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Abstract

In this article, we address the Cauchy problem associated with the k-generalized Zakharov-Kuznetsov 
equation posed on R × T . By establishing an almost optimal linear L4-estimate, along with a family of 
bilinear refinements, we significantly lower the well-posedness threshold for all k ≥ 2. In particular, we 
show that the modified Zakharov-Kuznetsov equation is locally well-posed in Hs(R×T ) for all s > 11

24 .
© 2025 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For k ∈N and s ∈R, we consider the Cauchy problem

∂tu + ∂xΔxyu = ±∂x

(︁
uk+1)︁, u(t = 0) = u0 ∈ Hs(R×T ) (CP-k)

associated with the k-generalized Zakharov-Kuznetsov equation (gZK), where u = u(t, x, y) is a 
real-valued function. For k = 1, gZK reduces to the classical Zakharov-Kuznetsov equation (ZK), 
which was first derived on R3 by Zakharov and Kuznetsov [35], as a model for the propagation of 
nonlinear ion-acoustic waves in a magnetized plasma. When posed on R2, ZK describes similar 
phenomena, and the derivation in this case is due to Laedke and Spatschek [23]. Regarding 
conserved quantities, it is well known that the mass
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M(u(t)) :=
∫︂

R×T

(u(t, x, y))2d(x, y)

and the energy

E±(u(t)) := 1

2

∫︂
R×T

|∇u(t, x, y)|22 ± 2 
k + 2

(u(t, x, y))k+2d(x, y)

are conserved over time, provided the solution is of sufficient regularity. Both M and E± play a 
central role in the well-posedness analysis of gZK, particularly in extending local to global solu
tions. The well-posedness theory of gZK has been extensively studied over the past decades, both 
on R3 and on R2. For the three-dimensional case, we refer to [13,14,17,19,22,27,28,32], whereas 
for the two-dimensional case, we refer to [2,3,7,8,15,21,22,24,25,28,31]. The semi-periodic case, 
however, has not yet been studied in comparable depth and has only recently come into focus. 
We provide an overview of the results obtained to date: 
In the case k = 1, the foundational work was carried out by Linares, Pastor, and Saut [26], who 
established local well-posedness in Hs(R×T ) for all s > 3

2 . By developing a bilinear estimate 
that allows for a gain of up to 1

2− derivatives, Molinet and Pilod [28] were subsequently able 
to prove global well-posedness for all s ≥ 1. Based on a refinement of said estimate, Osawa 
[29] succeeded in lowering the threshold for local well-posedness to s > 9 

10 , and, in joint work 
with Takaoka [30], further established global well-posedness for all s > 29

31 by employing the I
method. More recently, Cao-Labora [5] developed a further refinement of said bilinear estimate, 
carefully adapted to the resonance function. By invoking geometric arguments, he was then able 
to improve the local well-posedness result to s > 3

4 (or s > 1
2 under an additional low-frequency 

condition), and in both cases established optimality up to the endpoint. For the case k ≥ 2, Farah 
and Molinet [9] proved the linear L4-estimate

∥u∥L4
txy (R×R×T ) ≲ ∥u∥X 1

6 , 3
8
(φ), (1)

where X 1
6 , 3

8
(φ) denotes the Bourgain space associated with the ZK equation, and by using this 

estimate in conjunction with the bilinear estimate due to Molinet and Pilod, they obtained local 
well-posedness for every s > 1−, explicitly establishing s > 5

6 in the case k = 2. Furthermore, 
by making use of the conservation laws, they also proved (small data) global well-posedness for 
every s ≥ 1. 
The development of increasingly sharp linear Strichartz estimates has become a central focus of 
current research concerning the well-posedness study of different problems posed on R×T . Ex
amples of such recent work include the contributions of Herr, Schippa, and Tzvetkov [18] on the 
semiperiodic dispersion-generalized KP-II equation; Corcho and Mallqui [6] on the semiperi
odic NLS equation with fractional derivatives in the periodic component; and Başakoğlu, Sun, 
Tzvetkov, and Wang [1] on the semiperiodic hyperbolic NLS equations. In this spirit, the proofs 
of several new linear and bilinear estimates of Strichartz type will also serve as the starting point 
in this article. In particular, we wish to highlight the following linear L4-estimate, which we will 
furthermore show to be optimal up to the loss of an ε-derivative.

Theorem 1.1. Let ε > 0 and b > 1
2 be arbitrary. If u ∈ Xε,b(φ), then the following estimate holds 

true:
2 
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∥u∥L4
txy (R×R×T ) ≲ε,b ∥u∥Xε,b(φ). (2)

For the proof of this estimate, we will follow the approach of Takaoka and Tzvetkov [34] for 
the semiperiodic Schrödinger equation and consider sets of the form

{(ξ, q) ∈ R×Z | c1 ≤ p(ξ, q) ≤ c2}

for c1, c2 ∈ R and a specific polynomial p. The simple polynomial structure of p will then allow 
us to sharply estimate the measure of these sets, and a subsequent dyadic summation will yield 
the desired estimate. Moreover a modification of the proof of Theorem 1.1 will yield a family of 
bilinear refinements of (2), which in certain frequency ranges allow a gain of up to 1

4− deriva
tives. 
As a first application of the newly obtained linear estimates, we will then verify the well
posedness results summarized in the following theorem.

Theorem 1.2. Let k ∈ N≥2, define

s0(k) :=

⎧⎪⎨⎪⎩
1
2 if k = 2
8 
15 if k = 3

1 − 16 
9k

if k ≥ 4

,

and let s > s0(k) be arbitrary. Then for every u0 ∈ Hs(R × T ), there exists a δ = 
δ(∥u0∥Hs0(k)+(R×T )) > 0 and a unique solution

u ∈ Xδ

s, 1
2 +(φ)

to (CP-k). Moreover, for every δ̃ ∈ (0, δ), there exists a neighborhood 𝒰 ⊆ Hs(R×T ) of u0 such 
that the flow map

S : Hs(R×T ) ⊇ 𝒰 → Xδ̃

s, 1
2 +(φ), u0 ↦→ S(u0) := u

(data upon solution) is smooth.

Subsequently, in the case k = 2 (which corresponds to the modified Zakharov-Kuznetsov 
equation), we will carry out a detailed case-by-case analysis using the bilinear refinements of 
(2) and the resonance function, and push the local well-posedness threshold in this case down to 
s > 11

24 .

Theorem 1.3. Let s > 11
24 be arbitrary. Then for every u0 ∈ Hs(R × T ), there exists a δ =

δ(∥u0∥
H

11
24 +

(R×T )
) > 0 and a unique solution

u ∈ Xδ

s, 1
2 +(φ)

to
3 
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∂tu + ∂xΔxyu = ±∂x

(︁
u3)︁, u(t = 0) = u0.

Moreover, for every δ̃ ∈ (0, δ), there exists a neighborhood 𝒰 ⊆ Hs(R×T ) of u0 such that the 
flow map

S : Hs(R×T ) ⊇ 𝒰 → Xδ̃

s, 1
2 +(φ), u0 ↦→ S(u0) := u

(data upon solution) is smooth.
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2. Preliminaries

We start by fixing notation and introducing the function spaces that will be used in this paper.

2.1. Notation

If A is a measurable subset of R × Z, R × R × Z or Rn, then |A| will denote its Haar 
measure. For an arbitrary number x ∈R, x+ will denote a number slightly greater than x, while 
x−1 will denote a number slightly smaller than x. If we have two real numbers, x and y, then 
their maximum will be denoted by x∨y and their minimum by x∧y. If x and y are both positive, 
then x ≲ y will mean that there exists some constant c > 0, such that x ≤ cy holds. In the case 
that the constant c can be chosen particularly close to 0, we will write x ≪ y and if both x ≲ y

and y ≲ x hold, we will write x ∼ y. Furthermore, we will denote the absolute value of a real 
number x by |x|, while for a vector x = (x1, x2) ∈ R2, the Euclidean norm will be denoted by 
|x|2. Using the Euclidean norm, we define the Japanese brackets as ⟨x⟩ := (1 + |x|22)

1
2 . For an 

admissible function f = f (t, x, y), where (t, x, y) ∈ R2 × T , its space-time Fourier transform 
will be denoted by f̂ , and its inverse space-time Fourier transform by f̌ . If we are interested in 
the partial Fourier transform of such a function, we indicate this by using subscripts, e.g., in ℱxf

and ℱ−1
xy f . We use the Fourier transform to define the Bessel and Riesz potential operators of 

order −s, where s is a real number:

J sf := ℱ−1
xy ⟨(ξ, q)⟩sℱxyf, I sf := ℱ−1

xy |(ξ, q)|s2ℱxyf.

If we wish to use J and I with respect to different combinations of variables, we specify them by 
using subscripts as well. We also make use of the Fourier transform to define the unitary group 
(e−∂xΔxy t )t∈R associated with the linear part of gZK:

e−∂xΔxy tf := ℱ−1
xy eitφ(ξ,q)ℱxyf.

1 In the context of interpolation, the notation ∞− will be used to indicate a number that is very large, but still finite.
4 
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Here, φ(ξ, q) := ξ(ξ2 + q2) denotes the corresponding phase function. For later well-posedness 
considerations related to the modified Zakharov-Kuznetsov equation, it will be necessary to work 
with the associated resonance function R, defined by

R(ξ, q, ξ1, q1, ξ2, q2) := φ(ξ, q) − φ(ξ1, q1) − φ(ξ2, q2) − φ(ξ − ξ1 − ξ2, q − q1 − q2).

Following the approach of Molinet and Pilod in [28], it will also be useful to introduce 
Littlewood-Paley projectors adapted to R: Let (ξ, q) ∈ R × Z. We define the following dilated 
quantity |(ξ, q)| := (3ξ2 + q2)

1
2 . Then, for a fixed smooth cut-off function μ with

μ ∈ C∞
0 (R), 0 ≤ μ ≤ 1, μ|[− 5

4 , 5
4 ] = 1 and supp(μ) ⊆

[︃
−8

5
,

8

5

]︃
,

we set

ψ(ξ) := μ(ξ) − μ(2ξ)

and define

ψ1(ξ, q) := μ(|(ξ, q)|) and η1(τ, ξ, q) := μ(τ − φ(ξ, q)),

as well as

ψ2n(ξ, q) := ψ(2−n|(ξ, q)|) and η2n(τ, ξ, q) := ψ(2−n(τ − φ(ξ, q))),

where n ∈N . If we now replace 2n with N , we obtain

supp(ψ1) ⊆
{︃
|(ξ, q)| ≤ 8

5

}︃
and supp(ψN) ⊆

{︃
5

8
N ≤ |(ξ, q)| ≤ 8

5
N

}︃
, N ≥ 2

and this construction provides∑︂
N∈{2n | n∈N0}

ψN(ξ, q) = 1 ∀(ξ, q) ∈R×Z.

The Littlewood-Paley projectors are then given by

PNf := ℱ−1
xy ψNℱxyf, and QLf := ℱ−1

txyηLℱtxyf, N,L ∈ {2n | n ∈ N0}.

2.2. Function spaces

For s ∈R and X ∈ {R,T ,R×T }, Hs(X) will denote the usual Sobolev-space, endowed with 
the norm ∥·∥Hs(X) := ∥J s ·∥L2(X), while its homogeneous version will be denoted by Ḣ s(X) and 
equipped with the norm ∥·∥Ḣ s(X) := ∥I s ·∥L2(X). We will often replace the underlying space X in 
the notation with variable subscripts, as in Hs(R×T ) = Hs

xy . Now let T ≤ 1 be a positive real 
number and 1 ≤ p,q ≤ ∞. Then, the mixed Lebesgue spaces such as Lp

txL
q
y and Lp

TyL
q
x will be 

endowed with the following norms:
5 
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∥f ∥L
p
txL

q
y
:=
(︃ ∫︂
R2

∥f (t, x, ·)∥p

Lq(T )
d(t, x)

)︃ 1 
p

and

∥f ∥L
p
TyL

q
x
:=
(︃ ∫︂

[−T ,T ]×T

∥f (t, ·, y)∥p

Lq(R)
d(t, y)

)︃ 1 
p

,

with the obvious modifications in the case p = ∞. For later well-posedness considerations, we 
further introduce the semiperiodic Bourgain spaces Xs,b(φ), with regularity indices s, b ∈ R. We 
equip these with the norm

∥f ∥Xs,b(φ) :=
(︃∫︂
R 

∫︂
R 

∑︂
q∈Z

⟨(ξ, q)⟩2s⟨τ − φ(ξ, q)⟩2b|f̂ (τ, ξ, q)|2d(τ, ξ)

)︃ 1
2

,

where φ(ξ, q) = ξ(ξ2 + q2) refers to the phase function defined earlier. Lastly, we define the 
restriction norm spaces Xδ

s,b(φ) as the sets of all restrictions of Xs,b(φ)-functions to [−δ, δ] ×
R×T , where δ is a positive real number. These spaces will be equipped with the norm

∥f ∥Xδ
s,b(φ) := inf

{︂
∥˜︁f ∥Xs,b(φ)

⃓⃓⃓ ˜︁f |[−δ,δ]×R×T = f and ˜︁f ∈ Xs,b(φ)
}︂
.

Since the phase function φ won’t vary throughout this paper, we will just write Xs,b and Xδ
s,b, 

respectively.

3. Linear and bilinear Strichartz estimates

This section will be devoted to establishing the linear and bilinear Strichartz estimates needed 
for the proofs of Theorem 1.2 and Theorem 1.3. We begin with the proof of a slightly sharpened 
version of a bilinear estimate that goes back to Molinet and Pilod (see Proposition 3.6 in [28]). 
This estimate allows for a gain of 1

2− derivatives for widely separated mixed frequencies (ξ1, q1)

and (ξ2, q2).

Proposition 3.1. Let ε > 0 and b > 1
2 be arbitrary. Furthermore, we define the bilinear Fourier 

multiplier MP(·, ·) by its Fourier transform

ˆ︂MP(u,v)(τ, ξ, q) :=∫︂
R2

∑︂
q1∈Z∗

||(ξ1, q1)|2 − |(ξ2, q2)|2| 1
2 û(τ1, ξ1, q1)v̂(τ2, ξ2, q2)d(τ1, ξ1),

where ∗ indicates the convolution constraint (τ, ξ, q) = (τ1 + τ2, ξ1 + ξ2, q1 + q2). Then, the 

following estimate holds for all J
1
2 +ε
y u, v ∈ X0,b:

∥MP(u,v)∥ 2 ≲ε,b ∥J
1
2 +ε

y u∥X ∥v∥X . (3)
Ltxy 0,b 0,b

6 
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Proof. We fix ε > 0 and b := 1
2 +ε′ > 1

2 . By employing Parseval’s identity, the Cauchy-Schwarz 
inequality and Fubini’s theorem, we obtain

∥MP(u,v)∥L2
txy

≲
(︄

sup 
(τ,ξ,q)∈R×R×Z

c
1
2
0

)︄
∥J

1
2 +ε

y u∥X0,b
∥v∥X0,b

,

where

c0 :=
∫︂
R2

∑︂
q1∈Z∗

||(ξ1, q1)|2 − |(ξ2, q2)|2|⟨q1⟩−1−2ε⟨τ1 − φ(ξ1, q1)⟩−1−2ε′

· ⟨τ2 − φ(ξ2, q2)⟩−1−2ε′
d(τ1, ξ1),

and for the integration over τ1, Lemma 4.2 in [10] yields that

∫︂
R 

⟨τ1 − φ(ξ1, q1)⟩−1−2ε′ ⟨τ − τ1 − φ(ξ − ξ1, q − q1)⟩−1−2ε′
dτ1

≲ ⟨τ − φ(ξ1, q1) − φ(ξ − ξ1, q − q1)⟩−1−2ε′
.

From this, it follows that

c0 ≲
∑︂
q1∈Z

⟨q1⟩−1−2ε

∫︂
R 

||(ξ1, q1)|2 − |(ξ − ξ1, q − q1)|2|

· ⟨τ − φ(ξ1, q1) − φ(ξ − ξ1, q − q1)⟩−1−2ε′
dξ1,

and substituting

ξ̃1 = τ − φ(ξ1, q1) − φ(ξ − ξ1, q − q1) ⤳ ”dξ̃1 = (|(ξ − ξ1, q − q1)|2 − |(ξ1, q1)|2)dξ1”

leads to

c0 ≲
∑︂
q1∈Z

⟨q1⟩−1−2ε

∫︂
R 

⟨ξ̃1⟩−1−2ε′
dξ̃1 < ∞.

This completes the proof of (3). □
Remark 3.2. 

(i) The proof shows that it does not matter whether J
1
2 +
y is applied to u or v, so that the deriva

tive loss can always be shifted to the low-frequency factor.
7 
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(ii) By applying Sobolev’s embedding theorem and Lemma 4.2 from [10] in the form∫︂
R 

⟨τ1 − φ(ξ1, q1)⟩− 1
2 −2ε′ ⟨τ − τ1 − φ(ξ − ξ1, q − q1)⟩− 1

2 −2ε′
dτ1 ≲ 1,

an argument analogous to that of Proposition 3.1 yields the estimate

∥MP(u,v)∥L2
txy

≲ ∥u∥X
1+, 1

4 +
∥v∥X

1+, 1
4 +

. (4)

By bilinear interpolation between (3) and (4), we then obtain that for every ε > 0, there 
exists ε̃ > 0 such that

∥MP(u,v)∥L2
txy

≲ ∥u∥X 1
2 +ε, 1

2 −ε̃
∥v∥X

ε, 1
2 −ε̃

, (5)

and this will turn out to be useful for later estimates by duality.

