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ABSTRACT

The history of Earth’s atmospheric oxygen is a cornerstone of evolutionary biology. While unequivocal evidence for an increase in atmospheric Oy marks the Great
Oxidation Event (GOE) roughly 2.4 billion years ago, evidence underlying proposals for pre-GOE O, accumulation is debated. Here we have investigated the dis-
tribution of genes for oxygen reductases, the enzymes that consume O, in respiratory chains, across independently generated molecular timescales of prokaryotic
evolution. The data indicate that cytochrome bd-oxidases, heme-copper oxidases and alternative oxidases arose in the wake of the GOE ca. 2.4 billion years ago, after
which the genes were subjected to abundant lateral gene transfer, a reflection of their utility in redox balance and membrane bioenergetics. The data lead us to
propose a straightforward four-stage model for Oz accumulation surrounding the GOE: (i) Negligible O existed prior to the GOE. (ii) Cyanobacterial O, production
started at the GOE, yet was capped at 2 % [v/v] atmospheric Oy, the threshold at which cyanobacterial nitrogenase is inhibited by O,. (iii) Production of 0.02 atm of
03 (2 % [v/v]) at the GOE buried roughly the entire atmospheric CO5 inventory, causing sudden enrichment of 13C in dissolved inorganic carbon (the Lomagundi 13C
anomaly), through RuBisCO isotope discrimination, without atmospheric Oy exceeding 2 % [v/v]. (iv) High atmospheric '2C at the end of the Lomagundi excursion
marks the origin of oxygen reductases, their rapid spread via function in respiratory CO; liberation, and the onset of equilibrium between photosynthetic Oz pro-

duction and respiratory O, consumption at 2 % atmospheric Oj.

1. Introduction

Molecular oxygen, Oz, accumulated in the Earth’s atmosphere
starting ~2.4 billion years ago (Ga) during the Great Oxidation Event or
GOE, as documented by several lines of evidence [1-3]. Among them,
heavy stable carbon isotope ratios, s1%c (3%%c = [(*3c/ 12C)S;M,ﬂple/
(*3¢/*?C)standard] - 1), in sedimentary rocks serves as a proxy for
increased organic carbon burial, which enable the persistence of
photosynthetically derived O, in Earth’s atmosphere [4,5]. Another
important indicator of Earth’s atmospheric oxygenation are measure-
ments of mass-independent sulfur fractionation, or MIFs, which put a
strict upper limit of 107° present atmospheric level (PAL), or 1077 atm,
prior to the GOE [6]. There are, however, reports that traces of atmo-
spheric O, accumulation, called “whiffs,” commenced slightly earlier
than the GOE [7,8]. Those reports have been challenged, however, as
newer findings indicate that the whiffs are caused by later oxidation of
2.45 Ga sediment samples that were deposited in the absence of O, [9].
Anbar et al. [10] responded to that report and [11] responded in return.
There are also reports that synthesis of Oy from sand could have

generated Oy pre-GOE [12-14], but the proposed mechanism involves
the synthesis of HyO,, which is too reactive to have contributed to O,
accumulation on an atmospheric scale [15,16]. The half-life of HyO5 is
only 0.7 s in the presence of Fe2t [1 5], which would preclude its role as a
source of environmental O, or as a possible precursor to H2O in the
evolution of the oxygen evolving complex (OEC) of photosystem II [17].
There are also reports that ocean floor manganese nodules can synthe-
size O, [18], but the nodules in question are formed and deposited with
the help of Oy, rendering any such contribution to pre-GOE O pro-
duction unlikely at best.

Several molecular phylogenetic studies of oxygen-utilizing enzymes
[19-23] or enzymes related to oxygen-utilizing pathways [24,25] infer
an origin of oxygenic photosynthesis prior to the GOE on the basis of
molecular clocks. But such studies entail the assumption of strict vertical
inheritance for prokaryotic genes, that is, no lateral gene transfer (LGT)
or at most one LGT from an unknown extinct donor [24], whereby it is
known that all prokaryotic genes studied to date have been subjected to
multiple LGTs during evolution [26], including—and in particular—O-
dependent enzymes, which are among the most frequently transferred
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genes in prokaryotes [16]. Furthermore, molecular clock studies require
the use of geochemical and paleontological calibration points, whereby
there is no agreement as to what constitutes reliable evidence for pre-
GOE Os. For example, Davin et al. [22] calibrated their trees assuming
that the Fe and U-Th-Pb isotope signatures reported by Satkoski et al.
[27,28] represent a hard minimum age for photosynthetic Oz production
by 3.2 Ga, 800 MY before the GOE, whereby reports using chromium
isotopes to infer pre-GOE O at 3.0 Ga [29] were challenged based on
evidence for later oxidative weathering [30]. Isotope-independent
biomarker data supporting the existence of cyanobacteria at 2.7 Ga
[31] turned out to be contamination from younger rocks [32]. Using
post-GOE prokaryotic fossils as calibration points [33] dated the origin
of cyanobacteria to roughly 3 Ga, but no fossil cyanobacteria of that age
are known, and fossils once thought to be 3.5 Ga cyanobacteria [34]
turned out to be abiotic structures of hydrothermal vents [35]. Finally,
the molecular clocks of Jabloniska & Tawfik [23] inferred evidence for
O, before the GOE were not calibrated on geochemical data but using
published molecular clocks. If we recall that MIFs put a strict upper limit
for Oy of 1077 atm prior to the GOE [6,36], all reports of pre-GOE O
carry the caveat that pre-GOE O» production was restricted to a
particular local environment, and never accumulated in the atmosphere.

