we will arrange the
& fori =1,...,3 in ascending order according to the magnitude of their absolute values, and
we will use the notation &min, Emed, Emax for this purpose. Lastly, we will also use (&, go) as an
alternative notation for the frequency variable (£, g). With these preliminary considerations in
place, we now turn to a detailed case-by-case analysis.

@ [Er gDl S Tor |, gD > 1(63.93)I:
These cases have already been discussed in the proof of Proposition 4.1, where we obtained (42)

1
for every s > 7.

) 161, g1 > 1, |1, gD ~ (&2, g2)| ~ (&3, g3):
(ii.1) 15| S 1
In this situation, we have

1£01((£0, 90))° < (80, g0))° ™ (€1, q)) 3 (82, 92)) 3 (53, ¢3))3 7,

and an application of the dual version of (26), followed by Holder’s inequality yields

0—, 75 s s
lx ruaus)lly | ST urd 3 uad st us)lly |
s,—7+2£ 0,—7+2£

s S S
S5 u 5 up 75t us| .
txy

< |J3tu Jity Jitu .
S IHL‘%, I 2”L‘ﬁy|l 3||L%

By interpolating (21) with the linear L*-estimate (2), and applying the resulting estimate three
times, we obtain

u
I,

LS lu u
Sl 1||X%+’1+€|| 2I|x%

Sluillx | Muzllx | luallx .
.v,7+s .v,7+s .v,7+s
with the last step requiring
s
§+ <s &0+ <s.

By choosing ¢ > 0 sufficiently small, the proof of (42) is thereby established in this case for
every s > 0.

(ii.2) [&o| > 1, ||(&i, qi) | — |(Ej,qj)|2| P |§o|%, for some i, j € {0, 1,2, 3} with i # j: Given that
(&1, 91| ~ (52, ¢2)| ~ |(&3, g3)|, we may, without loss of generality distinguish between two
cases. If we have ||(£1, ¢1)|* — |(&2, ¢2)|?| pe |“§0|%, it follows that

0l (0. 40))° < 11GE1. g2 — (2. g2) 212 {1, ) ((E2. 42)) 5 F
((E0. q0))° ((E3, g3)) B
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and undoing Plancherel, followed by Holder’s inequality, leads us to
I SIMP(Pur, J= 5w o 1707 fI5 sl

s -4+ 0— Hs
< IMPQ ur, I =5 un)ll g 1907 Fll o 195 i e
) y y

We now apply estimate (3) to the first factor; for the second factor, we use (26), and for the third,
(2) interpolated with (21). This yields

S lu u u
S 1||xSY]+£|| 2||x%+‘%+6||f||x0%728|| 3||x%+é+£,

and by choosing ¢ > 0 small enough, we obtain the desired estimate (42) for every s > %. On
the other hand, if || 0. q0)|> — (&1, q1)I?| 2 €0l5. it holds that

160160, 90))* < 110 q0) 1> — 161, q0) P12 (0. 40))° (€1, 1)~

((E2. q)) T (3, q3)) T T

and it follows, analogously to the first case, that
1 s 11 s 11
< 0— -t >+t >+t
Iy SUMPU™f I35 ol IV uzllpg 1Y usllpg -

For the first factor, we now use (5), and the remaining two factors can be treated using the LA
estimate (2). We thus obtain

s 11 11
7tagt

S, ey, lluzlix
0,5-2¢ gt ate tag

llusllx
+e +e

D=
Nfe
NI

< u u u
N||f||xov%_zg|| 1||X2171(+’%+8” 2||XS’%+€|| 3||XS’%+€»

and the final step requires precisely

s 11 11
-t<st<s<&

i<
2" 48 uT =S

so that we arrive at the desired result in this case as well, provided & > 0 is chosen small enough.