The linear Strichartz estimates that we want to establish next are based on the observation that 
the linear propagator e−t∂xΔxy associated with gZK implicitly contains both the one-dimensional 
Schrödinger and Airy propagators. This becomes evident when applying partial Fourier trans
forms ℱx and ℱy to e−t∂xΔxy u0. One obtains(︂

ℱxe
−t∂xΔxy u0

)︂
(ξ, y) = eitξ3 ·

(︂
ei(−ξ t)∂2

yℱxu0(ξ)
)︂
(y) (6)

and (︂
ℱye

−t∂xΔxy u0

)︂
(x, q) = e(q2t)∂x

(︂
e−t∂3

xℱyu0(q)
)︂
(x) =

(︂
e−t∂3

xℱyu0(q)
)︂
(x + q2t), (7)

and for fixed spatial frequencies ξ or q , one can then invoke well-known estimates for the 
Schrödinger and Airy equations. This argument has been employed multiple times in the context 
of the Schrödinger propagator (see, e.g. [12,16,17]), whereas it seems to be new in the case of 
the Airy propagator. We make the described approach precise in the propositions that follow.

Proposition 3.3. Let T > 0 and ε > 0 be arbitrary. Furthermore, let u0 and v0 be functions with 

J
1
4

x u0 ∈ L2
xy and J

1
3

x J ε
y v0 ∈ L2

xy . Then the two estimates

∥e−t∂xΔxy u0∥L4
T xy

≲T ∥J
1
4

x u0∥L2
xy

(8)

and

∥e−t∂xΔxy v0∥L6
T xy

≲T ,ε ∥J
1
3

x J ε
y v0∥L2

xy
(9)

hold. Moreover, if p ∈ [2,6] and b > 1 are given, then the estimate
2

8 
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∥u∥L
p
T xy

≲T ,ε,b ∥J
1
2 − 1 

p
x J

( 3
2 − 3 

p
)ε

y u∥X
0,( 3

2 − 3 
p )b

(10)

holds for every time-localized u with J
1
2 − 1 

p
x J

( 3
2 − 3 

p
)ε

y u ∈ X0,( 3
2 − 3 

p
)b

.

Proof. We begin with the proof of (8). Taking (6) into account, the Sobolev embedding theorem 
for homogeneous spaces, followed by Parseval’s identity in the x-variable and an application of 
Minkowski’s integral inequality, yields

∥e−t∂xΔxy u0∥L4
T xy

≲ ∥I
1
4
x e−t∂xΔxy u0∥L4

TyL2
x

∼ ∥|ξ | 1
4 ei(−ξ t)∂2

yℱxu0∥L4
TyL2

ξ

≤ ∥|ξ | 1
4 ei(−ξ t)∂2

yℱxu0∥L2
ξ L4

Ty

=
(︄ ∫︂

R 

|ξ | 1
2

(︄ ∫︂
T

T∫︂
−T

⃓⃓⃓(︂
ei(−ξ t)∂2

yℱxu0(ξ)
)︂
(y)

⃓⃓⃓4
dtdy

)︄ 1
2

dξ

)︄ 1
2

.

Now, substituting t̃ = −ξ t in the innermost integral, we obtain

... =
(︄ ∫︂

R 

(︄ ∫︂
T

T |ξ |∫︂
−T |ξ |

⃓⃓⃓(︂
eit̃∂2

yℱxu0(ξ)
)︂
(y)

⃓⃓⃓4
dt̃dy

)︄ 1
2

dξ

)︄ 1
2

,

and if k ∈N0 is the uniquely determined integer such that kπ ≤ T |ξ | < (k + 1)π , then it follows 
from the 2π -periodicity of the integrand in t̃ that

... ≤
(︄ ∫︂

R 

(︄ ∫︂
T

(k+1)π ∫︂
−(k+1)π

⃓⃓⃓(︂
eit̃∂2

yℱxu0(ξ)
)︂
(y)

⃓⃓⃓4
dt̃dy

)︄ 1
2

dξ

)︄ 1
2

≲
(︄ ∫︂

R 

(T |ξ | + 1)
1
2

(︄ ∫︂
T

∫︂
T

⃓⃓⃓(︂
eit̃∂2

yℱxu0(ξ)
)︂
(y)

⃓⃓⃓4
dt̃dy

)︄ 1
2

dξ

)︄ 1
2

≲T

(︄ ∫︂
R 

⟨ξ ⟩ 1
2 ∥eit̃∂2

yℱxu0(ξ)∥2
L4

t̃y
(T×T )

dξ

)︄ 1
2

.

For the inner L4
t̃y

-norm, we can now rely on the well-known Schrödinger L4-estimate, originally 
due to Zygmund [36], to obtain

... ≲
(︄ ∫︂

R 

⟨ξ ⟩ 1
2 ∥ℱxu0(ξ)∥2

L2
y(T )

dξ

)︄ 1
2

∼ ∥J
1
4

x u0∥L2
xy

.

9 
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This concludes the proof of (8). To prove (9), we proceed analogously and arrive at

∥e−t∂xΔxy v0∥L6
T xy

≲ ∥I
1
3
x e−t∂xΔxy v0∥L6

TyL2
x

∼ ∥|ξ | 1
3 ei(−ξ t)∂2

yℱxv0∥L6
TyL2

ξ

≤ ∥|ξ | 1
3 ei(−ξ t)∂2

yℱxv0∥L2
ξ L6

Ty

≲
(︄∫︂
R 

|ξ | 1
3 (T |ξ | + 1)

1
3

(︄∫︂
T

∫︂
T

⃓⃓⃓(︂
eit̃∂2

yℱxv0(ξ)
)︂
(y)

⃓⃓⃓6
dt̃dy

)︄ 1
3

dξ

)︄ 1
2

≲T

(︄∫︂
R 

⟨ξ ⟩ 2
3 ∥eit̃∂2

yℱxv0(ξ)∥2
L6

t̃y
(T×T )

dξ

)︄ 1
2

.

At this point, we can now apply the Schrödinger L6-estimate with a loss of an ε-derivative in y
(see Proposition 2.36 in [4]), and conclude that

... ≲ε

(︄∫︂
R 

⟨ξ ⟩ 2
3 ∥J ε

yℱxv0(ξ)∥2
L2

y(T )
dξ

)︄ 1
2

∼ ∥J
1
3

x J ε
y v0∥L2

xy
.

It remains to prove (10). The transfer principle (see Lemma 2.3 in [10]) transforms (8) and (9)
for time-localized u and b > 1

2 into

∥u∥L4
T xy

≲T ,b ∥J
1
4

x u∥X0,b
(11)

and

∥u∥L6
T xy

≲T ,ε,b ∥J
1
3

x J ε
y u∥X0,b

, (12)

so that we obtain (10) by interpolating (12) with the trivial estimate

∥u∥L2
T xy

≲ ∥u∥L2
txy

= ∥u∥X0,0
. □ (13)

With the ``Schrödinger point of view'' now addressed, we turn to deriving linear estimates that 
arise from the Airy perspective.

Proposition 3.4. Let u0 and v0 be functions such that J
1
3
y u0 ∈ L2

xy and v0 ∈ L2
xy . Then the esti

mates

∥I
1
6
x e−t∂xΔxy u0∥L6

txy
≲ ∥J

1
3

y u0∥L2
xy

(14)

and
10 
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∥I
1
4
x e−t∂xΔxy v0∥L4

t L
∞
x L2

y
≲ ∥v0∥L2

xy
(15)

hold.2 Furthermore, if p ∈ [2,6], b > 1
2 , and u is a function with J

1
2 − 1 

p
y u ∈ X0,( 3

2 − 3 
p

)b
, then

∥I
1
4 − 1 

2p
x u∥L

p
txy

≲b ∥J
1
2 − 1 

p
y u∥X

0,( 3
2 − 3 

p )b
(16)

holds true as well.

Proof. We begin the proof of (14) in a manner similar to that of (9), except that we apply the 
Sobolev embedding theorem in the y-variable and, following Parseval’s identity, make use of 
equation (7):

∥I
1
6
x e−t∂xΔxy u0∥L6

txy
≲ ∥J

1
3

y I
1
6
x e−t∂xΔxy u0∥L6

txL2
y

∼ ∥⟨q⟩ 1
3

(︂
I

1
6
x e−t∂3

xℱyu0

)︂
(x + q2t)∥L6

txL2
q

≤ ∥⟨q⟩ 1
3

(︂
I

1
6
x e−t∂3

xℱyu0

)︂
(x + q2t)∥L2

qL6
tx

=
(︄∑︂

q∈Z
⟨q⟩ 2

3

(︄∫︂
R 

∫︂
R 

⃓⃓⃓(︂
I

1
6
x e−t∂3

xℱyu0(q)
)︂
(x + q2t)

⃓⃓⃓6
dxdt

)︄ 1
3
)︄ 1

2

.

By the translation invariance of the Lebesgue measure, it then follows that

... =
(︄∑︂

q∈Z
⟨q⟩ 2

3

(︄∫︂
R 

∫︂
R 

⃓⃓⃓(︂
I

1
6
x e−t∂3

xℱyu0(q)
)︂
(x)

⃓⃓⃓6
dxdt

)︄ 1
3
)︄ 1

2

=
(︄∑︂

q∈Z
⟨q⟩ 2

3 ∥I
1
6
x e−t∂3

xℱy(q)∥2
L6

tx (R×R)

)︄ 1
2

,

and for the inner L6
tx-norm, we can apply the Airy L6-estimate proved by Kenig, Ponce, Vega 

(see Theorem 2.4 in [20]). This yields

... ≲
(︄∑︂

q∈Z
⟨q⟩ 2

3 ∥ℱyu0(q)∥2
L2

x(R)

)︄ 1
2

∼ ∥J
1
3

y u0∥L2
xy

,

2 The ``Airy endpoint estimate'' will not be used in this paper, but it might be of independent interest for future appli
cations.
11 
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and the proof is complete. The proof of (15) proceeds in an entirely analogous way, except that 
we can dispense with the use of the Sobolev embedding theorem and, instead of the Airy L6
estimate, we apply the endpoint Airy L4

t L
∞
x -estimate (see Theorem 2.4 in [20]). We obtain:

∥I
1
4
x e−t∂xΔxy v0∥L4

t L
∞
x L2

y
∼ ∥

(︂
I

1
4
x e−t∂3

xℱyv0

)︂
(x + q2t)∥L4

t L
∞
x L2

q

≤ ∥
(︂
I

1
4
x e−t∂3

xℱyv0

)︂
(x + q2t)∥L4

t L
2
qL∞

x

≤ ∥
(︂
I

1
4
x e−t∂3

xℱyv0

)︂
(x + q2t)∥L2

qL4
t L

∞
x

=
(︄∑︂

q∈Z
∥I

1
4
x e−t∂3

xℱyv0(q)∥2
L4

t (R)L∞
x (R)

)︄ 1
2

≲
(︄∑︂

q∈Z
∥ℱyv0(q)∥2

L2
x(R)

)︄ 1
2

∼ ∥v0∥L2
xy

,

and thus the proof of this partial result is also complete. Finally, the transfer principle converts 
estimate (14) for b > 1

2 into

∥I
1
6
x u∥L6

txy
≲b ∥J

1
3

y u∥X0,b
, (17)

and by interpolating this with the trivial estimate (13), we obtain (16). □
Remark 3.5. The application of the Sobolev embedding theorem in the proof of (14) can be 
avoided by starting directly in L2

y . After applying the transfer principle, we thus obtain

∥I
1
6
x u∥L6

txL2
y
≲b ∥u∥X0,b

, (18)

for every b > 1
2 , and by interpolating this estimate with the trivial estimate (13), we arrive at

∥I
1
8
x u∥L4

txL2
y
≲ ∥u∥X

0, 3
8 +

. (19)

This estimate will later prove useful in dealing with particularly small frequency domains.

Similar to the approach taken by Molinet and Farah in the proof of their linear L4-estimate 
(1), we can combine the one-dimensional arguments from Proposition 3.3 and Proposition 3.4 to 
minimize the resulting derivative loss.

Corollary 3.6. Let T > 0, 0 < ε ≪ 1, b > 1
2 and p ∈ [2,6]. Then the estimate

∥u∥L
p
T xy

≲T ,ε,b ∥u∥X 1 − 2 +( 1 − 1 )ε,( 3 − 3 )b
(20)
3 3p 2 p 2 p

12 
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holds for every time-localized u ∈ X 1
3 − 2 

3p
+( 1

2 − 1 
p

)ε,( 3
2 − 3 

p
)b

.

Proof. We define the Fourier projectors

P{︁|ξ |≤⟨q⟩ 2
3 −2ε}︁u := ℱ−1

xy χ{︁|ξ |≤⟨q⟩ 2
3 −2ε}︁ℱxyu

and

P{︁|ξ |>⟨q⟩ 2
3 −2ε}︁u := ℱ−1

xy χ{︁|ξ |>⟨q⟩ 2
3 −2ε}︁ℱxyu.

Then we have

∥u∥L
p
T xy

≤ ∥P{︁|ξ |≤⟨q⟩ 2
3 −2ε}︁u∥L

p
T xy

+ ∥P{︁|ξ |>⟨q⟩ 2
3 −2ε}︁u∥L

p
T xy

,

and for the first term we use (10), which, taking into account

χ{︁|ξ |≤⟨q⟩ 2
3 −2ε}︁⟨ξ ⟩ 1

2 − 1 
p ⟨q⟩( 3

2 − 3 
p

)ε ≲ ⟨q⟩ 1
3 − 2 

3p
+( 1

2 − 1 
p

)ε
,

leads us to

∥P{︁|ξ |≤⟨q⟩ 2
3 −2ε}︁u∥L

p
T xy

≲T ,ε,b ∥J
1
2 − 1 

p
x J

( 3
2 − 3 

p
)ε

y P{︁|ξ |≤⟨q⟩ 2
3 −2ε}︁u∥X

0,( 3
2 − 3 

p )b

≲ ∥J
1
3 − 2 

3p
+( 1

2 − 1 
p

)ε

y u∥X
0,( 3

2 − 3 
p )b

≲ ∥u∥X 1
3 − 2 

3p
+( 1

2 − 1 
p )ε,( 3

2 − 3 
p )b

.

For the second term, we apply (16) and note that

χ{︁|ξ |>⟨q⟩ 2
3 −2ε}︁|ξ |−( 1

4 − 1 
2p

)⟨q⟩ 1
2 − 1 

p ≲ ⟨q⟩ 1
3 − 2 

3p
+( 1

2 − 1 
p

)ε
,

which again yields

∥P{︁|ξ |>⟨q⟩ 2
3 −2ε}︁u∥L

p
T xy

≲T ,ε,b ∥I−( 1
4 − 1 

2p
)

x J
1
2 − 1 

p
y P{︁|ξ |>⟨q⟩ 2

3 −2ε}︁u∥X
0,( 3

2 − 3 
p )b

≲ ∥J
1
3 − 2 

3p
+( 1

2 − 1 
p

)ε

y u∥X
0,( 3

2 − 3 
p )b

≲ ∥u∥X 1
3 − 2 

3p
+( 1

2 − 1 
p )ε,( 3

2 − 3 
p )b

.

Altogether, we obtain

∥u∥L
p
T xy

≲T ,ε,b ∥u∥X 1 − 2 +( 1 − 1 )ε,( 3 − 3 )b
,

3 3p 2 p 2 p

13 
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which is what we aimed to show. □
Remark 3.7. 

(i) In the case p = 4, b = 1
2+, Corollary 3.6 provides the estimate

∥u∥L4
T xy

≲ ∥u∥X 1
6 +, 3

8 +
,

which constitutes a slightly weakened version of estimate (1).
(ii) The corollary also yields the two estimates

∥u∥L6
T xy

≲ ∥u∥X 2
9 +, 1

2 +
(21)

and

∥u∥
L6−

T xy
≲ ∥u∥ 2

9 +, 1
2 −, (22)

which, in this form, will be sufficient for the remaining well-posedness considerations. How
ever, the L5-estimate provided by Corollary 3.6 is still not good enough - more on this will 
follow after the establishment of Theorem 1.1.

While the estimates proved in Propositions 3.3 and 3.4 are derived from already known one
dimensional estimates, we adopt a two-dimensional approach for the proof of Theorem 1.1. The 
following auxiliary lemma clarifies what is meant by this, and is inspired by the idea of Takaoka 
and Tzvetkov in their proof of a linear L4-estimate for the semiperiodic Schrödinger equation 
(see Lemma 2.1 in [34]).