It is possible that, prior to the GOE, soluble Mn served as an evolu-
tionary precursor substrate for the primordial oxygen evolving complex
prior to the use of water as electron donor, but in a process that does not
produce O, [37,38]. There is no question that O, became environmen-
tally and physiologically relevant at the GOE [6]. What if there was no
rudimentary or locally restricted Oy production before the GOE, which is
possible [39]? What if the GOE is telling it like it was? In a straight-
forward read of the geochemical record, the appearance of biologically
relevant amounts of Oy on Earth corresponds 1:1 with the GOE. In that
case, the GOE marks the maximum age of O, respiration by prokaryotes
because without the substrate (03), the Oy-reducing enzymes of respi-
ratory chains [40,41], and other O, dependent enzymes [16] could have
no selectable Os-dependent function. This line of reasoning—that the
GOE is the calibration point for the origin of O,-dependent enzymes—is
almost entirely absent in the molecular-based literature on Oy history,
and no molecular dating studies, except of Soo et al. [42], to our
knowledge have suggested an origin of O, dependent enzymes subse-
quent to the GOE, that is, molecular dating studies consistently date the
origin of Oy pre-GOE.

The GOE is not, however, a simple event. The end of the GOE is
accompanied by the Lomagundi-Jatuli Excursion (LJE, also called the
Lomagundi excursion), the largest event of elevated, seawater-derived
513C values over the last 3.5 billion years [43,44]. During the LJE,
8'3C values increased to roughly +5 to +10 %o, indicating, at face value,
massive primary production and carbon burial, which under standard
geochemical models [3,4,45] corresponds to massive Oz production
(between 12 and 22 times the present atmospheric reservoir; [4]). There
is no consensus about the interpretation of the LJE. It could indicate a
global event or a series of coastal, shallow water events [45-48] that
lasted approximately 100 to 250 Ma, from 2.3 to 2.0 billion years ago
[46]. Using standard atmospheric models [3,4,45], the magnitude of
813C enrichment at the LJE would imply that O rose from zero pre-GOE
to levels greatly exceeding the value of 21 % (v/v) in today’s atmo-
sphere. There are, however, reasons to doubt that standard atmospheric
models apply to the LJE, leaving the cause and impact of the §'3C
anomaly during the LJE, in terms of O3 levels, an open question [48].

Following the LJE, §'3C values fall to levels indicating roughly 1-10
% of present atmospheric O, levels (PAL) for almost 2 billion years until
the appearance of land plants [49-51]. Geochemists debate the reasons
for that continued phase of low oxygen [52-57], but the simplest
explanation is biological, and enzymatic, in that nitrogenase is inhibited
by Oy, and that inhibition limits cyanobacterial growth and O2 pro-
duction, on a global scale, until O, production by land plants set in ~500
MY ago [16,58-61]. During that time, oxygen reductases arose and
spread, also into the eukaryotic lineage via the origin of mitochondria
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[60,62,63].

On the modern Earth, O, consumption by oxygen reductases roughly
equals O, production [64,65]. Without biological Oy consumption
through respiratory terminal oxidases, Oz would rise to levels that
promote spontaneous combustion in forests. There are four basic types
of oxygen reductases that maintain O, at 21 % v/v including the cyto-
chrome bd-type oxygen reductases (bd), the heme-copper oxygen re-
ductases (HCO), the alternative oxygen reductases (AOX) and the
plastoquinol terminal oxidase (PTOX) (Fig. 1¢) [40-42,66-70]. The bd-,
HCO- types of reductases are known to be highly affected by LGT even
between domains (Bacteria and Archaea) and thus are distributed over a
wide range of prokaryotes [16,40,41,66,68-71]. The alternative oxygen
reductases (AOX) are present in eukaryotes and in marine bacteria
[68,72] while PTOX can only be found in photosynthetic organisms
including higher plants, alga, diatoms and Cyanobacteria [72-74]. AOX
and PTOX are membrane bound quinol reductases but have no role in
energy conservation, solely serving the function of maintaining redox
balance and avoidance of over reduced quinol pool in the bioenergetic
membrane instead [75-77]. The bd-type and HCO oxygen reductases
conserve energy in the form of proton gradients [40,41] and are likely
no older than the GOE [42], having arisen in oxic environments [16].
The HCO family includes the nitric oxide (NO) reductases, which are
evolutionarily derived from O, oxidase ancestors [40,41,66,68,69,78].

The timing of oxygen reductase origin is an unresolved issue, though
the oxygen affinity of bd-type, HCO and AOX reductases suggest a
sequence of order in their evolution: While bd-type oxidases have high
oxygen affinity, typically occurring in environments with low Os-levels,
the affinity of HCO and AOX and PTOX oxygen is low, requiring Oz-rich
environments for activity [79,80]. Here we investigate the timing of
oxygen reductase origin and their spread across prokaryotic lineages by
mapping their distributions across time-calibrated phylogenetic trees
[81]. Our approach presents a radical departure from previous studies in
that (i) we accept the date of the GOE as the earliest possible time of
oxygen reductase origin and function, (ii) we accept the existence of LGT
in oxygen reductase evolution, and (iii) we use a non-controversial
molecular dating scheme for prokaryotic evolution that was generated
by third parties and not for the purpose of dating oxygen reductase
evolution. The findings highlight physiology surrounding the GOE and
uncover a biological model that can account in a surprisingly direct
manner for the 3'3C isotope anomaly at Lomagundi-Jatuli excursion as
the product of a single cyanobacterial enzyme.