(ii.3) [ > 1 1G5, g)1* = 1G5, g1l K |0l forall i, j € {0, 1,2, 3) with i # j:
For the remainder of this proof, we may assume without loss of generality that
(61,62, 63) = (5min> Emeds Emax)-

(ii.3.1) |Emed| <K [Emaxl:
In this situation, we have |&| < |&; + &3] and |&y| < &2 + &3], so that we obtain

1E0l((E0. 40))* < 181 + &317 (1 1)) ™ ((E3. 43)) 3T €0 + (—E2)13 (B0 90))° ((=&2, —q2)) 3+

and
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1£0l{(§0. 40))° < €2 + &317 (2. 42))* ™ (€3, 43)) 3 T [0 + (—E1)17 (B0, 0))° ((—E1, —q1)) 3T,

respectively. If we now have |3(§; + )2 — (q1 +¢3)*| = |&1 + &3], then an application of Parse-
val’s identity and Holder’s inequality yields

i _1 i S
Ip SILPYO i I3 us)llpe 1 PHUOT f I3 ) s

and the first factor can be treated using the bilinear refinement (30) of (2), while the second factor
can be handled using the variant (33) of (30). This leads us to

S lu u u
S 1||XS'1+€|| 3||X£+.%+g||f||xo’%72€|| 2||X£+.%+s

3
< [Tl
S0,y [Tl

with the last step being valid for all s > }—1, provided & > 0 is chosen small enough. In the case

13(62 + £3)% — (q2 + q3)%| = |2 + &3], one uses the second pointwise estimate given above and
follows the same argument to again reach s > %. We may therefore assume

1351 +&)% — (g1 + ¢3)%] K &1 + &l ~ |&ol

and

1352 +&)% — (@2 + ¢3)°1 K 162 + &l ~ |&ol,

and we will first consider why, under these assumptions, |&3] ~ |(£1, g1)| must hold: Under the
assumption |&3] < [(€1, ¢g1)], it follows - taking into account the active assumptions (ii.3) and
(ii.3.1) - that

lg1] ~ Ig2| ~ lg3| ~ lqol ~ 151, q1)l,

and the two constraints mentioned above, which arise from the bilinear refinement of the linear
L*-estimate, further impose the sign configurations (q1, g2, 3, g0) = (£, £, F, ). However,
we also have |&] + &> | < |&o| and |&g — &3] < |0, which, in conjunction with (ii.3) and the signs
of the g;, leads us to |q1 — g2| < |&ol, |90 + ¢3| < |£ol, and

2lq1 + g3l =191 — g2 + 90 + ¢31 < 191 — q2| + |90 + 93] K |€ol,
in contradiction to [3(&1 + &) — (q1 + ¢3)%| < |& + & ~ |&|. Consequently, it follows

that |£3] ~ [(£1, ¢1)| must be true. In this situation, two cases must be distinguished: If |¢3| 2
|(&1, q1)], then from

lg? — (&3, g1 < 111, gD * — 153, ¢3) 1P| + 36F < &5,
g3 — (&3, g3) 11 < 1152, @2)* — |(&3, ¢3)1*| + 385 < &3,
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and the two constraints coming from the bilinear refinement, we again obtain the following two
admissible sign configurations: (q1, 2, g3, qo) = (£, &, F, ). At this stage, however, we can
precisely as previously discussed, deduce that |q; + g3]| < |§o|, which is in contradiction with
13(€1 + £3)% — (g1 + ¢3)%| < |&1 + & ~ |&o|. Thus, the sole remaining case to be examined is
lg3] < (&1, q1)]|. In this case, the active assumptions (ii.3) and (ii.3.1) also yield |go|<< | (€1, q1)|
and |q1| ~ |q2| ~ |(€1, q1)|, which altogether imply that g; and g2 must have opposite signs. In
order to take advantage of this fact, we consider the resonance function R. A straightforward
computation shows that

3
R=—6(51 +8&)(& +&)(E+ &)+ ZEi(I(EO» q0) 1> = 1. g ), (43)

i=1

and if we now assume | +&;| 2 |&ol 6~ [Emax | 5 , then by applying the reverse triangle inequality
and taking into account (ii.3), |1 + &3] ~ |€max|, and |&2 4 &3] ~ |Emax |, it follows that

13
[R] Z [&max| e -
Moreover, since
3 3
[R| <ma(;<< -9, q)) = ma(;((ai),
1=
we obtain
13 3
[Emax|© 5 ma(;(<0i),
1=

and now we must distinguish between two cases. If we have max?zo(ai) = {(0y), it follows that