Lemma 3.8. For α ∈ [0,1], (τ, ξ, q) ∈ R×R>0 ×Z, K ≥ 1, c = c(τ, ξ, q) ∈ R, h ∈ {0, 1
2 } and 

dyadic numbers N1,N2 ∈ 2N0 , we define the following measurable subsets of R×Z:

B lin
τ,ξ,q :=

{︃
(ξ1, q1) ∈R×Z 

⃓⃓⃓⃓
|ξ1| < ξ

2 
, 

⃓⃓⃓⃓(︃
ξ1 + ξ

2 
, q1 + q

2 
+ h

)︃⃓⃓⃓⃓
≲ N1,⃓⃓⃓⃓(︃

ξ

2 
− ξ1,

q

2 
− q1 − h

)︃⃓⃓⃓⃓
≲ N2, |3ξ2 − q2| ≳ 1, p(ξ1, q1 + h) ∈ [c, c + K]

}︃
,

and

Bα
τ,ξ,q :=

{︃
(ξ1, q1) ∈ R×Z 

⃓⃓⃓⃓
ξ ≳ 1, 

⃓⃓⃓⃓(︃
ξ1 + ξ

2 
, q1 + q

2 
+ h

)︃⃓⃓⃓⃓
≲ N1,⃓⃓⃓⃓(︃

ξ

2 
− ξ1,

q

2 
− q1 − h

)︃⃓⃓⃓⃓
≲N2, |3ξ2 − q2|≳ ξα, p(ξ1, q1 + h) ∈ [c, c + K]

}︃
,

where p denotes the polynomial function p(x, y) := ξ(3x2 + y2) + 2qxy. Then, the following 
two estimates hold for every ε > 0:
14 
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sup 
(τ,ξ,q)∈R×R>0×Z

|B lin
τ,ξ,q | 1

2 ≲ε (N1 ∨ N2)
εK

1
2 , (23)

and

sup 
(τ,ξ,q)∈R×R>0×Z

ξ
α
4 · |Bα

τ,ξ,q | 1
2 ≲ε (N1 ∨ N2)

εK
1
2 . (24)

Proof. We start by proving (23). Let ε > 0 be arbitrary. For a fixed q1 ∈ Z, p is an ordinary 
polynomial of degree two in ξ1, so that if we define

D1 := q2 − 3ξ2

9ξ2 (q1 + h)2 + c

3ξ

and

D2 := q2 − 3ξ2

9ξ2 (q1 + h)2 + c + K

3ξ 
,

a simple calculation shows that

p(ξ1, q1 + h) ∈ [c, c + K] ∧
(︃

|ξ1| < ξ

2 

)︃
⇔

ξ1 ∈
⎧⎨⎩
(︂
− (q1+h)q

3ξ +
(︂[︂

−D
1
2
2 ,−D

1
2
1

]︂
∪
[︂
D

1
2
1 ,D

1
2
2

]︂)︂)︂
∩ (− ξ

2 ,
ξ
2 ) if D1 ≥ 0(︂

− (q1+h)q
3ξ +

[︂
−D

1
2
2 ,D

1
2
2

]︂)︂
∩ (− ξ

2 ,
ξ
2 ) if D1 ≤ 0, D2 ≥ 0.

Thus, summing the lengths of these intervals over all admissible q1 ∈ Z, we obtain an upper 
bound for |B lin

τ,ξ,q |. We divide this approach into four cases.

(i) q2 − 3ξ2 > 0 and c ≥ 0: We first note that from the definition of B lin
τ,ξ,q , it follows that

|q1| ≤ 1

2

⃓⃓⃓
q1 + q

2 
+ h

⃓⃓⃓
+ 1

2

⃓⃓⃓
q

2 
− q1 − h

⃓⃓⃓
+ |h| ≲ (N1 ∨ N2).

Furthermore, the assumptions q2 − 3ξ2 > 0 and c ≥ 0 imply D1 ≥ 0 for all q1 ∈ Z, so that we 
obtain

|B lin
τ,ξ,q | ≲

∑︂
|q1|≲(N1∨N2)

⃓⃓⃓(︂
− (q1 + h)q

3ξ 
+
(︂[︂

−D
1
2
2 ,−D

1
2
1

]︂
∪
[︂
D

1
2
1 ,D

1
2
2

]︂)︂)︂
∩ (−ξ

2 
,
ξ

2 
)

⃓⃓⃓
⏞ ⏟⏟ ⏞

=:a(q1) 

.

From this estimate, we can immediately see that in the case ξ ≤ 1 
(N1∨N2)

, it follows from a(q1) ≤
ξ that

|B lin
τ,ξ,q |≲

∑︂
a(q1) ≤ 1 

(N1 ∨ N2)

∑︂
1 ≲ 1 ≤ (N1 ∨ N2)

2εK,
|q1|≲(N1∨N2) |q1|≲(N1∨N2)

15 
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so that we may restrict our further investigations to ξ > 1 
(N1∨N2)

. In addition to a(q1) ≤ ξ , we 
also have

a(q1) ≤
⃓⃓⃓[︂

D
1
2
1 ,D

1
2
2

]︂⃓⃓⃓
= K

3ξ

1 

D
1
2
1 + D

1
2
2

≤ K

3ξ

(3ξ)
1
2

K
1
2

= K
1
2

(3ξ)
1
2

,

which allows us to conclude that a(q1) ≲ K
1
2 . Thus, we obtain

∑︂
|q1|≲(N1∨N2)

a(q1) ≲ K
1
2 +

∑︂
|q1|≲(N1∨N2)

q1 / ∈{0,−1}

⃓⃓⃓[︂
D

1
2
1 ,D

1
2
2

]︂⃓⃓⃓

≲ K
1
2 + K

1
2

ξ
1
2

∑︂
|q1|≲(N1∨N2)

q1 / ∈{0,−1}

(︂q2 − 3ξ2

3ξK 
(q1 + h)2 + 1

)︂− 1
2

and a subsequent integral comparison yields

... ≲K
1
2 + K

1
2

ξ
1
2

c̃(N1∨N2)∫︂
0 

(︂q2 − 3ξ2

3ξK 
y2 + 1

)︂− 1
2
dy

∼ K
1
2 + K

(q2 − 3ξ2)
1
2

c̃(
q2−3ξ2

3ξK )
1
2 (N1∨N2)∫︂

0 

(1 + z2)−
1
2 dz.

Now, taking 1 ≲ q2 − 3ξ2 ≲ (N1 ∨ N2)
2, ξ > 1 

(N1∨N2)
and K ≥ 1 into consideration, we get

... ≲K

˜̃︁c(N1∨N2)
5
2∫︂

0 

(1 + z2)−
1
2 dz ≲ K ln

(︂
(N1 ∨ N2)

5
2 + 1

)︂
≲ε K(N1 ∨ N2)

2ε

and this concludes the discussion of case (i).
(ii) q2 − 3ξ2 > 0 and c < 0: We divide this case into two subcases.
(ii.1) K + c ≥ 0: In this situation we easily verify

D1 ≥ 0 ⇔ |q1 + h| ≥
(︂ 3ξ |c|
q2 − 3ξ2

)︂ 1
2

and D2 ≥ 0 ∀q1 ∈ Z,

allowing us to conclude

|B lin
τ,ξ,q | ≲

∑︂
(︁ 3ξ |c|

2 2
)︁ 1

2 ≤|q1+h|≲(N1∨N2)

a(q1) +
∑︂

|q1+h|<(︁ 3ξ |c|
2 2

)︁ 1
2

b(q1) =: (I ) + (II ),
q −3ξ q −3ξ

16 
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where a(q1) is defined as in case (i), and

b(q1) :=
⃓⃓⃓(︂

− (q1 + h)q

3ξ 
+
[︂
−D

1
2
2 ,D

1
2
2

]︂)︂
∩ (−ξ

2 
,
ξ

2 
)

⃓⃓⃓
.

We first turn our attention to contribution (II ). If ξ ≤ 1, then b(q1) ≤ ξ ≤ 1, from which it 
follows that

(II ) ≤
∑︂

|q1+h|<(︁ 3ξ |c|
q2−3ξ2

)︁ 1
2

1 ≲
(︃(︂ 3ξ |c|

q2 − 3ξ2

)︂ 1
2 + 1

)︃
≲ K

1
2 ≤ (N1 ∨ N2)

2εK,

where the final step relies on the inequalities ξ ≤ 1, q2 − 3ξ2 ≳ 1 and |c| ≤ K ≥ 1. In the case 
ξ > 1, we have

b(q1) ≤
⃓⃓⃓[︂

−D
1
2
2 ,D

1
2
2

]︂⃓⃓⃓
= 2

(︂q2 − 3ξ2

9ξ2 (q1 + h)2 + K + c

3ξ 

)︂ 1
2 ≤ 2

K
1
2

(3ξ)
1
2

≲ K
1
2 ,

with the second-to-last step justified by |q1 + h| <
(︁ 3ξ |c|

q2−3ξ2

)︁ 1
2 . This, together with ξ > 1, q2 −

3ξ2 ≳ 1 and |c| ≤ K ≥ 1, leads to

(II ) ≲ K
1
2

ξ
1
2

∑︂
|q1+h|<(︁ 3ξ |c|

q2−3ξ2
)︁ 1

2

1 ≲ K
1
2

ξ
1
2

(︃(︂ 3ξ |c|
q2 − 3ξ2

)︂ 1
2 + 1

)︃
≲ K ≤ (N1 ∨ N2)

2εK,

so that we have, in total, verified that

(II ) ≲ (N1 ∨ N2)
2εK.

Let us now consider (I ). By the same reasoning as in case (i), we can restrict ourselves to the 
case ξ > 1 

(N1∨N2)
. It is immediately clear that

a(q1) ≤
⎧⎨⎩ξ ≤ 1 ≤ K

1
2 if ξ ≤ 1⃓⃓⃓[︂

D
1
2
1 ,D

1
2
2

]︂⃓⃓⃓
≲ K

1
2

ξ
1
2
≲K

1
2 if ξ > 1

holds for all the values of q1 occurring in the sum, so that we can write

(I ) ≲ K
1
2 +

∑︂
(︁ 3ξ |c|
q2−3ξ2

)︁ 1
2 +1≤|q1+h|≲(N1∨N2)

⃓⃓⃓[︂
D

1
2
1 ,D

1
2
2

]︂⃓⃓⃓

≲ K
1
2 + K

ξ
1
2

∑︂
(︁ 3ξ |c|
q2−3ξ2

)︁ 1
2 +1≤|q1+h|≲(N1∨N2)

(︂q2 − 3ξ2

3ξ 
(q1 + h)2 + K − |c|

)︂− 1
2
.

17 
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An integral comparison then leads to

... ≲ K
1
2 + K

ξ
1
2

c̃(N1∨N2) ∫︂
(︁ 3ξ |c|
q2−3ξ2

)︁ 1
2

(︂q2 − 3ξ2

3ξ 
y2 + K − |c|

)︂− 1
2
dy

∼ K
1
2 + K

(q2 − 3ξ2)
1
2

c̃
(︁ q2−3ξ2

3ξ 
)︁ 1

2 (N1∨N2)∫︂
|c| 1

2

(z2 + K − |c|)− 1
2 dz

≲ K
1
2 + K

(q2 − 3ξ2)
1
2

c̃
(︁ q2−3ξ2

3ξ 
)︁ 1

2 (N1∨N2)−|c| 1
2∫︂

0 

(u2 + 1)−
1
2 du,

where we substituted z = (︁ q2−3ξ2

3ξ 
)︁ 1

2 y, followed by u = z − |c| 1
2 , and taking 1 ≲ q2 − 3ξ2 ≲

(N1 ∨ N2), ξ > 1 
(N1∨N2)

and K ≥ 1 into account once again, we obtain - just as in (i) - that

(I ) ≲ε (N1 ∨ N2)
2εK.

(ii.2) K + c < 0: Compared to (ii.1), the only difference in this case is that

D2 ≥ 0 ⇔ |q1 + h| ≥
(︂3ξ(|c| − K)

q2 − 3ξ2

)︂ 1
2
.

We thus obtain

|B lin
τ,ξ,q | ≲

∑︂
(︁ 3ξ |c|
q2−3ξ2

)︁ 1
2 ≤|q1+h|≲(N1∨N2)

a(q1) +
∑︂

(︁ 3ξ(|c|−K)

q2−3ξ2
)︁ 1

2 ≤|q1+h|<(︁ 3ξ |c|
q2−3ξ2

)︁ 1
2

b(q1)

and the first sum can be estimated in exactly the same way as in (ii.1), since the estimates did 

not rely on K + c ≥ 0. Moreover, as in (ii.1), we may again rely on b(q1) ≤ ξ and b(q1) ≲ K
1
2

ξ
1
2

, 

which yields

∑︂
(︁ 3ξ(|c|−K)

q2−3ξ2
)︁ 1

2 ≤|q1+h|<(︁ 3ξ |c|
q2−3ξ2

)︁ 1
2

b(q1) ≲ ξ

(︃(︂ 3ξ |c|
q2 − 3ξ2

)︂ 1
2 −

(︂3ξ(|c| − K)

q2 − 3ξ2

)︂ 1
2 + 1

)︃

≲ K
1
2 ≲ (N1 ∨ N2)

2εK

in the case ξ ≤ 1 and
18 
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∑︂
(︁ 3ξ(|c|−K)

q2−3ξ2
)︁ 1

2 ≤|q1+h|<(︁ 3ξ |c|
q2−3ξ2

)︁ 1
2

b(q1) ≲
K

1
2

ξ
1
2

(︃(︂ 3ξ |c|
q2 − 3ξ2

)︂ 1
2 −

(︂3ξ(|c| − K)

q2 − 3ξ2

)︂ 1
2 + 1

)︃

≲ K ≲ (N1 ∨ N2)
2εK

in the case ξ > 1. Here, the inequalities q2 − 3ξ2 ≳ 1 and K < |c| were employed in both cases.
(iii) q2 − 3ξ2 < 0 and c > 0: We observe that in this case,

D1 ≥ 0 ⇔ |q1 + h| ≤
(︂ 3ξc 

3ξ2 − q2

)︂ 1
2

and D2 ≥ 0 ⇔ |q1 + h| ≤
(︂3ξ(c + K)

3ξ2 − q2

)︂ 1
2

hold. With a(q1) and b(q1) as before, we thus obtain

|B lin
τ,ξ,q | ≲

∑︂
|q1+h|≤(︁ 3ξc 

3ξ2−q2
)︁ 1

2

a(q1) +
∑︂

(︁ 3ξc 
3ξ2−q2

)︁ 1
2 <|q1+h|≤(︁ 3ξ(c+K)

3ξ2−q2
)︁ 1

2

b(q1)

and again, the two sums are to be estimated one after the other. First, we note that for the q1, 

over which the sums extend, we have a(q1) ≤ ξ , a(q1) ≲ K
1
2

ξ
1
2

, b(q1) ≤ ξ and b(q1) ≲ K
1
2

ξ
1
2

at our 

disposal. If we denote the second sum by (II ), it follows that

(II ) ≲ ξ

(︃(︂3ξ(c + K)

3ξ2 − q2

)︂ 1
2 −

(︂ 3ξc 
3ξ2 − q2

)︂ 1
2 + 1

)︃
≲ K

1
2 ≤ (N1 ∨ N2)

2εK

in the case ξ ≤ 1, and

(II ) ≲ K
1
2

ξ
1
2

(︃(︂3ξ(c + K)

3ξ2 − q2

)︂ 1
2 −

(︂ 3ξc 
3ξ2 − q2

)︂ 1
2 + 1

)︃
≲ K ≤ (N1 ∨ N2)

2εK

in the case ξ > 1. In both estimates, we made use of 3ξ2 − q2 ≳ 1 and c > 0. For the first sum 
(I ), we aim once again to use an integral comparison. Due to our bounds for a(q1), we have

(I ) ≲ K
1
2 +

∑︂
|q1+h|≤(︁ 3ξc 

3ξ2−q2
)︁ 1

2 −1

⃓⃓⃓[︂
D

1
2
1 ,D

1
2
2

]︂⃓⃓⃓

≲ K
1
2 + K

ξ
1
2 c

1
2

∑︂
|q1+h|≤(︁ 3ξc 

3ξ2−q2
)︁ 1

2 −1

(︂
1 − 3ξ2 − q2

3ξc 
(q1 + h)2

)︂− 1
2

≲ K
1
2 + K

ξ
1
2 c

1
2

(︁ 3ξc 
3ξ2−q2

)︁ 1
2∫︂ (︂

1 − 3ξ2 − q2

3ξc 
y2
)︂− 1

2
dy
0 

19 
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≲ K
1
2 + K

(3ξ2 − q2)
1
2

1 ∫︂
0 

(1 − z2)−
1
2 dz

⏞ ⏟⏟ ⏞
= π

2 

≲ (N1 ∨ N2)
2εK,

making use of 3ξ2 − q2 ≳ 1 in the final step. With that, case (iii) is also settled.
(iv) q2 − 3ξ2 < 0 and c ≤ 0: In this final scenario, we have

D1 ≤ 0 ∀q1 ∈Z and D2 ≥ 0 ⇔ |q1 + h| ≤
(︂3ξ(K − |c|)

3ξ2 − q2

)︂ 1
2
,

although the latter holds only under the additional assumption |c| ≤ K . With b(q1) as previously 
defined, it follows that

|B lin
τ,ξ,q |≲

∑︂
|q1+h|≤(︁ 3ξ(K−|c|)

3ξ2−q2
)︁ 1

2

b(q1).

For all q1 appearing in the sum, we again have b(q1) ≤ ξ and b(q1) ≲ K
1
2

ξ
1
2

, so that we obtain

... ≲ ξ

(︃(︂3ξ(K − |c|)
3ξ2 − q2

)︂ 1
2 + 1

)︃
≲ K

1
2 ≤ (N1 ∨ N2)

2εK

in the case ξ ≤ 1 and

... ≲ K
1
2

ξ
1
2

(︃(︂3ξ(K − |c|)
3ξ2 − q2

)︂ 1
2 + 1

)︃
≲ K ≤ (N1 ∨ N2)

2εK

in the case ξ > 1. In these last two estimates, we made use of 3ξ2 − q2 ≳ 1 and thus the proof in 
the final case is also complete.

Now, collecting the results from cases (i) to (iv), we obtain

|B lin
τ,ξ,q | 1

2 ≲ε (N1 ∨ N2)
εK

1
2

and taking the supremum on both sides yields assertion (23).
If we now wish to prove (24), we need to take into account that we can no longer rely on 

a(q1), b(q1) ≤ ξ . However, a careful examination of the proof of (23) shows that this is not 
problematic, since

(A) we still have a(q1), b(q1)≲ K
1
2

ξ
1
2

at our disposal, and

(B) the integral estimates in the cases (i) and (ii.1) work under the assumption ξ ≳ 1, which is 
already included in the definition of Bα .
τ,ξ,q

20 
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We thus obtain

|Bα
τ,ξ,q | ≲ε

K

|3ξ2 − q2| 1
2

(N1 ∨ N2)
2ε + K

1
2

ξ
1
2

and multiplication with ξ
α
2 gives

ξ
α
2 · |Bα

τ,ξ,q | ≲ε

ξ
α
2 K 

|3ξ2 − q2| 1
2

(N1 ∨ N2)
2ε + K

1
2

ξ
1−α

2 
.