2. Methods
2.1. Prokaryotic time tree

The prokaryotic dated tree of life was obtained from Mahendrarajah
et al. [81]. It comprises 863 strains including 350 bacterial, 350 archaeal
and 163 eukaryotic genomes.

2.2. Balanced prokaryotic RefSeq dataset

The prokaryotic sequences were downloaded from the Reference
Sequence Database (RefSeq) release 223 in May 2024 from the National
Center for Biotechnology Information (NCBI; [82]) including 41,210
prokaryotic genomes. To avoid any phylogenetic bias, a balanced sam-
ple was generated using the biggest archaeal genome per species and the
biggest bacterial genome per family. Additionally, 11 genomes with less
than 1000 proteins were filtered out and 9 genomes from organisms that
have no cytochromes and which were found by Rosenbaum and Miiller
[83] were added. In total, the balanced dataset comprises 953 genomes
including 552 bacterial and 401 archaeal genomes.

2.3. Oxygen reductases proteins

The set of 265 bd-type oxygen reductase sequences were obtained
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Fig. 1. Components of the respiratory chain and different types of oxygen reductases. A) components of the classical respiratory chain and b) alternative
complexes of the respiratory chain. In c) different types of oxygen reductases are shown including the caa3 oxidase (HCO), the nitric oxide reductase cNOR (HCO),
the bo3 oxidase (HCO) and the alternative oxidase (AOX).

from Murali et al. [40]. From Murali et al. [41] 35,352 heme-copper
oxygen reductase proteins were downloaded. A set of group-specific
consensus sequences for alternative oxygen reductase proteins were
downloaded from Weaver & McDonald [84] including 21 sequences of

eukaryotic and prokaryotic groups. The plastoquinol terminal oxidase
was taken form species Anabaena cylindrica with the accession number
AFZ5900.1, downloaded from NCBI in December 2024.
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2.4. Heme biosynthesis and cytochrome b protein sequences

The heme biosynthesis proteins for the protoporphyrin pathway
were downloaded from RefSeq Release 227 (NCBI, [82]). The proto-
porphyrinogen oxidase (PgoX) was obtained from the species Staphylo-
coccus aureus and all other protoporphyrin pathway proteins were
obtained from species Klebsiella Pneumniae. The coproporphyrin
pathway proteins were all from Staphylococcus aureus and the proteins
from the siroheme pathway proteins were from Methanosarcina barkeri.

The cytochrome b proteins corresponding to the HdrDE complex
from Methanosarcina barkeri were downloaded from RefSeq Release 227
(NCBI, [82]). As no complete sequences for the proteins of the VhtACG
complex could be downloaded from RefSeq, we used hmmer profiles
from InterPro [85].

2.5. Presence and absence of oxygen reductase proteins within a dated
tree of life

The 265 proteins from bd-type oxygen reductase, the 35,352 hem-
e-copper oxygen reductase proteins, the 21 alternative oxygen reductase
proteins and the plastoquinol terminal oxidase sequence [40,41,84]
were blasted against the balanced prokaryotic RefSeq dataset using
Diamond version 2.1.8 [86]. Hits with an e-value <10E° and local
identity >25 % were retained and cross-checked by protein annotation.
Taxa corresponding to strains present in the remaining hits were colored
in the dated tree of life using Interactive Tree of Life (iTOL v6, [87]) and
the most ancient possible gene origins were calculated based on the sum
of branch length of the deepest colored nodes in the dated tree of life. For
phylogenetic tree analysis python ETE3 [88] was used.

2.6. Presence and absence of heme biosynthesis and cytochrome b
proteins in Methanogens and Halophiles

All heme biosynthesis proteins and proteins of the HdrDE complex
including cytochrome b were blasted against the genomes of Meth-
anobacteria, Methanococci, Methanopyri, Methanomicrobia, Meth-
anoliparia, Methanonatronarchaeia, Archaeoglobi, Thermoproteota and
Halobacteria using Diamond version 2.18 [86]. Hits with an e-value
<10E° and local identity >25 % were retained and cross-checked by
protein annotation. The resulting best hits per protein were used as a
proxy for presence or absence within the genome.

HMMER profiles of the VhtACG complex were searched against the
genomes of Methanobacteria, Methanococci, Methanopyri, Meth-
anomicrobia, Methanoliparia, Methanonatronarchaeia, Archaeoglobi,
Thermoproteota and Halobacteria using HMMER version 3.3.2 (hmmer.
org). Only hits with an e-value <10E % were retained and cross-checked
by protein annotation. The best scoring hit per genome was used to infer
presence or absence within the genome.

2.7. Monophyly of possible origin groups within oxygen reductase protein
trees

Best blast hits per RefSeq genome were defined from the hits
generated by the Diamond blastp search between reductase proteins and
balanced RefSeq dataset for each oxygen reductase (see Taxonomic
annotation of oxygen reductase proteins). From these, multiple align-
ments were made using MAFFT linsi v7.505 [89] and phylogenetic trees
were generated using RAxXML version 8.2.12 [90] under the PROT-
CATWAG model. Groups of taxa corresponding to the most ancient
possible gene origins were colored within the protein trees and mono-
phyly of these groups were checked using python ETE3 and iTOL v6
[87,88]. Lateral gene transfer events per group and oxygen terminal
oxidase were calculated by subtracting one from the number of clades
present in the protein tree since one clade has to be the origin and all
others are LGTs. To obtain a number of LGT events per terminal oxy-
genase the values for every group were summed up.
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2.8. Statistical tests

Kernel density estimations were made for the distributions of origins
of bd-type, HCO and AOX reductases. All statistical tests were performed
using python. Kolmogorov-Smirnov test was used to compare the dis-
tribution of origin ages.