3
€0l (50, 40))* (00) "2+ S T (i a3,
i=1

and undoing Plancherel, followed by Holder’s inequality yields

Iy S ||J3M1J3M2J3M3||Lr2”||f||x0 1,
: y!

s s s
<||J3u J3u J3u .
=< 1||L6TX)‘” 2||L6m|| 3||Lgxy||f||x0v%72€

By applying the optimized L%-estimate (21) three times, we arrive at
LS lu u u
Sl o Wl oy sl oo 1

< |\u u u
S 1||XSY%+E” 2||XS’%+€” 3||X>% ||f||X 1,

N

with the last step requiring
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SRR
3 9 =S 3 =S.

By choosing ¢ > O sufficiently small, we therefore obtain the desired estimate (42) for every
s > % On the other hand, if max?zo (i) # {09) (WLOG, max?zo(ai) = (01)), it follows that

1£0l((E0 40))* (01) "2 < ((E1. q1))* (0. q0)) 9 (€2 42)) 5 (€3 43)) 5

and we analogously obtain
B T
Ip SN fI9 uad 9 usll 2 Mutlly
ixy 5,5+

_2_ 1 1
<75 flle- 19T uall o 19 uslljor llully
Txy Txy Txy 57 +e

Applying estimate (22) to the first factor, and estimate (21), interpolated with (39), to the second
and third factors, we ultimately obtain

S Muallixy o Mwsllxy o el s
0,7—29 3t.pte 3+ te $,5+e

which is precisely the estimate (42), valid for every s > %, provided & > 0 is chosen small
enough. We have thus seen that in the case |§] + & 2 |§0|%, the resonance function leads us
to the desired result. Conversely, assume that |§1 + &>| < |&o| % From (ii.3) and the fact that g
and ¢» have opposite signs, it then follows that |g; + g2| < |&o| d , and we now aim to exploit this

smallness condition. For dyadic N € 2No and B € R, we define the Fourier projectors Qg\[,j) by
setting

®, . —1
QA/? wi=F XygI<ney Tyl

If we now set

uy = Pyyuy, up = Pyyup, and uz = Pyyu3

1
for dyadic numbers Ny, N, N3 € 2N0, it follows that |g; + g2| < N, and redistributing deriva-
tives gives®

3 o5
1Eol{(E0. g0))° S NE™ 18l 18115 (E1, q1))* €2l (B2, g2)) 1631 ¥ ((E3. 43))"

An application of the dual version of (19), followed by Holder’s inequality then yields

6 We assume without loss of generality that |£1], |&>| 2 1. Otherwise, one may invoke the Sobolev embedding in x
without any loss of derivatives, which allows for the conclusion | u; ||L4 12 <t lluillx LS {1,2}.
Tx™y 0,5+
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)
19:(Qy, (”1“2)”3)||XS )

—5t2e

32

1 1 1 1 1
Loy 1 1 1
§N14 ||Ix8(Q]\/61 (I FPu Iy J‘YuZ)IxxJSu3)||XO 1,

,—p T

3 _os Ly 1 1 1
SN TNy, (IS P wlf PP u) I Fus]| 4
LiLy

3 _os (l) 1 1 1
= N14 Il QN6| (I Ju 1 JS”Z)”L%ngo 118 T us ”L;‘XL%a
and the inner L7°-norm can be estimated in the following manner:

1 1
L Fy(Ie Pundy T ua)

(l) 1 1
1Oy, (e Jrurdy T uz)llze S llx
{lgISNP}

<lx
{lgISN

I I
L I IF (LS TPun I T u2) | oo
16} q q
11 1
5Nlﬁ||Ix8JSu1[x8JSu2||L{‘.
With this, we further obtain

(%) %J"%_ZS % s % s % s
(@3 wrus) SN NS I Pl 1 sl

3,1
iT6

3
=25 % s
N [T 7wl o
i=1

IA

and three applications of (19) ultimately give

?—ﬁ-%—k 3
< SN [Thuillx -
i=1 2

The desired estimate (42) now follows upon performing a dyadic summation over all Nj ~ Ny ~
N3 > 1. This argument works provided that

3 1 11

Z+6_2s<0¢>ﬁ<s

and ¢ > 0 is chosen sufficiently small; this concludes the discussion of this subcase.