Since we now have |3ξ2 − q2| ≳ ξα , ξ ≳ 1 and α ∈ [0,1], it follows that

ξ
α
2 · |Bα

τ,ξ,q | ≲ε (N1 ∨ N2)
2εK

and taking square roots, followed by forming the supremum yields the claimed result. □
With the proof of Lemma 3.8, we have now completed the necessary groundwork to prove the 

first main result of this paper.

Proof of Theorem 1.1. We fix arbitrary positive numbers ε > 0 and ε′ > 0 and consider u ∈
X

ε, 1
2 +ε′ . Since we want to establish a linear estimate and the phase function φ(ξ, q) = ξ(ξ2 +q2)

is odd, we may assume without loss of generality that supp(û) ⊆ R×R>0 ×Z for the remainder 
of the proof. We begin by noting that (2) follows from

∥(PN1QL1u)(PN2QL2u)∥L2
txy

≲ε (N1 ∨ N2)
ε
2 (L1 ∧ L2)

1
2 (L1 ∨ L2)

1
2 ∥PN1QL1u∥L2

txy
∥PN2QL2u∥L2

txy

(25)

via dyadic summation, as this implies

∥u∥2
L4

txy
= ∥u2∥L2

txy

≲
∑︂
Ni,Li

∥(PN1QL1u)(PN2QL2u)∥L2
txy

≲ε,ε′
∑︂
Ni,Li

N
− ε

2
1 N

− ε
2

2 L−ε′
1 L−ε′

2 Nε
1 Nε

2 L
1
2 +ε′
1 L

1
2 +ε′
2 ∥PN1QL1u∥L2

txy
∥PN2QL2u∥L2

txy

≲
(︄∑︂

Ni,Li

N
− ε

2
1 N

− ε
2

2 L−ε′
1 L−ε′

2

)︄
∥u∥2

X
ε, 1

2 +ε′
≲ ∥u∥2

X
ε, 1

2 +ε′
.

We therefore turn to the proof of (25). By introducing the following two Fourier projectors

P{|3ξ2−q2|>1}u := ℱ−1
xy χ{|3ξ2−q2|>1}ℱxyu

and
21 



J. Nowicki-Koth Journal of Differential Equations 455 (2026) 113951 
P{|3ξ2−q2|≤1}u := ℱ−1
xy χ{|3ξ2−q2|≤1}ℱxyu,

we separate the left-hand side of (25) into two components, namely

(I ) := ∥P{|3ξ2−q2|>1}((PN1QL1u)(PN2QL2u))∥L2
txy

and

(II ) := ∥P{|3ξ2−q2|≤1}((PN1QL1u)(PN2QL2u))∥L2
txy

,

both of which can now be suitably estimated. Using Parseval’s identity, the Cauchy-Schwarz 
inequality, and Fubini’s theorem, we obtain

(I ) ≲
(︄

sup 
(τ,ξ,q)∈R×R>0×Z

|Aτ,ξ,q | 1
2

)︄
∥PN1QL1u∥L2

txy
∥PN2QL2u∥L2

txy

with

Aτ,ξ,q := {︁
(τ1, ξ1, q1) ∈R×R>0 ×Z 

⃓⃓
ξ − ξ1 > 0, |3ξ2 − q2| > 1, |(ξ1, q1)| ≲ N1,

|(ξ − ξ1, q − q1)| ≲ N2, |τ1 − φ(ξ1, q1)| ≲ L1, |τ − τ1 − φ(ξ − ξ1, q − q1)| ≲ L2
}︁
.

Furthermore, the triangle inequality gives

|τ −φ(ξ1, q1)−φ(ξ − ξ1, q −q1)| ≤ |τ1 −φ(ξ1, q1)|+ |τ − τ1 −φ(ξ − ξ1, q −q1)| ≲ (L1 ∨L2),

allowing us to deduce

|Aτ,ξ,q | 1
2 ≲ (L1 ∧ L2)

1
2 |Bτ,ξ,q | 1

2

with

Bτ,ξ,q := {︁
(ξ1, q1) ∈ R>0 ×Z 

⃓⃓
ξ − ξ1 > 0, |3ξ2 − q2| > 1, |(ξ1, q1)| ≲ N1,

|(ξ − ξ1, q − q1)| ≲ N2, |τ − φ(ξ1, q1) − φ(ξ − ξ1, q − q1)| ≲ (L1 ∨ L2)
}︁
.

We now define the function

h : Z→ {0,
1

2
}, q ↦→ h(q) :=

{︄
0 if q is even
1
2 if q is odd

and introduce new variables

ξ̃1 := ξ1 − ξ

2 
and q̃1 := q1 − q

2 
− h(q).

This leads to
22 
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ξ3
1 + (ξ − ξ1)

3 =
(︃

ξ̃1 + ξ

2 

)︃3

+
(︃

ξ

2 
− ξ̃1

)︃3

= ξ3

4 
+ 3ξ ξ̃1

2
,

ξ1q
2
1 =

(︃
ξ̃1 + ξ

2 

)︃(︃
q

2 
+ q̃1 + h(q)

)︃2

= ξ̃1(q̃1 + h(q))2 + ξ̃1q(q̃1 + h(q)) + ξ̃1
q2

4 

+ ξ

2 
(q̃1 + h(q))2 + ξ

2 
q(q̃1 + h(q)) + ξq2

8 

and

(ξ − ξ1)(q − q1)
2 =

(︃
ξ

2 
− ξ̃1

)︃(︃
q

2 
− (q̃1 + h(q))

)︃2

= ξq2

8 
− ξ

2 
q(q̃1 + h(q)) + ξ

2 
(q̃1 + h(q))2 − ξ̃1

q2

4 
+ ξ̃1q(q̃1 + h(q))

− ξ̃1(q̃1 + h(q))2,

and we thus obtain

φ(ξ1, q1) + φ(ξ − ξ1, q − q1) = ξ(3ξ̃1
2 + (q̃1 + h(q))2) + 2q(q̃1 + h(q))ξ̃1⏞ ⏟⏟ ⏞

=p(ξ̃1,q̃1+h(q)) 

+ξ

4 
(ξ2 + q2).

With this, we arrive at

|τ − φ(ξ1, q1) − φ(ξ − ξ1, q − q1)| ≤ c̃(L1 ∨ L2) ⇔

− c̃(L1 ∨ L2) + τ − ξ

4 
(ξ2 + q2) ≤ p(ξ̃1, q̃1 + h(q)) ≤ c̃(L1 ∨ L2) + τ − ξ

4 
(ξ2 + q2),

and upon setting

c(τ, ξ, q) := −c̃(L1 ∨ L2) + τ − ξ

4 
(ξ2 + q2) and K := 2c̃(L1 ∨ L2),

the substitution of the new variables, together with the translation invariance of the counting 
measure, yields

|Bτ,ξ,q | 1
2 = |B lin

τ,ξ,q (c,K)| 1
2 ,

with B lin
τ,ξ,q = B lin

τ,ξ,q (c,K) defined exactly as in Lemma 3.8. Thus, we may now invoke the 
previously established estimate (23), from which we obtain

|Aτ,ξ,q | 1
2 ≲ε (L1 ∧ L2)

1
2 (L1 ∨ L2)

1
2 (N1 ∨ N2)

ε
2

and this concludes the proof of (25) in the case |3ξ2 − q2| > 1. In order to control (II ), we 
proceed by duality and write
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(II ) ∼ sup 
f ∈L2

txy

∥f ∥
L2

txy
≤1

⃓⃓⃓⃓ ∫︂
R2×T

P{|3ξ2−q2|≤1}((PN1QL1u)(PN2QL2u)) · f d(t, x, y)

⃓⃓⃓⃓
.

Then, applying Parseval’s identity, the Cauchy-Schwarz inequality and Fubini’s theorem, we 
again obtain

...≲
(︄

sup 
(τ1,ξ1,q1)∈R×R>0×Z

|Ãτ1,ξ1,q1 |
1
2

)︄
∥PN1QL1u∥L2

txy
∥PN2QL2u∥L2

txy
∥f ∥L2

txy⏞ ⏟⏟ ⏞
≤1 

with

Ãτ1,ξ1,q1 := {︁
(τ, ξ, q) ∈ R×R>0 ×Z 

⃓⃓
ξ − ξ1 > 0, |3ξ2 − q2| ≤ 1, |(ξ1, q1)| ≲ N1,

|(ξ − ξ1, q − q1)| ≲ N2, |τ1 − φ(ξ1, q1)| ≲ L1, |τ − τ1 − φ(ξ − ξ1, q − q1)| ≲ L2
}︁
,

and from the definition of Ãτ1,ξ1,q1 , we further deduce

|Ãτ1,ξ1,q1 |
1
2 ≲ (L1 ∨ L2)

1
2

(︄ ∑︂
|q|≲(N1∨N2)

∫︂
R 

χ{|3ξ2−q2|≤1}dξ

)︄ 1
2

≲ (L1 ∨ L2)
1
2

(︄
1 +

∑︂
|q|≲(N1∨N2)

q≠0

1 
|q|

)︄ 1
2

≲ (L1 ∨ L2)
1
2 ln(c̃(N1 ∨ N2))

1
2

≲ε (L1 ∨ L2)
1
2 (N1 ∨ N2)

ε
2 (L1 ∧ L2)

1
2⏞ ⏟⏟ ⏞

≥1 

.

Thus, (25) is also established in the case |3ξ2 − q2| ≤ 1, completing the proof of Theo
rem 1.1. □
Remark 3.9. If we interpolate (2) with the trivial estimate (13), we obtain

∥u∥
L4−

txy
≲ ∥u∥X

0+, 1
2 −

(26)

and this shows that we can essentially rely on (2), even if b happens to be slightly smaller than 
1
2 .

Given the lack of dispersion in the T -component, it is not surprising that such a linear L4
estimate cannot achieve much more than the loss of an ε-derivative. This is captured in the 
following proposition, which demonstrates the near-optimality of (2).
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Proposition 3.10. The estimate

∥u∥L4
txy

≲ ∥u∥Xs,b
(27)

fails for all s < 0 and b ∈ R.

Proof. Let s < 0 and b ∈ R be arbitrary. For N ∈ N , we define the following sequence of func
tions via its Fourier transform:

ûN (τ, ξ, q) := (δq,N + δq,−N)χ[−1,1](ξ)χ[−1,1](τ − φ(ξ, q)).

Here, δq,N denotes the Kronecker delta. A straightforward computation yields

∥uN∥2
Xs,b

≲b N2s (28)

and an application of Parseval’s identity gives

∥uN∥2
L4

txy
= ∥u2

N∥L2
txy

∼ ∥ûN ∗ ûN∥L2
τξq

≥ ∥(δq,Nχ[−1,1](ξ)χ[−1,1](τ − φ(ξ, q))) ∗ (δq,−Nχ[−1,1](ξ)χ[−1,1](τ − φ(ξ, q)))⏞ ⏟⏟ ⏞
=:I 

∥L2
τξq

,

where ∗ denotes the convolution with respect to τ , ξ and q . For the convolution integral I , we 
now have

I = δq,0

∫︂
R 

χ[−1,1](ξ1)χ[−1,1](ξ − ξ1)

∫︂
R 

χ[−1,1](τ1 − φ(ξ1,N))

· χ[−1,1](τ − τ1 − φ(ξ − ξ1,−N))dτ1dξ1

= δq,0

∫︂
R 

χ[−1,1](ξ1)χ[−1,1](ξ − ξ1)

∫︂
R 

χ[−1,1](τ̃1)

· χ[−1,1](τ̃1 − (τ − φ(ξ1,N) − φ(ξ − ξ1,−N)))dτ̃1dξ1

≥ δq,0

∫︂
R 

χ[−1,1](ξ1)χ[−1,1](ξ − ξ1)χ[−1,1](τ − φ(ξ1,N) − φ(ξ − ξ1,−N))dξ1

≥ δq,0χ[− 1
2 , 1

2 ](ξ)

∫︂
R 

χ[− 1
2 , 1

2 ](ξ1)χ[−1,1](τ − φ(ξ1,N) − φ(ξ − ξ1,−N))dξ1,

and

τ − φ(ξ1,N) − φ(ξ − ξ1,−N) = τ − ξ3
1 − ξ1N

2 − (ξ − ξ1)
3 − (ξ − ξ1)N

2

= τ − ξN2 −ξ3 + 3ξ2ξ1 − 3ξξ2
1⏞ ⏟⏟ ⏞

∈[− 7
8 , 7

8 ]
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allows us to conclude that

χ[−1,1](τ − φ(ξ1,N) − φ(ξ − ξ1,−N)) ≥ χ[− 1
8 , 1

8 ](τ − ξN2)

holds true. We thus have

I ≥ δq,0χ[− 1
2 , 1

2 ](ξ)χ[− 1
8 , 1

8 ](τ − ξN2)

and forming the L2
τξq -norm yields

∥uN∥2
L4

txy
≳
(︃ 1

2∫︂
− 1

2

1
8 +ξN2∫︂

− 1
8 +ξN2

1dτdξ

)︃ 1
2 = 1

2
≳ 1. (29)

Now, if (27) were true, then combining (28) and (29) would lead to

1 ≲ ∥uN∥L4
txy

≲ ∥uN∥Xs,b
≲ Ns ∀N ∈N,

which would contradict the assumption s < 0. This completes the proof. □
Although, according to Proposition 3.10, we cannot expect a gain in derivatives in a linear L4

estimate, it is possible - using Lemma 3.8 - to establish a parameter-dependent family of bilinear 
estimates that will allow us to gain up to 1

4− of a derivative in certain frequency ranges. These 
estimates can be understood as bilinear refinements of the linear L4-estimate (2).

Proposition 3.11. Let ε > 0 and b > 1
2 be arbitrary. Furthermore, let the Fourier projector P α

for α ∈ [0,1] be defined by

P αu := ℱ−1
xy χ{|3ξ2−q2|≳|ξ |α,|ξ |≳1}ℱxyu.

Then, the estimate

∥I
α
4 

x P α(uv)∥L2
txy

≲ε,b ∥u∥Xε,b
∥v∥Xε,b

(30)

holds for all u,v ∈ Xε,b .

Proof. Since the phase function is odd, we may assume without loss of generality that ξ > 0. 
Analogous to the argument in the proof of Theorem 1.1, the estimate (30) to be established, 
follows from

∥I
α
4 

x P α((PN1QL1u)(PN2QL2v))∥L2
txy

≲ε (N1 ∨ N2)
ε
2 (L1 ∨ L2)

1
2 (L1 ∧ L2)

1
2 ∥PN1QL1u∥ 2 ∥PN2QL2v∥ 2

(31)
Ltxy Ltxy
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by means of dyadic summation. We therefore proceed to the proof of (31). An application of 
Parseval’s identity, the Cauchy-Schwarz inequality and Fubini’s theorem yields

∥I
α
4 

x P α((PN1QL1u)(PN2QL2v))∥L2
txy

≲
(︄

sup 
(τ,ξ,q)∈R×R>0×Z

ξ
α
4 |Aα

τ,ξ,q | 1
2

)︄
∥PN1QL1u∥L2

txy
∥PN2QL2v∥L2

txy

with

Aα
τ,ξ,q := {︁

(τ1, ξ1, q1) ∈ R×R×Z 
⃓⃓
ξ ≳ 1, |3ξ2 − q2|≳ ξα, |(ξ1, q1)| ≲ N1,

|(ξ − ξ1, q − q1)| ≲ N2, |τ1 − φ(ξ1, q1)| ≲ L1, |τ − τ1 − φ(ξ − ξ1, q − q1)| ≲ L2
}︁
.