3. Results
3.1. Occurrence of oxygen reductases across prokaryotes

To date the four types of oxygen reductases we used the dated
phylogenetic tree with geological time spans as branch lengths con-
structed by Mahendrarajah et al. [81]. Based on diamond blastp [86]
searches between protein sequences of bd [40], HCO [41], AOX [84] and
PTOX reductases and a balanced prokaryotic genome dataset, we
colored leaves and corresponding clades of taxa with bd, HCO or AOX
and PTOX reductases sequences in the phylogenetic time tree (Figs. 2-3,
Supplemental Figure 3). Leaves and clades corresponding to eukaryotes
are colored in light gray since they were not part of the analysis, as well
as taxa that were not present in the balanced prokaryotic dataset and
therefore cannot be hit by our blast, as these taxa mainly correspond to
metagenomic assemblies (MAGs) that are not represented in our
balanced prokaryotic dataset.

Cytochrome bd reductases are common in Actinomycetota, Bacilli,
Pseudomonadota and Halobacteria and less abundant in Chlorobiota,
Clostridia, Fusobacteriota, Spirochaetota Mycoplasmatota, Nitro-
sosphaerota, Thermococci and Thermotogota (Fig. 2). This distribution
is consistent with previous studies [40,66], with the exception of the
occurrence of bd in Thermotogota, where it is however only present in
one of the five possible strains (Supplemental Table 1).

HCO reductases are more common in the current data than bd oxi-
dases or alternative oxidases (AOX and PTOX). They are distributed
across almost all taxonomic groups except for smaller archaeal and
bacterial groups including Heimdallarchaeota, Korarchaeota, Nano-
haloarchaeota, Aenigmarchaeota, Mycoplasmatota and Synergistota
(taxonomy of NCBI as of January 2023). Additionally, we found isolated
cases of blast hits for HCO proteins in methanogens, yet only in four
strains of Methanomicrobia and one of Methanonatronarchaeia (Fig. 3,
Supplemental Table 1). Because (i) all HCOs contain heme and (ii)
methanogens are not able to synthesize heme except of some species
corresponding to Methanosarcinales, for example Methanosarcina bar-
keri [41,91], we performed Diamond blastp searches of heme biosyn-
thesis proteins against methanogens and Halobacteria, to see whether
the presence of HCO reductases in Methanomicrobia and Methanona-
tronarchaeia could be chance similarity or the result of an LGT that does
not generate a functional protein (that is, a component of the accessory
genome). Among methanogens, only strains of Methanosarcinales
encoded a full heme biosynthesis pathway (Supplemental Fig. 1), 96 %
of strains of Methanosarcinales in our dataset encoded the three key
proteins for the alternative siroheme pathway (Supplemental Table 2).
Additionally, we checked whether the sampled methanogens possess the
VhtACG and HdrDE protein complexes, which are involved in energy
conservation of species of Methanosarcinales and are known to contain
cytochrome b [92,93]. The complete VhtACG and HdrDE protein com-
plexes were only present in some strains of Methanosarcinales and
Methanonatronarchaea (Supplemental Fig. 2). However, the VhtC pro-
tein, which includes cytochrome b, is also present in Halobacteria,
Archaeoglobi, Thermoproteota and Methanocellales. The other
cytochrome-containing protein HdrE was only detected in Meth-
anosarcinales (all), one strain of Methanomicrobiales, and the lone
Methanonatronarchaeal strain. Based on the absence of heme biosyn-
thesis cytochrome b containing protein complexes VhtACG and HdrDE,
the occurrence of a putative HCO in the Methanotrichales strain of
Methanomicrobia is probably attributable to sequence similarity to
other oxidases. Although all methanogens known are strict anaerobes,
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HCO reductases can in principle be present in the three remaining
Methanosarcinales strains, though we found no reports of their possible
expression or function. Outside the methanogens, HCO reductases are
otherwise well known to be present throughout the tree of life, with
involvement in both aerobic and anaerobic respiration [41,78,79,94].
Alternative oxidases including AOX, an additional terminal oxidase
in mitochondrial electron transport, and PTOX, the plastoquinol termi-
nal oxidase which is the relative enzyme of the photosynthetic electron
transport chain [95] are less common in prokaryotes [68,74,84,96].
Consistent with previous analyses, we found AOX reductases only in
Pseudomonadota, specifically Alpha-, Beta- and Gammaproteobacteria

(Supplemental Fig. 3; [68,84,96]) and PTOX sequences in Cyano-
bacteriota (Supplemental Fig. 3; [74]). One AOX sequence was also
found in Cyanobacterium Picosynechococcus, but as this is likely to
reflect sequence similarity between AOX and PTOX [74], we excluded
this genome for further analysis with AOX.