(i.3.2) [min| < [Emed| ~ [Emax|:

Under this assumption, the pointwise estimates

160l S 1€1 + & and €] S €1 + & hold. Thus, if 13(& + €)% — (qi + ¢))?| 2 1& + &1 holds
for at least one tuple (i, j) € {(1, 2), (1, 3)}, then we may argue exactly as in case (ii.3.1), so that
(30) and (33) lead to the desired multilinear estimate (42), valid for every s > 4—11. Consequently,
we may assume
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1351 + )% — (g1 + @)% K |&1 + &2 ~ |&]

and

13(&1 + &3)° — (q1 + q3)*| K |&1 + & ~ |&].

Let us now first consider the case where |£3] < [(€1, ¢1)|. Then, invoking the general assumption
(ii.3), we obtain

lg1] ~ lg2| ~ lg3| ~ lqol ~ 151, q1)l,

and in combination with the two constraints from the bilinear refinement, only the sign distri-
butions (g1, 92, 43, q0) = (£, F, F, F) remain possible. We once again distinguish two cases. In

the case |& + &3] 2 |&o] %, the resonance function R in the form (43) provides a remedy: taking
into account (ii.3), |§1 + &2| ~ |§max|, and |&1 + &3] ~ |Emax |, We obtain

1
IR| 2 1&013 |Emax]?s

and this - as already established in case (ii.3.1) - implies, at the very least, that an arbitrary s > %

can be reached in the multilinear estimate (42). Conversely, if |& + &3] < |§0|%, it follows that
160 — &11 < [&ol 5, and, upon taking into account (ii.3), the magnitudes, and the signs of the ¢;,

. 1 1 1
one consequently obtains |g2 — g3| < [§0l3, g0 + q1| K [§0]3, and hence |1 + g2| < [5ol3.
Moreover, we have

1€l < [&1] + &2 + &1 < 1€1] + oléol 3,

and thus, |&| < |&1], so that the Airy foLg—estimate (19) in the previously carried out smallness

argument can be applied a total of four times: Again, for dyadic numbers N1, Np, N3 € 2N we
set

ui:PNiuif i€{11293}a

1
and obtain |q1 + g2| < N as well as
s %*25 i a i s
1€01{((§0. q0))* S Ni " [€ol® H|§i|8<(§i’%‘)) ,

i=1

which altogether - computing exactly as in case (ii.3.1) - yields

3
€)) 14l o
0 P (uun)u <SNP P u; :
18:(Q, iuus)lix, SN _1"!” i, ).
1=

+2e

A dyadic summation over all N; ~ No ~ N3 > 1 now leads to the desired multilinear estimate
(42), valid for all
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! + ! 2s <0 >

—+-—-2s< — <

27377 ="

provided ¢ > 0 is chosen sufficiently small. With this, the discussion of the case |&3] < [(§1, q1)]

1
is complete. We now consider the case |§3] ~ |(&1, g1)|. If |&2 + &3] 2 |§0|3 to begin with, no
further steps are required, as we then have

1
IR| 2 1&0l3 |&max?

(observe (43), (ii.3), &1 + & | ~ |&max|, and &1 + &3] ~ |Emax|), and, as previously computed in
case (ii.3.1), this ensures (at the very least) that all values s > % can be realized within (42). We

may thus assume |& + &3] K |§0|%, which directly implies |&| < |&1], and this fact will play
a crucial role in a subsequent smallness argument. Now, if |g3| = |(§1, q1)| were true, then, in

1
conjunction with the active assumptions (ii.3), (ii.3.1), |§0 — &1 = |&2 + &3] < |€0]3, and the two
constraints arising from the inapplicability of the bilinear refinement, we would obtain, on the
one hand, the relations