Now, if we control the extension of Aα
τ,ξ,q in the τ1-direction by (L1 ∧ L2), and then substitute

ξ̃1 := ξ1 − ξ

2 
and q̃1 := q1 − q

2 
− h(q),

just as in the proof of Theorem 1.1, it follows - taking into account the translation invariance of 
the Haar measure on R×Z - that

ξ
α
4 |Aα

τ,ξ,q | 1
2 ≲ (L1 ∧ L2)

1
2 ξ

α
4 |Bα

τ,ξ,q | 1
2 ,

with Bα
τ,ξ,q = Bα

τ,ξ,q(c,K) = Bα
τ,ξ,q(−c̃(L1 ∨L2)+τ − ξ

4 (ξ
2 +q2),2c̃(L1 ∨L2)) defined exactly 

as in Lemma 3.8. From an application of (24), it finally follows that

ξ
α
4 |Aα

τ,ξ,q | 1
2 ≲ε (L1 ∧ L2)

1
2 (L1 ∨ L2)

1
2 (N1 ∨ N2)

ε
2 ,

and thus the proof of (31) is complete. □
Remark 3.12. Estimate (30) will likewise be available for later estimates involving duality: Tak
ing Remark 3.2 (ii) into account, an argument analogous to the proof of Proposition 3.1 yields

∥I
α
4 

x P α(uv)∥L2
txy

≲ ∥J
α
4 

x u∥X
1+, 1

4 +
∥J

α
4 

x v∥X
0, 1

4 +
, (32)

which, after interpolation with (30), leads to

∥I
α
4 

x P α(uv)∥L2
txy

≲ ∥u∥X
0+, 1

2 −
∥v∥X

0+, 1
2 −

. (33)

We now have all the necessary ingredients to show our well-posedness results in the cases k =
2 (mZK) and k ≥ 4. For the case k = 3, we will conclude this section by proving L5-estimates 
that are specifically tailored to the quartic nonlinearity.
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Corollary 3.13. Let T > 0, 0 < ε ≪ 1 and b > 1
2 . Furthermore, if u, v, w are time-localized3

functions with J
1
5

x u ∈ Xε,b , J
1
5

y v ∈ Xε,b , and w ∈ X 2 
15 +ε,b

, then the following three estimates 
hold:

∥u∥L5
T xy

≲T ,ε,b ∥J
1
5

x u∥Xε,b
, (34)

∥I
1 
10
x v∥L5

txy
≲b ∥J

1
5

y v∥Xε,b
, (35)

and

∥w∥L5
T xy

≲T ,ε,b ∥w∥X 2 
15 +ε,b

. (36)

Proof. By interpolating the newly obtained L4-estimate (2) with (12), we obtain (34), while (35)
follows from interpolating (2) and (17). By decomposing on the Fourier side into the regions 
A := {(ξ, q) | |ξ | ≤ ⟨q⟩ 2

3 } and Ac := {(ξ, q) | |ξ | > ⟨q⟩ 2
3 }, estimate (36) follows from using 

estimate (34) on region A and estimate (35) on region Ac. □
4. Local well-posedness theory for GZK

4.1. General LWP for gZK

It is commonly known that the well-posedness results stated in Theorem 1.2 follow from a 
standard fixed-point argument, provided that a certain multilinear estimate can be established. 
We state the desired estimate in the following

Proposition 4.1. Let k ∈ N≥2, and let s0(k) be as defined in Theorem 1.2. Then, for every s >

s0(k), there exists a sufficiently small number ε = ε(s) > 0 such that the following estimate holds 
for all time-localized functions ui ∈ X

s, 1
2 +ε

:

∥∂x

(︄
k+1∏︂
i=1 

ui

)︄
∥X

s,− 1
2 +2ε

≲
k+1∏︂
i=1 

∥ui∥X
s, 1

2 +ε
. (37)

In this paper, we restrict our attention to the proof of (37) and refer the reader to, e.g., [4,11,33] 
for details concerning the fixed-point method.

Proof of Proposition 4.1. We divide the proof into three parts and start with some preparatory 
remarks: By duality and an application of Parseval’s identity, estimate (37) is equivalent to show
ing

3 Time localization is not actually required for the function v.
28 



J. Nowicki-Koth Journal of Differential Equations 455 (2026) 113951 
If :=
⃓⃓⃓⃓
⃓
∫︂
R2

∑︂
q∈Z

∫︂
R2k

∑︂
q1,...,qk∈Z∗

ξ ⟨(ξ, q)⟩s
(︄

k+1∏︂
i=1 

ûi (τi , ξi, qi)

)︄
f̂ (τ, ξ, q)dτ̃dξ̃d(τ, ξ)

⃓⃓⃓⃓
⃓

≲ ∥f ∥X
0, 1

2 −2ε

k+1∏︂
i=1 

∥ui∥X
s, 1

2 +ε

for all f ∈ X0, 1
2 −2ε

with ∥f ∥X
0, 1

2 −2ε
≤ 1. Here, the symbol ∗ denotes the convolution constraint 

(τ, ξ, q) = (τ1 + ... + τk+1, ξ1 + ... + ξk+1, q1 + ... + qk+1), and we adopt the notation dτ̃dξ̃ :=
dτ1...dτkdξ1...dξk for brevity. Furthermore, since the norms involved only depend on |ûi | and |f̂ |, 
we may, without loss of generality, assume that all ûi and f̂ are nonnegative for the remainder of 
the proof. Finally, if (ξi, qi) denotes the frequency variable associated with the factor ui , then by 
symmetry, it suffices to restrict the following analysis to the case where the frequency distribution 
satisfies |(ξ1, q1)| ≥ |(ξ2, q2)| ≥ ... ≥ |(ξk+1, qk+1)|. 

(i) k = 2: 
(i.1) |(ξ1, q1)| ≲ 1: 
In this case, we have |(ξi, qi)| ≲ 1 and |(ξ, q)| ≲ 1, for all i ∈ {1,2,3}, so that Sobolev’s embed
ding theorem applies without any derivative loss. Consequently, for any 0 < ε ≪ 1 and s ≥ 0, we 
obtain

∥∂x(u1u2u3)∥X
s,− 1

2 +2ε
≲ ∥u1u2u3∥L2

txy

≤ ∥u1∥L2
txy

∥u2∥L∞
t L∞

xy
∥u2∥L∞

t L∞
xy

≲ ∥u1∥L2
txy

∥u2∥L∞
t L2

xy
∥u2∥L∞

t L2
xy

≲ ∥u1∥X
0, 1

2 +ε
∥u2∥X

0, 1
2 +ε

∥u3∥X
0, 1

2 +ε

≲
3 ∏︂

i=1 
∥ui∥X

s, 1
2 +ε

,

where we have used the fact that

∥u∥L∞
t H s

xy
≲b ∥u∥Xs,b

, b >
1

2
. (38)

(i.2) |(ξ1, q1)| ≫ 1, |(ξ1, q1)| ≫ |(ξ3, q3)|: 
(i.2.1) |(ξ, q)| ≫ |(ξ2, q2)|: 
In this situation, we have in particular 1 ≪ |(ξ1, q1)| ∼ |(ξ, q)| ∼ ⟨(ξ, q)⟩, and we obtain

|ξ |⟨(ξ, q)⟩s ≲ ||(ξ1, q1)|2 − |(ξ3, q3)|2| 1
2 ⟨(ξ1, q1)⟩s⟨(ξ3, q3)⟩− 1

2 +

· ||(ξ, q)|2 − |(ξ2, q2)|2| 1
2 ⟨(ξ, q)⟩0−⟨(ξ2, q2)⟩− 1

2 +.
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Undoing Plancherel and subsequently applying Hölder’s inequality leads to4

If ≲ ∥MP(J su1, J
− 1

2 +u3)∥L2
txy

∥MP(J 0−f,J− 1
2 +ũ2)∥L2

txy
,

and applying (3) and (5) finally yields

... ≲ ∥u1∥X
s, 1

2 +ε
∥u3∥X

0+, 1
2 +ε

∥f ∥X
0+, 1

2 −2ε
∥u2∥X

0+, 1
2 +ε

,

which shows the desired estimate for any s > 0, provided ε > 0 is sufficiently small. 
(i.2.2) |(ξ, q)|≲ |(ξ2, q2)|: 
For this frequency configuration, we have

|ξ |⟨(ξ, q)⟩s ≲ ||(ξ1, q1)|2 − |(ξ3, q3)|2| 1
2 ⟨(ξ1, q1)⟩s⟨(ξ3, q3)⟩− 1

4 +⟨(ξ, q)⟩0−⟨(ξ2, q2)⟩ 1
4 +,

and undoing Plancherel, followed by Hölder’s inequality, yields

If ≲ ∥MP(J su1, J
− 1

4 +u3)∥L2
txy

∥J 0−f J
1
4 +ũ2∥L2

txy

≤ ∥MP(J su1, J
− 1

4 +u3)∥L2
txy

∥J 0−f ∥
L4−

txy
∥J 1

4 +ũ2∥L4+
T xy

.

For the first factor, we can once again rely on (3), while for estimating the second factor, we 
make use of (26). The third factor can be controlled using the estimate in (2), for example by 
interpolating it with (21). We obtain

... ≲ ∥u1∥X
s, 1

2 +ε
∥u3∥X 1

4 +, 1
2 +ε

∥f ∥X
0, 1

2 −2ε
∥u2∥X 1

4 +, 1
2 +ε

,

and this yields the desired estimate for any s > 1
4 , with ε > 0 taken small enough. 

(i.3) |(ξ1, q1)| ≫ 1, |(ξ1, q1)| ∼ |(ξ2, q2)| ∼ |(ξ3, q3)|: 
In this case, we can freely move derivatives around and obtain

|ξ |⟨(ξ, q)⟩s ≲ ⟨(ξ, q)⟩0−
3 ∏︂

i=1 
⟨(ξi, qi)⟩ s

3 + 1
3 +.

Taking this into account, and then applying the dual version of (26), followed by Hölder’s in
equality, leads to

∥∂x(u1u2u3)∥X
s,− 1

2 +2ε
≲ ∥J 0−(J

s
3 + 1

3 +u1J
s
3 + 1

3 +u2J
s
3 + 1

3 +u3)∥X
0,− 1

2 +2ε

≲ ∥J s
3 + 1

3 +u1J
s
3 + 1

3 +u2J
s
3 + 1

3 +u3∥
L

4
3 +
txy

≤ ∥J s
3 + 1

3 +u1∥L4+
T xy

∥J s
3 + 1

3 +u2∥L4+
T xy

∥J s
3 + 1

3 +u3∥L4+
T xy

.

4 We denote ũ2(t, x, y) := u2(−t,−x,−y).
30 



J. Nowicki-Koth Journal of Differential Equations 455 (2026) 113951 
A triple application of (2), suitably interpolated with (21), ultimately yields

... ≲ ∥u1∥X s
3 + 1

3 +, 1
2 +ε

∥u2∥X s
3 + 1

3 +, 1
2 +ε

∥u3∥X s
3 + 1

3 +, 1
2 +ε

≲ ∥u1∥X
s, 1

2 +ε
∥u2∥X

s, 1
2 +ε

∥u3∥X
s, 1

2 +ε
,

with the last inequality requiring

s

3
+ 1

3
+ ≤ s ⇔ 1

2
+ ≤ s.

For ε > 0 chosen sufficiently small, the proof of (37) is thereby also completed in this case for 
all s > 1

2 = s0(2). Putting together all intermediate results finishes the proof in the case k = 2. 

(ii) k = 3: 
(ii.1) |(ξ1, q1)| ≲ 1: 
We proceed exactly as in the case (i.1) and use the Sobolev embedding theorem without loss of 
derivatives, followed by (38). This yields

∥∂x(u1u2u3u4)∥X
s,− 1

2 +2ε
≲ ∥u1u2u3u4∥L2

txy

≤ ∥u1∥L2
txy

∥u2∥L∞
t L∞

xy
∥u3∥L∞

t L∞
xy

∥u4∥L∞
t L∞

xy

≲ ∥u1∥L2
txy

∥u2∥L∞
t L2

xy
∥u3∥L∞

t L2
xy

∥u4∥L∞
t L2

xy

≲ ∥u1∥X
0, 1

2 +ε
∥u2∥X

0, 1
2 +ε

∥u3∥X
0, 1

2 +ε
∥u4∥X

0, 1
2 +ε

≲
4 ∏︂

i=1 
∥ui∥X

s, 1
2 +ε

for every 0 < ε ≪ 1 and s ≥ 0. 
(ii.2) |(ξ1, q1)| ≫ 1, |(ξ1, q1)| ≫ |(ξ4, q4)|: 
(ii.2.1) |(ξ, q)| ≫ |(ξ2, q2)|: 
Taking 1 ≪ |(ξ1, q1)| ∼ |(ξ, q)| ∼ ⟨(ξ, q)⟩ into account, it follows under the given assumptions 
that

|ξ |⟨(ξ, q)⟩s ≲ ||(ξ1, q1)|2 − |(ξ4, q4)|2| 1
2 ⟨(ξ1, q1)⟩s⟨(ξ4, q4)⟩− 1

6 +

· ||(ξ, q)|2 − |(ξ2, q2)|2| 1
2 ⟨(ξ, q)⟩0−⟨(ξ2, q2)⟩− 1

6 +⟨(ξ3, q3)⟩− 2
3 +.

After undoing Plancherel and applying Hölder’s inequality, we thus obtain

If ≲ ∥MP(J su1, J
− 1

6 +u4)∥L2
txy

∥MP(J 0−f,J− 1
6 +ũ2)∥L2

txy
∥J− 2

3 +ũ3∥L∞
t L∞

xy
,

and for the first two factors we use (3) and (5), respectively, while the third factor can be treated 
using the Sobolev embedding theorem, followed by (38). It further follows that
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... ≲ ∥u1∥X
s, 1

2 +ε
∥u4∥X 1

3 +, 1
2 +ε

∥f ∥X
0, 1

2 −2ε
∥u2∥X 1

3 +, 1
2 +ε

∥u3∥X 1
3 +, 1

2 +ε
,

and if we choose ε > 0 sufficiently small, we obtain the desired estimate for every s > 1
3 . 

(ii.2.2) |(ξ, q)|≲ |(ξ2, q2)|: 
This frequency distribution allows us to deduce

|ξ |⟨(ξ, q)⟩s ≲ ||(ξ1, q1)|2 − |(ξ4, q4)|2| 1
2 ⟨(ξ1, q1)⟩s⟨(ξ4, q4)⟩− 1 

18

· ⟨(ξ, q)⟩− 2
9 −⟨(ξ2, q2)⟩ 2

9 +⟨(ξ3, q3)⟩ 1 
18 ,

and after an application of Hölder’s inequality in the physical space, we thus obtain

If ≲ ∥MP(J su1, J
− 1 

18 u4)∥L2
txy

∥J− 2
9 −f J

2
9 +ũ2J

1 
18 ũ3∥L2

txy

≤ ∥MP(J su1, J
− 1 

18 u4)∥L2
txy

∥J− 2
9 −f ∥

L6−
T xy

∥J 2
9 +ũ2∥L6+

T xy
∥J 1 

18 ũ3∥L6+
T xy

.

For the first factor we can once again use the bilinear estimate (3), and for the second, we apply 
the optimized L6-estimate (22). The remaining two factors are treated using (21), namely after 
interpolation with the trivial estimate

∥u∥L∞
txy

≲ ∥u∥X
1+, 1

2 +
. (39)

These estimates lead us to

... ≲ ∥u1∥X
s, 1

2 +ε
∥u4∥X 4

9 +, 1
2 +ε

∥f ∥X
0, 1

2 −2ε
∥u2∥X 4

9 +, 1
2 +ε

∥u3∥X 5 
18 +, 1

2 +ε
,

which shows that, in this case, (37) holds for every s > 4
9 , provided ε > 0 is chosen small enough. 

(ii.3) |(ξ1, q1)| ≫ 1, |(ξ1, q1)| ∼ |(ξ2, q2)| ∼ |(ξ3, q3)| ∼ |(ξ4, q4)|: 
Let us assume without loss of generality that |ξmax| := max {|ξ1|, |ξ2|, |ξ3|, |ξ4|} = |ξ1|. From 
|ξ | ≲ |ξmax| = |ξ1| and the fact that all |(ξi, qi)| are of approximately the same size, it follows 
that

|ξ |⟨(ξ, q)⟩s ≲ |ξ | 1 
10 ⟨(ξ, q)⟩− 1

5 −|ξ1| 1
4 ⟨(ξ1, q1)⟩ s

4 + 1 
20 +⟨(ξ2, q2)⟩ s

4 + 1 
20 + 13

60 +

· ⟨(ξ3, q3)⟩ s
4 + 1 

20 + 13
60 +⟨(ξ4, q4)⟩ s

4 + 1 
20 + 13

60 +.

Interpolating the Airy L5-estimate (35) with the trivial L2-estimate (13), we obtain

∥I
1 
10
x u∥

L5−
txy

≲ ∥u∥ 1
5 +, 1

2 −, (40)

and using the dual version of this estimate, followed by Hölder’s inequality, yields
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∥∂x(u1u2u3u4)∥X
s,− 1

2 +2ε
≲ ∥I

1 
10
x J− 1

5 −
(︄

I
1
4
x J

s
4 + 1 

20 +u1

4 ∏︂
i=2 

J
s
4 + 1 

20 + 13
60 +ui

)︄
∥X

0,− 1
2 +2ε

≲ ∥I
1
4
x J

s
4 + 1 

20 +u1

4 ∏︂
i=2 

J
s
4 + 1 

20 + 13
60 +ui∥

L
5
4 +
txy

≤ ∥I
1
4
x J

s
4 + 1 

20 +u1∥L5
txy

4 ∏︂
i=2 

∥J s
4 + 1 

20 + 13
60 +ui∥L5+

T xy
.

For the first factor, we can once again invoke the Airy L5-estimate (35), and for the remaining 
factors we use the optimized L5-estimate (36), interpolated with (21). We obtain

...≲ ∥u1∥X s
4 + 2

5 +, 1
2 +ε

∥u2∥X s
4 + 2

5 +, 1
2 +ε

∥u3∥X s
4 + 2

5 +, 1
2 +ε

∥u4∥X s
4 + 2

5 +, 1
2 +ε

≲ ∥u1∥X
s, 1

2 +ε
∥u2∥X

s, 1
2 +ε

∥u3∥X
s, 1

2 +ε
∥u4∥X

s, 1
2 +ε

,

and the final step requires

s

4
+ 2

5
+ ≤ s ⇔ 8 

15
+ ≤ s.

By choosing ε > 0 sufficiently small, we thus obtain (37) for every s > 8 
15 = s0(3), completing 

the proof in the case k = 3. 