3.2. Timing the origins and spread of oxygen reductases

To estimate the time of origin for each oxygen reductase, we used the
deepest node for each colored clade and calculated the age of the
possible origin by summing up the branch lengths. This conservatively
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delivers a maximum age for the respective reductases in each clade. For
bd oxygen reductase we identified 41 possible origins (independent
clades) and for HCO 33 possible origins. The AOX and PTOX reductases
are the least frequently distributed across the prokaryotic time tree,
reflecting only two possible origins for AOX and one origin for PTOX
(Supplemental Table 1). The timing of the (earliest) origin of bd oxidases
and members of the HCO family within a given prokaryotic clade can,
with many caveats, be read directly off the timed tree generated by
Mahendrarajah et al. [81]. We plotted the distribution of ages for each
possible origin on a geological timespan (Fig. 4 and Supplemental
Fig. 4). For each distribution except of PTOX (due to the sample size of
one) we calculated a Kernel Density Estimation (KDE) to estimate the
probability distribution of ages of origins over the entire time period.
What does the age of a bd clade or an HCO clade indicate? The bd
oxidases are all related in sequence, structure and function, they descend
from a single common ancestor. We observe, for example, 41 clades of
prokaryotes that harbor bd oxidase genes. At the one extreme, these 41
clades could be the result of a single bd oxidase gene origin in the
common ancestor of bacteria and archaea followed by differential loss.
This kind of strictly vertical reasoning places all proteins present in some
bacteria and some archaea in the last universal common ancestor LUCA.
It would place the age of bd oxidases at roughly 4 billion years and entail
their persistent presence, without oxygen, throughout diverse basal
branches in the tree for at least 1.8 billion years, up until the GOE. This
kind of “no LGT” scenario calls for geological sources of sustained Oy
production prior to the GOE—controversial sources [12-14,18]—that
are however not documented in the geological record, because the first

uncontested appearance of biologically useful (respirable) amounts O,
on Earth is the GOE. A “no LGT” model also calls for explanation of why
other studies find evidence for substantial amounts of LGT in the evo-
lution of bd oxidases and all other prokaryotic genes [40,42,66,84,97].

The other extreme is that only one lineage among the 41 bd con-
taining clades invented bd oxidases and that all other 40 clades are the
result of subsequent lateral transfers from the original inventing clade or
from secondary spread. That would entail a great deal of LGT in bd
oxidase evolution, consistent with recent studies [16]. It would mean
that the first origin of bd oxidases occurred roughly 2.5 billion years ago
(the oldest bd origin in the tree, in Actinomycetota), and very close to the
GOE (2.4 Ga), within the limits of accuracy on the Mahendrarajah et al.
[81] tree. It would entail no requirements for the existence of respirable
oxygen prior to the GOE. In fact, this extreme (one origin, 40 LGTs) fits
the observations from gene evolution and a straight reading of the
geochemical record well, with no need for corollaries.

The ages of the 41 bd origins are distributed between 2500 and 510
Ma ago with only one origin before the time of the GOE (Fig. 4, Sup-
plemental Table 1). Since, for the purposes of this paper, we posit that
there was no oxygen before the GOE [15,16], the possible origins before
the GOE contributing to Actinomycetota (age origin Actinomycetota =
2501 Ma) is likely a result from LGT into the Actinomycetota lineage. All
other possible origins are distributed at timespans after the GOE with
Cyanobacteriota having the oldest origin (the age of Cyanobacteriota is
2325 Ma in the calibration of Mahendrarajah et al. [81]) with Archae-
oglobi (623 Ma), Thermococci (512 Ma) and Chlorobiota (510 Ma) (see
Supplemental Table 1 for a list). The KDE for bd shows a peak of origins
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around 1600-1700 Ma which indicates a large number of bd oxidase
origins in different lineages (spread via LGT) during this time span
(Fig. 4). In comparison, the average age of bd origins is 1430 Ma, slightly
lower than the peak around 1600-1700 Ma (Supplemental Table 3). Due
to LGT, many origins of smaller taxonomic groups could affect the
average age of origins and thus easily distort it to a lower average age.
Still, the peak at 1600-1700 Ma is within the range of average origin age
+ one standard deviation (STD, Supplemental Table 3).

The distribution of ages of HCO reductase origins is similar to that of
bd-type reductases (Kolmogorov-Smirnov Statistic = 0.111, P = 0.945).
HCO origins are distributed between 512 and 2593 Ma with two possible
origins before the GOE (Fig. 4, Supplemental Table 1). These two origins
correspond to the taxa Deinococcota, Thermotogota (age = 2593 Ma)
and Actinomycetota (age = 2501 Ma). After that, the next origin is
located in Beta-, Gamma- and Zetaproteobacteria (age = 2477; Sup-
plemental Table 1) which is consistent with a previous study, suggesting
that HCO may originate in basal lineages of Pseudomonadota [98]. Taxa
including late possible origins for HCO reductase are Chlamydiota,
Archaeoglobi and Thermococci (age origin Chlamydiota = 790 Ma, age
origin Archaeoglobi = 623 Ma, age origin Thermococci = 512 Ma;
Supplemental Table 1). The KDE has a peak of origin frequency at
1700-1800 Ma, as for bd-type reductases, and a second peak around
1000 Ma (Fig. 4). The average age of all HCO origins is at 1523 Ma, again
slightly lower as the peak within the KDE. Noticeable for both distri-
butions and KDEs of bd-type and HCO reductases is that the origins only
occur within the timespan of the Pasteurian billion (also called the
boring billion [50,99,100], between 1800 and 800 Ma. Thus, the data
indicate that oxygen reductases arose and were spread across pro-
karyotes (i) after the GOE and (ii) during the time period of low oxygen
in Earth history (the Pasteurian billion). Similar results were found for
AOX and PTOX (Supplemental Figs. 3-4, Supplemental Table 1).

3.3. Oxygen reductases are strongly affected by LGT

Because bd-type and HCO oxygen reductases are known to be subject
to frequent transfer by LGT, we tested whether our sample produces
similar results as previous studies [40,41,66,68,69,71]. For each
reductase we generated a protein tree based on the best blast hits from

the balanced RefSeq dataset. The leaves of the protein trees are colored
according to their affiliation to groups, representing possible origins in
the time tree and were checked whether they are monophyletic or not
(Fig. 5, Supplemental Table 4). Reductases were defined as highly
affected by LGT if the groups were mainly represented by several clades
in the protein tree. In bd-type and HCO reductase protein trees, the
groups per possible origin are widely spread and usually not mono-
phyletic (Fig. 5a-b). Only three groups are monophyletic in the bd-type
protein tree including Aenigmarchaeota, Thermococci and Chlamydiota
(Fig. 5a, Supplemental Table 4). The HCO reductase protein tree has
only one monophyletic group corresponding to the taxon Thermococci
(Fig. 5b, Supplemental Table 4), which however contains a maximum of
five strains, permitting no strong inference about monophyly.