1 1
lg1] ~ (€1, gV, llg1] = Igoll K 15013, and ||g2| — Ig3]| K |50l

and on the other hand, the sign configurations (g1, ¢2, g3, q0) = (&, F, F, F). These constraints,
however, can only hold simultaneously in the case |q1 + ¢2| < |&o| 3 , which would contradict
13(61 +&)% — (g1 +¢2)?| < |&1 +£2|. We must therefore have |g3| < |(£1, ¢1)| and consequently,
by &2 + &] < €| and (ii.3), also |g2| < |(§1. g1)]- Now, taking into account [¢1| ~ |(€1. f]1)1|,
it follows that g1 and gg must have the same sign, and together with (ii.3) and |y — &1| < |&0]3,

1
this further implies that |g2 + q3| = |q0 — q1] < |§0|3 must hold. After passing to dyadic pieces
once again and taking into account |&y| < |&|, we then obtain - as in the previous discussion -
the estimate

3
(1) I+i-2
101 @ uaus)lly ,  SNET [Jlwillx |
s,—§+2£ 1 x.ers
Pl

which yields the desired trilinear estimate (42) after dyadic summation over all N; ~ N, ~ N3 >
1, provided that & > 0 is chosen sufficiently small and

! + L 2s <0& >

— —_—— < RE—
2377 2=’
is satisfied. Thus, this subcase is also resolved.

(i1.3.3) |&min| ~ 1Emed| ~ [Emaxl:

(1i.3.3.1) [Emax| < (€1, q1)1:
In this situation, it follows from the active constraint (ii.3) that

lgil ~ lg21 ~1g3| ~ Igol ~ 1(&1, gV, with [lgi] —lq;|l < (1, gD Vi, j €{0,1,2,3},
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and this in turn implies that the ¢g; cannot all have the same sign. Without loss of generality, let
us assume that we have the following sign configuration: (¢1, q2, 43, 90) = (+, —, +, +). Then

. 1 . . .
the assumption |&] + &3] 2 |£0]3 allows us to infer the pointwise bound

Sl

+

160l (B0, 40))" < [61 + &31% (1. 1)) (3. 43) B (80 + (—E2)] ¥ (B0, 00))° ((—E2. —42))1

and undoing Plancherel, followed by Holder’s inequality and a subsequent application of (30)
and (33), yields

| o 1 s
Iy < W& Pl(JS "‘1J12+u3)”L,2xy“Ix4 Pl(JO f]lz"'uZ)”Ltzxy

< u u u
S,y Mol sl sl

2
3
"
L [Tt
i=1

[S']

SIflx,

(SE

with the last step being valid for every s > %, provided ¢ > 0 is chosen sufficiently small. Here,

the applicability of (30) and (33) is justified by the fact that, since |&; + &3| < |(€1,¢1)| and
lg1 + g3| ~ |(&1, q1)], it follows that

1351 +&)% — (g1 +¢3)%1 ~ 1E1 gD > 181 + &l

It therefore remains to be examined what happens in the case |§] + &3| < |§O|% : Then it follows
from (ii.3), from |&§y — &| = &1 + & K |<§0|%, and from the sign configuration of the g;, that

41 — 431 < 18013, g0 + 21 < 160l %, and thus g1 + 2] < [&]*, which allows us to proceed
exactly as in case (ii.3.2) (the active assumption (ii.3.3) allows the Airy foL%-estimate (19) to
be applied beneficially four times here as well) to obtain the desired trilinear estimate for all
s > 15—2, provided ¢ > 0 is chosen sufficiently small.

(i1.3.3.2) |Emax| ~ (61, gD

(ii.3.3.2.1) |& +&;| 2 [&maxl, for all (@, j) € {(1,2), (1, 3), (2,3)}:

In this case, we have, due to the general assumption (ii.3),

IR| 2 |&max |’

which allows us to control up to %— derivatives by means of the quantities (o;). Proceeding
exactly as in case (ii.3.1), we thus arrive at (42), and this holds for every s > %, provided we
choose ¢ > 0 sufficiently small.