(iii) k ≥ 4: 
(iii.1) |(ξ1, q1)| ≲ 1: 
This case can again be treated exactly as in (i.1) and (ii.1). For an arbitrary s ≥ 0 and 0 < ε ≪ 1, 
we obtain

∥∂x

(︄
k+1∏︂
i=1 

ui

)︄
∥X

s,− 1
2 +2ε

≲ ∥
k+1∏︂
i=1 

ui∥L2
txy

≤ ∥u1∥L2
txy

k+1∏︂
i=2 

∥ui∥L∞
t L∞

xy

≲ ∥u1∥L2
txy

k+1∏︂
i=2 

∥ui∥L∞
t L2

xy

≲ ∥u1∥X
0, 1

2 +ε

k+1∏︂
i=2 

∥ui∥X
0, 1

2 +ε

≲
k+1∏︂
i=1 

∥ui∥X
s, 1

2 +ε
,

which completes the proof in this subcase.
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(iii.2) |(ξ1, q1)| ≫ 1, |(ξ1, q1)| ≫ |(ξ5, q5)|: 
(iii.2.1) |(ξ, q)| ≫ |(ξ2, q2)|: 
In this situation, we have |(ξ1, q1)| ∼ |(ξ, q)| ≫ |(ξ2, q2)| ≥ |(ξ3, q3)|, from which it follows that

|ξ |⟨(ξ, q)⟩s ≲ ||(ξ1, q1)|2 − |(ξ2, q2)|2| 1
2 ⟨(ξ1, q1)⟩s⟨(ξ2, q2)⟩ 1

2 − 2 
k

· ||(ξ, q)|2 − |(ξ3, q3)|2| 1
2 ⟨(ξ, q)⟩0−⟨(ξ3, q3)⟩ 1

2 − 2 
k

k+1∏︂
i=4 

⟨(ξi, qi)⟩− 2 
k
+.

By undoing Plancherel and applying Hölder’s inequality, we then obtain

If ≲ ∥MP(J su1, J
1
2 − 2 

k u2)∥L2
txy

∥MP(J 0−f,J
1
2 − 2 

k ũ3)∥L2
txy

k+1∏︂
i=4 

∥J− 2 
k
+ũi∥L∞

t L∞
xy

,

and for the first two factors we use (3) and (5), respectively, while the remaining factors can be 
dealt with by applying Sobolev’s embedding theorem, followed by (38). These steps lead to

... ≲ ∥u1∥X
s, 1

2 +ε
∥u2∥X

1− 2 
k

+, 1
2 +ε

∥f ∥X
0, 1

2 −2ε
∥u3∥X

1− 2 
k

+, 1
2 +ε

k+1∏︂
i=4 

∥ui∥X
1− 2 

k
+, 1

2 +ε
,

and by choosing ε > 0 small enough, we obtain (37) for every s > 1 − 2 
k

in this case. 
(iii.2.2) |(ξ, q)| ≲ |(ξ2, q2)|: 
In this case, the frequency configuration under consideration, leads us to

|ξ |⟨(ξ, q)⟩s
k=4
≲ ||(ξ1, q1)|2 − |(ξ5, q5)|2| 1

2 ⟨(ξ1, q1)⟩s

· ⟨(ξ, q)⟩− 2
9 −⟨(ξ2, q2)⟩ 3

9 +⟨(ξ3, q3)⟩ 3
9 +⟨(ξ4, q4)⟩− 4

9 +

and

|ξ |⟨(ξ, q)⟩s
k≥5
≲ ||(ξ1, q1)|2 − |(ξ5, q5)|2| 1

2 ⟨(ξ1, q1)⟩s⟨(ξ5, q5)⟩ 1
2 − 11 

6k
+

· ⟨(ξ, q)⟩− 2
9 −⟨(ξ2, q2)⟩ 7

9 − 11 
6k

+⟨(ξ3, q3)⟩ 7
9 − 11 

6k
+

k+1∏︂
i=4
i≠5

⟨(ξi, qi)⟩− 11 
6k

+,

and after applying Plancherel’s theorem and Hölder’s inequality, we thus obtain

If ≲ ∥MP(J su1, u5)∥L2
txy

∥J− 2
9 −f J

3
9 +ũ2J

3
9 +ũ3∥L2

txy
∥J− 4

9 +ũ4∥L∞
t L∞

xy

≤ ∥MP(J su1, u5)∥L2
txy

∥J− 2
9 −f ∥

L6−
T xy

∥J 3
9 +ũ2∥L6+

T xy
∥J 3

9 +ũ3∥L6+
T xy

· ∥J− 4
9 +ũ4∥L∞

t L∞
xy

in the case k = 4, and
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If ≲ ∥MP(J su1, J
1
2 − 11 

6k
+u5)∥L2

txy
∥J− 2

9 −f J
7
9 − 11 

6k
+ũ2J

7
9 − 11 

6k
+ũ3∥L2

txy

·
k+1∏︂
i=4
i≠5

∥J− 11 
6k

+ũi∥L∞
t L∞

xy

≤ ∥MP(J su1, J
1
2 − 11 

6k
+u5)∥L2

txy
∥J− 2

9 −f ∥
L6−

T xy
∥J 7

9 − 11 
6k

+ũ2∥L6+
T xy

∥J 7
9 − 11 

6k
+ũ3∥L6+

T xy

·
k+1∏︂
i=4
i≠5

∥J− 11 
6k

+ũi∥L∞
t L∞

xy

in the case k ≥ 5. In both cases we can now proceed in the same manner: The first factor can be 
estimated using (3), and for the second factor we apply (22), while for the third and fourth factors 
we interpolate (21) with the trivial L∞-estimate (39). All remaining factors are treated using the 
Sobolev embedding theorem and (38), from which it follows that

... ≲ ∥u1∥X
s, 1

2 +ε
∥u5∥X 1

2 +, 1
2 +ε

∥f ∥X
0, 1

2 −2ε
∥u2∥X 5

9 +, 1
2 +ε

∥u3∥X 5
9 +, 1

2 +ε
∥u4∥X 5

9 +, 1
2 +ε

and

... ≲ ∥u1∥X
s, 1

2 +ε
∥f ∥X

0, 1
2 −2ε

k+1∏︂
i=2 

∥ui∥X
1− 11 

6k
+, 1

2 +ε
,

respectively. Now, choosing ε > 0 sufficiently small, the proof of (37) in this subcase is thus 
established for every s > 5

9 = s0(4) (k = 4) and s > 1 − 11 
6k

(k ≥ 5). 
(iii.3) |(ξ1, q1)| ≫ 1, |(ξ1, q1)| ∼ ... ∼ |(ξ5, q5)|: 
(iii.3.1) |ξmax| = |ξi |, for some i ∈ {1, ...,5}: 
Without loss of generality, let us again assume |ξmax| = |ξ1|. We then have |ξ | ≲ |ξ1|, and since 
we can redistribute the derivatives arbitrarily among the first five factors, it follows that

|ξ |⟨(ξ, q)⟩s ≲ |ξ | 1
6 ⟨(ξ, q)⟩− 1

3 −|ξ1| 19
90 ⟨(ξ1, q1)⟩ s

5 + 1 
15 + 16(k−4)

45k +

·
(︄

5 ∏︂
i=2 

⟨(ξi, qi)⟩ s
5 + 1 

15 + 7 
45 + 16(k−4)

45k +
)︄

k+1∏︂
i=6 

⟨(ξi, qi)⟩− 16 
9k

+.

Now, if we interpolate the Airy L6-estimate (17) with the trivial L2-estimate (13), we obtain

∥I
1
6
x u∥

L6−
txy

≲ ∥u∥X 1
3 +, 1

2 −
, (41)

and an application of its dual version, followed by Hölder’s inequality then leads us to

∥∂x

(︄
k+1∏︂

ui

)︄
∥X

s,− 1
2 +2ε
i=1 
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≲ ∥I
19
90
x J

s
5 + 1 

15 + 16(k−4)
45k +u1

(︄
5 ∏︂

i=2 
J

s
5 + 1 

15 + 7 
45 + 16(k−4)

45k +ui

)︄(︄
k+1∏︂
i=6 

J− 16 
9k

+ui

)︄
∥
L

6
5 +
txy

≤ ∥I
19
90
x J

s
5 + 1 

15 + 16(k−4)
45k +u1∥L6

txy

5 ∏︂
i=2 

∥J s
5 + 1 

15 + 7 
45 + 16(k−4)

45k +ui∥L6+
T xy

·
k+1∏︂
i=6 

∥J− 16 
9k

+ui∥L∞
t L∞

xy
.

For the first factor, we now apply the Airy L6-estimate (17), and for the second through fifth 
factors, we employ the optimized L6-estimate (21) interpolated with the trivial L∞-estimate 
(39). All remaining factors are treated using the Sobolev embedding theorem and estimate (38), 
and we ultimately obtain

... ≲
(︄

5 ∏︂
i=1 

∥ui∥X s
5 + 4

5 − 64 
45k

+, 1
2 +ε

)︄
k+1∏︂
i=6 

∥ui∥X
1− 16 

9k
+, 1

2 +ε

≲
(︄

5 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε

)︄
k+1∏︂
i=6 

∥ui∥X
1− 16 

9k
+, 1

2 +ε
.

Here, the final step requires

s

5
+ 4

5
− 64 

45k
+ ≤ s ⇔ 1 − 16 

9k
+ ≤ s

and by choosing ε > 0 sufficiently small, the desired estimate is thereby established for all s >

1 − 16 
9k

= s0(k). 
(iii.3.2) |ξmax| = |ξi |, for some i ∈ {6, ..., k + 1}5: 
(iii.3.2.1) |(ξ1, q1)| ≫ |(ξi, qi)|: 
In this case, we have |ξ |≲ |ξi | ≤ |(ξi, qi)|, which allows us to shift derivatives 
onto the low-frequency factor ui . This yields

|ξ |⟨(ξ, q)⟩s ≲ ||(ξ1, q1)|2 − |(ξi, qi)|2| 1
2 ⟨(ξ1, q1)⟩s⟨(ξi, qi)⟩ 1

2 − 11 
6k

+

· ⟨(ξ, q)⟩− 2
9 −⟨(ξ2, q2)⟩ 7

9 − 11 
6k

+⟨(ξ3, q3)⟩ 7
9 − 11 

6k
+

k+1 ∏︂
j=4
j≠i

⟨(ξj , qj )⟩− 11 
6k

+,

and undoing Plancherel, followed by Hölder’s inequality leads to

If ≲ ∥MP(J su1, J
1
2 − 11 

6k
+ui)∥L2

txy
∥J− 2

9 −f J
7
9 − 11 

6k
+ũ2J

7
9 − 11 

6k
+ũ3∥L2

txy

5 It is evident that this case cannot occur for k = 4.
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·
k+1 ∏︂
j=4
j≠i

∥J− 11 
6k

+ũj∥L∞
t L∞

xy

≤ ∥MP(J su1, J
1
2 − 11 

6k
+ui)∥L2

txy
∥J− 2

9 −f ∥
L6−

T xy
∥J 7

9 − 11 
6k

+ũ2∥L6+
T xy

· ∥J 7
9 − 11 

6k
+ũ3∥L6+

T xy

k+1 ∏︂
j=4
j≠i

∥J− 11 
6k

+ũj∥L∞
t L∞

xy
.

At this point, we can proceed exactly as in case (iii.2.2), and for sufficiently small ε > 0, we thus 
obtain the desired multilinear estimate for every s > 1 − 11 

6k
. 

(iii.3.2.2) |(ξ1, q1)| ∼ |(ξi, qi)|: 
In this final subcase, no further work is required, since we have |(ξ1, q1)| ∼ |(ξ2, q2)| ∼
|(ξ3, q3)| ∼ |(ξ4, q4)| ∼ |(ξi, qi)| ∼ |(ξ5, q5)|, allowing us to argue as in case (iii.3.1). We apply 
the Airy L6-estimate to the factor ui , and use the optimized L6-estimate for the factors u1, ...u4. 
For all remaining factors, we invoke the Sobolev embedding theorem, which altogether yields 
the desired estimate (37) for every s > 1 − 16 

9k
. □

Remark 4.2. The proof shows that local well-posedness for every s > 1
2 in the case of the 

modified ZK equation can be achieved through the following simple alternative: for widely sepa
rated frequencies |(ξi, qi)| ≫ |(ξj , qj )|, one applies the bilinear estimate (3), whereas for closely 
spaced frequencies |(ξi, qi)| ∼ |(ξj , qj )|, one relies on the linear L4-estimate (2). In the next 
section, we will incorporate the newly developed bilinear refinements (30) and the resonance 
function in order to further lower the well-posedness threshold to s > 11

24 .

4.2. Improved LWP for mZK

As previously noted, the proof of Theorem 1.3 reduces to verifying a concrete trilinear esti
mate. We fix it in the following

Proposition 4.3. For every s > 11
24 , there exists a sufficiently small number ε = ε(s) > 0 such that 

the following estimate holds for all time-localized functions ui ∈ X
s, 1

2 +ε
:

∥∂x(u1u2u3)∥X
s,− 1

2 +2ε
≲ ∥u1∥X

s, 1
2 +ε

∥u2∥X
s, 1

2 +ε
∥u3∥X

s, 1
2 +ε

. (42)

Proof. We begin by noting once again that (42) is equivalent to showing

If :=
⃓⃓⃓⃓
⃓
∫︂
R2

∑︂
q∈Z

∫︂
R4

∑︂
q1,q2∈Z∗

ξ ⟨(ξ, q)⟩s
(︄

3 ∏︂
i=1 

ûi (τi, ξi , qi)

)︄
f̂ (τ, ξ, q)dτ1dτ2dξ1dξ2d(τ, ξ)

⃓⃓⃓⃓
⃓

≲ ∥f ∥X
0, 1

2 −2ε
∥u1∥X

s, 1
2 +ε

∥u2∥X
s, 1

2 +ε
∥u3∥X

s, 1
2 +ε

for all f ∈ X0, 1
2 −2ε

with ∥f ∥X
0, 1

2 −2ε
≤ 1, and the convolution constraint being ∗ := (τ, ξ, q) =

(τ1 + τ2 + τ3, ξ1 + ξ2 + ξ3, q1 + q2 + q3). As in the proof of Proposition 4.1, we may assume 
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without loss of generality that ûi , f̂ ≥ 0 and |(ξ1, q1)| ≥ |(ξ2, q2)| ≥ |(ξ3, q3)|, where (ξi, qi)

denotes the frequency variable associated with the factor ui . Furthermore, we will arrange the 
ξi for i = 1, ...,3 in ascending order according to the magnitude of their absolute values, and 
we will use the notation ξmin, ξmed, ξmax for this purpose. Lastly, we will also use (ξ0, q0) as an 
alternative notation for the frequency variable (ξ, q). With these preliminary considerations in 
place, we now turn to a detailed case-by-case analysis. 

(i) |(ξ1, q1)| ≲ 1 or |(ξ1, q1)| ≫ |(ξ3, q3)|: 
These cases have already been discussed in the proof of Proposition 4.1, where we obtained (42)
for every s > 1

4 . 
(ii) |(ξ1, q1)| ≫ 1, |(ξ1, q1)| ∼ |(ξ2, q2)| ∼ |(ξ3, q3)|: 
(ii.1) |ξ0| ≲ 1: 
In this situation, we have

|ξ0|⟨(ξ0, q0)⟩s ≲ ⟨(ξ0, q0)⟩0−⟨(ξ1, q1)⟩ s
3 +⟨(ξ2, q2)⟩ s

3 +⟨(ξ3, q3)⟩ s
3 +,

and an application of the dual version of (26), followed by Hölder’s inequality yields

∥∂x(u1u2u3)∥X
s,− 1

2 +2ε
≲ ∥J 0−(J

s
3 +u1J

s
3 +u2J

s
3 +u3)∥X

0,− 1
2 +2ε

≲ ∥J s
3 +u1J

s
3 +u2J

s
3 +u3∥

L
4
3 +
txy

≲ ∥J s
3 +u1∥L4+

T xy
∥J s

3 +u2∥L4+
T xy

∥J s
3 +u3∥L4+

T xy
.

By interpolating (21) with the linear L4-estimate (2), and applying the resulting estimate three 
times, we obtain

... ≲ ∥u1∥X s
3 +, 1

2 +ε
∥u2∥X s

3 +, 1
2 +ε

∥u3∥X s
3 +, 1

2 +ε

≲ ∥u1∥X
s, 1

2 +ε
∥u2∥X

s, 1
2 +ε

∥u2∥X
s, 1

2 +ε
,

with the last step requiring

s

3
+ ≤ s ⇔ 0+ ≤ s.

By choosing ε > 0 sufficiently small, the proof of (42) is thereby established in this case for 
every s > 0. 
(ii.2) |ξ0| ≫ 1, ||(ξi, qi)|2 − |(ξj , qj )|2| ≳ |ξ0| 7

6 , for some i, j ∈ {0,1,2,3} with i ≠ j : Given that 
|(ξ1, q1)| ∼ |(ξ2, q2)| ∼ |(ξ3, q3)|, we may, without loss of generality distinguish between two 
cases. If we have ||(ξ1, q1)|2 − |(ξ2, q2)|2| ≳ |ξ0| 7

6 , it follows that

|ξ0|⟨(ξ0, q0)⟩s ≲ ||(ξ1, q1)|2 − |(ξ2, q2)|2| 1
2 ⟨(ξ1, q1)⟩s⟨(ξ2, q2)⟩− 1 

24 +

· ⟨(ξ0, q0)⟩0−⟨(ξ3, q3)⟩ 11
24 +,
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and undoing Plancherel, followed by Hölder’s inequality, leads us to

If ≲ ∥MP(J su1, J
− 1 

24 +u2)∥L2
txy

∥J 0−f J
11
24 +ũ3∥L2

txy

≤ ∥MP(J su1, J
− 1 

24 +u2)∥L2
txy

∥J 0−f ∥
L4−

txy
∥J 11

24 +ũ3∥L4+
T xy

.

We now apply estimate (3) to the first factor; for the second factor, we use (26), and for the third, 
(2) interpolated with (21). This yields

... ≲ ∥u1∥X
s, 1

2 +ε
∥u2∥X 11

24 +, 1
2 +ε

∥f ∥X
0, 1

2 −2ε
∥u3∥X 11

24 +, 1
2 +ε

,

and by choosing ε > 0 small enough, we obtain the desired estimate (42) for every s > 11
24 . On 

the other hand, if ||(ξ0, q0)|2 − |(ξ1, q1)|2| ≳ |ξ0| 7
6 , it holds that

|ξ0|⟨(ξ0, q0)⟩s ≲ ||(ξ0, q0)|2 − |(ξ1, q1)|2| 1
2 ⟨(ξ0, q0)⟩0−⟨(ξ1, q1)⟩− 1 

24 +

· ⟨(ξ2, q2)⟩ s
2 + 11

48 +⟨(ξ3, q3)⟩ s
2 + 11

48 +,

and it follows, analogously to the first case, that

If ≲ ∥MP(J 0−f,J− 1 
24 +ũ1)∥L2

txy
∥J s

2 + 11
48 +u2∥L4

txy
∥J s

2 + 11
48 +u3∥L4

txy
.