Despite the small number of genomes and groups in the AOX protein
tree, no monophyletic group is found (Fig. 5c). This suggests that the
AOX reductase is also transferred via LGT in prokaryotes. However, the
transfer of genes is restricted to Pseudomonadota. PTOX reductase do
not seem to be affected by LGT. They are found only in Cyanobacteriota,
making the protein tree a single monophyletic group (Fig. 5d). The
current sample and analysis confirms previous reports for the massive
role of LGT in the evolution of bd-type, HCO and AOX oxygen reductases
[40,41,66,68,69]. One origin and 40 subsequent transfers for bd oxi-
dases and one origin plus 32 transfers for HCOs inferred from the species
trees (Figs. 2, 3) might seem like a large amount of LGT for oxygen re-
ductases, but the number of transfers inferred from the enzyme phy-
logenies themselves (Fig. 5.ab) are 124 and 121 respectively, vastly
exceeding the bare minimum of 40 (bd) or 32 (HCO) transfers needed to
account for the lineage distribution of the enzymes.

4. Discussion

There is widespread agreement that the Great Oxidation Event (GOE)
marked the persistent accumulation of Oy in Earth’s atmosphere, as
documented by several lines of geologic evidence [1,36]. In particular,
the onset of the GOE is temporally constrained to ca. 2.32-2.22 based on
the irreversible disappearance of mass-independently fractionated sul-
fur isotopes from the sedimentary record [101-103], interpreted as
signaling a rise in atmospheric Oy > 107° of present atmospheric levels
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(PAL) [36]. While oxygenic photosynthesis necessarily evolved prior to
the GOE, the oldest body fossils interpreted as Cyanobacteria only
appear ca. 1.9 Ga [104], leaving geochemical reduction-oxidation
(redox) proxies as the primary tools for resolving when environmental
O, — and, by extension, oxygenic phototrophs - first appeared in Earth’s
surface environment [1].

Numerous geochemical studies reporting the concentrations of redox
sensitive metal concentrations and metal isotope ratios of sedimentary
rocks have inferred that oxygenic photosynthesis predated the GOE by
up to ca. 600 million years [29,105-107]. Geochemical and

mineralogical data associated with the morphology of lacustrine stro-
matolites have also been used as evidence for oxygenic photosynthesis
by ca. 2.7 Ga [108,109]. The conclusion that oxygenic photosynthesis
significantly predated the GOE has inspired numerous efforts to explain
how photosynthetic O2 production could have operated on Earth for
hundreds of millions of years without oxygenating the atmosphere
[110]. The proposed mechanisms vary, but tend to emphasize either
enhanced Os sinks, such as Oj-consuming reactions with marine and
atmospheric reductants [2,36], or diminished O sources, namely
extrinsic or intrinsic caps on cyanobacterial primary production, from
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phosphorus limitation [111], Fe’* toxicity [112], nitrogenase inhibition
by O, pre-GOE [113], to low metabolic efficiencies [114]. Despite the
ever-growing list of these proposed mechanisms, no clear consensus
exists on which one (or combination) of these—if any— actually works
as an explanatory platform for advocating for an early origin of oxygenic
photosynthesis relative to the GOE.

Although a minority view [36], the simplest explanation for why the
GOE happened when it did and not earlier is that oxygenic photosyn-
thesis originated in cyanobacteria only shortly before the GOE [1], and
that the rapid rise in O5 at the GOE simply reflects the rapid (initially
exponential) growth of cyanobacteria subsequent to their origin [59].
Collectively, geochemical evidence for free O, before the GOE has been
criticized as reflecting post-depositional alteration with oxic waters
[9,30], and as involving light-driven redox reactions that occurred in the
absence of free Oy [37,39]. Other geochemical evidence from shallow-
water banded iron formations has been used to argue that the marine
surface and atmosphere contained <107 PAL Oy ca. 2.45 Ga, implying
that oxygenic photosynthesis had not yet evolved by this time [115].
According to a simple box model, photosynthetic oxygen production
could have potentially overwhelmed atmospheric and marine Os-sinks
(e.g., atmospheric Hy and marine Fe?t) within ca. 100,000 years of its
origin [116].

Together, the idea that oxygenic photosynthesis originated only
shortly before the GOE arguably represents the simplest and most
straightforward reading of the geologic record in the absence of 1) un-
equivocal evidence for free O, (and oxygenic phototrophs) prior to the
GOE, and 2) a satisfying explanation for how photosynthetic Oy pro-
duction could have operated for over a half-billion years with oxygen-
ating the atmosphere.

Many reports infer the presence of oxygen in earth history from
molecular phylogenetic studies [13,19-23], starting with the early study
by [117]. Inferences of oxygen in Earth history from gene trees remain
contentious because the use of molecular clocks is inapplicable if the
gene in question has been affected by lateral gene transfer. All pro-
karyotic genes have been affected by LGT [26], in particular genes
involved in oxygen metabolism [16]. In a molecular clock study, LGT
systematically pushes the age of the gene in question artefactually deep,
towards the root of the tree. Here we have taken the converse approach
in that we allow LGT freely, we use geochemical evidence for the global
appearence of oxygen at the GOE as a calibration point for the age of
oxygen-dependent respiration, and we plot the appearance of oxygen
reductases on a phylogenetic tree constructed from the ATP synthase, a
largely vertically inherited gene [81]. The tree that we have used for
plotting oxygen reductases was constructed by others as a general
timeline reference for prokaryotic evolution, independent of oxygen
reductase evolution.