(ii.3.3.2.2) |& + &;| 2 |&maxl, for exactly two (7, j) € {(1,2), (1,3), (2,3)}:

Without loss of generality, we may assume that the sign pattern is (&1, &, &3, &) = (+, —, +, +)
with &1 + & 2 |&max| and & + & < [Emax|- If now [3(51 + &) — (g1 + ¢3)°| 2 €1 + &|
or [3(&1 + &)2 — (q1 + q2)2| = |&1 + &, then the bilinear refinement of the linear L*-estimate
applies exactly as in case (ii.3.1) and yields s > %. Thus we may restrict ourselves to the situation
where

1361 4+ £3)% — (q1 + @3)°| < |&1 + &|
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and

1351 +&)% — (q1 + ¢2)*| K &1 + &

hold. Furthermore, we may assume that | + &3] < |$0|%, since otherwise, by (ii.3), we would
have

1
B 2
|R| Z |$()|3 |Emax |

so that the resonance function - again as in case (ii.3.1) - already leads to at least s > % In

addition to that, we must have |q1| ~ |(€1, ¢1)| and |g3| ~ |(&1, q1)|, and because of (ii.3) together
. 1 . .
with [0 — &1 = |62+ §3] < |60[3, we then also obtain |g2| ~ [(§1, g1)| and |go| ~ (51, g1)| with

llg1] — g0l K |$0|% and ||q2] — |g3]] K Iéol%- Otherwise (taking into account (ii.3) and the signs
of the &;) we would have

1351 +&)7 — (g1 +¢3)°1 ~ 1E1L gD > > & + &l

contradicting |3(&1 + &)% — (q1 + ¢3)%| < |&1 + &3. We are left with two cases:

(1) If g2 and g3 have opposite signs, then |2 + g3| K |§0|-%, and the smallness argument pre-
sented in case (ii.3.2) applies, yielding s > 15—2 (the Airy foLi—estimate can be used four
times due to the active assumption (ii.3.3)).

(2) If g2 and g3 have the same sign, then, since g1 + g2 + g3 = qo, the quantities go and g
must have opposite signs. Combining |g2 — ¢3| K |§0|% with |go + ¢1| K€ |$0|.% then implies
lg1 + g2 < 1&o| %, so that we may again invoke the smallness argument to obtain s > 15—2

(ii.3.3.2.3) |& + &;| 2 |&max|, for exactly one (i, j) € {(1,2), (1,3), (2,3)}:
We again consider, without loss of generality, the sign configuration (&1, &, &3, &) = (+, —, +, +).
Since |&o| < |&1 + &3], we may infer the pointwise bound

10l ((E0- 40))° < 1€1+E3177 (1. g1)) ™ ((E3. 43)) B F Eo + (—E2) % ((Eo. 00))° (=2, —q2)) 5,

and under the assumption |3(&] + £)% — (g1 + ¢3)%| = |&1 + &) 5 , undoing Plancherel, followed
by Holder’s inequality, and a subsequent application of (30) and (33) yields

Lo 11 S L | S
If§||[x24P6(JS u1J24+u3)||Lthy||IXZ4P6(JO f.]24"'l,t2)||Ltzxy

< u u u
N||f||XO‘]_2g|| l”XS,%H” 2||X%+1%+8” 3||X%+'%+g

S

(8]

3
< [T
SN | (ZE
1=

with the last step requiring s > é—}‘ to hold. We may thus assume
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31+ 6% — (@1 + 92 < J&1 + &6 (44)

From the general assumptions (ii.3), (ii.3.3), the signs of the &;, |£] + & | <K &, and & + &3] K
|&o], it then follows that

lgil ~ lg2| ~ lg3| ~ lqol ~ (&1, qV)| with [|g;| — ||| < |80 Vi, j €{0,1,2,3},

and the constraint (44) additionally forces the sign patterns (q1, g2, g3, q0) = (£, F, £, ). If
now

H s
&1 + &2| < 18072 or |&2 + &3] K [0l 12,

then by (ii.3), taking into account the signs of the g;, we also obtain

H H
lg1 + g2| K 180|112 or |g2 + g3] K |&ol 2.

Passing to dyadic pieces (cf. the smallness argument in case (ii.3.1) and case (ii.3.2)) then yields

1

3
(12 2t iz—
10:(Qy; (wrunuz)lx SN l_[ Iuillx&%“

5+2e
or

5

3
145
|9 (”lQ (u2u3))||x _. SNPTET Hlulllx S

7+2,

and after dyadic summation this gives the desired trilinear estimate (42), provided

15 o .l
T R YIN

and ¢ > 0 is sufficiently small. We may therefore assume

5 5
|€1 + &2| 2 150172 and |& 4 &1 2 &0 72.