For the first factor, we now use (5), and the remaining two factors can be treated using the L4
estimate (2). We thus obtain

... ≲ ∥f ∥X
0, 1

2 −2ε
∥u1∥X 11

24 +, 1
2 +ε

∥u2∥X s
2 + 11

48 +, 1
2 +ε

∥u3∥X s
2 + 11

48 +, 1
2 +ε

≲ ∥f ∥X
0, 1

2 −2ε
∥u1∥X 11

24 +, 1
2 +ε

∥u2∥X
s, 1

2 +ε
∥u3∥X

s, 1
2 +ε

,

and the final step requires precisely

s

2
+ 11

48
+ ≤ s ⇔ 11

24
+ ≤ s,

so that we arrive at the desired result in this case as well, provided ε > 0 is chosen small enough. 
(ii.3) |ξ0| ≫ 1, ||(ξi, qi)|2 − |(ξj , qj )|2| ≪ |ξ0| 7

6 , for all i, j ∈ {0,1,2,3} with i ≠ j : 
For the remainder of this proof, we may assume without loss of generality that 
(ξ1, ξ2, ξ3) = (ξmin, ξmed, ξmax). 
(ii.3.1) |ξmed| ≪ |ξmax|: 
In this situation, we have |ξ0| ≲ |ξ1 + ξ3| and |ξ0|≲ |ξ2 + ξ3|, so that we obtain

|ξ0|⟨(ξ0, q0)⟩s ≲ |ξ1 + ξ3| 1
4 ⟨(ξ1, q1)⟩s−⟨(ξ3, q3)⟩ 1

4 +|ξ0 + (−ξ2)| 1
4 ⟨(ξ0, q0)⟩0−⟨(−ξ2,−q2)⟩ 1

4 +

and
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|ξ0|⟨(ξ0, q0)⟩s ≲ |ξ2 + ξ3| 1
4 ⟨(ξ2, q2)⟩s−⟨(ξ3, q3)⟩ 1

4 +|ξ0 + (−ξ1)| 1
4 ⟨(ξ0, q0)⟩0−⟨(−ξ1,−q1)⟩ 1

4 +,

respectively. If we now have |3(ξ1 + ξ3)
2 − (q1 + q3)

2| ≳ |ξ1 + ξ3|, then an application of Parse
val’s identity and Hölder’s inequality yields

If ≲ ∥I
1
4
x P 1(J s−u1J

1
4 +u3)∥L2

txy
∥I

1
4
x P 1(J 0−f J

1
4 +ũ2)∥L2

txy
,

and the first factor can be treated using the bilinear refinement (30) of (2), while the second factor 
can be handled using the variant (33) of (30). This leads us to

... ≲ ∥u1∥X
s, 1

2 +ε
∥u3∥X 1

4 +, 1
2 +ε

∥f ∥X
0, 1

2 −2ε
∥u2∥X 1

4 +, 1
2 +ε

≲ ∥f ∥X
0, 1

2 −2ε

3 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε
,

with the last step being valid for all s > 1
4 , provided ε > 0 is chosen small enough. In the case 

|3(ξ2 + ξ3)
2 − (q2 + q3)

2| ≳ |ξ2 + ξ3|, one uses the second pointwise estimate given above and 
follows the same argument to again reach s > 1

4 . We may therefore assume

|3(ξ1 + ξ3)
2 − (q1 + q3)

2| ≪ |ξ1 + ξ3| ∼ |ξ0|

and

|3(ξ2 + ξ3)
2 − (q2 + q3)

2| ≪ |ξ2 + ξ3| ∼ |ξ0|,

and we will first consider why, under these assumptions, |ξ3| ∼ |(ξ1, q1)| must hold: Under the 
assumption |ξ3| ≪ |(ξ1, q1)|, it follows - taking into account the active assumptions (ii.3) and 
(ii.3.1) - that

|q1| ∼ |q2| ∼ |q3| ∼ |q0| ∼ |(ξ1, q1)|,

and the two constraints mentioned above, which arise from the bilinear refinement of the linear 
L4-estimate, further impose the sign configurations (q1, q2, q3, q0) = (±,±,∓,±). However, 
we also have |ξ1 + ξ2| ≪ |ξ0| and |ξ0 − ξ3| ≪ |ξ0|, which, in conjunction with (ii.3) and the signs 
of the qi , leads us to |q1 − q2| ≪ |ξ0|, |q0 + q3| ≪ |ξ0|, and

2|q1 + q3| = |q1 − q2 + q0 + q3| ≤ |q1 − q2| + |q0 + q3| ≪ |ξ0|,

in contradiction to |3(ξ1 + ξ3)
2 − (q1 + q3)

2| ≪ |ξ1 + ξ3| ∼ |ξ0|. Consequently, it follows 
that |ξ3| ∼ |(ξ1, q1)| must be true. In this situation, two cases must be distinguished: If |q3| ≳
|(ξ1, q1)|, then from

|q2
1 − |(ξ3, q3)|2| ≤ ||(ξ1, q1)|2 − |(ξ3, q3)|2| + 3ξ2

1 ≪ ξ2
0 ,

|q2 − |(ξ3, q3)|2| ≤ ||(ξ2, q2)|2 − |(ξ3, q3)|2| + 3ξ2 ≪ ξ2,
2 2 0

40 
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and the two constraints coming from the bilinear refinement, we again obtain the following two 
admissible sign configurations: (q1, q2, q3, q0) = (±,±,∓,±). At this stage, however, we can 
precisely as previously discussed, deduce that |q1 + q3| ≪ |ξ0|, which is in contradiction with 
|3(ξ1 + ξ3)

2 − (q1 + q3)
2| ≪ |ξ1 + ξ3| ∼ |ξ0|. Thus, the sole remaining case to be examined is 

|q3| ≪ |(ξ1, q1)|. In this case, the active assumptions (ii.3) and (ii.3.1) also yield |q0|≪ |(ξ1, q1)|
and |q1| ∼ |q2| ∼ |(ξ1, q1)|, which altogether imply that q1 and q2 must have opposite signs. In 
order to take advantage of this fact, we consider the resonance function R. A straightforward 
computation shows that

R = −6(ξ1 + ξ2)(ξ1 + ξ3)(ξ2 + ξ3) +
3 ∑︂

i=1 
ξi(|(ξ0, q0)|2 − |(ξi, qi)|2), (43)

and if we now assume |ξ1 +ξ2| ≳ |ξ0| 1
6 ∼ |ξmax| 1

6 , then by applying the reverse triangle inequality 
and taking into account (ii.3), |ξ1 + ξ3| ∼ |ξmax|, and |ξ2 + ξ3| ∼ |ξmax|, it follows that

|R| ≳ |ξmax| 13
6 .

Moreover, since

|R| ≤ 3 
max
i=0 

⟨τi − φ(ξi, qi)⟩ =: 3 
max
i=0 

⟨σi⟩,

we obtain

|ξmax| 13
6 ≲ 3 

max
i=0 

⟨σi⟩,

and now we must distinguish between two cases. If we have max3
i=0⟨σi⟩ = ⟨σ0⟩, it follows that

|ξ0|⟨(ξ0, q0)⟩s⟨σ0⟩− 1
2 +2ε ≲

3 ∏︂
i=1 

⟨(ξi, qi)⟩ s
3 ,

and undoing Plancherel, followed by Hölder’s inequality yields

If ≲ ∥J s
3 u1J

s
3 u2J

s
3 u3∥L2

txy
∥f ∥X

0, 1
2 −2ε

≤ ∥J s
3 u1∥L6

T xy
∥J s

3 u2∥L6
T xy

∥J s
3 u3∥L6

T xy
∥f ∥X

0, 1
2 −2ε

.

By applying the optimized L6-estimate (21) three times, we arrive at

... ≲ ∥u1∥X s
3 + 2

9 +, 1
2 +ε

∥u2∥X s
3 + 2

9 +, 1
2 +ε

∥u3∥X s
3 + 2

9 +, 1
2 +ε

∥f ∥X
0, 1

2 −2ε

≲ ∥u1∥X
s, 1

2 +ε
∥u2∥X

s, 1
2 +ε

∥u3∥X
s, 1

2 +ε
∥f ∥X

0, 1
2 −2ε

,

with the last step requiring
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s

3
+ 2

9
+ ≤ s ⇔ 1

3
+ ≤ s.

By choosing ε > 0 sufficiently small, we therefore obtain the desired estimate (42) for every 
s > 1

3 . On the other hand, if max3
i=0⟨σi⟩ ≠ ⟨σ0⟩ (WLOG, max3

i=0⟨σi⟩ = ⟨σ1⟩), it follows that

|ξ0|⟨(ξ0, q0)⟩s⟨σ1⟩− 1
2 −ε ≲ ⟨(ξ1, q1)⟩s⟨(ξ0, q0)⟩− 2

9 −⟨(ξ2, q2)⟩ 1
9 +⟨(ξ3, q3)⟩ 1

9 +,

and we analogously obtain

If ≲ ∥J− 2
9 −f J

1
9 +u2J

1
9 +u3∥L2

txy
∥u1∥X

s, 1
2 +ε

≤ ∥J− 2
9 −f ∥

L6−
T xy

∥J 1
9 +u2∥L6+

T xy
∥J 1

9 +u3∥L6+
T xy

∥u1∥X
s, 1

2 +ε
.

Applying estimate (22) to the first factor, and estimate (21), interpolated with (39), to the second 
and third factors, we ultimately obtain

... ≲ ∥f ∥X
0, 1

2 −2ε
∥u2∥X 1

3 +, 1
2 +ε

∥u3∥X 1
3 +, 1

2 +ε
∥u1∥X

s, 1
2 +ε

,

which is precisely the estimate (42), valid for every s > 1
3 , provided ε > 0 is chosen small 

enough. We have thus seen that in the case |ξ1 + ξ2| ≳ |ξ0| 1
6 , the resonance function leads us 

to the desired result. Conversely, assume that |ξ1 + ξ2| ≪ |ξ0| 1
6 . From (ii.3) and the fact that q1

and q2 have opposite signs, it then follows that |q1 + q2| ≪ |ξ0| 1
6 , and we now aim to exploit this 

smallness condition. For dyadic N ∈ 2N0 and β ∈ R, we define the Fourier projectors Q(β)
N by 

setting

Q
(β)
N u := ℱ−1

y χ{|q|≲Nβ }ℱyu.

If we now set

u1 = PN1u1, u2 = PN2u2, and u3 = PN3u3

for dyadic numbers N1,N2,N3 ∈ 2N0 , it follows that |q1 + q2| ≪ N
1
6

1 , and redistributing deriva
tives gives6

|ξ0|⟨(ξ0, q0)⟩s ≲ N
3
4 −2s

1 |ξ0| 1
8 |ξ1| 1

8 ⟨(ξ1, q1)⟩s |ξ2| 1
8 ⟨(ξ2, q2)⟩s |ξ3| 1

8 ⟨(ξ3, q3)⟩s .

An application of the dual version of (19), followed by Hölder’s inequality then yields

6 We assume without loss of generality that |ξ1|, |ξ2| ≳ 1. Otherwise, one may invoke the Sobolev embedding in x
without any loss of derivatives, which allows for the conclusion ∥ui∥L4 L2

y
≲T ∥ui∥X 1

, i ∈ {1,2}.

T x 0, 2 +
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∥∂x(Q
( 1

6 )

N1
(u1u2)u3)∥X

s,− 1
2 +2ε

≲ N
3
4 −2s

1 ∥I
1
8
x (Q

( 1
6 )

N1
(I

1
8
x J su1I

1
8
x J su2)I

1
8
x J su3)∥X

0,− 1
2 +2ε

≲ N
3
4 −2s

1 ∥Q( 1
6 )

N1
(I

1
8
x J su1I

1
8
x J su2)I

1
8
x J su3∥

L
4
3
txL2

y

≤ N
3
4 −2s

1 ∥Q( 1
6 )

N1
(I

1
8
x J su1I

1
8
x J su2)∥L2

txL∞
y

∥I
1
8
x J su3∥L4

txL2
y
,

and the inner L∞
y -norm can be estimated in the following manner:

∥Q( 1
6 )

N1
(I

1
8
x J su1I

1
8
x J su2)∥L∞

y
≲ ∥χ

{|q|≲N
1
6

1 }
ℱy(I

1
8
x J su1I

1
8
x J su2)∥L1

q

≤ ∥χ
{|q|≲N

1
6

1 }
∥L1

q
∥ℱy(I

1
8
x J su1I

1
8
x J su2)∥L∞

q

≲ N
1
6

1 ∥I
1
8
x J su1I

1
8
x J su2∥L1

y
.

With this, we further obtain

∥∂x(Q
( 1

6 )

N1
(u1u2)u3)∥X

s,− 1
2 +2ε

≲ N
3
4 + 1

6 −2s

1 ∥I
1
8
x J su1I

1
8
x J su2∥L2

txL1
y
∥I

1
8
x J su3∥L4

txL2
y

≤ N
3
4 + 1

6 −2s

1

3 ∏︂
i=1 

∥I
1
8
x J sui∥L4

txL2
y
,

and three applications of (19) ultimately give

... ≲ N
3
4 + 1

6 −2s

1

3 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε
.

The desired estimate (42) now follows upon performing a dyadic summation over all N1 ∼ N2 ∼
N3 ≫ 1. This argument works provided that

3

4
+ 1

6
− 2s < 0 ⇔ 11

24
< s

and ε > 0 is chosen sufficiently small; this concludes the discussion of this subcase. 
(ii.3.2) |ξmin| ≪ |ξmed| ∼ |ξmax|: 
Under this assumption, the pointwise estimates 
|ξ0| ≲ |ξ1 + ξ2| and |ξ0| ≲ |ξ1 + ξ3| hold. Thus, if |3(ξi + ξj )

2 − (qi + qj )
2| ≳ |ξi + ξj | holds 

for at least one tuple (i, j) ∈ {(1,2), (1,3)}, then we may argue exactly as in case (ii.3.1), so that 
(30) and (33) lead to the desired multilinear estimate (42), valid for every s > 1

4 . Consequently, 
we may assume
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|3(ξ1 + ξ2)
2 − (q1 + q2)

2| ≪ |ξ1 + ξ2| ∼ |ξ3|

and

|3(ξ1 + ξ3)
2 − (q1 + q3)

2| ≪ |ξ1 + ξ3| ∼ |ξ3|.

Let us now first consider the case where |ξ3| ≪ |(ξ1, q1)|. Then, invoking the general assumption 
(ii.3), we obtain

|q1| ∼ |q2| ∼ |q3| ∼ |q0| ∼ |(ξ1, q1)|,

and in combination with the two constraints from the bilinear refinement, only the sign distri
butions (q1, q2, q3, q0) = (±,∓,∓,∓) remain possible. We once again distinguish two cases. In 
the case |ξ2 + ξ3| ≳ |ξ0| 1

3 , the resonance function R in the form (43) provides a remedy: taking 
into account (ii.3), |ξ1 + ξ2| ∼ |ξmax|, and |ξ1 + ξ3| ∼ |ξmax|, we obtain

|R|≳ |ξ0| 1
3 |ξmax|2,

and this - as already established in case (ii.3.1) - implies, at the very least, that an arbitrary s > 1
3

can be reached in the multilinear estimate (42). Conversely, if |ξ2 + ξ3| ≪ |ξ0| 1
3 , it follows that 

|ξ0 − ξ1| ≪ |ξ0| 1
3 , and, upon taking into account (ii.3), the magnitudes, and the signs of the qi , 

one consequently obtains |q2 − q3| ≪ |ξ0| 1
3 , |q0 + q1| ≪ |ξ0| 1

3 , and hence |q1 + q2| ≪ |ξ0| 1
3 . 

Moreover, we have

|ξ0| ≤ |ξ1| + |ξ2 + ξ3| ≤ |ξ1| + ε0|ξ0| 1
3 ,

and thus, |ξ0| ≲ |ξ1|, so that the Airy L4
txL

2
y -estimate (19) in the previously carried out smallness 

argument can be applied a total of four times: Again, for dyadic numbers N1,N2,N3 ∈ 2N , we 
set

ui = PNi
ui, i ∈ {1,2,3},

and obtain |q1 + q2| ≪ N
1
3

1 as well as

|ξ0|⟨(ξ0, q0)⟩s ≲ N
1
2 −2s

1 |ξ0| 1
8

3 ∏︂
i=1 

|ξi | 1
8 ⟨(ξi, qi)⟩s ,

which altogether - computing exactly as in case (ii.3.1) - yields

∥∂x(Q
( 1

3 )

N1
(u1u2)u3)∥X

s,− 1
2 +2ε

≲ N
1
2 + 1

3 −2s

1

3 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε
.