As outlined before, there are isolated reports that trace amounts of
oxygen might be synthesized from various reactions prior to the GOE,
but these reports are controversial and do not mesh with the evidence
for the existence of the GOE [12-16,18]. There are also claims for the
occurrence of whiffs of oxygen prior to the GOE [7,8], but the samples in
question could have been oxidized post-sedimentation [9], a finding that
was rebutted [10] with rebuttal [11] in return. Our reading of the
geochemical record is consent with the conservative and straightfor-
ward interpretation that the GOE represents the first global appearance
of oxygen in Earth history [1,9,102]. We thus interpret the GOE as the
earliest time point at which functional O, reductases could have arisen.
We also assume that LGT occurred freely in the evolution of oxygen
reductase genes, consistent with earlier studies [40-42,66,68,69,97]
and with the trees of oxygen reductases presented here (Fig. 5). With
these simple premises, we find that bd oxidase and HCO gene evolution
fit more or less perfectly with an origin of oxygen reductases at the GOE,
followed by subsequent transfers to different lineages throughout the
low oxygen phase of evolution called the Pasteurian billion, because
Earth’s atmospheric O, content was close to the Pasteur point (the Oy
concentration at which facultative anaerobes switch to O, respiration)
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during that time (Fig. 4). The present data do not indicate which lineage
invented bd oxidases (or HCO), but given the number of subsequent
transfers involved, the identity of the bd- and HCO-inventing lineages
does not impact our findings.

One could argue that Cyanobacteria were the first organisms to
evolve oxygen reductases, because they were the first to be confronted
with O, namely that produced by water-splitting photosynthesis [71].
However, O, diffuses out of the cyanobacterial cell faster than it is
produced, such that the Oy concentration in cyanobacterial cells
generated by de novo O; production is 0.25 pM to 0.025 uM [118]. The
O, from endogenous production is thus roughly 1000 fold lower than
modern concentrations, and well within the Km range of bd and HCO
enzymes (10 nM to 10 pM, [79]), and sufficient to support the origin of
oxygen reductases in cells other than cyanobacteria in Earths’ gradually
oxygen-accruing environment. As a result, oxygen reductases could have
arisen, in principle, in any heme-producing lineage with a preexisting
anaerobic respiratory chain.

Prior to the GOE, Earth was inhabited by anaerobes [119]. Oy is
inhibitory for many anaerobes in that it is a stable diradical that can,
however, readily accept single electrons from one-electron donors such
as quinols, flavins and in particular FeS clusters to generate the O3
superoxide radical, a highly reactive oxidant and toxic reactive oxygen
species (ROS) [61,120-122]. While flavins, quinols and other cofactors
including thiamin [123] generate toxic ROS, they remain active as co-
factors upon contact with O,. By contrast, many FeS clusters undergo
oxidative damage upon contact with Oy, such that O, inactivates en-
zymes with surface accessible FeS clusters [61]. Note, however, that
many FeS clusters are stable in the presence of Oy, for example the eight
FeS clusters in complex I of the mammalian respiratory chain [124]. It
has been suggested that the initial function of oxygen reductases,
especially bd-type oxidases, was to keep the cytosol free of O3 [125,126],
yet for Oy detoxification, most cells possess dedicated, soluble oxygen-
removing and ROS detoxification enzymes, including NADH oxidases
and superoxide dismutases [16,19,121,127,128]. In the wake of the
GOE, bd-type and HCO oxidases could assume their roles in energy
conservation, functioning in aerobic respiration in some lineages, in
denitrification in others, and in some cases, functioning in biosynthetic
pathways [40-42,67].

4.1. The Lomagundi (or Lomagundi-Jatuli) excursion

An aspect of O history that has not been previously addressed by
molecular studies is the Lomagundi excursion. More or less concomitant
with the GOE, there is a '*C isotope anomaly in the geochemical record
called the Lomagundi or Lomagundi-Jatuli excursion [3,48] that des-
ignates a '3C enriched marine dissolved inorganic carbon (DIC) pool,
which is the sum of dissolved CO,, HCO3 and CO%f (Fig. 6). This in-
crease in 13C in the DIC pool indicates increased primary production by
oxygenic photosynthesizers, because Rubisco discriminates against
13G0,, preferentially incorporating 2CO, into biomass [129], leaving
excess 13C in the atmosphere and hence in the DIC pool. Forests during
the Carboniferous, for example, deposited CO, as photosynthate that
became rapidly buried and thus became our modern coal reserves,
generating atmosphere O levels on the order of 150 % PAL, which is
reflected in high '3C vaules in DIC of the Caboniferous. Today, photo-
synthetic CO, fixation and O respiration take place are roughly equal
rates, such that atmospheric O, levels are stable [64,65]. It is now
agreed that the high 13C at the Lomagundi excursion need not reflect O,
levels vastly exceeding the present value of 21 % v/v [48], but the causes
for the appearance and disappearance of the Lomagundi are still
debated. Very complicated, multifactorial whole-ecosystem models
have been proposed as a cause of the LJE [130] but without identifi-
cation of specific processes underlying the isotopic excursion. Recent
studies have investigated the possibility that Rubisco *>C discrimination
might have been higher in the ancient past [131,132] by investigating
the discrimination properties of ancestral Rubisco enzymes, but the