Moreover, the assumption |g; —g3| 2 |§0|?’1 implies, by (ii.3), that | — &3] = |&o] %, and therefore
also

3 3
€1+ &2| 2 1501 % or &2 + &3] 2 |80l 4,
as otherwise we would have
3 3
|Eol* S 1&1 — & < |61 + &l + 16 + & < [&ol?.
In this case, however, since |§] + & |, |€] + &2| 2 Iéol%, we obtain
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13
&1 + 621182 + &311&1 + 831 2 1ol @,
and together with (ii.3) this yields
13
IR Z 60l e .

As previously discussed, this already suffices to obtain at least s > %, so that we can also assume
3 . . . .
lg1 — q3| < |€0]#. Moreover, these considerations work entirely analogously for the pairing go +

3 .. . .
g2, which allows us to include |gp + g2| < |£0|# among our remaining active constraints as well.
As a final preparatory step for our last argument, we write

f=Pnf, uy=Pyui, up=Pyyup, and uz = Pyyu3

for dyadic numbers N ~ N1 ~ Ny ~ N3 > 1, which allows us to summarize all the relevant
remaining constraints in the form:

5 3 3
IV3(E +6) F (g1 +93) K N75, g1 — g3l < N¥, and |g0 + ¢2| K N3. (45)

Let us now define, for o, 8 € R and dyadic N > 1, the bilinear restriction operator S](\‘,)l”5 ) by
means of its Fourier transform:

S (u,v)(1, €, q) =

> X(1v/3e a1 <Ny X(12q1—gl <N A (T, 81, 1) O(T — 11,8 — 1,9 — q)d(T1, ).
R2 91€Z

Then, taking into account

£01{ (&0, 90))° < N2 (&1, q0))* (&3, 93))° (80> 90))° (€2, ¢2))*

and the constraints in (45), it follows - by undoing Plancherel and an application of Holder’s
inequality - that

2.9

o ‘ ‘ -2.3, o_ ‘~
Ip SNY2HISy 8 (un, Pus)l e 1Sy © GO f 7 @)l

and it remains to appropriately estimate the two LZ-norms. To this end, let b > % be given
arbitrarily. Then, by duality, and after applying Plancherel’s theorem, followed by the Cauchy-
Schwarz inequality and Fubini’s theorem, we obtain

-39 1
1Sy Pz, < sup e |y, , Ivllx,
’ (t1,61,91)ERXR X Z

with
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—2b —2b
= (11— —1 — @ — - drd
co= (1 —¢(1.q1) % /X{‘ﬁngq‘SN,%}/(r 71— (6 — 1. —q1)) " ’drds,
€~ LR R
12g1—qISN 3

and since b > %, the integral over 7 is finite. Consequently, we have

co < d
0~b Z /Xuﬁﬂq\SN’%} d
qeZ R

3
12q1—q|SN 4

5
vty
qeZ
3
[2g1—q|SN4

and this ultimately establishes the estimate

_L 1
V)2 Sp N™ 2 lullx, , Ivllx,,, &> 3 (46)

(=37
”SN 6’4

Bilinear interpolation of (46) with the trivial bound

(=33
Sy Y (u,v <||lu v
ISy (u, )||Lt2xyw|| ||X1+1+|| ”Xo,%

4

then gives

E[)

5
-3,

)
1Sy

_ L
o)l SN™H ullx,  vlx, ) (47

thereby allowing us to resume the calculations above: An application of (46) to the first factor
and of (47) to the second factor leads us to

1
Ip SN2 flix

=

3
"
LI il 4,
i=1

and a dyadic summation over all N ~ N; ~ N> ~ N3 > 1 finally gives the desired trilinear
estimate (42), provided that

U i c0e Uy
T VRN

is satisfied. By choosing ¢ > 0 sufficiently small, any s > % can be achieved and this concludes
the discussion of this subcase. With this, all possible cases have been addressed, and the proof of
Proposition 4.3 is complete. O
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