A dyadic summation over all N1 ∼ N2 ∼ N3 ≫ 1 now leads to the desired multilinear estimate 
(42), valid for all
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1

2
+ 1

3
− 2s < 0 ⇔ 5 

12
< s,

provided ε > 0 is chosen sufficiently small. With this, the discussion of the case |ξ3| ≪ |(ξ1, q1)|
is complete. We now consider the case |ξ3| ∼ |(ξ1, q1)|. If |ξ2 + ξ3| ≳ |ξ0| 1

3 to begin with, no 
further steps are required, as we then have

|R| ≳ |ξ0| 1
3 |ξmax|2

(observe (43), (ii.3), |ξ1 + ξ2| ∼ |ξmax|, and |ξ1 + ξ3| ∼ |ξmax|), and, as previously computed in 
case (ii.3.1), this ensures (at the very least) that all values s > 1

3 can be realized within (42). We 

may thus assume |ξ2 + ξ3| ≪ |ξ0| 1
3 , which directly implies |ξ0| ≲ |ξ1|, and this fact will play 

a crucial role in a subsequent smallness argument. Now, if |q3| ≳ |(ξ1, q1)| were true, then, in 
conjunction with the active assumptions (ii.3), (ii.3.1), |ξ0 − ξ1| = |ξ2 + ξ3| ≪ |ξ0| 1

3 , and the two 
constraints arising from the inapplicability of the bilinear refinement, we would obtain, on the 
one hand, the relations

|q1| ∼ |(ξ1, q1)|, ||q1| − |q0|| ≪ |ξ0| 1
3 , and ||q2| − |q3|| ≪ |ξ0| 1

3 ,

and on the other hand, the sign configurations (q1, q2, q3, q0) = (±,∓,∓,∓). These constraints, 
however, can only hold simultaneously in the case |q1 + q2| ≪ |ξ0| 1

3 , which would contradict 
|3(ξ1 +ξ2)

2 −(q1 +q2)
2| ≪ |ξ1 +ξ2|. We must therefore have |q3| ≪ |(ξ1, q1)| and consequently, 

by |ξ2 + ξ3| ≪ |ξ0| 1
3 and (ii.3), also |q2| ≪ |(ξ1, q1)|. Now, taking into account |q1| ∼ |(ξ1, q1)|, 

it follows that q1 and q0 must have the same sign, and together with (ii.3) and |ξ0 − ξ1| ≪ |ξ0| 1
3 , 

this further implies that |q2 + q3| = |q0 − q1| ≪ |ξ0| 1
3 must hold. After passing to dyadic pieces 

once again and taking into account |ξ0| ≲ |ξ1|, we then obtain - as in the previous discussion -
the estimate

∥∂x(u1Q
( 1

3 )

N1
(u2u3))∥X

s,− 1
2 +2ε

≲N
1
2 + 1

3 −2s

1

3 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε
,

which yields the desired trilinear estimate (42) after dyadic summation over all N1 ∼ N2 ∼ N3 ≫
1, provided that ε > 0 is chosen sufficiently small and

1

2
+ 1

3
− 2s < 0 ⇔ 5 

12
< s

is satisfied. Thus, this subcase is also resolved. 
(ii.3.3) |ξmin| ∼ |ξmed| ∼ |ξmax|: 
(ii.3.3.1) |ξmax| ≪ |(ξ1, q1)|: 
In this situation, it follows from the active constraint (ii.3) that

|q1| ∼ |q2| ∼ |q3| ∼ |q0| ∼ |(ξ1, q1)|, with ||qi | − |qj || ≪ |(ξ1, q1)| ∀i, j ∈ {0,1,2,3},
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and this in turn implies that the qi cannot all have the same sign. Without loss of generality, let 
us assume that we have the following sign configuration: (q1, q2, q3, q0) = (+,−,+,+). Then 
the assumption |ξ1 + ξ3|≳ |ξ0| 1

3 allows us to infer the pointwise bound

|ξ0|⟨(ξ0, q0)⟩s ≲ |ξ1 + ξ3| 1
4 ⟨(ξ1, q1)⟩s−⟨(ξ3, q3)⟩ 5 

12 +|ξ0 + (−ξ2)| 1
4 ⟨(ξ0, q0)⟩0−⟨(−ξ2,−q2)⟩ 5 

12 +,

and undoing Plancherel, followed by Hölder’s inequality and a subsequent application of (30)
and (33), yields

If ≲ ∥I
1
4
x P 1(J s−u1J

5 
12 +u3)∥L2

txy
∥I

1
4
x P 1(J 0−f J

5 
12 +ũ2)∥L2

txy

≲ ∥f ∥X
0, 1

2 −2ε
∥u1∥X

s, 1
2 +ε

∥u2∥X 5 
12 +, 1

2 +ε
∥u3∥X 5 

12 +, 1
2 +ε

≲ ∥f ∥X
0, 1

2 −2ε

3 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε
,

with the last step being valid for every s > 5 
12 , provided ε > 0 is chosen sufficiently small. Here, 

the applicability of (30) and (33) is justified by the fact that, since |ξ1 + ξ3| ≪ |(ξ1, q1)| and 
|q1 + q3| ∼ |(ξ1, q1)|, it follows that

|3(ξ1 + ξ3)
2 − (q1 + q3)

2| ∼ |(ξ1, q1)|2 ≫ |ξ1 + ξ3|.

It therefore remains to be examined what happens in the case |ξ1 + ξ3| ≪ |ξ0| 1
3 : Then it follows 

from (ii.3), from |ξ0 − ξ2| = |ξ1 + ξ3| ≪ |ξ0| 1
3 , and from the sign configuration of the qi , that 

|q1 − q3| ≪ |ξ0| 1
3 , |q0 + q2| ≪ |ξ0| 1

3 , and thus |q1 + q2| ≪ |ξ0| 1
3 , which allows us to proceed 

exactly as in case (ii.3.2) (the active assumption (ii.3.3) allows the Airy L4
txL

2
y -estimate (19) to 

be applied beneficially four times here as well) to obtain the desired trilinear estimate for all 
s > 5 

12 , provided ε > 0 is chosen sufficiently small. 
(ii.3.3.2) |ξmax| ∼ |(ξ1, q1)|: 
(ii.3.3.2.1) |ξi + ξj |≳ |ξmax|, for all (i, j) ∈ {(1,2), (1,3), (2,3)}: 
In this case, we have, due to the general assumption (ii.3),

|R| ≳ |ξmax|3,
which allows us to control up to 3

2− derivatives by means of the quantities ⟨σi⟩. Proceeding 
exactly as in case (ii.3.1), we thus arrive at (42), and this holds for every s > 1

3 , provided we 
choose ε > 0 sufficiently small. 
(ii.3.3.2.2) |ξi + ξj |≳ |ξmax|, for exactly two (i, j) ∈ {(1,2), (1,3), (2,3)}: 
Without loss of generality, we may assume that the sign pattern is (ξ1, ξ2, ξ3, ξ0) = (+,−,+,+)

with |ξ1 + ξ2| ≳ |ξmax| and |ξ2 + ξ3| ≪ |ξmax|. If now |3(ξ1 + ξ3)
2 − (q1 + q3)

2| ≳ |ξ1 + ξ3|
or |3(ξ1 + ξ2)

2 − (q1 + q2)
2| ≳ |ξ1 + ξ2|, then the bilinear refinement of the linear L4-estimate 

applies exactly as in case (ii.3.1) and yields s > 1
4 . Thus we may restrict ourselves to the situation 

where

|3(ξ1 + ξ3)
2 − (q1 + q3)

2| ≪ |ξ1 + ξ3|
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. 
and

|3(ξ1 + ξ2)
2 − (q1 + q2)

2| ≪ |ξ1 + ξ2|

hold. Furthermore, we may assume that |ξ2 + ξ3| ≪ |ξ0| 1
3 , since otherwise, by (ii.3), we would 

have

|R|≳ |ξ0| 1
3 |ξmax|2,

so that the resonance function - again as in case (ii.3.1) - already leads to at least s > 1
3 . In 

addition to that, we must have |q1| ∼ |(ξ1, q1)| and |q3| ∼ |(ξ1, q1)|, and because of (ii.3) together 
with |ξ0 − ξ1| = |ξ2 + ξ3| ≪ |ξ0| 1

3 , we then also obtain |q2| ∼ |(ξ1, q1)| and |q0| ∼ |(ξ1, q1)| with 
||q1|− |q0|| ≪ |ξ0| 1

3 and ||q2|− |q3|| ≪ |ξ0| 1
3 . Otherwise (taking into account (ii.3) and the signs 

of the ξi ) we would have

|3(ξ1 + ξ3)
2 − (q1 + q3)

2| ∼ |(ξ1, q1)|2 ≫ |ξ1 + ξ3|,

contradicting |3(ξ1 + ξ3)
2 − (q1 + q3)

2| ≪ |ξ1 + ξ3|. We are left with two cases:

(1) If q2 and q3 have opposite signs, then |q2 + q3| ≪ |ξ0| 1
3 , and the smallness argument pre

sented in case (ii.3.2) applies, yielding s > 5 
12 (the Airy L4

txL
2
y -estimate can be used four 

times due to the active assumption (ii.3.3)).
(2) If q2 and q3 have the same sign, then, since q1 + q2 + q3 = q0, the quantities q0 and q1

must have opposite signs. Combining |q2 − q3| ≪ |ξ0| 1
3 with |q0 + q1| ≪ |ξ0| 1

3 then implies 
|q1 + q2| ≪ |ξ0| 1

3 , so that we may again invoke the smallness argument to obtain s > 5 
12 .

(ii.3.3.2.3) |ξi + ξj |≳ |ξmax|, for exactly one (i, j) ∈ {(1,2), (1,3), (2,3)}: 
We again consider, without loss of generality, the sign configuration (ξ1, ξ2, ξ3, ξ0) = (+,−,+,+)

Since |ξ0|≲ |ξ1 + ξ3|, we may infer the pointwise bound

|ξ0|⟨(ξ0, q0)⟩s ≲ |ξ1 +ξ3| 1 
24 ⟨(ξ1, q1)⟩s−⟨(ξ3, q3)⟩ 11

24 +|ξ0 +(−ξ2)| 1 
24 ⟨(ξ0, q0)⟩0−⟨(−ξ2,−q2)⟩ 11

24 +,

and under the assumption |3(ξ1 + ξ3)
2 − (q1 + q3)

2| ≳ |ξ1 + ξ3| 1
6 , undoing Plancherel, followed 

by Hölder’s inequality, and a subsequent application of (30) and (33) yields

If ≲ ∥I
1 
24
x P

1
6 (J s−u1J

11
24 +u3)∥L2

txy
∥I

1 
24
x P

1
6 (J 0−f J

11
24 +ũ2)∥L2

txy

≲ ∥f ∥X
0, 1

2 −2ε
∥u1∥X

s, 1
2 +ε

∥u2∥X 11
24 +, 1

2 +ε
∥u3∥X 11

24 +, 1
2 +ε

≲ ∥f ∥X
0, 1

2 −2ε

3 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε
,

with the last step requiring s > 11 to hold. We may thus assume
24
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|3(ξ1 + ξ3)
2 − (q1 + q3)

2| ≪ |ξ1 + ξ3| 1
6 . (44)

From the general assumptions (ii.3), (ii.3.3), the signs of the ξi , |ξ1 + ξ2| ≪ |ξ0|, and |ξ2 + ξ3| ≪
|ξ0|, it then follows that

|q1| ∼ |q2| ∼ |q3| ∼ |q0| ∼ |(ξ1, q1)| with ||qi | − |qj || ≪ |ξ0| ∀i, j ∈ {0,1,2,3},

and the constraint (44) additionally forces the sign patterns (q1, q2, q3, q0) = (±,∓,±,±). If 
now

|ξ1 + ξ2| ≪ |ξ0| 5 
12 or |ξ2 + ξ3| ≪ |ξ0| 5 

12 ,

then by (ii.3), taking into account the signs of the qi , we also obtain

|q1 + q2| ≪ |ξ0| 5 
12 or |q2 + q3| ≪ |ξ0| 5 

12 .

Passing to dyadic pieces (cf. the smallness argument in case (ii.3.1) and case (ii.3.2)) then yields

∥∂x(Q
( 5 

12 )

N1
(u1u2)u3)∥X

s,− 1
2 +2ε

≲ N
1
2 + 5 

12 −2s

1

3 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε

or

∥∂x(u1Q
( 5 

12 )

N1
(u2u3))∥X

s,− 1
2 +2ε

≲N
1
2 + 5 

12 −2s

1

3 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε
,

and after dyadic summation this gives the desired trilinear estimate (42), provided

1

2
+ 5 

12
− 2s < 0 ⇔ 11

24
< s

and ε > 0 is sufficiently small. We may therefore assume

|ξ1 + ξ2| ≳ |ξ0| 5 
12 and |ξ2 + ξ3| ≳ |ξ0| 5 

12 .

Moreover, the assumption |q1 −q3| ≳ |ξ0| 3
4 implies, by (ii.3), that |ξ1 −ξ3|≳ |ξ0| 3

4 , and therefore 
also

|ξ1 + ξ2|≳ |ξ0| 3
4 or |ξ2 + ξ3|≳ |ξ0| 3

4 ,

as otherwise we would have

|ξ0| 3
4 ≲ |ξ1 − ξ3| ≤ |ξ1 + ξ2| + |ξ2 + ξ3| ≪ |ξ0| 3

4 .

In this case, however, since |ξ1 + ξ2|, |ξ1 + ξ2| ≳ |ξ0| 5 
12 , we obtain
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|ξ1 + ξ2||ξ2 + ξ3||ξ1 + ξ3| ≳ |ξ0| 13
6 ,

and together with (ii.3) this yields

|R| ≳ |ξ0| 13
6 .

As previously discussed, this already suffices to obtain at least s > 1
3 , so that we can also assume 

|q1 −q3| ≪ |ξ0| 3
4 . Moreover, these considerations work entirely analogously for the pairing q0 +

q2, which allows us to include |q0 + q2| ≪ |ξ0| 3
4 among our remaining active constraints as well. 

As a final preparatory step for our last argument, we write

f = PNf, u1 = PN1u1, u2 = PN2u2, and u3 = PN3u3

for dyadic numbers N ∼ N1 ∼ N2 ∼ N3 ≫ 1, which allows us to summarize all the relevant 
remaining constraints in the form:

|√3(ξ1 + ξ3) ∓ (q1 + q3)| ≪ N− 5
6 , |q1 − q3| ≪ N

3
4 , and |q0 + q2| ≪ N

3
4 . (45)

Let us now define, for α,β ∈ R and dyadic N ≫ 1, the bilinear restriction operator S(α,β)
N by 

means of its Fourier transform:

ˆ︂

S
(α,β)
N (u, v)(τ, ξ, q) :=∫︂

R2

∑︂
q1∈Z

χ{|√3ξ∓q|≲Nα}χ{|2q1−q|≲Nβ }û(τ1, ξ1, q1)v̂(τ − τ1, ξ − ξ1, q − q1)d(τ1, ξ1).

Then, taking into account

|ξ0|⟨(ξ0, q0)⟩s ≲ N1−2s+⟨(ξ1, q1)⟩s⟨(ξ3, q3)⟩s⟨(ξ0, q0)⟩0−⟨(ξ2, q2)⟩s

and the constraints in (45), it follows - by undoing Plancherel and an application of Hölder’s 
inequality - that

If ≲ N1−2s+∥S(− 5
6 , 3

4 )

N (J su1, J
su3)∥L2

txy
∥S(− 5

6 , 3
4 )

N (J 0−f,J sũ2)∥L2
txy

,

and it remains to appropriately estimate the two L2-norms. To this end, let b > 1
2 be given 

arbitrarily. Then, by duality, and after applying Plancherel’s theorem, followed by the Cauchy
Schwarz inequality and Fubini’s theorem, we obtain

∥S(− 5
6 , 3

4 )

N (u, v)∥L2
txy

≲
(︄

sup 
(τ1,ξ1,q1)∈R×R×Z

c
1
2
0

)︄
∥u∥X0,b

∥v∥X0,b

with
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c0 = ⟨τ1 −φ(ξ1, q1)⟩−2b
∑︂
q∈Z

|2q1−q|≲N
3
4

∫︂
R 

χ{|√3ξ∓q|≲N
− 5

6 }

∫︂
R 

⟨τ − τ1 −φ(ξ − ξ1, q − q1)⟩−2bdτdξ,

and since b > 1
2 , the integral over τ is finite. Consequently, we have

c0 ≲b

∑︂
q∈Z

|2q1−q|≲N
3
4

∫︂
R 

χ{|√3ξ∓q|≲N
− 5

6 }dξ

≲ N− 5
6

∑︂
q∈Z

|2q1−q|≲N
3
4

1

≲ N
3
4 − 5

6

= N− 1 
12 ,

and this ultimately establishes the estimate

∥S(− 5
6 , 3

4 )

N (u, v)∥L2
txy

≲b N− 1 
24 ∥u∥X0,b

∥v∥X0,b
, b >

1

2
. (46)

Bilinear interpolation of (46) with the trivial bound

∥S(− 5
6 , 3

4 )

N (u, v)∥L2
txy

≲ ∥u∥X
1+, 1

4 +
∥v∥X

0, 1
4 +

then gives

∥S(− 5
6 , 3

4 )

N (u, v)∥L2
txy

≲N− 1 
24 +∥u∥X

0+, 1
2 −

∥v∥X
0, 1

2 −
, (47)

thereby allowing us to resume the calculations above: An application of (46) to the first factor 
and of (47) to the second factor leads us to

If ≲N
11
12 −2s+∥f ∥X

0, 1
2 −2ε

3 ∏︂
i=1 

∥ui∥X
s, 1

2 +ε
,

and a dyadic summation over all N ∼ N1 ∼ N2 ∼ N3 ≫ 1 finally gives the desired trilinear 
estimate (42), provided that

11

12
− 2s+ < 0 ⇔ 11

24
+ < s

is satisfied. By choosing ε > 0 sufficiently small, any s > 11
24 can be achieved and this concludes 

the discussion of this subcase. With this, all possible cases have been addressed, and the proof of 
Proposition 4.3 is complete. □
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