K. Trost et al.

BBA - Bioenergetics 1867 (2026) 149575

_ °\E ",- - 10 ]
= o ! o
100 g A _
i o fin o LE 1
é 10‘ ',. l_c.\|
o Q
2 1. 0.1 S
o) =
< 014 0.01 2
%) o
2 0.014 8
£ 0.001 £
< 0.001 <
0.0001 : , : . | , 0.0001

4 3 25

Billion years before present

Fig. 6. Atmospheric O, and CO, during the last 4 billion years in comparison to §'3C values including the Lomagundi-Jatuli excursion (LJE) and the Great
oxidation event (GOE). Comparison of the evolution of 8'3C values (dashed line, [3]), O values (blue line, [60]) and CO, values (gray line, [36]) during the last 4
billion years. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

measured effects were small, also in the presence atmospheres con-
taining 2-5 % COg, which likely existed around the time of the GOE
[36]. Altered properties of ancient Rubisco enzymes are, in principle, a
possible cause of the LJE, as are a number of other factors, as outlined by
Prave [133].

We consider a sequence of simple processes with few variables at the
origin of the LJE, as outlined in Fig. 7. Reading the geochemical record
with Occam’s razor, there was no cyanobacterial O production prior to
the GOE. With the origin of water-splitting photosynthesis, cyanobac-
teria produced an atmosphere of roughly 2 % oxygen by the end of the
LJE and the end of the GOE. There is no explanation in the geochemical
record why oxygen stayed flat during the Pasteurian era and nothing
existed that limited cyanobacterial growth. However oxygen accumu-
lation ceased at ~2 % and did not exceed ~2 % because nitrogenase is
inhibited by 2 % O,, and without nitrogenase, no net CO, fixation
(cyanobacterial cell synthesis) is possible [58,59].

Note that nitrogenase is not inhibited by endogenous O, production,
because O rapidly diffuses out of the oxygen-producing cell, such that

Nitrogenase inhibition limits
O, to 10% PAL (0.02 atm)

Runaway photosynthesis
(there is nothing to stop it)

sunlight

6C0, |+ 12 H,0 —— CgH,0; + 60,

Origin of cyanobacterial /\

endogenous O synthesis generates intracellular O, levels of 0.25 pM to
0.025 pM [118], 10 to 100 times lower than that required to inhibit
nitrogenase [59]. In oxygenic photosynthesis, one CO5 is consumed for
every O produced. The GOE would have consumed all CO, contained in
a 2 % CO; atmosphere. Even with a modern Rubisco, that CO, depletion
would be expected to generate a very substantial alteration in the °C
isotope record reflecting high carbonate '3C simply as evidence of
increased carbon burial [48,129]. If the atmosphere contained less than
0.02 atm CO; at the time of the LJE (Fig. 7) [36], the GOE (which
generated 0.02 atm Oy in the atmosphere) would have essentially
scrubbed the atmosphere free of CO5, bringing O, production to a halt,
which apparently did not happen (Fig. 7). A 5 % CO, atmosphere would
have been depleted in CO, roughly by half.

One could argue that respiratory processes were replenishing at-
mospheric CO; levels as soon as carbon burial at the GOE commenced.
But according to the age of oxygen reductases that we have estimated
here, oxygen respiration had either not yet evolved at all at the GOE or
had not yet become widespread among bacterial lineages (Fig. 4). In the
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Fig. 7. Model for the causes of Lomagundi-Jatuli excursion (LJE) in connection with the evolution of atmospheric gases as O and COx.
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absence of bd oxidases or HCO in respiratory chains, anaerobic respi-
rations could have returned some CO3 to the atmosphere. But by the
measure of modern CO; cycling, the contribution of anaerobic respira-
tions (SOo, Fe3+) or fermentations would have been modest [64,65],
because more than 99 % of biological CO; production today comes from
O, respiration.

The end of the LJE is marked by a sharp spike of low 3C, suggesting,
in standard models, rapid release to the DIC pool of sequestered 12C-rich
organic material—derived from cells of the newly arisen cyanobacterial
lineage in this model. We propose that this rapid release of sequestered
organic carbon at the end of the LJE corresponds to the origin of bd and
heme-copper oxygen reductases and the respiration of a substantial
portion of light carbon buried during the GOE. Oxygen levels did not
react to the origin and spread of oxygen reductases because nitrogenases
imposed an upper on Os-levels independent of oxygen consumption
[58,59].

In this proposal, the LJE indicates a sharp increase in carbon burial at
a level sufficient to generate a '>C enrichment in the marine DIC pool,
but at no more than 2 % O, in the atmosphere, because of nitrogenase
inhibition. Furthermore, this proposal entails neither massive export of
the greenhouse gas methane to the atmosphere [130], nor does it entail
the formation of an ozone layer [130], which under standard models
arose long after the GOE, about 600 MY ago [39,134]. Our model re-
quires no attributes of oxygenic photosynthesis or cyanobacterial
Rubisco that differ from modern. It does however require an atmo-
spheric CO; level (0.02 atm) sufficient to support the synthesis of 0.02
atm of Oq. Following the origin of oxygen reductases at the end of the
LJE and the GOE, CO5 production through respiration and O produc-
tion through cyanobacterial photosynthesis could have fallen into
quantitative balance, as in the modern carbon cycle [64], but in an at-
mosphere of constant ~2 % O for almost 2 billion years until the origin
of land plants [49], because of nitrogenase inhibition [58,59] by Oa.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.bbabio.2025.149575.
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